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SECTION 1

INTRODUCTION AND SUMMARY

During this contract, three papers were published and two others
are in print. A sixth paper is now being prepared for publication.
These papers (listed in chronological order as Refs. 1 through 6) are
included as Appendices 1 through 6.

These papers fit into two categories: (1) the study of the scalar-
product (SP) expression of the boundary free energyl'3 and (2) the study
of the structure of the antiphase (APB) and interphase (IPB) boundaries
and grain boundaries using the sum methodz’l"s’6

SP method.

rather than using the

If used with care, the SP method is simpler than the sum method in
obtaining the boundary free energy value. Appendix 1 concludes that the
SP method is reliable, and Appendix 3 extends the original SP formulation
to the case of long-range interaction energy. However, during the three-
year contract period, the SP method has not been used to its full capacity.

The sum method has the advantage that it gives the profile (which
the SP method cannot give) across the boundary; however, the computation
is more lengthy than with the SP method. Appendix 2 introduces a crucial
concept that opens up a way of using the sum method to the boundary
structure, and the procedure is shown with an example in a b.c.c. ordered
structure.

The method developed in Appendix 2 is put to full use in Appendices 4
and 5, in which the APBs within the ordered Cu3Au phase and the IPBs
between the Cu3Au phase and the disordered phase are studied. This work
is a revival of cooperation on a similar subject with Dr. John W. Cahn
(now at the National Bureau of Standards). Appendices 4, 5, and 6 rely
heavily on Dr. Cahn's knowledge concerning the metallurgical aspects of
the problems considered.

Three new findings came out of the study of the Cu3Au phase boundar-
ies. The first is the behavior of the APB free energy 0, which shows
a maximum at a temperature of about 0.6 of the disordering temperature

TD' The second is the complete wetting of the APB at TD’ and the third

5




is the discovery of a series of second-order phase transitions within
the APB slightly below TD.
The structure of grain boundaries (GBs) was studied during the
contract. Although work in this area is not yet complete, preliminary
findings are being written up6 for publication (probably in Physical
Review Letters). The main discoveries are first that distinct dis-
tinguishable low- and high-temperature structures of the GBs exist, and

second that the GB is completely wet at the melting point.
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SECTION 2

THE NATIONAL ITERATION METHOD WITH CONSTRAINTS

The natural iteration method (NIM) was introduced some time ago7 in
solving high-order simultaneous algebraic equations appearing in the
cluster-variation method (CVM). As NIM applications increased, it
became necessary to treat cases in which subsidiary conditions were
imposed. Appendix 1 shows that these subsidiary conditions can be treated
based on a concept similar to the original NIM. Within each iteration
step originally designed (which we call the "major'" iteration), we do
what we call "minor" iterations to satisfy subsidiary conditions. 1In
Ref. 7 we proved that the major iterations always converge; in contrast,
we have not proved that the minor iterations converge. However, in all
the cases during the last three years in which we used the minor itera-
tions, they never failed to converge.

When subsidiary conditions exist, we can classify the variables as
independent or dependent. One way of solving the equilibrium state is
to minimize the free energy with respect to the independent variables
(rather than using Lagrange multipliers for subsidiary conditions).

When this is done, the resulting simultaneous equations are not of the
form for which the NIM is applicable. In such a case, the Newton-
Raphson (N-R) method can certainly be applied, but it is often quite
time consuming to find the right initial guess of variables for the N-R
method, since otherwise the N=R method does not converge to the desired
equilibrium state. In the boundary studies described below in
Appendices 2,4,5, and 6, it is practically impossible to use the N-R

method because there are several thousand independent variables.




SECTION 3

THE SP FORMULATION OF THE BOUNDARY ENERGY

The scalar-product (SP) formulation of the boundary free energy,
first proposed by Clayton and WOodbury,s‘calculates the boundary free
energy O using the formula

1/2
exp (~AG/RT) -Z[pl(v) Pz(v)] ; 1)

A%

where A is the sectional area parallel to the boundary. This formula is
written for a lattice structure having phase 1 on the left, phase 2 on
the right, and the boundary in between.

We consider a lattice plane parallel to the boundary but far away
from it, and well inside the bulk phase i (i = 1 or 2). A configuration
within the plane is denoted by v, and Pi(v) is the probability of finding
the configuration v in the plane inside the bulk phase i (i = 1 or 2).
Since the right side of Eq. 1 has the form of the SP of two vectors
(e, 172

free energy O.

with i = 1 and 2, we call Eq. 1 the SP formula of the boundary

Eq. 1 is noteworthy in that 0 can be calculated by knowing only the
properties of the two bulk phases. Expression 1 ic reasonable since,
when phases 1 and 2 are identical, 0 vanishes because Pi(v) is normalized
to unity and since, when the two bulk phases are very different in their
preperties, 0 is large.

Eq. 1 is rigorous when v is for the configuration of an infinitely
wide plane parallel to the boundary. In Eq. 1, however, approximations
must be introduced. 1In Ref. 9, we had calculated Eq. 1 using the general
CVM approach. Another feature of Eq. 1 is that a rigorous proof was
lacking; Clayton and Woodbury's proof8 was not sufficient, and our attempt
in Ref. 9 still lacked mathematical rigor. Therefore, to use Eq. 1 with
enough confidence, we felt it necessary to use better approximations in

the CVM and to compare the result with Onsager's10 rigorous result in a
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two-dimensional square lattice Ising model. In Ref. 9, we used the pair
approximation and the square-angle approximateion of the CVM. In
Appendix 1, we improved the treatment using the double square for the
(1,0)-direction boundary and the W-shaped cluster for the (l,1)-direction
boundary, both for the two-dimensional square Ising lattice. Since the
results are converging to Onsager's rigorous result, we concluded in
Appendix 1 that we can use the general expression (Eq. 1) with
confidence.

The general idea behind the derivation of Eq. 1 is given below.
Consider a three-dimensional system as made up of two-dimensionally
large planes stacked on top of each other. Write the free energy F of
the entire system uszing thc CVM in terms of the probability variables
for two adjoining planes Pn(u,v), where n indicates the location of the
planes. Minimizing F with respect to Pn(u,v) yields a relation that
expresses Pn(u,v) as proportional to [Pn(u) Pn+1(v)]l/2. If the system
is homogeneous (i.e., no boundary in it), this procedure leads to the
eigenvalue formulation with which Onsager started.10 The details of

the derivation of Eq. 1 from this point on are presented in Refs. 3 and 9.

10




SECTION 4

THE SP EXPRESSION FOR LONG-RANGE INTERACTION

Eq. 1 considers one lattice plane in each bulk phase. This
expression is good when the interaction potential is of the nearest-
neighbor type. But it must be modified when the interaction potential
goes beyond the nearest neighbor. This problem is worked out in

Appendix 3. The resultant formula modifies Eq. 1 as

exp (~AC/RT) -Z[Pl(‘vl,vz. ceesV ) Py(Vy,v,, ...,vk)]1/2 2)

x expE:l(vl,vz, ....vk) - az(vl,vz, ...,vki] 5

where Pi(vl’VZ’ ...,vk) is the extension of Pi(v) and is the probability
that comsecutive 1,2, ...,k planes inside the bulk phase i take the
configurations VisVgs ceesVype The variable al(vl,v2 ...,vk) is a
Lagrange multiplier to guarantee continuity of the form

Pl(u.vl,vz. -‘-,Vk) 'Z Pl(vl’vZ’ ---,VR»E) . (3)
M £

Eq. 2 can take into account the long-range interactions up to the
interaction between the lattice 1 and the lattice (k + 1). Eq. 2 reduces
to Eq. 1 when k = 1 and when the symmetry of the lattice

Pl(u.v) = Pl(v,u) (%)

holds.

11
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The general expression, Eq. 2, was tested for the two-dimensional
Ising model using a 3 x 2 cluster (i.e., a double-square cluster made of
six lattice points) with the "3"-side perpendicular to the boum.iary.3
The result agrees well with that of the double square in Appendix 1 when

the @ terms in Eq. 2 are included.

12
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SECTION 5

THE SUM METHOD OF CALCULATING BOUNDARIES

For lack of a better name, we call this method the sum method in
contrast to the SP method. Both methods are based on the CVM mode of
thinking.l1 but differ as to the step at which and the method by which
they introduce the approximation into the formulation. The two methods
produce similar but different results. Although the SP method has the
advantage that it can define the transition point within the boundary
more clearly,3 it cannot give the information about the structure across
the boundary. The sum method can give the latter information, but
usually at the cost of more computer time. Sometimes the approximation
used in reducing the SP formulation to the tractable level makes the
results unacceptable on a physical basis (such a case is discugsed in
Appendix 5). A similar trouble has not been encountered with the
approximate treatments of the sum method.
en il the NIM
was unknown. After the NIM had been devised in 19710,7 we tried to

When the sum method was used more than ten years ago,

apply it to the boundary structure. However, a difficulty was encoun-
tered in handling the normalization condition for individual planes
(parallel to the boundary) until the work of Weeks and Gilmer14 was
noticed.

In Appendix 2, we treat the boundary between the + spin phase and
the - spin phase (of the Ising model) in a b.c.c. structure using a
tetrahedron (irregular) as the basic cluster. Appendix 2 presents how
the idea of Weeks and Gilmer14 can be incorporated in the CVM-based
treatment. The advantages of the latter over the original method in
Ref. 14 are that the excess free energy is obtained with ease from the
treatment and that it can be extended to larger clusters (e.g., the
tetrahedron) systematically.

The result of the tetrahedron treatment in Appendix 2 was compared

with that of the pair treatment12 done many years ago. We also did SP

13
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calculations and compared the results with others. These different
methods compare nicely, and the relations among them are understandable.
As expected, the SP method can pinpoint the transition temperature

within the boundary, but the sum method cannot.
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SECTION 6

PHASE BOUNDARY AT T = 0

In Appendix 5, we study the structure of boundaries in the Cu-Au

alloy. The work in Appendix 5 was made possible by the previous theore-
tical calculation of the phase diagram of this alloy worked out by

Kikuchi and deFontainelS’l6 17

extending the work by van Baar.
During the work discussed in Appendix 5, it became evident that
many properties of the alloy near T =0 are singular theoretically and

hence that more detailed knowledge is needed than that given in Refs. 15

R T —

and 16 about the behavior near T = 0 of the CuBAu phase and also about

the phase boundary between Cu3Au and the disordered phase. Thus, we

VO T

did the study near T = 0 and discussed our results In Appendix 4. The

e 2

phase diagram of the Cu-Au alloy in Appendix 5 is calculated using the
tetrahedron as the basic cluster of CVM and also using the multiatomic

interaction potential. The latter means that tetrahedra CuCuCuAu and

~ g

CuAuAuAu contribute different four-body interaction potentials. The

four-body interaction can induce the asymmetry observed in experiments

S

between the Cu-side and the Au-side In the phase diagram.

The ftour-body effect is represented by two parameters « and f.

7

The range ot values of a and ¢ in which the phases Cu,Au, CuAu, and

3
CuAu‘ are stable was investigated. The technique of analysis was the

17,18

AT

: linear programming method, which had been used by Cahn before.

This part o the work was done by Dr. J.W. Cahn of the National Bureau

P .

of Standards, who wss cooperating in this project.

4T - 4

In calculating shase dlagrams, it is often helpful to know phase

boundaries at T = 0. There was no theory to treat this problem betfore.
Appendix 4 shows how to do it. At a finite temperature, a phase

boundary is calculated by drawing a common tangent to free-cnergy curves

L yrmm e o

Fl and F, for the two phases plotted against the composition. As dis-
covered in Appendix 4, the phase boundary between the disordercd phase

|
and the ordered Cu‘Au phase can be calculated by the following procedure. *

15 |




Configurations of the tetrahedral cluster are limited to CuCuCuCu
and CuCuCuAu only (the rest of the configurations, e.g., CuCuAuAu,
having zero probability of appearance). Using these two configurations,
we write the entropy expressions for the disordered phase SD and for
the ordered phase S0 as functions of the composition. Figure 7 of
Appendix 4 shows an example. Then we draw a common tangent to the SD
and SO curves. The points of contact of the common tangent to SD and
S0 give the two composition values of the coexisting phases.

The procedure of finding the common tangent to S curves is equiva-
lent to the following. At a finite temperature, constructing the com-
mon tangent to the F curves is equivalent to finding the intersection of
two grand potential é curves for the two phases plotted against the
chemical potential u. When T is infinitesimally small, j and 8 near

the phase boundary can be expanded as

H o= uo + akT + ...
(5)

G=G_ + bkT + ... »

\
»

Q
~

where uo and Go are common to the two coexisting phases. The coef-
ficient b is derived when the value of a is assigned. Then two b curves
for the two phases are plotted against a to find the intersection, which
gives the coexisting phases for the limit T » 0. It is illustrated

in Figure 8 of Appendix 4.

16
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SECTION 7

INTERPHASE AND ANTIPHASE BOUNDARIES IN Cu3Au

The f.c.c. lattice can be separated into four equivalent simple
cubic sublattices. When one of the s.c. sublattices is preferentially
occupied by Au atoms and the other three s.c. sublattices are equivalent,
we obtain the Cu3Au structure (also called the L12 structure).

An APB in Cu3Au is formed when the Au atoms on the left side of
the boundary preferentially occupy sublgttice 1 and those on the right
side preferentially occupy sublattice 2, (See Figures 1, 2, and 3 of

Appendix 5.) When the left side of the boundary is the Cu,Au phase and

the right side is a disordered phase, we call the boundarthhe inter-
phase boundary (IPB).

APBs and IPBs are studied in Appendix 5 using the sum method. The
technique is an application of one developed in Appendix 2. We take a
tetrahedron as the basic cluster and assign a variable Z,(i,j,k,%) to
the configuration (i,j,k,%) of the tetrahedron. The Cu and Au atoms
are designated by i = 1 and 2, and n indicates the location of the
tetrahedron relative to the boundary.

The grand potential
G =F - (uN; + 1,N,) (6)
for the entire system including the boundary region is written in terms

of Z,(1,j,k,2) and is minimized (keeping T and p fixed) with respect

to the Zs. (We can choose -u, = U, = u.) The resulting equations are
1 2

solved for Z,(i,3,k,%) using the NIM. The excess free energy o attributed
to the boundary is calculated as the difference between 6 thus calcu-
lated and the value of 8 for the homogeneous phase.

The 0 curves for the APBs are given in Figure 6 of Appendix 5.
The special features are the following:

(1) A 0 curve for a constant u increases monotonically as

T decreases. Although in the phase diagram (Figure 5
of Appendix 5) all the p-constant curves converge to

17




(2)

(3)

(4)

(5)

the stoichiometric state x = 1/4 as T + 0, the

0 curves for different us tend to different values
as T > 0. This is one of the singular behaviors of
the Cu3Au phase near T = 0.

The lower two O curves in Figure 6 of Appendix 5 are
for constant composition x, the x being the value for
the peak (the congruent point) of the CujAu phase.
Different from the p~constant curves, these two

0 curves go through maxima at about 0.6 of the dis~
ordering temperature and reduce to zero at T = 0.

The general shape of the lower two O curves in

Figure 6 of Appendix 5 resembles that of the shear strength
curves of Ni-based superalloys (e.g., Ni3Al).19,20

The resemblance implies that the APB behavior is

an important factor in understanding the shear

strength of these superalloys. The APB and the shear
strength are related through the creation of an APB

when a dislocation enters a dispersed ordered preci-
pitate within the disordered matrix.

The disorder-~CujAu IPBs were calculated and are

shown in Figures 7 and 8 of Appendix 5. The note-
worthy feature is that the IPB is exactly one-half

of the APB at the same point in the phase diagram.

In other words, when the disordered phase (D) coexists
with the Cu3jAu phase, the APB inside the CujAu phase
at this point is made of two D-Cu3Au IPBs. This
property, which is also seen by comparing Figure 11(a)
with Figure 11(b) 1in Appendix 5, means that the APB
at this point is completely wet with the disordered
phase.

The density profiles across the boundary are shown in
Figures 11(a) and 12 of Appendix 5. Although the

bulk phase is CuzAu (L13) structure, there is a

CuAu (L1ly) type region near the center of the boundary.
The onset of the L1, region is interpreted as a second-
order phase change from the behavior of the plane next
to the center as shown in Figure 14 of Appendix 5.

ZES S T e Y v




SECTION 8

GRAIN BOUNDARY STUDIES

As the first step in studying the structure of grain boundaries,
we worked on a two-dimensional lattice-gas model that is capable of pro-
ducing gas, liquid, and solid phases and also two different orientations
of the solid phase. The region near the grain boundary is shown in
Figure 1 of Appendix 6.

The grain boundary free energy 0 for a constant chemical potential 1
is shown in Figure 3 of Appendix 6. Along with 0, we calculated the
excess entropy S due to the grain boundary. A remarkable discovery is
that the S curve is clearly made of two portions, as shown in Figure 5
of Appendix 6. For low temperatures, T < 0.3 Tm (Tm being the melting
temperature for this u), S is almost equal to k&n2. For high temperatures,
T > 0.6 Tm’ S is linear in -log(Tm - T), diverging at Tm.

This remarkable property of S, combined with the calculated values
of 0 for the grain boundary and the IPB (the boundary between the solid
phase and the liquid phase), indicates that the grain boundary is com-
pletely wet at the melting point.

19
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I. INTRODCUTION

This paper has dual purposes. One is to show in the
natural iteration (NI) method how to treat subsidiary
conditions and how to calculate the second-order transi-
tion point, and the other is to report further results ob-
tained by the scalar product expression of the boundary
free energy. These two are closely tied, as the results
of the former are used in the calculation of the latter.

The cluster variation (CV) method'*? for cooperative
systems had been in use for many years. One basic dif-
ficulty which had prevented wide use of the method had
been the step to solve simultaneous algebraic equations
of high orders.® This difficulty had been dissolved by
the natural iteration method.* Many applications of the
new technique have been and are currently worked
out, 5~*

The applications of the NI method, however, have
been limited to either the pair approximation or the tet-
rahedron approximation (both for the fcc and the bec lat-
tices), which do not need subsidiary conditions on the
probability variables except for the normalization to
unity. As the application of the NI method widens, need
arises that additional conditions or the probability vari-
ables are to be taken into account without damaging the
versatility of the NI method. It will be shown in Secs.
Il and I that subsidiary conditions due to symmetries
of variables can be treated by way of iterations of a kind
similar to the main NI procedure.

One of the advantages of the NI method is that it is
unnecessary to carefully choose the independent vari-
ables and then to write the relations among the depen-
dent and independent variables, When we work with
first-order phase transitions, there is no particular
complication, In the case of the second-order transi-
tion, however, the critical point 7, is to be calculated
as the point at which a certain determinant vanishes.

A method of calculating elements of the determinant,
without explicitly listing relations among the dependent
and independent variables and hence without spoiling the
spirit of the NI technique, is presented in Sec. II. It
is believed timely and useful to report on these tech-
niques of handling subsidiary conditions and the deter-.
minant for T, because the interest in the CV method is
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growing.*~'* The iteration method recently proposed by
Weeks and Gilmer™ for studying boundary structures
can also be interpreted as a variation of the NI method
with subsidiary conditions'®

When the author wrote a paper on the scalar product
(SP) expression of the boundary free energy, ** supple-
menting the work by Clayton and Woodbury, " the proof
of the SP expression was incomplete. For that reason,
the surface tension o of the boundary between two two-
dimensional Ising spin phases was calculated using the
proposed method and was compared® with the exact re-
sult due to Onsager. Since the publication, the proof of
the SP expression has been improved and it is reported
in Sec. IV. Results of Secs. II and III are used in the
SP expression to calculate the boundary free energy in
Sec. V.

Il. THE W-APPROXIMATION
A. Free energy and its minimization

We present discussions on the NI method in this sec-
tion using the W-approximation of the two-dimensional
Ising net as an example. This approximation uses a
five-point cluster, A~B-C-D-E of Table IA, as the
basic cluster. The degeneracy factor Q, for this case
was shown in Table I of Ref. 2 and is reproduced in Ta-
ble IB. Reference 2 is to be consulted for the meaning
of the parentheses notation in Q,. Expression Q is
used in writing the entropy of the system as

S=kInQy . (2.1)

The plus and minus spins are designated by i =1 and 2,
respectively. The probability of finding a spin configu-
ration §=j=k-l-m on A-B-C-D~E points of the cluster
is written as w,,,,,, as shown in Table IC. Othcer vari-
ables, v, z and y, are also defined in Table IC. Using
these variables, the entropy (2. 1) for a system of N
lattice points can be written explicitly as

%V =[Z£(”ml)* Zs(vlll-)] - Z L0y

+ Y Sz = X (), (2.2)

where the £ operator is defined as
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TABLE 1. The W cluster,

i

:

:
T

) DEP TION OF PROBABILITY VARIASL §8

BN CONPIGURA TYON OF
A € [} PROBABLITY
\. o \. ¥ 4 VARIABLE
’_——

./.\./' -

] 1 }
N \| -
§s [,
' va
L()=xlnx=-v . (2.9)

Each summation in (3. 2) is to be done over the values 1
and 2 of the subscripts in the summand, The two v
terms in (2. 2) are equal, but are written separately in
order to make the subsequent NI formulation symmetric.

In a system of N lattice points, the total number of W-
clusters we are interested in, i.e., those lying parallel

to each other, is 2N, The energy of the system is then
written as

E= wztcm- Wisaim (2.4)

where ¢, ;). 18 the energy per W-cluster and is written,
in turn, in terms of pair-wise energy ¢,, as
G = 4 (€4 Gt 6+ €0) . (2.5)

We define ¢, as

€y==¢€¢, wheni=j, (2.8)
€=+ €, when ivj .

