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Discontinuous deformation gradients
in plane finite elastostatics of

: A v
incompressible materials

by
Rohan C. Abeyaratne

California Institute of Technology

Summary

This investigation is concerned with the possibility of the change of
type of the differential equations governing finite plane elastostatics for
incompressible elastic materials, and the related issue of the existence of
equilibrium fields with discontinuous deformation gradients. Explicit
necessary and sufficient conditions on the deformation invariants and the
material for the ellipticity of the plane displacement equations of equilibrium
are established. The issue of the existence, locally, of ""elastostatic shocks''—
elastostatic fields with continuous displacements and discontinuous deforma-
tion gradients — is then investigated. It is shown that an elastostatic shock
exists only if the governing field equations suffer a loss of ellipticity at some
deformation. Conversely, if the governing field equations have lost ellip-
ticity at a given deformation at some point, an elastostatic shock can exist,
locally, at that point. The results obtained are valid for an arbitrary homo-

geneous, isotropic, incompressible, elastic material.

*

The results communicated in this paper were obtained in the course of an
investigation supported by Contract N00014-75-C-0196 with the Office of
Naval Research in Washington D. C,
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1.1 Introduction

In two recent papers [1], [2], Knowles and Sternberg looked in-

to the question of the possible loss of ellipticity of the displacement equa-
tions of equilibrium of nonlinear elastostatics for compressible materials.

In [1], three dimensional homogeneous deformations of a particular iso-

tropic compressible elastic material were considered, and necessary
and sufficient restrictions on the principal stretches for ellipticity

to prevail were deduced. It was shown that for this material, a loss of
ellipticity occurred at sufficiently severe local deformations. In [2]
they established similar explicit necessary and sufficient conditions for
an arbitrary homogeneous, isotropic, compressible elastic solid sub-
jected to plane deformations.

These papers were motivated by some asymptotic studies of
crack problems they had considered previously, in which certain diffi-
culties encountered suggested that the problem may not admit a classi-
cally smooth solution.

In a subsequent paper [3] Knowles and Sternberg investigated
the implications of a loss of ellipticity. The question of the existence
of "elastostatic (or equilibrium) shocks' — solutions which possess fi-
nite jump discontinuities of the displacement gradient across certain
surfaces while maintaining continuous displacements — was studied
within the context of plane deformations of compressible elastic solids.
It was established in [3] that a necessary condition for the existence of

a piecewise homogeneous elastostatic shock was that the material lose
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strong ellipticity at some homogeneous deformation. The question of
whether in fact a loss of ordinary ellipticity was necessary was left
unanswered. In the particular case of weak elastostatic shocks it was
shown that ordinary ellipticity must necessarily be lost at the pre-
assigned deformation on one side of the shock.,

Rice [5] had previously examined the phenomenon of '"localiza-
tion of deformation' for plastic materials. Localization is the bifurca-
tion of an initially smooth state of deformation into one involving a zone
of highly localized shearing. Localized deformations as described in
[5] appear to have certain qualitative features in common with elasto-
static shocks as described in [3]. In fact, within his setting, Rice
shows that the onset of localization is first possible, in a program of
deformation, when the displacement equations of equilibrium lose el-
lipticity,

In the present study we treat the corresponding issues for an

arbitrary homogeneous incompressible elastic solid subjected to plane

deformations. Some of the results established are appropriate only

for isotropic materials. Explicit necessary and sufficient restrictions
on the deformation invariants and the material are deduced which ensure
ellipticity of the plane displacement equations of equilibrium. In the con-

text of isotropic materials it is established that a loss of ordinary ellip-

ticity at some homogeneous deformation is a necessary condition for the

existence of a piecewise homogeneous elastostatic shock. It is further

shown that a strict loss of ordinary ellipticity at a given homogeneous

deformation is sufficient, but not necessary, to ensure thg existence of

a piecewise homogeneous elastostatic shock which has associated with

it this preassigned deformation on one side.
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In Section 2 we cite some relevant results from the theory of fi-
nite elastostatics for incompressible elastic solids which we then spe-
cialize to plane deformations. The notion of the '"local amount of shear"
associated with any plane volume preserving deformation is then de-
scribed. In Section 3 the conventional notion of ellipticity is adapted
to the displacement equations of equilibrium and necessary and suffi-
cient conditions for ellipticity are then deduced. In the isotropic case
these conditions are put into explicit form and a simple interpretation
is given in terms of what we call the 'local amount of shear'. A loss
of ellipticity is found to depend on a loss of invertibility of the shear
stress-amount of shear relation in simple shear.

The notion of piecewise homogeneous elastostatic shocks devel-
oped in [3] for the compressible case is cxtended to the incompressible
case in Section 4. In Section 5 we then consider weak elastostatic shocks
in homogeneous, incompressible, anisotropic elastic solids and show
that a loss of ellipticity at the pre-assigned deformation on one side of
the shock is necessary for its existence. The jumps across the shock-
line of various physically significant field quantities are also deduced.

In Section 6 we return to equilibrium shocks of finite strength in homo-
geneous, incompressible, isotropicelastic solids. We show that a strict
failure of ordinary ellipticity at a given deformation is sufficient to ensure the
existence of a piecewise homogeneous elastostatic shock whichhas associated
with it this deformationonone side. Moreover we show that a failure of ordinary
ellipticity at some homogeneous deformation is necessary for the existence
of a shock of the type under consideration.

In Section 7 we discuss the dissipativity inequality first proposed

by Knowles and Sternberg in [3] and later extended by Knowles [4] to




three-dimensional deformations of both compressible and incompressible
materials and explore some of its consequences. In particular its im-
plications in the case of weak elastostatic shocks in anisotropic materials
is examined.

Finally in Section 8 we illustrate some of the preceeding results

by means of an example involving a particular hypothetical constitutive

law.
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2.1 Preliminaries on Finite Plane Elastostatics
Let R be the three-dimensional open region occupied by the
interior of a body in its undeformed configuration. A deformation of the

body is described by a sufficiently smooth and invertible transformation
x:z(5)=5+3(5) on R (2.1)

which maps R onto a domain R, . Here y is the position vector after
deformation of the particle which, in the undeformed configuration was
located at x . We will assume for the moment that the displacement
vector field u(x) is twice continuously differentiable on R .

The deformation gradient tensor FE is defined by

F=Vy on R, (2.2)

~

and since the material is presumed to be incompressible,
det F=1 on R , (2.3)

where det F is the Jacobian of the mapping (2.1). The right and left

Cauchy-Green tensors C and G are defined respectively by

C=F'E , G=FFT . 2. 4)

~oay

Let T be the Cauchy stress tensor field accompanying the de-
formation at hand. Assuming that T is continuously differentiable on

Ry » the equilibrium equations are




= -

divt=0 , 1=1 on R, , (2.5)

where body forces are presumed to be absent. The nominal (Piola)

: stress tensor corresponding to T is given by

g=,1(FT)’1 " (2.6)

~

where use has been made of (2.3). Equations (2.2), (2.3), (2.5) and

Ry e P

(2.6) lead to the equilibrium equations

divg=0 , g£T=§gT on R . (2.7)

We now turn to the constitutive relations and suppose that the
body is homogeneous and elastic and possesses an elastic potential

W= V'}(E) . W represents the strain energy density per unit undeformed

volume. The nominal stresses are now given by
A T -
g=WeE) -pE) ", (2.8)"
where p(x) is a scalar field arising because of the incompressibility
constraint. We assume for the moment that p(x) is continuously dif-
ferentiable on R . Alternatively, from (2.6), (2.8) we have
o T
1=WR(E)E -pl . (2.9)

From (2.1)-(2.3), (2.7) and (2.8) we are led to

1See Truesdell and Noll (6], page 304,

iakais
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G dPI b T a0 on B 2.10)}
ijka' 2, 25 7P, 57 51 ’ : ‘
where é
2. §
3“W(E) )
cijkl(£)=5i‘—i;ﬁ‘_l:; : (2.11) -

Let Ai(‘{g) . )‘g(l‘,) and Ag(ig) , where Ai>0 , be the eigenvalues
of the symmetric positive definite tensor field G (or C). The princi-

pal scalar invariants of G are

SRS W 2 3. EY. . E3. X2
LatrG=atha 505, L=dr@i-rghlaadindinil,
R T
L=detG=ApAZ (2.12)

where tr denotes the trace. From (2.3), (2.4) and (2. 12) it follows

that

2.2
*i"‘z":«;-‘ on R . (2.13)

In the special case when the material is incompressible and isotropic,
W depends on F only through the invariants Il and I2 , whence

we have

1All tensor and vector components are taken with respect to a fixed
rectangular cartesian frame. A comma followed by a subscript indi-
cates differentiation with respect to the corresponding x-coordinate. i
Latin subscripts take the values 1, 2,3 while Greek subscripts take the
values 1,2. Repeated subscripts are summed over the appropriate
range.




G

B
W= W(Il - IZ) . (2. 14)

Suppose now that the domain R occupied by the undeformed
body is a right cylinder with generators parallel to the x3-a.xia. Let
[ be the open region of the (xl,xz)-pla.ne occupied by the interior of
the middle cross-section of this cylinder. Suppose further that the

deformation (2.1) is a plane deformation so that
ya=xa+ ua(xl,xz) » Y3=%X3 on R . (2.15)

I is then mapped onto a domain [I, of the same plane, which would be

the middle cross-section of the cylindrical region R, . From here on

we shall be exclusively concerned with plane deformations unless spe-

cifically stated otherwise. It follows from (2.2) and (2. 15) that

e =0, F..=1 . (2.16)

Fap=Ya,8* Fa3=F3a 33

The nominal stresses are now given by

0 p= mm— -pFa. , Oan= 55— -p . (2.17)
ap BFap Ba 33 8F33 *

If we assume that the elastic potential W is such that
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OW(E) OW(E)

=3F—— =0 (2.18)
8Fa3 F3a

for every F such that (2,16) holds, then we further have

g, =@ =0 ., (2.19)

30 “a3

The assumption (2. 18) holds true identically for isotropic materials in
particular,

One sees readily from (2.7), (2.15)-(2. 19" that for equilibrium
in the x3-direction it is necessary and sufficient that the scalar field

p(x) be independent of x3 . Thus

P =p(xl,x2) on II . (2.20)
In the present circumstances (2. 10) specializes to
-1
& = n 221
apys{E)0y, ge-P, pFpe =0 on I i

Equation (2.21), together with the incompressibility condition (2.3),
constitute the governing system of equations for the plane strain

problem and we shall refer to them as the displacement equations of

equilibrium in plane strain. They are three scalar equations involving

the three functions ua(xl.xz) and p(xl,xz) .

