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Abstract

In this paper we examine a multi—product , multi—machine , 2—echelon

scheduling problem. First, a heuristic approach to solving the problem is

developed then a series of parameter conditions are specified which , if met ,

result in the heuristic providing~ ~~

A feasible solution if one exists/ and

an optimal solution if one exists.

Several extensions of the problem are discussed . Finally, solution approaches

for other parameter conditions are discussed.
ft~

Keywords : Scheduling, multi—echelon, heuristics
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INTRODUCTIO N

In this paper , an extension of the multi—facility , multi—product

problem examined by Dorsey, Hodgson , and Ratliff [10] is discussed.

Where the problem of Dorsey et. a].. is concerned with different products

manufactured in a single production operation, this problem is concerned

with different products manufactured in a series of production operations.

Each operation is unique and is called a stage of production. Each pro—

duct requires the same sequence of production stages in its creation as

every other product. Each machine is used exclusively in a given pro-

duction stage.

For instance, a gear blank for an automobile transmission is f irs t

turned and given an initial shape on a screw machine. The gear teeth

are cut using a gear hobber. Then the gear goes through a series of

machining opera tions which result In a f inished gear , ready for asseithly

into a transmission. It is also many times the case that more than one

product is produced on any given set of facilities (stage). In this

situation it is necessary to schedule the produc ts to be produced over

the stages in order to satisf y the demand for the products. It is

assumed (with little loss in generality) that time can be discretized

for scheduling purposes into periods (i.e., shifts, days , weeks). It

is also assumed tha t the demand for each product is known sufficiently

well to be used for planning purposes over some horizon. It is this

scenario that provides the setting for this paper.

The gear manufacturing example illustrates the requirements of the

problem. The different kinds of gears are the different products. Each

kind starts from a different kind of blank. The turning of the blank

L
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and the cutting of the gear teeth are different operations and can be

considered production stages. Each gear must go through both stages in

the same serial sequence. Clearly , the screw machine and the gear hobber

can be used only in their respective production stages.

The problem is broken up into two problem types: an anterior and a

posterior bottleneck. The anterior bottleneck is characterized by an

assumption tha t any stage of production has less produc tion capacity than

any of the succeeding stages. This assumption will cause more time per

unit to be devoted to production in the earlier of two stages. The result

is that the question of schedule feasibility becomes a question of whether

or not there is enough time or machine capacity to handle the demands

placed upon the earliest stage of the production system. The posterior

bottleneck is characterized by an assumption that any stage of production

has more production capacity than any of the succeeding stages.

We first discuss the anterior bottleneck problem with only two stages

in series. One possible solution method is presented which consists of

solving a series of network flow problems. (A greedy algorithm, developed

by Dorsey [10], is presented which solves the network flow s~~prob1ems.)

It is shown that under cer tain assumptions the technique f inds a feasible

solution to the total problem. With the addition of an ordering assumption

on the cost coeff icients, the technique finds an optimal solution. These

results are then extended to N stages in series. Extensions of the model

and of the solution technique to more general production systems are

briefly discussed. Application of the technique to situations in which

demand is uncertain and demand forecasts are used is considered. Finally

t h~’ p~s ~‘ r I ~r bo tt 1 t’n~.’ek p rob tern is considered.



Problem Definition

The problem can be described j s an industrL: 1 proccss in which M

different products are manufactured.  Each product undergoes the same

two stages of production in the same sequence . Wi th in  stage j  there are

N

~ 

parallel identical machines wh ich perform the operations associated

wi th  the stage .

Al l  production runs , calle d ~~~~~ are performed on a single product

on a sing le machine and have a duration of one time period. An (1,j) j~~
is a produc t ion run of stage j  of product i. Jobs of the same product

and stage may be scheduled consecutively or at the same time on paral lel ,

identical machines . It is assumed either that a setup is included in the

production run and is performed for each job or that setups are performed

bet ween periods .

Nonnegative in—process and finished—product inventories must be

maintained throughout the scheduling horizon H. A newly completed corn—

ponent or f inished produc t is added to the proper inventory at the end

of its production period with  no time loss for transportation. The

neceszary raw mate r ia l s  are always available. The components of p roduct i

which are used as input for the production of stage 2 of product i during

period t are drawn from the stage 1 in—process inventory at the end of

period t — l .

Considering the gear manufacturing example , af~ er a ba tch (job) of

type i gear blanks has been turned , the t urned blanks are sent to in-

process inventory to await input to the gear—hobber stage. Each turned

blank becomes one gear in finished inventory after processing by the gear

hobber.

H
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- ‘ The output of stage 2 is the finished product. Demand for each kind

of finished product is known for each time period through the scheduling

horizon. The demand for period t is satisfied from the finished—product
inventory at the end of period t.

The costs of a schedule are incurred in production costs and inventory

carrying costs. The production cost for a given stage and product is

independent of time. The inventory carrying cost for a given product is

a linearly increasing function of time. As a unit of a product finishes

a stage of production, its inventory carrying cost per unit increases

proportionally with the value added by the stage of production. The

objective is to find the production schedule Which minimizes the pro-

duction and inventory carrying costs over the horizon H while satisfying

the previously mentioned constraints.

H
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ThE LITERATURE

The multi—stage prob lem has been treated both as a stochastic and

as a deterministic problem. A survey of the literature was done by

Clark [4] includ ing publications through 1971.

