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Discontinuous deformation gradients

in plane fin ite elastostatics of

incOmpressible xnaterials *

by

Rohan C. Abeyaratne

Califo rnia Institute of Technology

Summary

This investigation is concerned with the possibility of the change of

type of the diffe rential equations governing finite plane elastostatics for

incompressible elastic materials, and the related issue of the existence of

• equilibrium fields with discontinuous deformation gradients. Explicit

necessary and sufficient conditions on the deformation invariants and the

material for the ellipticity of the plane displacement equations of equilibrium

are established. The issue of the existence , locally, of “elastostatic shocks ” —

elastostatic fields with continuous displacements and discontinuous deforma-

tion gradients — Is then investigated. It is shown that an elastostatic shock

exists only if the gove rning field equations suffe r a loss of ellipticity at some

defo rmation. Conversely, if the governing field equations have lost c h i p-

ticity at a given defo rmation at some point, an elastoetatic shock can exist,

locally , at that point. The re sults obtained are valid for an arbitrary homo-

geneous , isotropic, incompressible , elastic material.

*The re sult s communicated In this paper were obtained in the course of an
investigation supported by Contract N00014-75-C-0l96 with the Office of
Naval Research in Washington D. C.
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1. 1 Introduction

In two recent papers [i i ,  [z] ,  Knowles and Sternberg looked in-

to the question of the possible loss of elhipticity of the displacement equa-

tion s of equilibrium of nonlinear elastostatics for compressible materials.

in [ ii ,  three dimensional homogeneous deformations of a particular iso-

tropic compressible elastic material were considered , and necessary

and sufficient restrictions on the principal stretches for ellipticity

to prevail were deduced. It was shown tha t for thi s material, a loss of

ellipticity occurred at sufficiently severe local defo rmations. In [z]

they established similar explicit necessary and sufficient conditions for

an arbitrary homogeneous, isotropic , compressible elastic solid sub-

jected to plane deformations.

These papers were motivated by some asymptotic studie s of

crack problems they had considered previously, in which certain diffi-

culties encountered suggested that the problem may not admit a classi-

cally smooth solution.

In a subsequent pape r [3] Knowles and Sternberg investigated

the implications of a loss of ellipticity . The question of the existence

of “ehastostatic (or equilibrium) shock.” — solutions which possess fi-

nite jump diecontlnulties of the disp lacement gradient across certain

surface s while maintaining continuous displacements — was studied

within the context of plane defo rmations of compressible elastic solids.

It was established in [3] that a necessary condition for the existence of

a piecewise homogeneous elastostatic shock wa s that the material lose

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
Li
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strong ellipticity at some homogeneous deformation . The question of

whether in fact a loss of ordinary ellipticity was necessary was left

unanswered, In the particular case of weak elastostatic shocks it was

shown that ordinary elhipticity must necessarily be host at the pre-

assigned deformation on one side of the shock.

Rice [5] had previously examined the phenomenon of “localiza-

tion of deformation” for plastic materials. Localization is the bifurca-

tion of an initially smooth state of defo rmation into one involving a zone

of highly localized shearing. Localized deformations as described in

[5] appear to have certain qualitative features in common with elasto-

static shocks as described in [3]. In fact, within hia setting, Rice

shows that the onset of localization is first possible, in a program of

defo rmation, when the displacement equations of equilibrium lose el-

• hipticity .

In the pre sent study we treat the corresponding issues for an

arbitrary homogeneous incompressible elastic solid subjected to plane

defo rmations. Some of the re sults established are appropriate only

for isotropic materials. Explicit necessary and sufficient restrictions

on the deformation invariants and the material are deduced which ensure

ellipticity of the plane displacement equations of equilibrium. In the con-

text of isotropic materials it is established that a loss of ordinary ch ip-

ticity at some homogeneous defo rmation is a necessary condition for the

existence of a piecewise homogeneous elastostatic shock. It is furthe r

shown that a strict loss of ordinary elhipticity at a given homogeneous

deformation is sufficient, but not ne cessary, to ensure the existence of

a piecewise homogeneous elastostatic shock which has associate d with S

it this preassigned deformation on one side .

Li1. 
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In Section 2 we cite some relevant results from the theory of fi-

nite elsistostatics for incompressible elastic solids which we then spe-

cialize to plane deformations. The notion of the “local amount of shear”

associated with any plane volume preserving defo rmation is then de-

scribed. In Section 3 the conventional notion of ellipticity is adapted

to the displacement equations of equilibrium and necessary and suffi-

cient conditions for ehhipticity are then deduced. In the isotropic case

these conditions are put into explicit form and a simple interpretation

is given in terms of what we call the “local amount of shear ” . A loss

of ehhipticity is fo und to depend on a loss of invertibility of the shear

stress-amount of shear relation in simple shear.

The notion of piecewise homogeneous elastostatic shocks devel-

oped in [3] for the compressible case is extended to the incompressible

case in Section 4. In Section 5 we then consider weak elastostatic shocks

in homogeneous , incompressible, anisotropic elastic solids and show

that a loss of efli pticity at the pre-assigned deformation on one side of

the shock is necessary for its existence . The jumps across the shock-

line of various physically si gnificant field quantitie s are also deduced.

in Section 6 we return to equilibrium shocks of finite strength in homo-

geneous , incompressible , isotropicelastic solids . We show that a strict

failure of ordinary ellipticity at a given deformation is sufficient to ensure the

existence of a piecewise homogeneous elastostatlc shock which has associated

with it thi s deformation on one side . Moreover we show that a failure of ordinary

ellipticity at some homogeneous deformation is nece saary for the existence

of a shockof the type under consideration .

In SectIon 7 we discus s the dissipativity inequality first proposed

by Knowles and Ste rnberg in [~3 and late r extended by Knowle s [4] to

5-’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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three-dimensional deformations of both compressible and incompressible

materials and explore some of its consequences. In particular its im-

plications in the case of weak elastostatic shocks in anisotropic materials

S ‘ is examined.

Finally in Section 8 we illustrate some of the preceeding results

by means of an example involving a particular hypothetical constitutive

law.

~~~~~~~ 
_ _ _ _ _ _ _ _ _ _
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2. 1 Preliminaries on Finite Plane Elastostatics

Let ~ be the three-dimensional open region occupied by the

interior of a body in its undefo rmed configuration. A deformation of the

body is described by a sufficiently smooth and invertible transformation

~~~~(x) =x+u (x) on R (2 .1)

which maps R onto a domain R~ . He re y is the position vector afte r

defo rmation of the particle wh i ch , in the unde formed configuration was

located at * . We will assume for the moment that the disp lacement

vector field u(x) Is twice continuously differentiable on ~I

• The defo rmation gradient tenso r ~ is defined by

on R , (2 .2)

and since the material is presumed to be incompressible.

d e t F= l  on R , ( 2 . 3 )

where det F’ is the Jacobian of the mapping (2. 1). The right and left

Ca uchy-Gre en tensors ~ and C are defined respectively by

C F TF G F F T 
. (2 .4)

Let r be the Cauchy stress tenso r field accompanying the de-

formation at hand. Assuming that i is continuously differentiable on

the equilibrium equations are

~~

*5-  — —S ~~~~ ~~~~~ ~~~~~~~~ 
——



:1
div i , ~ 

¶ T 
, (2 .5)

where body forces are presumed to be absent . The nominal (Piola)

stress tensor correspondin g to i is given by

cy ,(F T ) _ l  
, (2 6)

where use has been made of (2 .3), Equations (2 .2), (2 3), (2 .5) and

(2 .6) lead to the equilibrium equations

div a =0 , aFT FaT on ~ . (2 .7)

We now turn to the constitutive relations and su ppose that the

body is homogeneous and elastic and possesses an elastic potential
A

- 

W = W(F) . W represents the strain energy density per unit undeformed

5 volume. The nominal stresses are now given by

A T l
~~~W~~(F) _ p(F ) , (2 .8)

S 
where p(x) is a scalar field arising because of the incompressibility

constraint. We assume for the moment that p(x ) is continuously dif-

ferentiable on ~ . Alternatively, from (2 .6), (2.8) we have

A T
= WF(F)F - p l . (2 .9)

From (2 . l) -(2 .3), (2 .7) and (2 .8)  we are led to

‘See Truesde hl and Noll (6],  page 304.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S~~~~~~~ S - S
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on R , (2 . 10) 1

where

S 8 W ( ~~)
Ci i k,(F) 8F ijâF kI 

(2 .11)

Let A (x) , A (z) and A ~(x) , where A ~>O , be the e igenvalue s

of the syn-imetric positive definite tenso r field G (or 
~~~). 

The princi-

pal scalar invariants of G are

I1= t r G = A ~~+A~~+A~~ , I2=~~[ (tr G) 2 - (tr C2 )} =A + A + A ~ X~ ,

I3= d e t G = X ~ A~ A~ , (2 . 12)

where tr denotes the trace. From (2.3), (2.4) and (2. 12) it follows

s that

X X ~ X~~~~l on R . (2 .13)

In the special case when the material is incompressible and isotropic ,

W depends on F only through the invarIant. 1
~ 

and 12 ,  whence

we have

1All tensor and vecto r components are taken with respect to a f ixed
rectangular cartesian frame. A comma followed by a subscript indi-
cates differentiation with re spect to the corresponding x-coordinate .
Latin subscripts take the values 1, 2 , 3 while Greek subscripts take the

• values 1, 2. Repeated subscripts are summed ove r the appropriate
range.

- - _ _ _ _ _
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S *W W(I 1,  Iz ) . (2 . 14)

Suppose now that the domain R occupied by the undefo rn-ied

body is a right cylinder with generators parallel to the x3-axis. Let

fl be the open region of the (x 1, x2)-plane occupied by the inter ior of

the middle cross-section of this cylinder. Suppose further that the

deformation (2 . 1) is a plane deformation so that

y~ =x~+u ~ (x 1, x2 ) , y3 =x 3 on R . (2 . 15)

II is then mapped onto a domain 11~ of the same plane , which would be

the middle cross-section of the cylindrical region 
~~ 

. From here on

we shall be exclusively concerned with plane deformations unless spe-

cifically stated otherwise. It follows from (2 .2) and (2 . 15) that

F~~ =y c y i3 F~3= F 3~ = 0  F3~ = 1 - (2 .16)

The nominal stresses are now given by

_____ 
-1 

_____acy f3 = 8F~~ 
- pF~~~, a33- SF33 

- p . (2 . 17)

If we assume that the elastic potential W is such that

I ;

-5- —5-- 5— —  5-••~-5-~~~~ ~~~~~-
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8W(1~ 8W(~~)

~F 8F 0 (2 . 18)
3~

for every F such that (2 . 16) holds , then we furthe r have

a3~~=a 013=0  . (2 .19)

The assumpt ion (2 . 18) holds true identically for isotrop ic materials in

particular .

