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/Summary

It is known that the type of the system of partial differential

equations governing finite elasto statics can change from elliptic to non-

elliptic at sufficiently large deformations for certain materials. This

introduces the possibility that the elastostatic field may exhibit certain

discontinuities. Some aspects of the general theory associated with these

issues were examined in a recent series of studies by Knowles and

Sternberg. In this pape r we illustrate the occurrence of elastostatic

fields with discontinuous deformation gradients in a physical problem.

The body is assumed to be composed of a material which belongs to a

particular class of isotropic, incompressible, elastic materials which

allow for a loss of ellipticity . It is shown that no solution which is smooth

in the classical sense exists to this problem for certain ranges of the

applied loading. Next, we admit solutions Involving elastostatic shocks

into the discussion and find that the problem may then be solved completely.

When this Is done , however, there re sults a lack of uniqueness of solutions

to the boundary.value problem. In orde r to resolve this non-uniqueness,

the dissipativity and stability of the solutions are Investi gated.

4 ______________________

* The results communicated in thia paper were obtained in the course of an
• investigation supported by Contract N00014- 75-C-0196 with the Office of

Naval Research In Washington D. C.
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1. 1 Introduction

In the course of investigating some crack problems [ ii ,  [2 1, [31,  
V

Knowles and Sternberg encountered ce rtain difficultie s which suggeste d V

that the problem may not admit a classically smooth solution . In orde r

to clarify this situation, a serie s of preliminary studie s were undertaken

(References [4] - [7]~ in which these authors looke d at the question of

the change of type of the displacement equation s of equilibrium from elliptic

to non-elliptic, and the related issue of the existence of solutions po ssessing

certain discontinuitie s — referred to as elastostatic shocks. The presence

of such elastostatic shocks is found to affect the energy balance of the

field. This led Knowles and Sternberg [6], [7] to propose a notion of

dissipativity associated with such fields. Subsequently , Abeyaratne [81

examined the corre sponding issue s in the case of incompressible materials.

In order to illustrate the occurrence of elasto static shocks in a

boundary-value problem, we conside r a problem in finite plane strain for

a hollow circular cylinder. Specifically, we examine the case in which

the oute r surface of the cylinder is held fixed while the inner surface is

twisted circumferentially. The cylinder is presumed to be composed of a

homogeneous, isotropic , incompressible elastic material . Although this

problem has been considered before ’, our interest centers on those materials

whose strain ener gy density permits a failure of ellipticity of the displacement

equations of equilibrium at sufficiently severe deformations.

We demonstrate for our choice of material that, while for both

sufficiently large and small values of the prescribed twist the problem

4 ______________________

‘See Rivlin [9] as well as Green and Zerna [10] page 95. The problem
has been reconsidered more recently by Ogden , Chadwick and Haddon ( i i ].
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admits a unique smooth solution , there are ce rtain intermediate ranges of

the prescribed twist at which no classically smooth solutions exist. We

then show that there are however , an Infinite number of weak solutions

involving elastostatic shock. In these ranges of the applied twist.

We then conside r the quasi-static problem in which the prescrib-

ed twist Is gradually changed In time, and explore the consequence s of the

dissipation Inequality. It turns out that enforcing this Inequality falls to

single out a unique weak solution .

En an attempt to clarify this issue of non-uniqueness , we examine

the stability of the various equilibrium solutions against purely circum-

fe rential perturbations. It is found that the classical energy criterion

for stability , without refe rence to the dissipation Inequality , picks out

a unique solution to the boundary-value problem at eve ry value of the

prescribed twist. In the discussion of the various issue s outlined above ,

we restrict attention to configurations involving not more than one elasto-

static shock. As a consequence of the stabIlity crite r ion , we find that an

equilibrium solution involving more than one shock is , in fact , unstable .

Ericksen [12] ha. discussed the equilibrium of a bar composed

of a meterlat whose stress response In unlaxi al tension I. qualitatively

similar to the shear stress re sponse in simple shear of the class of

materials considered here . There is a striking similarity between his

results and ours; in fact , certain aspects of our study of the stability

of weak solutions were suggested by the arguments In [12] .

In Section 2 we set up the classical pro blem gove rning the twist-

Ing of a hollow cylinder composed of an arbitrary homogeneous. incompres-

sible , Isotropic, ela stic solid. We then discuss the particular class of

• 

- . ~~~~~ • 
-

_ V •f ~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~ — -•
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material s with which we will be concerned. In Section 3 we determine

the solution s of thu problem and construct the associate d torque - twi .l

curves. For sufficiently small and large value , of the prescribe d twist ,

• we have a unique smooth solution at which the disp lacement equations of

equilibrium are elliptic. Depending on the de tails of the geometry and

conetitutive law, it is also possible to have a unique , non-elli ptic , smooth

solution at certain — but not all — value s of the twist in the intermediate

range . In all cases there are ranges of values of the prescribed twist

for which we find no solution . We then prove that , in fact , no smooth

solutions exist in these ranges of the prescribed twiet.

We next set up and solve , in Section 4 the problem in Its weak

fo rmulation . We now find a solution corre sponding to eve ry value of the

prescribed twist, but unfo rtunately there are many solutions corresp onding

to certain twist values.

In Section 5 we make use of the dissipation Inequality in an unsuc-

cessful attempt to extract a unique solution from among the many solution.

to the boundary value problem, Finally, in Section 6 we examine the

stability of each of the available solutions against purely circumferential

p.rturbatio~~ . We f ind that at every value of the prescribed twist there

is precisely one stable solution to th. boundary-value problem in its weak

fo rmulation. For sufficiently small and large value s of the applied twist ,

this unique stable solution is smooth and elliptic. For all intermediate

values, the unique stable solution involves an elastostatic shock and Is

V elliptic.

/

V - - - -
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2. 1 Formulation of Problem

Suppose that the open region R occupied by the interior of a

body in its undeformed configuration is a hollow right circular cylinder

of inte rnal and external radii a and b , respectively. Let U be the

open middle cross-section of the cylinder ~ , and let 0 be the center

of the annular region U

Suppose the inner surface of the cylinder is rotated circumfe r-

entiaUy through an angle &~ , while the outer lateral surface is held

fixed. We assume that the resulting defo rmation maps the point with

cylindrical coordinates (r , e, z) in the undeformed configuration onto

the point with cylindrical coordinates (p, $, ~), where 
V

p = ~~(r , 8, z ) = r , $ = ~~(r , e, z ) = e + O(r) , {=e(r , 8, z ) = z  . (2 .1)

This describe s a plane deformation in which each particle moves cir-
V 

curnlerentially through an angle 0(r). Suitable tractions are presumed

to be applied on the ends of the cylinder so as to maintain such a state

of plane strain.

The defo rmation (2 . 1) may be equivalently expressed as follows.

Let X be a fixed rectangular cartesian coordinate frame with its ori-

gin at 0 and orthonormal base vectors e , e , e , such that e and-‘1 -.2 — 3 ‘-1
are in the plane of U and i~ normal to U . If ~ is the position

[TILt _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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vector after deformation of the particle which was located at ~ in

the undefo rnied configuration, we can write (2. 1) as

y 1=x 1c osØ ( r ) -x 2sin O ( r )  ‘ 1
y 2=x 2cos 0(r )+x 1sin0(r)  , (2 . 2)

J
where

1 2  2 (2 .3)

Here y1 and x1, I = 1, 2,3, are the components of the vectors and

x in the frame X . We will temporarily assume that the local angle

of twist 0(r) is twice continuously differentiable on (a, b).

It is convenient to express the field quantities at any point

(r , 9, z) in terms of components in the rectangular cartesian coordinate

frame X ’ which is obtained by rotating the frame X through an angle

* $(r , 0, z) about the e3-a~czs. The matrix of components of the deforma-

tion gradient tensor F = V v~ in the frame X ’, ~~~~~~ is easily computed

from (2. 2), (2 .3) and the change-of-frame formula for tensors to be

cos0(r) -sin 0(r) 0

FX = sinO (r)+rO’(r)cosO(r) cosO(r)- rO’(r)sinO(r) 0 . (2.4)

0 0 1

x,
• Note that the matrix F may be de composed as follows;

jV 

‘

___V *_ _  -  • V  V -- V~~_ V )~~V ~~~~~~~~~~~ 
V 

~~~~~~~~~ •_~
_
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1 0 0 cos Ø(r) -sinØ(r ) 0

FX
_ 

rO’(r) 1 0 sinO(r) co.O(r) 0 , (2 .5)

0 0 1  0 0 1

which implies that locally the defo rmation (2 . 1) Is composed of a rigid

rotation through an angle 0 about the e3 -axis followe d by a simple

shear parallel to the circumferential direction with an amount of shear

rØ’(r). Set

k ( r ) = r O ’(r) , (2 .6)

so that k(r) is the local amount of shear.

Equation (2.4) Indicates that de tF=  1 , so that the defo rmation

(2. 1) is locally volume preserving. From (2 .4) and (2 . 6) we have

the components of the left Cauchy-Green tensor G=  FFT:

1 k(r) 0

• 2G = k(r) 14k  (r) 0 . (2 .7)

0 0 1

The principal invariant. of are found from (2 . 7) to be

I1= t r G = 3 + k 2(r) , 1
I2 = .~{(tr~~)2 _ t r ~~2 }= 3 +k 2(r ) , (2 .8)

I = d e tC = l  .• 3 —

Suppose that the body is composed of a homogeneous , isotrop ic,

_ _ _  
V.

j

—I
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I 1ncompressV3~ble, elastic solid which possesses an elastic potential

*W=W (1 1, 12). W represents the strain energy density per unit unde-

• formed volume . The constitutive law for the Cauchy stress ten sor

i is then

* * *
(2 .9)~~

where p(y ) is a pressure fie ld arising because of the constraint of in-

compressibility . We suppose for the moment that p(y ) is continuously

differentiabl e on R . Using (2.7) ,  (2 .8) and (2 .9) we find that the

I stresses induced by the deformation (2 1) are given by

x
• 

r 11 =2 W ( I ) — q  ,

a

¶ = 2 ( 1+ k 2 )W’( I ) -q  , (2 . 10)

• x ’ x ’ x ’ x’T 13
_ T

31 T 23 — T 32 .O

T~ ;=2 W ’(I) + 2k2
~~f~(I+ 1. 1+ 1) -q

V 

wher e we have set

• I = 2 + k 2 (r) , W (I )= 1~~I + 1 , 1+1)  for I �2 (2 , 1 1 )

and

‘See Truesdell and Noll ( 13], page 319.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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*8Wq=p - Z~~ — . (2.12)

Since the pressure p might depend on the coordinates $ and ~~, in

• addition to p , it follows that ~ne Cauchy stress tensor ~r might depend

on all three of p , $ , and ~

It is suggestive to introduce the notation

,

¶
$,

T~2 , (2. 13)

4 The equilibrium equation in the axial direction is easily shown

V to be satisfied if and only if q does not depend on y3 (and hence ~).

It follows from (2. 10), that the Cauchy stress tensor r is also mdc-

pendent of the axial coordinate ~ . The remaining two equilibrium

equations now take the form

::~~ ~~~ ~~~~~~~~~~~~~~~~~ , (2. 14)

:;~ ~~~~~~~~~~~~ . (2 .15)

From (2 .1) , (2 .6) , (2. 10) , (2 .11)  and (2.13) we see that

• is independent of the coordinate $ whence (2 . 14) and (2. 15)

specialize to

• 1BOdy force s are presumed to be absent.

_ _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V
V
~~~
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• 8T
+ =0 , (2 .16)