There are five major techniques generally employed on the stochastic

problem: expected cost analysis, stationary process analysis, dynamics,

dynamic process analysis, and network theory. Berman and Clark [1] and

Hadley and Whitin [15, 16] used expected cost models. The same method

was used by Gross [14] and Krishman and Rao [22] in considering the pro-

blem of Hadley and Whitin. A stationary process analysis appeared in

papers by Love [24], Rosenman and Hockstra [28] , Sherbrooke [30], and

Simon [31]. Clark [31, Clark and Scarf [5, 6],  Fukuda [12, 13], Hochstaedter

[17], Williams [38 1, and Zacks [40 , 41] applied dynamic programming to

stochastic, multi—stage problems. Bessler and Veinott [2] and Ignall

and Veinott [18] used Veinott’s dynamic process analysis technique.

Finally , Connors and Zangwill [7] applied network theory to a stochastic

problem.

Deterministic, finite horizon, single—product problems were considered

by Crowston and Wagner [8], Kalymon [21], Love [25 ] , Veinott [36], Zangwill

[42, 43]. All of their problems had no constraint on the number of

machines in a stage. Von Lanzenauer [37], however, treated a determin-

istic, finite horizon, multi—product problem. The problem has a constraint

on the number of machines in each stage and is formulated as a 0—1 program.

Deterministic , infinite horizon problems were considered by Crowston ,

Wagner, and Williams [9], Jensen and Khan [19], Schwarz and Schrage [29],

and Taha and Skeith [341. Each of these deals with a single product.

5 
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Additional contributions on the problem have been made by Evans [11],

Johnson and Montgomery [20], Ratliff [27] ,  Sobel [32], Szendrovits [33],
Thomas [35], and Young ~39).

6
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THE BACKWARD SOLUTION TECHNIQUE

If stage 1 and stage 2 are viewed as two problems, there are two

basic differences between them. Stage 2 must have stage 1 supply its

input requirements, while stage 1 always has a sufficient amount of raw

materials for its input. Stage 2 must satisfy demand with its output ,

while stage 1 must satisfy the input requirements of stage 2. Assume for

— the purposes of solving stage 2, that stage 1 is able to meet the input

requirements of stage 2. Also, consider the input requirements of stage 2

to be demand on stage 1. If the two stages are viewed in this way and

if stage 2 is considered before stage 1, the two stages can be viewed

individually as single—stage problems of the type solved by Dorsey et. al.

[10]. The ability to perceive the two stages as two single—stage problems

suggests the following heuristic procedure, called the backward Solution

Technique or BST, which uses Dorsey ’s greedy algorithm [10].

Step 1. Set j=2 and use the demand for the stage 2 problem.

Step 2. Solve the problem presented by stage j, using Dorsey ’s

algorithm. Use the result to define the schedule for

stage j.

Step 3. If j—2, set j~ l. Use the input requirements of stage 2

as the demand for stage 1, and go to Step 2. Otherwise,

stop.

An application of the BST to the gear manufacturing problem would

cause the teeth—cutting stage to be optimally scheduled first. This

schedule would act as a demand timetable for turned gear blanks to be

used as input for the gear hobbers. The gear—blank—turning stage is

then solved optimally using the demand from the gear hobbers.
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It is desirable at this point to present the following list of

notation:

b~ inventory carrying cost per batch (job) per period of stage 1

of product i

b~ incremental inventory carrying cost (value added) per batch

(job) per period of stage 2 of product i

H number of periods in the scheduling horizon

4 desired level for the final inventory of stage j  of product i

4(0) initial inventory level of stage j of product I

M n~~~ er of kinds of finished products

nuither of identical machines which perform operation j

N( 1,2) minimum nt~~ er of supplier jobs in stage 1 for each job in

stage 2

p~. production rate (l’atch size) for stage j of product I - 
- 

-

La] the largest integer no greater than a

It remains to be shown under What conditions the BST gives an

optimal, or even a feasible, solution to the scheduling problem. First,

however, Dorsey’s algorithm and its use in the EST need to be explained.

Dorsey’s algorithm is presented primarily because much of the later

development in this chapter depends on its structure. (Note that the

following discussion considers a single—stage problem.)

In order to present Dorsey ’s algorithm, the concept of a relative

deadline for scheduling a job must be explained first. The relative

deadline of a job is that period in the scheduling horizon in which the

first unit of the output of the job is used to satisfy demand.

~
1.

-

~ 
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Thi s period can be determined before scheduling takes place. Thus, a

job may not be scheduled later than its relative deadline.

In order to determine relative deadlines, it is necessary to be

able to distinguish between two jobs of the same product. In some (not

necessarily optimal) schedule for a set of identical jobs, number the

jobs according to their relative positions in the schedule. If two

jobs are in the same period , then the job on the higher—numbered machine

has the highev number. Thus, the n+l~~ job of a product is “later”

than the ~th job. Without loss of generality the ~
th 

job of the product

tn this schedule is the ~
th 

job of the product in any optimal schedule.

Also, a first—in—IlL-st—out inventory system is assumed for each of the

products for simplicity of notation and without loss of generality.

Using numbered jobs and a FIFO inventory system, initial inventory

(4(0)) satisfies the early demand. After that the first unit of demand

is satisfied by the first unit of output from the f i r s t  job . The period

in whi ch th is  happens is the re lative deadline of the first job , etc.

In making these calculations the desired level of the final inventory

(4) is considered part of the demand in the last period.

