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Summary \

It is known that the type of the system of partial differential
equations governing finite elastostatics can change from elliptic to non-
elliptic :M:~ sufficiently large deformations for certain materials. This
introduces the possibility that the elastostatic field may exhibit certain
discontinuities. Some aspects of the general theory associated with these
issues were examined in a recent series of studies by Knowles and

Sternberg. In this paper we illustrate the occurrence of elastostatic

fields with discontinuous deformation gradients in a physical problem.

The body is assumed to be composed of a material which belongs to a

particular class of isotropic, incompressible, elastic materials which
allow for a loss of ellipticity. It is shown that no solution which is smooth
in the classical sense exists to this problem for certain ranges of the
applied loading. Next, we admit solutions involving elastostatic shocks
into the discussion and find that the problem may then be solved completely. ;
When this is done, however, there results a lack of uniqueness of solutions

to the boundary-value problem. In order to resolve this non-uniqueness,

the dissipativity and stability of the solutions are investigated.

*The results communicated in this paper were obtained in the course of an
investigation supported by Contract N00014-75-C-0196 with the Office of
Naval Research in Washington D.C.
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1.1 Introduction
In the course of investigating some crack problems [1], [2], [3],

Knowles and Sternberg encountered certain difficulties which suggested

. that the problem may not admit a classically smooth solution. In order
to clarify this situation, a series of preliminary studies were undertaken
(References [4] - [7]) in which these authors looked at the question of
the change of type of the displacement equations of equilibrium from elliptic
to non-elliptic, and the related issue of the existence of solutions possessing

certain discontinuities — referred to as elastostatic shocks. The presence

of such elastostatic shocks is found to affect the energy balance of the

field. This led Knowles and Sternberg [6], [7] to propose a notion of

dissipativity associated with such fields. Subsequently, Abeyaratne [8]

f examined the corresponding issues in the case of incompressible materials.

In order to illustrate the occurrence of elastostatic shocks in a

boundary-value problem, we consider a problem in finite plane strain for

a hollow circular cylinder. Specifically, we examine the case in which
the outer surface of the cylinder is held fixed while the inner surface is
twisted circumferentially. The cylinder is presumed to be composed of a
homogeneous, isotropic, incompressible elastic material. Although this
problem has been considered beforel, our interest centers on those materials
whosge strain energy density permits a failure of ellipticity of the displacement
equations of equilibrium at sufficiently severe deformations.

We demonstrate for our choice of material that, while for both

sufficiently large and small values of the prescribed twist the problem

lsee Rivlin [9] as well as Green and Zerna [10] page 95. The problem

has been reconsidered more recently by Ogden, Chadwick and Haddon [11].
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admits a unique smooth solution, there are certain intermediate ranges of
the prescribed twist at which no classically smooth solutions exist. We
then show that there are however, an infinite number of weak solutions
involving elastostatic shocks in these ranges of the applied twist,

We then consider the quasi-static problem in which the prescrib-
ed twist is gradually changed in time, and explore the consequences of the
| dissipation inequality. It turns out that enforcing this inequality fails to
single out a unique weak solution,

In an attempt to clarify this issue of non-uniqueness, we examine

the stability of the various equilibrium solutions against purely circum-

ferential perturbations. It is found that the classical energy criterion
for stability, without reference to the dissipation inequality, picks out

a unique solution to the boundary-value problem at every value of the
prescribed twist. In the discussion of the various issues outlined above,

we restrict attention to configurations involving not more than one elasto-

static shock. As a consequence of the stability criterion, we find that an
equilibrium solution involving more than one shock is, in fact, unstable,
Ericksen [12] has discussed the equilibrium of a bar composed
of a material whose stress response in uniaxial tension is qualitatively
similar to the shear stress response in simple shear of the class of
materials considered here. There is a striking similarity between his
results and ours; in fact, certain aspects of our study of the stability
of weak solutions were suggested by the arguments in [12].
In Section 2 we set up the classical problem governing the twist-

ing of a hollow cylinder composed of an arbitrary homogeneous, incompres-

sible, isotropic, elastic solid. We then discuss the particular class of

e — e~ J .
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materials with which we will be concerned. In Section 3 we determine

the solutions of this problem and construct the associated torque-twist
curves, For sufficiently small and large values of the prescribed twist,
we have a unique smooth solution at which the displacement equations of
equilibrium are elliptic. Depending on the details of the geometry and
constitutive law, it is also possible to have a unique, non-elliptic, smooth
solution at certain — but not all — values of the twist in the intermediate
range. In all cases there are ranges of values of the preacribed twist

for which we find no solution, We then prove that, in fact, no smooth
solutions exist in these ranges of the prescribed twist.

We next set up and solve, in Section 4 the problem in its weak
formulation, We now find a solution corresponding to every value of the
prescribed twist, but unfortunately there are many solutions corresponding
to certain twist values.

In Section 5 we make use of the dissipation inequality in an unsuc-
cesaful attempt to extract a unique solution from among the many solutions
to the boundary value problem, Finally, in Section 6 we examine the
stability of each of the available solutions against purely circumferential
perturbatiosns. We find that at every value of the prescribed twist there

is precisely one stable solution to the boundary-value problem in its weak
formulation. For sufficiently small and large values of the applied twist,

this unique stable solution is smooth and elliptic. For all intermediate
values, the unique stable solution involves an elastostatic shock and is

elliptic,

it b 2 - -
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2.1 Formulation of Problem

Suppose that the open region R occupied by the interior of a
body in its undeformed configuration is a hollow right circular cylinder
of internal and external radii a and b, respectively. Let [I be the
open middle cross-section of the cylinder R , and let O be the center
of the annular region I .

Suppose the inner surface of the cylinder is rotated circumfer-
entially through an angle ¢0 » Wwhile the outer lateral surface is held
fixed. We assume that the resulting deformation maps the point with
cylindrical coordinates (r, 6, z) in the undeformed configuration onto

the point with cylindrical coordinates (p, ¥, §), where

p=Pp(r,0,2z)=r, y=4(r,0,2)=0+0(r), E=8(r,0,2)=2 . (2.1)

This describes a plane deformation in which each particle moves cir-
cumferentially through an angle ¢(r). Suitable tractions are presumed
to be applied on the ends of the cylinder so as to maintain such a state
of plane strain,

The deformation (2.1) may be equivalently expressed as follows.
Let X be a fixed rectangular cartesian coordinate frame with its ori-
gin at O and orthonormal base vectors L1+ 820 83 such that 2 and

e, arein the plane of I and &3 isnormalto I, If y is the position

FPESES U
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vector after deformation of the particle which was located at x in

the undeformed configuration, we can write (2.1) as

" s
N
¥,=X%,c08 ¢(r) -xzsin ¢(r) ,
p
: Y,=X%,co8 ¢(r)+xlsin¢(r) ’ r
i o
i 36
J

where

,2 2
r= x1+x2 .

-
cos ¢(r) -gin ¢(r)

o)
1

sin ¢(r) + r¢’(r)cos #(r) cos @(r) - r¢’(r)sin ¢(r)

t

0 0

14
Note that the matrix gx may be decomposed as follows;

B el P AT B BRI ST i A

Here ¥; and X , i=1,2,3, are the components of the vectors b A and
Xx in the frame X . We will temporarily assume that the local angle
of twist @(r) is twice continuously differentiable on (a,b).
It is convenient to express the field quantities at any point
(r,9,2z) in terms of components in the rectangular cartesian coordinate
frame X’ which is obtained by rotating the frame X through an angle

;' ;(r, 0, z) about the ss-a.xis. The matrix of components of the deforma-

o)

0

(2.2)

(2.3)

1', tion gradient tensor £=VX in the frame - gl Exl, is easily computed

from (2.2), (2.3) and the change-of-frame formula for tensors to be

. (2.4)
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1

o

cos @(r)

sin ¢(r)

J

-ging(r) O
cosd(r) O
0 1

:

’ (2.5)

which implies that locally the deformation (2.1) is composed of a rigid

rotation through an angle ¢ about the 33-a.xis followed by a simple

shear parallel to the circumferential direction with an amount of shear

r¢’(r). Set

k(r)=r¢(r) ,

so that k(r) is the local amount of shear,

(2.6)

Equation (2.4) indicates that detF =1, so that the deformation

(2.1) is locally volume preserving. From (2.4) and (2.6) we have

the components of the left Cauchy-Green tensor G=FF":

—

x-l

Q
1

1

k(r)

k(r)

1+k2(r)

0

%

L

: 3

The principal invariants of G are found from (2.7) to be

1

Iz=%{(trg)z-trgz}ﬂwz(r) e

3

I,=detG=1 ,

IL=trG=3+k¥r) ,

\

J

(2.7)

(2.8)

Suppose that the body is composed of a homogeneous, isotropic,
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i.ncompreuiplé , elastic solid which possesses an elastic potential
*
W=W(Il,12). W represents the strain energy density per unit unde-

formed volume. The constitutive law for the Cauchy stress tensor

1 is then
* * *
ow oW W 2
L:Z(-aTl-'{-Ila—Iz-)‘_GV-Z-B-T;g -pl , (2.9)1

where p(x) is a pressure field arising because of the constraint of in-
compressibility. We suppose for the moment that p(z) is continuously
differentiable on R . Using (2.7), (2.8) and (2.9) we find that the
stresses induced by the deformation (2.1) are given by

%! A
“’u=2w'(1)'q ’

4

x X ’
TIZ-TZI-ZkW(I) '

sz':2(1 +KEWID) - q > (2.10)

X xR
T13=731°T23°"32=0 »

*
X ’ 2 W
133-2W(I)+2k -——812(1+1, I+1)-q , J
where we have set
2 ¥
1=2+k°(r), W{I)=W{I+1, I+1) for I=22 (2.11)

and

lsee Truesdell and Noll [13], page 319.




q=p-2 31~ . (2.12)

Since the pressure p might depend on the coordinates ¢ and £, in
addition to p , it follows that tne Cauchy stress tensor T might depend
on all threeof p, ¢, and §.