Our program is to minimize the free energy with re-

spect 10 /1 ,,;'8. The w variables obey not only the
normalization:

LIPS I 2.7

Lt

but also two symmetry requirements, One of them is
the “mirror” symmetry:

Nismim  mingt (2.8)

and the oth. r {8 the “translational” symmetry:

‘Qm s ; .lm- - ; w.lul . (a. 9)

The mirror symmetry is easy to take care of because
the NI treatment, to be described in detail below, keeps
this symmetry intact through the iterations if the initial
input w's satisfy the symmetry.

The translational symmetry is taken into account by

adding the following Lagrange terms to the {ree energy
expression:

Lew Z LT Z ("tm- - Waiar) »
fodobl -

- z: (o = @000 Wi im (2.10)
GWhdyiym

We can now prove that the Lagrange multipliers a's
obey the following symmetry relations:

Qg == Apagq o (2.11)
The proof is the following, We form

LT g (Wignim = Waiga)) + LI Z (0sim = Wapasd)
=} (ayn+ agy) g «"’um- =Wt (Wi = Wourngi))

+4 (@gpn; = ayayd) Z-: {(COPRE Waiiar) = (W n = "’-mc”

(2.12)
We see that the first summand in ¥, vanishes when the
mirror symmetry (2. 8) is satisfied; this allows us to
choose ay g+ @y, =0, which is (2.11). This relation
(2. 11) was also proved in (II. 9) of Ref. 2 in general
notation,

Using relations obtained so far in this section, we
can write the free energy F=E - TS as

BF _BE_ S
N N N

-2 Z (@i + Augay) Wiamt A8 (‘ i Z"'tm-) ’
(jhim

(2.138)
where

B=1/AT,

and we use E of (2.4) and S/AN of (2.2) in (2.13). We
then minimize F in (2. 18) with respect to w3 In
order to keep the symmetry, we use

Vym = Z: Wisnim »
and
Vam ™ }‘: LTI (2. 14)

for v ,y and v, in (2.2). The differentiation of (2, 18)
leads to

W=t A8+ Il 0 + LITYR S (2.15a)
where

ln"'mc- == B¢ aimt { m(l‘cm Usaim ‘u-/}',.) « (2.15h)

We have introduced {3, for the sake of convenience in
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the following discussions,

Equation (2. 15) is the “superposition” relation® which
is ready to be used in the NI treatment. Except for a’s,
which will be discussed in the next subsection, the NI
starts with an input set {w,y,. }, and calculates the
right-hand side of (2. 15a) to obtain the output set
{#(j2;m}. The input v’s are derived from w’s using
(2. 14), and the input z’s and y's are from

Ziam = Z Winim ¢
Hhi

'
Y= LZM- .
n

In order to start the NI procedure, we assign the val-
ue of #T/€ and initial guess of ;.. Instead of speci-
fying all 32 w’s independently, it is sufficient to start
with giving probabilities of a single spin x, and x, (x,
+x3=1) and then write »’s as a Bragg-Williams-type
product:

(2.186)

Wimtm =Xy X Xy Xy Xy o

(2.17)

This initial assignment works even for low tempera-
tures.

We call the iteration step of going from the input set
{104 ja1m} to the output set {10, u;a}, Which is the next input
set, the “major” iteration step. Convergence of the
major iteration is tested by the following sum for each
step:

L Z | Inw,; pm = ln':’uu-' . (2.18)
A typical example of A_,, as a function of the major it-
eration step is shown in Fig. 1. It is better to use a
logarithm in defining A_,, as in (2. 18) than using a sim-
ple sum 3|30y, = Wi m! used in Ref. 4, because some
of the w’s become very small for low temperatures and
do not contribute to |w-#%|, although they do to (2. 18).
We need accurate digits of these small w’s, particularly

in calculating the boundary free energy using the scalar
product expression in Sec, V.

In the present problem, Fig. 1 shows that A_,, be-
haves in the same way as was reported in Ref. 4 and
loga,,, decreases linearly as the iteration progresses.
It is safe to use A, =107 as the criterion of the con-
vergence.

We can prove that when the iteration has converged,
the expression (2. 13) reduces to

\=F/N. (2.19)
B. The minor iterations

The remaining question in the present case is how to
handle a’s which are to be determined so that the

translational symmetry (2, 9) is satisfied. When we
substitute (2. 15a) in (2.9), we obtain

=i In(Sy, i j01/ S0, 49m) » (2. 20a)
where
Skyam = Z Wil expl i) 5 (2. 20p)
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Sp,imi = Z w%‘}b.exp(a...,) .
L]

Our procedure of satisfying (2. 20) is to do a series of
“minor” iterations to determine a’s at each “major”
iteration step.

In the method we propose, we use input a’s on the
right-hand side of (2. 20a) and evaluate a,,,, on the left-
hand side as the output of a minor iteration step. This
output is used as the next input on the right-hand side.
This technique for the minor iteration is of the same
spirit as the NI major iteration steps and, although we
have not analytically proved convergence of the minor
iterations, they do converge in all similar cases we
have worked so far. Speaking in qualitative terms, the
output a ,, in (2. 20) is derived as a weighted average
of input a’s on the right-hand side; the averaging pro-
cess is interpreted as helping convergence.

At each major iteration step, the minor iterations
are tested using

A= b | @egmi = Ggguil - (2.21)
tal

When A, becomes less than a criterion value 4, .,

the iteration is judged converged. The number of mi-

nor iterations for one major iteration step depends on

4 ..r,c and also on the progress of the major iterations,

and gradually reduces to one as the major iteration ap-

proaches its convergence. A typical example of the be-

havior of the minor iteration is shown in Fig. 2.

As an alternative method, the simultaneous nonlinear
equations in (2, 20) for a’s can be solved by the Newton-

5354 4
10! =T T T T T
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FIG. 1. Convergence pattern of the major {terations.
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FIG. 2. Convergence pattern of the minor iterations,

NUMBER OF MINOR ITERATIONS
3

Rapason (N-R) method. The convergence is expected
to be good because both positive and negative values of
a’s are allowed and there is no danger of overshooting
into unphysical regions. Different from the method we
are proposing in this section, however, the N-R pro-
cedure needs evaluation of derivatives and an inversion
of a matrix. In the present example, the N~-R method
is not so bad because the number of independent a’s is
only six in the ordered phase. For problems in which
the number of independent a's is larger, the method we
are proposing is faster,

C. Determination of T

For the sake of convenience, we call a plus spin and
a minus spin complements, and write the complement
of the subscript i as i’ (i+i’=3)., The variables Winim
and W ). ;0 o Decome identical in the disordered phase
and we define their difference as the long-range order
parameter {,. (For { we use a different subscript sys-
tem.) Because of the mirror symmetry, the number of
long-range order parameters is ten. An example is

§1 = Wygy g =~ Wyyae - (2.22a)

The list of subscripts of the first term «’s is (11111),
(11112), (11121), (11211), (11122), (11212), (12112),
(21112), (11221), and (12121) in the order of u=1,
2,...,10. It is convenient to rewrite (2. 22a) as

815 & = (0yay15 = 103155,) = 0, (2. 22b)

Beside the differences of w's differences of a’s also
vanish in the disordered phase and can be defined as the
long-range order parameters £, (u=11,...,14). There
are four of them:

&1 % &gy = (Qyyye = Gggey) =0
&12% £1a = (Ayyq) = Oggyy) = 0 (2.23)
8137 &3 = (@) g9 = rggyy) = 0
&= &y~ (o= agyqy) =0

The second-order transition point T, is determined
as the point at which the following 14 x 14 determinant
vanishes:

By
Det!-o—t-:
Since we are working at T,., the long-range order pa-
rameters £, are small. Thus we also write, along with
¢'s interchangeably,

=0. (2.24)
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B jaim® Wijaim = Wi gegs prms s

(2.25)
O ai ™ Qg = Opogegeye o

The expression g, as defined in (2.22b) and (2. 23) can

be expanded in terms of these a's, In other words, we

can write in principle

"
&= ):l Cur by -
Ve

The coefficient ¢, is 8g,/8¢,, which we want in (2,24),
In order to evaluate c,,, we do not need to derive the
expression (2. 26) analytically but can use the following
trick, We simply choose {,=1 and ¢, =0 for « #v and
using substitutions (which we explain below) of many
steps, we finally calculate g,. However complicated
the substitutional steps may be, the value of g, thus cal-
culated is equal to ¢,,.

We show the substitutional steps using g, of (2.22b)
as an example. For the quantity A:y,,,, in the paren-
these in(2.22b), we use the relationderived from (2. 15)

(2.26)

Awsd
Awygi1e = Wiggn ('.E::‘ + Bayyy s Aﬂnm) . (2.27)

In deriving this expression from (2, 15a), we left out
A{2p) because 2B changes smoothly across T, and hence
1 8(AB)/8T| << | 8¢,/8T| at T... The first term in the
parentheses in (2, 27a) is calculated from (2, 15b) as,
again leaving out Ag,

sl L (S0 St Sty _ 3y
Wig11 2\ vy, Yun 2y Ya
where we use differentiations of (2, 14) and (2. 16) for
Av's, ar’s, and Ay’s to write them as linear combina-
tions of Aw’s. For Aay,,, and Aqy,,, in (2.27a), we use
the differentiation of (2, 20)

l(AS AS,
Aay = oAk _.z.m)
A2\ S, i So,um /1’

(2.2%)

{2.28a)
ASy,imi = Z (B0 g + 0y A ) explag, ) ,
L]

ASp,im = 2 (Au'ﬂl.. * “':21- Aa-u;) exp(a_,.,) .
(2. 28b)

The transition point thus determined from the vanish-
ing of the determinant in (2. 24) is

T,/ = 2.36483 , (2.29)

which is the same as the value reported in Ref. 2 ex-
cept for the last digit 3 which was reported as 0 previ-
ously.

lIl. THE DOUBLE-SQUARE APPROXIMATION
A. Free energy and its minimization

As was discussed at length in Ref. 2, the W:approxi-
mation treatment in Sec. II looks at the square net from
the [11] direction, and is appropriate in calculating the
(11) boundary free energy. When we treat the lattice
from the [10] direction, the basic cluster which is one
step larger than the square is a double square as shown
by A~B~C~-D-E~-F in Table IIA. This cluster is ap-
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@) THE DOUSLE SQUARE
CLUSTER

A-B-C-D-E-F

B THE g FACTOR

() e

0 el

c) DEFINITION OF PROBABILITY VARIABLES

SPIN CONFIGURATION OF
A—C—E PROBABILITY
i | l VARIABL ES
8 —0—F
| b ——m
- "
—t »
I—k
o] “ow
f——i
f—k——m Yhm
| —k Y

TABLE II. The double-square cluster.

propriate in calculating the (10) boundary. The Q,5 fac-
tor for this case is also shown in Table IIB. This clus-
ter was studied independently by Allegra and Delise in
Politechnico di Milano, **

The probability variables are defined in Table IC.
As in Sec. II, i=1 and 2 denote plus and minus spins,
respectively. Using these variables and the Q,¢ factor,
we can write the entropy S for a system of N lattice
points as

kN z(z -C(vuu)+2£(v.... )
—Z L0104 ja1m0) + -:;(Zs(z“.)'fzs(z,..))
- (T eur Tetym+ Setrs Tetra),

3.1)
where the £ operator is defined in (2. 8) and the sum-
mation of each term goes over the values 1 and 2 of the
subscripts in the summand,

In a system of N lattice points, the number of double-
square clusters is N, Thus the energy of the system
is written as

E=N Z(U"m Wisnpmn 3 (3.2a)
where € is now
- 1
(Uhl"m' % (((l + tll P ‘lm)* 1 (‘u"' tﬂ"‘ (..*‘ tl') . (a- zb)

The pair energy ¢, is defined in (2, 8).

We now examine subsidiary conditions on w’s. The
normalization is

Z“’mm«"" 1,

(3.9)

There are two “mirror” symmetries:

Wisnimn = Wmpaiiy 1
and
w.‘."= u”".-- . (3. ‘)

These two symmetries in (3.4) can be kept through the
iterations, if they are satisfied in the starting input w’s.
There are two more symmetries. One is the “transla-
tional” symmetry:

Vyym = Z Wysnimn= Z Wonpi g
mn m,n

and the other is the “rotational” symmetry of v’s;

(3.5)

Uisng = Uings » (3.6)

The last one is to guarantee that the nrobability for the
spin configuration

(3

is equal to that of

j I |
2 2
and hence the isotropy of the system.

The translational symmetry is taken into account by
Lagrange terms similar to L, in (2. 10):

Lo= Z (@01 + Crms) 2 gagmn 5 (3.7)
im
where we have used the symmetry of a’s:
L Oy == Qg e (3.8a)

This relation can be proved by an argument similar to

(2.12). We may note that a’s obey another symmetry
relation:
Qiias= Ogipn 5 (3.8b)

which corresponds to the second symmetry of w’s in
(3.4). Because of these two symmetry requirements,
the independent a’s are three: ayy,5, @129, and pp,.
Six a’s vanish.

The rotation symmetry (3.6) needs the following
Lagrange terms:

L,= 2;' (Vegue + Yonrs) Wesnimn » (3.9)
where y’s satisfy the symmetry relations:

Yim= =Yg »
and

Yo =Viim o (8.10)

Because of these relations, 12 y’s vanish and there is
only one independent y, ,;:

Viete = Y120 = = Y1122 = = Yoan » (3.11)

The free energy expression corresponding to (2. 13)
is
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ﬂ—NF = a—:. - ,;5‘& - Z(aun: Xpprs * Yiym Ymart) i saimn
+ 28 (1 - E w‘,,,_,,) ; (3.12)

where we use E of (3, 2) and S/kN of (3.1). When we
minimize (3. 12) with respect to w,;,;m» We Obtain

0
IN30; o e = AB+ 1N n+ X jar + Pramai + Yisni + Yt 5

(8.13a)
where

hwmu-ﬁ = B€(sn1mn
+3 In(v 01 Vrtma Z iam Zy5,) = < In( y,, Yam¥ 51 Vin) o

(3.13b)
Except for the minor iterations to be shown in the
next subsection, the natural iteration step starts with an
input set {4 ;ms}, Calculates the output set {i;u;mn }
using (3. 13), and then uses w’s as the next input. The
input »’s are calculated from w’s in (3. 5), and the input
2’s and y’s are from the following

Ziam = Z Wiinimn »
P L

Y= Z:, Ziam «

We will call the iteration step from the input set
{wijn1mn} to the next input set the major iteration. We
can use an expression similar to (2. 18) as the test value
Ay, naturally with the six subscripts (ijkImn) in the
present section rather than five in (2.18). The con-
vergence behavior in the present section is similar to
Fig. 1, but slightly faster,

(8.14)

When the iteration converges, the value of A is again
equal to F/N as was the case in (2. 19).

B. The minor iterations

For each major iteration step, the output #’s have to
satisfy the “translational” and the “rotational” sym-
metry relations (3. 5) and (3.6). We have to solve the
following two sets of equations for three a’s and y4,y:

@0 =2 ISy, i/ Sp,i301) » (3. 15a)
where

Sy, im = ; Wil 101 €XD{ Uy + Vonmts) »

(3. 15b)
SD,(;M 2 Z w}?‘lun exp(a,.,,,, L Yuuhl) ’
mn

and

Y1212= 2 In(Ry/Rp) , (3.16a)
where

Ry= ..Z 10pmnaa1y expl@yyge + O gz + Ymnt2) »

Rp = Z {8 2mn €XPUya12+ O pia + Vmmia) - (3. 16b)

In the iteration technique we are proposing, the input
set {@,y} is used on the right-hand side of (3. 15) and

(3. 18) to evaluate the output set {a, 7} and repeat thc
cycle until the iteration converges. At each major it-
eration step, the minor iterations are tested using 3.,
similar to (2. 21) but including the y term. The minor
iterations behave somewhat similar to Fig. 2, but re-
duce faster to one; in the example of the same temper-
ature, the points reduce to one in Fig. 2 around 80-100
major iterations.

C. Determination of T

We can determine T, using the method similar as
Sec. IIC. Corresponding to (2. 22), there are ten equa-
tions of the form

8u= E“—(w“.,,“-w..,.,o,..a,,,)=0 . (3. 17)
The equations corresponding to (2. 23) reduce to two:

£u= £y = (ayypp = Aaaay)
3.18
812= E1a = (000 = Cgayy) » ( )
and the determinant (2. 24) now becomes 12x12, The
“rotational” symmetry parameter y,,,, does not con-
tribute to this determinant because v,3;3 — ¥3;2, = 0 €ven
in the ordered phase as is seen in (3.11). The value of
T, we obtain from vanishing of the determinant is

kT./€=2.37619 . (3.19)

It is of interest to see the calculation for which the
“rotation” symmetry is not imposed. We find the dif-
ference is relatively small, The value of £T,/e for this
case is almost the same as (3. 19) except that the last
digit 9 is replaced by 3. As far as the values of v’s are
concerned, we have the following example. At kT/¢
=2, 38 which is just above T, the disordered phase val-
ues are

V128 = Vg2 = 0. 031227 , (8. 20a)
when the rotation symmetry is imposed, and

V11ae = 0. 031378 , '

Vya12= 0. 031075 , (3. 20Dp)
when it is not.

When we compare T, in (8. 19) for the double-square
case with (2. 29) for the W approximation, we find the
W -value is about 0. 5% lower. Based on the generally
accepted rule, this means that the W -approximation is
slightly better than the D-S approximation. This dif-
ference is information which was not available when
Table I of Ref. 2 was written.

D. Comment on the double-square approximation

The Qp s expression in Table II is the case C, of Table

I in Ref. 2, and treats the two-dimensional net layer
wise. Explaining in detail, this Q¢ 15 the number of
ways the lattice can be constructed in such a way that
all the horizontally placed double squares (like 4A-5B-
C-D-E-F in Table III) have the assigned distribution

of spin configurations, It is importan: to note that this
Qp ¢ does not pay attention to vertical v placed double
squares (like A-B-G=-H=-D-C in Tab e ).
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FAUBLE L, The 253 and 3~ 3 clustors,
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When the interaction energy is limited to the nearest
neighbor A-8 and the second neighbor A-D, then this
1, expressionis valid, However, when the third
neighbor (like A-E) interaction is to be taken into ac-
count, the €1, expression in Table Il fails, The rea-
son 18 that the distribution of the vertical third neighbor
A~ 18 not taken into account in the theory. In Table
V of his article,® Burley applied the Q,¢ expreseton in
Table Il to the problem in which the third neighbor in-
teraction comea into play, His example, therefore, is
an example in which the method was not expected to
work, as Burley agreed with the author privately later.

If the third neighbor (like A-G) and the fourth neigh-
bor (likke A~H) interactions are to be included, the A,
expreasion of the Q factor in Table I of Ref, 2 should
be used. It is reproduced as Q44(Ay) in Table IIl. This
0 treats both horizontal and vertical double squares
equally, and is applicable to the third and fourth neigh-
bor interactions,

As was listed in Table I of Ref. 2, however, if the in-
teraction is nearest neighbor only, then Q, of Table II
gives a better result than Q,4(Ay) of Table [II. This
indicates that although the latter works with the third
and fourth neighbor interactions, the approximation may
not be as good as expected. We certainly expect a good
approximation when a 3 x3 cluster made of circled
points in Table III is used. For this case the O factor
is given in Ay of Table 1 in Ref. 2 and is reproduced in
Table 111 here also,

1 he same kind of argument about the horizontal and
vertical holds for the W approximation of Sec. II.

IV. PROOF OF THE BOUNDARY FREE ENERGY
EXPRESSION

11 Ref, 16 the scalar product expression for the
boudary excess free energy was derived, The proof
ol (he expression, however, contained a weakness, In
this section we present an improvement of the proof,
1t will be done using a three-dimensional nomenclature,
it t, we briefly sumnmarize Sec. II of Ref. 16,

We consider an ith crystalline plane parallel to the
boundary and designate by v, a configuration ol the e¢n-
tire plane, The probability that the sth plane takes the
configuration v, is written as p(v)). We define the
quantities:

&v)= ( I’(Vc””' expl+ poi)],
hvy) = ple )  expl = sodv))]

which can be regarded as a column vector g, and a row
vector h;, whose components are indexed by v;, The
ofv,) takes care of the continuity condition and vanishes
when the system i8 homogeneous. Because of the nor-
malization of the probability distribution p(v,), the
scalar product of g, and h, is unity:

b, g=1. (4.2)

In Ref. 16 we showed that g, and h, obey the recur-
rence relations:

8= exp(Br /) P* B » (4. 3a)
b =exp(Bri. /ol P, (4. 3v)

where P is the transfer matrix and depends on the in-
teraction energles. The parameter \,,,,, is related to
the free energy F of the entire system as

Fe Z"“"" (4. 4)
When the system is homogeneous, g, = 8., =§'> so
that (4. 3a) reduces to
.(.) - OIP(&‘.')P . '(.I i (4. 5)

This is the eigenvalue equation. The excess {ree ener-
gy Ao attributed to the boundary (A is the cross-sec-
tional area of the system) is written as

(4.1)

Ao=1lim (ANjer/a =2, (4.6)

mew famm
when the boundary region lies between i = < w and + w,

From now on, we deviate from Ref. 16. In order to
calculate o, we consider a region between i =+ m and
+ 3m outside of the boundary, in order to compare with
the boundary region. We assume m large enough so
that the region m < i< 3m is sufficiently close to the
homogeneous phase. Thisassumptionallows ustowrite

h-".-“ 1 ’ (4. 7)
which i8 a modification of (4.2). We can also write
.= exp(g2m\ ) P gy, (4.8)

which {8 obtained by applying (4. 3a) or (4. 5) 21 times,

The boundary excess free energy can be dervived as
follows. Operating (4. 3b) between - m and », we derive

L-'°x\’(‘ﬂ 2 “t-\/a)h- i (4.9)

le=mel

We form the scalar product ot -4.9) and (4. 8), and use
(4. 6) and (4. 7) to arrive at

Hmh.,.* g, = exp(= 840) . (4. 10)

me .