In his scheduling procedure Dorsey [10) considers the periods one

at a time, starting with the last period. Within the period , he starts

by scheduling the jobs of the highest—numbered product.  He schedules

as many as possible of these jobs which have not alread y been scheduled

and which have relative deadlines no earlier than the period under con-

sideration. Having scheduled one product, I~e starts with the next lower—

numbered product. Having completely scheduled a period, he considers the

next earlier period .

9 
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Consider Table 1A for a two—machine example of the use of Dorsey ’s

method. The entries of the table are the demand (in units) for the two

products in the example. Products 1 and 2 have production rates of two

and three units per period, respectively. Product 2 has an initial inven-

tory of four units. Since period 4 has a demand for three units of

product 1, it will take two jobs to produLe them. So the firat two pro-

duct 1 jobs have their relative deadline at period 4. Thu leaves one

unit in product 1 inventory going into period 5. However, that is not

enough to cover the demand in period 5 -- another product 1 job is needed
and has its relative deadline in period 5. Because of its initial inven-

tory only two jobs are needed to satisfy demand for product 2 in period 4.

Table 16 has as its entries the number of jobs of each product wh ich

have their relative deadlines in the indicated periods. Table 18 shows

that periods 5 through 7 have enough machines so that their jobs can be

scheduled at their deadlines. However, period 4 has deadlines for four

jobs but room for only two. The scheduling method places the higher—numbered

products in period 4 and considers the others in perIod 3. Figure 1 is

a Gantt chart the entries of which are the product numbers of the jobs

scheduled in the indicated periods.

Consider again a two—stage problem. In order to use Dorsey ’s method

in a stage other than the last stage of production, it is necessary to be

able to use the concept of the relative deadline in an earlier stage .

Demand is taken from inventory at the end of the period in which it appears;

however, input to a later stage is taken from inventory at th. end of the

period iimsediately before it is needed. As a convention rectify this

problem let the input requirement for stage 2 at time t be regarded as

10
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TABLE lA Single—stage example problem—demand table.
[Units  of product]

TIME 1 2 3 4 5 6 7

PRODUCT 1 3 2 1 2

LPRODUCT2 8 4 4 3

- Ii
TABLE lB Relative deadlines for the problem in Table 1A.

[Periods of production)

TIME 1 2 3 4 5 6 7

PRODUCT 1 2 1 1

PRODUCT 2 2 1 1 1

11
_______ - ---- —.-—-- - — --- - -—- - - - -~~. ——-



- -- ~~~~~~~~~~~~~~~~~~~~~~~~~ “~~~~~ ~~~~~~- — ,~—..--- ---- ~~~~~~~~~~~~~~~

TIME 1 2 3 4 5 6 7
1 1 2 2 1 2

STAGE 1 — — —— -— —

1 2 2 2 2 2

1 2 1 1
STAGE 2 — — —

1 2 2 2 2

FIGURE 1 Two—stage schedule of product 2
[Product numbers of jobs scheduled)

_ _  _
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demand on stage :it time t — 1 .  The relative deadline for jobs in St.~~~e’ 1

d~’pcnds on t!~ demand placed on stage 1 by the schedule calcul .ited t~r
stage 2. Dorsey ’s method can now be applied to stage 1 in a straight-

forward manner.

Use the example in Tables lA and lB and stage 2 of Figure 1. Thus,

2 2 2 2 1 1p
1
2, p2—3, 12

(0)114, and ~~~~ Let stage 1 have two machines , p1 p2 2,

and 4”i. The stage 1 “demand” derived from the stage 2 schedule in

Figure 1 is in Table 2A. The demand translates into the stage 1 relative

deadlines in Table 2B. From this Dorsey ’s method derives the stage I

schedule in Figure 1.

The stage 2 and stage 1 schedules in Figure 1 represent the BST solu-

tion to the two—stage problem which uses the demands in Table lÀ .

- 
- 

The Backward Solution Technique and the method used to solve the

individual stages within the BST were presented in this section. The next

section presents the condit ions under which the EST finds feasible and

optimal solutions to the two—stage problem. 
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TABLE 2A First stage demand caused by the stage 2
schedule in Figure 1. [Units of product]

TIME 1 2 3 4 5 6 7

[
PRODUCT 1 4 2 2

[PRODUCT 2 6 3 3 3

TABLE 2B Relative deadlines for the stage 1 problem
in Table 2A. [Periods of production]

TIME 1 2 3 4 5 6 7

rPRODUCT 1 2 1 1
PRODUCT 2 3 2 1 2 j

~~~~~~~~~

__

~~~~~~~~~~~~~
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FEASIBILITY AND OPTIMALITY CONDITIONS FOR THE BACKWARD SOLUT ON T E C~~~~~~

The purpose of this section is to develop conditions which enable the

BST to find feasible and (under additional conditions) optimal solutions

to the problem of the previous section. Three assumptions will be presented .

It will be proven that under the three assumptions, the BST will find a

- ‘ feasible solution , If one exists. A fourth assumption will be made. It

will be shown that tinder the four assumptions the BST will find an optima l

solut ion, if one exists.

*The first two (2,1) jobs in Figure 1 are supplier jobs of the first

(2,2)* job. A job of stage 1 is a supplier J~~ 
of a stage 2 job if the

first unit of output f rota thestage 1 job is used as input to the stage 2

job. Also, a job of stage 2 is a consumer i2~ 
of a stage 1 job if the

stage 2 job uses as input the f irst  unit of output from the stage 1 job .

Consequently , the f irst (2 ,2)* job in Figure 1 is the consumer job of the

first two (2,l)* jobs, and the second (2,2)* job is the consumer job of the
*th ird (2 ,1) job.