(2. 17)

Integration of(2 . 17) with respect ~o $ leads to

(2 . 18)

where c(P) is a “constant” of integration depending on p alone . It is
apparent from (2 . 18) that is single-value d only if

(2 . 19)

It now follows from (2 . 18) and (2. 19) that , and hence q , p and

as well, are independent of the angular coordinate $ . Using

(2. 10) and (2. 13) in (2. 16) and (2. 19) we obtain the governing
system of ordinary differential equation s for 0(p ) and q(p):

(2 .20)

2~~~W ’(2+p 2
O’2 ( p ) ) _ 2p O ’2(p)w’(2+p 2

o’2 (p))~~~~ . (a .z1)

On integrating (2 . 20) with respect to p we find that

p 3
O~ p w ’2 + p 2

0’
2 p~~ =~~~~ , (2 .22)

where T is a constant of integration. Likewiie , integration of (2 . 21) 

•~~ •V~~~~~~~~
___

• •~~~~
- 

• 
• V~~~•~~~~~ V 

~~
V~~ 4~
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with re spect to p and making use of (2. 22) gives

• 
q (p ) =2 W ’(2 +p 2

0’2 (p )) +~~ .J ~~~~ d~~+q~ , (2 .23)

where q0 is a constant.

It is convenient to define the acalar valued function f by

f(k) = 2kW’( 2 + k 2 ) for -co<k<cx, . (2 .24)

It is readily seen that, if an incompressible, isotropic, elasti c solid is

subjected to a simple shear defo rmation, the shear stress corresponding

to an amount of shear k is f(k) . Accordingly the function f may

• be interpreted as the shear-stress response function in simple shear .
• 

‘ Equation (2 . 22) can now be written as

T on (a ,b) , (2 .2 5)
• 2rr p

which, togethe r with the boundary conditions

(2 .26)

Ø ( b ) = O  , (2 .27)

constitutes the boundary value problem for ~(p) .  We wish to find a

function 0(p), continuous on [a , b] and twice continuously differentiable

on (a,b) , and a real number T sucb that (2 .25) - (2.27) hold. We

will refe r to such a solution as a smooth solution. Note that once 0(p )
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has been so determ ined, (2. 23) give s q(p ) directly.

Finally, note from (2 .6)  , (2. 10) , (2 . 13) and (2 . 22) that

r
0~~(~ ) = - T/2-,v p 2 so that T 1. the to rque per unit axial length of the

cylinder acting on the Inne r surfac.~measured positive in the counter-

clockwise sense.

2. 2 A Particular Class of Constitutive Laws

We now describe the particular class of homogeneous , isotrop ic ,

incompressible, elastic materials to which we will restrict attention

in thi s study . It I. adequate for our purposss to specify the response

of the material in simple shear alone . Observe from (2 . 24) that W ( I )
• is completely determined by the function f . Consequently, one can show

that the response in simple shear determines completely the in-plane

response in ~~j  plane deformations for such mate rials.

Equation (2 . 24) implies that f is an odd function, I.e

f ( k ) = - f ( - k )  for -co<k<~~ • (2 .28)

We assume that

(I) f is continuously d ifferentiable on ( -a u ) ,

(ii) f is positive on (O, cx )  , whence it follows from (? . 28) that

kf(k)>0 for k # 0  , (2 .29)

(iii) there exist real numbers and k2 (0<k 1<k 2<u~) such

that

f’(k 1) = f ’(k2) = 0  ,

f (k)>0 for 0 �k<k 1 , k2 <k<o.  , (2 .30)

• f ’(k)<O for k 1< k < k 2 , J

* 
‘•

~ ~~~~~~~~~~~~~~~~~~
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(iv) f(k)-.co as k-.cD

Since £ Is an odd funct ion It now follows that f’(-k 1) = f’(-k 2 ) = 0

£ (k)>0 for -~~~< k< - k 2 , -k 1<k �0 , f’(k)<0 on -k2<k<-k1 and 
V

f(k) -~~~- cx as k -.- ~~~ . Therefore , the function f(k) has local maxima

at k = k 1 , -k 2 and local minima at k = k2 , -k 1 and is monotone in

between. A grap h of such a function f Is shown In Fig . 1, whe re we

have set

f(k 1)=~i~ , f(k 2 ) = , ~~~~ . (2 .31)

Note that necessarily

f(k)I�r
~~ 

for kI� k 1 ,

Tmin~ 
I f ( k ) I �~ for k 1� k l �k 2 , (2 .32)

for k I �k 2 . J
An isotropic, incompressible, elastic solid subjected to plane

defo rmations conforms to the in-plane Baker-Ericksen inequality if and

only if W’(I)>O for 1>2 . By virtue of (2. 24) thi s is equivalent to

V kf(k)>0 for k~~0 . Because of (2.29), the class of material s unde r

consideration satisfie s this condition .

Moreove r , we have from Section 3.2 of [8] that in any plane

deformation, the plane strain displacement equations of equilibrium

are elliptic at a point If and only if the associate d local amount of shear 1

is less than k 1 or greate r than k2 . In the context of the problem

considere4 here , we have from (2 .6) and (2. 11) that ~j
‘See SectIon 2 . 2 of (8].

• V ___________________________________
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dIsplacement equat ions of equilibrium are elliptic, at a solution cor-

responding to 0(r) and a point, if and only If rO ’(r ) l~ lass than

or greate r than k2 at that point.
V 

It is clear that for the particular class of materials just de-

scr ibed, f has no single-valued inverse. The restrictions of f to

certain sublntervals of (- co, ~x,), on the other hand, do have unique

inverses. Let F1 , F2 and F3 be the functions defined by

F1( f ( k ) ) =k  for k k k 1 ‘ 1
F2(f(k))=k for k1

� l k k k 2 , ~. (2.33)

F3(f(k))=k for k2
� t k I<co . J

• By virtue of (2 . 32) , it follows that F 1 , F2 and F3 are de-

fined on 1- Tmax ~ ‘max1 ‘ ~~Tmax ‘ ~~min 1 U 
~~min ‘ 

1max 1 and

CD 
~~min 1 U L’rmin~ co) re spectively, and that they are continuously

differentiable on the corre sponding open intervals.

The following propertie s of the Inverses F~ (I = 1, 2 , 3) can be

eas ily ver ified; we list them here for subsequent reference.

f(F1(r))=i- for “1~~~max 1
f ( F 2 (~ )) = T for T

1
� I T I ~ , (2. 34)

• 
f(F 3( T ) ) = r  for t~~~~~~~~~� r <co , J

V V V~

L — 
~~~~~~ 

—-~~~~~ —a6~. ----— --
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for I r I<r  1
for ¶

1 < I T I < T  (2.35)

F~( r ) > 0  for T 1 < I T I < 0 0  , J
F ( T  )~~ F ( ~ ) = k1 max 2 max 1

(2 .36)
F2 ( r )  = F3( T )  = k2 ,

for I T I ~~T 
‘ 1

k 1~ F2 ( r ) I � k2 for T
in~~ 

I T I � T  ‘ F (2 .37)

F3(~ ) 5 � k3 for I T I � T  in J

F3 ( I r I ) >F 2 ( I i I ) > F 1( I r I )  for T in < I T I < T  , (2 .38)

= - F
1

( T )  , (2 . 39)
1= 1 , 2 , 3 and

TF 1(T) >0 , (i~~ 0) appropriate (2 .40)
interval

lF .(~ ) I  = F~( J r  I)  , (2 .41)

• F3(T)- . ± co as ¶-. ± CD • (2 .42)

_ _ _  ~1 Ji~ ~~~~~~~~~~~~~~
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It

3.1 Smooth SolutIons

We now return to the task of solvin g (2. 25) - (2. 27) for the

special class of materials described in the previous section . To thi s

end , we first establish the following preliminary result.

Lemma: There does not exist a solution 0(r) in
• 

V 
the class C2(a, b) to the differential equation

f(r0 ’(r)) = - T/2ir r 2 (3. 1)

where f Is a continuously differentiable function
conforming to (2 .28) - (2 .30) and T is a con-
stant, such that at some radius a , a<s<b ,

s0’( s ) = E k 1 or *k 2 . (3. 2)

Proof: Suppose that there is such a solutIon 0(r) . Diffe rentiation of (3 . 1)

with respect to r and setting r = a leads to

f ’(sO ’(s)){O’(s) + s0~’(s)} = T/it s3

which because of (2 . 28), (2. 30) and (3. 2), yields

• 
T = 0  . (3.3)

The differential equatio n (3 .1 )  now reads f(r Ø ’(r )) =0  ,

- V~_
- - - - - ~~~~~~~ .

. •

~~~~~~~~~ -~~~~~~~ - -~~~~~- - -  ~~~_ :~~~~~ --~~~-
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which becau se of (2 . 28) and (2 . 29) Implie. that

on (a,b) . (3.4)

Equation (3.4) , however, contradicts the assumption (3.2)  . This

V establishes the lemma.