It is suggestive to introduce the notation

_xe i

b Tl R
o

Toe=T22 ¢ \ (2.13)
£ X

B "2 -

The equilibrium equntionl in the axial direction is easily shown
to be satisfied if and only if q does not depend on Y, (and hence £).
It follows from (2.10), that the Cauchy stress tensor 7 is also inde-
pendent of the axial coordinate & . The remaining two equilibrium

equations now take the form

-5--9-'-+E(Tpp T )=0 » (2.14)

or o7

e 2
C— . 2.
% To®w ‘toTos0 e

From (2.1), (2.6), (2.10), (2.11) and (2.13) we see that

T is independent of the coordinate § , whence (2.14) and (2.15)

Py
specialize to

TBmly forces are presumed to be absent.
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87 ]
5 +—22——ﬂ- =0 , (2.16) g
d 2 or

Ea(p fp')+p —ﬂa' =0 . (2.17)

Integration of (2. 17) with respect <0 § leads to

ry dp(p i t)}”c(") , (2.18)

‘ where c(p) is a "constant' of integration depending on p alone. It is

| apparent from (2.18) that T is single-valued only if “

1A
d [ 2 &
dp(p Tpv)-o : (2.19)
It now follows from (2.18) and (2,19) that 'r" , and hence q, p and
T as well, are independent of the angular coordinate § . Using

PP
(2.10) and (2.13) in (2.16) and (2.19) we obtain the governing

system of ordinary differential equations for @¢(p) and q(p):
e
S’ sownz+o®s%en} =0 , (2..20)

Z%EW'(zwzes'z(pn- 2p¢'2<p)w'<2+p2¢'2<o))=-ﬁ}§ g (2.21)

On integrating (2.20) with respect to p we find that

' o8 0IW2 +0%0 % (0)) = (2.22)

where T is a constant of integration. Likewise, integration of (2.21)




o

with respect to p and making use of (2.22) gives

P
’ Y
ale) =2w'2 +0%¢ 2 (o)) + 5= | L&’-dhqo . (2.23)
a

where 9 is a constant.

It is convenient to define the scalar valued function f by

(k)= 2kWH2 +k2) for -om<k<o . (2. 24)

It is readily seen that, if an incompressible, isotropic, elastic solid is
subjected to a simple shear deformation, the shear stress corresponding

to an amount of shear k is f(k) . Accordingly the function f may

be interpreted as the shear-stress response function in simple shear.

Equation (2.22) can now be written as

f(p¢'(p))=-—2—17 on (a,b) , (2. 25)
™

which, together withthe boundary conditions

¢(a)=¢0 ’ (2.26)

¢(b)=0 , (2.27)

constitutes the boundary value problem for ¢(p). We wish to find a
function ¢(p), continuous on [a,b] and twice continuously differentiable
on (a,b), and a real number T such that (2.25) - (2.27) hold. We

will refer to such a solution as a smooth solution. Note that once @(p)
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has been so determined, (2,23) gives q(p) directly,

Finally, note from (2.6), (2.10), (2.13) and (2,22) that
Tp'(p)=- T/Zﬂ-q,'.tz so that T is the torque per unit axial length of the
cylinder acting on the inner surface,measured positive in the counter-

clockwise sense.

2.2 A Particular Class of Constitutive Laws

We now describe the particular class of homogeneous, isotropic,
incompressible, elastic materials to which we will restrict attention
in this study. It is adequate for our purposes to specify the response
of the material in simple shear alone. Observe from (2, 24) that W(I)
is completely determined by the function f . Consequently, one can show
that the response in simple shear determines completely the in-plane
response in all plane deformations for such materials.

Equation (2.24) implies that f is an odd function, i.e.,
f(k) =-f(-k) for -oco<k<o . (2.28)

We assume that
(i) f is continuously differentiable on (-0, ™),

(ii) f is positive on (0,), whence it follows from (2,28) that
kf(k)>0 for k#0 , (2. 29)

(iii) there exist real numbers kl and kZ (°<k1<kz<°°’ such

that

N
f'(kl)=f'(kz)=0 ’
fk)>0 for 0sl<<k1 i k2<k<a. . > (2.30)
f'(k)<0 for k,<k<k, ,

>




.

(iv) f(k)=o0 as k=o .

Since f is an odd function it now follows that f'(-kl) =f'(-k2) =0,
f'(k)>0 for -o<k<-k, , -kl<k$0. f'(k)<0 on "k2<k<"k1 and
f(k) -0 as k~-o . Therefore, the function f(k) has local maxima
at k= kl X -kz and local minima at k=kz . -kl and is monotone in
between. A graph of such a function f is shown in Fig.1, where we

have set
£l =7 o fle) =T (2.31)

Note that necessarily
|£(k)| < Yone | foF | k| <k, ,

T min S |f(k)|s¢m“ for kls|k|$k2 - r (2.32)

If(k)lz'rmm for |k|2k2 .

S

An isotropic, incompressible, elastic solid subjected to plane
deformations conforms to the in-plane Baker-Ericksen inequality if and
only if WI)>0 for I>2 . By virtue of (2.24) this is equivalent to
kf(k)>0 for k¥ 0 . Because of (2.29), the class of materials under
congideration satisfies this condition,

Moreover, we have from Section 3,2 of [8] that in any plane
deformation, the plane strain displacement equations of equilibrium
are elliptic at a point if and only if the associated local amount of nhe;rl
is less than lcl or greater than kz « In the context of the problem

considered here, we have from (2.6) and (2. 11) that the

1

See Section 2.2 of [8].
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displacement equations of equilibrium are elliptic, at a solution cor-

responding to ¢(r) and a point, if and only if |r¢‘r)| is less than

k1 or greater than kz at that point.

It is clear that for the particular class of materials just de-
scribed, f has no single-valued inverse. The restrictions of f to
certain subintervals of (-o0,), on the other hand, do have unique

inverses, Let F1 ' Fz and F3 be the functions defined by
F,(f(k)) =k for [k|sk1 . §

F,(f(k)) =k for k= |k|sk, , L (2.33)

Fy(f(k)) =k for k25|k|<oo i

By virtue of (2.32), it follows that F F, and F, are de-

 Saglss 3
fined on [-Tm‘x s Tm“] » [-Tm“ ’ -Tmm]U[Tmm ’ Tm‘x] and

(-0, 'Tmin] U [Tmln , ®) respectively, and that they are continuously
differentiable on the corresponding open intervals.
The following properties of the inverses Fi (i=1,2,3) can be

easily verified; we list them here for subsequent reference.

»
f(F (1) =7 for |r|=r__

f(Fz('r))='r for T n‘l"'l"" 5 (2.34)

mi max

I(F3('r))='r for "mm‘l"'l<°° 4

~




8.

[/
F((r)>0 for |'r|<‘rm“ .

L/
Fy(r)<0 for Tmm<|“'|<“'m ’ 4§

< A S A St A I i MBI

[/
F3(-r)>0 for T n<|“'|<m ’ 3

mi

F. (T )=F,(r___ )=k

1"max 2T max! =k1

F oyl max® F3Tenad * K2 »

Z(Tm;x max

IFy(l<k)  for |r|st .

kl$|F2(T)|‘kz for Tmin‘ |T|‘Tm‘x

|Fy(ml2ky for |v|zv ., )

F3(|*|)>Fz(|"’|)>F1(|'|) for 'min<|7|<'rma.x ’

N
Fl(.T)=-Fi(T) .
i=1,2,3 and
for T in the
TFl(T)>° o (T £0) , } appropriate
interval

IF.(m|=Fl*Dh , J

F3('r)-ctm as T-xo ,

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2. 42)
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3.1 Smooth Solutions

We now return to the task of solving (2, 25) - (2.27) for the
special class of materials described in the previous section. To this
end, we first establish the following preliminary result,

Lemma: There does not exist a solution @¢(r) in
3 the class C2(a,b) to the differential equation

£(rg(r)) = - T/2nr (3.1)

where f is a continuously differentiable function
2 conforming to (2.28) - (2.30) and T is a con-
stant, such that at some radius s, a<s<b,

l¢'(s)==kkl or xk, . (3.2)

“

Proof: Suppose that there is such a solution ¢(r). Differentiation of (3.1)

with respect to r and setting r=s leads to
£1(e0(e0{8(0) + 0%0)} = T/ms®

which because of (2,28), (2.30) and (3.2), yields

T=0 ., (3.3)

The differential equation (3.1) now reads f(r¢‘(r))=0,
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which because of (2,28) and (2,29) implies that
¢(r)=0 on (a,b) . (3. 4)

r Equation (3.4) , however, contradicts the assumption (3,2), This
| establishes the lemma.