The f i r s t  assumpt ion to be used in the proof that the BST f inds

feasible solutions concerns the relative production rates (batch sizes)

of the same product between the two stages.

Assumption 1: (production rate) The production rate p
~ 

< p
~ 

for all i. 

*The consequence of the production rate assumption is that each (i 2)

job requires an input at least as great as the output of one (i,l~ job.

*In fact , each (i,2) job requires input equivalent to the output of

p~ /p~ (i , l)* jobs.

Assumption 1: (supplier job) Each stage 2 job has at least N(l,2)
1 2 1 1stage 1 supplier jobs, where 14(1,2) — mm i~~/r- •

i L L

* I I(Product , Stage )

_ _  

- 
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When Assumption 1 is considered, N(1,2) > 1, and Assumption 2 states

that each stage 2 job has at least one supplier job in stage 1.

In the early periods of the scheduling horizon, demand can cause

the first stage 2 job of a product to be scheduled so early that there

is not enough time to schedule its supplier jobs. Another possibility

is that initial inventory of stage 1 of product i is so high that the

first (i,2) job does not need supplier jobs for its input. The supplier

job assumption avoids these possibilities by forcing each stage 2 job

to have at least N(l,2) supplier jobs. Note that this assumption effec-

tively places an upper bound on initial in—process inventories. Practical

considerations of this upper bound will be discussed in a later section.

Furthermore, Assumption 2 ensures that if a product is produced in stage 2,

it has a component produced in stage 1, since it must have a supplier job.

Asiu~~tion 3: (machine availability) The number of stage 1 machines

N1 < N 2N(l,2).

Without the truncation in N(l 2), Assumptions 2 and 3 state

N1 
< N2 mm (p

~Ip~) or p~N1 
< p~N2 for all i. Thus, the one—period

production capability of stage 1 is no greater than the one—period pro-

duction capability of stage 2 for any product and the production bottle-

neck is maintained in stage 1. The consequence of the machine availability

assumption, when combined with Assumptions 1 and 2, is that there are

no more machines available in any period t of stage 1 than are necessar y

to execute the minimum number of supplier job s Wh ich N2 jobs in period t+1

of stage 2 can have . In other words , if there are no idle machines in

period t+1 of stage 2 and all stage 1 jobs are scheduled as late as

possible, there are no idle machines in period t of stage 1.

16 
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I t  is shown in 126 1 that violation of any of the Assumptions 1, 2,

u, ~ ‘ ;ip i r. .~ d I in th• liST failing to find a feasible solution , when

unt cxIst- ~. It will be shown that when all three assumptions are met ,

the BST finds a feasible solution, if one exists. First, however , some

lemmas must be proven.

The first lemma characterizes a solution to a single—stage problem

obtained by Dorsey ’s method. It concerns the ordering of the jobs by

product number within a schedule.

Lemma 1: Consider a schedule , found by Dorsey ’s algorithm, to a

single—stage problem. If a job of some product i is scheduled in

period U earlier than its relative deadline t2 , then every

machine in the interval [tl+l , t2]  is utiliEed by the schedule,

and every job in the interval has a product number which is at

least as high as i.

V 
- Proof: Assume for the purpose of contradiction that a machine in some

per iod t in the interval [tl+1, t 2 J  is idle or scheduled to process a

job of product ii, where il < i. When Dorsey ’s algor ithm scheduled

period t, it assigned to t all product i jobs which were unscheduled and

had relative deadlines no earlier than t. This assignment was made

bef ore any jobs of product ii were assigned to t and before any decision

was made to leave a machine in t idle . Consequently, no job of product I

which has a rela tive deadl ine in period t or later is scheduled earl ier

than period t. This contradicts the existence of the product i job

referred to in the hypothesis of the lemma . Therefore, every machine

in period t is utilized , and every job in period t has a product number

which is at least as high as i, for all t in [tl+l , t2].

Q.E.D.
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The insigh t to be found in Lemma 1 is tha t in a Cantt char t of

Dorsey’s solution all the machine blocks between a given job and its

relative deadline contain jobs having product numbers no lower than the 
- 

-

product nt~~er of the job under consideration.

Lemma 2: If there exists a feasible solution to a single—stage problem,

then Dorsey’s algorithm will find a unique, feasible solution.

Proof: Follows from Dorsey [lO~.

Q.E.D.

The preceding assumptions and leimsas are used in Lemma 3, wh ich shows

that , under cer tain condi tions , a pairwise interchange of two jobs in the

second stage of a feasible schedule for i two—stage problem can be made

so that the resulting schedule is feasible.

In considering Lemma 3, refer to the Gantt chart in Figure 2. Unlike

the previous Gantt char t, each stage has an unspecified number of machines,

except that they satisfy the machine availability assumption. The i3

in some of the periods represents a c1a~’is of products (not necessarily all

of which have the same product number) all of which have higher product

numbers than ii. and i2. The i4 in other periods represents another class

of products. The il and i2 in the chart indicate that each of those

periods contains at least one job of product ii or i2, among other jobs.

Note in the proof of the lemma that all changes in the solution are

accomplished by applying Dorsey’s algorithm to a stage or by a pairwise

interchange of jobs in which the job of the higher—numbered product moves

to a later period and the job of the lower—numbered product moves to an

earlier period.