Now suppose that the prescribed twist 0~ is a number in the

interval

b 2 b 2

J~ Fi( T )  d~ �O o �S~~~Fi(  

T
rnax) . (3 .5)

On using (2 .26) , (2 . 27) , (2 .35) and (2 .37) in (3 .5) we have

b b b_J ’ 
1

1 d~ <_ J ’  O’(~ )d~ <~ 1
1dg , (3 .6)

-
• whence

V b gv(~ ) + k 1 
b 

~Ø’(~ ).. k1• S _-g-_--_-d~ >o , ~~~~~~~~
_ _ d

~ <0 . (3.7)

From the preceding lemma we know that rØ’(r) ~ ~ k~ on (a, b), so that

(3 .7) implies

V 

k 1>rØ’(r)>- k 1 on (a, b) , (3.8)

since the integrands In (3.7) are continuous on (a , b) . Therefo re , if

00 is a number such that (3. 5) holds, then necessarily the solution to

(2.25) - (2. 27) must satisfy (3.8) But because of (2.33) and

(2.34) , we see that, (2 .25) and (3.8) hold if and only if

~~~~~4~~~~~ V V V~~~~~~ *

• • V
• 

V
V 

• - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~
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• r0~(r) F l(_ T )  . ( 3 . 9 )
Zt r r

V Integrating this and using the boundary condition (2 . 27) together with

(2 .39 )  leads to

O(r) J’~~~F1( T 2)d~ . (3.10)

On enforcing the boundary condition (2. 26) , we have from (3. 10) that

O0=J~~
F1 (T p)d~ . (3. 11)

Finally, we verify that (3. 11) determines a unique numbe r T

for every given number in the Interval defined by (3. 5) . To this

end , define the function • ~ 
by

for I T k 2 w a 2T~~ j , . (3.12)

On differentiating (3. 12) with respect to T and making use of (2. 35)

we find that

for ITk21I *
21~max ‘ 

(3.13)

whence is monoto nicaUy increas ing on [~~21Ta21•max~ 
2•IT &2

~
I•max] •

Thus , if 00 is a numb er such that

•l
(_21I•a

2
Tmax)�0

O~~~ll
(Z1T a

Z
Tmax) , (3 .14)

_ _ _ _ _ _ _  

V V V~~~~~~~~~~~~~~~~~~~ V • • •~~~~~~~~~~~~~~~~~ 
V 

V • V~~~~~~~~~
V
~~~~ 

- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~ V_ ~~~~~~~ V -
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then, 0~ = ~ 1(T) defines a unique number T . Note that (3. 14)

because of (3. 12), is identic al to (3 . 5).

Therefore, we conclude that , if the prescribed twist is in 
- V

the interval defined by (3 . 5) , Equation (3. 11) determines a unique

real number T , which together with (3. 10) gives the corresponding

unique smooth solution to (2 . 25) - (2 .  2 7) .  V

In an entirely analogous manner , we can show that , if the pre-

scribed twist 00 sat isfie s

b 2 b 2

J~~~F2 (
Tax)d 0o~~~S~~~Fz ( ?)

d~ , (3.15)

then , the relation

Ø0 5 ~~~F2 ( T 2)dg (3.16)

dete rmines a unique real number T , which together with

b
0( r )=j ’  ~ F2( T ) d ~ (3. 17)

r

is the corresponding unique smooth solution to (2. 25) - (2. 27).

V Similarly , if the prescribed twist 00 obeys

I0O~~S~~F3 (b
2
~r

t h)  , (3.18)

the relation

V TV~~~~~~~~~~~V- 
-
~~

—
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0o = S~~ F3 ( T z)d~ (3.19)

dete rmines a unique real number T , which together w ith V

b _ 4
O( r ) = S  ~~~~F

3(  

T
)d g  (3 . 2 0)

r

is the correspondin g unique smooth solution to (2. 25) - (2. 27).

We will refe r to (3. 10) , (3. 17) and (3. 20) as (smooth) SolutIon 1,

SolutIon 2 and Solution 3 respectively . Equations (3. 11) , (3. 16)

and (3. 19) are the corresponding tor~~ e-twist relations. One sees

readily from (3. 10) , (3. 17) , (3. 20) and the discussion of ellipticity

in Section 2 . 2 , that the displacement equations of equilibrium are

elliptic everywhere in fl at Solution I and Solution 3, and that they

are non-elliptic at Solution 2.

Because of (2.35) one has

• S ~~~ F2 
~~~~~~~~~~~~~~~~~~~~~~ 

)d~ � J’ ~ ~
‘2 (b

2 rrnin

) 

dg , (3.21)

if and only If

2 2b T
in

� a ‘max (3. 22)

V 

Accordingly, it is only when (3. 22) holds that there are value s of 00
in the inte rval (3 . 15) , and consequently that Solution 2 exists. In this

pape r , we will conside r In detail the came when the dimensions of the

• tube and the constitutive law of the material are much that

L~~~ J _ _
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2~~~~~~.a nun (3. 23)
b max

and trace the other cases (which are in fact less complicated) through

• footnotes. The end result turn s out to be the same in all cases. For a

given material, one co uld view (3. 23) as requiring the thickness of the

tube to be sufficiently small. Since T
~~~~~~(~~~) = - T/2r r p

2
, we have

in any equilibrium configuration of the body ir-

respe ctive of the magnitude of the applied twist. Thus (3. 23) can be

written as

r (a) ~
_ _ _ _ _  

max
T (b) 1p$ mm

The torque-twist relations (3. 11) , (3. 16) and (3. 19) are

• sketched in Fig . 2. Clearly, these curves are anti-symmetric with

respect to the axes.

• We observe from the preceding calculations, and also from

Fig. 2 , that we have not as yet found any solutions to (2. 25) - (2 . 27)

if the prescribed twist lie s in one of the interval s

b / 2  b / 2

$ ~~F1 
( 
‘ )

~~
< io~ <$ ~ F2 ça 

T
~~~ax)

a a
(3. 24)

b /b2T \ b f b2T \
J~~~F2 ~ mm) d~ < I 0 o I < S~~~F3~~ ~~~~~~~~~ d~

We show in the next section that there are , in fact , no smooth solutions

when the prescribed twist lies in these ranges.

V ~~~V V V 
~~V V V V

VV 

_ _  V V
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3 .2 Non-existence of Smooth Solutions

We now establish a sequence of lemmas leading to a re sult

V which is in fact stronge r than the one claimed at the end of the last

section . We will show that there is no solution 0(r) to (2 . 25) - (2 . 27)

which is continuously diffe rentiable, li the prescribed twist is in one

of the intervals defined by (3. 24). V

Lemma 1: There is no continuously diffe rentiable
solution 0(r) to the diffe rential equation (3. 1),
whe re T is a constant and f is a continuously dif-
ferentiable function conforming to (2. 28) - (2 . 30),
for which (3. 2) holds at some radius a , a<s<b.

Proof: Assume that there exists such a solution 0(r) and suppose that

k ( s ) = s0 ’(s ) = + k 1 . (3.25)

I By hypothesis k(r) = r0’(r) is continuous on (a,b) so that , In particular ,

• 
V it is continuous at r = a. Therefore , given any number c >0 , the re

V 

exists a numbe r 6 = 6( s)>O such that I k(s) - k ( r ) I < €  for all r such

V 
that Ir - s I <  6(c) . Using (3. 25) we may write thi s as

V 1k 1- k ( r ) l < ,  for all I r - s I < 6 ( e )  . (3.26)

V 
Re call that f(k) has a local maximum at k = k 1 , so that the re

V is a number r~>0 such that

f(k 1) �f(k) for Ik 1-k I < r l  . (3 .27)

Combining (5. 26) with (3. 27), we have

f(k 1) �f(k(r))  for r _ s I < 6 ( r l )

V 
V V V V V • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~‘V~~~~~ 
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V which on using (2 .6), (3.1) and (3. 25) leads to

• 
-T~~~ - 

T for Ir- sl< 6 (r~) . (3. 28) V

Zw s Zir r

Note from (3 .1) and (3. 25) that T = -Zfl s2f(k 1 ) , whence T < 0

Equation (3. 28) now requires that

r 2
~~s2 for s - 6 ( r ~) ( r < s + 6 ( r ~) , 6(r~) > O  , (3. 29)

which is impossible . 
V
consequently there cannot exist a solution 0(r)

with the propertie s we assumed.

The cases aØ ”(s) =-k 1, *k 2 can be dealt with similarly .

Lemma 2: Suppose that there exists a continuo usly
differentiable solution 0(r) to (2 . 25) - (2 . 27),
where T is a constant and f is as in Lemma 1.
Then

• ( i )  IrO ’(r) I <k 1 on (a , b) if and only if Oo is in
the interval (3. 5).

(ii) k 1< 1r0 ’(r )kk 2 on (a, b) if and only if 0
~ ~s

in the interval (3. 29)

(iii) J rO’(r)~ >k 2 on (a , b) If and only If 00 i s in
the inte rval (3. 18)

V 
Proof: Considering part (i), suppose that 00 i. in the interval (3. 5) .

Byvir tue of Lemma 1, the steps leading from (3.5)  to (3 .8 ) ,  go

V 
through even when 0 is merely continuously differentiable. Thus

necessarily r0’( r ) l < k 1 on (a , b).

• Conversely, suppose that I r O ” ( r ) I <k 1 on (a , b) . It follows

from (2. 25) and (3 .25) that

1T~ 
~ 

Tmax on (a , b) , (3 .30)
• Zit r

-• - 

~~~~~~

- 
•• - 

~~~~~~~~~ V V~~~~~~~~~ V _~~~~~~~~~~ 
V V 

~~~~~~~~ V —~~~ V • -  -. - ~~~ V V
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whence

I T I ~~ 2wa 2
~ma.,t . (3.31)

Since Ir O ’(r )kk 1 on (a . b), we have because of (2 . 3 3 )  that ( 2 . 2 5 )

holds only if

rO’( r )=F 1(- T )  . (3 .32)
Zir r

Integrating ( 3 . 3 2 )  and using (2 . 26) , (2 . 27) and (2 .39)  give s

00 =J~~~F1 ( T ~2)d~ , ( 3 . 3 3 )

• which by virtue of (2.40) and (2 .41)  leads to

I00 I=5~~F1(~~~ )d~ . ( 3 . 3 4 )

Since by (2 . 3 5 )  F
1 

is a monotone increasing function , it follows

from (3 .31) and (3.34) that

b 2

oO �S.~ F
1( 

‘i
~~ax)~~~ . (3 .35)

which complete s the proof of part (I) of the lemma. Parts (ii) and (iii)

can be similarly established.

Lemma 3: There does not exist a continuously dif-
• ferentiable solution 0(r) to (2 .25)  - (2 . 2 7 ),  where

T is a constant and f is as in Lemma 1, if the pre-
scribe d twist 00 ia In one of the intervals (3. 24).
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Proof: This result follows immediately from Lemmas 1 and 2 . For ,

suppose that there is such a solution 0(r) . It follows from Lemma 2

that we must have

rØ’(r ) = *k 1 or *k 2 at some r , a<r <b  . (3.36)

But Lemma 1 says that this is impossible.

We have thus shown that for certain range s of the prescribed

twist, there is no solution in the classical sense to the problem under

consider ation.

P
PV I

ii

_ _  - -V V

- _-~~~~~~~~~~~~~ -— ~~~~~ ~~~~~~~ ~~~~~~~~
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I

4. 1 Weak Formulation of Problem

V There are some pr oblems of considerable physical inte rest in

V 
which the field quantitie s do not vary smoothly throug h the body . Rice

gives some examples of such problems in [14]. We have observed that

the problem under consideration here has no smooth solution for certain

range s of the applied loading. One possibility, which we shall not con-

sider , is that the tube buckle s, possibly in to some un symmetric state

of plane strain at such a loading. An alternative possibility is that the

tube remains in a configuration of axisymmetric plane strain, but that

V 
now the field quantities are no longe r smooth and exhibit certain dis-

continuities. This latte r possibility is suggested by the observation in

Section 2 . 2 that the disp lacement equations of equilibrium may suffe r

a loss of ellipticity at certain deformation s for the material at hand.