One sees readily from (2 .7), (2 . 15)-(2 . l9~ that for equilibrium

in the x3-direction it is necessary and sufficient that the scalar field

p(x) be independent of x3 . Thus

p=p (x 1, x2 ) on fl . (2.20)

In the present circumstances (2. 10) specializes to

c~~~~5(~~)u~ ~~ - p ~~~~~ = 0  on fl . (2 . 21)

Equation (2 .21), together with the incompressibility condit ion (2.3),

constitute the governing system of equations for the plane strain

problem and we shall refer to them as the displacement equatti~rs of

equilibrium in plane strain. They are three scalar equations involving

— 

the three functions u~ (x 1, x2 ) and p(x 1, x2 ) .

One sees re adily from (2.4) and (2 . 15) that in any plane defo r-

• mation, unity is an eigenvalue of the left and ri ght Cauchy-Green ten-

sors , whence we have

• (2 .22)

______— ____—- — ——5--  5 -~~-~~ 
S 

-
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Equations (2 . 12) and (2 . 13) now specialize to

1 , I2= X ~~+X~~+A ~ X~ , I3=X~ ? (2.23)

and

A~ A~~= l  , (2 .24)

whence

I1=I 2=A~~+ -~~~+ 1 - (2 .25)

If we now define I by

I = F ~~F~~ , (2.26)

we have, because of (2 .4), (2 . 12), (2. 16) and (2. 25) that

(2. 27)

In the special case when the material is isotropic, w~ have

from (2 . 14) and (2 . 27) that, in plane deformations,

*W = W ( I + l  , 1+1) (2. 29)

so that if we define the Plane Strain Elastic Potential W(I) by

- ~‘31~~t~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~--~~~~~~~~~~—5---- 5-5-~~~~~~~
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*W(I) = W(I-f 1 , 1+1)  , 1� 2 , (2 .30)

we have in the present context that W(F) = W(1) where I

It follows from this that

A
OW(E)
8F =2 F 0~~W’(I) , (2 .31)

a W(F)
c~~~~~(F) = &F~~~~F~ 

= 26 6~ 6W’(I) + 4F~~ F 6W” (I) . (2 . 32)

From (2.4) ,  (2 . 9)  and (2 .31) we conclude that

(2 .33)

It is apparent that the plane strain elastic potential W(I) fully determines

the in-plane stress components. Thi s is not true , however , of the com-

ponent ¶33
Finally we recall that in this case the in-plane Baker-Ericksen

inequality requires that

if X 1~~A 2 (2 .34) 1

for all pure homogeneou s (plane) deformations of the fo rm

(no sum); A 1A 2 = 1 . L~,>0 . y3=x3 , ( 2 . 3 5 )

1S.e Truesdell and Noll [6]. page 158.

_______- - - 
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where are the princi pal in-p lane Cauchy stresses.  From (2 4),

(2 .16), (2.26), (2.33) and (2.35) we have

¶~~~2W’(I)X~~-p , I A ~~+X ~ , (2.36)

whence (2. 34) may be equivalently written as

W’(A~~+A~~)(A 
1-X 2)

2(X 1+A 2)>0 , A 1, A 2>0 , A 1A 2= 1, A 1# A 2 (2 .37)

or

W’(A~~+ A~~)> O , A 1,A 2
>0 , A 1A 2 = 1  , A 1~~A 2 , (2.38)

which in turn is equivalent to

W’(I)>O for 1>2 . (2.39)

The Infinitesimal shear modulus Is easily shown to be ~i = ZW’(Z) ; If

we assume that ~i>0 , we may replace (2.39) by

W’(I)>O for I �2 . (2 . 4 0 )

Requiring that (2 . 40) hold for the material at hand 1. equivalen t to re-

quirin g that the mat,rial have a positive (finite) shear modulus. Con - 
~

-

versely , (2 .40) Implies (2.34) ,  though It does not Imply the full (three-

dimensional) Bake r - Er icksen inequalities .

2 2  Local Arnount of Shear

We now establish that any plane volume preserving deformation

can be decomposed locally Into the product of a simple shear In a suit-

able direction followed or preceded by a suitable rotation ,

L.. _.-~~~~~~~~~~~~ _.. - - -5 .
~~~~~~~~~~~~ —- — - --- ,—-~~~~~~~~~~

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5-
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To this end let F be a two-dimensional tensor such th at

detF= 1. Define

I=F~~F~~ . (2 .41)1

Then we will show that there exist proper orthogonal tensors Q~ •
non-singular tensors K 1 ~S2 with unit determinant (all two-dimen- -

sional) and rectangular cartesian frames X 1 , X2 such that

(2 .42)

I k
X X 2K . ( 2 . 4 3)

0 1

Conversely, if (2 .42) holds for some proper orthogonal tensors C1, Q2
and tensors K 1, K 2 with unit determinant such that (2.43) is true in

some rectangular cartesian frame s X 1, X2 , then we will show that

k is necessarily given by k = ± / i~~~

In order to prove the f i rs t  part of the result , let X be a princi-

pal frame for the symmetric positive definite tensor FFT 
. Then

A 2 0

(FFT ) X X > 0  (2.44)

S 

- 

0 A 2

S 

- 
‘Since det F = 1 , we have that necessarily I � 2.

x2K 1 
~ the matrix of components of the tensor K in the frame X -—l -._ 1 —4

- -  —S.- 
~~~~~~~~ - -

L~. _ _ _ _ _ _ _ _-S —5- -
~~~~~~-S— -
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where we have made use of the fact that det F = 1. Clearly we may

assume A � I with no loss of generality . Conside r the rectangular

- 

- cartesian coordinate frame X2 obt ained by rotating the frame X

counterclockwise through an angle e determined by

sin e -  , c o s 8=  A 
- (2 .45)

By the change of frame formula for tensors,

I I

cos O sin8
T X2 T X T(

~
Z )  =~Q~~

)
~~ ~

-sIn 8 cos 8

T XZ
S 

- we compute (FF ) to find

X 2+A 2 - 1 A
T XZ( ) = . (2 .46)

A - A ~~ 1

Let K2 be the tensor with unit determinant defined by

1 X - \ ~~X~
K ‘= . ( 2 . 4 7 )

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Then (2.46 ) and (2 .47) imply that

FFT 
~2~S2 (2.48)

Define the tensor 22 by

(2.49)

• (2 .48) and (2 .49) now lead to

Since K2 is non-singular it thus follows that = 1  whence C2
is orthogonal. But, from (2 . 49) it follows that det 22 = + 1 since

det K2 = d e t F=  1 , so that in fact 2z is prope r orthogonal.

Finally, since we are assuming A � 1 , it follows from (2 .46 )

that A - 
-1 

= A/F~~ F~~ - 2 = A/I - 2 whence from (2 • 41) k = A - 
- 1 This

establishes the left decomposition F = K 2Q2 . The ri ght decomposition

• F = Q 1K 1 can be similarly established by considering FTF in place of

The second part of the result is easily proved as follows . Sup-

pose now that associated with the given tensor F there exists some

prope r orthogonal tensor 2z some tensor K2 with unit determinant

and some rectangular cartesian frame X2 such that

F = K  Q , (2.50)

1 -

- : 
-

~~~

__-- 
-- -a

—5----- 
-5-
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1 k
X2

= , (2.51)

H 

0 ~

for some real number k. Note that the tensors ~~2 and the frame

X2 are ~~~ required to be the particular ones used in the preceedin g

proof. Since C2 is orthogonal, it follows from (2 . 50) that

FFT K K T (2 . 52)

Twhence In particular , the traces of the two-dtmenslonal tensors FF

and K 2K~ are equal. By virtue of (2 .51) we now have that necessarily

I F ~~~~ F~~~~~ = 2+ k
2 
, whence

The corresponding result for the decomposition F= 9 1K 1 may be simi-

larly established.

Given any plane volume preserving deformation with deformation

gradient ~~(z), we refe r to k(~ ) defined by (2 .41)  as the associated

local amount of shear. Therefore any arbitrary plane deformation of

an incompressible material can be viewed locally as a simple shear in

a suitable direction with local amount of shear k(x) , followed or pre-

ceded by a suitable rotation.

..-
~ ‘- i

_ _ 
-—--- “

~~~
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- 3.1 Ellipticity of the Plane Displacement Equations of Equilibrium

We now introduce the relevant notion of elli pticity without re-

stricting ourselve s to isotropic materials.

Consider a cylindrical surface S with generators parallel to

those of the undeformed body and lying wholly within It . Let C be

the curve along which S intersects 11. Assume that C has a con-

tinuous curvature , and le t ~ be the arc length on C . Then C

may be descr ibed by the non-singular parameterization

C: x = ~, I (~ )

If C is a coordinate normal to C and N(~ ) is a ~.mit vecto r normal to

C in the (x 1, ~c2 )-p lane ,then near a fixed point P on C we have the

orthogonal curvilinear coordinate system ({, C) ,  pe rmitting us to

write

x~ = .~~
(
~

) + CN~~(~~) (3.1)

for any point (x 1, x2 ) In a two-dimensional neighborhood of P. The

mapping (3. 1) is locally one to one , so that it has an inverse

- . 
~ = f(x1, ,c2) , C =g(x 1, x2 ) , (3.2)

and f and g are twice continuously differentiable in a neighborhood

of P . Note that we may take

S 

S 

~~~~~~~~~~~~~~~~~~
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o n C .

~~l!,gI

S Now suppose that (u~ (x 1, x2 ) , p(x 1, x2 )) is a solution of the -

plane displacement equations of equilibrium (2.3) and (2. 21) such that

U0, is once continuously diffe rentiable and twice piecewise continuously

differentiable on 11,, while p ii continuous and piecewise continuously

differentiable on I!. We set

, ~2(~)+CN 2(~)) ,

and furthe r suppose that , in fact , the second order partial derivatives

of ~ are all continuous across C except possibly for the normal

derivative a 2ci0, ,8c 2, and that the f i r s t  orde r partial  derivative 8~ /8~ is

continuous across C, while the normal derivative ~~~~~ may suffe r

a jump discontinuity. S

Let

ZA

[8
ti

] 
, q= [~~]

S 

where [h] denotes the j ump of a function h across C. Then one shows

easily that

[u0, ~3 3 = (3 4) 1

where ~ ~
g (i~~ 

‘2N We have by the chain rule and (3. 2) that

1 -See Section 1 of i 1

- S. -- _  
_
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A A

= ~~~~~~ 
.
~~~~~ — + ~~~~ .~~~~~~— I

which because of the presumed smoothness and (3 .3) leads to

fp 0,1=qi ~ . (3.5)

Taking jumps in the first two displacement equations of equilibrium

(2.21), and makin g use of (3 .4), (3.5) and the assumed smoothness we
get

~~~~~~~~~~~~~ - F~~ f~~q = 0 on C . ( 3 . 6 )

If for all vectors 1~-~ and nonsingular tensors F with unit deter-
minant, we define the matrix Q (i~ , F) through

(3.7)

then is symmetric by virtue of (2.11). Equation (3.6) can now be

written in the form

Q~~ U~ = qF~~ f~~ on C . ( 3 .  8 )  