One sees readily from (2.4) and (2. 15) that in any plane defor-
mation, unity is an eigenvalue of the left and right Cauchy-Green ten-

sors, whence we have

Ag(x)=1 . (2.22)
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Equations (2.12) and (2. 13) now specialize to

e R R R i
L=A{+A5+1, L=AT+A5 4005, 13-;\%12 s (2.23)
and
2.2
APo=1, (2.24)
whence
N
L=L=Aj+5+1 . (2.25)
£y
If we now define I by
I=F oF g » (2.26)

we have, because of (2.4), (2.12), (2.16) and (2.25) that

2 |
1=1-1=12-1=z+(xl-r1I) 22 . (2.27) i

1

In the special case when the material is isotropic, we have

from (2, 14) and (2.27) that, in plane deformations, |

; W=WI+1, I+1) (2.29)

so that if we define the Plane Strain Elastic Potential W(I) by
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X
W) =W(I+1, I+1) , 122 , (2.30)

we have in the present context that ﬁ(g) =W(I) where I= FapFap .

It follows from this that

OW(E) y
5T, " eV (2.31)
(F) = 2 W(F) 26 6 W'(I)+4F W (I 2.32)
“apys(X) = FF_BF apFys¥ (0 - ™

From (2.4), (2.9) and (2.31) we conclude that

Tap= 2W' (DG 5Pl g (2.33)

op

It is apparent that the plane strain elastic potential W(I) fully determines
the in-plane stress components, This is not true, however, of the com-
ponent 733 .

Finally we recall that in this case the in-plane Baker-Ericksen

inequality requires that

1
(T)=T)0 =2 ,)>0  if A #), (2.34)
for all pure homogeneous (plane) deformations of the form
ya=kaxa (no sum); xlxz=1 , x°>o » Yy=Xyq (2.35)

lSoe Truesdell and Noll [6], page 158.
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where Ty are the principal in-plane Cauchy stresses. From (2.4),
(2,16), (2.26), (2.33) and (2.35) we have
re2wmi-p , 1aadnl (2.36)
whence (2.34) may be equivalently written as
W Znadn -1 %0 40,050, A ,0,50, A h,=1, A FA (2.37)
e er? G : S 1*78 1”2 1" "2
or
WRTIADED | Ry, Njkgel, A 1, (2.38)
which in turn is equivalent to
W (D)>0 for I>2 . (2.39)

The infinitesimal shear modulus is easily shown to be i =2W'(2); if

we assume that 1>0, we may replace (2.39) by

W/ (I)>0 for I22 ,

(2.40)

Requiring that (2,40) hold for the material at hand is equivalent to re-

quiring that the matarial have a positive (finite) shear modulus. Con-

versely, (2.40) implies (2,34), though it does not imply the full (three-

dimensional) Baker-Ericksen inequalities.

2.2 local Amount of Shear

We now establish that any plane volume preserving deformation

can be decomposed locally into the product of a simple shear in a suit-
able direction followed or preceded by a suitable rotation.
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To this end, let F be a two-dimensional tensor such that

det£= 1. Define

L = 1
k=J/T-2 , I'FapFaﬂ . (2.41)

Then we will show that there exist proper orthogonal tensors Q.

non-sgingular tensors 151 e 52 with unit determinant (all two-dimen-

sional) and rectangular cartesian frames Xl » X, such that
1 k
X X
1 o &, 2
51 =K, "= . (2.43)
g 1

Conversely, if (2.42) holds for some proper orthogonal tensors Ql’ Q
and tensors 51, 52 with unit determinant such that (2.43) is true in
some rectangular cartesian frames Xl, X2 , then we will show that
k is necessarily given by k=%,/T-2 .

In order to prove the first part of the result, let X be a princi-

pal frame for the symmetric positive definite tensor EET Then
A - 0
(EET)X= s 4A>0 (2. 44)
A

lSlnccs detF =1, we have that necessarily 122,
X
e 1

51 is the matrix of components of the tensor §l

in the frame X
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where we have made use of the fact that det F=1. Clearly we may
assume A 21 with no loss of generality. Consider the rectangular
cartesian coordinate frame Xz obtained by rotating the frame X

counterclockwise through an angle 6 determined by

A

1 = cos § = . (2.45)
/1+A /1422

By the change of frame formula for tensors,

sin@=-

cos B sin §
X X
EE") %rEED) RT, R-= .
-sin® cos®
X2
we compute (FEF") to find
&%y !
T X2
(EE') °= : (2. 46)
R L 1

Let l_sz be the tensor with unit determinant defined by

K, 2= , (2.47)




ke

Then (2.46) and (2.47) imply that

FE =K,K; . (2.48)
Define the tensor QZ by
Q,=K;'F ; (2.49)
(2.48) and (2.49) now lead to
KR, K; =Kp; -

Since 52 is non-singular it thus follows that gzgg =1 whence 9.2
is orthogonal. But, from (2.49) it follows that det QZ =+1 since
detK, =detF =1, so that in fact Q, is proper orthogonal.

Finally, since we are assuming A 21, it follows from (2.46)

that A -A_l =JFapf‘ap- 2=,I1-2 whence from (2.41) k=2 -A-l . This

establishes the left decomposition F =K,Q, . The right decomposition
E=Ql§1 can be similarly established by considering ETE in place of
.

The second part of the result is easily proved as follows. Sup-
pose now that associated with the given tensor F there exists some

proper orthogonal tensor QZ , some tensor 1’52 with unit determinant

and some rectangular cartesian frame XZ such that

)
s i it A i, ot S
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52 = i (2.51)

for some real number k. Note that the tensors QZ - 52 and the frame
X, are not required to be the particular ones used in the preceeding

proof, Since 9-2 is orthogonal, it follows from (2. 50) that

FFl=K.,KL

” (2.52)

whence in particular, the traces of the two-dimensional tensors EFT

~

and !§_2§§ are equal. By virtue of (2.51) we now have that necessarily

it 4 2
I= Fcprap =2+k~ , whence

k==2,/I-2 .,

The corresponding result for the decomposition E:ngl may be simi-
larly established.

Given any plane volume preserving deformation with deformation
gradient F(x), we refer to k(z) defined by (2.41) as the associated

local amount of shear. Therefore any arbitrary plane deformation of

an incompressible material can be viewed locally as a simple shear in

a suitable direction with local amount of shear k(x), followed or pre-

ceded by a suitable rotation. ‘

S
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3.1 Ellipticity of the Plane Displacement Equations of Equilibrium

We now introduce the relevant notion of ellipticity without re-
stricting ourselves to isotropic materials,

Consider a cylindrical surface S with generators parallel to
those of the undeformed body and lying wholly within R . Let C be

the curve along which S intersects [I. Assume that C has a con-

ol s

tinuous curvature, and let § be the arc lengthon C. Then C

may be described by the non-singular parameterization

C: xa=§a(§)

If { is a coordinate normal to C and §(§) is a unit vector normal to
C in the (xl,xz)-plane,then near a fixed point P on C we have the
orthogonal curvilinear coordinate system (§, (), permitting us to

write

xa=£a(§)+cNa(!) (3.1)

for any point (xl.xz) in a two-dimensional neighborhood of P. The

mapping (3.1) is locally one to one, so that it has an inverse
;""f(xlaxz) ’ C=g(xlox2) 5 (3.2)

and f and g are twice continuously differentiable in a neighborhood

of P . Note that we may take
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Now suppose that (ua(xl.xz) & p(xl,xz)) is a solution of the
plane displacement equations of equilibrium (2.3) and (2.21) such that
a, is once continuously differentiable and twice piecewise continuously
differentiable on [I, while p is continuous and piecewise continuously

differentiable on [I. We set

G (8, O =u (R (8)+CN,(8), R,(8)+CN,(8) ,
P(S, O =p(R (8) +CN(8) , 2,(5)+CN,(B)) ,

and further suppose that, in fact, the second order partial derivatives
of Gar are all continuous across C except possibly for the normal
derivative a"ﬁa/acz, and that the first order partial derivative 9p/9% is
continuous across C, while the normal derivative 8p/9{ may suffer

a jump discontinuity.