Going back to p(r)) in (4. 1), wo can write (4, 10) as
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exp(= gao) = 3 [ pp(WM? (4.11)

where the subscripts I and II denote the first and second
phases which meet at the boundary.

Although this proof is not written in mathematical
rigor, and still contains some implicit, albeit reason-
able, assumptions how h, and g, behave away {rom the
boundary, it is an improvement over the proof in Ref,
16, and is applicable to two-dimensional boundaries
for \vhlch the location of the boundary cannot be speci-
fied, as well as to three-dimensional boundaries.

V. CALCULATIONS OF THE BOUNDARY FREE
ENERGY

When we apply the scalar product expression (4.11)
to the present problem, we can write for the (10)
boundary

exp(= no,q, af) = Z Uzt pdzintpulzia DV,

'Ul
(5.1)
where a is the lattice constant and n is the number of
lattice points in a line parallel to the boundary. The
quantity z,,, on the right-hand side is the probability
for a three-point cluster as is defined in Table II.

The sum over all configurations },, in (4. 11) is now
written as the sum over the set {z,,} with the weight
factor Q{z;,,}. This factor is the number of different
ways the line (composed of n lattice points) can take
the configuration specified by the distribution {14{.}. and
is written following the cluster-variation method' for a
one-dimensional system as

afz, o= [Teny, )1 / IT tne, )t . (5.2)
4 [ ]

In accordance with the sum over {z,,,} in (5.1), the
probability factor p,( v) in (4. 11) is changed into
pi{zia}, which is the probability that a line of n lattice
points imbedded in the equilibrium homogeneous bulk
phase I takes a configuration specified by the set {z,,}.
The conditional probability that a spin ¥ is found next to
a pair of spins i~j is z{j}/y{}’ in the phase I. Making
use of this property, we can write p, as

prizin}= ‘I;I. (z{j2) ++ ("Zm)/n( }’3)) wx(ny,) , (5.9)

where a double asterisk is the FORTRAN notation meaning
“raised to the power of.” In this expression, z{}) with
a superscript (I} is the value in the equilibrium homo-
geneous bulk phase, and is to be distinguished from z, ”n
which is the summing variable in (5§.1). The other fac-
tor p;; in (5.1) can be written by changing (I) in (5. 8)
into (I1).

We are now ready to calculate o from (5.1), Using
the standard technique of statistical mechanics, we re-
place the summation in (5. 1) by the maximum term.
For that purpose we write from (5.1)

Oy af= min [Z 2(14”)- ‘Z: l:(y“)

lagalLicion |

42: y.,lnir.,- Z z.,,lni.,n xﬂ(l- Z z‘,,)] -
o) (YA (L

(5.4)
where £ is the operator defined in (2. 3) and
v“ p ( y(l) ll))l/l
z.,.!(x ‘,_un)\u (5.5)

The 2B terms in (5.4) come from the normalization of
Z;, and when (5. 4) is minimized it reduces to

Oy aB= AR . (5.6)

We note that the right-hand side of (5. 4) is of the
form of a free energy of a one-dimensional system in
which Iny,, and Inz,,, play the role of energy (times g).
Since a one-dimensional system has only the disordered
phase, z’s and y’s obey the symmetry z,,, = 24, etc.
Minimization of (5. 4) leads to an eigenvalue equation,
e being the eigenvalue. It is solved as

e 1 _m-.;mn 432 |/|}
{Pu 91: 911 911)*3’"911] i

As a check of this equation, we examine the high-
temperature case when the homogeneous bulk phase is
disordered. In such a case, y,, and Z,,, of (5. 5) reduce
to

Vo= =iy, and 2,,,=2i} =2{}P , (5.8)
and we can show that ™ of (5. 7) reduces to unity and
hence 0o, = 0.

The boundary excess free energy 0;,,, for the (10)
boundary is then calculated from (5.5), (5.6), and (5.7)
using the results of the equilibrium homogeneous bulk
phase of Sec. IlIl. The dimensicnless quantity o;,g,a/€
is plotted in Fig. 8 by a solid curve marked as double
square. It is compared with the exact result of
Onsager® and the results based on the pair and the
square approximations which are reported previously, '*

The boundary free energy o(,,, of the (11) boundary
can be calculated using (5. 5) and (5. 7) again, but re-
placing (5. 8) by

Oy V2 ap=28, (5.9)

since the distance between two neighboring lattice points
on a (11) line is yZ a. For this boundary, y, and z;;,
in (5.5) are those defined in Table I. Section II is used
to calculate oy, through (5.5), (5.7), and (5.9). The
result is shown by the broken curve marked with W in
Fig. 33 it is to be compared with the exact result by
Fisher and Ferdinand®® and also with the angle approxi-
mation result' which are also plotted in Fig. 8 with
broken curves,

The curves in Fig. 3 support the correctness of the
scalar product expression of the boundary free energy
as well as effectiveness of the W- and double-square-
approximations of Secs. II and III.

Vi. SUMMARY AND CONCLUSION

This paper can be regarded as the follow on of or a
supplement to the several papers published previously,
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and the broken curves are d,,. Tie kinds of approximation
used ‘n evaluation are indicated in the figure,

the paper?® on the improvement of the cluster variation
method, the natural iteration paper,* and the boundary
free energy papers, '®'® particularly the latter two, and
answers questions left unanswered or having come up
after the publications, in order to pave a way for fur-
ther applications of the techniques.

In computing the equilibrium state of a cooperative
system using the cluster variation method,? it is nec-
essary in general except for simple cases that subsid-
iary conditions are to be satisfied among variables,
Sections II and III show that these subsidiary conditions
can be treated in minor iterations for each major iter-
ation step of the natural iteration (NI) technique.

These sections also present computational details of
calculating the sccond-order transition point without
losing the spirit of the NI method. This technique

makes most use of the superposition expressions which
form the starting point of the NI treatment.

The scalar product (SP) expression of boundary free
energy" has lacked a rigorous proof. Section IV pre-
sents an improvement of the proof, The SP expression
is combined in Sec. V with the results of Secs. II and
III for the W- and double-square-approximations to cal-
culate boundary free energies oo, and oy, for the two-
dimensional Ising model. The resulting curves in Fig.
3 leave no doubt that the o values calculated by the SP
expression converge to the exact results of Onsager and
Fisher Ferdinand as the approximation is improved.
This convergence supports the correctness of the im-
plicit assumptions still left in the analytic proof in Sec.
V, and now guarantees that the SP expression can be
safely used for further studies of the boundary struc-
tures,
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Structure of phase boundaries*

Ryoichi Kikuchi

Hughes Research Laboratories, Malibu, California 90265
(Received 4 January 1977)

The boundary between plus and minus spin phases of the Ising model is studied for the bec ¢110)
boundary. The iterative calculation due to Weeks and Gilmer is interpreted as a modification of the
Natural Iteration computation (with subsidiary conditions) for deriving a free energy minimum. A
tetrahedron is used as the basic cluster in the cluster-variation scheme for this problem. Two formulations
are presented: one uses the scalar-product formulation and the other the boundary sum method. Previous
results of an order-disorder type phase transition within the boundary are confirmed. Results of
calculations on the boundary excess free energy and the boundary profile are compared for the pair and the

tetrahedron treatments.

I. INTRODUCTION

In a recent publication, Weeks and Gilmer! proposed
a novel iterative technique for numerically solving the
density profile across a phase boundary. They pre-
sented their idea based on the original Bethe? method
of treating cooperative systems using consistency rela-
tions. In Sec. II of the present paper, we point out that
the Weeks—Gilmer (WG) technique fits well with the
cluster-variation method of formulating the boundary
structure by Cahn and the present author,** and that the
WG iteration technique supplements the Natural Itera-
tion (NI) technique recently proposed by the present
author. *® The iterative technique of Sec. II can be
generalized to larger clusters. In Sec. IV we calculate
the boundary profile of the bce (110) boundary using a
tetrahedron as the basic cluster.

Along with the boundary profiles, the excess free en-
ergy of the boundary is calculated in Secs. II and IV.
In order to compare these results with those obtained
by the scalar-product formulation, ®7 Sec. III reports
the latter using the tetrahedron as the basic cluster.
Particular emphasis is placed on the phase transition
within the phase boundary. Examples are limited to the
(110) boundary of the bcc Ising model.

Il. ITERATIVE COMPUTATION OF THE PROFILE
The pair approximation formulation

In this section we use the pair approximation of the
cluster-variation method to calculate the density (spin)
profile across the bce (110) boundary and show where
the WG idea fits into the formulation and how their idea
facilitates numerical computations, We work with the
nearest-neighbor interaction as in WG and use the Ising
model terminology, rather than ordered alloys.

The crystal structure is illustrated in Fig. 1. We
consider the plane of the lattice points i-j~1 to be paral-
lel to the boundary, and phase I to be on the left and
phase II on the right. A lattice plane parallel to the
boundary is called a “parallel” plane for short and is
numbered by v, as in Fig. 1.

Two kinds of nearest-neighbor bonds are to be dis-
tinguished, to be called the B bond and the C bond for
short., A Bbond is within a parallel plane and examples
are i-l and j-! in Fig. 1. A C bond, such as i-m in
Fig. 1, connects two lattice points on adjacent parallel
planes. A B bond on the vth plane will be called a By
bond, and a C bond connecting points on the vthplane and
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the (v + 1)th plane will be called a Cy bond. The number-
ing system u for bonds is indicated in Fig. 1. Actually,
we use u=v in numerical computations, but it is better
to distinguish them in the presentation,

Plus and minus spins aredenoted by i=1and 2, respec-
tively, Thedistributions of spin configurations over a lat-
tice plane and over bonds are defined as in Table I, Weuse
distributions of nearest-neighbor pairs only in this section,

There are three kinds of constraints for these vari-
ables: first, the set of normalizations

Ehv.cﬁ Zyc“,,f 1 forallv’sand u’s; (2.1)
il Jom

second, the symmetry relations

YBv,11=Yay,u for all v’s; 2.2)
and third, the consistency relations
xv.i = zl:yav.(h xv.l = Z‘:ysv.(l (2' 38)
Xvos =Z Yousyms  Fvar,m= Eyc by fm (2. 3b)
m “

In Egs. (2. 3b), remember that the Cp bond connects
lattice points between the vth plane and the (v +1)th
plane, as shown in Table I and Fig. 1.

The cluster-variation method starts with the free en-
ergy expression, The energy of the system is written as

<

e

PHASE IT
PHASE I
-~

p-1 \

FIG. 1. Geometry of the bee lattice and the nomenclature used
in defining variables. Thin lines are nearest-neighbor bonds,
and thick lines are second-neighbor bonds. Section II uses only
thin line bonds.

Copyright © 1977 American Institute of Physics
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TABLE 1. Definition of the distributation variables. The sub-
scripts il in yp, ;, are symmetric as seen In (2,2). For
You . im the first subsc ript i refers to the left side of the bond

as shown in Fig. 1.
ol S
D!urlﬁuon

Coafiguration variable
i-8pin on the vth plane 'S
i-{ on a Bv bond Yav,it

i-m on a Cubond,
i on the vth plane, and Yeu,im
m on the (v + 1)th plane

E=2n§¢,, [Vghmﬁ il’cu.u] ) 2.4)

where n is the number of lattice points on each of the parallel
planes. The energy parametere€ , for the Ising model is

€,=+€ wheni#j,

€ =—€ wheni=j, 2.5)
In (2.4), the parallel planes go from v =1 through v,,
and the bonds go from p =1 through p,=v,-1.

The entropy of the pair approximation of the cluster-
variation method is written for a homogeneous phase of
N lattice points as*®

S$=kN [(2w- DY £t)-0 Y £y (w= u]. (2.6)
i (¥}

where the £ operator originates from the Stirling ap-
proximation of a factorial and is defined as

Ll)sxlny-x . 2.7)
In (2.6), N is the number of lattice points in the system
and 2w is the coordination number, For an inhomogene-

ous system in a bee lattice (w=4), which is what we are
interested in, we modify (2. 6) and write the entropy as

[E £y, )+ Zs(x,..)]
[2 Lix,,,)+ \; £les) ] 2.8)
-zg [§8(y.....)- %] ¥ [2 £(5ousm) = %] .

=l Cym

&
kn

RN |

2

hl\'l

The four xterms in (2, 8) are equal, except for the end terms,
but are written separately to make the treatment symmetric,
The -1 terms in (2. 8) take case of (w - 1) in (2, 6).

In minimizing the free energy, we want to treat all
y’s as independent, For that purpose we need Lagrange
multipliers for the following relations:

xv.l =Zlylv.|l - ;nd.l- ’

xwﬁ?)’cm-n.n‘@)’u.u . (2.9)

We write the Lagrange terms as

i Z;lzau..[z(y.».nn...u) zZ)‘cuc-] Zam..[zzvc(.-n..-E‘y..-.un...u)]}

E {‘Z':(ul.v 4 Qg = Ogyyy = Oy, )Vau, *22 (@gwarrom= Apu Ve u-} . (2.10)
[
In the first line of this expression, y,, ;;+Ysv, 1 YO = (K Xy, exPl= Beyn) (2.13)

guarantees that y,,, ,, is invariant under the interchange
of i and I,

The free energy of the entire system F=E- TS is
written using E in (2.4) and § in (2. 8) and adding the
Lagrange terms I' (actually - 2T') in (2.10) as

9 200 (5 >0 SRR 00

The last two summations are the Lagrange terms to take
care of the normalizations (2. 1).

The equilibrium state of the system containing the
boundary is derived by minimizing & in (2.11), In dif-
ferentiating with respect to the y’s, we regard x’s in
each of the four terms in (2. 8) as dependent on the y’s
written explicitly in (2. 3). Minimization leads to

Yowt1= Yo i1 €XPEBNg, = Gy = Qpy  + Ay + agy,i)y
Youssm = You, im €XPUBNC, + 20y, = 208 a1y, m) »
2.12)
where

yiou= (xv.cxv.l)".“l’(‘ Be)

Note that the il exchange symmetry of yg,,,, in (2.2) is
demonstrably satisfied by the expressions in (2. 12) and
(2.13).

When & in (2. 11) is a minimum and (2. 12) and (2. 13)
hold, we can show that & reduces to

F/n=§v_;hv+ Z:Xc» (2.14)

This F is the free energy of the entire system including
the boundary region,

The Lagrange multiplier a's are determined from
(2.9). Let us define

Spui 'Z'yl(uov).n expl= ap,, i + Qpyi)
Scre ¢ ® Z)’((:ou)o. im exp(= zauwn,.) ’
L]

Sctwi -Z.: Y 1rom €XP(2 0y ura) ¢ (2.15)

Substituting these in (2, 9), we obtain
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exp(§Brg, = @py, i + gy, )Spu, =exp(3Brc, +2ay,,)Sc . »

expEBA cqu-) = 2@gu ¢ )Scrui
=exp(3Brg, = Qpy,q + Uy, )Spuyi - (2.16)

The novel idea of Weeks and Gilmer! is to eliminate
the A’s from (2. 16) by forming ratios of i=1 and i=2
cases:

exp(-ay, + g, )Sp,,, _ exp2ay,,,)S

exp(= @z, 2+ ¥py,2)S50,2  €XP20ay,, 2 5k,
exp(=2ag, )Sczu,; _ €XP(= @z, + @5,,)S @.17)
exp(-2ag,,2)Sc1v,2  €XP= ay,,,+ [N T ’

From these we can solve
Qpy,1= Apy,2= (34,,, - Ag,,)/8 ,
Q1= ay,=(A;,,-34,,)/8, (2.18)
where the A’s are defined using the S’s in (2. 15) as
Ag,, = 1“(scgu. 158y, z/SCRv. 258y, 1) ’
Ap,,=In(S¢ 1, 1Spv,2/Sc 10, 2580,1) - (2.19)

Since the y’s satisfy the normalizations, we can choose,
for example,

®py2= Ogy,2=0 (2.20)
without loss of generality.

The iteration procedure is divided into “major” and
“minor” iterations.® A major iteration step starts with
the input set {x, ,}, {@;,,,}, and {ag,,,}. Using these,
we calculate y{3 ,, and &, in (2.13) and determine the
output set {a} by the minor iteration steps to be de-
scribed below. When the output a’s are determined,
the A’s are calculated by substituting (2. 12) into the
normalizations (2. 1); then the information of y®’s, A’s,
and a’s leads to the output sets {$p,,,;} and {9, ;n} from
(2.12). The output set {2,,} is obtained from (2. 9) us-
ing $’s. Thus, one major iteration cycle is completed,
and {%,,,}, {a;,,;}, and {&g,,;} are used as the input set
for the next major iteration cycle.

The minor iteration step is as follows. The input for
the minor iteration are the sets {y‘®} and {a}. Using
these values, we calculate the S’s in (2. 15) and further
A’s in (2.19) and then obtain the output values ag,,, and
oy, ; of one minor iteration cycle from (2. 18) and (2.20),
This output set a’s is then used as the input on the right-
hand side of (2, 15) for the S’s in the next minor itera-
tion cycle.

We can prove the convergence of the major iteration
by showing that the free energy function & in (2. 11) al-
ways decreases at each major iteration step, The ex-
pression ¢ is a function of the variables x’s, y’s, and
a’s. When these variables take the output values, we
write & with a caret, and we let & denote the function of
the input values, Then using a technique similar to the
one used in Ref, 5, and assuming that the constraints
(2. 9) are satisfied, we can derive

b-d=2 g [¥80,00 10(380,01/380,40) + Davsis = Yavois)
wirt

+2 ;nl You,im 1n(ycu.m/5’cu./-) G 2 90:-.1»- =Yecu, m]
Beoldy

+1Y (2, 0@, /5, )+ %, = %,,) . (2.21)
(Y]

Each term in the square brackets is nonnegative due to
Gibbs’ lemma, '° and hence & always decreases at each
major iteration step as long as the minor jterations
have converged and the continuity relations (2. 9) are
satisfied by both the input and the output y’s.

We have not attempted the analytic proof of the con-
vergence of minor iterations. In numerical computa-
tions they do converge, however, and the reason for this
convergence is interpreted as due to the averaging na-
ture of (2, 15)-(2. 18).

We want to point out that the iteration processes of
this section are almost exactly the same as the itera-
tion method described by Weeks and Gilmer.! The only
difference is that they do not treat the major and minor
iterations as rigidly separated as in this section. In
the method proposed in this section the output set {a}
makes the continuity requirements of (2. 9) satisfied for
the given {5‘®}, while in WG’s method the output {a}
of one minor iteration cycle is regarded as the output
of the major iteration cycle also. The fact that their
iterations converge indicates that we do not need to be
so strict about minor iterations, although the conver-
gence of the latter is used in our proof of &> & in (2.21).

We can derive equations in the Kikuchi-Cahn paper
from (2,12) and (2. 13) by eliminating the 1’s and a’s:

Yonit YeuminVo w-thal o (x_u)”‘
Yev,22 Yew-1,22Ycm21  \Xy,2

Cand =3’Cu.u3’c:~u/y¢:u.1zychzl ’
em=y8v.llyav.22/ygv,lz . (2.22)

These are exactly Eqs. (2.8)-(2.10)of Ref. 3 for the
case w=4 and w,=w,; =2 in their notation, Although this
set of equations is equivalent to the mathematical prob-
lem we treated in this paper using the NI method, when
written in the form of (2. 22) the NI technique is of no
help. The Kikuchi-Cahn paper solved it successively
starting from one end.

It may also '.¢ worth pointing out that the present
method which is based on the cluster-variation formula-
tion allows us to calculate the free energy of the system
in (2.14) in terms of the Lagrange multiplier x’s for
the normalizations. This is in contrast to the WG for-
mulation which is based on the original Bethe treatment
and does not lead to the free energy value in easy steps.

The formulation in this section was used in calculating
the boundary structure for the interstitial-center case
and the atomic-center case. The results agree with
those of Kikuchi-Cahn,® and are compared with those
of other methods in Sec. IV. 3.

I1l. TETRAHEDRON TREATMENT OF BOUNDARY
FREE ENERGY USING THE SCALAR-PRODUCT
FORMULA

The iterative calculation of the boundary profile pro-
posed by Weeks and Gilmer' and reinterpreted in the
previous section in terms of the NI calculation suggests
that a similar technique can be used with a larger clus-
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ter than the pair. This is done in Sec, 1V using a tetra-
hedron as the basic cluster for the bee (110) boundary,

As preparation for the formulation in Sec, 1V, we
solve the bulk properties of the bee Ising lattice using
the tetrahedron approximation in Sec, IIl. The bulk
caleulation is reported here as an introduction to the
more involved formulation for the boundary in Sec, v,
and also because it leads to the scalar-product (SP)
evaluation of the excess boundary free energy o, The
SP formulation is in Sec, 111, 2 and the results are com-
pared with those of Sec, IV in Sec, IV. 3.