-

We also need the “jump equation” associated with the remaining

displacement equation of equilibrium (2 . 3). We computea(detF)/8C to
find

S ~~(det F) = (det F)F~~ 
.~.~{;;4 ~~ ~? ~ } 

‘ ~~~~~~

where use ha s been ma de of (3. 2), the chain rule and a standard formula

- ~~~~~~~~~~~~~~~~~~ S. -~ ~~~
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for the differentiation of a determinant. Taking jumps in (3 .9) and making

use of (2.3), (3 .3)  and the presumed smoothness leads to

- 
r.~~(detF) ]=F~~ri~U0, . (3.10)

But by (2. 3) the jump in det F must vanish, whence (3. 10) simp lifies to

— 1 ——F N U  =0 on C . ( 3. 1 1 )Pa 0,

The system of jump equations associated with the displacement equations

of equilibrium are (3 .8) and (3.11), and may be regarded as three linear

homogeneous algebraic equations for the jumps Ti0, and q.

We say that the system of plane displacement equations of equili-

brium is elliptic at the solution (u 0, ,p) and at the point (x1• x2 ) if and

L 
- 

only if, for all vectors 1 0  , the system (3.8), (3. 11) has only the
H trivial solution U0,=0 , q = 0 .

Consequently If the system is elliptic , the displacement f ield

will in fact be twice continuously differentiable at the point under

consideration and the pressure p will be continuously differentiable

there. If on the other hand there exists a non-trivial solution of (3. 8),

(3. 11) for some vector j~~, then f~ is normal to a characteristic curve

in the undeformed confi guration . These characteristic curves are the

only possible carriers of discontinuities of the kind admitted here in

and p , and ellipticity precludes the existence of real characteristics.

If we set

- m0,=F~~N~ , ( 3 . 1 2 )

we can write the system of jump equation s (3.8) and (3. 11) as

________________________ —•
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Q~ 1 Q12 -in
1 

U 1

~ 2 1 ~ 22 ~~~~ U 2 =0

rn 1 in 2 0 q .

This system of linear homogeneous algebraic equat ions for U0, and q

has only the trivial solution if and only if

Q~ 1 Q12 -m~

det Q21 Q22 -in
2 ~ 0 , (3.13)

rn 1 in2 0 .

or equivalently

S 

•0,A .p~
Q0,pmX m

~~~0 . (3 . 14)
1

Since F has unit determinant, one shows easily that in plane strain

— 1 (3.15)

By virtue of (3. 12) and (3. 15) we may write (3. 14) equivalently as

€ x~~~~
F x Fo o N0,Np~~

0 • (3 .16)

Therefore , we have that a necessary and sufficient condition for

is the two-dimensional alternator. 
~11=1 22=0 , 512=1 ~ s~~i

=_ l .

5 - ,~~~~~~~~~~~~~~~~~ _ S_5_

S _ _ 4
~~
.’ ~~~ ~~~~~~

~~~~~ ‘L.
- - • - - S 

~~~~~~~~~~
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the displacement equations of equilibrium to be elliptic at a solution
(u0, p) and at some point (x1,.x2) is

(3 .17)

- 

for eve!y vecto r f~~ o . Finally, because of (3.7) it is clear that (3. 17)

Is equivalent to

~~~ 
s~~ F~~ ~~~~~~~~~~~~~~~~~ ~ )N0,N~~ 0 fo r all 

~~~~ 
vectors . (3. 18)

3.2 ~p!cialization to Isotropic Materials

When the material at hand is isotropic, we can use (2.4), (2.11),

(2. 32) and (3. 7) to simplify the necessary and sufficient condition for

ellipticity (3. 18), which then gives

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (3. 19)

for every unit vector N .  Now let the frame be principal for ~~~~~~, so that

0

[c0,~ J =
0

and evaluate (3. 19) in this frame . We then find

- 

(A ~~~ +X ~N~ )W’(I) + 2(A -A ~)2N~N~ W
*r(I),~ 0 (3. 20)

for all unit vector s N , as being necessary and sufficient for ellipticity .

We will now show that the plane displacement equations of

5

5

_ S
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equil ibr ium are elli pt ic at a so lut ion (u 0,, p) and at a r.oint (x 1, x2 ) i f

and only if

- 
W’(I)~~0 , 2W~~I) ( I - 2 ) + 1 > 0  , (3. 21)

at the point unde r consideration; i .e. that (3. 2 1) is equivalent to (3. 20) .

To show this , we observe that sin ce N is a uni t vector ,

, (3 .22)

so that (3. 20) may be written as

S 

(A ~W’(I))N~ + (A ~W’(I))N~ + ((x ~ +x  ~)w’(I) + 2(X - A ~ )~~~~ I) 1N~ N~ ,’ o (3. 23)

for all unit vectors N . If we ~et

E11=A ~ W’(I) , E22 =x ~ W’(I)

(3. 24)

E21=E 12 = ~~w’(I)+(A ~ -A ~~) 2W”(I) , z0,=N 2

we can replace (3.23) by

E~~ z0,z~~~ 0 for all z~~O , z � 0  . ( 3 . 2 5 )

It has been shown in Section 2 of reference [2 ]  that (3. 25) holds if and

only if

_____________________________________________________________________ —— 
.—.—~~~—~~ ----
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E11E22 >0 (3. 26)

S and

c E 12
S - ______ > - 1  , (3. 27)

~/E 1 1E22

where

€ - = s gn E 11= sgn E22 - ( 3 . 28)

Substituting from (3. 24) into (3. 26) we get A ~X~~(W’(I)3 2 >O

which, because A > 0  , is equivalent to

W’(I)~~0 . (3 . 29)

Using (3 . 24) and (3. 28) in (3. 27) leads to

• 
2(A ,_ x

2 ) 2
~~~if~~+ 1 > O  ,

which because of (2 .24) and (2.27) may in turn be written as

2 ( I - 2 )~~~
’
~~ + 1 > O  . ( 3 . 3 0 )

Equations (3. 29) and (3. 30) are what we set out to establish.

A physical interpretation of the ellipticity condition (3. 21) may

be obtained in terms of the concept of the local amount of shear intro-

duced in Section 2 . 2. Conside r an isotropic, incompressible, homo-

geneous, elastic solid which has a positive shear modulus:’

‘See (2 .40). A similar interpretation can clearly be given in term s of
the local amount of shear even in the unrealistic case when (2.40 ) does
not hold. -

— ~~~~~~~~~~~~ —.—. . •~~ ~~~~~~~~~~~ 
S -- •_~ — 
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W’(I)>O for I �2 . (3 .31 )

The f i rs t  of (3. 21) is now trivially sat isf ied.  If we defin e the

function 1- by

- 

¶ ( k)~~2kW’( 2 + k 2 ) , lkk a  , ( 3 . 3 2 )

then ¶ (k)  is easily shown to be the shear stress corresponding to an

amount of shear k in a simple shear deformation. The graph of T(k )

v sk  described by (3 .32)  will be called the response curve in simple

shear. Differentiatin g (3. 32) with respect to k and observing that

(3.31) holds leads to

S i 2~ a ri ~¶ ‘(k) ZW’( Z + k ’) ~ 2k ~ ~~~ + i  ~-

L w’( 2 + k  ) 
3

We therefore I m c i  that (3. 21) is equivalent to

r ’(k)>O for k = ~/i~~~ , (3 .33)

from which we conclude that for an isotropic, incompressible elastic

S solid having a positive shear modulus, the plane displacement equations

of equilibrium are elliptic at a solution (u 0,, p) and a po int
__

(x 1, x2 ) if

and only If the slope of the response curve in simple shear at an amount

of shear equal to the local amount of shear is positive.

Suppose for example that the response of a particular homo-

geneous , isotropic, incompressible elastic solid in simple shear is as

describe d by Fi g . 2 . Then in any plane deformation the displacement

equations of equilibrium are elliptic at some point (x 1, x2 ) and sonic

solution ( and only if the local amount of shear at that point k(x 1, x2 ),

- -  ~~~~~~~~~ - - 
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def ined by (2 .41),  is such that -k0< k(x 1, x2 ) <k 0
It is apparent from the above discussion that a loss of elli pticity

foi materials of the type being considered is dependent upon a loss of
invertibi lity of the shear stress — amount of shear relation in simple
shea r .

Finally, we note from (3 . 21) that the undeformed state is ellip-
tic if and only if the infinitesimal shear modulus ~ = Z W’(2) p~ 0. This is
pre cisely the condition for ellipticity of the linearized displacement
equations c’f equilibrium for a homogeneous , isotrop ic , incompressible ,
elastic material .

3.3 Characteristic Curves

If the ellipticity condition (3. 21) is violated , it follows that
there exists a unit vector N such that equality holds in (3. 20). N will
then be normal to a (material) characteristic , and we now dete rmine the
number of possible characteristics and their inclin ations. To thi s end ,
let

N 1 - - sj n 9 , N2 =cos 9 , ( 3 . 3 4 )

80 that e is the local inclination of the m aterial characteristic to the
A 1-prl.ncipal axis of C. Substituting this in (3. 20), with equality hold-
trig now, we find

— 
(A ~cos 2e +X ~sln 2 8) W’(I )  + 2(A - X~~) Z 8in Z 8co s2ew~(I) = 0 - (3 .  3 5 )  

-

We seek solutions 8 of this equation in the interval (- 
~-

, 
~
]

- 

Let us assume that the infinitesimal shear modulus of the ma-
terial is positive :

- - 
~~~~~~~~~~~~~~~~~~~~~~~~
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- ~. = 2W’(2)>0 - (3 . 3 6 )

We see immediatel y from (3. 21) that , if the point under consideration

is locally undeformed ( 1=2 )  in the given deformation, then the dis-

placement equations of equilibrium are elliptic there. Consequently

we need only consider 1>2 in our search for characteristics.

Suppose first that ellipticity is lost by virtue of the fact that the

first  of the ellipticity conditions (3. 21) is violated. 1 Then

W’(I)=O (3.37)

at the point (x1, x2 ) of interest at the given deformation. We then find

from (3.35) that eithe r W”( I ) = 0  or e = o , ~ . Using (2.41) and (3.32),

we may state this result as follows. Let k be the local amount of

shear. Then if T(k) =0 , the disp lacement equations of equilibrium are

not elliptic for the given deformation at the point under consideration .

Furthermore , we then have two (material) characteristics inclined at

angles 0 and to a principal axis of C , except in the particular

case when i ‘(k) =0  as well, in which case any number of arbitrarily

inclined characteristics may exist locally.

Now suppose that W’(I) ~ 0 at the point of interest and that ellip-

ticity is lost by virtue of the fact that the second of (3. 21) has been

violated. Then

2W”(I) (J 2)~~1~~Ø . ( 3 . 3 8 )

Equation (3. 35) can now be rearranged into the form of a quadratic

‘Note from (2.40) that this possibility does not exist if the material has
a positive shear modulus .

—,-~~~-~~- •
— 5---S.-—~~ S ~~~~~~~~~~~ -~~~~
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equation for cos 28 .