In particular , in view of known results in the theory of transonic gas

flows , one would anticipate the occurrence of curve s across which the

fi r st derivatives of the displacement field suffer jump discon tinultie s,

while the displacement field itself remains continuous .

General questions conce rning the possibility of the change of

type of the differential equations gove rning finite plane elasto statlcs and

the related Issue of the exi stence of equilibirum fields with discontinuous

defo rmation gradients have been investigated in [4] - [8]. Elastostatic

fields possessing discontinuitle s of this type are referred to as “elasto-

static shocks ”.

We now relax the smoothness demanded of the local twiet 0(r)

~~ V ~~~~~~~~~~~~~~~~~~~~~~~ V~~~~ V~~~~~ - ~~~~~~~~~~~ V V
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and the pres sure field q(r), In the hope that this will enable us to ex-

plain what happens when the prescribed twist Oo is in one of the inter-

vals (3. 24) .

To this end, let ~ be a number in the interval [a, b]. If in fact

a<F< b , we will now require that 0(r) be merely twice continuously

differentiable on the intervals (a , F) and (1, b) and continuous on [a , b].

The stress field and pressure field induced by the defo rmation (2 . 1) are

to be continuously differentiable on (a , F) and (1, b) while the traction is

presumed to be continuous at r = 1. Accordingly, we have admitted the

possibility of the existence of a cylindrical elastostatic shock’ of radius

~ co-axial with the cylindrical region R

V The global balance laws, which continue to be meaningful, now

reduce to the same differential equations obtained in Section 2 . 1 on

(a,Y) and (F,b), to gether with jump conditions at r =F .  Accordingly

we now have

d 2
V ~~~{r f(rO ’(r ) ) J = O  , ~1 (4.1)

~on a< r <F , ~ (r < b ,

V 2f-W’(Z + r 2
Ø’

2(r)) - Zr Ø’2(r)W ’(2 + r 2Ø’2 (r)) ~~ ,J (4. 2)

instead of (2 . 20) and (2. 21) . On integrating (4. 1) we have

f(rØ ’(r ) ) = -  2 on (a,~~) ,  f(rØ’(r ) ) = -  T
2 on ~~, b ) ,  (4 .3)

Zflr 2ir r

+
where T and T are (not necessarily equal ) constants. Because of

• 1We formulate the problem in the case when a single elastostatic shock
exists . We will find that this suffice s for our purposes, and more un -
portantly , that a configuration involving more than one shock is nece s-

• man ly unstable (in a sense to be made precise).

V V V V - ~~~~~~~~~~~~~~
______________ -- . . •__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • V V V V

VVVVV !~~ V _ V VV V ~~~~~~~ V V V V V V 
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(2 . 10), (2 . 13), (2. 24) and (4.3) we have that

~ (r ) = -  on (a , F ) ,  T ( r ) = -  on ~~,b) . (4.4)V 

2nr  2rr r

At r =i~, equilibrium consideration s require that the tractions be
V continuous. Clearly , this is equivalent to

V (4. 5)

T pp (F~) =~~pp (F+) . (4 .6)

- 

Equations (4.4) and (4. 5) lead to

- +
V T = T E T  • (4. 7)

V 
We therefore have the following problem governing the local

twist 0 (r )  . Given a number 00 , find a function 0(r) which is contin-
uous on [a, b] and twice continuously differentiable on (a, F) and
(P,b ) ,  and numbeng T, F with a �F �b , such that -

f(rO 1~(r ) ) = _ _T
2 on a<r<~~ , i< r < b  , (4.8)

V O( a )= 0 0 , (4.9)

V 

Ø(b) =0 • (4. 10)

1 
Integration of (4. 2) leads to

V 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—- — —~---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~
-

~~
-

~~~~ ~~~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ on (a,F)

(4.11)

[zwI(z + r 2
012(r )) - ~ zgo’2 (g)w ’(2 + ~

2
O’2 (~ ))d~ +

~~ 
on ~~~, b)

which, together with (2 . 10) and (2 . 13) , gives

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ on (a ,F) , (4 .12)

- 

52g 0 ’2 ( g) W’(2 + ~
2
0’2(~ ))d~ - on 

~~~, b) . (4. 13)

• We see from (4. 12) and (4. 13) that the traction continuity condition

(4.6) holds if and only if

V ~o ”bo . (4. 14)

V 
Once (4. 8) - (4. 10) has been so~ - -ed for the function 0(r) , equation

(4. 11) together with (4. 14) directly gives the pressure field q(r).

V 4 2  Weak Solutions
V We first observe that the Lemma at the beginning of Section 3. 1

continues to hold if we replace (a,b) by (r 1, r 2 ) where r 1 and r2
are any two numbers such that a� r 1<r 2 � b . Thi s result , with the

V panticular choices r 1= a , r2 =? and r 1=F , r 2 = b , leads to the con-
V clusion that all admissible solutions of (4. 8) are necessarily such that 

_ _ _  
_ _ _ _ _  . •• . V

• 
~~~

• V • 
•
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on a < r <F , F( r (b . (4.15)

Since 0’(r) is continuous on (a , F) it now follows that any admissible

solution to (4.8) must be such that r0’(r) take s on value s exclusively

V 
• in one of the intervals (-a,, -k 2 ) , (-k2, -k 1) , (-k 1, k 1) , (k 1, k2 ) or

(k 1, o) , at all points in (a ,~~) . The same must be true on (1, b). V

Therefore we see, because of (2.33) and (2.39) , that (4.8) holds

if and only if

I T \  —-F~~ 2) on (a, r)
Zir r

rO’(r )= - (4. 16)

_F~( T )  on (1, b)
2 n r

for some fixed i, j =  1, 2 , 3 .

Integrating (4. 16) and using the boundary conditions (4. 9) and

(4. 10) leads to

I n  
_00-f -~ F1( ~-~)d~ on [a , F)

a 2i~~
(4. 17)

S~Fj ( T z)d~ on (i, b]

Finally, we require that

• 
0o = S~~~Fj ( T z)d~~~+SiF j ( T z

)d~~ , (4. 18)

LVV V V~~~~~~~~~~~~~~~~~~~~~~~~
V
~~

V
~~~~~ 

- - •-
~~~ 
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~~~~~
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since the local twist 0(r) given by (4. 17) is supposed to be continuous V

at r = F .

Collecting the pre ceedin g results, we come to the followin g con- V

clusion. Given a real number ~~ , if there exist real numbers T and

F , a �F � b , such that (4.18) holds for some fixed choice of the sub- 
V

scripts i, j  = 1, 2, 3 , then (4.17) with this choice of T , F , i and j V

is a solution to (4.8) - (4.10) at the given 00
Clearly in the case when i =j = 1 ,2, 3 , (4. 17) and (4. 18) de-

scribe the smooth solutions we obtained in Section 3. 1. Thi s is not

surprising, since any smooth solution of (2 . 25) - (2 . 27) is also a 
V

V solution of the problem in its weak formulation. Likewise, in the parti-

cular cases when F = a and ‘F = b , (4. 17) and (4. 18) are readily seen

to reduce again to these same smooth solutions. A solution defined by

(4 . 17) and (4. 18) is therefore not smooth only if i~~j  and a< F<b

• The existence of a solution (4. 17) corre sponding to the pre-

scribed value of the twist 0
~ 

is contingent upon the existence of numbers

T and i , a�F� b , such that (4. 18) holds. We now examine this lat-

ter issue. First note that since (4. 18) furn ishes only one scalar

restriction on thi~ two numbers T and F , we expect that if there are

values of T and F conforming to (4. 18), then the re would in fact

be many such values. If , therefore, we momentarily imagine specify -

lug both 00 and T , we may pose the following question : at each fixed

choice of the subscripts i,j = 1, 2,3 , i~~j , for what values of the pair

(0o~ 
T) will (4. 18) determIne a value for ‘1 , a�i� b? We will, with

V no loss of generality, restrict attention to the first quadrant of the

~
0o’ T) .p l8fle . We now show that for each fixed choice of the subscripts

• i, j  = 1, 2, 3 , i # j  , there Is a simply connected closed region _ Ai3 in the

V~~~~~~~~~ V : .~~~~V~~~~V 
V V
~~~~~~~~~~~~~~~~~~~~~~~~~ V V V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~V 

~~~~ - ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ — -~~
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first quadrant of the 
~~~~~ 

T) plane such that (4. 18) determines a value

for 1 if and only if 
~~~ 

T) is in A1. . Furthermore, this value of F V

- is unique.

To thi s end, define the functions ~~ , i, j  = 1, 2, 3 , i~ j  , by

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ on ~~ , (4.19)

V where the domains of definition B.. of the functions 0.. on the (F, T)-

V plane are given by

B31 {~~, T)Ia �i :�b , 21Ti~
Z T i n �T �2 1TP21max}

B13= {(F, T ) I a �F �b , 2lTb2 rmin �T �2rr aZl max }

- B21= {(F, T)I a �F �b , 21TF2
~T mi n �T�21T a21max } , (4. 20) 1

• B12= {ci, T)~ a�F� b , ZIT b
2

T . � T� 2irr a2 rm }
B32 = {(F, T) la �F�b , ZIrb2T i �T �ZTrF 2Tmax }

B23 {(F, T ) I a �i �b , 21tbZ Tmin �T�2 1Ta2
~rmax}

We now consider the case ~i = 3 , j = 1 in detail. For each fixed

value of i in [a, bi , it follows from (4. 19) , (4. 20) that 0
~

= 03 i (F, T)

defines a segment of a smooth curve on the 
~
0o’ T )-plane for

21T’F2Tmin � T� 21r’F2 rmax~ 
Therefore, we have a family of such curves

on the 
~
0o ,T )-plane, each corresponding to a different value of F in

‘Because of (2 .32) , (2. 33) one sees that these are the large st possible
domain s of definition of the functions . In the case when
aZ rmax<b 2 rmin — so that (3. 23) does not hold — we see that B13 , Bl2
and B23 are empty . In this case , therefore , solutions (4. 17) with
(i , j ) = ( 1, 3) , (1, 2) and (2, 3) do not exist.

L~~~~~~
. V V V V~~~~~~~~ V~~~~~~~V V V V V~~~~I 

V 

~~~~
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-33-

[a , b] , and all of them having their end points on the curve s

OO O3l~~’T~ Z1f Trnin~ T) and 00 03l~~’Th/Z1T 1max~ T) . Since by (2. 38) and

(4. 19) we have

8Ø31 r , ) I T T
8! y{F3( ~~ ) _ F 1( _2)}>o on B31 (4.21)