The tetrahedron approximation for the bulk reported
here has been used before, some results were pub-
lished, ' and the method was briefly sketched previ-
ously,'™ There are also three papers published by a
Russian group using the same cluster, '

1. Bulk phase using tetrahedron

The tetrahedron we use in this calculation is f=j=k=1
in Fig. 1, which is not a regular tetrahedron but is made
of four nearest-neighbor bonds i-k, i-l, j=k, j=1 and
two second-neighbor bonds i-j and k=/. The distribu-
tion variable for a lattice point is written as \; and that
for a nearest-neighbor pair is written as Viiy 48 can be
understood from Table I. Besides v and v, we need
three other kinds of distribution variables: 2, fora
second-neighbor pair (like i=j in Fig. 1), u,,, for a tri-
angle of the shape i=j=! in Fig. 1, and W, for a tetra-
hedron i-j=k=! in Fig. 1,

The entropy of the system is written as
S=kInQ , 3.1)

where  is the number of ways in which a system can be
constructed for specificd set of distribution variables
{wini} and s written for a system of N lattice points as

Q= {Triangle ., }\*{Point x,}, {Tetrahedron w,,,,};¢
x {Second-neighbor pair z,,};?
x{Nearest-neighbor pair y,,}i' . (3.2)

The meaning of the curly bracket notation is explained
in any of the cluster-variation publications previously
referred to, »*

When the expression for Q is given as in (3.2), it is a
simple procedure to write the free energy of the system
in terms of the distribution variables and then minimize
it to obtain the equilibrium state. In the NI procedure
we treat the w;,,'s as independent and all other vari-
ables as dependent. Following steps similar to those
presented in Sec. III of Ref. § to keep the symmetry of
the formulation explicit, we arrive at the “superposi-
tion” expression

wim = e™ e, (3. 3a)
where
"'«‘?n)l = exp(= By g gy 4y jatiy u"nu)m("c Xy V™

(3. 3b)
The energy parameter ¢,,,, is defined as the energy per

n e, .
X (220 vy Ve .

tetrahedron and is written in terms of the nearest-
neighbor energy parameters ¢, of (2, 5) as

€ = lE + €+ 6 +€,)/6 . (3.4)

The definition of ¢;,,, in this paper is different from that
in Eq. (9) of Ref. 13; in the latter, ¢,,,, is defined as
the energy contained in a tetrahedron and the factor of

6 results because a nearest-neighbor bond is shared by
SiX tetrahedra. The present definition is preferred in
anticipation of the formulation'? in which the second-
neighbor interaction energy is to be taken into account.

The Lagrange multiplier A in (3, 8a) is for the normal-
ization condition

Z Wiy = 1 3.5)

AL O

and as is usually the case,® is equal to the free energy
of the system, per lattice point:

F/N=) , 3.6)
when the free energy is a minimum,

Because of the symmetry of the bulk phase which is
contained in the e ,, expression in (3, 3), we do not need
additional symmetry constraints nor the Lagrange mul-
tiplier a's as are used in Sec. 11 and in Ref. 6. The
Natural Iteration procedure works when we combine
(3. 3) with the geometrical reduction relations:

i = 2"'mn ST E“m»
1 L]
\'ll=Z“ljh' ‘(“2;.‘1. . 3.7
7

For the measure of convergence of the NI procedure,
we take

a™ =3 [l = ol 3.8)
i

where the superscript (#) denotes the nth iteration step.
This test value o™’ decreases below 10°* when » is
about 400 iterations {or almost any temperature in the
ordered phase in this particular problem. The differ-
ence of logarithms in the measure of the test as in (3. 8)
is preferred to the straight difference of w's, because
the former yields same number of digits accuracy for
all w's, which is the accuracy we need in the scalar-
product evaluation of the boundary free energy as was
discussed in Ref. 6.

2. Scalar-product evaluation of o

The excess free energy o of the (110) boundary can
be calculated using the bulk phase results of Sec. [II. 1
and the SP expression. A (110} plane of the bee lattice
is drawn in Fig. 2. The lattice constant a is indicated.

The SP expression for the boundary excess free en-

ergy has previously been derived and proved, ''* Ap.
plied to the present problem, we write

exp(= no ) 8a’/V2) = Z et [ el it 12,
wja! 8.9)

vhere a®/v2 is the area per atom in the “parallel”
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. L &>
| N |

FIG. 2. A(110) plane of the boe lattice.  The nearest-neighbor

bond and the second-neighbor bond are drawn with a thin line
and a thick lne, respectively,

plane, » is the total number of lattice points in the
plane, and 0,,,, i8 the excess boundary free energy per
unit area. On the right-hand side, p{u,,! is the prob-
ability that a (110" plane specified by the set of vari-
ables {u,,! 18 realized in phase 1, and Q{u,,,) is the
number of ways the plane can be constructed when the
set {u ! 18 specified.

The weight factor Q{u,,} can be calculated by slightly
modilying the scheme used in Sec. G of Ref. 8. We
can follow the steps of Eq. (G.1) if we regard bonds AC
and AD in Fig. 8 of Ref. 8 as the nearest-neighbor

|

bonds, and AB and CD as the second-neighbor bonds,
as indicated in Fig. 2 of this paper. The result is
Q{u; ! = {Second-neighbor pair 2},

x{Nearest-neighbor pair y,\?

" (3. 10)

where the curly bracket notation has the same meaning
as that in (3. 2) or as in those in Refs. 8 and 9.

N{Triangle w2 {Point v )7

Our experiences in Refs. 7, 17, and 6 tell us that we
can use the schematic information in Q of (3.10) when
we write the probabtlity function pl{um} appearing in
{3.9), It is written as

Pultint = (PFu Py PLe PV (3.11a)
where

P ® n Geff) s g

ok

prar Tl ez,

Py n

Sok (":(h“)“ VT
Po® I1 MMew (3.11b)
i

The double asterisk is the Fortran notation for raised
to the power of, " and is used here to avoid subscripts of
a superscript in typesetting, The quantities with the
superscript (1) in (3.11), such as «}), are those for the
bulk (I) phase. Note that the powers on the p's on the
right-hand side of (3. 11a) correspond to those in (3.10).

When we use (3.10) and (3. 11) in (3. 9), we derive

OB’/ VT =2 Z:. L) = 2 Llzy,) = 2 Ely) =2 £(y,)+ ;[Exu,) DIFTAR 2;:(\.)]
Wy (1%} [} LN ) { s L]

ot Z Wypp 100 5y + Z: 2 Indy, . E Via InSy ¢ Z."n Ind
) 8] r o

- %[Z v In®,; + 2 ¥; Ing, + E a ln‘,] + B (
i ] L]

The £ operator is defined in (2.7). The quantity with a
caret is defined as the geometric average of the corre-
sponding bulk-phase quantities for phases [ and Il as

By = oA
2, e 22 ete. (3.19)

The Lagrange multipliers a,, are introduced to take
care of the symmetry of v,

.".'2”00'2‘“"/ . (3. 14)

In minimizing 0 in (3.12), we use the geometric rela-
tions

2y 'g“m- = lE."m (3. 15)

together with (3. 14). The minimization leads to
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TR u.,.) +2 3 (gt =y =ayhege «  (3.12)

L ik
[

g = ufin XPUIAN + agy + ap =y = 0,) (3.16a)
where

0.g BRI G ""’"‘ﬁ)l/' (3. 16b)
A Uh‘(z“p"'\‘\’;s‘n Tﬁlr\',\'. i ;

When (3. 16) holds and ¢ in (3, 12) is a minimum, we can
show that

A =0 0at/VT 8.17)

which is the excess boundary free energy per lattice
point in the plane. It is easy to see that \ = 0 when the
bulk phase is in the disordered state so that «{1) = 11
= Rygn = Uypae

The Lagrange multipliers, the a,,'s, are determined
from the constraints in (3. 14), After transformations
similar to those in (2, 15)=(2.19), we arrive at
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w® 4O o &) (3.18)
Bl Uggy + Myyz XPlE,, 2
where

&)= ayy - ay
and

G" - G’. = o' °|. " - &1‘ . (3. 19)

We can solve the set of simultaneous equations by the
Natural [teration technique. We need the major and
minor iterations as was the case in Sec. II. However,
since the constraint equation in (3. 18) in a fourth or-
der algebraic equation for exp(a“). the minor itera-
tions can be done by the Newton-Raphson iteration
method without trouble.

3. Phase transition within the boundary

As was reported in Ref. 17, the scalar-product treat-
ment of the excess boundary {ree energy 0y, using the
pair approximation leads to a second-order phase change
in 0(,,0- We may call this transition temperature T,.
We expect a similar phase change in the tetrahedron
(bulk)-triangle (boundary) treatment of Sec. III. 2.

In the triangle formulation of Sec. III. 2, we see that
there are two long-range order parameters:

§1%x =Xy, L3 uyyy— gy . (3. 20)

The transition point T, can be determined as the point
at which the following 2x 2 determinant vanishes in the
disordered phase:

det(|9%0 y,0,/88,88,11=0 . (3.21)

The determirant can be worked out explicitly and the
equation takes the form

P PR )[ ( o ﬂ
- v —— — o Sa— . Agp—. - | X |
(l yu o 22y i ("ul k Ugay ey Yu 22y

It may be commented that in the disordered phase &,, in
(3.19) vanishes and we do not need the minor iteration
of (3.18). When we solve the disordered phase in Sec.
III. 2 and evaluate Eq. (3.22), we do arrive at the sec-
ond-order transition point T,, qualitatively confirming
the previous conclusions of the pair approximation, !’
The results are discussed in Sec. IV. 3.

IV. TETRAHEDRON TREATMENT OF BOUNDARY
FREE ENERGY USING THE SUM METHOD

1. Free energy and its minimization

We are now in a position to continue from Sec. II and
extend the pair treatment of the boundary sum into the
tetrahedron treatment. From Fig. 1, we see that there
are three kinds of tetrahedra in an inhomogeneous sys-
tem: one pointing towards the left (i-j~k-1), one point-
ing towards the right (i-j=I-m), and a third one (i-n-
I-m), We write the distribution variables correspond-
ing to these three as w,, ;s Way,ptmr AN Woy, jaimy TO-
spectively, where v and u indicate the position as seen
in Fig. 1. Of the four subscripts such as ijkl, the first
two and the last two connect the second-neighbor lattice

points. Ineach of the second-neighbor subscript pairs,
the first one is either above or on the left side of the
pair. The »'s satisfy the following symmetry relations
among subscripts:

Wevimi =Weo, pimp
Wry, tsim = WRy, gilm
Weu,inim = Weu, tmin « 4.1)

As subclusters of these tetrahedra, we see there are
five kinds of triangles, for which the distribution vari-
ables are written as wuy, ;51 Yy, inr ¥pv, iymr Uga, inis AN
Uy .. inm+ These five triangles can be identified by follow-
ing the subscripts and the corresponding points in Fig.
1. Among the triplet subscripts like {jl, the first two
connect a pair of second-neighbor points, The u's are
reduced from w's by the following two sets of geometric
relations:

“m.m‘Z"'u«.mn “P».un‘$wnv.m- 4.2)
7

and

Ugv,isi ‘E. Weveism = Z: R, istm
L]
URu,imi = Z"’Cn.m- » Zl:‘”nv.m- ’
n

“Lu.lnazgwc u.(nl-=z':“'l.(wlhllliu . (4‘ 8)

The symmetry relations among the w’s in (4. 1) are in-
herited by «'s through the geometric relations (4.2) and
(4.3). The equations among rw's in (4. 3) necessitate
Lagrange multipliers, as shown below,

Two kinds of distribution variables for a second-
neighbor pair are written as z,, , (Which is within the
vth plane) and z.,,,., Which connects I of the vth plane
and m on the (v+ 1)th plane. Together with w, «, and z
we also use x and y defined in Table I.

Since we use w's as the independent variables, the
energy of the system in (2. 4) is rewritten in terms of
w's as

Ve vg~l “y
\
E=2n E ¢un[ Z“'Lv.uhl . Z Wryim Z"’Cu.un} ’
tdit ve2 vl uel

(4.4)

where ¢, the energy per tetrahedron, is the same as
the expression (3. 4) for the bulk phase. The multipli-
cative factor » in (4. 4) is the number of lattice points
within a plane parallel to the boundary; it should not be
confused with the name of a lattice point » on the (v+ 1)th
plane in Fig. 1.

The § expression for this case is derived by modify-
ing Q in (3.2). For example, the 12 triangles appearing
in (3.2) are not all the same in the present case. By
counting the frequencies of occurrence, we make the
following replacement:

{“m}.‘v' g {“lv. m}: {"».m}n {“Pv.llu}n

‘{“ln.(n}:{“tn.nn}: . (‘o 5)
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Applying similar replacements to other factors, we ar-
rive at

Q= I‘!“ [ {“nv. m}: {“n. un}- {“Pv.un}n {“nu. inaln

g gmmtn D bad ({020 csnebt {0000 s1mbe (0, gt
X {‘lv.ll}n {3c h.lu}- {3CM.I-}n {YQ Y] l}:{ yc“.l-}:r‘ .

(4.8)
The {ree energy of the entire system can be derived
using (4.4), (4.6), and S=k1nQ as in (3.1). We will
skip writing the free energy expression to save space,
and go directly to the relations obtained by minimizing
the free energy with respect to wy, ,;, wg,, sum and

Wey,inim:

Wy, i1 = Wi, gns €XP{3BAL, + Qpy, 51~ A (u-1),015
= guetyani]

WRy,ijim = "’g’.m- exp(4BA p + Qg uimi * Agu,ims = Apy,01) 5

Weou,intm = '”g:).lnl- exp[%ﬂxc, F iy inmt ALy imn = QR img

- Qpuum] » 4.7

where

"’g’nm = exp(- 9‘41.1)(“3-.411“».«1:“1.(u-n.nu“L tu-n.nu)m
X Gy, 1%y, %0, 11,0 (2, 420 uery i
"(J'nv.uJ’nv.uJ’c(--n.nJ’cu—n.u"m ’

"’3’.;;1- = exp(- Be;sim)tpy, i sttp,, 1R, imi g uimg )

1/24 v
x“m"v.l"v.l”vol.-) ("'M.ll"c».u-)- ’

X (3 pv, 1Y Bvsi¥oum¥euam)™®
08 tnim = XD~ BEinim)thp s, imitin o 1L, t L sy 1)
X Gy, 1 %0, 1%, ¥ vet, m) 22, tnZ s 1m)
X (Y80, 1198 0001 » mycu.mycu.u)-l“ * (4.8)

It can be seen that the three w‘®’s in (4. 8) reduce to
w‘® for the bulk phase in (3, 3b) when the system is
homogeneous.

The Lagrange multipliers ,,, Ag,, and Ao, in (4.7)
take care of the normalizations:

Wiy, ia1 = Z Yoy igim ™= Z; We uyimim=1 .
fodoiyl todelym fomplem (4. 9)

Similar to (2, 11) and (2, 14) for pair treatment, in the
present case the free energy of the entire system in-
cluding the boundary is written as the sum

F_< ‘E
==) AL by Xk o 4.10)
n ; L "”‘ ”+g-:1 Cu (

When we compare this equation to (3. 6) for the bulk, we
see that each \;,, \p,, and ),, reduces to /3 when the
boundary is removed. That is the reason why the 8x,,

term in (4. 7) is divided by 2 in contrast to the factor

} in (3, 3a).

The Lagrange multipliers a’s in (4.7) are determined
by the three continuity relations in (4, 3). It is conve-
nient to define

SpLvin = ;wﬂ,.ml expl~ @y (ui),0s = U onran]
SpRrv.s = wam- eXP{ QR uim¢ + Xru,imy] 5

Srev, tmi * z':w}."-’.m. exp] @y, tms = Vpuyis1) »

Src uyimi = z-:"’t(:on:.um explay ,, jum+ @ wotmn™ CRuyimt] »
Swu.u-'; “’éot:. tnim €XP{ QL 4, jn = Ry imi = ARuyimt) s

SLLwe1) inm = Zwé"&,.”,,,‘, €xXP| 5 (vut ), jmn = AL wotng] *
7
(4.11)
Then we can write the first equation in (4. 3)as

Ugy, 131 = XPEBA L, + Agy, 1510810001
=exp(3BX gy = @pu,1s1)Sn 0,111 - @.12)

In treating this set of equations, we can follow Weeks
and Gilmer’s idea' and eliminate A’s by forming ratios,
as was done in Sec. II. Further we note that, since the
w's satisfy the normalization relations, one of the eight
equations (since each of i, j, and I takes two values 1
and 2) in (4.12) is redundant. This redundancy also oc-
curs in the rest of the equations in (4. 3). Thus, we
can choose without loss of generality, for example,

Qpy, 222 = Opy,200= Xpy,222=0 & (4.13)

By forming ratios from (4. 12) and using (4.13), we
obtain the following set of equations to determine the
a’s:

@py,191= 3 10(Spgy, 5158 v, 222/ Sprv, 22258 v, 051) »
Qg im =% ln(sm-_.,, Imi Snnv.uz/suCu.zzzsam. tmi) s

A, tam = $ 10(SL e, tamSLC 222/ St 2 0011, 222SL Custrm) +
(4.14)
From (4.11), we see that S;,, ,,, and S, ,, ,; are in-
variant under the exchange of i and j, and thus ay,,,,, in
(4. 14) retains this symmetry. Because of this sym-
metry in ap, ,;;, when the input w’s satisfy the sym-
metry properties in (4. 1), the symmetry is guaranteed
to be inherited by the output w's.

2. The natural iteration computations

We solve the simultaneous equations in Sec. IV.1 us-
ing the Natural Iteration method. As was mentioned
following (2. 20) in Sec. II, the iterations are divided
into the major and the minor ones. A major iteration
starts with the input data set {uy,, uy,, p,, g , uy .} and
{assy @ru ay ). We calculate (0@, 0, wl®} from
(4.8). Then we do the minor iterations to satisfy the
subsidiary conditions (4, 14). After the minor itera-
tions converge, the output is written as {&p,, &z, &, ).
We use these together with the «‘’s in (4, 8), which
have already been calculated, in (4. 7) to derive the out-~
put set {,,, Dy, #c,} together with the set {3 ,,, % rvs
icul- The output #’s lead to the next input set {iig,, ...,
fi;,} thus closing one major iteration cycle,

In Cahn-Kikuchi’s work™* it was discovered that two
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cases should be distinguished; one is the interstitial-
center (IC) boundary in which the center of the boundary
is between two parallel planes, and the other is the
atomic-center (AC) boundary in which the center of the
boundary is on one of the parallel planes. We did cal-
culations for these two cases. In the IC case we took
the number of parallel planes v, = 20 (the center being
between v = 10 and 11), and in the AC case we took v,
=19 (the center at v - 10).

In both cases the initial condition for the iteration
was chosen such that the left-hand side of the boundary
center is in the bulk I phase and the right-hand side in
the bulk 1I phase. When some variable is right at the
center, we used the averaged value between the two bulk
phase values, The initial values of a's are chosen as
zero all through the svstem,

In carrying out this iteration calculation, several
comments are in order. These comments are important
when a system is as large as the present one, in which
the total number of independent w's and a's is about 700,
(Actually a system much larger than the present one has
been successfully calculated by Sanchez at UCLA' using
the Natural Iteration technique.) The first comment
concerns the minor iteration procedure. Equation (4.14)
corresponds to the minor iteration equation (2. 18) in the
pair case and to Eq. (2.20a) in Ref. 6. In Sec. II, Egs.
(2.17)-(2. 19) work and converge nicely without trouble.
In the present case, however, when we start from the
initial set a=0, the output & of the iterations from
(4. 14) diverges. This was not completely unexpected
because the convergence of the minor iteration is not
guaranteed, although the convergence of the major itera-
tion can be analytically proved as in Sec. II. In the
present case the convergence was achieved by the follow-
ing trick. Instead of using the output & from (4. 14)

107! T -r T T =t

-

(n)

10-3 i i i . i
0 100 200 300
MAJOR ITERATIONS, n
FIG. 3. The test measure A™ in (4. 16) of the NI calculation of
the bee (110) boundary sum method plotted against the major
iteration » in a semilog scale,
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FIG. 4. The excess {ree energy and the extrapolated value
using (4. 18) calculated using the NI method.

directly as the input to the next minor iteration cycle,
we use the average as the next input:

Dnoxt taput ~ l(alnut + dou(put Yos (4. 15)

This brings the next input closer to the previous input
than using &, and it works. Depending on the cir-
cumstances, we can conceive of many modifications of
the scheme in (4, 15). In the work reported in this pa-
per, the number of minor iterations at each major iter-
ation step was about 60.

The next important consideration we can make use of
is the extrapolation of the major iteration steps. For
the measure of convergence of the major iteration we
used the following quantity:

a"= Z Z {lefu e =2, nl
{odoRyl voOT M
+ | “'l‘!'::.l(‘m o "‘I(Z':". (!N{ +] “‘é"-:tt)m e "'é".:.uul} .
(4.16)

Different from (3. 8), we did not take the logarithms of
w's in (4. 16), but it is adequate for our present pur-
poses. This test value o™ decreases logarithmically
as illustrated in Fig. 3 for #7/¢=3.0, and we can prove
that A™ is linear in the semilog scale for large num-
ber n of the major iteration.

In the same sense, ¢ also approaches the converged
value 0’ exponentially as is seen in an example of
kT/e=3.0 in Fig. 4. Using this property, we can ex-
trapolate ¢ starting with the assumption

o™ =0 rae™ , (4.17)

where 0™ is the value of the boundary excess free en-
ergy at the nth major iteration, It is a simple matter
to derive

0(-3:0“)_ (Ano(n))z /(A“a(n-n)_ A"O(") .
where
A'c(n).o(n-n)_o(n) 3 (4. 18)

The extrapolated value 0™’ is a function of » and m since
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the exponential decay relation (4, 17) does not hold ex-
actly unless » is very large. As we see in Fig, 3, o™
is still slightly curved in the semilog plot at »n = 300.
The extrapolated value ¢’ is also plotted in Fig. 4 as
a function of n, It is almost flat, This plot is based
on the choice of m =5, but other values (=10 and 20)
give practically the same extrapolated value for ¢,
The same extrapolation idea was used in the estimate
of the profile. Figure 5 shows how x, , for v=11 and 12
are extrapolated using the same scheme as (4. 18),

Actually, a much more desirable scheme is to ex-
trapolate the entire set {w,,. i us Wru,i5ims Wou, inim! tO
n— = gtarting from a finite iteration step n using a for-
mula similar to (4. 18). Such an extrapolation has been
tried and found successful in other applications of the
Natural Iteration method, but for no apparent reason
has not yet been applied to the present problem.