2 2 2  2 2
~~1 X 2 ) W’(I) 2 (A 1 - A 2 )

2 W~~I) COS 2 9 -  2 co s 28

~~X~~+A~ ~~~~~~~~~~~~~~~ 
(3 .39)

S Formally we can write the solut ion of thi s afte r making use of (2 . 24)

and (2 27) as

cos 28 = 
1±(( 2(1 - 2)W ”(I)/W’(I) + 1) (2( 1 + 2)W ”( r )/ w ’(I) + 1) (3 40)

z(12 _ 4)1W~(I )/W ’(I)

where with no loss of generality we have assumed that A

If (3.38) holds with equality (so that ¶ (k)~~0 , i ‘(k) = 0 at the

local ainount of shear k) we find two value s of 8 in the interval

(_ 
~~

, 

~
] from (3. 40), whence two characteristics exist. Equation (3. 40)

now simplifies to

c o s2 8 = -~j 1~ -~ , (3.41)

which because of (2 . 24) and (2 . 27) (and since A 1>A 2~ 
leads to

1 -A
2

cos28= , (3.42)
1 +~ 1

whence

t a n 9 = *A 1 . (3. 43)

__________  •



- -~~~~—~~ —5 —.----- 

S

-30-

Suppose the spatial characteristic corresponding to thi s material char-

acteristic is inclined at an angle 0, to the A 1-principal axi s of G .

It can be shown that

A
t an0 ,=~~-~ tan 8 , (3.44 )

1

so that (2 . 24), (3 .43 ) and (3 .44) give

t a n 0 , = ±~~— . ( 3 . 4 5 )
1

Because of (2 . 33), ~ is also the inclination to the corresponding prin-

cipal axis of the Cauchy stress tensor.

If however , strict inequality holds in (3 .38) (so that ¶ (k)~~0

kT(k) 1- ”(k)<O at the local amount of shear k) (3.40) give s us four value s

of 9 which in turn implies the existence of two pairs of characteristics.

Clearly, each pair is positioned symmetrically with respect to the prin-

cipal axes of C . In what follows we will have need for the inclinations

~ of the corresponding spatial characteristics to the A 1-princi pal axis

of G (X 1>A 2 ) .  From (2 .24), (2 . 27), (3.40 ) and (3.44) we have

cos 2o’ = 
- i*( f 2(1 - 2)W~

’( I)/W ’(IJ + 1) [2(1 + 21W”(I)/W ’(I) + 1 1k_ (3 46)S 

2(12 _ 4)~ W”(1)/W’(1) 
.

~~—~~•
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4. 1 Weak Formulation of Problem

In the derivat ion of the classical field equations of elasticity the

displacement field u and stress field c are assumed to satisfy certain

smoothness requirements. There are , however , some phy sical prob-

lems in which these conditions are not met , so that in orde r to study

them one would be forced to relax the smoothness demanded of the field

quantities. It may , for example , be necessary to require only that the

displacement field u(x) be continuous and piecewise continuously dif-

ferentiable on R , while the nominal stress field a(x) and the pressure

fie ld p(x) are to be piecewise continuous’ on ~ . Clearly , the global

balance laws continue to be meaningful even unde r these smoothness

conditions , but one must re-examine the validity of the local field

equations.

Of particular physical interest is the case wherein the field

quantities possess the classical degree of smoothness 2 everywhere

except on one or more regular surface s within the body . Thi s would ,

for examp le, describe an idealized model for shear bands. To formu-

late this problem, we suppose that there is a surface S in ~ such

that a , F and p are continuously differentiable everywhere in R

except on S , and such that ~~~, F and p suffer finite jump di sconti-

• nuities across it. The displacement u(x) Is presumed to be continuous

S 
1We return momentarily to the three-dimensional case in this section .
2See Section 2 . 1.

--
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eve rywhere in ~ . The possibility of the breakdown of ellipticity of the

governing equations suggests that solutions of this type to the equations

of finite elastostatice may emerge in some circumstances.

Goin g through the usual arguments, 1 one finds from the global

equilibrium of forces that

div a = 0  on R - S (4.1)

and

[a] 1N = 0  on S , (4 .2 )

while from the global equilibrium of moments we have

aFT Fa T on R - S (4.3) -

and

y(x)x[a]~~N=O on S . (4.4)

Equation (4. 2) say s that the nominal tractions are continuous across
+

S • Here [ci =a -a where a and a are the limiting values of a
(presumedto exi s t ) a sapo in ton  S isapproachedfromeach s ide , and N

is is a unit  normal to S . Equations (4. 2) and (4. 4) are referred to as

jump condition s. Note that (4. 4) is trivially satisfied once (4. 2) is.

Incompressibility likewise leads to

de tF=  1 on R - S . (4.5)

‘See Chadwick (7 ] ,  page 114. 

-5—-— 
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Such a surface S carry ing j ump discon t inuit ies in F , a and S

p which conform with the jump condition (4. 2), while maintaining con-

tinuous displa cement s ac ross it is called an “equilibrium shock”, or

an “elastostatic shock” in the particular case when the body is com-

posed of an elastic material .

4. 2 Piecewise Homogeneous Elastostatic Shocks

To investigate many of the local issues related to elastostatic

shocks, it is sufficient to conside r the case in which S is a plane and

the defo rmation gradient F is constant on eithe r side of S • From

here on we shall be concerned with such a situation within the context

of plane deformations ’ of an incompressible elastic solid , so that we

may take S to be a plane parallel to the generators of the body.

The corresponding problem for a compressible elastic solid

was inve stigated by Knowles and Sternberg (3] .  In thi s section , we

formulate the problem gove rning the existence of a-n elastostatic shock

in the incompressible case in a manner entirely analogous to [3].

Suppose that the middle cross-section of the body we are deal-

ing with occupies the entire (x1,x2)-plane H in its undeforrned confIgu—

ration. Let X be a fixed rectangular cartesian coordinate frame and

let a~ be the straight line through the origin of X with unit direction

vector I.- . Thus

~~: x0,= L 0,~ , - to <~~< x  . ( 4 . 6 )

S ‘We leave the three-dimensional introduction to elastostatic shocks of
the last section and return to plane deformations from here on .

— ---- - — - 
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Let N be the unit vector normal to af obtained by a counterclockwise
+rotation of L .  Let H and H be the two open half planes into which

+
af divides H , with TI being the one into which N points. (See Fig. 1.)

Now consider the piecewise homogeneous plane defor mation

+ +
on TI , y 0,=F ~~ x~ on H , (4.7)

I 

+ -

where F and F are constant tensors such that

+
detF=detF= 1 . (4.8)

The nominal stresses associated with the deformation (4. 7) are

+ 8W(F) + + + - 8W(F) - - -a~~~= 8F~~ 
- pF~~ on ~ ‘

~~~
= BF 0,~~ 

- pF~~ on TI . ( 4 . 9 )

Clearly, the equilibrium equations (4. 1) are satisfied ii and only if

and ~ are constants.

If we are to view the line ~ as the intersection of an equilibrium

shock S with the cross-section H , then according to Sectio n 4. 1 we

need to impose displacement and traction continuity requirements across

Because of (4.7) the requirement of a continuous displacement field
- is equivalent to

- 
- 

~~~~~ = F0~~xp On i~ ~ (4. 10)

L__ 5 ,

I ___ — —S— S.- 5—. —S—S. ____SS_ _S_ — S.S -5_S. __~~~~
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which in view 1 t  (4 .6)  reduces to

~~~~~~~~~~~~~~~~~~~~~~~ . (4 .11)

By (4. 9) , we have traction cont inuity (4. 2) If and only if

( 1 1+  1 AI 8W(F) + +
~~~~ 

1 8W(F) - - -l1~ &F~~ 
- pF~~ N~~= i~~F; -p F~~ N~ . (4. 12)

If the deformation field (4 .7), subject to (4 .8), togethe r with
+ + -

real constants p and p conform with (4.11) and (4. 12), and If F~ F ,

then we refer to the corresponding elastostatic field as a piecewise

homogeneous elastostatic shocks The line a~ will be referred to as

the material shock-line. Figure 1(b) display s the images of the three

rectangles shown in Fig. 1(a) unde r a typical mapping (4.7) in the pres-

ence of such a shock.

In order to examine questions related to the existence of piece-

• wise homogeneous elastost atic shocks we pose the following problem.
+ + +Given a constant tensor F with de tF =  1 and a real constant p , de-

te rmine a constant tensor F with d e t F=  1 (F # .~~) and a real constant

~ such that (4. 11) and (4. 12) hold.

Equation (4.11)  may be solved as follows. Let 4,  which we

shall refe r to as the sDat lal shock-lin e, be the Image of i~ under the
+ - +mapp Ing (4. 7). Let fl~ and TI~ be the two half planes into which TI

and II map by virtue of (4.7) .  Supp ose I is the unit direction vector

of i~~ such that the unit no rmal xi to 4 obtained by rotat ing .L
+

counterclockwise points into fl ,~ . (See Fig. 1.) Without any loss of

- - 1Note from (4. 12) that If then necessarily

S 

-S _ _ _

•~ 5_S S. 
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generality the inclinations ~ and ~ of the shock-lines *~ and

relative to the x1-axi s may be confined to the interval ,

One can show readily that , given a constant tensor with
+

d e t F=  1 , (4.11) will hold for a tensor F with unit determinant if and

only if

+F = ( 6  + a i  xi )F (4 .13 )
0,~~~~~~ ~43 ,

for some real number a . We omit the derivation of thi s re sult as it

parallels exactly the corresponding derivation in the compressible case

contained in [3]. Let X ’ be the rectangular cartesian frame obtained

by rotating the frame X counterclockwise through an angle 0 . The

base vectors associated with X ’ arc then I and xi . Expressing (4. 13)

in the frame X ’ we have

-x ’ -x ’ +x , +x s
F11 F 12 1 a F 11 F 12

= . (4. 14)

-x ’ -x ’ +x, +xl
F21 F22 0 1 F21 F22

Accordingly, the deformation on II may be viewed as being equivalent
+

to the deformation on TI followed by a simple shear parallel to 4
with an amount of shear a •

We may now pose the following problem which is equivalent to
+

the one posed earlier. Given a constant tensor with unit determi-

nant and a real constant • determine real numbers ~ , a(~ 0) and

0 E [-~~
. , j] such that (4. 12) holds with F defined by (4. 13). He re

we have omitted a = 0 since, by (4. 13) we see that thi s corre sponds to

the shockless state F = g

_ 

•_ _ _ _ _ _ _ _ _ _ _
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Finally , we note that since the traction continuity Condition (4. 12)
imposes only two scalar restriction s on the three parameters 0 , a
and ~ , one would anticipate that if there exists an elastostatic shock

+ +corresponding to a given F and p ,  then in fact there exists a one —

paramete r family of shocks

- ~~~~~ __~~~~~~~~~~~ S_S__~~~~~ 
- •Lb _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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5. 1 Weak Piecewise Homogeneous Elastostatj c Shocks 5

We now specialize the problem posed in the general setting of

Section 4 .2 to the f irs t  of two simp ler cases. Here we confine attention

to elastostatic shocks that are weak in the sense that the departure of S

+F from F is small. Motivated by the remarks at the end of the pre-

vious section , we assume here that there exists a one-parameter family
-
~ of shocks , corresponding to the given and , dependin g on the

parameter a and sufficiently smooth near a = 0 . Specifically, we

suppose that there are functions 0(a ) , ~ (a) both twice continuously

differentiable in a neighborhood of a = 0  , such that F defined by (4. 13)

together with ~ (a) confo rms with the traction continuity requirement

(4 . 12). Since from (4. 13) we have that F = when a = 0  , we may use

a as a measure of the departure of F from . Accordingly a will

be referred to as the shock-strength_parameter.

We first  record the following kinematic results which are estab-

lished in [3] . Let

c = ~~~ L~~= I F L ,  . ( 5 . 1 )

Then

~~~~~~~~~~~~~~~~~~ , (5 .2)

• ~~~~~~~~~~~~~~~~~~~~ , (5 3 )

~ 

S —~~~~~~~~~ —
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I ~i ~ + n n ~ = , L~~ e ~~~~ . ( 5 . 4 )

If 0(a ) and ~ (a) exist as described above, it follows that L , N , I ,
xi , F and c are all a dependent whence we write L(a ) , N (a) , 1(a)

n(a ) • F(a) and c(a).