Let

%
“f[f':f‘{] . a=[E] (3.3)

8¢

where [h] denotes the jump of a function h across C. Then one shows

easgily that

N 3¢.4}

[ug, gy ] = UaNgN,, -

Z

where E=zg = (IS- IE)I/ZI‘:{ . We have by the chain rule and (3. 2) that

lgee Section 1 of [1].
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_9pof ,9pd
Po” 5‘5‘5,‘_0*'5?'5;‘; .
which because of the presumed smoothness and (3.3) leads to
[p o] =aN, . (3.5)

Taking jumps in the first two displacement equations of equilibrium

(2.21), and making use of (3.4), (3.5) and the assumed smoothness we

get

= “lz
SapytYyNsNg - FpoNga=0 on C . (3.6)

If for all vectors 1‘\':1: and nonsingular tensors F with unit deter-

minant, we define the matrix Qap(ﬁ » F) through

Qy {, B =cyq (NN, (3.7)

then Qaﬁ is symmetric by virtue of (2,11). Equation (3.6) can now be

written in the form

pr; e
Qo’pUﬂ=qu°’N‘3 on € , (3.8)

We also need the ''jump equation'' associated with the remaining
displacement equation of equilibrium (2.3). We computed(det F)/8¢ to
find

8a
of 9
a.5_+8c .5!_} 3 (3.9)

c(det F) = (det F)Fpa ac{

where use has been made of (3.2), the chain rule and a standard formula




T
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for the differentiation of a determinant. Taking jumps in (3.9) and making

use of (2.3), (3.3) and the presumed smoothness leads to
[ §gtdet ) |=F Ngu,, . (3.10)
But by (2.3) the jump in det F must vanish, whence (3. 10) simplifies to
«]les R
FﬂaNpUa'o on C . (3.11)

The system of jump equations associated with the displacement equations
of equilibrium are (3.8) and (3.11), and may be regarded as three linear
homogeneous algebraic equations for the jumps Ua and q.

We say that the system of plane displacement equations of equili-
brium is elliptic at the solution (ua »P) and at the point (xl.xz) if and
only if, for all vectors IE;‘_Q , the system (3.8), (3.11) has only the
trivial solution Ua =0, q=0.

Consequently if the system is elliptic, the displacement field
u, will in fact be twice continuously differentiable at the point under
consideration and the pressure p will be continuously differentiable
there. If on the other hand there exists a non-trivial solution of (3.8),
(3.11) for some vector I:*I: , then E is normal to a characteristic curve
in the undeformed configuration. These characteristic curves are the
only possible carriers of discontinuities of the kind admitted here in
u_and p, and ellipticity precludes the existence of real characteristics.

o

If we set

mazF;ﬁp : (3.12)

we can write the system of jump equations (3.8) and (3.11) as




-m ] |'U11
fn By Vol =8 .
Llm;, m 01Lql

This system of linear homogeneous algebraic equations for Ua and q

has only the trivial solution if and only if

Q) Q) -my]
det(Q,, Q,, -m,|7#0, (3.13)
hml mz 0 =
or equivalently
¢ . ¢, Q .mm #0 (3.14)}
al " Bu aﬂml u 4 5
Since F has unit determinant, one shows easily that in plane strain
Faleae ¢ F (3.15)
Ba ™ "oy BETYE i
By virtue of (3.12) and (3. 15) we may write (3. 14) equivalently as
eaAeWFYAFOuQYGNaNp#o ‘ (3.16)

Therefore, we have that a necessary and sufficient condition for

l‘ap is the two-dimensional alternator. ell=czz=0 3 clz=l » €31° -1.
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the displacement equations of equilibrium to be elliptic at a solution

(ua’ p) and at some point (xl,xz) is

e ®puFya FouQys™ DN Ng#0 (3.17)

for every vector ﬁ;‘g . Finally, because of (3.7) it is clear that (3.17)

is equivalent to

*an $uFn FouQys N EIN Ng# 0 for all unit vectors N . (3.18)

3.2 Specialization to Isotropic Materials

When the material at hand is isotropic, we can use (2.4), (2. 11),

(2.32) and (3.7) to simplify the necessary and sufficient condition for
ellipticity (3. 18), which then gives

v 2
(€ gy ¢’3uc:mpN,t Nu)W (D) +2(e CaprNA YWD #o0 , (3.19)

for every unit vector N. Now let the frame be principal for C , so that

[ Cap] =

and evaluate (3.19) in this frame. We then find

- T - e NPT - g 1 5 P e
(N +ANDIW M+207-13) NN W (H#o0

(3.20)

for all unit vectors N , as being necessary and sufficient for ellipticity.

We will now show that the plane displacement equations of

\
o b bl —
ek i i M
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equilibrium are elliptic at a solution (u,,p) and at a point (xl'xz) if

and only if

: 2w
W(I);‘O,—W—,(-(I-;z(1-2)+l>0, (3.21)

at the point under consideration; i.e. that (3.21) is equivalent to (3. 20).

Ve

1 To show this, we observe that since N is a unit vector,

222
XINZ'”‘Z

e TS O ST D S W (N Sk AR T
GNDINT+N5) =A (NS #ASNT+A T A 5NING ,  (3.22)

2 .22
Ny=0 N+ 1Nz

so that (3.20) may be written as !
DEWOING+ SWADING+ {0 2 2w +200 ®a g)zW"a)}N‘;‘Ng# 0 (3.23) |

for all unit vectors 1}1 . If we set

- L B
Ey =AW, E,p=a (WD,
(3.24)
2 2
Bt F -(—’\-1—1‘2-Zw'(1)+(x2 2 3%wnn , 2 =N°
2" T 4 ] =2 » 2o~ Ny ?
we can replace (3.23) by
Eaﬁzazﬁ#o for all 5#2, 2020 6 (3.25)

It has been shown in Section 2 of reference [2] that (3.25) holds if and

only if
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E|,E,;>0 (3.26)
and
ahhe o (3.27)
vE1E2;
where

€ =8gn E11= sgn E22 - (3.28)

Substituting from (3.24) into (3.26) we get A 2A2{W/(1)}%>0

which, because la>0 , is equivalent to

wi()#o . (3.29)
Using (3.24) and (3.28) in (3.27) leads to

w”(1

2

which because of (2.24) and (2.27) may in turn be written as
za-m%’%nw ; (3.30)

Equations (3.29) and (3.30) are what we set out to establish.

A physical interpretation of the ellipticity condition (3.21) may
be obtained in terms of the 'céncept of the local amount of shear intro-
duced in Section 2.2. Consider an isotropic, incompressible, homo-

geneous, elastic solid which has a positive shear modulus:l

lSee (2.40). A similar interpretation can clearly be given in terms of

the local amount of shear even in the unrealistic case when (2.40) does
not hold. :

it e s b A v -
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wi(I)>0 for I=22 . (3.31)

The first of (3.21) is now trivially satisfied. If we define the

function Tt by

(k) =2kW/2 +k%) , |k|<o , (3.32)

then (k) is easily shown to be the shear stress corresponding to an
amount of shear k in a simple shear deformation, The graph of (k)

vs.k described by (3.32) will be called the response curve in simple

shear. Differentiating (3,32) with respect to k and observing that

(3.31) holds leads to

2
'}
(k) = 2W/(2 + k°) Zkzmzl +1 '

W/ (2+k")
We therefore find that (3.21) is equivalent to
t/(k)>0 for k=,I-2 , (3.33)

from which we conclude that for an isotropic, incompressible elastic

solid having a positive shear modulus, the plane displacement equations

of equilibrium are elliptic at a solution (ua.p) and a point (x),x,) if

and only if the slope of the response curve in simple shear at an amount

of shear equal to the local amount of shear is positive.

Ml i e o —_~.

Suppose for example that the response of a particular homo-
geneous, isotropic, incompressible elastic solid in simple shear is as
described by Fig.2. Then in any plane deformation the displacement
equations of equilibrium are elliptic at some point (x,,x,) and some

solution if and only if the local amount of shear at that point k(xl,xz).
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defined by (2.41), is such that -ko< k(xl,x2)< ko .
It is apparent from the above discussion that a loss of ellipticity
for materials of the type being considered is dependent upon a loss of

invertibility of the shear stress — amount of shear relation in simple

shear.

Finally, we note from (3.21) that the undeformed state is ellip-
tic if and only if the infinitesimal shear modulus d =2w’2)#0. This is
precisely the condition for ellipticity of the linearized displacement
equations of equilibrium for a homogeneous, isotropic, incompressible,

elastic material,

3.3 Characteristic Curves

If the ellipticity condition (3.21) is violated, it follows that
there exists a unit vector N such that equality holds in (3.20), N will
then be normal to a (material) characteristic, and we now determine the

number of possible characteristics and their inclinations. To this end,

let
N1=-sin9 5 N2=cose " (3.34)

so that 6 is the local inclination of the material characteristic to the

A y-principal axis of C. Substituting this in (3.20), with equality hold-

ing now, we find
0 fcosza 1 gsinze)W'(I) + z(xf % g)zsinzecosZGW"(I) =0 . (3.35)

We seek solutions 8 of this equation in the interval (-%,% .

Let us assume that the infinitesimal shear modulus of the ma-

terial is positive:
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d=2w'(2)>0 . (3.36)

We see immediately from (3.21) that, if the point under consideration
is locally undeformed (I=2) in the given deformation, then the dis-
placement equations of equilibrium are elliptic there. Consequently
we need only consider I>2 in our search for characteristics.
Suppose first that ellipticity is lost by virtue of the fact that the

first of the ellipticity conditions (3.21) is viola.ted.1 Then
wI)=0 (3.37)

at the point (xl,xz) of interest at the given deformation. We then find
from (3.35) that either W"(I)=0 or 6=0, % . Using (2.41) and (3.32),
we may state this result as follows. Let k be the local amount of

shear. Then if 7(k)=0, the displacement equations of equilibrium are

not elliptic for the given deformation at the point under consideration.

Furthermore, we then have two (material) characteristics inclined at

angles 0 and % to a principal axis of C, except in the particular
case when 7/(k)=0 as well, in which case any number of arbitrarily
inclined characteristics may exist locally.

Now suppose that W/(I)#0 at the point of interest and that ellip-
ticity is lost by virtue of the fact that the second of (3.21) has been
violated. Then

——,ﬂzfv”v'&) (I-2)+1<0 . (3.38)

Equation (3.35) can now be rearranged into the form of a quadratic

1Note from (2.40) that this possibility does not exist if the material has
a positive shear modulus,




equation for cos28.