2ir r 2 n r

it follow s that the different members of this family of curve s do not in-

tersect each other. Furthermo re , a curve corresponding to a larger

val ue of 7 lies to the right of a curve corresponding to a smalle r value

• of ‘F .  And finally , since 03~ depends continuously on F , these curves

span a simply connected region , A31 , in the 
~~~~ 

T)-pl ane . From the

above discussion it follows that A31 is the closed region bounded by

the curves Ø0=Ø 31(a,T) , •0=Ø 31(b, T) 
‘ 0_ O 3l~~ T/’Z~~ min~ T) and

T). A sketch of this regk , togethe r with the span -

ning family of curves, is shown in Fig. 3(1) . The fact that a curve cor-

responding to a larger value of 7 is to the ri ght of a curve associated

with a smaller value of 7 ii indicated in Fig.3(i) by the arrow labelled

“direction of increasing ‘F” . Since there is exactly one of these curve s

passing through any point in A31 , it follows that there is a unique

• number 1 associated with every point (0o, T) in A31 , such that

00=031(~ ,T). This is what we set out to establish. We may express

this analytically as follows: there exists a fun ction , defined on A31,

such that P determined by

(4. 22)

conforms to 00 031(7, T) , i .e. 00~~.31(~31(.0, T ,T) on A31

•~~V V~~V V~~ 
- 

•

- 
~~~~~~~~~~~~~~ V V

’
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Summarizing the results for this case , we have that, if and

T are numbers such that T) is in A (th e region PQRS in V

31

Fig.3(i)), then there is a unique number ‘F (a~~F~~b) such that (4. 18)

holds (with I = 3, j = 1). Equation (4. 17) , with these values of T, I, I V

and 3 , is a solution to (4.8) - (4. 10) at that value of 00
The othe r cases — corresponding to the remaining choices of the V

subscripts i, j  — may be likewise examined. In each case we find a

simply connected closed region A13 , shown in Figs. 3-5 , such that , if

00 and T are numbers with (0o~ 
T) in A~3 , 

then there i~ a unique

number ‘F (a� F�b) such that (4. 18) holds for that choice of i , j

Equation (4. 17) then provide s the corresponding solution 0(r ).  Accord-

ingly, in each case there exist functions defined on A~ , such that

• ‘F=~~13(00, T) on A.3 (4. 23)

conforms to 00= 013(F, T)

The composite torque-twist diagram, wherein all of these admis-

sible regions togethe r with the torque-twist curve s for the smooth

solutions are sketched on one figure ,is shown in Fig.6. We observe that V

the admissible regions A~3 
“fit” appropriately between the torque -twist

curves associated with the smooth solutions (Fig.2) . Therefore cor-

respond in g to ~~~ given value of the twist 00 we now have a solution

However , we are now faced with the un satisfactory situation in which

there is an infinite number of admissible solutions at ce rtain values of
V 

the prescribed twist 00
We observe from Fig. 6 that at sufficiently small twists

• (‘‘0w ) and at sufficiently large twists Oo ~ 0~ ) we have a unique

I
~~~V~~~~~V V VV V V~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
- -~~~~ 
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~~ 
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solution, which Is smooth. When the prescribed twist 00 is In one of

the intervals O < O O <O M~ ON <Oo<OR •  we have an Infinite number of

solution s, all of which are weak solutions. In the remaining intervals,

- we have an infinite number of solutions, one of which is smooth, all the

rest being weak solutions.

Observe from Figure 6 that even a knowledge of both 00 and T

may be insufficient , in some cases , to determine a unique solution. For

example, the re are four solutions corresponding to any point in PMNK,

one for each of the pairs, (i,j).= (1, 2) , (2 , 1) , (1 , 3) and (3, 1). We

remark that at any point 
~~~ 

T) on PS or RQ there is in fact only

one solution — the smooth one . One sees this from (4. 17) , (4. 18)

since all of the weak solutions at such a point have eithe r ‘F = a or P = b
(see Figs. 3-5). Likewise, at any point on MN we only have smooth

SolutIon 2 or the weak solutions (1,3) = (1 , 3) , (3, 1).
V 

Finally, we observe that it is convenient to visualize the various

solutions as follows. Conside r for example a weak solution with j  = 3

V j =  1. Let P denote the radius of the associated shock. Let A, B, C

and D be points on a radial line in the cross-section Ii of the tube in

the undefo rmed configuration, see Fig. 7(a) , such that A and D are

V at the inside and outside boundaries respectively, while B and C are
V points just inside and outside the shock-line. The solution at hand is

given by (4.17) with i = 3  , j = 1 .  Ifwe use this. to compute rO’(r) and

- then plot the points with coordinate s ( 1r 0 ’(r ) I  , T/2-n r 2) (suppose T>0)

for each r in the intervals a~~r<Y , 7<r~~b , we obtain the curve s

A 1B1 and C1D1 (typ ically ) shown in Fig. 7(b). The graph of f(k) ha8

V been supe r imposed on this diag r am . The abscissa of any point on A 1B1

V 

or C 1D1 give s the value of the local amount of shear r0’(r)~ at the
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corresponding point in the tube, while the ordinate give s the correspond-

ing shear stress ~~~~ . Observe from Fig . 7(b) how the local amount

of shear varie s continuously on either side of the shock but suffers a

j ump discontinuity across it. The shear stress , on the othe r hand,

is seen to vary continuously throughout the tube . If we refe r to the por-

tion s of the curve f(k) y a k  between 0~ k � k 1 , k 1� k � k2 and V

k2� k<a as the f irs t , second and third branche s of f(k) respectively,

we see that this solution (i = 3, j = 1) is associated with the third and

first branches of f(k) , with the region inside the shock-line associated

with the former branch. In general , the weak solution ( i j )  is associ-

ated with the .th and 3
th branches of f(k) , with the part of the tube

inside the shock-line corresponding to the 1th branch.

We see from this and Section 2 . 2 that the type of these weak V

solution s is mixed, in general. The displacement equations of equili-

brium are elliptic on that part of 11 for which a< r <F  and non-elliptic

where F <r <b  , at solutions with (i , j ) = ( 1 , 2) , (3, 2) , while they are

elliptic where ‘F <r < b  and non-elliptic where a< r < F , at the solutions

(i ,j) = (2 , 1) , (2 , 3). In the case of the solutions corresponding to

(i ,j)= (1 , 3) , (3 , 1) , the displacement equations of equilibrium are el-

liptic everywhere in Ii whe re r p~ F.

L ~~~~~~~~~~~~~~~~~~~~
V V V

~~~

V

~~ ~~~~~~~~~

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5. 1 Dissipativity

The lack of uniqueness encountered in the preceeding section is

not unexpected since we had enlarged the admissible class of solut ion s

V the re . In such circumstances, it is usu ally the case that not all of the

solutions admitted by the differential equations are physically reasonable . V

In gas dynamics, for example , there are problems in which the differen- 
V

tial equations admit solutions which are unacceptable since they are as-

sociated with a decrease of entropy . It is essential therefore to intro-

duce additional criteria which will single out a phy sically admissible

V solution . V

Knowles and Ste rnberg proposed such a criterion in [ b ] ,  in the
V ‘ context of finite elastostatics , which they referred to as the dissipativity

inequality . A the rmodynamic motivation for this inequality , stemming

from the Clausius-Duhem inequality , was given by Knowle s in [71. The

dissipativity inequality is essentially an expression of the physically

reasonable Idea that the rate at which elastic ene r gy is being stored in

any part of the body in some quasi-static process, cannot exceed the

rate at which work is being done on that part.

We now examine the Implications of the dissi pati vity Inequalit y

in the context of the present problem. While we could specialize the V

general dissipat ivity inequality given in (7] for our problem, it is  ii -

• lustrative (and equally easy) to derive It from first principles.

We now consider a quasi-static time-dependent family of equili-

V brium solutions. The time t merely play s the role of a history

_ _ _ _
_ _ _ _ _ _ _  _  

-U 
V 

‘
_ _ _ _  

• 
V

V ~V V ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~V__ ~_ • ~~VV V — • • 
- ~~~~~~~~~~~~ - V V
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par ameter and no inertia effects are accounted for. Accordingly, we

are concerned with a one-parameter family of functions Ø(r , t) , depend-

V ing on the parameter t in some time interval ~ , such that at each t

in 7’ , 0(r , t) is a eolution to (4.8) - (4. 10) . The torque, twist and

shock r adius are all time dependent now, and we write T (t) , Ø0(t) and

F(t). It is convenient to set

i’i( t ) = [r lT ( t ) < r < b)  

~
-1
~‘ for t i n T . ( 5 . 1 )

Ii( t ) =  [r la< r<F (t ) }  , J
Then 0(• , t) is continuous on [a , bi and twice continuously differentiable

+
on II and 11 at each t in 7’ . Furthermore

T’t’ + -

f(rO r (r , t)) = - on 11(t) and 11(t) , (5. 2)
2ir r

V 0(a , t ) = 0 0(t) , (5 .3 )

V Ø(b, t ) = 0  , (5 .4)

at each t in 7’ . Here 00(t) is the prescribed twist, and we suppose

it to be continuous and piecewise continuously diffe rentiable on 7’ . In

certain discussions, as we observed previously, it will be temporarily

necessary to imagine that T(t) is also specified. In such circumstances,

we presume T(t) to possess the same smoothness as 00(t) on 7’ .