Because of the presumed smoothness of 0(a) we have the fol-

lowing Taylor expansions, where a prime denote s differentiation with

respect to a

1(a ) = 1(0) + 1 ’(O) a + 0 ( a )  , ~~~~ = n ( O ) + n ’(O)a+o (a ) (5 5) 1

Equation (4. 13) now gives

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (5 .6)

, (5 .7)

where we have also used (5.4). This enables us to write the following

Taylor expansion
S 

A +8 W(F (a) )  8 W(F)  a W(F) +
- OF = OF 

‘ +a OF 8F I~ (0)n (0)F 8+o(a) . (5 . 8 )

V6

The Taylor expansion of ~ (a) leads to

‘Whenever we write 0(a ) , we mean 0(k ) as a -.0

____  _ _ _ _ _ _ _ _ _ _ _  

_____ _ _ _ _ _ _ _ _ _ _  - I ~
S 

~~~~~~~~~~~~~~~~~~~~~~~~ •-

-5- ~-3
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- 
~ (a) (0 ) + k p ’(O)~~0(K ) . ( 5 . 9 )

Using (5.6) . (5.7)  and (5 .9)  and evaluating the traction continuity con-

dition (4. 12) to leading orde r , gives

p =p ( O )  . ( 5 . 1 0 )

Consequently we may write (5. 9) as

(5. 11)

We now return to the traction continuity condition (4. 12) and re-evaluate

it to leading order using (2. 11), (5 .5), (5.7),  (5.8) an~ (5. 11). This

leads to

{c py 6 I
~~

O n
~

(0)
~~~ô ~ ‘(0)~~~~ +~~1~

(O)n
~

(O) }N~ (0) = 0 • (5. 12)

which are L~~3 scalar equations for ~ ‘(0) and 0(0 )

5. 2 A Necessary Condition for the Existence of a Weak Sho ck

We now derive a necessary condition for equation (5. 12) to have

a solution j ’(O) , 0(0) . We have from a Taylor expans ion of (5. 3) that

(5 .13)

Equations (5. 12) and (5. 13) lead to

+ + + + (5. 14)

But since ,~ is perpendicular to xi we have 1~,(0 )n 3(O) = 0 ~ whence

• (5. 14) simplifies to

- .~~~~ 
•

. —- S— ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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c~ 3 6 (F)l (O)n (O)n (0)p F ps(~)~~ (0) 0 . ( 5 .  15 )

- Multi plying (5 . 15) by n~ (0) and making use of the fact that ii is a unit
vecto r leads to

+ + +p ’(0)= c~~~ o (F)1 (o)n (o )fl (o )fl (o)F F . (5. 16)

— Alternatively, multiplying (5 . 15) by 
~~~~ 

give s

c y6 (~~)1 (0)1 (0)n (0)n (0)~~~~~~~~= O  . (5 . 17)

by virtue of the fact that .1•n = 0 . Using (5. 3 and (5 .4)  in (5. 17) leads
to

+ + +
(5.18)

which because of (3.7) can be equivalently written as

+ + +
(5 . 19)

-
S Equation (5. 19) must necessarily hold if a one parameter family of

S 

elastostatic shocks of the type being considered is to exist . On com-
paring with (3. 18), we see that (5. 19) implie s a loss of ellipticity of the

+ + +displacement equations of equilibrium on TI at the given F and p
S We therefore have the followin g result:

Theorem 1. A necessary condition for the exist-
S 

ence of a one-param eter family of elastostatic
- shocks, of the kind under consideration , is that

the displacem ent equati ons of equi librium suffe r
• a loss of ellipticity at the given deformation and

pressure on TI . Furthe rmore , In the weak shock

________________________
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limit (a -‘0) the material shock-line and the
spatial shock-line tend respectively to a ma-
terial and spatial characteristic associated
with tl .

The corresponding result was obtained by Knowles and

Sternberg [3] in the case of compressible elastic materials.

In the event that , corresponding to a given and a one -

parameter family of shocks of the type being considered exists , the

jumps of various physical quantities across the shock can be easily
+ +determined to leading orde r in terms of the given F , p and the pre-

sumably determinable (from (5. 12)) 0(0) , ~ ‘(0) . We now determine

some of these jumps.

(I) The j ump in energy density [w] +

The Taylor expansion of ~~(F(a)) about a = 0  , togethe r with

(2.9) and (5.6) leads to

~~
(F(a)) = *d) + ~~~ff pfl p(O) l ( O ) + ~ 1 (0)n (0)} + o(x ) . (5. 20)

Since I is perpendicular to we can drop the last term in (5 .20) to

get

[W] =x t~(0)i (0)+o(a) , (5. 21)

where we have set S

t (a ) = tn ( a ) . (5. 22)

S 

As a consequence of (2. 6), (4. 2), (5 .3 )  and displacement contin uity , we

S 

• 
see Immediately that t(a ) = 4 n ( x ) =~~n(k ) which Implies the continuity of 

--

the Cauchy traction vector across .

_ _ _  
~~~~
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(Ii) The atre s, j umps [i•~~~]~

From (2 .9)  we have that

- 8S~~~) -
~~~~ 8F~~ ~~ P ~~~~~ 

.

OW(F) + -
&F~~ ~p~~

P6c~ ‘ (5 .24)

which togethe r with (2 .11), (5.6) ,  (5.8), (5.11) and (5. 22) leads to

- + +  + - +[i ’~~~ )~~ = a{c 6 (F)F 6F~~ I (O)n (O) - p ‘(0)6~~ + pn (0)I~ (0)

(5. 25)

(iii) The j ump in the normal stress acting on a plane perpendi-

cular to 
~~~

Conside r the plan e perpendicular to the spatial shock so that the

normal to this plane is . The j ump In the normal stress acting on

this plane across the shock-line, [~~~ ‘1
f 

, is

(5. 26)

which because of (5. 25) and the perpendicularity of the vectors 4~ 
, and 

S

n can be written to Leading order as

+ +  +
S + c~~~,6 (F)F 6P’

PM
I (O) l~~(O)I (0)n (0)j +o(a ) . (5. 27)

In view of (5.4) and (5. l. thi s lead s to

__5- - S L.
5-
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I ~
‘]~ = ~ t~~(0)I~ (0) + c~~~~6

(
~~

)
~~~6~~~~

1 (0)n (0)

- 2~~’(0)}+o(a ) ,

which together with (5. 25) gIve s

. (5 . 28)

- 5-_ 5 5 _ _ _

-~~~~ -5-  
S. 

— -—5-—-— - 5 — - 5- --
~~~~
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6. 1 Finite Elastostatic Shocks in Isotropic Incompressible Materials

We now return to shocks of finite strength, but assume the ma-

terial at hand to be isotropic. Substituting (2 . 31) in (4. 12) and making

use of (2 .4) and (5 .3) leads to

{ 2W’(t)~~~~
_ 

~ 6~~ }n~ = {2 W’(I)G ~~- , (6. 1)

where

+ +  + + - -
I = F~~ F~~ G~~ , I = F~~ F~~ = . (6.  2)

Clearly, (6. 1) is simply a statement of the fact that the Cauchy traction

is continuous across the spatial shock. The ori ginal problem concern-

ing the existence of elastostatic shocks can now be posed as follows:

given a constant tensor with unit determinant and a real constant

S , determine real numbers ~ , a(p~ 0) and 0 such that (6. 1) holds

with G given by (4. 13), (6 .2) .

If we express (6. 1) in terms of its components in the frame X ’,

we have

2 2 W’(~~=2 G~ 2 W’(I) , (6 .3)

+ 1  + + - , - -
2G22 W’( I ) -p =2 G 22 W’(I ) - p  . ( 6 . 4 )

As observed earlier , (6.3) and (6.4) impose only two scalar restrictions

on the three quantities 0 , a and ~ . Furthermore since ~ enters

5---- -  —5-U- . - ~~~~~~~~~~~~ ~~~~~~~~~
s •
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only in (6 .4 ) . and there too only linearly, we may consider (6.3) and

(6.4) separately i.e. if there are numbers a and 0 such that (6 .3)

holds , then the re certainly is a third number f such that (6.4) holds

as well. The existence of an elastostatic ahock therefore depends on

whether there are numbers a and 0 such tha t (6. 3) holds.

To pursue thi s question further, we need the components of

G and C in the frame X ’ With no loss of generali ty let us take X

to be a principal frame for G . Then

0

, X 1X 2 1 • (6. 5)

0

By the change of frame formula for tensors we have

~~X R~~ XR T 
, (6 .6)

cosO sin O

(6.7)

-sin O cosØ

Equations (6. 5) - (6. 7) lead to

~~
2

+x
2 

x
2

x
2

1 
+ 

1 cos 20 - 2 
2 sin ZO

+ ,

C = . (6 . 8)

• 
~~~~~~~~ ~~~~~~~~

- 
1 

2 sin 20 - 2 cos 20

H ~~~. , 

- - — - - -
~~~ 

— - - -  _ _ _ _ _ _ _

- _•~ •.•~_~~~~~~ _ •... 
.-. - ~~~~~~~~~~ 

S
~ 

SSS5 -• -. —~~——~-•‘—.-—~~- -- -.5 -~ - - ..- -
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If we now set

2 2X
2 2 (6 .9 )

A 1 +A 2

we can write (6. 8) because of the second of (6. 5) as

l + ~~cos 2O -~~ sin 2Ø
1

= 
_ _ _ _  . (6. 10)

-~~sinzø 1-~~ cos 2Ø

It is clear from (6. 5) and (6. 9), that the value of f3 alone suf-

fices to determine C completely , and in this sense ~ is a measure
+

of the deformation on TI • Note that because X~,>0 , (6.9) imp lie s that

1 ’13 ’- - 1  . (6. 11)

Furthermore, we have ~ = 0 if and only if the part of the body occupy -
+ 1ing TI in its undefo rrned configuration remains undefo rmed under the

mapp ing (4.7) .

We now find from (4. 14), (6. 2) and (6. 10) that

l + ~~cos 2 Ø - 2 ~ f3sin 2Ø -~~sin 2Ø
- ~3cos 20) + a ( l  - ~cos 20)

1 
• (6 . 12).~~~

- ~sin 20 + a ( 1  - f3cos 20) 1 - ~cos 20

is then a prope r orthogonal tensor.