Now suppose that the prescribed twist $o is a number in the

interval

bl az‘l'rnax B 1 aszax
17y b 28 a€=,< ] gF, i ey
a a

On using (2,26) , (2.27), (2.35) and (2.37) in (3.5) we have

b k b b &
. -] rag<- [ poae<] e (3.6)
a a . a
whence
| . EH1E) +k, ° EQE) - kg
1 ——Ltag>o, j-——r—dko . (3.7)
a a

From the preceding lemma we know that r¢'(r)7‘:i:k1 on (a,b), so that

(3.7) implies

k1>r¢’(r)>-k1 on (a,b) , (3.8)

since the integrands in (3.7) are continuous on (a,b). Therefore, if
¢° is a number such that (3.5) holds, then necessarily the solution to
(2,25) - (2.27) must satisfy (3.8) But because of (2.33) and
(2.34), we see that, (2.25) and (3.8) hold if and only if
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)= Fy (- —) - (3.9)
”

Integrating this and using the boundary condition (2.27) together with

(2.39) leads to

b
o(:)=£ frl(-zﬁ-z)dz : (3.10)

On enforcing the boundary condition (2.26) , we have from (3.10) that

8y =

pe— o

-é-rl(;%)dz ; (3.11)

Finally, we verify that (3. 11) determines a unique number T
for every given number ¢° in the interval defined by (3.5) . To this

end, define the function 'l by

b
2
|1(T)=I%Fl(-z—:—!{)d§ for |T|s2m’r__ . (3.12)
a

On differentiating (3.12) with respect to T and making use of (2.35),

we find that

’ (3.13)

l'l(T)>0 for |T|s= Zwazfm.x

whence §, is monotonically increasing on [-Zwaz‘rm“. Zwaz'rm“] .

Thus, if ¢0 is a number such that

' 1(-Zwaz1‘m“)$ Y l(z«.zfm“) : 3. 14)




it

then, ¢0=01(T) defines a unique number T . Note that (3. 14)
because of (3.12), is identical to (3.5).

Therefore, we conclude that, if the prescribed twist ¢0 is in
the interval defined by (3.5) , Equation (3.11) determines a unique
real number T , which together with (3.10) gives the corresponding
unique smooth solution to (2, 25) - (2.27).

In an entirely analogous manner, we can show that, if the pre-

scribed twist ¢0 satisfies

b 2 b 2
Ilp :i.nﬂ df< |¢ |5J lp E_:Ln_l_n_ ag 3.15)
G | o'%J T¥2| 72 ' G.
a a
then, the relation
b
1 T
o,= F,(——)dt (3.16)
0 ;[E z(zﬂz)

determines a unique real number T , which together with

b
1 T
#(r)=| §F d§ (3.17)
.l[g 2 Z1r§2)

is the corresponding unique smooth solution to (2.25) - (2.27).
Similarly, if the prescribed twist ¢o obeys
2

b
b-r
Iﬁohféf‘:, __T_gmin € , (3.18)
a

the relation
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b
¢0=£§F3(;ﬂlg)dz (3.19)

determines a unique real number T , which together with

b
¢(r)=;[ -éF3(-£f£z>d§ (3. 20)

is the corresponding unique smooth solution to (2. 25) - (2. 27).
We will refer to (3.10), (3.17) and (3.20) as (smooth) Solution 1,

Solution 2 and Solution 3 respectively. Equations (3.11), (3.16)

and (3.19) are the corresponding torque-twist relations. One sees

readily from (3.10), (3.17), (3.20) and the discussion of ellipticity
in Section 2.2 , that the displacement equations of equilibrium are
elliptic everywhere in [l at Solution 1 and Solution 3, and that they

are non-elliptic at Solution 2.

Because of (2.35) one has

c 1 2 Tmax H 1 l:'ZTmin
j!FZ ——gz—-— d!SI!Fz ——?-—— dg , (3.21)
a a
if and only if
2
b Tminsa Toman * (3.22)

Accordingly, it is only when (3.22) holds that there are values of ¢°
in the interval (3.15), and consequently that Solution 2 exists. In this
paper, we will consider in detail the case when the dimensions of the

tube and the constitutive law of the material are such that
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2
-:—2,_->T ' (3.23)

and trace the other cases (which are in fact less complicated) through
footnotes. The end result turns out to be the same in all cases. For a
given material, one could view (3.23) as requiring the thickness of the
tube to be sufficiently small. Since 'rp*(p)z - T/anz, we have
“’p*(!)/"'p'(b) =b2/a2 in any equilibrium configuration of the body ir-
respective of the magnitude of the applied twist. Thus (3.23) can be

written as

'rp'(a) i Tmax
Tpt(b) Tmi

n

The torque-twist relations (3.11), (3.16) and (3.19) are
sketched in Fig.2. Clearly, these curves are anti-symmetric with

respect to the axes,

We observe from the preceding calculations, and also from
Fig.2, that we have not as yet found any solutions to (2.25) - (2.27)

if the prescribed twist lies in one of the intervals

b a,z'r - az'r 4
[3r, S at<|o,l<[ §F, o f
a a
r (3.24)
b b2 b b2
1 "min ! "min

| t7, T as<logl<] g7, T i
a a

/

We show in the next section that there are, in fact, no smooth solutions

when the prescribed twist lies in these ranges.
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3.2 Non-existence of Smooth Solutions

We now establish a sequence of lemmas leading to a result
which is in fact stronger than the one claimed at the end of the last
section. We will show that there is no solution ¢(r) to (2.25) - (2.27)

which is continuously differentiable, if the prescribed twist ¢o is in one

of the intervals defined by (3. 24).

Lemma 1: There is no continuously differentiable
solution @¢(r) to the differential equation (3. 1),
where T is a constant and f is a continuously dif-
ferentiable function conforming to (2.28) - (2.30),
for which (3.2) holds at some radius s, a<s<b.

Proof: Assume that there exists such a solution ¢(r) and suppose that

lv:(s)=s¢'(a)=+kl . (3. 25)

By hypothesis k(r)=r¢’(r) is continuous on (a,b) so that, in particular,
it is continuous at r=s. Therefore, given any number ¢>0 , there
exists a number 6=06(¢)>0 such that Ik(s) - k(r)|<e for all r such

that |r-a|<6(e). Using (3.25) we may write this as
|kl-k(r)|<c for all |r-s|<&(e) . (3.26)

Recall that f(k) has a local maximum at k= kl , 80 that there

is a number Nn>0 such that

f(k,)2 (k) for Ikl-k|<n : (3.27)

Combining (3.26) with (3,27), we have

f(k,)2£(k(r)) for |r-s|<b(n) ,

sl s
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which on using (2.6), (3.1) and (3. 25) leads to

'sz- TZ for |r-s|<8(n) . (3.28)
2ns 2nvr

Note from (3.1) and (3.25) that T:-Zn.zf(kl) , whence T<O0 .

Equation (3.28) now requires that

rzzsz for s-8(N)<r<s+8(n), §(m)>0 , (3.29)

which is impossible. Consequently there cannot exist a solution #(r)
with the properties we assumed.
The cases s¢'(s) =-k,, ¥k, can be dealt with similarly.

Lemma 2: Suppose that there exists a continuously
differentiable solution @(r) to (2,25) - (2.27),
where T is a constant and f is as in Lemma 1.
Then
(i) |r¢'(r)|<kl on (a,b) if and only if ¢, is in
the interval (3.5).
(ii) kl<|r¢'(r)|<k2 on (a,b) if andonly if ¢, is
in the interval (3, 29)
(iii) |r¢'(r)|>k2 on (a,b) if andonly if @, is in
the interval (3. 18)
Proof: Considering part (i), suppose that ¢o is in the interval (3, 5).
By virtue of Lemma 1, the steps leading from (3.5) to (3.8), go
through even when @ is merely continuously differentiable. Thus
necessarily lro’(r-)|<kl on (a,b).

Conversely, suppose that Ir¢'(r)|<kl on (a,b). It follows
from (2,25) and (3,25) that

T
2nr

< Thax OO0 (a,b) , (3.30)




el
whence

2
|T|=<2ra ST (3.31)

Since |r¢'(r)|<kl on (a,b), we have because of (2.33) that (2.25)
holds only if

r¢'(r)=Fl(~ —TT> . (3.32)

2nr

Integrating (3.32) and using (2.26), (2.27) and (2.39) gives

b
o | T
Qo-izFl(m>d§ % (3.33)

which by virtue of (2.40) and (2.41) leads to

b
Jde fizh
|¢0|-£ gFl(2“g2>d§ : (3. 34)

Since by (2.35) F) is a monotone increasing function, it follows

from (3.31) and (3.34) that

2
a'rT

b
|¢O|SI§F1 -—;}‘ﬁ s . (3.35)
a

which completes the proof of part (i) of the lemma. Parts (ii) and (iii)
can be similarly established.

Lemma 3: There does not exist a continuously dif-
ferentiable solution @(r) to (2.25) - (2.27), where
T is a constant and f is as in Lemma 1, if the pre-
scribed twist ¢0 is in one of the intervals (3, 24).
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Proof: This result follows immediately from Lemmas 1 and 2. For,

suppose that there is such a solution ¢(r). It follows from Lemma 2

that we must have

r¢'(r)=:'l:kl or *k, atsome r, a<r<b . (3.36)

But Lemma 1 says that this is impossible.