It is convenient to set

• k(r , t) = rOr (r , t) , (5. 5)

1We use the notation 0r4~~
1
~

t) and 0~~~~~(r , t)

IIrIlI ~Vd.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~V V V • _  V V~ ~~~~~~~~~~~ _ _ V~~~V~~ - •~~_ VS~~~~~~~~~~~ V• ~~~~~~~~~~~~~ V_~~ -- V_V VV V V • V~V• V~ ~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~ ~~~~~~~~~~~~ 
~~~~~~~~~~~
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~ (t) = Y(t)Ø (!(t)+,t) , (5.6 )

• fc(t) = •F(t)0r (F(t)_
~ t) , (5 .7)  V

with the understanding that when ‘F(t) = b we take 1 Y(t)+ = b and when

‘F(t) = a we take P(t)- = a . and represent the instantaneous local

amounts of shear at points just outside and inside the shock, respectively.
V We will now require that at each instant in 7’ , the rate at which

the external force s on the tube are doing work should not be less than

the rate of increase of the stored energy, i.e. we demand that

T(t)~~~00(t) �~ j~~W ( 2 + k 2(r , t))2irrdr for all t in 7’ . (5 .8)

We may evaluate the right hand side of (5.8), using (5.6) and (5.7),

as follows :

~~SW(2 + k2(r , t))2nrdr

‘F(t) b

=thS wz + k2(r , t))2trrdr +~~ J’w(2 + k2(r , t))2wrdr
a ‘F(t)

= CW(2 + i~~) - W(2 + ~
2 ))2 1rF(t) *(t) +S4n rk* W’(Z + k2)dr . (5. 9)

Using ~2.24), (5. 2) and (5.5) in (5.9), gives

‘This is admissible since we observed In Section 4. 2 that when P= a
or b , the solution is In fact smooth. Thus exists there.

—- _ .
~~

V
~~~

V
~~~~~r V V_

~~~
~V
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~~ SW ( 2 + k 2)21Tr dr

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (5. 10)

However , because of (5.3) and (5.4),  we have

S~rt~’ t)dr = Ot(b, t) - 0t~~(t)+ , t) + 0t CP(t)
~ , t) - Ot (a , t)

= —~~~Ø0(t) — Ø
t

(P(t)+,t)+O
t
(P(t)_ ,f’) , (5.11)

so that we may write (5. 10) as

+ k2)2rr rdr = (W( 2 + ~2) - W(2 + ~2)J Zir’F(t)~~
’+ T(t)* Ø0(t)

— 0t~~
(t )_ ,t)) . (5. 12)

V 

Since the displacements are continuous across the shock , we have

Ø(’P(t)+ ,t) = Ø(F(t)- , t) for t in 7’ , (5. 13)

which when differentiated with respect to t leads to

0r~~~
t)

~’~ 
t)~~~(t) + Ot (F(t)+ , t) = r~~~t)~~ t)~~~(t) + Øt (F(t)— , t) . (5. 14)

UsIn g (5. 6), (5. 7) and (5. 14) In (5. 12) gives

- ~~~~~
V ~~~~~~~~~~ V ~~~~ - ~V V - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V VV ~~~~ V~~~~~ V V ~~~ V V .~ 

V V V
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thS W(2 + k2)2irrdr = C W(2 + ~2 ) - W(2 + ~)2 3 2 _ d 7~ T( t ) th Øo(t )

• +~.i~~
T(t) (~~(t) — ~(t))~~~ (t) , (5. 15)

which because of (5.2) , (5 .6) can be written as

~~ J W (2 + k2)2n r dr = T(t) th Øo(t )+ C W(2 + ~2 ) - W (2 +

+ + _ d+2wFf(k)(k - k)af(t) . (5 .16)

V 

The dissipativity requirement (5.8) can now be written as

on 7’

or alternatively, because of (2. 24), as

+k

fs f ( ~)d~ - (i~ - ~)f (
~~}2rF *� 0 for all t in 7’ . (5. 17)

This is the fo rm of the dissipativity inequality that we shall find useful.

It follows from the results of Section 4. 2 that all admissible

quasi-static families of equilibrium solutions are of the form

‘Note from (5.2) that fö~)=f(k)

~~~~~~~~~~~~~~~

V 
. 

V 
‘ 

V _ _ _ _

V ~~~VV V V V~ V~~~~V V V V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~ V V — — • • _~~~~~~ —~~~~~~~-~~~~~~- V __ --—~~• ~~~ V V V ~~~~
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on ii(t)

(5. 18)

[ 

~~~~ i~t~ ,

subject to the restriction

V P(t) b
øo(t )= S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (5.19)

for i,j= 1,2,3 and for t in 7’ . We now proceed to apply the
dissipativity inequality (5. 17) to the various families of solutions rep- 

V

resented by (5. 18), (5 . 19).

We first note that, if at some instant t we have a smooth solu-
tion, then (5. 17) holds at that Instant by virtue of the continuity of
i.e. since i~ =~~ . Therefore, we may restrict attention to the cases
for which i~~j  in (5. 18) , (5. 19) , and to times in 7’ for which

a< F(t)<b . (5 .20) 1

V 

V 
Equations (5. 6), (5. 7) and (5. 18) now give

V 

V 

~(t) =~ F(~~ 9) )
2r rr Ct)

(5 .21)

• 
i~(t) = _F1( T(~L) ,

• 1See digcuesion follow ing (4. 18).

V 
V V V V~~~~~~~~ -- 

T~~~. 
_ _

V V ‘ - -~ ~~ 
~
••
~~_ V V V J V V V i~~ Vk
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~~
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so that we may use (2. 28), (2.39),  (2, 40), (2 .41), (5 . 2), (5 .6)  and

(5 . 21) to write (5. 17) as

(~~(t)]

2rr ’F(t)~~f ( t)J Cf _ n t ) d ~ �0 , r~(t ) =  , (5. 22) 
V

Zir r (t)
V F1[~~(t)] V

for all t In 7’ for which (5. 20) holds.

It ii convenient to define the functions A 1 and A 2 by V

F2(~ )

V A 1(’r ) = 5  {f(~ ) _ T } c i~ for r . �r � r  , (5. 23)
F 1( T )

V 

• 

A2( i ) =j ’  {r _ f ( ~ )}d~ for 
~min~~’~~~’max . (5. 24)

V F2( r )

V 
These function. A 1 and A 2 have the following geometrical inte rpreta-

tion . If In Fig. 1 we draw a line paralle l to the k-axis at a distance ¶

V above it (r in~ 
r~ i ) ,  then A 1( i )  and A

2
( i )  are the areas of the

I two loops formed. Clearly

= A 2(r min ) = 0 , (5. 25)

for ‘inIn~ 
1•<T , (5 . 26)

for ( 5.2 7)

—— — V __ V~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~ 

V

~~~~~ ~~~ • V V V V V VV V . 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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Using (5. 23) and (5. 24) in (5. 22) leads to

for (l , j ) =  (3, 1) , (5 .28)

• 
- 

{A 2( 
tT~~) _ A 1( 

I T I2)}2~~ !�o for (i ,j ) = ( 1 , 3) , (5.29)
Zii r 2iT r

for (i ,j ) = ( 2 , 1) , (5.30)

A 1( l T ~~)2lT!~~~�O for (i , j ) = ( 1 , 2) , (5.31)
2ir r

A2 ( l T ~~)2lr~~~~�O for (i , j ) = ( 3 , 2) (5 .32)

~A2 ( t T ~~)2lri~~~ �0 for (i , j ) = ( 2 , 3) , (5.33)

in each of the different cases.

Now conside r , for example, the case (i , j ) =  (2 , 1) , i.e. suppose

that for all times sufficiently close to some t 1 in 7’ , the quasi- static

V family of solutions (5. 18) has i = 2, j = 1. We then have from (2 . 32),

(2 . 33), (5. 1), (5. 18), (5. 26) and (5. 30) that the dissipativity ine-

quali ty ii satisfied at a time t 1 for which (5. 20) holds if and only if

(5 .34)

As previously observed, In the event that (5. 20)doe s not hold, so that

V F(t 1)~~a or b , (5.35)

L~~~~~~
V V
~
;

I~~~I V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the dissipativity inequality holds without need for any re str ict ions

such as (5 .34) .  The meaning of these restrictions is most transparent

when viewed in the torque-twist diagram (see Fig. 8) . With no loss of

generality we suppose that T(t) and Ø0(t) are non-negative for all times

in 7’ • We shall refe r to the piecewise smooth oriented 1 cu rve r in the
V 

torque -twist plane defined by ø~~ Ø0(t) T = T(t) for t in 7’ as the

loading path. By hypothesis, for all val ues of t sufficien tly close to

t 1 , the loading path I’ lie s In A2 1 • Let Z = ( 0 0(t 1) , T(t 1)) be the

point on r corre sponding to t = t 1
Recall2 that the region A21 is spanned by a one-parameter

family of curve s ~0= Ø 21 (~ , T) , a �i �b , and that a member of thi s

family of curve s corresponding to a larger value of the parameter i
V lie s to the right of a curve corresponding to a smaller value . Let C be

the particular member of thi s family with equation Ø~= Ø2~ (~ (t 1) , T)

V so that C passes through Z , (see Fig. 8). It follows that the shock

radius ‘F corresponding to any point in A21 to the right of C is greate r

than ‘F(t 1) , while at a point to the left of C , it is less than

V Therefo re, dissipativity — (5. 34) — requires that the loading path 1”

should be oriented at Z In such a way that it doe s not point to the right

of C , provided Z Is not a point on PS or MN . This is shown in

Fig. 4(i) as well, in whi ch the cluster of arrows indicate s

the admissible orientations of a loading path through a typical point.

This is true for all points in A21 except for those which lie on PS

and M N. At a point on these curve s the loading path may be arbitrarily

• is oriented in the direction of Increasing time .

Fig.4(i).

V 
V — 

V

-V — V--V ~~ _~ V~~V~ V~_ V ~VV ~ ~~ V_V _~ — ~~~
— - -



-46 -

oriented, by virtue of (5 .35) .  V

V Clearly we can analyze the other cases in an entirely analogous

V 
manner. We find that disalpativity Is essentially equivalent to

- ~~~�0 if (i ,j ) = ( 1 , 2) , (5 .36)

if (i , j )= ( 3 , 2) , (5.37)

if (l , j ) = ( 2 ,3) , (5 .38)

and these are geometrically interpreted in FIgs. 4 and S as before . The
V only exceptions to (5 .36) - (5.38) are respectively at points on the

curve s PK , MN and MN, RQ and MN , LR , whereat the orientation

• is arbitrary .

EquatIons (5. 28) and (5. 29) — i.e. the cases (l ,j ) =  (3, 1) and
• (1, 3) — can also be similarly examined , taking care now to note that

(A 2(r) - A1
(r ) )  is not always of the same sign. If we sot

A(r)=A2(r)-A 1( r )  for 
~rn1n � I � T rnax . (5 .39)

where A 1 and A2 are as defined previously, we find because of (5. 23) -

(5.27) and (5.39) that

A(T m )>O , (5.40)

for TmIn �1•�T
m . (5 .41 )

Since A(i) is continuous , it follows from (5.40) and (5.41)  that there

V 

• 
is a unique number in 

~“mi ‘ ‘max~ 
such that

V V
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A( r ~ ) = 0  , (5.42 )

A( T)>0 on (I
c~

Tniax] , A (r ) < 0  on E T in~ T )  (5.43 )

V - The number is shown In Fig. 1; since A 1(i’ ) = Az (T~~) , the

V two hatched regions are of equal area. The dissipativity conditions

(5.28) and (5. 29), because of (5. 39) , (5.42) and (5.43 ) , are equiva-

lent to

~~

i

‘~ ‘ 
(i ,j ) = ( 3, 1) , (5.44)

I. arbitrary if I T I ~ T c

and

if 1TJ~>.,.
dt 2irF C

(i ,j ) = ( 1, 3) . (5.45)
2lTr

is arbitrary if IT~ =

Conside r the case (i , j ) =  (3 , 1) . One shows easily that

Ø0=Ø 3~~[TI 2wi , T) is a curve In A31 whi ch qualitatively looks as shown

in Flg.3(l) — curve XY. Corre sponding to any point on this curve ,

_______ — 
V
- 

~~~~~~~~ - V V V -~~_ ~~~:
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we have T/2wF 2
= ‘~~~ 

while it Is readily seen that at any point above or below XY

T/2i’rF2 is respectively, greate r than or less than . Accordingly, the
V 

dissipativity inequality is equivalent to the first , second and third of

(5 .44) at point. in A31 , respectively, above , below and on the curve

XY. The arrows in Fig.3( i)  indicate the adrnis~ ible orientations of a

loading path at some typical points in A31 . As before , the orientation

at points on PS and QR is arbitrary. The solution (i j)  = (1 , 3) may

be similarly inte rpreted , as shown ’ in Fig.3(i l) .