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

.. - . 

- ~~~
~.
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and from (6. 2), (6. 10) and (6 . 12) that

+ 21=  
____  

, (6.13 )
• 

I~~~~
2

~ 
Z - Z a ~ sin 2 0+a 2 ( 1- 1~co s 20) 

- (6 . 14)

Returning to the traction continuity requirement (6. 3) with (6. 10),

(6. 12) - (6. 14) we find

-~~sin 20W’ 2

+ k ( J~~~~C0 $ 2O)JW #(2 2 8in20 (b 00 8 20~~ - (6 .15)

11-p
2 /

• We may now pose the problem as follows: given a num ber t~ in ( -1 , 1) , 1

S find numbers  a # 0  and 0 in r -~ , su ch that (6. 15) holds.

If , for the given ~3 in (- 1, 1) and any 0 in [-
~ 

, there

does not exist a root a~~0 to (6. 15), the material is incapable of sus-

taining an elastostatic shock corresponding to the given defo rm ation
+

associated with ~ on 11 - On the othe r hand if , for the given ~ in

(-  1, 1) and for some 0 in [- 
~~

-
, 

~~~] 
there is a root a p’ 0 to equation

(6. 15), then the re exists a corresponding elastostatic shock. The re-

fore , we now investigate the possibility that (6. 15) has a root a #0

for all values of 0 and ~ such that -~~‘Øs~~~, P 1 < 1

Finally we observe from (6. 15) that if for some pair (0 , P)

_ _ _ _ _  

_ _ _ _  
_ _ _ _  

•

— -— cak~~~~~ J__. _ — — ‘  ~~~~~~~~~ ~~sr . _ . .  s — — -  — — - ~~~~~ ____________________________
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I~ I <1 and -
~~~

� 0 �j there exists a root a to equation (6. 15), then

(i) - k is a root of (6. 15) for the value s ( -0  , ~3) , and

(ii) - a is a root of (6. 15) for the value s (-
~~ 

- 0 , -

It therefore follows that , as far as the issue of existence is conce rned ,

we may in fact restrict 0 to [o , 
~~~] 

and ~3 to [0 , 1). If we define the

set C by

(6. 16)

we need to look at the question of the existence of a root a #0  to

equation (6.15) for every (0, P) in C .

6. 2 Some General Results

We now establish some general results concerning the existence

of elastostatic shocks, valid for a homogeneous, isotropic, incompre s-

sible elastic solid which has a positive shear modulus. 
1

We first  make the following preliminary observation. If (3 = 0

or 0 = 0  or 0=~~ , the only root of (6. 15) is a = 0  . This foflo~~
directly from (6. 15) because of (2.40) . Consequently, for a material

of the type we are considering, no elastostatic shock is possible if the
+

part of the body occupying fl~ is undeformed, nor can any spatial
S 

it +shock-line be inclined at 0 or to the principal axes of C .  We

may now re strict attention to the interior C of the set C:

~~ = C ( 0 , P ) I 0 < 0 < ~~ , o<p< 1} . (6. 17)

If we set

‘We assume from here on that (2.40) holds.

4 
~~~~~~~~~~~ 

—:

* --- S.--- ~~~
-

- - S.- ~~~~~~~~~~~~
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R i n 2~“ 
~~~

“ on C • (6. 18)
(1-p

c = c ( O , p ) =
U _

~~~0~~~~
) on , (6.19)

• ( 1 - (3 )

we can write (6. 15) using (6. 13), (6. 18) and (6. 19) as

bW’(i) = (b + ca)W’J+ Zba + ca 2 ) . (6 . 20)

Clearly

b<0 on , (6. 21)

0
c>0 on C . (6. 22)

‘-5. I’ 0
Choose and fix a point (0 , (3) In C . At thi s f ixed value of

0 and (3 we define the function h by

+ 2 +h(x) = (b + cx)W’(I + 2hz + cx ) - bW’(I) for lx i  <~~~ • (6. 23)

where t , b and c are given by (6. 13), (6. 18) and (6. 19) respectively

evaluated at (~ , (3) . If the plane strain elastic potential W(I) is twice

continuously differentiable on I~ 2 , as we have impliciLy assumed, it

follow, that h(x) is continuously differentiable on (- ~~ , ix ) .  If there

exists an equilibrium shock corresponding to the homogeneous defo r-
A + A

rnation associated with (3 on fl and inclined at an angIe 0 to the

y 1-azls, it is necessary and sufficient that h(x) have a zero at some

‘From (6 . 13), (6. 18), (6. 19) and (6. 22) we have that

I + Zbx + cx2= 2 + (b +:x)2 + (C ~)2 
� 2 for all x~ <~~~

S. 5- 5-
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x#0  . The zero of h(x) give s the shock strength a

Because of (2 .40), (6. 21) and (6 .22) we see from (6. 23) that

h ( 0 ) = 0  (6. 24)

h(-~~) = - b W’(i)> 0 , - .~>0 . (6. 25)

It now follows from (6. 24), (6. 25) and the smoothness of h(x) that :

(i) if h ’(O)<O , then there exists a zero of h(x) othe r than

x = 0 ,

(ii) if there exists a zero other than x =  0 of h(x ) , then there

exists a number a~~# 0 such that h’(k
*

) = 0 . Furthermore,
+ 2since h ’(- b/c)  = cW’(I - b / c )>0  we have

- (6. 26)

Because of the remarks made before (6. 24), we may interpret

(i) and (ii) as follows:

(a) h ’(O)<O is sufficient to ensure the existence of an elasto-

static shock corresponding to the deformation associated
A +

with (3 on II with spatial shock inclination 0

(b) If an elastostatic shock as just described is to exist, then it

is necessary that h ’(a,,j =O for some number a~
This leads to the main results of this section which we now es-

tablish. We first introduce the following terminology. Recall from

(2 . 40) and (3. 21), that a loss of ellipticity of the displacement equations

of equilibrium can occur at some deformation and at some point if and

only if

-— -~~~~- 
S . S .~ -—
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2W~~I) (J 2)~~ 1~~0 . (6 . 27)

If ellipticity is lost because in fact the strict inequality holds in (6. 27), -

-

we say that a strict failure of ellipticity has occurred. Since four

characte ristic curve s exist in this case (see Section 3.3) one may say

that the displacement equations of equilibrium are ~ype rbo 1ic at such
+

a deformation on

Theorem 2. A strict failure of ellipticity of the di s-
placement equations of equilibrium, at the given homo-
geneous deformation and pressure on H , is sufficient
to ensure the existence of a corresponding elastostatic
shock in a homogeneous, isotropic , incompressible,
elastic solid with a positive shear modulus . 1

Proof:
+By hypothesis, the given deformation gradient F is such that

-

- the associated value of ( 3 ,  say f3 , given by (2 .4 ) ,  (6 .5)  and (6 .9) con-

forms with the inequality

+
~~~I - 2 ) + 1 < O  , (6.28)

W’(I)

where by (6. 13)

+ 21=  
____  

. ( 6 . 2 9 )
I A 2

0/ 1 -p

Note from (2 .40) and (6. 28) that necessarily I # 2  , whence t 3 # 0  . We

now choose the value of 0 as

‘This and the following result can be readily modified for material s whose• shear modulus is not always positive.

- - - - 5

- - - - - - - - - S.-~~~~~~~~~~~~~ - - —S~~~~~~~~ - —- -
~~
- -- .5
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(6 .30) 1

We will show that correspondin g to the given homogeneous deformation
-4

on TI , such that the associated value of (3 conforms with (6. 28) and

(6. 29), there exists an elastostatic shock at the inclination 0 g iven by

(6.30).

Accordin g to ( 6. 23) and statement (a) following (6. 26) , we need

only show that

2 + +Zb W”( 1) + c W ’(I ) < O  at (~ ,(3 ) , (6 .3 1)

in order to establish this. Using (2 . 40) we may write (6. 28) alternate-

ly aa

+ + 2 +Zb 2W”(I)+cW ’(I ) +  (4
b 

- c’)W’( I ) <O , (6 .32)

where b and c are defined by (6. 18), (6. 19) and evaluated at (~ , ~)

S 
Using (6. 18), (6. 19) and (6. 29) in (6. 32) we find

( 
____

2b ZWA d ) + c W ?d) _ 
,.

~~~~~

÷ 
-~cos 2~~- 

~~~~~~~~~~~~~~ 

~W”(t)< O , (6.33)
( l - ( 3  ) ( I - 2 )  (3 J

which because of (6.30) reduce s to (6.3 1), which in turn establishes our

result.

Theorem 3. A necessary condition for the existence
of a piecewise homogeneous elastostatic shock in a
homogeneous , isotropic , incompressible, elastic

‘Since ~~~~ , ~3~ < 1 thi s define s a real angle 0 In (0 ,~~)

_____________________ 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

. -
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solid with positive shear modulus , is that the dis-
placement equations of equilibrium suffer a loss
of elli pticity at some homogeneous deformation.

Proof:
A A 0

By hypothesis there Is a point (0 , (3) in C such that there

exists an associated elastostatic shock. By statement (b) following

(6.2 6) then , there is a real number ~~~ such that

h ’(a~~)-= 0 (6 .34)

+ A A

where h(z) Is given by (6. 23) with b , c and I evaluated at (0 , (3)

Equation s (6. 23) and (6 .34) give that

cW’(t+ Zbst *+ ca~~) +  2(b + ca *)2W”(t+ 2ba *+ca~~) = O  . ( 6 . 3 5 )

Let

• 
I
*= t + 2 b K ~ +ca~ , (6.36)

- 
so that we have from (6.35) that

(I~ - 2) {CW’(I*) + 2(b + ca
*

)2W”(I
*) }= O .

It follows from this that

(I t - 2){cW’(l*
)+  Z ( b + c~t~ )2W’~(I~ )}

( 1-~~2 ) ~ cos4-  1~~ .I1~~~~ 2}2 w
~
( I )  , (6.37)

sinr e by virtue of (2.40) and (6. 11) the ri ght hand side of (6.37) Is

• 5
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non-negative. Using (6. 13), (6. 18), (6. 19) and (6.36) in (6.37) leads to