We have thus shown that for certain ranges of the prescribed

twist, there is no solution in the classical sense to the problem under

consideration.

i
!
é
f
¢
i
14
-
g
{
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4.1 Weak Formulation of Problem

There are some problems of considerable physical interest in
which the field quantities do not vary smoothly through the body. Rice
gives some examples of such problems in [14]. We have observed that
the problem under consideration here has no smooth solution for certain
ranges of the applied loading. One possibility, which we shall not con-
sider, is that the tube buckles, possibly into some unsymmetric state
of plane strain at such a loading. An alternative possibility is that the
tube remains in a configuration of axisymmetric plane strain, but that
now the field quantities are no longer smooth and exhibit certain dis-
continuities. This latter possibility is suggested by the observation in
Section 2,2 that the displacement equations of equilibrium may suffer
a loss of ellipticity at certain deformations for the material at hand.

In particular, in view of known results in the theory of transonic gas
flows, one would anticipate the occurrence of curves across which the
first derivatives of the displacement field suffer jump discontinuities,
while the displacement field itself remains continuous.

General questions concerning the possibility of the change of
type of the differential equations governing finite plane elastostatics and
the related issue of the existence of equilibirum fields with discontinuous
deformation gradients have been investigated in [4] - [8]. Elastostatic
fields possessing discontinuities of this type are referred to as ''elasto-

static shocks'',

We now relax the smoothness demanded of the local twist ¢(r)

s
:
'
s'




and the pressure field q(r), in the hope that this will enable us to ex-

i
g
i
{
i
|
£
£
£
|
¥
i
{
.
(3

plain what happens when the prescribed twist ¢0 is in one of the inter-
vals (3.24).

To this end, let T be a number in the interval [a,b]. If in fact
a<T<b, we will now require that ¢(r) be merely twice continuously
differentiable on the intervals (a,¥) and (F¥,b) and continuous on [a,b].

The stress field and pressure field induced by the deformation (2.1) are

to be continuously differentiable on (a,¥) and (F,b) while the traction is
presumed to be continuous at r=TF. Accordingly, we have admitted the

possibility of the existence of a cylindrical elastostatic shoc:k1 of radius

T co-axial with the cylindrical region R .

The global balance laws, which continue to be meaningful, now
reduce to the same differential equations obtained in Section 2.1 on
(a,T) and (F,b), together with jump conditions at r=T. Accordingly

we now have

!
% tepeng =0, (4.1) |
on a<r<T, T<r<b, |

29W/(2 + r2¢'%(x) - 200" 2 (r)W(2 + £ 242 (x)) -4, (4.2)

instead of (2.20) and (2.21). On integrating (4. 1) we have

- +
£(r¢(r))=-—15 on (a,F) , £re'(r))=-—5 on (F,b), (4.3)
2rr 2nr

+ -
where T and T are (not necessarily equal) constants. Because of

lWe formulate the problem in the case when a single elastostatic shock
exists. We will find that this suffices for our purposes, and more im-
portantly, that a configuration involving more than one shock is neces-
sarily unstable (in a sense to be made precise).
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(2.10), (2.13), (2.24) and (4.3) we have that

- +
Lo % Y
'rp*(r) = Z‘l'l’rz on (a,T), 'rp*(r)- anz on (r,b) . (4.4)

At r=T, equilibrium considerations require that the tractions be

continuous. Clearly, this is equivalent to

Toy(F)=T5y 4, it
TopE-lET ) (4.6)

Equations (4.4) and (4.5) lead to

- 4+
=T

x (4.7)

We therefore have the following problem governing the local
twist ¢(r) . Given a number ¢0 » find a function ¢(r) which is contin-
uous on [a, b] and twice continuously differentiable on (a,T) and

(T,b) , and numbers T, T with a<F<b , such that

f(rg'(r)) = -

on a<r<r, r<r<b , (4.8)

2rr
¢(a)=¢o ’ (4.9)
#(b)=0 . (4.10)

Integration of (4.2) leads to

PSSR ESENARGIPSINN CNORE) S TN P - I RPN TR Y

et
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r
(w2 + 2%+ | 2802 IW"2 +E29'%(8))a8 +4, on (a,7)
r

q(r) =< (4.11)

r
2wz +x%9%(r)) - [ 2802 @) W2 + 8202 €)a8 +q, on (F,b)

~ r

which, together with (2,10) and (2.13), gives

- -
r
- [t @wiz+ g0 i@t -G, on a7 , (4.12)
p 3
?op ) =S
r
J2eo?@rwiz+e%%enag -4, on 1) . (4.13)
T

We see from (4.12) and (4.13) that the traction continuity condition

(4.6) holds if and only if

(4. 14)

W+
o
n
NaT]
o

Once (4.8) - (4.10) has been so!ved for the function ¢(r), equation

(4.11) together with (4.14) directly gives the pressure field q(r).

4.2 Weak Solutions

We first observe that the Lemma at the beginning of Section 3.1
continues to hold if we replace (a,b) by (rl. rz) where r and r,
are any two numbers such that a< r1<rsz . This result, with the
particular choices r,=a,r, =T and T =T, r,= b, leads to the con-

clusion that all admissible solutions of (4,8) are necessarily such that
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r¢'(r);‘*kl, *k, on a<r<T, r<r<b. (4.15)

Since ¢‘(r) is continuous on (a,T) it now follows that any admissible
solution to (4.8) must be such that r¢’(r) takes on values exclusively
] . in one of the intervals (-oo, -kz) 5 (-kz, -kl) 2 (-kl,kl) " (kl'kz) or
(kl’ @) , at all points in (a,¥) . The same must be true on (T, b).
Therefore we see, because of (2,33) and (2.39), that (4.8) holds

E if and only if

('Fi( T2> on (a,r) ,

r
rg'(r) =< (4.16)
-F(-25) on @b,

q 2tr

for some fixed i,j=1,2,3 .
Integrating (4.16) and using the boundary conditions (4.9) and
(4.10) leads to

( rl T
¢o- ;[E F’i (;2->d§ on [a,F) ,
¢(r) = (4.17)

b
{%Fj(ﬁf)dg on (F,b] .
S

Finally, we require that

T b
8, - ié pi(ﬁ)d: +£§ F, (-:—!z)d: : (4.18)
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since the local twist ¢(r) given by (4.17) is supposed to be continuous

Y N v
gy =

at r=7F ,

Collecting the preceeding results, we come to the following con-
clusion, Given a real number ¢0 , if there exist real numbers T and
r, asT<b, such that (4,18) holds for some fixed choice of the sub-
scripts i,j=1,2,3, then (4.17) with this choiceof T, r, i and j
is a solution to (4.8) - (4.10) at the given ¢o .

Clearly in the case when i=j=1,2,3, (4.17) and (4.18) de-
scribe the smooth solutions we obtained in Section 3,1, This is not
surprising, since any smooth solution of (2.25) - (2.27) is also a
solution of the problem in its weak formulation. Likewise, in the parti-
cular cases when T=a and r=b, (4.17) and (4.18) are readily seen
to reduce again to these same smooth solutions. A solution defined by
(4.17) and (4.18) is therefore not smooth only if i#j and a<r<b.

The existence of a solution (4.17) corresponding to the pre-

scribed value of the twist @, is contingent upon the existence of numbers
0 P

T and T, asr<b, such that (4.18) holds. We now examine this lat-
ter issue. First note that since (4. 18) furnishes only one scalar
restriction on the two numbers T and T, we expect that if there are
values of T and r conforming to (4.18), then there would in fact

be many such values. If, therefore, we momentarily imagine specify-
ing both ¢0 and T , we may pose the following question: at each fixed
choice of the subscripts i,j=1,2,3, i#j, for what values of the pair
(¢0, T) will (4.18) determine a value for ¥, a<T<b? We will, with
no loss of generality, restrict attention to the first quadrant of the

(¢, T)-plane. We now show that for each fixed choice of the subscripts

i,j=1,2,3, i¥j, there is a simply connected closed region Aij in the
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first quadrant of the (¢o- T) plane such that (4.18) determines a value

for T if and only if (¢°,T) is in Aij . Furthermore, this value of T

is unique.

To this end, define the functions ¢ij » i,§=1,2,3, i#j, by

T b
¢ij(i-',T)=;[“—é-Fi(-z-"T—gz)d§+£%Fj(f?>d§ on By , (4.19)

where the domains of definition Bij of the functions ¢ij on the (T, T)-
i plane are given by

N

e 2 B
B, (@ T)asFsb, 2nFor_, sTson¥or__ |

-

- 2 2
B13= {(?,T)Ias T<b, 2rb Tmins T<2ra Tmax} 4

= =l 2 1 1
B,,= {(?,T)la.s fsb, 2rF 7 . <T<2ma"r__ [, (4. 20)

= 2 2 )
B, {@ T)|asF<b, 2nbir_, <Ts2ma’r |,

- 2 =
B32= {G,T)las r<b, 27b 'rminsTs 2rr T

max} »

A - 2 2
B, ;= {(r,T)IaS r<b, 2rb"r . <T<2ma 'rmax} "

We now consider the case i=3, j=1 in detail. For each fixed
value of T in [a,b], it follows from (4.19), (4.20) that ¢ =9,,(F, T)
defines a segment of a smooth curve on the (¢o, T )-plane for {
Ztr?z'rmins Ts< 2"?2Tma.x . Therefore, we have a family of such curves I

on the (3, ,T)-plane, each corresponding to a different value of T in

lBeca.ume of (2.32), (2.33) one sees that these are the largest possible
domains of definition of the functions @¢;; . In the case when
az'rmax<b2"'min = so that (3.23) does not hold — we see that Bj3 , B]2
and B23 are empty. In this case, therefore, solutions (4.17) with
(i,j)=(1,3), (1,2) and (2,3) do not exist,
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[a,b] , and all of them having their end points on the curves