5. 2 Consequences of Dissipativity

The dissipativity inequality was introduced in the hope that it

would single out a physically admissible solution from among the many

V available equilibrium solutions. We now demonstrate that, if we re- 
V

quite the local twist Ø(r , .) to be continuous 2 on 7’ at each r in

[a , b] , and if we suppose that the body was in an undefo rmed config-

uration at some time, then a configuration corresponding to solutions

(i , j )  = (1, 2), (2 , 1), (2 , 3) (3 , 2) or smooth Solution 2 cannot be attained

at any subsequent time .
V First, omit the weak solutions (i ,j) = (1, 3) and (3 , 1) from di.-

V cussion. We observe from Fi g. 4 that any loading path in Fig. 6 con-

fo rming with the dissipativity inequality and starting from 0 is neces-

sarily confined to the curve OP for all subsequent time . Note similarly,

V 1~~~ examination of the details of the curve o = ,~~fr/2ir i0 • T) show
V that it is possible for this curve , depending on the specific geometry

V and constitutive law, to intersect a different pair of boundarieg o~ A~3
V 

V than shown in Fig. 3(11). The fi gure is drawn for b
~/a~1min< 

~c
< a /b

V 
2Note that despite the pre sumed continuity of ~~(t) and T(t), Ø(r , . ) de-
fined by (5. 18) i~ not nece ssarily contin uous on 7’ , since the subscripts
i and j may change values at ce rtain times.

-V V 

V

V V V 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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from Figs. 5 and 6, that any admissible loading path 2tarting from 0’

is likewise restricted to 04’R for all subsequent time . The only possi-
• ble way of achieving a solution (i,j) = (1, 2), (2, 3), (3, 2), (2 , 1) or 

V

Solution 2 is then, by virtue of a loading path which is associated with

one of the solutions (i , j )=  (3, 1), (1, 3) for some time interval less than

some time t 1 , and with one of these solution s after time t 1 . One sees

readily from (5. 18) however, that this involves a discontinuity in ~(r ,.)
at the time t 1 . Since we have disallowed this possibility, we now con-

clude that a configuration corre sponding to any solution associated with

the second branch of the graph of f(k) vs. k cannot be attained through

a dissipative quasi-static deformation process. These are , incidentally,

the solutions at which the displacement equations of equilibrium are non -
V elliptic somewhere in II -

However , even if we now discard the solutions associated with

• the second branch of f , we would not have overcome our trouble s with V

non-uniqueness. For example, conside r the Solutions 1, 3 and

V 
(i , j )= ( 3 , 1). The appropriate torque-twist diagram is shown in Fig.9.

If we imagine gradually increasing the applied twist from zero , the

only available loading path initially is OS. During the next stage ,

~.< 
~~

< 0~~• di ssipativity — see Fig . 3(i) — disallows all loading paths

except SX. Once the applied twist Oo exceeds the value 
~~~ 

however,

the loading path could lie anywhere in PQYX , and we hav e no criterion

for deciding which path to follow. Eventually, for Oo >OQ , we are

restricted to the path QO’. Likewise , during a steady decrease

V of the applied twist the loading path would be restricted to O’QY

then allowed to follow an arbitrary path (consistent with dissipativity )

in XYRS and finally restricted to SO. It is interesting to note
V that if in either case the loading path lies on the curve OXYO’ ,

V ~~~~~~~~~~

•

V _•_ - V
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V

then the quasi-static process is disslpationless In th~ sense that (5.8)

would hold with equality at every instant t .  V

• it is therefore imperative that we seek an additional — or possibly

an alternative — physical criterion, to the dissipativity inequality, that

would sort out more completely the issue of non-uniqueness.

V 

V

V

V~
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6. 1 Preliminaries on Stability

We now look into the possibility of using a stability criterion

instead of the dissipativity inequality, in orde r to single out a physically

admissible solution to the boundary-value problem unde r consideration.

We draw attention to the fact that we will not make use of the partial

success achieved through the dissipativity inequality, since we are
V 

at present examining the possibility of an alternative — rather than

additional — criterion.

The notion of stability that we will use is a static one based on

V the energy criterion. 1 According to this, an equilibrium configuration

of a body is stable if the work done by the external load s in every
V 

sufficiently small kinematically possible virtual displacement from this

V equilibrium configuration is less than the corresponding increase in the

stored energy .

In orde r to mathematically formulate this criterion, it ia necessary

to decide on a measure for the virtual displacements and to specify the

behavior of the applied loading during a virtual displacement. We will

consider two possibilities — stability under dead loading and stability

with fixed boundaries.

First conside r the case In which we have dead loading on the

Inne r surface of the tube while the outer surface remains fixed. The

• torque T then remains constant during a virtual displacement. Let

~~~~ page 195 of [15) for a discussion of this criterion.

V - V- V  ~~~~~~~~~~~~~~~~~~ _~~~ _~~~~ V_ ~~ . T__ VV~~VV ~~~ ~V V~• V V _ V V VVVV- V V~~V V V ~~ V-VV _ •_ _ _
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0 ( r )  be the equilibrium solution whose stability we wish to investigate.

Define the potential energy functional V(~~) by

b
• v[~ ) J’ [W(2 + r 2$’2 ) - W (2 + r 2

0’2 )) Zwrdr - T[$ (a) - 0(a)) (6. 1)

for all functions $(r)  in some set X . In orde r to interpret $(r)  as a V

virtual twist ’ from the undeformed configuration, we suppose that X

is the set of all functions which are continuous and have piecewise con-

tinuous first  and second derivatives on [a ,b], and for which $ (b) = 0.

Since this limited degree of smoothness is all that is required of an

equilibrium solution 0(r) , it seems reasonable not to impose more

severe smoothness requirements on the virtual displacement. Finally,

we will measure the departure of a virtual twist $ from the solution

0 by

b

I I $ - 0 I I = J ’ 2ir r3[$ ’-0 ’l2dr . (6. 2)

We now say that an equilibrium solution 0(r) is stable if there

exists some number c >0 such that

v[~ )>o  for all functions $ in X (6 .3)
for which I I s - o I I < €  , $~~0

A solution which is not stable is unstable , i. e. if , given any number

, there exists a function $(r )  such that

1We restrict attention to purely circumferential virtual displacements.

V-V — — ~~~~~~~ 

V —~~~ ~~~~~~~
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r

V [$)� 0 , lit -o II <€ . $~~O , (6.4) V

the equilibrium solution 0 (r)  is unstable. V

We now determine from (6. 1), (6 .3) a sufficient condition for

stability which will be useful for our purposes. After making use of

(2. 25), (2 .27) and $ ( b ) = 0  , we can rewrite (6. 1) as

b
v( s) = r ( W (2  + r 2

$ ” 2 ) - W(2 + r 20’2 ) - f(rO’)(r$ ’- rO’)lZn’rdr (6 .5)

for any $ in x . It follows that a sufficient condition for the stability

V 
of 0 (r)  is that for eve ry $ in x , $~~0

W(2 + r 2
$~ 2 ) - W (2 + r 2

Ø’2 ) - f(rO’)(r$ ’- rØ’) � 0 (6 .6)

V 
at each r in (a, b) where the left hand side exists , and

W ( 2 + r 2$’2) -  W ( 2 + r 2O’2 ) - f ( r O ’)(r$ ’-rO~ >O (6.7)

V at each r in some sub-interval of (a, b) where the left hand side exists.

On the other hand, if at each r in (a,b) where k ( r ) = r Ø ’(r) exists ,

V we have

W(2 ~~~~ - W(2 + k2(r)) - f(k(r))( ,i - k( r ) )>0  (6.8)

for all numbers k ~~ k(i-) , it follows that (6. 6) and (6. 7) hold. Equation

(6.8) Is thus a sufficient condition for the stability of the solution 0(r) .

Now consider the case in which both the inner and oute r surfaces

of the tube are held fixed during a virtual displacement. The potential

ene rgy functional v[~ ) Is now defined by

V _ -. V ~~~~ V

• 

‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•
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b
vf~ ) =j ’ c w 2  + r 2

$’2 ) - W (2 + r 20’2 ))Zii ’rdr (6.9)

for all functions $ In some set X . In this case we take ~ to be the
• subse t of the previous set of admissible virtual twists which conforms

to $ (a) = 0(a) = 00 - Stability is defined as before . By virtue of (2 . 25)
and (2 .27) we can again write \ T ( $)  in the form given by (6.5) ,  whence V

(6. 8) contInues to be a sufficient condition for stability .

V 
V 6. 2 Consequence s of Stability

V Following Erlcksen [12], we first make note of a geometric

property of the response curve in shear. Recall the functions A 1( w)

and A2 ( r )  defined by (5 .23) and (5. 24), representing the areas of the

• loops formed by drawing a line in Fig. I parallel to the k-axi s at a
distance T , � ~ ‘max ’ above it. Recall also that

A 1(r ) = A 2 ( r )

A 1(i)> A2(i) for Tmin~ 
~~< A 1( r ) < A 2 ( r )  for T < T �  Tmax . (6 . 10)

Keeping this In mind , one observe s the following properties of f(k)

upon examining its graph (Fig. 1). If we set

k4=F 3( r )  , (6.11)

then we nay observe first  that

(I) if k is any numbe r such that either

I k i < k 3 or J k ~ >k4 , (6. 12)

• then

_ _ _ _ _  

4
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- k) for all ~ p~ k - (6. 13)

Equation (6. 13) is a statement of the geometric observation that , pro-

vided (6. 12) holds , the area under the response curve from k to k

for any ~c ~ k is greate r than the area of the rectangle of the same width

V and of height f(k). By virtue of (2. 24), we can write (6. 13) as

W(2 +k 2
) - W(2 + k2 ) - f(k ) (~t - k)>0 for all .. ~~ k . (6. 14)

Next, it may be noted that
V (ii) if k is any number such that

k3<Ikkk4 , (6. 15)

then there exists some sub-interval .9 of (-cz , cx,) such that

S~ 
d~ < f ( k ) ( t - k )  for ~ in .9 , (6 .16)

whence by (2 .24), we have

for ~ in .~ . (6 .17)

Alte rnatively, (I) and (ii) can be established analytically.