(b + ca *
) 2 {ZW”(I

*
)(I

*- Z ) + W ’(I~ )} � 0 , (6. 38)

which because of (2. 40) and (6. 26) give s

ZW”(I)~~
~~~~~ 

j ( I~ — 2 ) +  l �0 . (6. 39)
TV

This implies a loss of ellipticity of the disp lacement equations of equili-

brium at a homogeneous deformation in which the deformation gradient

F is such that F F 1
—~ c 4 3 c~(3 *

To sun~marize, we have shown that for the type of material at

hand, a strict loss of ellipticity at the given deformation is sufficient

to ensure the existence of a corre sponding elastostatic shock . On the

other hand, a loss of eUipticity at some homogeneous deformation is

necessary, if an elastostatic shock is to exist.

We draw attention to the fact that Theorem 2 does not imply

that if ellipticity is strictly lost at the given defo rmation then the cor-

responding configuration of the body must involve a shock. Rather , it

claims that such a configur ation is available . There is also a shock-

less configuration available corresponding to the root a = 0 of (6. 20).

Likewise, a loss of ellipticity at the given deformation is not necessary

for a corresponding elastostatic shock to exist. In a boundary-value

problem that we have studied, the results of which will be repo rted in a

separate paper , we encountered configurations of a body involving elasto-

static shocks such th at the displacement equations of equilibrium were

elliptic on both side s of the shock-line.

L~S. S5S.5 -~ . .~~~~~ ~~~~~ 5 5 - - S - S — - S  _S~~_ ~~~~~ • .  t
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7. 1 Dissipativity Inequality

If we admit weak solutions into the discussion of a problem ,

(such as those of the type introduced in Sections 4 .0 - 6.0) ,  we would

anticipate that since the admissible class of solutions has been greatly

widened, there could possibly be many solutions to that problem. It

is well known that this is indeed the case in the theory of quasi-linear

hyperbolic partial differential equations. See for example Lax (8] .

The boundary-value problem referred to at the end of the preceding

section confirms this to be the case in the present context as well .

In such circumstances, it is essential to introduce criteria

which single out a physically admissible solution from among the many

solutions admitted by the differential equations. The second law of

thermodynamics appears to play such a role in gas dynamics. Lax [8]

has examined “entropy conditions ” which furnish such criteria in the

context of hyperbolic systems of conserv~tion laws.

An analogous “entropy condition ” in the rontext of elastostatics

was proposed by Knowles and Sternberg [3] and subsequently extended

by Knowles (4] .  A thermodynamic motivation for the proposed condi-

tion , in the case of compressible materials , was also given in [4]. In

the three-dimensional case, a quasi-static time dependent family of

equilibrium states was considered, the time merely playing the role

of a histo ry parameter , and it was then required that

. 5 -
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for eve ry regular  sub-domain ~ of ~ , at each instant of the time in- 
4

tervaj . considered. Here t is the time and v the quasi-static particle

velocity. EquatIon (7. 1) give s expression to the idea that the rate at

which elastic energy is being stored in £ cannot exceed the rat e at

which work is being done on ~ .
One shows easily that for a sub-domain ~ of the body which is

such ~hat the field quantitie s have classical smoothness properties at

each interior point , the global condition (7. 1) holds with inequality

replaced by equality by virtue of the field equations. This is indeed as

one would expect, and accordingly (7. 1) impose s no local restrictions

at a point where the fields are smooth. If however an elastostatic

shock is present in the domain £ , then (7. 1) does not hold automati-

cally and consequently, at each point on the shock it imposes a local

restriction on the jumps of the field quantities.

Now consider a quasi-static family of plane strain piecewise

homogeneous elastostatic shocks in a homogeneous , incompressible ,

elastic solid. It can be shown that , If at some instant t (7 . 1) holds

with strict inequality for all sub-domains ~ which intersect ~ , then

(i) the motion of the shock-line ~ at that instant is translatory

in a direction not parallel to itself . Moreove r , if we orient
S 

the shock-line *~ such that this translation is directed into
+
U , then at that instant

‘Body force s were omitted from this discussion .

-

. 
-

- - - —- -‘a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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[ % ( F) - a ~~ N~ F~~ N ] ~~>o - (7. 2)

Conversely, if at some time t the quasi-static family of solutions con-

forms with (i), then (7. 1) holds with strict inequality at that instant.

On the other hand we can show that if at the instant t (7. 1)

holds with equality for all sub-domains ~ then eithe r

(ii) the shock-line ~ is instantaneously stationary at that

moment,

or (ii i) the shock-line ~f is instantaneously in a state of translation

parallel to itself at that moment,

or (iv) the jump of W(F) - a
~ pNpF

~~
N

~ 
across the shock is zero ,

(in which case the shock-line motion is not restricted to

being translatory).

Conversely, if at some time t the quasi-static family of solutions con-

forms with one of (ii), (iii), and (iv), then (7. 1) holds with equality at

that instant.

Finally one can show that if at some time t (7. 1) holds for all sub-

domains ~ , and if in addition it holds with equality for some sub-domain

which intersects the shock , then in fa ct , at that instan t (7. l)holds with

equality for all sub-domains ~ - We conclude from this that the preceding

are the only possibilities. Therefore , if (7. 1) holds it is necessary

that one of (I) - (iv) hold. Conversely if one of (I)  - (iv) holds thi s is

S - 
sufficient to ensure that (7. 1) hold.

One arrive s at (i) - (iv) by applying to the incompressible case

the parallel arguments used by Knowles and Sternberg in [3], or by
.5 specializing to this context the results of Knowles [4]. Since (7. 1)

implies that the presence of an elastostatic shock decreases , or at

- -

-~~ S ~.55
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least does not increase , the stored energy in the body , we refe r to

(7. 2) as the dissipativity inequality.

It is apparent from (i) - (iv) that the dissipativity requi rement

(7. 1) may be viewed as restricting the admissible class of quasi-static S

motions. The only quasi-static motions admitted by it are those in

which the value of C - W(~~) + FN .ZN )  at a particle does not decrease as
the particle crosses the shock-line.

It may be remarked that the dissipativity inequality doe s not

rule out any piecewise homogeneous elastostatic shock itself as being

inadmissible, since any given elastostatic shock can always be embedc~ed

in a suitable time dependent family of such shocks which conforms with

the dissipativity inequality.

As one would expect, and as is verified by Knowles [4], these

results remain true locally in the general case of a curved shock in a

non-homogeneous elastic field , with the exception that the shock motion

may no longer be restricted to translation. The latter prope rty is

clearly peculiar to piecewise homogeneous elastostatic shocks.

Using ~2.4), (2 .6), (4. 13), (5.3), and evaluating the left hand

side of (7. 2) in the frame X ’ lead s to

( *(F) - F~~ a~~ N~ N ] ~ = [%~(F)]~ + a1’
~~ , (7.3)

where we have also used the fact that is continuous across 4
Therefore the inequality (7. 

~~) may be written in the simpler form

(7.4)

+where ~ is presumed to be oriented such that it moves into II- as time

• .
-~ — — - - — . 5  __~~~ _~~~~~5~~5-
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t increases.

In the particular case when the material at hand is isotropic ,
we have from (2. 33), (6. 10) and (6. 18) that

I +
r 12 = 2bW’(I )  , (7. 5)

whence (7. 4), by virtue of (6. 14), (6. 18) and (6. 19), may be equivalently

Written as

+ + 2 +W(I) - W(I + ZbK+ca  )+ Zba W’(I )> O . (7 . 6 )

Note , however, that (6. 23) may altern atively be written as

18W ~~ 2 +h(x) -(I + Z b x + cx ) . . bW’(I )  , (7.7)

whence (7 .6) takes the simple form

5h(x)dx <o . (7 . 8 )

We will make use of this fo rm of the dissipativi ty inequ ality in the

example taken up in the next section .

Finally , we return to anisotropic, incompressible, elastic

solids in orde r to determine the weak shock approximation to the value

of the jump of C%~(~ ) - F~~ a N ~ N )  acros s the shock-line. Recall

from Section 5. 1, where we first looked at weak elastostatic shock.,
+that we now assume that, given the deformation gradient ~ with unit

determinant and the pressure , there exist functions 0(a ) and ~ (a) ,

both sufficiently smooth in a neighborhood of a =0 , such that F~~ (a) -

—__- 5 ___SS.

________ -~~-
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defined by

- + +F~~ (a ) = F ~~~+a1 (a )n (a )F~~ , (7 .9)

conforms with the traction continuity requirement (4. 12). Observe

from (7. 9) that

- 1 ~~~ + -1F~~ (a) = F~~ - a1 (a )n~ (a)F . (7 . 10)

— It is first necessary to analyze the traction continuity condition

(4. 12). To this end set

+
• (7.11)

which because of (4. 9), (5.3), (7. 10) and the perpendicularity of I

and n leads to

(
~ ~~~~~~ -1 8W(F) OW (F(a)) I - + ~ -l(a ) = ~~~F~~~ ai~ J Np(a ) + ( P ( a ) _ p ) F ~~~N~ (a) . (7 . 12)

Differentiating (7. 12) with respect to a and using (2 .11), (5. 10) and

(7.9) gives

A’(O) = - ~~~ ~~~~~ 8N~ (0) I  (0)n (0) +~~~ I(°)~g~~~~~ N~ (0) . (7. 1 3 )

The continuity of traction across the shock require. that

(7.14)

for all sufficiently small a , from which it follow s that In particul ar

A~ (0) a0  . (7. 15 )

~~~~~~~~~~~~~~~~~~~~~~~~~ S S ._S_ _~~~~~
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From (7. 13) and (7. 15) we find that

+ +  + 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • (7 .16)

As one would expect , (7. 16) is in fact the same as (5. 12) because of

(5. 3). Differentiation of (7. 12) twice with respect to a , together with

the symmetry c~~~~8= c~ 6~~ 
, the fact that 1•n =0  and (2. 11), (5. 1) -

(5.3), (5.10) and (7 .9) leads to -

S

-
~~~~~~~~ 2 +

I~ (0)~~~(0) = - c (0 )d
~~ ox~~

( F ) I 0,(0 )I  (0) l ~ (0)N~ (0)N 8(0)N
1~

(0)

— - 4c(0)c~~~~5(F)I~ (0)I (0)N~ (0)N~ (0)

- 2~ ‘(O)~~~~ N~ (0)I~~(0) + 2~ ‘(0)~~~~ N~ (0)I (O) , (7. 1?)

where we have set

& 3’~~(F)
d~ p~ 6~~~(F) = OF OFV6OFX~ 

• (7. 18)

and c(a ) was defined in (5. 1). Because of (7. 14) we have that

= 0 , whence we have from (7. 17) that

+

S 

4c(0)c~~~~6(F)I (0)I (0)N~ (0)N~ (0)

2 +
= - c 

~~~~~~~~~~~~~~~~~~~~~~~~ 
(0)N~ (0)N 6 (0)N~ (0)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (7. 19)

We now compute the jump in CW (~~~) - FN•aN) across the shock.