¢o=¢31UT7zwfm , T) and ¢0= ¢31(”/T72"Tmax' T) . Since by (2.38) and
(4.19) we have

80, . (F, T)
53__3_1.' =%{F3(;é-z)-1?l(:§z)}>o on By, . (4.21)

it follows that the different members of this family of curves do not in-
tersect each other. Furthermore, a curve corresponding to a larger
value of T lies to the right of a curve corresponding to a smaller value
of T . And finally, since ¢31 depends continuously on T, these curves
span a simply connected region, A3l , in the (¢0, T)-plane. From the
above discussion it follows that A31 is the closed region bounded by
the curves $,=9;,(a,T), 84=05,(b,T), ¢;=0,,(/T/2n7__,T) and

¢0= ¢31(J_'17_ZT1:;:, T). A sketch of this regic , together with the span-
ning family of curves, is shown in Fig.3(i) . The fact that a curve cor-
responding to a larger value of T is to the right of a curve associated
with a smaller value of T is indicated in Fig.3(i) by the arrow labelled
"direction of increasing T'. Since there is exactly one of these curves
passing through any point in A3l , it follows that there is a unique
number T associated with every point (¢°, T) in A3l , such that

¢o= ¢3lﬁ' T). This is what we set out to establish., We may express

this analytically as follows: there exists a function ?31 , defined on A31'

such that T determined by

Ful, (05 T) (4.22)

conforms to @,=9,,(F,T), i.e. ¢°=¢31($31(¢0.T),T) on A, .
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Summarizing the results for this case, we have that, if ¢o and

T are numbers such that (GO, T) is in A31 (the region PQRS in
’

Fig.3(i)), then there is a unique number T (as<T<b) such that (4.18)
holds (with i=3, j=1). Equation (4.17), with these valuesof T, T, i
and j , is a solution to (4.8) - (4.10) at that value of ¢0 -

The other cases — corresponding to the remaining choices of the
subscripts i, j — may be likewise examined. In each case we find a

simply connected closed region Aij , shown in Figs. 3-5, such that, if

¢0 and T are numbers with (¢0,T) in Aij , then there is a unique
number T (as<Ts<b) such that (4.18) holds for that choice of 1i,j .
Equation (4.17) then provides the corresponding solution @(r). Accord-

ingly, in each case there exist functions gij defined on Aij , such that

T= riij’ T) on Aij (4,23)
conforms to ¢0= ¢ij('1'-, T
The composite torque-twist diagram, wherein all of these admis-

sible regions Ai. together with the torque-twist curves for the smooth

J
solutions are sketched on one figure,is shown in Fig.6., We observe that |

s

the admissible regions Aij "'fit"" appropriately between the torque-twist
curves associated with the smooth solutions (Fig.2). Therefore cor-
responding to any given value of the twist ¢0 we now have a solution.
However, we are now faced with the unsatisfactory situation in which
there is an infinite number of admissible solutions at certain values of
the prescribed twist ¢, .

We observe from Fig.6 that at sufficiently small twists ¢0

(< 6.) and at sufficiently large twists ¢0 (= ¢Q) we have a unique
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solution, which is smooth. When the prescribed twist ¢0 is in one of
the intervals ¢p<¢o<¢M 4 ¢N<¢o<¢R ,» we have an infinite number of
solutions, all of which are weak solutions. In the remaining intervals,
we have an infinite number of solutions, one of which is smooth, all the
rest being weak solutions.

Observe from Figure 6 that even a knowledge of both ¢0 and T
may be insufficient, in some cases, to determine a unique solution. For
example, there are four solutions corresponding to any point in PMNK,
one for each of the pairs, (i,j)=(1,2), (2,1), (1,3) and (3,1). We
remark that at any point (¢0,T) on PS or RQ there is in fact only
one solution — the smooth one. One sees this from (4.17), (4.18),
since all of the weak solutions at such a point have either T=a or T=b
(see Figs. 3-5). Likewise, at any point on MN we only have smooth
Solution 2 or the weak solutions (i,j)=(1,3), (3,1).

Finally, we observe that it is convenient to visualize the various
solutions as follows. Consider for example a weak solution with i=3,
j=1. Let T denote the radius of the associated shock., Let A,B,C
and D be points on a radial line in the cross-section [I of the tube in
the undeformed configuration, see Fig. 7(a), such that A and D are
at the inside and outside boundaries respectively, while B and C are
points just inside and outside the shock-line. The solution at hand is
given by (4,17) with i=3, j=1. If we use this to compute r¢’(r) and
then plot the points with coordinates (lre'(x)] , T/Zwrz) (suppose T>0)
for each r in the intervals as<r<¥, T<r<b , we obtain the curves
AlBl and ClDl (typically) shown in Fig. 7(b). The graph of f(k) has
been superimposed on this diagram. The abscissa of any pointon A, B,

or ClDl gives the value of the local amount of shear |r¢‘(r)| at the

e e e e T

il
Ba :
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corresponding point in the tube, while the ordinate gives the correspond-

ing shear stress I'rp'l . Observe from Fig. 7(b) how the local amount
of shear varies continuously on either side of the shock but suffers a

jump discontinuity across it. The shear stress ‘rp' , on the other hand,

is seen to vary continuously throughout the tube. If we refer to the por-
tions of the curve f(k) vs.k between 0<ks< kl 5 kls ks k2 and

kzs k<o as the first, second and third branches of f(k) respectively,
we see that this solution (i=3, j=1) is associated with the third and
first branches of f(k) , with the region inside the shock-line associated
with the former branch. In general, the weak solution (i,j) is associ-

ated with the ith and jth branches of f(k), with the part of the tube

inside the shock-line corresponding to the o branch,
We see from this and Section 2.2 that the type of these weak

solutions is mixed, in general. The displacement equations of equili-
brium are elliptic on that part of I for which a<r<T and non-elliptic
where T<r<b, at solutions with (i,j)=(1,2), (3,2), while they are
elliptic where T<r<b and non-elliptic where a<r<T, at the solutions
(i,j)=(2,1), (2,3). In the case of the solutions corresponding to

(i,j)=(1,3), (3,1), the displacement equations of equilibrium are el-

liptic everywhere in [ where r#7F,
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5.1 Dissipativity

The lack of uniqueness encountered in the preceeding section is

not unexpected since we had enlarged the admissible class of solutions
there. In such circumstances, it is usually the case that not all of the
solutions admitted by the differential equations are physically reasonable.
In gas dynamics, for example, there are problems in which the differen-
tial equations admit solutions which are unacceptable since they are as-
sociated with a decrease of entropy. It is essential therefore to intro-
duce additional criteria which will single out a physically admissible
solution,

Knowles and Sternberg proposed such a criterion in [6], in the
context of finite elastostatics, which they referred to as the dissipativity
inequality. A thermodynamic motivation for this inequality, stemming
from the Clausius-Duhem inequality, was given by Knowles in [71. The

digsipativity inequality is essentially an expression of the physically

reasonable idea that the rate at which elastic energy is being stored in

any part of the body, in some gquasi-static process, cannot exceed the

rate at which work is being done on that part.

We now examine the implications of the dissipativity inequality
in the context of the present problem, While we could specialize the
general dissipativity inequality given in [7] for our problem, it is il-
lustrative (and equally easy) to derive it from first principles.

We now consider a quasi-static time-dependent family of equili-

brium solutions, The time t merely plays the role of a history
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parameter and no inertia effects are accounted for. Accordingly, we
are concerned with a one-parameter family of functions ¢(r,t), depend-
ing on the parameter t in some time interval 7 , such that at each ¢t
in T, ¢(r,t) is a solution to (4.8) - (4.10) , The torque, twist and
shock radius are all time dependent now, and we write T(t), ¢0(t) and

T(t). It is convenient to set

+
n(t)={r|F(t)<r<bl} ,

for t in T . (5.1)
o) ={rla<r<¥(t)} ,

Then ¢(+,t) is continuous on [a,b] and twice continuously differentiable

+ -
on Il and I ateach t in T, Furthermore:

+ =
f(r¢r(r,t))=-2ﬂ% on 0(t) and f(t) , 5.2)"
mr
¢(apt)=¢o(t) » (5-3)
¢(b,t)=0 , (5.4)

ateach t in T, Here ¢0(t) is the prescribed twist, and we suppose

it to be continuous and piecewise continuously differentiable on T . In
certain discussions, as we observed previously, it will be temporarily
necessary to imagine that T(t) is also specified. In such circumstances,
we presume T(t) to possess the same smoothness as ¢o(t) on T,

It is convenient to set

k(r,t)= rg (r,t) , (5.5)

1 . _8¢(r,t) _9¢(r,t)
We use the notation ¢r'3% ’ and ¢t- Bt g ¢
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f
; |
k(t) = F(t)9, (F(t)+, 1) = i

k(t) =F(t)p_(F(t)-,t) , (5.7) it
|
with the understanding that whea F(t)=b we taks  F{i}+=b and when k