We now conclude , by virtue of (6. 8), (6. 12) and (6. 14), that

any equilibrium solution 0(r) for which either

= rO’(r)I<k3 or I k(r)~ = ir O ’( r ) I > k 4 , (6. 18)

at each r in (a , b) whe re 0’ exists , is stable . It is a trivial exercise

V • to examine all the available equilibrium solutions 0(r) — given by (4 . 17) —

V •~~~~~~ 
V V~~ V

V • V 
~~~~~~~~~~~~ 

V _____

______ -V.—
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and to determine those tha t conform to (6. 18). One finds that only the

following do:

(i) Smooth Solution 1 with 100 1 �f ~~ F1(a 2T / ~
2 )d~

(Ii) Smooth Solution 3 with I0~ I �SjF 3 b2T / ~
2 )dI 

‘

(iii) Weak Solution (3 , 1) with ITI = 2it1 2 r , i.e . the solution (3 , 1) with

V 
the torque given by 10 0 1 =0 3j (’~/ I T l /2nT~ , ~T~ ) and with shock

radius F = J ~ T~ / 2 nT

These solutions therefore are stable. On Fig. 9, these refe r to the
V solutions associated with points on the curve s OX, YO’ and XY respec-

V 

tively.

We will now show that all the othe r solutions are unstable. We do

this by exhibiting particular admissible fun ctions $(r) which render

v[~ ) negative . It is readily shown that the se remaining solutions —

i .e. solutions (4. 17) which do not conform to (6.18) _ all have

k3< I rO’(r ) j < k 4 , (6. 19)

V on some sub-interval of [a ,b]. In each case $(r)  Is chosen to take

advantage of (6. 15), (6. 17) and (6. 19). We first  consider the case of

dead loadin g.

Conside r for example Solution 1 with

j~~ F 1(a 2T / ~ 2 )d~ < 100 1 j~~ F i (a2 Tmax /~
2)d~ . (6. 20)

-V -V
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V V~~~~~ V-V 

V

9

Recall that in thi s case

rØ’(r) = - F
1( 

T

2), O0=5~~~
F
1( 

T

2
)dg • (6. 21)

Zir r a

It follows from (6. 20), (6 .21) because of the monotonicity of the function

F 1 that

2rra2r <  I T~ � Zw a 2 r (6. 22)

By virtue of this, there is s number a , a<s<b , such that

V T I > Z i r r 2 r for a �r< s  - (6 . 2 3)

It is rea dily shown that k4> Ir O ’( r ) I>k 3 on (a , s). Let 6 be any
V number , 0<6 � s-a. We now choose the fun ction $ (r) in X such that

-F 3( ~‘~
-
~

) for a < r < a + 6
2lT r V

(6.24)

T
2~ for a + 6 < r < b

2i~r

Observe from (6.2), (6. 21) and (6 . 24) that

a+6 2I1s- .II=$ 2w r1F3( 
T~~) _ p (  T~~fl dr

V a 2nr

= z,l a[F3 ( T z ) _ F l ( T 2
\
)1

2
6 + o( 6 )  as 6—0 . (6 .25)

~~~~~~~_~~V - V V V~ V ~~~~~~~~~~~~ 
~~~V V - ~~~~~~~~~~~~~~~ V~~~~~~~~ -V~ V

— 5a.~~V ~~~~~~~~~~~~~~
-V -V ~V -V -VV~~ V~V~~V 
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Therefore, given any number € > 0  , we can choose 6 suffi ciently
small , O < 6 < s - a , such that l It-oII <,

On using (6. 21) and (6. 24) in (6.5) we find by virtue of (2 .24),

• (2 .28), (2 .34), (2 .40 ) and (2 .41) that V

V 

a+6 F3(1)
v ( s ) = J ~ 2ivr j  (f(~ ) -t i }dCdr  ,~~~~ I T ~ • (6.26)

a F 1 (r i )

This can In turn be written as V

a+6
V v [ , ) = _ 5  A (—’-~ -~~)2ii rdr (6. 27)

a 2nr

because of (5.23), (5 .24) and (5.39). Since (6. 22) and (6. 23) imply that 
V

T ax � iT
~ >T for a � r < a + 8  , (6 .28)

it now follow s from (5.43), (6. 27) and (6. 28) that

(6. 29)

Therefore Solution 1 with (6. 20) In effect is unstable . On Fig. 9 these
solut ions are associate dwith points on the curve XP (excluding X).

The Instabili ty of the othe r solut ions may be established in an
entirely analogous manner, i .e. taking advantage of (6. 16), (6. 19)
to choose $(r) arbitrarily close to 0 (r)  such that V ( $ 1 c z O

Instabil ity in th. case when both boundarie s are held fixed may
be establishe d in a similar manne r , tak ing care ~~w to sati sfy the
boundary condition $ (a) = 0(a) = 0

~ 
. For .xampl., consider Solution 1

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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with (6. 20) in effect. Let c(6) be the function defined implicitly by

c(6) b

0~fJ’ ~ F3( 
T

2)d~~+ f  ~~F,(T1)d~ . (6.30)
Z1T~ c(6) Z1T~~ 

V

By virtue of (2 . 38), (6. 21) and the implicit function theorem, one can

show that (6. 30) does in fact define a function c(6) which is twice’

continuously differentiable in a neighborhood of 6 =0  , and that

c(0)=a c’(O) >O  . (6.31)

Thus c(6)> a for sufficiently small positive 6

Now consider the virtual twist $(r)  defined by

V 
Oo_ S~~ F3 ( T z~ d~ on [a , c(6)]

(6.32)

j F l(T 1)d~ on (c(6), b)

V for a sufficiently small 6>0 . Note that $ is in x by virtue of (6. 30).

Observe from (6. 2), (6. 21) and (6.32) that

c(6) b

lI$-0 11 $2irr[F3( 
T ) . .F (  T ) ]

2
dr+S 2~ r1F (T

_
~~) _ F (  T ) ]

2
d

a 2lT r 2rr r c(6) 2,r r Ztr r

V 
= 21T&IF3( 

T
2

’) _ F ,( 
‘
~

-
~~
] c’(o)6+o(8) as 6-0 (6. 33)

Zir a Zir a

‘Twice continuously differentiabl. when T< Zwa 2 rm~~~ . The argument
presente d here can be readily modified in th. case T = Zlr a2Tm,x .

• 

V V V V V V

V ~~ ~~~~~~

s~~~~i 
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where we have also used (6. 31 )  in the second equation. Therefore, 
V

given any number e> 0  we can choose 6>0 sufficiently small such

that ~~ - o l I<€

If we now set V

c(6)
V 1( 6 ) = S  [W ( 2 + r Z

$ 1Z ) _ W ( 2 + r 2012 ) _ f ( r O ?)(r$ I_ rO’))ZtTrdr

~~- (6.34)

V2 (6) = S C W ( 2  + r 2$ ’2 ) - W( 2 + r 2Ø’2) - f ( r O~ (r $ ’- r0~ )2~ rdr , Jc( 6)

with $ given by (6.32), we may write (6 .5)  as

V V ( $ ) = V 1( 6 ) + V 2(o) . (6.35)

We find from (6. 21), (6 .31 ) ,  (6 .32 )  and (6.34) that

V2 ( 0 ) = 0  , V~ ( 0 ) = 0  , (6 .36)

because of (2 .24) and (2 .28) . Ukewise we find

V1(0)=0 , V (O)=_A (IT ~~)cs ( O)  , (6.37)
ZlT a

where we have also used (2 .34),  (2 .40), (2 .41),  (5. 23), (5. 24), (5 .3 9)

and (6.31). Note because of (6. 20), (6. 21) and the monotonicity of F1
that ‘c< I T I /2 n a 2 � 1max ’ whence by (5. 43), (6. 31) and (6. 37) we have

V~(0) = - A( I T~~)cs(o)<o • (6. 38)

On usin g (6.36),  (6.37)  in (6 .35) we fin d

- 

V ‘~:~~ 
V~~~~~~~~~~~~~~~ V

V • 4~~~ V~~~~~ S~~~

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
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V[~~) = _ A(~~T~~
’)c?(0 ) o + o ( 6 )  as 6-.0 , (6 .39)

Zwa

so that by (6.38) V ( $ ) < 0  for sufficiently small 6>0 . This establishes

the Instability of Solution I with (6. 20) in effect in this case. The instability

of the othe r solutions may be likewise established. This complete s our

instabi lity analy sis.

The preceding results lead to the conclusion that the only stable

solutions ’ are the one s given by (I), (ii), (iii) following Equation (6. 18). Recall

that on the torque -twist diagram, Fig. 9, these are the solutions associated

with the curve OXYO’ . We therefore have that there is a unique stable

solution 0(r) to the boundary value problem in its weak formulation cor-

responding to every value of the applied twist 
~0 i.e. there is a unique

solution 0(r) to (4.8) - (4. 10) which confo rms to (6. 2), (6. 3), (6. 5). Note 
V

V that at every value of 00 , the displacement equations of equilibrium are
V 

elliptic on 11 (r~~F) at this unique solution.

V 
We now refe r to a remark made in Section 4. 1 that a configuration

involving more than one elastostatic shock is unstable . In the case of

a solution with a single shock we showed ins tabili ty wheneve r (6. 19) held.

Clearly, it is (6. 19) and not the number of shocks that is important in that
2argument. It Is readily established that (6. 19) holds for every weak

solution involving more than one elastoatatic shock. This is most easily

seen from a visualization of such a solution in the manner explained in

V ‘These solutions exist irrespective of the geometric and const itutive
details , i.e. even in the cases when (3. 23) does not hold these are the
only stable solutions.
2As remarke d previously , the importance of (6. 19) for instability is
related to the property (6. 15), (6. 17).
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association with Fig.?. This leads to the instability of such a solution.

Now conside r a quasi-static loading of the body . If the loading

is performed in a manne r which involves disturbance s of the type we

have allowed for , one would expect that at each instant, the tu be seeks 
V V

out the configuration which Is stable against such disturbances. On

increasing the applied twist we might then expect the loading path to

follow the curve OXYO’ in Fig. 9. We would first  observe a smooth

configuration of the tube. An elastostatic shock would then emerge at the

Inne r boundary and gradually move outwards, dissappearing upon reach-

ing the outer boundary and giving way to a smooth configuration . On

V decreasing the applied twist , we would observe this process in reverse. V

V Note from Section 5. 2 that this loading path confo rms to the dissipation

inequality, even though we did not demand — here — that it should be so.

V 
In fact thi s is the dissipation-free path referred to previously.
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