— —________ — — _
~~~ 

S __ _ _ _ _5_ ;____ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~

-
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To this end, let

- F ~ (a)N~ (a )a (a )N (a ) . (7 .20)

Because of traction continuity, the fact that ~~n = 0  , (4 .9), ( 5.3) and

(7.9) we can write (7 .20) as 

-
- ,. +r) ( a ) = W(F(a) ) -W(F) -ac ( ,c) I (a )N (a ) OF ( 7 . 2 1 )

Clearly,

r~( 0 ) = 0  , (7. 22)

by virtue of (7. 9). Differentiating (7. 21) with respect to a and using

(2.11), (5.3) and (7 .9) gives

‘fl’(a)=_ac(a)c p ô (F(x))1 (a)N5(a)4~.[ac(a)I (a)N~(a)) , (7. 23)

from which we have that

(7.24)

Differentiating (7. 23) with re spect to a and using (7. 9) leads to

r~”(0) = - c2(0)c ~~~~6 (~~) I (0)I (O) N ~ (O)N 6 (O)  , (7. 25)

which because of (5.3) and (7. 16) gives

(7. 26)

- 

. 
_ _ _ _ _ _ _ _ _ _ _ _ _ _

- - -5------ - — —— -- --~ - S .  - ~~~~~~~~~~~~~~~~~~~~~ - _ ___  ‘ -
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which in turn , because I~ (0) r ~~( 0)  = 0 , implies that

(7.27)
r

Finally, d ifferentiating (7. 23) twice with respect to a , using the sym-

metry c~~~~6 = ~~~~~ , (5. 3), (7 .9) and (7. 18) leads to

rlm( 0) = - 2c 3 
(0)d ~~~~g) , ( O) , (0) ,  (0)N~ (0)N 5(O)N (o)

2 +
- 6c

- 6c(0)c p ô (~~)I (o)N~ (o)N 5(o) [ c’(O)I (o) + c(0)I~~(O)) (7. 28)

which on using (5 . 3), (7. 19) and I~~(0)n~ (0) = 0 implies that

r~
m( 0)  = - .~

c3(o)d
~~~~ox (~~ I (O)1 (o)1 (0)N~ (0)N 6(0)N (o)

- 3f, ‘( O ) [ n ’ (0) 1 (0)  +n (0)1 ’ (0)) (7. 29)

Since the vectors 1(a ) and n(a) are perpendicular to each othe r ,

1~ (a) n~ (a) = 0 for all sufficiently small a - (7.  30)

Differentiatin g (7. 30) with respect to a shows that

I~ (0)n ( O ) + 1 (O)n ’ (O) O , ( 7 . 3 1 )

so that finally we may write (7. 29) as

r~
m(0) = - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ (O)N~ (O)N 6 (O)N (o) . (7.  32 )

S 

— - -— ~~~
-—

~~~~~~~ -~~ —-- ~~~~~~~~~~~~~~~
-—_- 
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Therefore (7. 21), (7. 22), (7. 24) and (7 . 27) allow us to write

[w(F) - F~~ N~ a N ]  = ~~r~m(0)a 3 -f o(a 3 ) as a-. O , ( 7 . 3 3 )  
-

-

where ~‘“(0) is g iven by (7.32). We observe that the jump in

- F~~ N~cy N )  across the shock is of the third order in the shock -

strength a , which is as in the case of compressible elastic solids .

This is analogous to the situation in gas dynamics where the entropy

jump is of the third order in the appropriate shock strength. 1

‘See references cited in [4].

- 5- - - — —- ~~~~~~~~~~~~~~~~~~~~~~ 
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8. 1 An Illustrative Example

For the purpose of illust rating the res ult s of the previous se c-

tions and demonstrating how in a particular case one could in fact ob-

tain even more information than has been indicated , we now specialize

our constitutive law . Conside r the hypothetical class of homogeneous,

isotropic , incompressible , elastic solids f o r  which the plane strain

elastic potential is given by

W(I) =~~k~{1-e~~ (- 
~~~~~~~~~~

)} , ~ >0 , k0 >0 . ( 8 .1)

One see s immediately from (8. 1) that (2 .40) is satisfied whence this

class of materials has a positive she ar modulus .

According to (3.32), we have in simple shear , the shear stress-

amount of shear relation

(8 .2)
2k0 ’ 5

A sketch of the response curve in shear defined by (8 .2) is shown in

Fig. 2 . The significant fe ature of this for our purposes is that T’(k)

is positive for all k in the interval (- k0, k0) and is non-positive

othe rwise. The implications of this as far as the issue of the ellipti-

city of the displacement equations of equilibrium are concerned were

~~~S. -—

~~~~~~~:~~~~~~

- ~~~~~~~~~~~~~~~~~~ ; S
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observed 1 in S’ct io n 3.

We now turn to the issue of piecewise homogeneous elastostatic
+shocks. Suppose we are given the deformation gradient F , and hence

(through (2 .4), (6.5) and (6.9 ))  the associated value of ~3 (say ~ ) , and
+ +the pressure p on 11 . We look at the question of the existence of a

corresponding elasto static shock with spatial shock-line inclination ~
to the y 1-axis. 3 and ~ are held fix:d in this discussion, and as

noted previously we may assume (0 , t~) to be in G , with no loss of

generality . We recall that a corresponding piecewise homogeneous

elastostatic shock exists If and only if the function

h(x) = (b + cx)W’(t+ Zbx + cx2 ) - bW’(t) , (8.3)

where

b =~~~~~! sin 2 ~~o , ~~ = 
l -aco;2 ;  >0 ,

(8 .4)

+ 21 = —  >2  •
“2

has a zero at some ,cp’0. Using (8.1) in (8.3), we find , for the type

of materials unde r consideration, that

h(x) = ~~exp(- ~~22)){ (b + cx)exp(_ (2bx +~~x
2 )) 

- b} . (8.  5)

Case (I) Supp ose 3 and are such that

ISee discussion following Equation (3. 33) .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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b2 >ck~ . ( 8. 6 )

• Then h ’(O)<O . One shows easily from (8. 4), (8 .5)  and (8 .6 )  that in

this case h(x) has a unique zero (In addition to the one at the origin)

at x = a , where a is a positive number and is such that Sh(x)c~x< 0
o

It follows that, cor responding to the homogeneous deformation
A + A

associated with $3 on fl and to the inclination ~ compatible with

(8. 4) and (8.6),  there exists a unique piecewise homogeneous elasto-

static shock with positive shock strength a . Furthe rmore , suppose

this piecewise homogeneous shock is embedded in a quasi-static family

of shocks. Then if at the instant when the family of shocks coincides
+with this given shock the shock-line L is translating into fl , it con-

forms with the disslpativity inequality.

Case (ii) Suppose 0 and ~3 are such that

b2<ck~ . ( 8 . 7 )

Then h ’(O)>O . In this case , it is easily verified by virtue of (8.4),

• (8. 5) and (8. 7) that h(x) has a unique zero (in addition to the one at

the origin) at x = a  , where a is a negative number such that

$ 
h(x)dx>0 .

0
S It follows that corresponding to the homogeneous deformation

A + p.
associated with $3 on II and the inclination 0 compatible with (8.4)

and (8. 7), there exists a unique piecewise homogeneous elastostatic

shock with negative shock strength a . Furthermore , suppose thi s

piecewise homogeneous shock is embedded in a quasi-static family of
S 

shocks. Then , if at the Instant when the family of shocks coincides

with this given shock the shock-line a~ Is translating into TI , it

- 
•~ 

- - 
~~~~

-
~~~~~

--
~~~
-

~~~~ 
‘.-~~~

--
~~~~~~~~~~~~~~
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conforms with the dissipativity inequality .

Case (iii) Suppose 0 and are such that

2 2b =c k 0 . (8. 8)

Then h’(O)=O. In this case the only zero of h(x) is at the origin,
+

from which we conclude that if the homogeneous deformation on TI is

such that the associated value of ~3 and the (proposed) inclination 0

conform with (8. 4) and (8.8), then there is no corresponding piecewise

homogeneous elastostatic shock.

These results are best visualized on the (0, 13)-plane . Using

(8 .4) we have that

“2 2 ”  2 ” f ~~~~~ “2 2 1  .
~�

2 2 -(3 cos 2Ø+k0j3~I 1 -$3 cos 2O + ($3 _ k
0
1J1~~$3 )b - c 0- 2 . . )

(‘- 13 )

Let r be the curve in the f i rs t  quandr ant of the 0 - $3 plane whose

equation is

$3
2
cos

2
ZØ -k~$3Jl ~~~ cos 20- ((3

2 k~J1 - $32 ) 0  . (8. 10)

T separates 6 into two regions as shown in Fig.3. Case (i)

refers to points in the hatched open region 3hown there , while Case (LI )

refers to points in the unhatched open region. Points on I’ refer to

Case (III). One finds that r has a minimum point at 
~~e ~~~ 

where

/ k \ k~~~k2 +4
0 ~ 4co s ’( 0 ‘

~ 
, $3 = 

0
2

0 
. ( 8 . 1 1 )

* ~ J 4+k ~~) 
e k0 + 2

.5 

~~~~~~~~~~~~~~~~~~
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From (2 4fl (~ .33), (8.2) and (8.4) we find that the displacement
+equations of equilibrium are elliptic on TI , if and only if the deforn-i a-

tion there is such that the associated value of $3 is less than $3~ -
+Suppose that the g iven defo rmation on TI is such that the displacement

- 

equations of equilibrium are non-elliptic there . Then 
~~ 

13e The

spatial characteristics associated with this defo rmation are inclined
+

to the X 1-principal axis of G at angles ~ , which because of (3.46),

(8.1) and (8.4) are given by

k~~/l-p
2 
*({(k~ +a)Jl

_
~~~-z} {(k~-z)’I1 ..~~2 z})~

cos 2~~= A . ( 8 . 1 2 )
2(3

Note however , that the equation of the curve 1’ , (8. 10), can alterna-

tively be written as

k~~~/ l  - ~~~ + z)~Ii - $3
2 

- ~~~ {(k~ - 2)4 1 - $3
1 

-
• F :  cos 2Ø = 213 . (8. 13)

it is immediately evident from a comparison of (8. 12) and (8. 13) that ,

the abscissa of the points on F corresponding to ~ � 
~~ give the spa-

tial characteristic inclinations corresponding to the deformation asso-

ciated with P

We now summarize our finding s for the particular class of

materials at hand. Corresponding to any given homogeneous defo rma-
+

tion on II we can have a piecewise homogeneous elastostatic shock
+ A

(provided F is not proper orthogonal, I.e. $3~~0).

If , at the given defo rmation, the displacement equationa of

equilibrium are elliptic on II , so that (3< $3~ , the spatial shock-line

L~ ~•-•~~•L 
5— --~~~ --~~~~~ 
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may be inclined at any angle 0 provided it is not parallel to the princi- 
-

pal axes of ~ (i .e .  Ø~~0 , 2~) • One can show that for such an elasto-

static shock, the displacement equations of equilibrium are non-elliptic

on TI . Furthermore the corresponding shock strength is negative and
- a quasi-static motion from such a configuration is compatible with the

dissipativity inequality if the shock move s into TI .

On the other hand if the displacement equations of equilibrium
+ A

are non-elliptic at the given deformation on TI , so that 3� 13e the

spatial shock-line may be inclined at any angle 0 provIded it is not
+

parallel to the principal axes of G nor parallel to the spatial charac-

teristic directions associated with the deformation on . In thi s case

the sign of the shock strength and the admissible direction of quasi-

static motion depends on the specific shock-line inclination (see Fig.3) .

In particular note that the admissible direction of quasi-static shock

motion, for disslpativity, is governed solely by whether the spatial

- shock-line inclination is between or outside the inclinations of the

2 spatial characteristics (in the relevant quadrant) associated with the
+

defo rmation on TI . The ellipticity or non-ellipticity of the displace-

S ment equations of equilibrium on TI also turn out to depend on the

specific shock-line inclination.
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r(k) : ~i.k exp(-k2/2k~) -

r (k) -

FIGURE 2. RESPONSE IN SIMPLE SHEAR.
SHEAR STRESS VS. AMOUNT OF SHEAR
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CASE (I)

-~~~ -CASE (U)

~H .  

K < O
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a a 
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~~~~~~~~~ 
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~~~~ ADMISSIBLE SHOCK MOTION IS INTO 11

• F ] ADMI SSIBLE SHOCK MOTION IS INTO 11

S FIGURE ~~~~. PLANE OF PARAMETERS # AND ~~;
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