3. Comparison of results

Figure 6 compares the results of the excess free en-
ergy o of this paper and previous ones. *'? Of the four
curves of o, the upper one indicated as PAIR S.-P. is
the result of the scalar-product formula using the pair
approximation in Ref. 17. It has the second-order phase
transition at 7, of Table II, as shown by a cross in
Fig. 6.

The broken curve named PAIR SUM is the result of
Sec. II of this paper and is the same as the result shown
in the curve (2), Fig. 9 of Ref. 3. This curve is for the

PN -y

0a?)/2

kT/e

FIG. 6. The boundary excess free energy o for the bce (110)
boundary calculatedby four different methods. See the text.

IC boundary and is lower than the AC value. The differ-
ence of the two boundaries, 0,c.;c, is plotted at the bot-
tom of Fig. 6 in a broken curve,

The solid curve marked TRH S. -P. is the result of the

0.24 T T T T scalar-product method in Secs. III. 2 and IIL 3 of the
present paper. The second-order phase transition point
= EXTRAPOLATED is again indicated by a cross at the value of 7, of Ta-
VALUE '.......oocutno....... ble IL
0'22 - .....oouon 4
The dot-dash curve which is the lowest and marked
& TRH SUM is the result of the method in Sec. IV of this
T paper, calculated for the IC boundary. The AC case
e dRr" 1 & y was also calculated and the difference 0,,-0,. is again
< plotted by a dot—dash curve at the bottom.
— The first general conclusion we can derive from the
VALUE AT THE nth T comparison of these four curves in Fig. 6 is that they
0.18 MAJOR ITERATION 4 agree well qualitatively and thus guarantee that our
methods are sound. The second conclusion we derive
L is that the sum method of Secs. II and IV gives lower o
| values than the corresponding approximation of the
1 | 28 1 scalar-product results, in Ref. 17 and Sec. IV. The
0.04 = .98 =T 75 intrinsic reason for this is not known at this writing.
EXTRAPOLATED i
w *ey. VALUE
e fffeeteititiiiinitncatannnas TABLE II. Transition point data. The value with an asterisk
o 0.02 aasnaliES was previously reported in Table I of Ref. 13.
3 W
e . Curie point Transition
in the bulk point in o a(a®/V2)/¢€
00 i " i i Method kT,/ € kTy/€ at Ty
0 100 200 Pair, Ref. 17 6.9521 2. 8854 3.5992
MAJOR ITERATIONS, n Tetrahedron,
FIG. 5. The plus spin density at v=11 and 12 planes and their this paper 6.4907* 2.4918 3. 7267

extrapolated values,
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FIG. 7. Profiles of spin density for the bee (110) boundary
calculated by the pair method (dotted curve) and by the tetra-
hedron method (solid curve).

The profiles of the IC boundaries are plotted in Fig.
7. They are for temperatures kT/¢=2.0, 3.0, 4.0,
and 5.0 from the sharpest to the most gradual in this
order. The solid curves are the results of the tetra-
hedron treatment of Sec. IV and the dot curves of the
pair treatment of Sec. II. The former is always more
gradual than the latter for the same temperature,

For the rough measure of the “thickness” L of the
boundary layer, we use the definition used by Weeks and
Gilmer! in their Eq. (38):

L= (1 - 2\2‘.’, |)/(1 - 2-1'.,.“'1) . (4. 19)

Note that the center of the boundary is between v =10 and
11. The quantity x1¥, is the bulk value. This “thick-
ness” L is plotted in Fig. 8. Reflecting the fact that the
tetrahedron boundary is less sharp than the pair bound-
ary, the L value for the former is larger than the latter.

The nature of the phase transitions within the bound-
ary, marked by crosses in Fig. 6, is one of the prime
interests of Weeks—~Gilmer’s paper' and of the present
work as well. In Ref. 17 it was suggested that the un-
stable disordered phase below T, corresponds to the AC
boundary and the stable ordered phase to the IC bound-
ary. The 0,.=0yc plotted in Fig. 6 indicates that this
identification almost holds but is not exact because the
tail of 0,.~0;c extends into the temperature above 7,.
However, the prediction (C) in Sec. IV of Ref. 17 that
Opc~0pc becomes smaller as the approximation im-
proves and would vanish in the limit of the exact treat-
ment is supported without doubt by comparison of the
two 0, =0y curves in Fig. 6.

The curves for “thickness” L were studied by Weeks
and Gilmer' to obtain a clue for the nature of the transi-
tion point 7,. The two curves in Fig. 8 do not give any-
thing definite to answer the question,

As was commented in Sec. IV(E) of Ref, 17, time-

>
[ 4
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é
w
I
=
w
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-
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z
¥
Q
X
-
1 | 1
0 1 2 3 4 5

kT/e

FIG. 8. Thickness L of the boundary defined by (4.19) for the
bee (110) boundary calculated by the two methods.

dependent analysis of the boundary motion still remains
a hopeful method of clarifying the nature of T,.

4. Summary

The present paper shows that the iterative calculation
proposed by Weeks and Gilmer' can be interpreted as a
modified form of the NI calculation of the cluster-varia-
tion method the author had proposed earlier.® The rein-
terpretation of WG’s method in the light of the NI tech-
nique makes it possible to extend their idea and to cal-
culate boundary structures using larger clusters and
improved calculations. This is demonstrated in the
present paper using the tetrahedron approximation for
the bee (110) boundary. The paper also shows how a
tetrahedron can be used in calculating the excess bound-
ary free energy of the bcc boundary using the scalar-
product expression. '™'® The existence of the phase
transition within a phase boundary'’ is supported by the
calculation in the present paper.
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The scalar-product expression of boundary free energy for
long-range interacting systems?
Ryoichi Kikuchi j

Hughes Research Laboratories, Malibu, California 90265
(Received 5 July 1977)

The scalar-product formula of the excess free energy o of a boundary between two phases (based on the
lattice model) is proved for the case of interaction potential of the range longer than the nearest neighbor. A
The formula is exp(—A0/kT)=Z[p "(v,,v;...v;) p(W,vy...v)]'? expla P(v,,v,...v, ) —
a"(v,v,,..,v,)], where 4 is the sectional area parallel to the boundary, v, is a configuration of an ith !
~ plane parallel to the boundary, p “(v,,...,v,) is the probability that k consecutive planes in the bulk I
phase take configurations v,,...,v,, and the summation goes over all configurations v,,...,v,. The
variable a®(v,,v;,..,v,) is a Lagrange multiplier to guarantee continuity of p Y 5
2.0 "(wvivyev) = 2,p Yvyvy,...v, ). The expression is checked by two examples. The o for
the two-dimensional Ising model is calculated using a 32 cluster (i.e., a double square cluster made of
six lattice points) with the “3"-side perpendicular to the boundary, and is compared with the previous o
calculated with a 23 cluster (with the *“3"-side parallel to the boundary). The calculated o's agree well {
when the a terms are included. As a second example, surface tension o of a liquid of a two-dimensional
lattice gas-liquid model (in which the first, second, and third neighbor pairs are excluded, and the
fourth and fifth neighbor pairs attract) is calculated. It is then compared with o calculated by a sum
method (which calculates the equilibrium state of a sandwich system made of the gas and the liquid phases
with the boundary between them). The agreement between the two calculations supports the correctness of

the proposed o expression.

I. INTRODUCTION

The purpose of this paper is to report how the scalar-
product formula of the boundary free energy can be ex-
tended to cases of interactions of longer range than the
nearest-neighbor distance.

The following formula of the boundary excess free en-
ergy o per unit area was first proposed by Clayton and
Woodbury':

e PAY =Z[p‘"(v)p‘“’(v)]”' . 1.1)

where A is the sectional area of the system parallel to
the boundary, and B=1/kT. When we consider a crys-
talline plane parallel to the boundary (called a parallel
plane, for short), v in (1.1) denotes one of the configu-
rations of the parallel plane. The probability that a
parallel plane takes a configuration v in the bulk phase I
is written as p”(»), and the corresponding quantity for
the bulk phase II is p*'"(v). When we regard the array
of pPw)!”2 for v=1, 2, ... as a vector, the expression
(1.1) can be interpreted as a scalar product of the two
bulk-phase vectors {p‘” (v)!/%} and {p""®(v)!/?}, and thus
we may call (1.1) the scalar-product (SP) expression of
the boundary free energy.

In the SP formula (1.1), v is the configuration of an
infinitely extended parallel plane of lattice points.
Therefore, to use (1.1) for numerical computations, it
is necessary to approximate it using configurations of a
finite-sized cluster. This approximation®® was done
using the cluster-variation method, and the results were
checked by comparing them with the exact results of
Onsager* and of Fisher and Ferdinand® for the two-di-
mensional Ising model. The comparison supports the
correctness of the SP expression. The SP formula

YSupported by the U.S, Army Research Office.
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helped solve®? the puzzle in the square gradient theory®
of the boundary structure, and was also useful in pre-
dicting the existence of a phase transition within a
boundary. ® In spite of these successes, problems re-
main with regard to the SP formula. We consider these
problems in this paper.

When Clayton and Woodbury! proposed the SP formula
(1.1), the proof was not as complete as had been hoped
for. Further study by the author®!® has supplemented
the proof, but it still needs improvement. Another,
somewhat related, problem is the case of interaction po-
tential of longer range than the nearest-neighbor dis-
tance. The long-range interaction case was discussed
in Ref. 6, Sec. V, but the reported expression was in
error.

The corrected proof of the SP expression is presented
in Secs. II and III in the present paper for the general
case of a long-range interaction. An example of an Ising
model is presented in Sec. IV and another example of a
gas-liquid phase boundary in Sec. V.

Il. PROOF OF THE SP EXPRESSION OF BOUNDARY
FREE ENERGY

This section presents the corrected proof of the SP
formula of the boundary free eneigy for interaction po-
tentials of longer range than the nearest-neighbor dis-
tance. In the proof, we avoid using the inverse of the
transfer matrix P, which was used in the proof reported
in Ref. 10.

In the system being considered, there is one phase
boundary between the left (I) and the right (II) phases.
A lattice plane parallel to the boundary is simply called
a parallel plane. The position of a parallel plane is
designated by i. Each parallel plane contains N lattice
points; a configuration of the plane is designated by a
Greek letter (u, v, £, or n) that takes values from 1

© 1978 American Institute of Physics 119
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through K", K being the number of species in the Sys-
tem, For simplicity, the formulation in this section is
done for a system which does not need superlattices.

In demonstrating the long-range interaction formula-
tion, we use the probability function p,(y, v, £), which
encompasses three consecutive parallel planes with the
ith plane at the center. The three-plane formulation is
sufficient to induce the general case from it. In writing

CARGIITN . R R T

FZ: E (i, v, E)pylu, v, &)

wovt

the free energy F in terms of p,(y, v, £), we use the
cluster-variation (CV)approach*! and apply it to a cluster
of three consecutive infinitely long lines. The method

is exact (contrary to a widespread misconception that the
CV method is always approximate) since the system is
pseudo-one-dimensional. The method, which was ex-
plained in Ref, 6, Secs. II and V, leads to the following
expression for the free energy of the entire inhomoge-
neous system:

v sz':{% g 3[/’:-1/:(“, v)] *; E' 3[[’4'1/:("’ £)]- Z‘ piu, v, E)I}

* “‘2 E‘ {atgey jalus, v) = a2, O} pilu, v, £) *Z‘: A,{l - Z pilu, v, £)} v

The notation differs slightly from that used in Ref. 6.
In the first term, €(y, v, ) is the energy per three-plane
region; the £ operator is defined as

Llx]=xlnx=-x; 2.2)

and pyy/5(k, v) is the probability that the (i - 1)th and the
ith planes take configurations u and v, respectively.
The Lagrange multiplier a’s are used to satisfy the con-
tinuity requirements:
Pitsaly )= 2 P, 1, 0) = 2yl v, ). (2.9)
¢ G
The sign of « in this section is reversed from that of

Refs. 3 and 6. The last terms in (2.1) are for the nor-
malization of p, for every i,

}:‘ Pl v, £)=1,

"y,

(2. 4)

and ) are the Lagrange multipliers.
Minimizing F in (2.1) with respect to p,(u, v, £) yields
Pilu, v, £) = exp[BX; - Beln, v, £))]
X[Pras 2l V)1 jalv, )/

X explay-q sz, ¥) = a5, £)] . (2.5)
When F is a minimum, we can derive
o S
Fer-2 L av DN i

which shows that A; can be interpreted as the local free
energy. For further transformations it is convenient
to introduce

&iasaW, )= [pry sy, )12 expl - a5, 8],

iy sali, V)= [prey ol I explagay ol )], 2.7
T(u, v, &)= expl- Be(y, v, £)],
and write (2. 5) as
Pilky v, £) = exp(BA Mhyey /21, v)
XT(1, v, &) gray 2y, £) . (2.8)

(2.1)
"N
[
It is important to note from (2. 7) that
ZZ hl'llz(“v V)Hl-l/g(#. v)=1, (2.9)
“ v

in which the normalization of piase(k, v) is used. By
using the definitions of g and 4 in (2.7) and substituting
(2. 8) into the continuity relations in (2. 3), the following
two relations can be derived:

&i-1/2(K, V) = exp(ﬁx,)z Ty, v, E)gia ey, £), (2.10a)
T

'l‘ .l/z(V. £) = exp(BX,) z: l"(u, v, .E))l‘-l/g(“, v) . (2.10b)

So far the transformations are similar to those in pre-
vious papers.®!® Now we formulate the new proof of the
SP expression. We choose any two integers i and Jj with
the requirement

i<j. (2.11)
We first sum the following expression over & and use
(2.10a); we then sum over u and use (2.10b) to derive

;Zv ; h,.]/'(ﬂ, V)r(“‘ v, E)ghl /:(Vy &)
=Z Z: hiey 2 (m, v) [exp(= BX))gyey /(u, v)]

=Z:Z:[exp(— ﬁxc)hul/g(”. E)I}.’)q,'(l'. E) 2.12)

When i=j, use of (2.9) in the sums reduces (2.12) to
exp(- 8;). In general, we can rewrite (2.12) and de-
rive a general recurrence relation for shifting (4, j) into
(i+1, j+1):

ZZ i s2(i, V)g,-, s2(H, v)

=exp(= B¢ +Bxy) ZZ"mn(M. )8y alis, v)

(2.13)
We start with i==wm and j=m +1, and operate the re-
currence relation (2.13) M(> 2m) times to obtain
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(2.14)

* Aoy Cancels between the — 8( ) and the +B( ) sums. Since M in (2.14) can be arbitrarily

large, we let it become infinite. Then Bemou-172 30d g, 44,2 CaN be replaced by the values for the bulk II phase so

that

M=

where we have used the normalization (2. 9).

lim ZZ"-«W-[/:W- V)meu ot 72l My V) = ZE R, v)g ™y, v) =1,

(2.15)

We choose that the geometry of the sum in (2.14) is such that the boundary lies between — m and +m when the » ic

made large. In the limit of m ~ %, the A-sum part leads to

m
-Blm 3 (=A== 4o,

me®  fimm

(2.16)

where A” ig the bulk value and o is defined as the boundary excess free energy per unit area. In the limit as m be-
comes very large, h..;/; and g,,1/2 in (2.14) approach the #" and ¢''® functions for the respective bulk phases.

Therefore, we obtain from (2. 14) for the limit of m - =
80 :ZZ h")(#, U)g‘")([.l, ).
“ v

Writing this explicitly using (2.7), we obtain

™4 =3 2T [PV, )p (I expla ™ (s, 1) - @, w)]
[

where the superscripts I and II indicate the two phases.

The proof in this section can easily be generalized to the case where the probability functions p(x,, A,,

(2.17)

(2.18)

v ooy Apor)

of k+1 parallel planes are used in formulating the free energy. Then (2.18) is generalized to

e-'AG =; Z et Z [I’")(Vn Vayov vy vk)p(")(vh Vgy evey Vl))‘nexda“)(yh Vpy «ovy Vi)‘ 0("’(!’1, Vogy e any Vl)] ’
vz “r

in which the a’s are the Lagrange multipliers introduced
in the bulk phase to satisfy

T2, vy vy, 1)
¢

=¥ p(l)(vh P2y e ve s Vpy E) ’ 2. 20)

and can be shown to obey the antisymmetry relation

(2.21)

When the I and II phases are identical, the normalization
of p makes ¢ in (2.19) vanish, as expected.

Q("(V‘, Vay envy V.) = a(l)(uv eseyVy Vl) :

There is one remaining puzzle in the proof of this sec-
tion. We required the condition i< j in writing (2.12).
The choice i=—~m and j=m +1 in (2.14) satisfies this
condition. However, the equalities in (2.12) and hence in
(2.13) seem to hold even when i>j. If we allow i>jin
(2.13) and use it M times starting with the values i=m+1
and j=~m, this procedure is equivalent to reversing the
signs in front of the X's in (2.13) and (2.14). The sign
reversal results in the expression exp(+ fdc) on the
left-hand side of (2.17); this obviously is the wrong re-
sult. The interpretation of the wrong result and the rea-
son why we need the condition i<jin (2.11) are discussed
in the Appendix.

(2.19)

r

The proof of the SP expression in Sec. V of Ref. 6 for
the long-range interaction case, which incorrectly
omitted the a factor, is to be replaced by the correct
proof in the present section.

I1l. APPLICATION OF THE FINITE-SIZE CLUSTER
APPROXIMATION

In the general SP expression (2.19), v, represents one
of the K¥ configurations of a parallel plane (as was
mentioned in Sec. II), and the number K¥ is practically
infinite as far as the computer calculation is concerned.
Therefore, to make use of (2.19) in calculating o, it is
necessary to introduce a certain scheme which reduces
(2.19) into a tractable form. The case of the one-plane
probability function p(v) was done in Refs. 2, 3, and 10
using the finite-size cluster (FSC) approximation of the
cluster-variation (CV) technique.

Ih the general case of (2.19), however, the reduction
scheme due to the FSC method faces a still-unsolved
problem of reducing a‘® (v, v,, ... , »,) into a tractable
form. How to handle the a’s is studied in this section by
examining the homogeneous phase version of (2. 5) as an
example,

To avoid cumbersome notation for a large-size three-
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FIG. 1. A 2x3 and a 3x2 squares used in the formulation,

dimensional cluster, we present the discussion in this
section based on a two-dimensional system. The paral-
lel plane we considered in the previous section now be-
comes a parallel line.

In the homogeneous phase I, we can write (2. 5) as
PV, v, £) =exp[BA " - Be(u, v, £)]
x[p P (u, v)p (v, £)]'2
xexpla‘®(u, v)+a'P(E v)], 3.1)

where y, v, or ¢ represents one of X" possible config-
urations of a parallel line made of N lattice points, and
p'P(u, v, £) is the probability that the three-line cluster
takes the configuration specified by (u, v, £) in the bulk
phase I. We have used in writing (3.1) the antisymme-
try relation a‘P(v, £) = - a'P(¢, v), which is a special
case of (2.21).

In the actual computation of 0, we use an FSC. Our
program is to rewrite p'"’(y, v, £) of (3.1) in terms of
quantities of FSC and examine the a part of it. As an
example, we take a two-dimensional square net for the
system and a double square (DS), illustrated in the low-
er part of Fig. 1, as the FSC. The system does not in-
clude sublattices, but is otherwise general; it can be
regarded as an Ising model system, a disordered phase
of an alloy, or a lattice model of a gas~liquid system
(the latter will be treated in the next section).

In Ref. 3, we used the upper cluster of Fig. 1, and
used the simpler o formula (1.1). To distinguish the
two directions of the clusters in Fig. 1, we will call the
upper one a 2x3 or a DS(l) and the lower one a 3x2 or
a DS(L). Ailthough the two cases look similar, the lower
one needs the a’s, which are of concern in the present
paper.

The variables we use in treating the bulk homoge-

neous phase, (I) or (II), using the DS(1) are listed in Ta-
ble I. This table happens to be exactly the same as Ta-

ble II in Ref. 3. This is not surprising since the bulk
phase does not depend on the direction in which the basic
cluster is placed. The letter i in Table I{c) stands for
the ith species (for example ¢=1 for a plus spin and i=2
for a minus spin).

The purpose of this section is to study the meaning
of ain (3.1). To do this, we look into the “superposi-
tion” expressions in the bulk phase. When a DS is used
in the CV method, the free energy minimization leads
to the following expression [which was derived in (3.13)
of Ref. 3]:

(D _ A (n n (R . 4T
Wifktmn = Wijnimn €XPMoB + Qijay + Amups + Yisn1 + Ymnkr) »
(3.2a)

where
(D4 D (D (D172

.2b
Dy pr-Tl

w:nlnn = exp(‘ ﬂ(llll-n)
The notations are slightly different from those in Ref.
3. The superscript () indicates the bulk phase (I);
€;5aimn 1S the energy per DS; and exp()y8) is the normal-
ization factor, where Ay has the meaning of the free en-
ergy per lattice point [in contrast to (3.1), in which A‘P
is the free energy per N lattice points in one long line].

TABLE I. The double-square cluster.