7 M

e — I)cos 26 - ——l—f——cos 26

=0 , (3.39)

Formally we can write the solution of this after making use of (2.24)

and (2.27) as

1({2(I- )W)/ W/1)+ 1} {2(1+2)W"(D)/ W' D) + 1} )i
2(1°- ayw )/ w)

cos 20 = (3.40)
where with no loss of generality we have assumed that A 1>X 2 -
If (3.38) holds with equality (so that t(k)#0, T’(k)=0 at the
local amount of shear k) we find two values of 8§ in the interval
(-%, IZ'.] from (3.40), whence two characteristics exist. Equation (3. 40)

now simplifies to

1-2

°°‘29='«'IT'2' " (3.41)
which because of (2.24) and (2.27) (and since A l>A2) leads to
l-)\i
cos 29=_7 » (3042)
1+ 1
whence
t&n9=*A1 " (3.43)

o bt

e t—
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Suppose the spatial characteristic corresponding to this material char-
acteristic is inclined at an angle a to the 2\ | ~Principal axis of G.

It can be shown that

tma:x—ztme : (3. 44)

so that (2.24), (3.43) and (3.44) give

tana:tl . (3.45)

Because of (2.33), o« is also the inclination to the corresponding pria-
cipal axis of the Cauchy stress tensor,

If however, strict inequality holds in (3.38) (so that T(k)#¥0 ,
kt(k)t (k)<0 at the local amount of shear k) (3.40) gives us four values
of 8 which in turn implies the existence of two pairs of characteristics.
Clearly, each pair is positioned symmetrically with respect to the prin-
cipal axes of C . In what follows we will have need for the inclinations
a of the corresponding spatial characteristics to the A l-principul axis

of G (ll>)\2). From (2.24), (2.27), (3.40) and (3. 44) we have

” $
i -12({2(I - 2)W m/w;(ln 1} {2(1+2)Wwn)/wi1)+1})° . (3.46)
2(I°- 4)BWH(I)/W'(1)

e b

|
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: 4.1 Weak Formulation of Problem

: In the derivation of the classical field equations of elasticity the
displacement field u and stress field C are assumed to satisfy certain
smoothness requirements. There are, however, some physical prob-
lems in which these conditions are not met, so that in order to study
them one would be forced to relax the smoothness demanded of the field
quantities. It may, for example, be necessary to require only that the
displacement field u(x) be continuous and piecewise continuously dif-
ferentiable on R , while the nominal stress field g(g\g) and the pressure
field p(x) are to be piecewise continuousl on R . Clearly, the global
balance laws continue to be meaningful even under these smoothness

conditions, but one must re-examine the validity of the local field

equations.

Of particular physical interest is the case wherein the field
quantities possess the classical degree of smoothness2 everywhere
except on one or more regular surfaces within the body. This would,
for example, describe an idealized model for shear bands. To formu-
late this problem, we suppose that there is a surface S in R such
that ¢, F and p are continuously differentiable everywhere in R
except on S, and suchthat g, F and p suffer finite jump disconti-

nuities across it. The displacement u(x) is presumed to be continuous

lWe return momentarily to the three-dimensional case in this section.

2See Section 2. 1.
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everywhere in ® . The possibility of the breakdown of ellipticity of the
governing equations suggests that solutions of this type to the equations
of finite elastostatics may emerge in some circumstances.

Going through the usual arguments, i one finds from the global

equilibrium of forces that

divg=0 on R -S 4.1)
and

[6]'N=0 on s, (4.2)
while from the global equilibrium of moments we have

oFT=Fo' onR-S (4.3)

and
y(g)x[g]tl‘:l‘:g on S . (4.4)

Equation (4.2) says that the nominal tractions are continuous across
S . Here [g]t:é-é where E and é are the limiting values of g
(presumed to exist) as apointon S is approached fromeachside, and N
is is a unit normal to S . Equations (4.2)and (4.4) are referred to as

jump conditions. Note that (4.4) is trivially satisfied once (4.2) is.

Incompressibility likewise leads to

detF=1 on R -8 . (4.5)

Isee Chadwick [7], page 114.




T

-33-

Such a surface S carrying jump discontinuities in F , g and
p which conform with the jump condition (4.2), while maintaining con-

tinuous displacements across it is called an "equilibrium shock'', or

an '""elastostatic shock' in the particular case when the body is com-

posed of an elastic material,

4.2 Piecewise Homogeneous Elastostatic Shocks

To investigate many of the local issues related to elastostatic
shocks, it is sufficient to consider the case in which S is a plane and
the deformation gradient F is constant on either side of S. From
here on we shall be concerned with such a situation within the context
of plane deforn'xationsl of an incompressible elastic solid, so that we
may take S to be a plane parallel to the generators of the body.

The corresponding problem for a compressible elastic solid
was investigated by Knowles and Sternberg [3]. In this section, we
formulate the problem governing the existence of an elastostatic shock
in the incompressible case in a manner entirely analogous to [3].

Suppose that the middle cross-section of the body we are deal-
ing with occupies the entire (xl,xz)-plane Il in its undeformed configu-
ration, Let X be a fixed rectangular cartesian coordinate frame and
let £ be the straight line through the origin of X with unit direction

vector ’E Thus

£ xa=La§ , ~o<f<ow . (4.6)

lWe leave the three-dimensional introduction to elastostatic shocks of

the last section and return to plane deformations from here on.
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Let N be the unit vector normal to £ obtained by a counterclockwise
+ >

rotationof L . Let 11 and I be the two open half planes into which
+

£ divides [, with [l being the one into which N points. (See Fig.l.)

Now consider the piecewise homogeneous plane deformation

+ + .
y =F H, y=2F

o ap"p on 5 aﬁxﬁ on I , (4.7)
+ T
where F and E are constant tensors such that
+ &
det§=det§=l = (4.8)

The nominal stresses associated with the deformation (4.7) are

~ + A -
s OW(E) +4_, TRPTREE | S - i
Oap-w-pl"pa on I, Oup=-§-F$-pra on II . (4.9)

Clearly, the equilibrium equations (4.1) are satisfied if and only if ;
and p are constants.

If we are to view the line £ as the intersection of an equilibrium
shock S with the cross-section I1, then according to Section 4.1 we
need to impose displacement and traction continuity requirements across
£ . Because of (4.7) the requirement of a continuous displacement field

is equivalent to

+ -
Fap"p=Fap‘p on £ , (4.10)
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which in view of (4.6) reduces to

+
F _.L =Fapr . (4.11)

By (4.9), we have traction continuity (4.2) if and only if

oW () S S o) pF N 4.12)
W{;'P pa - W P Ba g ° (4.

If the deformation field (4.7), subject to (4.8), together with
LA
real constants p and p conform with (4.11) and (4.12), and if F#F,

then we refer to the corresponding elastostatic field as a piecewise

homogeneous elastostatic shock.l The line £ will be referred to as
the material shock-line. Figure 1(b) displays the images of the three

rectangles shown in Fig. 1(a) under a typical mapping (4.7) in the pres-
ence of such a shock.

In order to examine questions related to the existence of piece-
wise homogeneous elastostatic shocks we pose the following problem,
Given a constant tensor IE with deté= 1 and a real constant ; , de-
termine a constant tensor g with det§= 1 (E)‘ E) and a real constant
p such that (4,11) and (4.12) hold.

Equation (4.11) may be solved as follows. Let £ , which we

shall refer to as the spatial shock-line, be the image of £ under the

mapping (4.7). Let ﬁ* and I be the two half planes into which ﬁ
and I map by virtue of (4.7). Suppose ( is the unit direction vector
of £, such that the unit normal n to £ obtained by rotating (

+
counterclockwise points into I, . (See Fig.1l.) Without any loss of

1 b & w
Note from (4.12) that if p#p then necessarily F#F .

~

T TS,



generality the inclinations

— e

$? and ¢ of the shock-lines # and at*

relative to the xl-axia may be confined to the interval [- . %] A

One can show readily that, given a constant tensor

r
2
+
E with

+ -
detF=1, (4.11) will hold for a tensor F with unit determinant if and

only if

for some real number x .

Faﬁ= (601

+
$nt a3
"Ly E,

P

(4.13)

We omit the derivation of this result as it

parallels exactly the corresponding derivation in the compressible case

contained in [3]. Let X’ be the rectangular cartesian frame obtained

by rotating the frame X counterclockwise through an angle ¢ . The

base vectors associated with X’ are then { and n . Expressing (4.13)

in the frame X’ we have

-xl
LY

-xl
Fa

-xl
Fl2

-xl
F22

-

F

F

e

+x

11

+x ¢

21

-

+x!
F12

+x¢
" 3%

. (4.14)

Accordingly, the deformation on ﬁ may be viewed as being equivalent

+
to the deformation on [l followed by a simple shear parallel to £

with an amount of shear x .

We may now pose the following problem which is equivalent to

+
the one posed earlier. Given a constant tensor F with unit determi-

nant and a real constant ; , determine real numbers p, x(¥0) and

€[ -3, 3] such that (4.12) holds with E defined by (4.13). Here

we have omitted x =0 since, by (4.13) we see that this corresponds to

the shockless state

e
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Finally, we note that since the traction continuity condition (4.12)
imposes only two scalar restrictions on the three parameters ¢ , x
and p, one would anticipate that if there exists an elastostatic shock
corresponding to a given é and ; » then in fact there exists a one —

parameter family of shocks.
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5.1 Weak Piecewise Homogeneous Elastostatic Shocks

We now specialize the problem posed in the general setting of

Section 4.2 to the first of two simpler cases. Here we confine attention
to elastostatic shocks that are weak in the sense that the departure of

i from i is small., Motivated by the remarks at the end of the pre-
vious section, we assume here that there exists a one-parameter family
of shocks, corresponding to the given E and ; » depending on the
parameter x and sufficiently smooth near x =0 . Specifically, we
suppose that there are functions ¢(x) , f:(n) both twice continuously
differentiable in a neighborhood of x =0, such that é defined by (4. 13)
together with p(x) conforms with the traction continuity requirement
(4.12). Since from (4.13) we have that i=ﬁ when x =0, we may use

- +
% as a measure of the departure of F from F . Accordingly x will

~

be referred to as the shock-strength parameter.