Lemma 3: Consider the Gantt chart of a feasible solution to a two—

stage problem in which the first stage has a feasible solution

18
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found by Dorsey’s algorithm and in which each stage 2 job is

scheduled so that there are no idle machines between it and its

relative deadline. For any two products ii and 12 such that

11 < 12, consider an (il , 2) job in some period t4 and an (i2, 2)

job in some period t2 (t2 ‘. t4) both of which have relative dead—

lines no earlier than t4. Furthermore, let ii be the lowest pro-

duct number in period t4 of stage 2 and let this (ii, 2) job be

the “earliest” (lowest job number) of the (il, 2) jobs in period t4.

Finally , let the (i2, 2) job be the “latest” (highest job number)

of the (i2, 2) jobs in period t2. If

(a) the jobs in the interval [t2+l , t4—l] of stage 2 are of the

product class i3,

(b) the (ii, 2) job and the (i2 , 2) job are interchanged in the

schedule , and

(c) Assumptions 1, 2, and 3 are met,

then there exists a feasible solu tion which is identical to the

new solution in stage 2 and has a feasible solution from Dorsey ’s

algorithm in stage 1.

Proof: It will be shown that all the (Il , 1) supplier jobs of the (il 2)

job which are in the interval [t2, t4—l] are actually in period t4—l. It

will also be shown that there are no more than N(l, 2) of these (ii, 1)

supplier job s in period t4—1. Thus , when the interchange of their (ii, 2)

consumer job and the (i2 , 2) job is made , the 14(1, 2) (il, 1) supplier

jobs in t4—1 can interchange feasibly with 14(1, 2) ( i2 , 1) supplIer jobs
I

of the (12 , 2) job in periods earlier than t2. The resulting solution is

feasible. Finally , Dorsey’s algorithm is applied to the new stage 1

solut ion.

20
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Consider Figure 2. Let period tl(<t2) be the latest period containing

(t2, 1) supplier jobs of the (12, 2) job in period t2. Define all the

stagc 1 jobs in the interv~1 [ tl+1, t4—21 to be In the product class 14. r
The ( i2 , 1) supplier job in period tl has its relat ive deadline in period

t2—l. By Lemma 1, each job in the interval [tl+l , t2—l ] has a produc t number

no lower than i2, therefore, higher than 11. By Assumptions 1. and 2, each

stage 2 job in the interval [t2+l , t4-.l) has at least 14(1, 2) supplier jobs.

Then, by Assumption 3 and Lemma 1, all stage 1 jobs in the interval [t2 ,

t4—21 have product numbers at least as high as those of the products in

class i3, which are higher than ii and 12. Therefore, all products in the

class i4 have numbers at least as high as i2 and higher than 11. Consequently ,

there are no (11 , 1) jobs in the interval [tl+l, t4—2j.

Since the (Il, 2) job of interest ..n period t4 is the lowest—numbered

job of the lowest—numbered product in period t4 and, by hypothesis, there

are no idle machines between the (12, 2) job in period t2 and its relative

deadl ine , then period t4 of stage 2 has N
2 jobs , N2—l of which have higher

product numbers or higher job numbers than the (ii, 2) job under consideration.

By all three assumptions and Lemma 1, there are at least (N
2
—l)N(l, 2) sup—

p].ier jobs which have higher product or job numbers than and are scheduled

later than the supplier jobs of the (ii, 2) job (N(l , 2) for each of the

other jobs in period t4 of stage 2). Therefore, period t4—1 contains at

most N ( l , 2) supplier jobs of the “earliest” (lowes t—numbered) (11 , 2) job

in period t4.

Interchange the highest—numbered (12 , 2) job in period t2 and the

lowest—numbered (ii , 2) job in period t4 .  (The interchange is feasible,

since each job has its relative deadline at least as late as period t4.)

21 
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It has been shown that the (ii, 2) job in the interchange has at most

N(l , 2) supplier jobs in the interval [tl+l, t4—l] (all in period t4—l).

By the supplier job assumption, the (i2, 2) job in the interchange has at

least 14(1, 2) supplier jobs in period ti or earlier. In order to maintain

feasib ility in stage 1 in conjunction with the stage 2 interchange, the

period t4—l supplier jobs of the (ii, 2) job in the stage 2 interchange

must be interchanged with the “latest” supplier jobs of the (i2 , 2) job V

in the stage 2 interchange.

These stage 1 interchanges must preserve the ordering of the jobs

of the same product. There are two cases to be considered.

Case 1: There are no (12, 1) jobs in the Interval [ti, t4—2] which are

“later” (higher—numbered) than the supplier jobs of the (i2, 2)

job in the interchange.

Case 2: There are (12 , 1) job s in the interval [tl , t4—2] which are

“later” (higher—numbered) than the supplier job s of the (i2 , 2)

job in the interchange.

If Case 1 is true, moving the (i2, 1) supplier jobs to period t4—l

does not alter the ordering of the (12, 1) jobs. By Lemma 1, no (ii, 1)

jobs lie between the supplier jobs of the (12, 2) job in the stage 2

interchange and the supplier job’s former relative deadline, period t2.

Consequently, moving the (ii, 1) supplier jobs to the locations of the

(12, 1) supplier jobs does not alter the order ing of the (Il , 1) jobs.

Therefore, make the necessary stage 1 pairwise interchanges.

If Case 2 is true, it is shown in Lemma 1 that there are no (il , 1)

jobs in period t4—l. No stage 1 interchanges are necessary.

After the stage 2 interchange and the stage 1 interchanges (if

any are necessary) are made, both stages 1 and 2 have feasible schedules.