T(t)=a we take T(t)-=a . lt and k represent the instantaneous local 1

amounts of shear at points just outside and inside the shock, respectively. 7
We will now require that at each instant in T , the rate at which

the external forces on the tube are doing work should not be less than

the rate of increase of the stored energy, i.e. we demand that

b
2 :
T(t)-ad—t¢o(t)2%£JW(2+k (r,t))2vrdr forall t in T . (5. 8)
a

We may evaluate the right hand side of (5.8), using (5.6) and (5.7),

as follows:

b
%JW(Z +k%(x, t))2rrdr
a

T(t) b
-4 [we+ide, znrar+& [ W +iP(e, )2nrar
a F(t)

b
= {W2+k%) - w2+ ﬁz)}Zﬁ(t)%t) +[amregE W2 + i)r . (5.9)
a

Using !2.24), (5.2) and (5.5) in (5.9), gives

T'I‘hic is admissible since we observed in Section 4.2 that when T=a

or b, the solution is in fact smooth, Thus ¢ = exists there.




b
%i W(2 +k%)2nrdr

b

w +
= (W2 +k%) - w2+ kz)]zw?(t)-g—f - T(t) f¢rt(r' t)dr . (5.
a

However, because of (5.3) and (5.4), we have

b

{¢,t<r. thdr = ,(b, t) - B (F(E)+, t) + B,(F(t)-, 1) - 8, (a, 1) ,

=-S5 8o(t) - B (F(t)+, ) 48, (F()-, ) , (5.

so that we may write (5,10) as

b
. + F
%Iwu +k2)2nrdr = {W(2 +&2) - W(2 + k2)] Zn?(t)g—tr-(- T(t)gzq!o(t)
a

+TE{ B, (F(t)+, t) - B, (F(t)-,t)] . (5.

Since the displacements are continuous across the shock, we have

p(r(t)+,t)=@(r(t)-,t) for t in T , (5.

which when differentiated with respect to t leads to

B (F(E)+, ) F (1) + B, F(E)+, )= 8_F(t)-, 192 () 48, F®)-,0) . (5.

Using (5.6), (5.7) and (5. 14) in (5, 12) gives

10)

11)

12)

13)

14)




b
o +
sl werdizmar = (we i) - we b Hzr Eermd e o
a

+=7-;'r(t){k(t) k(t)} Tm ., (5.15)
which because of (5.2), (5.6) can be written as
b
&5

dt_[W(2+k 2wrdr = T(0) & 8, (0) + {W(2 +K) - W2 +i )}ZﬂraT

4 .
+ 207 (k) (K - k)g—f(t) : (5.16)}
The dissipativity requirement (5,8) can nowbe written as
+ + .
{W(2 +K2) - W(2 +E2) - £() (it - k)}an£2 o on ¥

or alternatively, because of (2,24), as

+
k
ff(ﬁ)dg-(ﬁ-ﬁ)f(ﬁ) Zwr-gT_ZO forall t in T . (5.17)
k

This is the form of the dissipativity inequality that we shall find useful.
It follows from the results of Section 4,2 that all admissible

quasi-static families of equilibrium solutions are of the form

Gt .

INote from (5.2) that £(k)=£(k) .
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r
@0«: a[ 3 l(f:%)dE on fift) ,
B(r,t) =< E (5. 18)
| -;-FJ(—-U-)dg on T |
r

; .

i subject to the restriction

By (t) =f % (ﬂﬂ)dhf F, ﬂ%) (5.19)

a

for i,j=1,2,3 and for t in 7. We now proceed to apply the

dissipativity inequality (5.17) to the various families of solutions rep-

resented by (5,18), (5.19).

We first note that, if at some instant t we have a smooth solu-
tion, then (5.17) holds at that instant by virtue of the continuity of ¢
i.e, since k k . Therefore, we may restrict attention to the cases

for which 17‘3 in (5.18), (5.19), and to times in T for which
a<F(t)<b . (5.20)?
Equations (5.6), (5.7) and (5. 18) now give

b =-my(20)
v

T (t)
(5.21)
3

k()= - F, —T(;-L)

Y\ nT (t)

lSee discussion following (4. 18).
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so that we may use (2.28), (2.39), (2.40), (2.41), (5.2), (5.6) and

(5.21) to write (5.17) as

F,[n()]
2"““’&‘—{“)! {f(t)-n(t)}d!zo.n(thf—?%'t-) ., (5.22)
F, [n()]

for all t in T for which (5,20) holds.

It is convenient to define the functions Al and A, by

Fz("’)
¢

Alm=j {f(!)-‘r]dg for *_. stst (5.23)
l’l(T)
Fy(r)

AZ(T)=I {‘r-f(!)}d{ for Tmins'rs'rma.x 3 (5.24)
F,()

These functions A 1 and Az have the following geometrical interpreta-
tion, If in Fig.1 we draw a line parallel to the k-axis at a distance T
above it ('rmins'rs'rmu) , then Al(‘v) and Az('r) are the areas of the

two loops formed. Clearly

Al(‘l’m“)=A2(Tmln)=0 ’ (5.25)

Al('r)>0 for Tmin‘ T<T § (5.26)

max

Az(1')>0 for Tmin<'rs7mux . (5.27)
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Using (5.23) and (5.24) in (5.22) leads to

{ z(J_jZ) A (J—E)}Zﬂ?ﬂw for (i,j)=(3,1) , (5.28)
[ z(J_JE) A (’L'D}z"?ﬂzo for (Lir=03,3) , (5.29)

-A (z T2z 820 for (Li)=c2,1) | (5.30)
Al(i%)h?g: 0 for (1,j)=(1,2) , (5.31)
A, ;%%)2«?%:220 for (1,j)=(3,2) , (5.32)

(2 _z)zw?i-’-zo for (i,j)=(2,3) , (5.33)

in each of the different cases.

Now consider, for example, the case (i,j)=(2,1), i.e. suppose
that for all times sufficiently close to some t) in T, the quasi-static
family of solutions (5,18) has i=2, j=1. We then have from (2.32),
(2.33), (5.1), (5.18), (5.26) and (5.30) that the dissipativity ine-
quality is satisfied at a time tl for which (5.20) holds if and only if

Fso . (5.34)

As previously observed, in the event that (5.20)does not hold, so that |

'x"(tl)=t or b , (5.35)




il

the dissipativity inequality holds without need for any restrictions

such as (5.34). The meaning of these restrictions is most transparent
when viewed in the torque-twist diagram (see Fig. 8). With no loss of
generality we suppose that T(t) and ¢o(t) are non-negative for all times
in T, We shall refer to the piecewise smooth orientedl carve I' in the
torque-twist plane defined by ¢°= ¢°(t) , T=T(t) for t in T as the
loading path. By hypothesis, for all values of t sufficiently close to

t1 , the loading path T' lies in A21 . Let Z=(¢0(t1) 5 T(tl)) be the
point on I' corresponding to t=tl .

Rec»,ll2 that the region A21 is spanned by a one-parameter
family of curves ¢0= ¢21('E,T) , asT<b, and that a member of this
family of curves corresponding to a larger value of the parameter T
lies to the right of a curve corresponding to a smaller value. Let C be
the particular member of this family with equation o= ¢Zl(?(tl) SE . B
so that C passes through Z , (see Fig. 8). It follows that the shock
radius T corresponding to any point in AZI to the right of C is greater
than ?(tl) , while at a point to the left of C, it is less than 'f(tl) .
Therefore, dissipativity — (5.34) — requires that the loading path T
should be oriented at Z in such a way that it does not point to the right
of C, provided Z is not a point on PS or MN. This is shown in
Fig.4(i) as well, in which the cluster of arrows indicates
the admissible orientations of a loading path through a typical point.
This is true for all points in A,, except for those which lie on PS

and MN. At a point on these curves the loading path may be arbitrarily

lI‘ is oriented in the direction of increasing time.

2See Fig.4(i).
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b

oriented, by virtue of (5.35),
Clearly we can analyze the other cases in an entirely analogous

manner. We find that dissipativity is essentially equivalent to

dF
320 if (L=@,2) , (5.36)

20 1 wH=0,2), (5.37)

50 AH=R,3) , (5.38)

and these are geometrically interpreted in Figs. 4 and 5 as before. The
only exceptions to (5.36) - (5.38) are respectively at points on the
curves PK, MN and MN, RQ and MN, LR, whereat the orientation
is arbitrary.

Equations (5.28) and (5.29) — i.e. the cases (i,j)=(3,1) and
(1,3) = can also be similarly examined, taking care now to note that

{Az(f) - Al('r)} is not always of the same sign. If we set

A(T):AZ(T)-A‘(T) for Tmins'rs‘rma.x . (5.39)

where Al and AZ are as defined previously, we find because of (5.23) -
(5.27) and (5.39) that

A(‘rmin)<0 ’ A(‘rm“)>0 ’ (5.40)

g-:-‘-(r»o for v Sver _ . (5. 41)

min

Since A(r) is continuous, it follows from (5.40) and (5.41) that there

is a unique number 9 in (Tml 5 Tmax) such that

n

§

i

v

¥
£
[
W
£
§
g




A('rc)=0 . (5.42)

A(M)>0 on (v, .1, A(M<0 on [r . ,7) . (5.43)

i . The number T, is shown in Fig.1; since Al(q-c):Az(-rc) , the
two hatched regions are of equal area. The dissipativity conditions

(5.28) and (5.29), because of (5.39), (5.42) and (5.43), are equiva-

3
E
§ lent to
&0 i ATls. D
2nT -
%tI“’ if ‘l—LTz“c : > (1,§)=03,1) , (5. 44)
2nT
&L is arbitrary if 1ib =T,
2nT
and
dr ) 3
-_=0 i >T .
o 2nT : w ,
La0 1t Lo ( (5, 9) = (1,3) (5. 45)
dt 2 B ¢! ’ e » . .
nT 3
d¥ T i
X i
¢ is arbitrary if =T ,
; 2nT ¢ J £

Consider the case (i,j)=(3,1) . One shows easily that
¢°= ¢3 l(,./T/Zw'rc, T) is a curve in A31 which qualitatively looks as shown
in Fig.3(i) = curve XY. Corresponding to any point on this curve,
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we have T/Zw?z= Te while it is readily seen that at any point above or below XY
T/Zn?z is respectively, greater than or less than To - Accordingly, the
dissipativity inequality is equivalent to the first, second and third of

(5.44) at points in A31 , respectively, above, below and on the curve

XY. The arrows in Fig.3(i) indicate the admissible orientations of a

loading path at some typical points in A3l . As before, the orientation

at points on PS and QR is arbitrary. The solution (i,j)=(1,3) may

be similarly interpreted, as shownl in Fig.3(ii).