We first record the following kinematic results which are estab-

lished in [3]. Let
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lml‘3+nwnf’=6‘”ﬂ y La='apr 3 " (5.4)

If ¢(x) and p(x) exist as described above, it follows that L,N,2,
n, i and c are all » dependent whence we write ' E(ﬂ.) » N(x), £(n),
nx) , F;(n) and c(n).

Because of the presumed smoothness of #(x) we have the fol-

lowing Taylor expansions, where a prime denotes differentiation with

respect to « ,

A(0) =£(0) + (00 +o(x) , nx)=n(0) +n/OM +o(x) , (5.5)}
N(x) = N(0) + N (0)x +o(x) .
Equation (4. 13) now gives

- +
Fap(u) = Faﬂ+ nla(O)nv(O)gvpi- o(n) , (5.6)

f‘-l(n)=g l-nl (0)n (O)l}t'l+o(n) : (5.7)
op op y U8 N ay
where we have also used (5.4). This enables us to write the following
Taylor expansion

SW(E(M) OW(E)  oW(E) +
T TIF ot B 8F La(0)n, (O)F +ol) . S
op op of " v

The Taylor expansion of p(x) leads to

1Whenever we write o(x) , we mean o(x) as x -0 .
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p(x) =p(0) +xp‘(0) +olx) . (5.9)

Using (5.6), (5.7) and (5.9) and evaluating the traction continuity con-

dition (4. 12) to leading order, gives
$=p0) . {5.10)

Consequently we may write (5.9) as
Bx)=p +xp'(0) +olx) . (5.11)

We now return to the traction continuity condition (4.12) and re-evaluate
it to leading order using (2. 11), (5.5), (5.7), (5.8) anu (5.11). This

leads to

it =) ) R o X v
{capYG(E)IV(O)nv(O)Ptvb- P (O)i'tﬂa +plv(0)na(0)fpy }Np(o) =0 , (5.12)

which are two scalar equations for p’(0) and ¢(0) .

5.2 A Necessary Conditicn for the Existence of a Weak Sho ck

We now derive a necessary condition for equation (5. 12) to have

a solution p’(0), ¢(0) . We have from a Taylor expansion of (5. 3) that

e
Ng(0) = (g Fypny @) - (5.13)

Equations (5.12) and (5.13) lead to

+ e MR
capYa(E)IY(O)n"_(O)nv(O)Fﬂvap-p'(O)na(O)+;+>lv(0)nY(0)n°(0)=0 . (5.14)

But since ! is perpendicular to n we have la(Oina(0)=0 , whence

(5. 14) simplifies to
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+ T
capya(g)lY(O)n"(o)nv(O)Fﬂava-p (O)n_(0)=0 . (5.15)

Multiplying (5.15) by na(O) and making use of the fact that n is a unit

vector leads to

p‘(0) = 5 ] 0 S B 6
| P0)=cypy ()L, (O)n (O)n, (O)n, (OF (F o . (5. 16)
E Alternatively, multiplying (5.15) by la(O) gives

capv5(E)IV(O)IQ(O)nﬂ(O)nv (O)Fﬂﬁ,p =0 , (5.17)

by virtue of the fact that ,5-;3=o « Using (5.3) and (5.4) in (5.17) leads

to

+ 4+ i
‘ﬂv‘AqunFaA capvb(E)Np(O)Nﬁ(O)Nv (O)Nu(0)=0 2 (5.18)

which because of (3.7) can be equivalently written as

+ 4 +

Equation (5, 19) must necessarily hold if a one parameter family of
elastostatic shocks of the type being considered is to exist. On com-
paring with (3.18), we see that (5. 19) implies a loss of ellipticity of the
displacement equations of equilibrium on I+I at the given é and S .

We therefore have the following result:

Theorem 1. A necessary condition for the exist-
ence of a one-parameter family of elastostatic
shocks, of the kind under consideration, is that
the displacement equations of equilibrium suffer
a loss of ellip:icity at the given deformation and
pressure on [, Furthermore, in the weak shock
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limit (x -0) the material shock-line and the
spatial shock-line tend respectively to a ma-
terial+and spatial characteristic associated
with [T .

The corresponding result was obtained by Knowles and :

Sternberg [3] in the case of compressible elastic materials. |
In the event that, corresponding to a given é and ; a one-

parameter family of shocks of the type being considered exists, the

jumps of various physical quantities across the shock can be easily

determined to leading order in terms of the given E , ; and the pre-

sumably determinable (from (5.12)) ¢(0), p‘(0) . We now determine

some of these jumps.

(i) The jump in energy density [W]f

The Taylor expansion of W(F;(u)) about x =0, together with
(2.9) and (5.6) leads to

WE®) =W(E) +x{T gng(014,(0) + B2, (OIn (0)} +otn) . (5. 20)

Since { is perpendicular to n we can drop the last term in (5.20) to

get

[Wll=xt (0)2_(0)+0(x) , (5.21)

where we have set
+
i(n):l’g(n) v (5.22)

As a consequence of (2.6), (4.2), (5.3) and displacement continuity, we

see immediately that t(x) =£2(u) = i n(x) which implies the continuity of

the Cauchy traction vector across £, .
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(ii) The stress jumps [Taﬂlf

From (2.9) we have that

5 a\G(g) .
ap 5—‘3— ﬂv baﬂ 2 (5.23)
oW (F)
¢Oﬂ=-5—;= ﬁp “Bag + (5.24)
which together with (2.11), (5.6), (5.8), (5.11) and (5. 22) leads to
( 2 + 4 :
Tun +=n{cwv6(§) 5 ﬂu’ (0)n_(0) - (0) ﬁ+pn (0)24(0)
+ta(0)lﬂ(0)}+o(n) : (5.25)

(iii) The jump in the normal stress acting on a plane perpendi-

X'3+
cular to £, ['r“]_
Consider the plane perpendicular to the spatial shock so that the
normal to this plane is £ . The jump in the normal stress acting on

/
this plane across the shock-line, [-ri(l]f , is

Lt (5.26)

(3100 =% 0t atp- Foptety

which because of (5. 25) and the perpendicularity of the vectors L, and

n can be written to leading order as

’
31 = x{ ¢ (02,00) - $%0)

+
e ouyb(F)Fﬂb p“l (O)Ip(O)I (0)n (O)j+o(n) . (5.27)

In view of (5,4) and (5.1 , this leads to
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X4+ _
(3]t = x{t 00 (0 4 ey, o (BIF (F 2 (00, (0)
-2p0)} +olx) ,
which together with (5.25) gives
/
[ X1t tr %0) - xp0) +olx) . (5.28)

|
E |

\ |

- 3 "‘;C i) ‘ " J; : ,,'...,-‘}l" !::‘&‘. ._ﬁ'w'ﬁl( s 8
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6.1 Finite Elastostatic Shocks in Isotropic Incompressible Materials

We now return to shocks of finite strength, but assume the ma-
terial at hand to be isotropic. Substituting (2.31) in (4. 12) and making

use of (2.4) and (5.3) leads to
{zw'(f)é'ap- $5ap}np={zw‘(f)dap- ﬁéap}nﬂ , (6.1)
where

Inl ¥ @ . (6.2)

Clearly, (6.1) is simply a statement of the fact that the Cauchy traction
is continuous across the spatial shock. The original problem concern-
ing the existence of elastostatic shocks can now be posed as follows:
given a constant tensor E with unit determinant and a real constant
; , determine real numbers f) , x(#0) and ¢ such that (6.1) holds

with G given by (4.13), (6.2).

If we express (6.1) in terms of its components in the frame X/,

we have
+3 + -y’ -
2GT, WI) = 2G3, WD) (6.3)
i b, SR =X’ - -
2G5, W) - p=2G;, wi(I)-p . (6.4)

As observed earlier, (6.3) and (6.4) impose only two scalar restrictions

on the three quantities ¢ , » and p . Furthermore since p enters
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i only in (6.4), and there too only linearly, we may consider (6.3) and
| (6.4) separately i.e. if there are numbers x and ¢ such that (6.3)

t - holds, then there certainly is a third number p such that (6.4) holds

e

as well. The existence of an elastostatic shock therefore depends on

whether there are numbers x and ¢ such that (6.3) holds.

T

To pursue this question further, we need the components of
+ -
G and G in the frame X'. With no loss of generality let us take X

+
to be a principal frame for G . Then

)‘l 0
éx= v A,=1 (6.5)
0 kg
By the change of frame formula for tensors we have
’
éx =§§x§T ' (6.6)
cos @ sin @

§,= % (6.7)
-sing® cos@ ;
3

Equations (6.5) - (6.7) lead to

. o E
Xydha a3=al ATeA o l
3 + 35— cos 29 - 3 sin 29
1
+y? |

c¥- . (6.8)
L Kot atat |

1 2 1 2 &
-—T—lin 2¢ - —3—cos 29




"

If we now set

B=a—s , (6.9)

we can write (6.8) because of the second of (6.5) as

1+Bcos2p -Bsin2g

+ 3!
gx :——l——— < (6. 10)

NPTl pein2s  1-peosis

It is clear from (6.5) and (6.9), that the value of P alone suf-

+
fices to determine gx completely, and in this sense B is a measure

+
of the deformation on [I . Note that because A0, (6.9) implies that

1>p>-1 . (6.11)

Furthermore, we have B=0 if and only if the part of the body occupy-
+

ing I in its undeformed configuration remains undeformecll under the

mapping (4.7).