22
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The only thing which remains to be done is to convert the stage I V

feasible solution to a feasible solution based on Dorsey ’s algorithm.

By Lemma 2 , applying Dorsey ’s algorithm to the stage 1 prob lem created

by the new stage 2 solution completes the proof.

Q.E.D.

The results of Lemma 3 form the cornerstone of the proof of the

following theorem:

Theorem 1: If there exists a feasible solution to the two—stage prob lem

and if Assumptions 1, 2, and 3 are met, the Backward Solution t
Technique finds a feasible solution.

Proof: The proof consists of assuming the existence of a feasible solu-

tion to a two—stage problem and then converting it to a feasible solution

both stages of which are Dorsey solutions. After transforming stage 1

• into a Dorsey solution, the stage 2 feasible solution is compared to a

Dorsey solution of stage 2. Starting with the last period , the stage 2

solution is converted by pairwise interchanges to the Dorsey solution ,

period by period. After each interchange the stage 1 Dorsey solution is

updated to maintain feasibility.

Consider any feasible solution to the two—stage problem. By Lemma 2,

stage 1 of the solution can be converted to a Dorsey solution. The

solution now is feasible in stage 2 and has a Dorsey solution In stage 1.

Order the jobs on the mach ines in each per iod of stage 2 by inc reasing

product and job number. If there are any idle machines in stage 2

between a job and its relative deadline, move the job to the latest

such machine.

23 
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Also consider the Dorsey solution to stage 2. Compare the stage 2

feasible and Dorsey solutions . (The conditions of Figur. 2 and Lemma 3

will now be created.) Find the latest period in which the two stage 2

G.ntt charts don’t agree. Call that period t5. In period t5 of the stage 2 -

Dorsey schedule find the highest—numbered job of the highest— numbered

product which is not in period t5 of the stage 2 feasible solution. Call

that job n2 of product 12. Find the period in the st age 2 feasible solu-

tion which contains job n2 of product 12. Call that period t2. Since

the two stage 2 schedules agree i’i the interval ~t5+1, H ) ,  t2 < t~. By

the ordering of job numbers and the method of choice of job n2, job n2+l

of product i2 is in the interval (t5, HI in both stage 2 schedules. Thu.,

job n2 of product 12 is the highest—numbered (i2, 2) job in period t2 of

the feasible schedule. Job n2 of product i2 must now work its way, through

a series of pairwise interchanges, to period t5 of stage 2 of the feasible

solution. (Until it reaches t5, all discussion concerns the feasible

solution only.)

The next step ii to find a job with which to interchange job n2

of product 12. Find the earliest period which is later than t2 and which

contains a product number smaller than 12. Call the period t4 and call

the product number ii (t2 < t4 and ii < 12). Let job nl be the lowest—

numbered (ii , 2) job in period t4. Let 13 be the class of products in

the stage 2 interval [t2+l, t4—l]. By the choice of t4 and job number

-

-
V ordering, all the produc ts in the class 13 have hi gher numbers than i2.

Interchange job n2 of product 12 and job ni of product ii. Find the new

feasible Dorsay schedule for stage 1, the existence of which is shown in

Lemma 3.

4
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If t4 c t5, job n2 is the only ( 12 , 2) job in period t4 (sob n2+I

is in period t5 or later). Redefine t2 to be the old t4. Search for a

new period t4 , product 11, and job nl.

When job n2 reaches period t5 (t4 — t5), f ind a new per iod t5,

product 12, and job n2. The search must eventually end with the conver-

sion of period I into period 1 of the stage 2 Dorsey solution, because

the interval [t5 , H] has no schedule alterations (there is no cycling in

the search) -

The feasible solution now is a Dorsey solution in both stages. Lemma 2

shows that Dorsey ’s algorithm finds unique solutiona . Since the BST finds

Dorsey solutions at each stage, this two—stage solution is the one the

BST would find .

Q.E.D.

• It remains to be shown under what additional conditions the BST will

find an optimal solution. The fourth assumption requires that the products

can be ordered equivalently in each stage by their cost b~ .

Assumption 4: (cost) The inventory cost function b~ < b
~+l for

i 1, . . . ,  11—1 and j — 1, 2.

The meaning of the cost assumption in the first stage is that the

inventory carry ing cost of a ba tch of produc t i is no grea ter than the

inventory carry ing cost of a batch of product 1+1. In stage 2 the cost

is the value added to a batch , but the relationship between products must

still hold.

The assumption of the relationship between costs, when considered for

an individual stage, Is the same assumption Dorsey (10 ] makes to ensure

that his method finds an optimal solution. Thus, under the cost assumption,

25
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the BST finds a solution which is optimal in each stage, if a solution

exists for each stage. However, that does not mean the total solution

is optimal.

Theorem 2: If the Assumptions 1, 2, 3, and 4 are met and if a feasible

solution exists to the two—stage problem, then the Backward Solution

Technique finds an optimal solution.

Proof: Consider any optimal solution. Clearly, since it is optimal, no

idle machines lie between a job and its relative deadline . Convert the

optimal solution to a solution which has Dorsey solutions in each stage

by the same conversion method as is used in the proof of Theorem 1. There

V are f our ways in which the solution is changed. Reordering the jobs within

a stage does not change their objective value. Since there are no idle

machines between a job and its relative deadline, the jobs of stage 2 will

not be moved later to fill idle machines. In the proofs of Lemma 3 and

Theorem 1 all pairwise Interchanges moved a job of a higher—numbered product

(12) later and a job of a lower—numbered product (ii) earlier, for a net

objective value change per period moved of b~ 2 — b~1 
> 0 (by Assumption 4).