(a) THE DOUBLE SQUARE
CLUSTER

A-B-C-D-E-F

(b) THE Qg FACTOR

(c) DEFINITION OF PROBABILITY VARIABLES

SPIN CONFIGURATION OF
A—C—E PROBABILITY
l l ' VARIABLES
B—D—F
i—k—m
| | l Wiikimn
)
—k
| | Viiki
j——1
j——k——m Zikm
| —k Yik
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Our aim is to write p™ (i, v, £) of (3.1) using w'" of
(3.2) and then to tind the quantity corresponding to
a®(u, v) v a'PE, v) of (3.1),

In (3.2a), a and y are Lagrange multipliers, which

are introduced to satisfy the continuity relations

vﬂl. }, ""”:u.. Z "'Ll:uu (8. 3a)

- ",

for a, and the rotational symmetries

"”:x . "::;1 (3.3b)
for y. The relations in (3. 3a) for o are similar to the
continuity requirement in (2. 8), which introduces
a-g/2{l, ¥). The rotational requirement did not appear

in Sec. II and needs a special discussion at the end of
this section.

When the system is a bulk homogeneous one, w satis-
fies the symmetry relations

i i = Wamai 14 (3.4a)
and

“'”:lun 5 “‘”:M X (3' ‘b)
We can prove that these relations (3. 4) in turn lead to
the following symmetry relations for a and y:

affu=-aifly +  affli=aflls, (3.5a)

7‘:n| - T::;l f 7”:: = 7’;”. . (3. 5b)

In Eqs. (3.2)-(38.5), the variables with the superscript

(I) are those of the equilibrium state in the bulk phase 1.
Now we use these variables to write p ¥ (u, v, &) in (3.1).
The variables u, v, and { represent any, in general ex-

cited, state of the three consecutive lines in the bulk
phase 1. In designating such an excited state, we again

|

use the variables listed in Table I, but this time without
the superscript (I). In other words, when we look at any
3x2 cluster portion of the three-line configuration

(4, v, &), the probability of finding the configuration i-j-
k=I=m=-n is written as ws.,. Using this quantity, we
can write p™(u, v, £) as

(8)
P(“(“. v, &)= ﬂ [""”:l-u/z;::l e (N“'th-u) ’ (3.6)

where a double asterisk is a FORTRAN notation meaning
“raised to the power of” and is used in this paper to
avoid subscripts on a superscript. The number (6)
above the product sign in (3. 6) indicates that this is a
sixfold product over 4, j, k, I, m, and n. In (3.6) the
factor in the square brackets is the conditional proba-
bility of finding ¢=A-m next to j-I/-n when the latter is
known. The logic of writing (3. 6) is the same as that
presented in Refs. 2, 3, and 10.

We now go back to (3. 2) for the FSC and use it for
w{ Pima 10 (3.6). The resulting expression can be sim-
plified in several steps. Besides wipm, We use v's and
z's as shown in Table I:

Cym ® E Wijnimn »
mn

i ’Z.: Wiintmn + 3.7

We note the following relations:

{

TT (e /2520 o iorsaamn) -1,

& (3.8)
TT /w80 o0 Ve ma) <1 -

Using (3.8) and (3.2), we can transform p'™ (g, v, §) in
(3.6) to

PP, v, &) - exp (g: (AoB = 3‘”::.-.)*\’“‘11-1-"‘) I(!i ('jw) "(;{ "'Ullnn)

¥t Vin

)
X exp(g: (a:}:' + a;':" + )-”:I 0’)‘:.‘:").\{0(7”"_”) . 3.9

Next we compare (3.9) with (3.1). Based on the normalization of w, we can identify

o .
A i 2 ‘\O‘V“‘Ullnn

3.10

because 'V is the free energy per N lattice points and Ao is that per lattice point. For the energv, we can identify,

€y, v, &)= ﬁ € mimm VWi prmn

Similar to (3. 6), we can write
W
P, 1) = TT iR/ v50) w0 Vo)

“H
ﬂ(" (V- E) v H ("“:m'(.v::)) e (N"le) g

3.11)

(3.12a)

(3.120)

Because of the definition of vy, in (3.7), vy, In (8.12a) can be replaced by wyy., and the product in (3.12) can be
changed over six indices i, j, & ¢ m, and n as tn (3.9). Thus we can rewrite (3.9) in a form close to that of (3.1):

Py v, &) = exp[ A" = Bep, v, O1P (w, PP, D'

. 0 \ .
)
"“P(ﬁ ":}uN"Hn + 2 ﬂ:-'u‘uN"n-n + 2 'an‘v"cm * 2 7:'-:.:”".:--) .
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BOUNDARY
DIRECTION

FIG, 2, A 3x3 square used in the formulation,

When we compare (3.13) with (3.1), we are tempted
to identify

a®u,v)=N 2 (affar + ¥ oih, (3.14)
e,
This identification, however, cannot be justified, be-
cause a{}), satisfies, as in (3.5a), the same kind of the
antisymmetry relation as a‘" (v, vy, ..., »,) in (2.21),
while the symmetry property of y{}}, in (3.5b) is of a
different kind.

When we think of the difference between the formula-
tion in Sec. II based on the infinitely long line, and that
of the present section based on the FSC, we note that
the former does not need y's because the rotational sym-
metry is automatically incorporated in the infinitely long
cluster. This situation suggests that even for the FSC
treatment the effect of y's would be small; this is exact-
ly the case that was explicitly pointed out in Sec. III of
Ref. 3. In other words, even with y,, =0, the aniso-
tropyofthe system is small and can be neglected.
Based on this observation, in reducing Sec. II to a tract-
able FSC scheme of this section, we propose to tolerate
a slight anisotropy of the system and make

i 0. (3.15)
Thus, instead of (3.14), we identify
aP(u,v)=N ; afhoib, . (3.16)

The result (3.16) can be easily generalized to larger
clusters. We show only one example. When we use a
3x 2 FSC to calculate the bulk phase using the nine-point
variables w;sy, jun.ope Dased on Fig. 2, o™ (u, v) in (3.16)
is to be identified as

ﬂ'(“ v)=N ﬁ “HI tmal’ Hl Imn * (8.17)

where a{j) .. is the Lagrange multiplier introduced for
the translational symmetry condition:

"”:.l-n Z: "”D Imn, ope Z "0’0 tin, tmn * (3. 18)
ok

The FSC expression of o™ (u, ) in (3.16) or (3.17) is the

one which is to be used in calculating exp(~ 8Ao) from
(2.18).

V. TWO-DIMENSIONAL ISING MODEL

As we did in our previous publications, *** we go back
to the two-dimensional Ising model to check if the new o
terms in the SP expression are correct, We use the DS
cluster of Sec. III, and the only difference between the
present section and Sec. V of Ref. 3 is that we place the
DS as perpendicular to the boundary, as in the lower
part of Fig. 1, rather than the parallel position of Ref.
3 shown in the upper part of Fig. 1.

The expression for the excess boundary free energy
o is (2.18), combined with (3.16) for a‘"’. Using FSC
notation, we obtain

exp(= Noqyab) = Z T

(OTNL

nu“d("m {11 oe (3 Nvy)
i i) e (Ny,,)

‘GXP[N . ; 4 (aifi - ai}li)vm,] , @.1n

where 0y, is the excess free energy per unit length, and
a is the lattice constant. The variables with super-
scripts are those for the corresponding bulk phases,
while vy, and v, without superscript are the boundary
variables to be determined. The definitions are in Ta-
bleI. The Q factor is the weight factor given as

nu(NVu)!

f v
Avygm} Bes L AR 4.2)

for which we have the relations

Vir }z: Uitng « 4.3
A

For the derivations of (4.1) and (4.2), Refs. 2 and 8 may
be referred to. As we have been discussing so far, the
new aspect in this paper is the last factor in (4.1) con-
taining a.

To calculate 0y, from (4.1), it is convenient to find
the maximum of the logarithm of the summand on the
right-hand side, and in so doing use the natural itera-
tion (NI) method. ¥'° The iteration converges with ease
and the results are shown in Fig. 3 by the solid curve
marked double square (1). It is satisfying to see that
DS(1) is close to DS(II), which is the previous result
reported in Fig. 3 of Ref. 3. It is particularly note-
worthy that, when we deliberately put a{}), = a{l) =0 in
(4.1), the o curve moves way up to the dotted position
in Fig. 3; this fact shows the correctness of the o terms
in (4.1) and hence in the general formula (2.19).

Because of the antisymmetry property of a{l, in
(3.5a), we can replace the last exponential factor con-
taining a in (4.1) by

(‘“Sh[‘\' ‘2:. (@R - m‘HI‘ru..] . 4.4

Therefore the o curve for which a is taken into account
is always lower than the one for which « is left out. The
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20

.- DOUBLE SQUARE (/)

.. _~DOUBLE SQUARE (i)
4 WITHOUT THE
a FACTOR

0 ; A 20 3.0
kT/e

FIG, 3. Excess free energy o at the boundary of square net
Ising model.

DS(1) curve and the dotted curve in Fig. 3 satisfy this
general property.

V. LATTICE GAS-LIQUID SYSTEM

Although the Ising model example in the previous sec-
tion is useful in supporting the validity of the a factor
in (2.18) and of the expression (3.16), the quantity o for
the Ising model as shown in Fig. 3 can be calculated by
always starting with a double-line cluster parallel to the
boundary and applying the formula (1.1), In other
words, when the interaction is of the nearest-neighbor
type, we can do without the new formula (2.18) or
(2.19). The new formula is needed only when the inter-
action becomes longer range. We show an example of
the latter case in this section.

We calculate the surface tension of a two-dimensional
gas-liquid phase boundary using a model proposed by

FIG. 4. Interacting pairs AB and AC.

- T e ¢ T

G/INe) = —pa/e

-0.010

1 | L |

—-2.45 -240

u/€

FIG. 5. Grand potential G versus chemical potential near the
coexistence point for kT /€ =0,50.

Orban et al.'* The model is illustrated in Fig. 4. When
an atom sits at A, no atoms can come to the first, sec-
ond, or third neighbor points (indicated by crosses).

An atomic pair AB at the fourth neighbor distance at-
tracts with the potential - ge (¢> 0), and a pair AC at the
fifth neighbor attracts with - €. In their example, Or-
ban et al. chose g=1.2, and we will use the same num-
ber. They were interested in deriving three phases,
gas, liquid, and solid, but in the present paper we will
discuss the gas-liquid transition only. We will use a
3% 3 cluster first to calculate homogeneous liquid and
gas phases, and use the results to write (2.18) to eval-
uate o.

Since the formulation of the bulk phase calculations
follows the standard CV method, only some important
points are discussed in this section. In working with
gas and liquid phases, we fix the temperature and the
chemical potential u. The advantage of fixing p rather
than composition in the treatment of phase diagrams has
been previously discussed.!*'® When u is fixed, the
thermodynamic potential which is minimized is not the
free energy F =E ~ TS but the quantity

G=F- uN, (5.1)

which we call the grand potential; N, is the number of
atoms in a system.

Keeping T and u fixed, we minimize G with respect to
the six cluster variables for a 3x3 cluster which speci-
fy the state of the system, using the natural interation
method.'® The resulting G, which is now a function of
T and p, is made of two branches, one for the gas phase
and the other for the liquid phase as shown in Fig. 5.
The point at which the two branches cross gives the u ,,
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FIG. 6. T vs y,,, at coexistence for the gas—liquid model.

for which two phases coexist. The curve marked by 3x3
in Fig. 6 shows the Tvs u , relations.

Since the chemical potential u is the Gl‘bbs potential
per atom, thermodynamics tells us that G defined in
(5.1) is equal to

G=-pA,

(5.2)

where p is the pressure and A is the area of the system.
(In a three-dimensional system, the corresponding equa-
tion is G - - pV, V being the volume of the system.) The
value of G corresponding to e ,. Bives the pressure of
coexistence, p,, . The p, . is plotted against T as the
3x3 curve in Fig. 7.

T TAT

The crossing point {i. e., the coexisting point) in Fig.

s I | I T s g dagt]
0.010 -
13
| SC—— | . | o ks -
0 0.1 0.2 03 04 0.5 0.6
kT/e

FIG. 7. T vs pressure p, ,, at coexistence for the gas—liquid
model,
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FIG. 8. Phase separation diagram of the gas and liquid phases.

5 also gives information about the densities of the coex-
isting gas and liquid phases. The curve marked 3x3 in
Fig. 8 shows the result.

A comparison of Figs. 6, 7, and 8 with the results
reported in Sec. IV of Ref. 12 shows them to be in good
agreement except for the estimate of the critical point.
Our Fig. 8 shows clearly that the maximum of the curve
is at kT/€=0.54, while Fig. 9 of Ref. 12 estimates that
the critical value of »T/€ is somewhere beyond 0. 7.
Later we discuss an additional evidence which shows
that the estimate of Ref. 12 is too large.

02} =
“ >
g? o1 F" ) ‘.
| T——— ? I S ¥ W | 7. ,.._J
C 0.1 0.2 03 04 05 06

xT/e
FIG. 9. Surface tension ¢ of the gas—liquid system calculated
in Sec, V.
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After the coexisting phases are thus determined, we
use (2.18) to calculate the surface tension 0. Since (as
we said at the outset of this section) the thermodynamic
potential is G rather than F, the quantity o is not the ex-
cess free energy but rather is the excess grand poten-
tial.!™!® With this understanding, we call o the surface
tension. The result of the calculation is plbited by the
solid curve marked SP, 3x3 in Fig. 9. The dotted
curve accompanying it is the one for which a in (2.18)
is deliberately put equal to zero. Different from the
Fig. 3 case, the solid and dotted curves do not differ
much, although the dotted curve (a =0) is higher than
the solid curve (a#0), in agreement with the general
requirement mentioned at the end of Sec. IV.

The reason why the effect of a is large in the Ising
model (Fig. 3) and is practically nil in the gas-liquid
surface tension (Fig. 9) can be traced in mathematics,
but the physical reason is still to be determined.

For the two-dimensional Ising model, the result of o
calculated by the SP method can be compared with the
exact calculation due to Onsager,* as we did in Fig. 3.
Since in the gas~liquid model of this section there is no
exact calculation to compare with, we calculate o using
two different methods to check the accuracy of the SP
method. One of them is the “sum” method. We mini-
mize the grand potential G of an inhomogeneous system
that includes the gas-liquid boundary. We apply the CV
method using a 3x 3square of Fig. 2 as the basic cluster.
The technique is similar to the one used by Cahn and
Kikuchi!”:!® and modified later, !° taking into account the
Weeks and Gilmer technique.!® In calculation, we used
80 lattice lines and imposed the conditions that the left
two end lines are in the gas phase and the right two end
lines are in the liquid phase. In minimizing G, the com-
bination of T and u are fixed, the latter being the value
K¢, for which the gas and liquid phases coexist at that
temperature, as determined in Figs. 5 and 6.

The results of o calculated by the sum method are
plotted by the broken curve in Fig. 9. When we com-

We=r—t—% 1 T+ T T 17 T

kT
- A o4

>
o
Gl
z 1
o
i |
KT _
- e 0.5 =
C ‘i
00! e e

40 60
LATTICE LINE ACROSS THE BOUNDARY

FIG, 10. Density profile versus the boundary calculated by the
sum method,

0.02

4
o
-

LOCAL EXCESS GRAND POTENTIAL

e
=)

LATTICE LINE ACROSS THE BOUNDARY

FIG, 11. Local excess grand potential across the boundary
calculated by the sum method.

pare the SP (3x3) curve and the sum curve, the former
is higher than the latter for the region of physical sig-
nificance, kT/¢>0.4. (For the temperatures below
about 0.4, the solid phase is more stable, as was shown
in Ref. 12, and the curves in Fig. 9 lose their meaning.)
This situation qualitatively agrees with the bce (110)
boundary results reported in Fig. 6 of Ref. 10; in the
bec case also, the SP curve is higher than correspond-
ing sum curve.

We can then almost say that the SP expression (2.18)
is supported by these calculations. There is, however,
one bothersome feature of the SP (3% 3) curves in Fig.
9: they bend over around k7T/€=0.25. We can disre-
gard, if we want, this bending-over behavior, because
it occurs in the (7, u) region in which the gas and liquid
phases are not stable, as we discussed above. (In this
regard, we may quote Barker® who pointed out that the
CV calculation can sometimes give unphysical results
in the region where the phase being calculated is not the
most stable one.) However, to further verify the SP
method, we calculated o using a 3X4 cluster. The re-
sults are plotted by the curves marked 3x4, SP in Figs.
6-9. The solid curve in Fig. 9 is the a #0 case and the
dotted one is the a =0 case; the latter is higher, in
agreement with the requirement at the end of Sec. IV.
The 3%x4, SP curve does not show the bending over that
the 3x3 curve does, and behaves more normally; there-
fore, we do not need to be concerned about the somewhat
bothersome shape of the 3x3 curve for low tempera-
tures.

One other result of the 3x4 cluster calculation worth
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pointing out is the liquid-gas diagram in Fig. 8. The
diagram shows that the critical temperature calculated
using the 3 x4 cluster is 7 /€~ 0. 51, which is lower than
the value for the 3x3 cluster. It is generally accepted
that the critical temperature decreases as the approxi-
mation improves, and Fig. 8 agrees with this general
property. This property is the other evidence that the
estimate of the critical region in Ref. 12 is too high.
Although the surface tension o in Fig. 9 is for a two-
dimensional system, the general feature agrees with
that of real three-dimensional liquid.

Although they are not the prime interest of this paper,
Figs. 10 and 11 show the boundary profile and the local
excess grand potential derived from the sum method.
The ca/€ plotted by the broken curve in Fig. 9 is the
sum of the local values in Fig. 11. A part of the curve
in Fig. 11 becomes negative. This negative part is con-~
trary to what we expect in the “central hump" reasoning
used in the square gradient treatment® of ¢, as was dis-
cussed in Ref. 6, and is worth further attention.

VI. SUMMARY

The scalar-product (SP) expression of the excess
boundary {ree energy o writes ¢ in terms of the proper-
ties of two bulk phases that meet at the boundary. Anoth-
er method of calculating o, called the sum method in
this paper, evaluates o as the difference between the
free energy of an inhomogeneous system including a
boundary and that of the homogeneous phase. Compared
with the sum method, the SP method has the advantage
that it can calculate ¢ more easily and can derive some
of the properties of 0 more accurately. In the papers
published so far, the SP method has been applied only to
cases of nearest-neighbor interaction. The present
paper extends the SP method to cases of longer range
interactions than the nearest neighbor. The extended
SP formula is in (2.18) and more generally in (2.19).

As examples, ¢'s are calculated for a two-dimensional
Ising model (nearest-neighbor interaction) and for a two-
dimensional gas-liquid model taking into account up to
the fifth neighbors.

¥ T A 4

APPENDIX: SUPPLEMENT TO THE PROOF IN SEC. Il

In this Appendix we first show the meaning of the expression hy.y ;s(K, v)gs./2(k, v) Which appears in (2.14), with
a particular emphasis on why i<j in (2.11) is required. Since the interaction potential in this formulation is defined
to be extended to the second neighboring plane but not farther, the joint probability distribution of four plane con-
figuration p,., ,5(K, v, £, ) centered at the position i+ 1/2 is written without approximation as

Do salit, vy £,1) = pyl i, v, E)pyalv, &, 1)/ prajelv, £) . (A1)
We use (2. 8) for p,(u, v, £) and divide both sides of (A1) by I'(u, v, §)I(v, &, 1) to obtain
exp(Br; + BAya hy-r 2y V)g1ess2 8 0) = Prasa(p, v, & n) expl e (i, v, £) + Belv, &, )] . (A2)

We can continue multiplying the conditional probabilities, as was done in (A1), m times to arrive at the probability
distribution of (m +1)-plane configurations vy, vy, Vg, ..., ¥, On planes 4, i+1, ..., i+mas

exP(BArag + Bhiaz+ * * * + BNt My 1/2(Vos V1) Giamer/2(Vimers Vi)
=p(‘,...."!ll(V0’ Vip ooy Vn)exdﬁ((vl) 1y Vl) bl 3‘(“.-" Vea=1s Vn)l . (As)

This i$ the meaning of the factor hy. ;a(H, ¥)gj./2(K, v). In order that the expression (A3) be meaningful, m must be
larger than or equal to unity; this is the condition exactly equivalent to the condition ¢< j required in (2. 11) to accom-

pany (2.13).
Since the left-hand side of (A3) does not contain vy, Vg, ..., Vs the right-hand side is also independeat of these
configurations although they appear in the expression. Now we start with the expression
S=expBy+ e + ) 3 0 D Muat 2l VIT(H, ¥, D)8y 2V, 8) (Ad)
o

and sum this first over f and later over u. With the use of (2.10), we obtain

S= exp(ﬁ)«,.. LY S BX,.--;) Z Z hia /.(“, v)g..,,.-”.(u. v)

=exp(Bhia+*** +Bh\jem) ZZ hivaya(Vy E)gimer 2V, 8« (A5)
T, ;

The equality in (A5) shows that this sum is independent of the location i. When we choose i such that the region
from i to i+ m covers the boundary (this assignment is always possible because the boundary profile has been solved
beforehand, and m is to be made very large), the invariance in (A5) leads to the o expression (2.17).

Note that in this proof the expression S in (AS) is exactly the sum of (A3) over u =vy=v,- and v =vy =v,, and hence
that the boundary free energy is closely tied to the multiplane distribution function pry ... ¢emyWo vy oo+ v,) across
the boundary.

Now we go to the puzzle mentioned at the end of Sec. II. The key to solve the puzzle is the fact that the probabil-
ity expression for m +1 planes P ... remiWor Vir - -+ » V) in (A3) requires that the & function lies always on the left of |
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the g function. As a mathematical expression, however, we can interchange location i+1/2 and i+ m -1/2 for I
and g and can work with g,),a(Vg, ¥\ may/2(Vmey, V). We now examine the physical meaning of this expression. Our

interpretation is that this new formulation corresponds to a different expression py . (Vg vy, *-

*y V) for a mod-

el of different interaction energies. We use a caret to indicate a function in the redefined system. The / and o
functions are defined using the quantities in the old system as

".-uzh-h v) =gy saln, v) [Pa-l/z(#v "””a EXP{- A=y 21, v,

&l'l/!(“" £)= 'l‘.‘/z(l‘. ) [fi‘.l/z(l'. 5”' /zexp{- ay .|/2(V. i)] .