We now find from (4, 14), (6.2) and (6. 10) that

1 +Bcos 2¢ - 2xPsin 2¢ - Bsin 2¢
+x2(1 - Beos 2¢) +x(1 - Beos 2¢)

g¥ -1 ., (6.12)

- Bsin 29 +x (1 - Bcos 29) 1 -Bcos 2¢

li is then a proper orthogonal tensor.
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and from (6.2), (6.10) and (6.12) that

-+

2
1-p

' (6.13)

I 2 - 2nPsin 29 +x2(l - Bcos 29)

(6.14)
1-p°
Returning to the traction continuity requirement (6.3) with (6. 10),
(6.12) - (6.14) we find
-psin 2oW/( —2—) - {-psin2¢
1-p°
\
3 a 2
+x(1 - Beos 2¢) fw’ [ 2=2xPein2¢ +x (1 - Peos 2¢) (6. 15)

1- ﬁz
We may now pose the problem as follows: given a number B in (-1,1),
find numbers x#0 and ¢ in r-%, %} such that (6.15) holds.

If, for the given B in (-1,1) and any ¢ in [—32- . %] there
does not exist a root x#0 to (6.15), the material is incapable of sus-
taining an elastostatic shock corresponding to the given deformation
associated with 8 on ﬁ . On the other hand if, for the given f in
(-1,1) and for some ¢ in [-% i %] there is a root x#¥0 to equation
(6.15), then there exists a corresponding elastostatic shock. There-
fore, we now investigate the possibility that (6.15) has a root x#0

for all values of ¢ and P such that -%s¢s%, IBl<1 .

Finally we observe from (6. 15) that if for some pair (¢, B),

e E—— ee————————————ee
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|p|<1 and -%S ¢SEZ' , there exists a root » to equation (6.15), then
(i) - is a root of (6,15) for the values (-9, B), and
(ii) -u is a root of (6.15) for the values (-72'--¢ , -B) .
It therefore follows that, as far as the issue of existence is concerned,
we may in fact restrict ¢ to [0, 12'-] and B to [0,1). If we define the

set G by

G:{(¢,p)|05¢s% . 0sp<l) , (6.16)

we need to look at the question of the existence of a root x#0 to

equation (6. 15) for every (¢,8) in G.

6.2 Some General Results

We now establish some general results concerning the existence
of elastostatic shocks, valid for a homogeneous, isotropic, incompres-
sible elastic solid which has a positive shear modulus.

We first make the following preliminary observation. If =0
or $=0 or ¢=% , the only root of (6.15) is x =0 , This follows=
directly from (6.15) because of (2.40). Consequently, for a material
of the type we are considering, no elastostatic shock is possible if the
part of the body occupying ﬁ* is undeformed, nor can any spatial
shock-line be inclined at 0 or -% to the principal axes of é We

[d
may now restrict attention to the interior G of the set G:

G ={(4,)|0<p<} , o<p<1} . (6.17)

If we set

lWe assume from here on that (2.40) holds.
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b=b(¢,a)=-ﬁ———-91°“‘z on G , (6. 18)
(1-8%)
1l -PBcos 2 o
c=c(9,B)= on G , (6.19)
u-fs"')f

we can write (6.15) using (6.13), (6.18) and (6.19) as

+ +
bW'(I) = (b + cx )W/ (I + 2bx +cu2) 5 (6.20)
Clearly
©
b<0 on G , (6.21)
[+
¢>0 on Q . {6.22)

~ -~ A+
Choose and fix a point (@, B) in G . At this fixed value of

¢ and P we define the function h by

: g 2 . . 1
h(x) = (b+cx)W/I+2bx+cx) - bW/(I) for |x|<o , (6.23)

where t » b and c are given by (6.13), (6.18) and (6.19) respectively
evaluated at (a ,B) . If the plane strain elastic potential W(I) is twice
continuously differentiable on 122 , as we have implicitly assumed, it
follows that h(x) is continuously differentiable on (- , o). If there
exists an equilibrium shock corresponding to the homogeneous defor-
mation associated with ﬁ on ?‘f and inclined at an angle 8 to the

y1~axis, it is necessary and sufficient that h(x) have a zero at some

IFrom (6.13), (6.18), (6.19) and (6.22) we have that

+ 2 2
I+be+cx2=2+(b+:x) -f-i':::lL 22 for all |x|<o .
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x#0 . The zero of h(x) gives the shock strength » .

Because of (2.40), (6.21) and (6.22) we see from (6.23) that
h(0)=0 , (6.24)

b

h(-%’):-bw’(fpo . =250 . (6. 25)

It now follows from (6.24), (6.25) and the smoothness of h(x) that:
(i) if h’(0)<0 , then there exists a zero of h(x) other than
x=0.,
(ii) if there exists a zero other than x=0 of h(x), then there
exists a number n*#o such that h'(x*) =0 . Furthermore,

+
since h'(- b/c)=cWXI-b%/c)>0 we have

,‘*,e-‘g X (6.26)

Because of the remarks made before (6.24), we may interpret
(i) and (ii) as follows:
(a) h’0)<0 is sufficient to ensure the existence of an elasto-
static shock corresponding to the deformation associated
with B on ﬁ with spatial shock inclination 8 .
(b) If an elastostatic shock as just described is to exist, then it
is necessary that h’(x,)=0 for some number x .
This leads to the main results of this section which we now es-
tablish., We first introduce the following terminology. Recall from

(2.40) and (3.21), that a loss of ellipticity of the displacement equations

of equilibrium can occur at some deformation and at gome point if and

only if

T




iy

%u-z)nso : (6.27)

If ellipticity is lost because in fact the strict inequality holds in (6. 27),

S % e

we say that a strict failure of ellipticity has occurred. Since four

characteristic curves exist in this case (see Section 3.3) one may say

that the displacement equations of equilibrium are hyperbolic at such

+
a deformationon I .

Theorem 2. A strict failure of ellipticity of the dis-
placement equations of equilibrium, at+the given homo-
geneous deformation and pressure on [, is sufficient
to ensure the existence of a corresponding elastostatic
shock in a homogeneous, isotropic, incompressible,

elastic solid with a positive shear modulus. -
Proof:

+
By hypothesis, the given deformation gradient F is such that

the associated value of B, say B , given by (2.4), (6.5) and (6.9) con-

forms with the inequality

zw"(fz ¥

(I-2)+1<0 , (6.28)
W(I)
where by (6.13)
- SR e (6.29)
1-8

: A
Note from (2.40) and (6.28) that necessarily I#2, whence B#0. We

now choose the value of ¢ as

lThis and the following result can be readily modified for materials whose
shear modulus is not always positive,
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a:%co,‘l .l‘__ﬁ_ vl1- (6.30)1

We will show that corresponding to the given homogeneous deformation
on ;1 , such that the associated value of B conforms with (6.28) and
(6.29), there exists an elastostatic shock at the inclination 8 given by
(6.30).

According to (6.23) and statement (a) following (6.26), we need

only show that

2 ”+ ’+ A A
2hb"WHI)+cWi(I)<0 at (¢,B) , (6.31)

in order to establish thia. Using (2.40) we may write (6.28) alternate-

ly as
2b™w (I)"‘CW'(I)"'(}—— - c\W’(I)<0 (6.32)
- d 4

where b and c are defined by (6.18), (6.19) and evaluated at .8 .
Using (6.18), (6.19) and (6.29) in (6.32) we find
2
2b2w"(f)+cw'(1+)-———§—;—:2 cos 23 - I‘JE—'TE wil)<o ,  (6.33)
(1-p7)I-2) g
which because of (6.30) reduces to (6.31), which in turn establishes our
result,

Theorem 3. A necessary condition for the existence

of a piecewise homogeneous elastostatic shock in a

homogeneous, isotropic, incompressible, elastic

lsince B0, |B|<1 this defines a real angle ¢ in 0,3) .

|
i
¢
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solid with positive shear modulus, is that the dis-

placement equations of equilibrium suffer a loss

of ellipticity at some homogeneous deformation,
By hypothesis there is a point (3 > 5) in (91 such that there
exists an associated elastostatic shock. By statement (b) following

(6.26) then, there is a real number %, such that
h'(n*)=0 (6.34)

+ ~ A
where h(x) is given by (6.23) with b, ¢ and I evaluated at (¢, B) .
Equations (6.23) and (6.34) give that

+ +
CWAT+ 2bn ot ex 2) + 2(b + ox ) P WH(T + 2bw + ex 2y =0 (6.35)

(6.36)

so that we have from (6.35) that

(L= 2){eW/r,) + 26+ en PW (10 } =0 .

It follows from this that

(L= 2{ eWi1,) + 20+ ex 92 W(1 )}

2

Az A
s-—LI- cos2p-2=¥1=B° | wrry (6.37)
(1- 8% B 2

since by virtue of (2.40) and (6.11) the right hand side of (6.37) is
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non-negative. Using (6.13), (6.18), (6.19) and (6.36) in (6.37) leads to

(b +ex 2w, - 20+ Wi} <0 (6.38)
which because of (2.40) and (6.26) gives

2W"(1,,)
_WT(T,J(I*- 2)+1<0 ., (6.39)

This implies a loss of ellipticity of the displacement equations of equili-
brium at a homogeneous deformation in which the deformation gradient
F is such that FuﬁFaﬁ=I*

To summarize, we have shown that for the type of material at
hand, a strict loss of ellipticity at the given deformation is sufficient
to ensure the existence of a corresponding elastostatic shock. On the

other hand, a loss of ellipticity at some homogeneous deformation is

necessary, if an elastostatic shock is to exist.

We draw attention to the fact that Theorem 2 does not imply
that if ellipticity is strictly lost at the given deformation then the cor-
responding configuration of the body must involve a shock. Rather, it
claims that such a configuration is available., There is also a shock-
less configuration available corresponding to the root x =0 of (6.20).