V 

Finally, stage 1 is periodically solved using Dorsey’s algorithm. Dorsey

(10] showed that, under Assumption 4 applied to a single stage, his algorithm

finds an optimal solution. Thus, under AssumptIon 4, applying Dorsey’s

method to a solution in stage 1 does not worsen the solution.

It has been shown that each alteration Which must be made to an

optimal solution to a two—stage problem in order to convert it to a solu-

tion having Dorsey solutions in each stage results in a solution at least

as good as the optimal solution. Consequently , under Assumptions 1, 2 , 3,

and 4 , a solution which has a Dorsey solution in both of its stages is

optima l (if a feasible solut ion exists). Since the BST generates unique

2(,
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Dorsey solutions in each stage and finds a feasible solution (Lemma 2 and

Theorem 1), it finds that optimal solution. 
-

Q.E.D.

It has been shown that under the production rate, supplier job, and

machine availability assumptions the BST finds a feasible solution to the 
-

,

two—stage problem (if a feasible solution exists), regardless of objective

function . With the addition of the cost assumption, the BST f inds the
optimal solution. In the next section , practical appl ications of the BST V

are considered , such as problems In which demand may fluctuate and/or
initial inventory levels may cause the violation of the supplier job -:

assumption.

___________ 

_________ 
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APPLICATION OF THE BACKWARD SOLUTION TECHNIQUE

The normal use of a scheduling technique like the BST is to schedule

production over a horizon using all available information on demand and

inventory. After performing one period ’s production , the schedule is then

recomputed using updated demand and inventory information. This cycle is

repeated for the remainder of the production process.

In computing the schedules it becomes apparent that initial, in—process

inventory may cause Assumption 2 , that each (i, j) job has at least

N (j , j +l) (I , j )  supplier jobs , not to be realized for early jobs. In a

practical sense, this situation is a start—up problem, however, and af ter

a period of time resolves itself. Let H1 be the period in the first

schedule by which each product has had completed at least one stage 2 job

having a supplier job. From no later than H
1 

on , Assumption 2 is satisfied

in the first schedule , which must be optimal for all stage 2 jobs scheduled

a f t e r li
~ 

and for their suppliers. Thus, the start—up period ends no later

than period H1.

When demand remains unchanged , it is easily seen that any schedule

computed af ter period H
1 
is optimal. This scheduling technique loses

its effectiveness when large fluctuations in demand are encountered from

schedule to schedule. Under the assumption of reasonable accuracy in the

forecast of demand, it viii be shown that the Backward Solution Technique

creates optimal schedules.

When computing a new schedule at time t , compute it from time 0.

Then use the portion from t to H. The inventory at time t is the new

initial inventory. The schedule from H1 to U satisfies Assumption 2 and

is optimal. Thus, the schedule f rom t to H is optimal. Let t~ be the
earl lest period in this schedule in which product i has had completed at

V. :. . . .~ ~~~~~~~~~~~~~~~~~~~~ 
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least one stage 2 job having a supplier job. The half—open interval

( t , t 1 ) is the interval of accuracy for the demand forecast for produc t i .

An increase in demand has two possible impacts on the schedule.

There may be enough idle time in the necessary places to handle the added

load; thus , Assumption 2 is maintained. Since the addition of a new job

to a BST schedule can cause the jobs of lower—numbered products to be

pushed to earlier periods , the alternative impact of an increase in demand

is the creation of an infeasible problem. If an increase in demand is

for a per iod earlier than H
~ 

and is feasible , it may cause a redefinition

of H
1 

to an earlier period. The same is true for period t
1
.

A decrease in demand of one or less stage 2 jobs between schedules

also has two possib le impacts on the schedule. If the decrease in demand

for product i applies to a period no earlier than t~ , it is easily shown

that the affected jobs in the interval [t , t~) will maintain the same

relative ordering as they advance in the schedule, as a result of the

removal of the product I jobs. Thus, the schedule remains optimal. If

the decrease in demand for product i occurs for a period earlier than

the schedule may revert to a start—up mode.

In order for the scheduling method to maintair optimality after the

start—up period, all decreases in demand for product i must occur no

earlier than t~ and must be able to be satisf ied by the cancella tion of

jobs which have a supplier job . This is accomplished when the demand

forecast for product i is a lower bound on actual demand in the interval.
— Conditions have been developed under which the BST gives an op—

timal solution. It was shown using worst case analysis that after an

initial start—up period the method can accommodate normal changes in

demand . A discussion of the extension of the production system to more

29
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general configurations of stages and the application of the BST to the

extended system is discussed next.
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EICFENS IONS OF THE PRODUCTION SYSTEM

A natural extension of the two—stage problem is to N stages in series.

There is no intuitive difference between the two problems. All facets of

the definition and solution of the new problem are the same , except that

there are N stages to consider. The range of the stage indicator j  is now

from 1 to N. Any relationships between stages 1 and 2 also apply between

stages j and j+l. The production rate, suppl ier job, machine availability,

and cost assumptions are extended in this manner. The proofs required to

show that the BST finds both a feasible solution (if one exists) under the

first three assumptions and an optimal solution under all four assumptions

are inductions on the proofs for the two—stage problem. The appropriate

assumptions , theorems , and proofs for the N—stages—in—series problem can

be found in (26) .