5.2 Consequences of Dissipativity

The dissipativity inequality was introduced in the hope that it
would single out a physically admissible solution from among the many
available equilibrium solutions. We now demonstrate that, if we re-
quire the local twist ¢(r,*) to be com:im.tous2 on T ateach r in
[a,b] , and if we suppose that the body was in an undeformed config-
uration at some time, then a configuration corresponding to solutions
(i, j)=1(1,2), (2,1), (2,3) (3,2) or smooth Solution 2 cannot be attained
at any subsequent time.

First, omit the weak solutions (i,j)=(1,3) and (3,1) from dis-
cussion. We observe from Fig.4that any loading path in Fig. 6 con-
forming with the dissipativity inequality and starting from O is neces-

sarily confined to the curve OP for all subsequent time. Note similarly,

lAn examination of the details of the curve ¢o= %U‘T‘ﬁﬂ', , T) show
that it is possible for this curve, depending on the specific geometry
and constitutive law, to intersect a different pair of boundarie; of Ajg
than shown in Fig, 3(ii). The figure is drawn for b®/a®r in< T<a /b®

T
m max

ZNott.e that despite the presumed continuity of @¢o(t) and T(t), ¢(r,*)de-
fined by (5.18) is not necessarily continuous on T , since the subscripts
i and j may change values at certain times.
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from Figs. 5 and 6, that any admissible loading path starting from O’

is likewise restricted to O’R for all subsequent time. The only possi-
ble way of achieving a solution (i,j)=(1,2), (2, 3), (3,2), (2,1) or
Solution 2 is then, by virtue of a loading path which is associated with
one of the solutions (i,j)=(3,1), (1,3) for some time interval less than
some time tl , and with one of these solutions after time t) . One sees
readily from (5,18) however, that this involves a discontinuity in ¢(r, )
at the time tl . Since we have disallowed this possibility, we now con-

clude that a configuration corresponding to any solution associated with

the second branch of the graph of f(k) vs. k cannot be attained through
a dissipative quasi-static deformation process. These are, incidentally,

the solutions at which the displacement equations of equilibrium are non-

elliptic somewhere in II .

However, even if we now discard the solutions associated with
the second branch of f, we would not have overcome our troubles with
non-uniqueness. For example, consider the Solutions 1, 3 and
(i,j)=(3,1). The appropriate torque-twist diagram is shown in Fig.9.

If we imagine gradually increasing the applied twist ¢0 from zero, the
only available loading path initially is OS. During the next stage,

¢s< ¢0< ¢x » dissipativity — see Fig.3(i) — disallows all loading paths
except SX. Once the applied twist ¢0 exceeds the value ¢x , however,
the loading path could lie anywhere in PQYX , and we have no criterion
for deciding which path to follow. Eventually, for ¢o>¢Q , we are
restricted to the path QO’. Likewise, during a steady decrease

of the applied twist the loading path would be restricted to OQY ,
then allowed to follow an arbitrary path (consistent with dissipativity)
in XYRS and finally restricted to SO, It is interesting to note

that if in either case the loading path lies on the curve OXYO’ :
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then the quasi-static process is dissipationless in the sense that (5. 8)
would hold with equality at every instant t .

It is therefore imperative that we seek an additional — or possibly
an alternative — physical criterion, to the dissipativity inequality, that

would sort out more completely the issue of non-uniqueness.
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6.1 Preliminaries on Stability

We now look into the possibility of using a stability criterion
instead of the dissipativity inequality, in order to single out a physically
admissible solution to the boundary-value problem under consideration.
We draw attention to the fact that we will not make use of the partial
success achieved through the dissipativity inequality, since we are
at present examining the possibility of an alternative — rather than
additional — criterion,

The notion of stability that we will use is a static one based on
the energy criterion. : According to this, an equilibrium configuration
of a body is stable if the work done by the external loads in every
sufficiently small kinematically possible virtual displacement from this
equilibrium configuration is less than the corresponding increase in the

stored energy.

In order to mathematically formulate this criterion, it is necessary

to decide on a measure for the virtual displacements and to specify the
behavior of the applied loading during a virtual displacement. We will
consider two possibilities — gtability under dead loading and stability
with fixed boundaries.

First consider the case in which we have dead loading on the
inner surface of the tube while the outer surface remains fixed. The

torque T then remains constant during a virtual displacement. Let

lsee page 195 of [15] for a discussion of this criterion.
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#(r) be the equilibrium solution whose stability we wish to investigate.

Define the potential energy functional V{y} by

b
viv) = [ (w22 - w2+ 229 ) 2nrdr - T(4 (a) - 9(a) (6.1)
a

for all functions ¢(r) in some set X . In order to interpret ¥(r) as a

virtual 1:wist1 from the undeformed configuration, we suppose that %
is the set of all functions which are continuous and have piecewise con-
tinuous first and second derivatives on [a,b], and for which ¢(b)=0.
Since this limited degree of smoothness is all that is required of an
equilibrium solution ¢(r), it seems reasonable not to impose more
severe smoothness requirements on the virtual displacement. Finally,
we will measure the departure of a virtual twist § from the solution

¢ by

b
v - o1l = [one®[4%- 01%ar . (6.2)
a

We now say that an equilibrium solution ¢(r) is stable if there

exists some number ¢>0 such that

V{y}>0 for all functions ¥ in ¥

(6.3)
for which ||lv-¢|l<e, vZ0¢ .

A solution which is not stable is unstable, i.e. if, given any number

¢>0 , there exists a function $(r) such that

TEGRE

lWe restrict attention to purely circumferential virtual displacements.

T




e

T

viyl<o, |lv-dll<e, v#0 , (6.4)

the equilibrium solution ¢(r) is unstable.

We now determine from (6.1), (6.3) a sufficient condition for

: stability which will be useful for our purposes. After making use of

i (2.25), (2.27) and §(b)=0, we can rewrite (6. 1) as

-0

Vied = {WE+r24'%) - W2 +r20'%) - £(rd)(ry - r¢)) 2nrdr (6.5)

P

for any y in x . It follows that a sufficient condition for the stability

of @(r) is that for every § in X, V70,

W2 +r24'%) - W(2 +r20%) - $(x @) (rv"- r8) > 0 6.6)

at each r in (a,b) where the left hand side exists, and

Wz +r24'%) - W2 +1:26'%) - £(r0") (ry'-r8)> 0 (6.7)

at each r in some sub-interval of (a,b) where the left hand side exists.

On the other hand, if at each r in (a,b) where k(r) =r¢’(r) exists,

we have

W(2 +x2) - W(2 +k2(r)) - £(k(r))(x - k(r))>0 (6.8)

for all numbers x #k(r) , it follows that (6.6) and (6.7) hold. Equation
(6.8) is thus a sufficient condition for the stability of the solution ¢(r).

Now consider the case in which both the inner and outer surfaces
of the tube are held fixed during a virtual displacement. The potential
energy functional V{y} is now defined by

i
I
2
£
g
@
|3
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b

viyl = I{W(Z +r%y %) - w2+ r%0'%)) 2nrdr
a

(6.9)

for all functions § in some set X . In this case we take X to be the

subset of the previous set of admissible virtual twists which conforms
to y(a)=¢(a) =¢o . Stability is defined as before. By virtue of (2. 25)

and (2.27) we can again write V{y} in the form given by (6.5), whence

(6.8) continues to be a sufficient condition for stability.