Likewise, a loss of ellipticity at the given deformation is not necessary

for a corresponding elastostatic shock to exist. In a boundary-value
problem that we have studied, the results of which will be reported in a
separate paper, we encountered configurations of a body involving elasto-
static shocks such that the displacement equations of equilibrium were

elliptic on both sides of the shock-line.
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7.1 Dissipativity Inequality

If we admit weak solutions into the discussion of a problem,
(such as those of the type introduced in Sections 4.0 - 6.0), we would
anticipate that since the admissible class of solutions has been greatly

widened, there could possibly be many solutions to that problem. It

is well known that this is indeed the case in the theory of quasi-linear
hyperbolic partial differential equations. See for example Lax [8].
The boundary-value problem referred to at the end of the preceding
section confirms this to be the case in the present context as well,

In such circumstances, it is essential to introduce criteria
which single out a physically admissible solution from among the many
solutions admitted by the differential equations. The second law of
thermodynamics appears to play such a role in gas dynamics. Lax [8]
has examined "'entropy conditions' which furnish such criteria in the
context of hyperbolic systems of conservation laws.

An analogous ''entropy condition' in the context of elastostatics
was proposed by Knowles and Sternberg [3] and subsequently extended
by Knowles [4]. A thermodynamic motivation for the proposed condi-
tion, in the case of compressible materials, was also given in [4]. In
the three-dimensional case, a quasi-static time dependent family of
equilibrium states was considered, the time merely playing the role

of a history parameter, and it was then required that
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ON-v dA - T W(F)dv=0 (7.1)
08 ]

for every regular sub-domain ® of R , at each instant of the time in-
terval considered. Here t is the time and v the quasi-static particle
velocity. Equation (7.1) gives expression to the idea that the rate at
which elastic energy is being stored in 8§ cannot exceed the rate at
which work is being done on 8 .

One shows easily that for a sub-domain & of the body which is
such (hat the field quantities have classical smoothness properties at
each interior point, the global condition (7. 1) holds with inequality
replaced by equality by virtue of the field equations. This is indeed as
one would expect, and accordingly (7.1) imposes no local restrictions
at a point where the fields are smooth. If however an elastostatic
shock is present in the domain 8, then (7.1) does not hold automati-
cally and consequently, at each point on the shock it imposes a local
restriction on the jumps of the field quantities.

Now consider a quasi-static family of plane strain piecewise
homogeneous elastostatic shocks in a homogeneous, incompressible,
elastic solid. It can be shown that, if at some instant t (7.1) holds
with strict inequality for all sub-domains #§ which intersect &£, then

(i) the motion of the shock-line £ at that instant is translatory

in a direction not paraliel to itself. Moreover, if we orient

the shock-line £ such that this translation is directed into
+ i
[, then at that instant

lBoc:ly forces were omitted from this discussion.
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a +
[W(E) -0 gNgF N 17>0 .

sNeF ay (7.2)

Conversely, if at some time t the quasi-static family of solutions con-
forms with (i), then (7.1) holds with strict inequality at that instant.
On the other hand we can show that if at the instant t (7.1)
holds with equality for all sub-domains $§ then either
(ii) the shock-line £ is instantaneously stationary at that
moment,
or (iii) the shock-line £ is instantaneously in a state of translation
parallel to itself at that moment,
or (iv) the jump of V;\I(E) - oaprFava across the shock is zero,
(in which case the shock-line motion is not restricted to
being translatory).
Conversely, if at some time t the quasi-static family of solutions con-
forms with one of (ii), (iii), and (iv), then (7.1) holds with equality at
that instant,
Finally one can show that if at some time t (7.1) holds for all sub-
| domains # , andif in addition it holds with equality for some sub-domain
which intersects the shock, then in fact, at that instant (7. 1) holds with
equality for all sub-domains & . We conclude from this that the preceding
are the only possibilities. Therefore, if (7.1) holds it is necessary
that one of (i) - (iv) hold. Conversely if one of (i) - (iv) holds this is
sufficient to ensure that (7. 1) hold.
One arrives at (i) - (iv) by applying to the incompressible case
| the parallel arguments used by Knowles and Sternberg in [3], or by
| specializing to this context the results of Knowles [4]. Since (7.1)

implies that the presence of an elastostatic shock decreases, or at
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least does not increase, the stored energy in the body, we refer to

(7.2) as the dissipativity inequality.

It is apparent from (i) - (iv) that the dissipativity requirement
(7.1) may be viewed as restricting the admissible class of quasi-static
motions. The only quasi-static motions admitted by it are those in

which the value of {- VG(E) +§Iﬂ:g§} at a particle does not decrease as

the particle crosses the shock-line,

It may be remarked that the dissipativity inequality does not
rule out any piecewise homogeneous elastostatic shock itself as being
inadmissible, since any given elastostatic shock can always be embedded
in a suitable time dependent family of such shocks which conforms with
the dissipativity inequality.

As one would expect, and as is verified by Knowles [4], these
results remain true locally in the general case of a curved shock in a
non-homogeneous elastic field, with the exception that the shock motion
may no longer be restricted to translation. The latter property is
clearly peculiar to piecewise homogeneous elastostatic shocks.

Using (2.4), (2.6), (4.13), (5.3), and evaluating the left hand
side of (7.2) in the frame X'’ leads to

(W(E) - Foqo, NN 1T = [WE 4], (7.3)

'
where we have also used the fact that 'ri(z is continuous across £ .

Therefore the inequality (7.Z) may be written in the simpler form
A ¢
WwE +xrX 50, (7.4)
~'. 12

+
where £ is presumed to be oriented such that it moves into - as time

B I
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t increases.
In the particular case when the material at hand is isotropic,

we have from (2.33), (6.10) and (6. 18) that

’

X —2bw'(f) (1.5)
lz" 1] .

whence (7.4), by virtue of (6. 14), (6. 18) and (6.19), may be equivalently

written as

+ + 2 R -
W(I) - W(I+2bx +cx”)+2bk WAI)>0 . (7.6)
Note, however, that (6.23) may alternatively be written as

oW

h(x) =-§--5-;(f+ 2bx + cx2) - bW/(T) | (7.7)

whence (7.6) takes the simple form

"
jh(x)dx( 0. (7.8)
0

We will make use of this form of the dissipativity inequality in the

example taken up in the next section.

Finally, we return to anisotropic, incompressible, elastic
solids in order to determine the weak shock approximation to the value i
of the jump of {W(E) - FaﬁoayNﬂNy} across the shock-line. Recall |
from Section 5.1, where we first looked at weak elastostatic shocks,
that we now assume that, given the deformation gradient é with unit
determinant and the pressure ; » there exist functions ¢(x) and p(x),

both sufficiently smooth in a neighborhood of x =0, such that I:‘ap(n)'
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defined by
F Fotnt F
Qp(u)— ap X a(x)nv(u) Yp » (7.9)

conforms with the traction continuity requirement (4.12). Observe

from (7.9) that
Floy= 270 s pOn0O0E " (7.10)
of ap % B ay ° 1

It is first necessary to analyze the traction continuity condition

(4.12), To this end set

+ &
Dy (n) =°upr("‘) - cdp(u )Np(x) . (7.11)
which because of (4.9), (5.3), (7.10) and the perpendicularity of
and n leads to

p o[ 2HE) 2WEW)
") = -
o sFaﬁ arap

- T+ -
Ng(x) + () - BIF 5o Nglx) (7.12)

Differentiating (7. 12) with respect to x and using (2.11), (5.10) and

(7.9) gives
A’ (0) = F)F_ NL(0)1_(0)n_(0)+ 5 (O)E -} N_(0) 7.13
t(0)=-c g s (E)F, (Ng(0)L, (O)n (0)+5'(0)F o Ny (7.13)
The continuity of traction across the shock requires that
Aa(") =0 (7.14)

for all sufficiently small x , from which it follows that in particular

A;(0)=0 . (7.15)




o s
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From (7.13) and (7. 15) we find that

B ¥ s 208 |
’ = il
cdpvb(E)F"Blv(O)n"(O)Np(O) -p (O)Fﬁa Np(O) =0 , (7.16)
As one would expect, (7.16) is in fact the same as (5. 12) because of
(5.3). Differentiation of (7.12) twice with respect to x , together with
the symmetry caﬂy6=cv6ap , the fact that 2*n=0 and (2.11), (5.1) -
(5.3), (5.10) and (7.9) leads to

2 +
1,(0085(0) = - (0} 5 11 ()2, (002, (0)2, (OING(OIN(OIN, (0)

+
- 4°‘°)°apya(E-)‘a(o)‘y‘omp(m”é(o)

- npyih =1 ¢ = oyt =1 e
- 2p (O)va Nﬁ(O)la(O) +2p (O)Fp Np(O)la(O) i (7.17)
where we have set

d (F) = 83m£’ (7.18)
afydipu'~" " eraﬁb'rvs'spm ’ .

and c(x) was defined in (5.1). Because of (7. 14) we have that

A;(O) =0 , whence we have from (7.17) that

+
4°‘°’°apya(£“a‘°"y“’mp(‘)m'& (0)

+
= - c2(0) . g (E) 4011 (0}, (QING(OIN(OIN, (0)

-2 "°’prl Ng(0)24,(0) + 25 '(o)Eﬁ;a‘ NG(0),(0) . (7.19)

We now compute the jump in {W(F)- EN*0N] across the shock.

R SRR, T AR b




To this end, let
= A+ o+ +
nx) = W(E(x)) - W(F) + Fapr("' )OWNV("')

- Fap(u )Np(u )Oav(n )Nv(n) . (7.