A fu rther extension of the production systems to which the BST can

be successfully applied is also discussed in [26]. The new system can be

represented by a general , directed, acyclic network of production stage.

With the exception of a tightening of the machine availability assumption ,

all the changes necessary to accommodate the more complex system are con-

cerned with notation.
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A POSTERIOR BOTTLENECK PROBLEM

In the earlier discussion of the two—stage problem, Assumption 1

(p~ > p~) caused each stage 2 job to require input equivalent to the output

of at least one stage 1 job. It is shown by counterexample in [26) that

the BST may not solve the problem when Assumption 1 is violated. In the

following, Assumptions 1 and 3 are modified. The result is that the two—

stage problem can be condensed to a single stage problem.

Assumption IA: p~ > p
~ 

for all i.

This assumption causes each stage 2 job to require input equivalent

to the output of no more than one stage 1 job. Consequently , each stage 2

job has no more than one supplier job. In fact, a stage 1 job may supply

more than one stage 2 job . Thus , some jobs may have no supplier jobs.

In addition, let us place a lover bound on the number of machines in

stage 1 (an alteration of Assumption 3).

Assumption 3A: N
1 
> H

2
.

Assumptions IA and 3A ensure that each supplier job is scheduled at

its relative deadline in the optimal solution, as long as the objective

function (which is to be maximized) for each job is an i~wreasing function

of time. Thus, the bottleneck is in stage 2 (posterior bottleneck).

Consequently, the position of the consumer job in the optimal solution

completely determines that of its supplier. Finding the stage 2 portion

of the optimal solution is equivalent to finding the full optimal solution.

The ordering, as applied in the BST section earl ier, of the jobs of

a product for each stage can be considered for stage 2. The ordering

does not change the optimal schedule. It merely numbers the jobs ahead

of time and ensures tha t they are in order in all , including the optimal ,

schedules. The effect of the ordering for stage 2 is to designate a

32
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first (i, j) job, a second (I , j) job , etc. A precedence constraint can

be used to ensure that the first (i, j) job can be scheduled no later

than the second (I, j) job, etc. An example of this appears in Figure 3A.

Figure 3A shows a two—stage production system having one machine

per stage. There is a single product which uses both stages. Figure 3A

is a Cant t  chart in which the numbers are job numbers for that stage of

the single product. The production rates, as shown in Figure 3A , are

such that job 1 in stage 1 supplies the Input to both jobs 1 and 2 in

stage 2. Thus, it must be scheduled earlier than the earlier of those

two jobs in stage 2. A precedence constraint would require job 1 to be

performe d no later than job 2 in stage 2. - -

If the above ordering is kept, a job in stage 1 is in period t if

and only if its consumer job is in period t+l. Thus, moving a job in

stage 2 causes all of its supplier job s to move with it by the same number

of periods. It is reasonable, therefore, to add the Cost of the stage 1

job to that of its consumer job and remove the stage 1 job from the problem.

If this is done for all stage 1 jobs, this two—stage problem becomes a

single—stage problem which has precedence relationships among the jobs

V 
of the same product. Figure 3B demonstrates the reduction of the problem

of Figure 3A from two stages to a single stage problem having cumulative

costs and a precedence constraint between jobs 1 and 2.

In the new single—stage problem, there is a precedence constraint

among the jobs (due to the within—product ordering) , and each job has a

due—date constraint determined by the demand. The objective function for

each job ia an increasing function of time .

It may appear that this is a relatively easy problem to solve.

However , Lenstra [23] has shown that this problem is NP—complete. Loveland

126) discusses solution techniques for this problem.
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FIGURE 3A Solution for single product, 2 stages.

TIME 1 2 3 4

STAGE 2 tIl ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

FIGURE 3B Solution for Figure 3A reduced to I stage.
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The extension of the discussion to a production system consisting of

N stages in series is straightforward. Assumptions IA and 3A refer to any

two adjacent stages. By repeatedly merging the earliest stage into the

next stage, the problem can be condensed to N—l stages, then N—2 , etc.

In this way the problem is condensed to a single stage. Finally, the

BST can be applied to a more genert~.l production system in which the stages

may occur in configurationa other than series [26] .
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CONCLUS ION

An extension of a single—stage, multi—machine, multi—product scheduling

problem into a multi—stage problem was discussed in this paper . The two—

stage problem was considered f i rs t .  A method , called the Backward Solution

Technique , was introduced which solves each stage with a greedy algorithm

developed by Dorsey [10]. It was found that when the bottleneck occurs

in the initial production stage (the production rate and machine availability

— assumptions) at~d when production start—up effects are over (the supplier

job assumption) , the BST finds a feasible solution, if one exists. With

the addition of the cost assumption, the BST f~ nds an optimal solution.

Practical application of the SST was discussed. It was found that after

a start—up period and with reasonably accurate demand forecasts , the - -~

production system met the requirements for the effective use of the BST.

After the two—stage problem an extension to N stages in series was

discussed. In the final extension, the production system formed a general ,

directed, acyclic network. With few basic changes [26), the assumptions,

leimnas , and theorems remained the same for each of the extensions.

The next logical avenue of exploration was the case of the two-stage

problem In which p~ > p~ . This moved the production bottleneck to the

last stage. It was shown that with a lower bound on the number of avail—

able machines this posterior bottleneck problem can be reformulated as a V

single—stage problem. Extensions of the two—stage problem can also be

reformulated as a single—stage problem. Heuristics to solve the single—

stage problem are presented in [26].
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