(A6)

The energy factor I'(y, v, &) in (2.7) are replaced by T which obeys

Z Ty, v, OF (L, v, n) - 8e.n»

Flu, v, &)= P&, v, 1) .
Then p,(k, v, £) in (2.5) is replaced by

ﬁ.(u. v, &) = exp(- Blg);la-l/z(l-l. l’)f(u. v, S)}:'i.”z(lh El

(A7a)

(A7b)

(AB)

Note that 3); in (2.5) is replaced by - 8); in the new expression (A8). The (m +1)-plane probability corresponding

to (A3) is written as

-

P, i Wo Yy oo

= exPl= By =+ = BN ot Byt 12Wor V1 )Rt omet 2 Wimets Vi)

expl= B =+ = E\jop-1 €101 /20y VI o1 72Winegy Vi)

L) [Flwg, vy, v2)E 0y, v 1)+ + Blupeg, Ve, Vo)™

(A9)

Note that the » function appears on the right of g, although & appears on the left of & as required. From the in-
variance argument similar to (A5), we can prove that the boundary free energy & for this new system is

AB==-D (0 -2"")<0
[}

(A10)

as we said at the end of Sec. II. The negative & means that the newly defined system does not sustain a stable phase

boundary in it.
=

Note added in proof: As the answer to the comment
at the end of Sec. V, Professor J. W. Cahn told the
author that the negative part of the local excess grand
potential in Fig. 11 can be understood from the square
gradient theory by a partial integration.
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ABSTRACT

The ground state of a binary fcc alloy with nearest-neighbor
interactions and tetrahedral multiatom interactions (characterized by
two parameters o and B) is derived and presented in a chart which shows
classification of phases in the space of « and §. Where non-stoichio-
metric phases can occur, the phase boundaries at T=0 are computed using
the tetrahedron approximation of the cluster variation method. Duality

ot the composition and the chemical potential is emphasized, and results

are presented and/or interpreted in the dual approaches.




1. Introduction

Statistical mechanical calculations of alloy problems usually
assume a model with paiv-wise intaraction energies. Even the simplest
model with near neighbor pair-wisa interactions on an undistorted
lattice poses a formidable prcblam which has not been solved in three
dimensicns.l' The cluster variatisa method (CV¥M) has been a widely used
tool for performing approxizat= dut increasingly accurate calculations
on such models.2

To make the models more realistic, several routes are op~ . Higher-
neighbor interactions can be co:sidered,3 but in the CVM the plexity
of the calculation increases witl cluster size and the minimum cluster
size is dictated by the largest :iateraction distance. An alternate
possibility is to assume multiatca interactions such that the energies
of clusters are given by numbers that cannot be obtained by summing
pair-wise energies.*

These possibilities have b2:a explored in fcc ordering reactions.
With near neighbor pair-wise intsractions the Bragg-Williams approximation
gives a cempletely unrealistic pkase diagram which is unaltered by
considering higher neighbor pair-wise energy.a In the CVM the pair
approximation is unrealistic for different reasons.S It is not until
the tetraa2iron approximation that a phase diagram which resembles a

symmetric version of the Cu-Au diagram is obtained. With practically no

* It mav ce remarked that ccemposition-dependent pair-wise energies is
t
a multizi~a interaction concept ia which the energy of a pair depends on

all the =t ms in the volume elezsat over which composition is ncasurced.
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increase in computational complexity, four-ateom interaction parameters
can be introduced in the CVM calculations that match the asymuctric Cu-
Au phase diagram.7

There are ways of demonstrating that pair-wise interactions are
inadequate to describe alloys.8 Furthermore, there are quantum mechanical
methods that lend themselves to the direct calculation of multiatomic
cluster energics,9 .3 that eventually these may become available as
input for the statistical mechanical calculation.

Because of the use of multiatom forces in statistical mechanical
phase diagram calculations in fcc, we undertook a calculationlo of
antiphase and interphase boundaries (APB and IPB) in such a system. As
in previous calculations,11-13 it became apparent that the ground
ntate1“’15 was a clue to some of the low temperature behavior. We
therefore undertook a study of the ground state reported in this paper.

10

The IPB and APB are the subject of a companion paper.

2. Ground State Energy

We use the linear programming method of Allen and Cahn.15 The

problem is to minimize the energy used by Kikuchi and deFontaine
E/N = 3w(1 + «) Z1 + auzz + 3w (1 +B) 23 (1)

where N -3 the total number of fcc lattice sites, Zn is the fraction

of fou--.tcm tetrahkedra containing exactly n B atoms and (4-n) A

R e




atoms,t w is an interaction cr2rzy 2nd « and B are dimensionless numbers

that express the strength of the f:iur-body forces. If pair-wise ncar-
neighbor interactions suffice to describe the energy, ¢ = B = 0.

Equation (1) is subject to two constraints:

1= Zo + Z1 + 22 + 23 + 24 (2)

and the composition, given as a fraction x of atoms that are B,

4x = Z, + 22, + 32, + 4z, (3)

1 i 3

Using the constraints (2) z2nd (3) to eliminate two of the five Zn's we
obtain a‘linear equation for E in terms of the remaining three which
then is subject only to the coastraints that 0 < Zn < 1. If the
coefficients of these remaining Z's in these expressions are

positive, E is a minimum when these Z's are zero. By successively

T In the notation of Reference 7 and in a later section of this
paper various tetrahedral clusters that differ only by rotation
are distinguished, and A's are called 1 and B's are called 2.

Thus, z..,, and z both represent the tetrahedron A
1112 1211

-da

38 with

the B 2tcu ca different corners of the tetrahedron. The Z's
in the pre:ont section are given in terms of z's with four
subscripts by the following relations

O 1111 :

o Mot 7 UL Wl V) R ¢ ¢ M

12 i Reference 7 eq. (4.2) is written as w in the present
-~

JEP ST S,




elininating all r::rs of 2's the minima in F are explored. For
eq. (1) is alr=ady in the form of Z0 and Zé eliminated. Therefore, if
w>0, 1+a>0, 1+£>0, €

then the 2inimua in £ occurs at

E=0
zl=22=23=0'
Zo =1 - 4x, (5)
24=6x.
From the constraint that the Z's lie between 0 and 1 it follows that
0 < x < 1/4.
If instead we solve eqs. (2) and (3) for Z1 and 22:
Z1 = (2-4x) - 220 + 23 + 224
= {(4x- - -
22 (4x-1) + Z0 223 324

and use these to eliminate Z1 and 22 from eq. (1), we obtain

E/N - 3w(l+ta) (2-4x) - 4w(4x-1)

= = In(iv39) 2, - w(2-3(a+p)) Zy - 6w(l-a) 2, (6)
Thus, when
w(l+3a) <0
w(2-3(a+p)) <0 7
and
w(l-u;'<0

the mir. 2= valu- for E is given by

rastance,
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E/N = 3w(l+a) (2-4x) + 4w(bx-1) (8a)

when

2, =2,=2, =0, 2, = 2-4x, Z2 = 4x-1, 0.25 < x < 0.50. (8b)

These equations and inequalities are more easily obtained by

f
consicering eqs. (1-3) as three simultaneous equations in six unknowns. y
|

Using Cramer's rule,16'17 we obtain i
13

%

|Eam| = §|m| 4 (9a) _;

4

i

where |Eom| and |kom| are determinants formed by three columns from §
i

the matrix :
v

0 3w(lta) 4w 3w(1+g) 0 E/N

1 1 1 1 I (9b) ‘

0 1 2 3 4 4x :

3

labelled Z,n,m, and k,n,m respectively. The first five columns of f
the matrix, labelled O to 4 are the coefficients of Zo to 24 respectively Z
in eqs. (1-3), and the last column labelled E is composed of the remain- ;
£

ing terzs. Decause a determinant in which a column is repeated is zero, §
i

the te-=z involving Zn and Zm vanish in eq. (9a). Setting |Enm| to g
zero tives the ground state energy when tetrahedra n and m are present, ;
while 12 inequalities are given by requirements that |kanm| have the same g

sign as [=-a). Thus, eq. (4) may bg writtcn in terms of Jeterminants
[

1104, 2.5, )304), (5) in teris of |[EO4], (7) in terms of |012],

1312, , <.z and (8) in terms of |E12|, where each symbol represents a

columa = [3Y). i
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The FSC expression of o' (4, v) in (3.16) or (3.17) is the is always lower than the one for which a is left out.
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Therefore the o curve for which @ is taken into account
The

The results are summarized in Tables 1 and 2, and in figure 1. The
conditions in Table 1 are constructed from the above rules, bearing in
mind that permutation of two columns changes the sign of a determinant.

Each line segment in figure 1 is a boundary where one of the determinants

is zero and thus changes sign. Regious in which a particular intermediate

phase will appear at the appropriate composition form polygons in figure

)

3. Ground State Degeneracy

This linear programming method gives the combination of clusters
that would give the lowest energy. At most, two types of clusters can
be in the ground state. The presence of any others would raise the
energy above the minimum. For example, eq. (6) indicates that Z1 and
27 can be in the ground state, but the presence of any other clusters
raise the energy above the minimum. Since each cluster type by itself
gives a stoichiometric phase, a two-phase mixture of stoichiometric
phases would have the ground state energy apart from any excess due to
unwanted clusters at the interfaces between the stoichiometric phases.

In this model, however, the ground state can have many different
configurations. There are three sources of degeneracy in the ground
state. Each stoichiometric ordered phase can have one dimensional
disorder without raising the energy. Parallel planes of certain anti-
phase bcundaries (APB) can be created without changing the cluster type.
Both the 112 (CuaAu) structure and the DO22 (Ni3V) structure are mazde up
of only ASB clusters. The DO22 structure can be thought of as Ll2 with
evenly s;paced (001) APB's, and vicei‘ersa. In fact, any distribution of

parallsl (221) APB has the ground state energy. The same holds true for

APB's in L, (CuAu) of the type that converts it into the CuAu II struc-

turc.5
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r J [ l ( method. ® The resuliting é, whrch is now a function of

T

FIG. 4. Interacting pairs AB and AC,

} | | } | . T and u, is made of two branches, one for the gas phase
and the other for the liquid phase as shown in Fig. 5.
The point at which the two branches cross gives the p,
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When a systemn is exactly at a stoichiometric composition where only
one cluster is present, the APB's discussed above are the only degeneracy.

APB's with other orientations create clusters that raise the energy. In

non-stoichiometric systems, when the pairs of clusters presenL are nou
adjacent in composition, |m-n|#1, the ground state phases cannot deviate
from stoichiometry for that would always create clusters adjacent in

composition and raise the energy. All interphase boundaries (IPB) also

raise the energy, as do APB's except the type discussed above. Thus,
for non-adjacent clusters the only degeneracy is that due to one kind of

parallel APB's.
For adjacent clusters, |m~n|= 1, in a non-stoichiometric system there

are several more sources of degeneracy. Adjacent clusters can be mixed

to give non-stoichiometric phases, nonuniform phases including mixtures
of region with differing composition, "IPB's" where such regions meet,
and APB's. Any such arrangement will have the ground state energy as
long as only the two types of clusters are used. "Two-phase' disper-
sions on any scale down to the atomic is permitted.

As the composition varies from one stoichiometry to the next a
symmetry change is occurring and there must be a phase transition.
Thus, as B is added to pure A in a (0-1) case the ground state requires
only that =o two B's are neighbors. When x is small, this must look
like a2 cilute almost-random solid solution, but as x approaches 0.25, it
must teod tcward an ordered ailoy. The question of the nature of the
orderiz; transition is examined in the next section.

The APB's involved in one-dimessional disorder have zero excess
energvy. Lo Jdo APB's and IPB's when adjacent clusters are present in the
ground stx:to (e.g., cluster pairs 0-1 and 1-2). For all the other

conditions these boundarics have finite energies at T=0. For the APB's
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4
this situation is similar to the results of an investigation of tho Usi!
L structurc,n and will be used to understand the limiting behavior of
calculations on 1PB's and APB's in the companion papcr.\o
i 4. The Ordering Limits at T=0
In the ground state under conditions when w<0 and A3B clusters

exist [(0,1) -in Table 1] there must be a phase transition from the fcc
(disordered) to ihe ABB structure as x increases from 0 to 0.25. The
energy provides uo clue since it is linear over the entire range, (fig.
2). The classical common tangent construction based on the energy does
not provide definite compositions, for it is tangent along the entire
compasition range. For the same reason chemical potentials are also
constant over this composition range (fig. 2). The terminal composition

x=0 is not the phase limit for obviously a dilute mixture of B in A need

not be a two-phase system. The answer is not to be found in the energy but
in the entropy or the ground state degeneracy as it affects the entropy.
In this section then we first undertake to calculate the free encrgy at
.finite temparature and examine the low-temperature limit under the
condition where the (0,1) limit of Table 1 applies. Later in this section,
we derive the combin:torial equations using the tetrahedron approx-
imation for ground state degeneracy and examine the entropy for two-
phase behavicr. The two procedures give equivalent results.

Th2 *wo species A and B are designated by i=1 and 2, respectively.
In the <:trahedron approximation of CVM, the basic variable zijkﬂ is
the prehability of finding atomic species i, j, k and £ on the four

; vertices of a tetrahedron. We further require that the fourth subscript
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FIG, 10. Density profile versus the boundary calculated by the T
sum method.

One other result of the 3x4 cluster calculation worth
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2 is for the atom located on the sublattice which is ;reterventially

occupied by B atoms in the ordered A3B structure. For the sake of
brevity we call this sublattice the B sublattice and the rest the A
sublattices; the three A sublattices are equivalent.

Besides z1 K2 's we use the pair variables yi. and v, ig together
with tte point variables Xy and up. For y . both atonms are on the
A sublattices wkile in Vie the first and second subscripts indicate the
species on the A and B sublattices, respectively. For the point
variables, X, is the probability of finding an ith species on an
A subla ze point, and uy is the corresponding quantity on the B

sublattice. These variables are connected by the geometrical

relations:
iy ® 2 e g
Vig = }%i Zijke A |
NN R IY) o
up = 1,5k Zijke (3)

The normz’ization of 2z's is

1= {75.k2 %ijke (14)
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that the boundary free energy is closely tied to the multiplane distribution function pg;
the boundary.

Now we go to the puzzle mentioned at the end of Sec. II. The key to solve the puzzle is the fact that the probabil-
ity expression for m +1 planes pg; 1)t Viaions o gl k2 (A3) requires that the s function lies always on the left of

.....

temilVor ¥y « oo v, ) ACTOSS 1
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Vhen the grand potential G
1 §=R - T3 -p N, (15)

is written in terms of zijkl's and then is minimized with respect to

z's, we obtain the following set of equations:

» A 1/2 -5/2
zijkl = exp[(2 + “ijkl) /kT] Yijkl xijk£ (16)

wheve

'ijkz = - siju + (pi + pj tt pz)/s (17)
Yiike = Yij Yik Yk Vie Vi2 Vie (18)
xijk£ = X, xj X, Uy (19)

Although the order of subscripts are meaningful in zijkl’ Yijk£ and
xijkl‘ the order is immaterial in wijkl since the energy parameter
sijkz does not depend on the order 6f the subscripts. The quantity
exp (A/2kT) in (16) is the normalization factor and is determined
from the uormalization condition (14).

Wt2n the energy parameters sijki and the chemical potentials
b togethar with the temperature T are given, the equilibrium state

of tha system is solved by finding zﬁjkl's which satisfy egs. (10)

i
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through (19) simultaneously. W“hen these equations are solved, the
8 > { ’

parameter A is identified »s the grand potential G per lattice point:

A = G/N (20)
where N is the total number of lattice points in a system.

Because the system we are calculating has a fixed number of lattice

points N, individual chemical pctentials are not defined; only their

difference is. We can arbitrarily choose

pl='“2‘='-p- (21)

At T=0, the entropy part does not contribute and we can writce

_ 9E/N
Hy, = B = 5%

2y (22)

The quantity 2p is the diffusion potential of Larché and Cahn.18

It is tabulated in Table 1 for the various ground states. From Table
1 and figure 2 we see that p is a step function of composition. In
the (0-i) range applying equation to the energy listed in Table 1 we

obtain

= 2E1 = = 6(1+a) |w| (23)

Note that «<G. This must also be the value of p for the two-phase
'

equiliirium at T=0. At low temperature, we expand p away from the

value iz 3) and write




gu = 8f1va) Jwl ¥ akT + .05, (24)
in which a is the expansion coefficient yet undetermined. In the
quantities %ijke in (17) wve usec the definition of the energy
parameter eijkz in eq. (4.2) of Reference 7. The explicit form of
wijkz's are written in eq. (31) below in the following section. For
the derivation of this section, we use the first two:

Yi111 and
w1112' Since the numerator of kT im eq. (16) should vaulsh at T=0 we

expand A also as
A=-6(1%ta) |w| + BKT + .... (25)

When we use the expansions (24) and (25), we see that Vi1 and

%1112 afe different by a/4. Then the general formulas in (16-19)

reduce to the following:

exp<fz )<’11 11)3‘/2

bt B § 1 S 8
i b
3/2
Z1z T ""P(g Z)()n 3228 (26)

)1/2

g R gL I (’11312 11 V21
e Ol 5 1 e 1 | S B 3 )5/8
Vi "

The rest cf 2 's are negligible and arc not nceded. These

ijkyg
the v ' « dis h:
are for tie A3B phase. Thc zijkz s for the disordered phace
can be citzined from (26) by imposing the disordering conditions:

b E XL end X, B WL
ylj gup SR i




The formulation is now complete. We use the computer to solve the
set of equations in (26) for different values of a. For the computation

we used the values of ¢=0.01 and B=-0.08 vhich can make the Cu,Au phase

3
diagram bast fit with experiwents as will be discussed in the accompany-
ing pz:er.lo The quantity b is determined as a function of the quantity
a from the normalization of z's:

1 3

=%y T e
Note that the rest of zijki's are negligibly small. The solid curve in
figure 4 shows the result. We repeat the solution for the disordered
phase, and obtain the dashed curve in figure 4.

Siﬁce A is the grand potential as was mentioned in (20), the point
at which the two curves cross in figure &4 represent the coexistance of
the two phases. The value of a at the intersection is a=0.8109 aud is
the right value of the gradient of the kT vs. p curve at T=0 in figure
.

The disorder-CuBAu phase boundary points at T=0 in figure 6 were
calculated ip this way. Since the exponential factors in (26) do not
depend on T, the phase boundary curves in this figure are vertical unear
T=0. It i: believed that this vertical property is a general result.

Anothar general property we can deduce from (26) is the fact that

limits irrosed by (0-1) in Table I. Because of this, the positions of
t

the pi.zse boundaries at T > 0 are independent of & and B. This is

readil® . lerstood since this problem involves only different ways of

arrangiag the same goound state clusters.

21121 (27
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Similar calculations were done for the CnsAu-CuAu boundavy at
T » 0 and the results are plotted in figure 6.

As was mentioned in the introductory paragraph of this section,
te start from eq. (16) is not the only way of deriving the T=0 phase
boundary. An alternative method is to work with the entropy. For
the (0-1) cluster pair, the ground state energy is linear in the com-
posilion x as is shown in the firsl row of Table 1, and thus does not
contribute to the phase separation. Therefore, the phase boundaries at
T=0 between the disordered fcc phase and the A3B phase are to be calculated
by the common tangent construction based on the two entropy curves as
shown schematically in figure 7.

We now show that to draw SD and So as functions of the composition

x and then determine the phase boundaries Xp and x, from the common

0
tangent is equivalent to the method presented in this section.

For this purpose, we introduce a parameter a and define functions

QD(a) and ¢o(a) as

¢D(a) = Ngx [SD(x) - ax]
(28)
¢o(a) = Hﬂx [So(x) - ax]

when we plst the two functions ¢D(a) and ¢o(a) against the parameter a,
they cross zs in figure 8. The point P at which the two curves cross
corres; »ncds to the comnon tangent situation in figure 7., The proof is
the following:

At P, we have




¢D(ao) = SD(XD) S agxy = So(xo) - g%y T ¢U(30) (294)

and sioce the ¢'s are maxima

ir dSD(xD)= S d So(xo) i
de 0 dxo
Thus, we obtain
So(xo) - SD(xD) s 5 d SD(xD) & d So(xo)
X. - X =3 T Tax T dx (30)
0 D . D 0

Therefore, X and X, are the boundaries of the two phases.

When we formulate the entropy using the tetrahedron approximation
of the CVM, and proceed formulating the functions ¢D and ¢0, we arrive
exactly at the eqs. in (26).

One conclusion which is clearly derived from the illustration in
figures 7 and 8 is that the phase boundaries are determined by the
entropy formula only, and thus depend on the approximation used in the
CVM.

The singularity at T=0 is illustrated in figures 5 and 6. Each of
the six linss numbered 1 through 6 in the two figures are two represen-
tatiocs cf zn approach to T=0. For any x in the range in the range
0<x<1/%, p approaches the same limit, each x in figure 6 corresponding

to a fixed limiting slope in figure 5.

This shows that the two curves SD(xD) and So(xo) posses a common tangent.
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5. Alterzative Derivation of Figure 1

Combizations of figures 5 and 6 and of figures 7 and 8 indicate
the dual ;:zirerties btetween the p and composition space analvsis. In
the present section we briefly show an alternative derivation of figure
1 based oo the Y space analysis.