Because of traction continuity, the fact that L'n=0, (4.9), (5.3) and

(7.9) we can write (7.20) as

™ A * BW(i(K))
n(n)=W(§‘,(x))-W(E)-uc(n)la(u)NY(n)W—-—- . (7.21)
ay
Clearly,
n@)=0 , (7.22)

by virtue of (7.9). Differentiating (7.21) with respect to x and using
(2.11), (5.3) and (7.9) gives

k) = = xelle g s (EHNL NG () S lnctt (NG}, (7.23)
from which we have that
n'(0)=0 . (7.24)
Differentiating (7.23) with respect to x and using (7.9) leads to

n"(0) = - cX(0)e g, o (E)2, (012, (OING(OIN(O) (7.25)

which because of (5.3) and (7. 16) gives

n*0) = - p'(0)n(0)2,(0) , (7. 26) 1




bl

which in turn, because la(O)na(0)=0 » implies that
: n"0)=0 . (7.27)

Finally, differentiating (7.23) twice with respect to x , using the sym-

st Lia

metry caﬁy6= cv&”‘3 » (5.3), (7.9) and (7. 18) leads to
Ay 3 +
n™(0) = - 2¢ (o)daﬂvéku(E)la(o)lv(o)lk (O)NB(O)NG(O)NU(O)

- 6% (0)c, g, 5 (F)2,(0)2, (OIN(0ING(0)

+
- 6c(0)e, g 5 (E)L (OING(OIN((0){c(0)1,(0) +c(0)2,(0)}  (7.28)

which on using (5.3), (7.19) and Ia(O)na(O) =0 implies that
o 13 +
n"(0) = - 3¢ (o)daﬂvéku(z)Ia(ouv(guk (O)Np(O)NB(O)Nu(O)

-3p(0){n’_(0)£ (0) +n,(0)£,(0)} (7.29)

Since the vectors i(x) and n(x) are perpendicular to each other,

!a(n)na(u) =0 for all sufficiently small » . (7.30)

Differentiating (7.30) with respect to » shows that

2,(0)n (0) +£ (0)n7(0)=0 , (7.31)

so that finally we may write (7.29) as

+
n(0) = - 32(00d . 0 ()2 (002, (018 (ONGOINS(OIN (0) . (7.32)
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Therefore (7.21), (7.22), (7.24) and (7.27) allow us to write

[W(E) - FugNgo, N_17 = gn"0n> +ox®)  as x=0 , (7.33)

where n"(0) is given by (7.32). We observe that the jump in

{W(F) - FaﬂNﬁoava} across the shock is of the third order in the shock

strength » , which is as in the case of compressible elastic solids.
This is analogous to the situation in gas dynamics where the entropy

jump is of the third order in the appropriate shock strength. :

gee references cited in [4].
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8.1 An Illustrative Example

For the purpose of illustrating the results of the previous sec-
tions and demonstrating how in a particular case one could in fact ob-
tain even more information than has been indicated, we now specialize
our constitutive law. Consider the hypothetical class of homogeneous,
isotropic, incompressible, elastic solids for which the plane strain

elastic potential is given by

w(D) = k{1 - exp(- i;‘(—fl)} s, 0 (8. 1)
0

One sees immediately from (8.1) that (2.40) is satisfied whence this
class of materials has a positive shear modulus.
According to (3.32), we have in simple shear, the shear stress-

amount of shear relation

2
(k) =k exp(- k. (8. 2)
Zko' 4

A sketch of the response curve in shear defined by (8.2) is shown in
Fig.2. The significant feature of this for our purposes is that T’(k)
is positive for all k in the interval (- ko, ko) and is non-positive
otherwise. The implications of this as far as the issue of the ellipti-

city of the displacement equations of equilibrium are concerned were

e T g e g e

NN R 2 o




obaerwsdl in Section 3.

We now turn to the issue of piecewise homogeneous elastostatic

+
shocks. Suppose we are given the deformation gradient F , and hence

(through (2.4), (6.5) and (6.9)) the associated value of B (say a) , and
the pressure ; on ﬁ . We look at the question of the existence of a
corresponding elastostatic shock with spatial shock-line inclination 3
to the yl-axis. 3 and ﬁ are held fixed in this discussion, and as
noted previously we may assume (6 H [3) to be in & , with no loss of
generality. We recall that a corresponding piecewise homogeneous

elastostatic shock exists if and only if the function

h(x) = (b + cx)W/(T+ 2bx + cx2) - bW/D) |

J

has a zero at some x#0. Using (8.1) in (8.3), we find, for the type

of materials under consideration, that

h(x) = %exp(- -(i—;zgl){(b + cx)exp(- -(z;bﬁfizl) - b} .
0 0

Case (i) Suppose 3 and ﬁ are such that

lSee discussion following Equation (3.33),
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P>kl | » (8. 6)
Then h’(0)<0 . One shows easily from (8.4), (8.5) and (8. 6) that in
this case h(x) has a unique zero (in addition to the one at tnhe origin)
at x=x , where x is a positive number and is such that jh(x)dx<0 >

It follows that, corresponding to the homogeneous deformation
associated with a on ﬁ and to the inclination 3 compatible with
(8.4) and (8.6), there exists a unique piecewise homogeneous elasto-
static shock with positive shock strength x . Furthermore, suppose
this piecewise homogeneous shock is embedded in a quasi-static family
of shocks. Then if at the instant when the family of shocks coincides
with this given shock the shock-line £ is translating into ﬁ , it con-
forms with the dissipativity inequality.

~

Case (ii) Suppose a and B are such that

b2<ckg ¥ (8.7)

Then h’(0)>0 . In this case, it is easily verified by virtue of (8.4),
(8.5) and (8.7) that h(x) has a unique zero (in addition to the one at
t,lee origin) at x=x , where x is a negative number such that

[ htxax>o .

. It follows that corresponding to the homogeneous deformation
associated with 6 on ﬁ and the inclination 3 compatible with (8. 4)
and (8.7), there exists a unique piecewise homogeneous elastostatic
shock with negative shock strength x . Furthermore, suppose this
piecewise homogeneous shock is embedded in a quasi-static family of
shocks, Then, if at the instant when the family of shocks coincides

with this given shock the shock-line £ is translating into 11 , it
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conforms with the dissipativity inequality.

Case (iii) Suppose ¢ and B are such that

2 2

Then h’(0)=0. In this case the only zero of h(x) is at the origin,

+
from which we conclude that if the homogeneous deformation on [ is

such that the associated value of (AS and the (proposed) inclination a
conform with (8.4) and (8.8), then there is no corresponding piecewise
homogeneous elastostatic shock.

These results are best visualized on the (¢, B)-plane. Using

(8.4) we have that

- 32c05228+k8f34 1- 62 cos 23+ (ﬁz- kg"J 1 -ﬁ >

(1-3%)

2 2
b -cko—

(8.9)

Let T' be the curve in the first quandrant of the ¢ - plane whose

equation is
It BPcos 29« kngx - B2 cos 20 - (- kg‘Jl s pz) =8 | (8. 10)

[
I' separates ( into two regions as shown in Fig.3. Case (i)
refers to points in the hatched open region shown there, while Case (ii)
refers to points in the unhatched open region. Points on ' refer to

Case (iii). One finds that ' has a minimum point at (Ge & ﬁe) where

k. Vk +4

, BatB_ | (8.11)

e 2
,4“(02 k0+2

1

o e
oe- 5 cos
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From (2 41) (3.33), (8.2) and (8.4) we find that the displacement
equations of equilibrium are elliptic on ﬁ , if and only if the deforma-
tion there is such that the associated value of B is less than Be .
Suppose that the given deformation on ﬁ is such that the displacement
equations of equilibrium are non-elliptic there. Then 32 ﬂe . The
spatial characteristics associated with this deformation are inclined
to the A 1 ~Principal axis of é at angles o , which because of (3.46),

(8.1) and (8.4) are given by

(8.12)

cos 2a =

kgsll <8 :t({(kg+ 2W1-p2- 2} {2 - 21 -p%- z})i‘
2B
Note however, that the equation of the curve I' , (8.10), can alterna-

tively be written as

. (8.13)

I': cos2¢=

k;«/l-pzt({(kg+2)ﬁll-ﬁz-2} {(kg-zhll-ﬂz-z})i
2B

It is immediately evident from a comparison of (8. 12) and (8. 13) that,
the abscissa of the points on I' corresponding to 62 pe give the spa-
tial characteristic inclinations corresponding to the deformation asso-
ciated with P .

We now summarize our findings for the particular class of
materials at hand. Corresponding to any given homogeneous deforma-
tion on E we can have a piecewise homogeneous elastostatic shock
(provided é is not proper orthogonal, i.e. 37‘0).

If, at the given deformation, the displacement equations of

+ A
equilibrium are elliptic on [, so that B< ﬂe » the spatial shock-line
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may be inclined at any angle ¢ provided it is not parallel to the princi-
pal axes of é (i.e. @#0, 1'2-) . One can show that for such an elasto-
static shock, the displacement equations of equilibrium are non-elliptic
on 1. Furthermore the corresponding shock strength is negative and
a quasi-static motion from such a configuration is compatible with the
dissipativity inequality if the shock moves into ﬁ

On the other hand if the displacement equations of equilibrium
are non-elliptic at the given deformation on ﬁ , so that 52 Be , the
spatial shock-line may be inclined at any angle ¢ provided it is not
parallel to the principal axes of é nor parallel to the spatial charac-
teristic directions associated with the deformation on ﬁ . In this case
the sign of the shock strength and the admissible direction of quasi-
static motion depends on the specific shock-line inclination (see Fig.3).

In particular note that the admissible direction of quasi-static shock

motion, for dissipativity, is governed solely by whether the spatial

shock-line inclination is between or outside the inclinations of the

2 spatial characteristics (in the relevant quadrant) associated with the

+
deformation on [ . The ellipticity or non-ellipticity of the displace-
ment equations of equilibrium on T also turn out to depend on the

specific shock-line inclination,
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T(k) = pk exp(-K/2kg)
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FIGURE 2. RESPONSE IN SIMPLE SHEAR.
SHEAR STRESS VS. AMOUNT OF SHEAR
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-CURVE I’
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