6.2 Consequences of Stability

Following Ericksen [12], we first make note of a geometric
property of the response curve in shear. Recall the functions Al('r)

and AZ('r) defined by (5.23) and (5. 24), representing the areas of the
loops formed by drawing a line in Fig, 1 parallel to the k-axis at a

distance T , TminSTS T i ¢ above it. Recall also that

Ayt )=AyT) ,

A (T)>A,(T) for Tmin® T<Tc » A)(T)<A,(7) for T TSt

(6.10)
Keeping this in mind, one observes the following properties of f(k)
upon examining its graph (Fig.1). If we set
k3=Fl(vc) ’ k4= Fs('rc) 2 (6.11)
then we inay observe first that
(i) if k is any number such that either
|k|<1<3 or |k|>k4 . (6.12)

then

e
. Sl » rm—— TRy

e B
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"
Jf(!)d§>f(k)(n -k) for all x#k . (6.13)
k

Equation (6.13) is a statement of the geometric observation that, pro-
vided (6. 12) holds, the area under the response curve from k to « ,
for any w#k is greater than the area of the rectangle of the same width

and of height f(k). By virtue of (2.24), we can write (6.13) as
WER+x2) - WR+13) - (k)% - K)>0  for all xFk . (6.14)

Next, it may be noted that

(ii) if k is any number such that
k3<|k|<k4 R (6.15)

then there exists some sub-interval J of (-0, @) such that

"
Jrf(g)d§<f(k)(u-k) for » in 9§ , (6.16)
k

whence by (2. 24), we have
W(2+x%) - W(2+K%) - f(k)(x ~k)<O for x in & . 6.17)

Alternatively, (i) and (ii) can be established analytically.
We now conclude, by virtue of (6.8), (6.12) and (6. 14), that

any equilibrium solution ¢(r) for which either
|k(r)| = |r¢'(r)|<k3 or |k(r)|= |r¢'(r)|>k4 : (6.18)

at each r in (a,b) where ¢’ exists, is stable. It is a trivial exercise

to examine all the available equilibrium solutions ¢(r) — given by (4,17) —
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and to determine those that conform to (6.18). One finds that only the
following do:

b
(i) Smooth Solution 1 with |¢0|5I11-F1(a2'rc/§2)d§ ’
a

b
(ii) Smooth Solution 3 with |¢o| Z_I.-é-F3(b2'rc/§Z)d§ R
a

(iii) Weak Solution (3, 1) with |T| =21t?21' , i.e, the solution (3, 1) with

the torque given by |¢0| =¢31(./|T|/2w'rc , | T|]) and with shock

radius F=//| TI /er'rc s

These solutions therefore are stable. On Fig.9, these refer to the

solutions associated with points on the curves OX, YO’ and XY respec-
tively.

We will now show that all the other solutions are unstable. We do

this by exhibiting particular admissible functions ¢(r) which render

viv} negative. It is readily shown that these remaining solutions —

i.e. solutions (4.17) which do not conform to (6.18) — all have

|<3<|r¢'(r)|<k4 . (6.19)
on some sub-interval of [a,b]. In each case ¥(r) is chosen to take
advantage of (6.15), (6.17) and (6.19).

We first consider the case of
dead loading.

Consider for example Solution 1 with

b b
1 2 2 1 2 2
g{!Fl(‘ v /8 )d§<|¢0|$£-!1"l(l a8 4E (6. 20)

e ap——_E

g
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Recall that in this case

b
,.M,,:_pl(ﬁz) : ¢0=£§Fl(;"—z§)d§ . (6.21)

It follows from (6.20), (6.21) because of the monotonicity of the function

Fl that

2

2
2ma’r < | T|=<2wa s > (6.22)

By virtue of this, there is « number s, a<s<b, such that
|T|>21rr21'c for asr<s , (6.23)

It is readily shown that k> |r¢’(r)|>k3 on (a,s). Let 8§ be any

number, 0<8<s-a. We now choose the function ¥(r) in x such that

[F3(;—I-z) for a<r<a+d ,
nr

rt'(r)=J (6.24)

-F (—I—> for a+bé<r<b .
1 2.
. 2nr

Observe from (6.2), (6.21) and (6.24) that
at+d

-l 2ealry (2p)op () Ter

=zw.l'r3(-2—1§z)-rl(;'li7)]zs+o(o) as 8~0 . (6.25)
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Therefore, given any number ¢>0, we can choose & sufficiently
small, 0<6<s-a, such that ||y-¢]||<e¢.

On using (6.21) and (6.24) in (6.5) we find by virtue of (2, 24),
(2.28), (2.34), (2.40) and (2.41) that

at+d F3(n)
V{'}=I zn_f {£(%) - n}agar , n=-|-—T-E ‘ (6.26)
a Fl(ﬂ) 2nr

This can in turn be written as

a+d

vivl= -I A(;II%\Zwrdr (6.27)
a mr

because of (5.23), (5.24) and (5.39). Since (6.22) and (6.23) imply that

by
'rm‘xz-L—-E>'rc for asr<a+$ , (6.28)

it now follows from (5.43), (6.27) and (6. 28) that
viyl<o . (6.29)

Therefore Solution 1 with (6.20) in effect is unstable, On Fig.9 these

solutions are associated with points on the curve XP (excluding X).
The instability of the other solutions may be established in an

entirely analogous manner, i.e. taking advantage of (6.16), (6.19)

to choose ¥(r) arbitrarily close to #(r) such that visl<o.
Instability in the case when both boundaries are held fixed may

be established in a similar manner, taking care now to satisfy the

boundary condition ¢(a) =O(a)=¢o . For example, congider Solution 1
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with (6.20) in effect. Let c(§) be the function defined implicitly by

c(8) b
1 T $ -3 p I
®.= F d¢+, SF dag . (6.30)
0 .I [3 3(zﬂg2) .‘l:mg 1 zﬂ? )

By virtue of (2.38), (6.21) and the implicit function theorem, one can
show that (6.30) does in fact define a function c(8) which is twicel
continuously differentiable in a neighborhood of 8=0, and that

c(0)=a, c(0)>0 , (6.31)

Thus c(8)> a for sufficiently small positive § .
Now consider the virtual twist ¥(r) defined by

s r
¢0.-I-ér3(z—%)dg on [a,c(8)]
a 'lfg

'(r) =< (6.32)

o

"

1 T-8
F (F=3)at [c(6), ]
§ 'g' l(z.“.g > on Cc

for a sufficiently small §>0 . Note that § is in X by virtue of (6.30).
Observe from (6.2), (6.21) and (6.32) that

c(6)

ICEE I Zwr[l-g(—z) F (—-‘\] dr*f Z"fF 1( ) & (—'z)] o

2
=2ml F, -hl‘z\rl(ﬁz)] c0)8 +o(8) as 6-0 (6.33)

T’I\wice continuously differentiable when T< Znnz'rm“ . The argument
2

presented here can be readily modified in the case T =2wa Tonan *
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b

where we have also used (6.31) in the second equation. Therefore,
given any number ¢>0 we can choose §>0 sufficiently small such
that ||y -¢]||<e .

If we now set

c(d)
vl(a)=_[ [W@2+r24'2) - W2+ r20'2) - £(r @) (x4’ r¢) ) 2rrdr |, |
a

> (6.34)
b
V,(8)= [ {w(2+ %) - w2 +:%2) - £(r#) (x4’ r@))2nrdr :
c(d)
with y given by (6.32), we may write (6,.5) as
Vvl =V, (8)+V,(8) . (6.35)
We find from (6.21), (6.31), (6.32) and (6.34) that
VZ(O) =0 , V'2(0)=0 . (6.36)
because of (2.24) and (2.28). Likewise we find
Vy(0)=0 , V/(0)=- A(J—T-E)c'w) : (6.37)
2ra

where we have also used (2.34), (2.40), (2.41), (5.23), (5.24), (5.39)

and (6.31). Note because of (6.20), (6.21) and the monotonicity of F1

that ITI/Zwazs Tmax * Whence by (5.43), (6.31) and (6.37) we have
v{(0) = -A(J-?-%)c'(oxo ; (6.38)
2ra

On using (6.36), (6.37) in (6.35) we find




sl

viv)=- A(—LIDC'(O)G +0(8) as §-0 , (6.39)
2ra

so that by (6.38) V{y}<0 for sufficiently small 6>0 . This establishes
the instability of Solution 1 with (6. 20) in effect in this case. The instability
of the other solutions may be likewise established. This completes our
instability analysis,

The preceding results lead to the conclusion that the only stable
solutional are the ones given by (i), (ii), (iii) following Equation (6. 18), Recall
that on the torque-twist diagram, Fig.9, these are the solutions associated

with the curve OXYO’. We therefore have that there is a unique stable

solution @(r) to the boundary value problem in its weak formulation cor-

responding to every value of the applied twist ¢o , i,e, there is a unique

solution ¢(r) to (4.8) - (4.10) which conforms to (6.2), (6.3), (6.5). Note
that at every value of ¢O » the displacement equations of equilibrium are
ellipticon T (r#T) at this unique solution.

We now refer to a remark made in Section 4.1 that a configuration
involving more than one elastostatic shock is unstable. In the case of
a solution with a single shock we showed instability whenever (6. 19) held.
Clearly, it is (6.19) and not the number of shocks that is important in that
argument.z It is readily established that (6.19) holds for every weak
solution involving more than one elastostatic shock. This is most easily

seen from a visualization of such a solution in the manner explained in

l'I‘he»e solutions exist irrespective of the geometric and constitutive
details, i.e. even in the cases when (3.23) does not hold these are the
only stable solutions.

ZAa remarked previously, the importance of (6.19) for instability is
related to the property (6.15), (6.17).
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association with Fig.7. This leads to the instability of such a solution.
Now consider a quasi-static loading of the body. If the loading
is performed in a manner which involves disturbances of the type we
have allowed for, one would expect that at each instant, the tube seeks
out the configuration which is stable against such disturbances. On
increasing the applied twist we might then expect the loading path to
follow the curve OXYO’in Fig.9. We would first observe a smooth
configuration of the tube. An elastostatic shock would then emerge at the
inner boundary and gradually move outwards, dissappearing upon reach-
ing the outer boundary and giving way to a smooth configuration. On
decreasing the applied twist, we would observe this process in reverse.

Note from Section 5.2 that this loading path conforms to the dissipation

inequality, even though we did not demand — here — that it should be so.

In fact this is the dissipation-free path referred to previously.
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