We go back to eq. (16) for % ke’ In this expression the Y and
X parts ccze from the entropy expression and hence we can disregard
in our derivation of figure 1. The energy and the chemical potential
informaticn is contained in the quantity "ijkl' Because of the
permutatica symmetry among the subscripts, there are five w, . '

ijke S
which are written explicitly here:

gy 11 1 N % H

Vg = - 3 Qv -

Wi122 = ° 2w (31)
Wigap = "3 (B +

Y2222 © % H

ok Af $vom e 3 . "
Eack 2f the five wijkﬂ s in (31) is a line in the wijk2 vs. M
space. Of these, wllll’ ¥1122° and Wyp9y arE independent of « and
B and zre Irawn by thick lines in figure 9. For the purposc of
illustrati:z, figure 9 is drawn for the case w<0.
In i.z.re 9 for the region p<-4]w|? YI111 is larger than ¥i122°
This mza2: that in this region of p, the cluster 1111 is more stable

; t
than the __uster 1122 in T=0 because w, .

) is divided by T. By draw-




- _; S—" . '

ing five wiij's of (31) on this diagram and comparing which is the

largest, we see which cluster is present in the system fovr a given value

of y. When two wijkE lines cross, it means the two clusters can coexist.

Tha Y1112 in (31) depends on « and is drawn by a chain line of
negative slope in figure 9. The ¥1292° which depeads on B, is drawn by
a chaip line of positive slope.

When B<-1/3, Y1222 is always suppressed, as indicated by the w1222
line marked by Bl' This corresponds to the fact that AB3 does not
appear in the regiomn P<-1/3 in figure 1(a).

At the point P in figure 9, three lines meet: w1112(a2)’ Y1129 and
"1222(32)' For B:Bz when o is in the range -1/3<a<a2, all five clusters
can be stable at some value of y. The combination ﬂ=ﬁ2 and a=a, is a
boundari such that either a2<a or $2<B makes the Y1122 phase suppressed.

At P, the equations

= = 32
e “un T e (32)
hold and use of (31) leads to the relation
- & a
atf = 3 (33)
which is the line marked (P) in figure 1(a).

&t G iz figure 9, three lines meet: “1112(“5)' w1222(ﬂ2) and
Y9992 Proceeding in the similar way, as in the preceding para-
graph, we arrive at ; t

7
a-3p=2 (34)

which i: the line marked (Q) in figure 1(a). The line marked (R)

in figur: 1(a) corresponds to the point R in figure 9.
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6. Summary and Concluding Remarks

Multiatom forces (characterized by two parameters a and B),

rather than the composition-dependent cnergy parametcrs, were used
! recently successfully in deriving the asymmetry of CuaAu phase diagram.6'7
This formulation forms the basis of the accompanying paper ou phase
boundaries.lo As a study to back up the use of the parameters o and B,
their effect on the stability of phases at T=0 is worked out in the

i first part of the present paper. The results are shown in figure 1.
: 14,15

In figure 1, as well as in previous studies of possible phases
at T=0, only the energy expression of the system comes into play. In

the second part of the paper, we derive the position of phase boundaries
at T*0. This is done using the entropy expression, and hence the position
of the Boundary depends on the aéproximgtion used in the eatropy ex-
pression. Figures 4, 5 and 6 show the results. A general conclusion is

that in the temperature T vs. composition x plot, a phase boundary near

T=0 is always parallel to the T axis and comes straight down to the x

axis.

The dual nature between the composition and the chemical potential |

¢ is one theme rep2ated in the paper. The fact that p takes the same

I 5 . I

. o

constant value for a range of x in the single phase regions is illustrated

in figures 5 and 6.
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Clusters
present (n,m)

0,1
0,2

0.3
0,4
1,2
1
1,4
2,3
2,4
3,4

Table 1
Range Energy Chem.
in x (see Table 2) Pot. (p)
0-1/4 4xEl 2E1
0-1/2 ZxE2 El
0-3/4 I, %,
0-1 0 0

1/4-1/2 (2-4x)£1+(4x-1)£2 _2(E2-E1)
1/4-3/4 (g ~2%)E +(2x- %)53 (E,-E,)

4 2
1/4-1 E(I-X)El - 35

1/2-3/4 (3-4x)1-12+(4x-2)E3 2(E3-E2)

1/2-1 2(1-x)E2 = EZ

3/4-1 lo(l-x)E3 = 2E3

Conditions
(see Table 2)

| 012 >0 | 013|>0 | 014! >0
| 012] <0 | 023] >0 | 024] >0
| 013 <0 | 023] <0 | 034| >0
| 014} <0 | 024] <0 | 034] <0
| 012| >0 |123]>0 |124]>0
| 013 >0 | 123] <0 |134]>0
| 014] >0 | 124]<0 |134] <0
| 023]>0 |123]|>0 |234|>0
| 024]>0 |124]>0 |234]<0
| 034]>0 |134]|>0 |234]|>0
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Lonz]= - (130w
L013] = -(243a-)w
1
3 1014]= - (sa)w
3 023l= - Q2-p)e
1 = -
16[026!-— w
El = 3w(l+a)

Table 2

Energies

Determin .nts

s

'—'|0310' = ‘(l }ﬁ)\:

p—

3 23| = -(2-3(a+))w
%:124:: -(-a)w
§|134|= -(2-2+38)w

11236l= -(43p)

Ey = 3w(1+f)
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Figure Captions
= Classification of stable phases in the a and p s:-.=. (a) is
for w<0 and (b) is for w>0.
= Az example of the ground state encrgy-coopositics -zgraa.
This is for the case where A3B and AR are the only -“ztermediate

phases. In the range 0<x<1/2 solid solutions ars o:ssible.

The question of two phase regions shown dashed is =xz2zined in

Section 4. Where there is a missing intermediats tZ:zse in the
range 1/2<x<l no solid solutions are possible in -z ground
state.

3. The chemical potential corresponding to the situ:zi:z in fig.

2. Note that this is a step function. The chemizzl potentials
at two-phase equilibrium are fixed in this construczion,
although the coexisting compositions are not.

~. Plots of b vs. a from computer calculations. Nets that the
Ciscrder and the A_B phases cross at a = 0.8109. T:e tetrahedral

3

caltiatomic interaction parameters chosen are a=C. 1 and B=-

"
¥
1)

chemical potential p and temperature diagram czlculated

for w<0, 0=0.01 and B=-0.08. Notec that p=-(6+x) '« 2t T=0.

22 lines indicated by 1 through 6 all radiate fr:>z this
Foing.

. TZa composition and temperature phase diagram corr2sponding
to figure 5. The short numbered lines correspend to the

lirnes with the same number in figure 5.




Fig.

Fig.

Fig.

£

Schematic diagram of entropy curves, SD for the disordorved
phase and S0 for the ordered A3B phase. The coxmon tangent
determines the phase Xy and Ny-
Schematic plot of the functions ¢D(a) and ¢o(a) in eq. (28).
The point P at which the two curves cross correspond to the
coexistence of two phases.

Working diagram which is used to lead to fig. 1(a) from the

alternative treatment of Section 5. Points P, Q and R corre-

sponds to the lines (P), (Q) and (R) in fig. 1.
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INTERSECTION IS AT
a = 0.8109
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Figure 4.
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Equilibrium antiphase (APB) and interphase (IPB) boundaries in
‘the Cu-Au system are examined theoretically using the cluster variation ’

method with multi-atom interactions whose magnitudes were previously
obtained from a fit of the phase diagrem. The IPB energy between

equilibriun discrdered foc and ardered CujAu phases is strongly i
temperature (and hence composition) dependent, being much higher for the [
eoppen—richsideofﬂiecongmentpointTcamraviJgamaximmon :

that side at about 5.!5 Tc‘ The IPB energies are only slightly anisotropic.
The APB energies at constant chemical potential decrease monotonically
with increasing temperature; at constant nonstoichiometric composition

they increase at low temperature to a maximum well below the disordering
temperature. Near the congruent poi'nt,. the APB undergoes one or more
secord order surface phase transition in which an interfacial layer
resembling inhamogeneous Cu-Au (Llo) phase develops within the boundary.
The APB with (hkO) orientation (in our notation) should be perfectly wet

by the disordered phase at the disordering temperature for that particular

camposition.




I. Introduction

In ordering systems there occur two kinds of particularly simple
coherent interfaces, antiphase damain boundaries (APB) and coherent
interphase boundaries (IPB). If we ignored the difference in the
identity of the at&nic species, the two domains or phases meeting at
coherent interface would be part of the same single crystal as is
illustrated in Fig. 1. An APB separates two domains of the same ardered
phase. An IPB separates two different phases. ‘IP'B's can occur between
disordered phases differing in composition, between an ordered and a
disardered phase, or between two ordered phases.

APB's can exist in all ordered phases. . They result from the symmetry
breaking during ordering processes which can start in different ways in
various locations in a disordered lattice. The APB's form wherever two
such regions contact. APB's result also from the presence (or motion)
of dislocations whose Burger's vector are not translation vectors of
the superlattice. The mechanical properties of superlattices are strongly
affected by the fact that motion of such dislocations changes the area
of APB's. Often defarmation can only occur by groups of dislocations
whose Burger's vectors sum to a superlattice translation vector, and
whose motion as a group resotres long-range order in the structure [1,2].

The IPB's are important in alloys which order by first-order transition.
The free energy of an IPB is a factor in determining the rate of
nucleation [3] of the ordered phase on cooling or the disordered phase
on heating. For multiphase alloys it also affects the shape and dispersion
of particles and is the main driviﬁg force in the long-time coarsening

of such a dispersion [4].
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Phase transitions within such interfaces have been predicted (5],
but the order of the transition is very high, so that all properties

‘that are related to low derivatives of the surface free energy will

be continuous through this transition. There would be important
implication of a change in character of these interfaces on properties

" of such alloys, if the order of the surface transition were lower.

Whether the ordering transition itself is first order ar higher
oarder is an important factor in discussing such interfaces. At the critical
temperature of a higher-order transition the disordered and the various
domains of the ordered phase all became identical to each other.
Consequently APB's disappear as the critical temperature is approached
and their energy vanishes [6-10]. Because there is no coexistence of
ardered and disordered phases (except trivially at the critical temperature)
there are no equilibrium IPB's between phases related by higher-order
transitions.

Far first-order transitions two-phase equilibrium occurs over a
range of temperatures and the two phases are never identical. The ardered
phase retains a finite amount of order up to the transition temperature.
Consequently both APB's and IPB's exist right up to the transition temperature
and there is no reason to assume that their energy would vanish there.

Several ordering transitions are first order. In this paper we
shall examine IPB's and APB's in an foc (Cu-Au type) system which undergoes
an ordering transition to farm a phase with the CujAu structure (L.12).
In addition to the Cu;Au system these interfaces also occur in a number of
important nickel-base systems, notaf:ly in the Ni-Al system which is the
basis of superalloys. These alloys are treated to form a fine scale

dispersion of coherent Ni3A1 in a disordered nickel solid solution.




They are useful because their strength increases with increasing temperatures

to approximately 800°C, and then deélims at higher taupenatmé [11,12].
JIncreases of strength with increasing temperature seems to be quite
commonly observed in ardered allovs [13-18].

APB's have been studied theoretically for the CsCl (or CuZn)

* . structure derived fram the ordering of bcec [8-10]. In the model chosen,

(near-neighbor pair-wise interaction energies) this is a second-order
transition. The corresponding model for fcc gave completely unrealistic
phase-diagrenms [19] until it was recently shown that these resulted from
the Rragg-Williams and pair approximation [18-21] rather than the model
itself. A cluster-variation method (CVM) in the tetrahedron approximation
can give a phase diagram in which there are three ordered phases, A3B, AB
~ and AB,, which disorder by first-order transitions [20-21]. A close
match to the phase diagram found for the Cu-Au system is obtained if
four-body interactions are introduced [22]. The phase diagram calculation
made it feasible to undertake a .theoretical study of APB's and IPB's in
such a model system.

A previous study of IPB's in ordering systems [23] suffers from
several assumptions and possibly same computational errors that have
limited its applicability. In this study IPB's were created theoretically
between phases of arbitrary composition and order, not necessarily ones
that would ever be in equilibrium with each other,by cutting and joining
and computing the energy from the changes in the bond count. No
rearrangement of atoms near the boundar'y was permitted. Such "weld"

interfaces can have negative energies as well as positive and the enery:

can almost always be reduced further, Under some conditions rearrangement might

tend even to complete homogenization by rearrangement. We note that

for many of the ground state cases we obtain yigorous results that differ
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fram those .obtained previously [23J.evmul'mwaasmthesmintmction
energies. mmmwmwaﬁmwfommw
ot the initial phase could be in equilibrium. Pwﬁ\euzp)usemgative
APB energies were reported [23]v.x'rﬂercaﬂi;imw}m'éw22 should have

been the stable ground state structure [2u]. Here the "APB" was the first

" - step towards equilibrium.

In this paper we will use the model with four-body interaction energies
chosen to match the Cu-Ati phase diagram, and calculate properties of

" ' APB's and IPB's which have been allowed to equililrate with respect to

all atamic rearrangement in a crystal constrained to have two different
domains or phases. At high teuperm ‘and/or slow deformation rates
there is time for diffusional rearrangement. Such equilibrated boundaries
. obey all the laws of surface thermodynamics including the Gibbs adsorption
equation which can be used for a sensitive check on the calculation
procedures.
IfmAPBismeatedsompidlybyshearingthatthweiswttim
for diffusional rearrangement of atems, we ohrta:m a very different
boundary. Calculations of the properties of such boundaries have been
made for various models [7,25] and will be examined in a subsequent
paper for the model used here [26].




i II. Crystallography and Definition of Surface Orientation Indices
: The disordered phase is fcc (Mmdm) with four equivalent sites with

. mim point symmetry at 000, 1/2 1/2 0, 1/2 0 1/2 and 0 1/2 1/2. The
‘ ardered phase has the CugAu crystal structure (Pmdm) with one kind of
occupation for the site u'bitxwiiy chosen at 000 with m3m symmetry and

another occupation at the three equivalent sites with 4/mmm symmetry at
1/21/2 0, 1/2 0 1/2 and 0 1/2 1/2 [27). Four domains are possible
because any of the four equivalent sites in focc could have become the
arigin for the CujAu structure. .

It has been custamary in this field to describe the foc structure by
four inter-penetrating simple cubic "sublattices" each centered on one

of the four equivalent sites (Fig. 2). The CugAu type ordering occurs
when the occupation of ane of the sublattices boeanes different from the
occupation on the other three.

We define our crystallographic axes along the cube axes cammon to both
structures. For the IPB we choose the origin of the coordinate system
such that it coincides with the atom having m3m point symmetry in the ordered
phase. For the APB we place the origin at this point in one of the domains
and arbitrarily choose the z-axis so that the m3m position occurs at
1/2 1/2 0 in the other domain (See Fig. 3). The arientation of the boundary

s specified by its normal ;\. but all such properties must be invariant
to symmetry operations of a point group which is common to both damains
or phases. For the IPB this common point group is m3m. For the APB it is
4/mmm because the translation which carries the occupation fmm the site
at 000 to the 1/2 1/2 0 site destroys the three-fold axes and two of the
four-fold axes (Fig. 3), Accordingly while (100), (010) and (001) IPB's




are completely equivalent, (001) APB's differ fram (010) and (100).

The former is called a conservative APB because it could have been
‘created from a single damain by conservative slip; while the (100) and
(010) are nonconservative, and with perfect order either two emriched or
depleted layers are adjacent at the APB, They have also been called
l;mdariuofi:)uﬁmtuusecmdkim. We may represent all scalar
surface properties by plots on the unit sphere, but the symmetry makes
the triangle with corners at (001), (101) and (111) sufficient to describe
all orientations for the IPB, while the larger triangle with corners at
(001), (100) and (110) is necessary far the APB's.

The symmetry properties of bicrystals with planar boundaries have recently
been developed [28]. The formulation is general enough to include APB's
(no orientation change, just a translation of one crystal relative to the
other) and IPB's. Application of th:.s new group-thearetical method to the
present system leads to equivalent descriptions. '




-III. General Formulation
In this section we develop the formulationa of the (100) APB as an

3 example. The formulation for other arientations differ only in the interactions
and configurations of atamic planes parallel to the interface. The APB
canadstweﬂnmtﬁémueoftmt\reamdmpositim (or chemical

[ . potential) in which the ordered phase is stable. For IPB's there is

the limitation on chemical potential imposed by the phase rule that different

phases must coexist at- the interface. For each temperature where the

phases coexist, an IPB occurs at discrete chemical potentials.

We shall call the four simple cubic sublattices I, II, III and IV as
in Figure 2. We shall call the A;B domains in which the I sublattice is
preferentially occupied by B atoms the damain I; the other domains are
correspondingly defined. The [001] axis is then determined by our convention.
The (100) APB is formed when domains I and II are placed on opposite sides

of the boundary and allowed to relax to the equilibrium configuration.

By the definition of domains I and II, the III and IV sublattices
are mreferentially occupied_ﬁy A atoms in both phases while the occupancy
pattern changes between.the I and II sublattices as we go from damain I
to II. Therefore we see that the entire system can be regarded as a
layer structure perfpendicular to the boundary consisting of P layers
mostly of A atams and Q layers camposed of mixed A and B atams.

We call lattice planes parallel to the boundary as "parallel" planes, ‘
for short; they are numbered . . ., N, n+.1, e « oy as inFig. 2o

In formulating the free energy including the boundary layer using
the cluster variation method (CVM), we take a tetrahedron like the I-IT-ITI-IV

connected in Fig. 2 as the basic cluster. Each tetrahedron is made of




two points on one parallel plane (like I and ITT on the n'" plane) and
of two points on an adjacent parallel plane (iikeIIdemee
(n*1)™ plane). Also we rote that one of the two points (like IIT) on one
parallel plane lies on a P layer and the other point (like I) lies on a
Q layer.

In a binary system an A atom and a B atom are called the 15% and the
e species, respectively, for mathematical convenience. We let "Pn denote

the ith species, (i=l ar 2) on a P layer point on the nth plane. Suppese

the IiI, I, IVandIIpointscamectedasatetrMminPig. 2 are
occupied by the ith, jth, k":h and 1™ species, regpectively. Then using
our notation we can say that this connected tetrahedron has the configuration
im jQ\ kP(n+1) IQ(n#l)' We now introduce the basic variable zn (i,j,k,%.) of the
theory; this variable designates the probability that the configuration
(i,j,k,2) appears in the connected tetrahedron of Pié. 2.
For the pair variable there are five kinds as defined in Table 1.
Note that the arder of arguments has significance. Table 2 defines
the probability variables for a lattice point.

There are geometrical relations among the variables:

Y, (is3) = kZ,‘ 7, (1,3 ,0)

Vppp(sk) = X 2 (4,3,k,0)
jgt ! | |
| e¥ |
Vpn(iot) = L 2G50k,
3.k
Veen (k) = L 2 (4,3,k,0)

i




P e

voutsb) = E-k 2, (143 k,t)

Wz L z .,k : (2)
“n $ka B .

. )= Z oz (k)
“n 1 n'31d 1Ky
Also we have continuity constraints
Ypliad) = k).“.l Zo(Ls3akot) = E’:l 2 (k) (3)
and the namalization of z is
1= X oz (k) ' (4)
i $:3:k2
We have thus defined the variables. Now we go on to write the free
energy of the systam. The number of lattice points in a plane parallel
to the boundary is written as N. Then the number of tetrahedra connecting

thenthandthe (ml)thplu\esis 2N. The total energy of the system is
then written as ’
E=N T L elh,ike z 4,3k ' (s)

n 1i,j,k,2

where €(i,j,k,2) is the energy per tetrahedron and is written as
e€(1,1,1,1) = 0.0

€(1,1,1,2) = 1.5 w(l+a)

3 €(1,1,2,2) = 2.0 w (6
€(1,2,2,2) = 1.5 w(1+8)
€(2,2,2,2) = 0.0

In these expressions, which are the same as Fq. (4.2) in Kikuchi-de Fontaine's
paper [22], the order of arguments in ¢ j.s immaterial. The parameter w is
for an interaction of an A-B pair, and its magnitude is related to the




temperature scale. mmmmamm;m;mmuntthe
four-body interactions and make the phase diagram asymmetric. The values
‘chosen far the best fit [29]fa;thmm-mdimm
w/k = -663°K

; = 0.01 (7

; = -0.08

Mnemnﬁtﬁnﬂnmmedwlmsmtgiw.t}nmmm

state as was shown in the preceding paper. The k is the Boltzmann constant.
The entropy expression is taken from, for example, Eq. (3.5) of the

Natural Iteration Method (NIM) paper [30) as

SaM 3 {['f Ly,Gaan ¢ L Llvpy (1,60) + T Llvpy (1,0)) +

i3 ik it
ELWa (5K + L LV (3,20 ¢+ T Ly .. (k,2))]
$ - RS J0 0 Q@ nd
(8)
5 .
-2 I LAz (i,5,k2)) -1 =-Z[EL(x (i) +Z Lu(5) +
ek N 50 N

i L(xnﬂ(k)) + !;: L(um,l(!.))]}
where the { operator is defined as
L(x) = xInx-x - : (9)
In treating a system of our present interest we farmulate the grand

a b
potential G defined by g
- S

i=l !
whereui is the d\enical r;o't:em:i/alofthe.i.th speciesandniisthetotal *

.th

number of the i~ species in the entire system including the boundary

region. We can also write the last term of (10) as




2 -
- u;N;: = =(NM) L L (ued pe+ p o+ )z (i,j,k,20) (11)
1.1 i i n 1’j’k,‘ 1 j k ,. n "j’ ?

Since we have only two substitutional species in the system and we have

no vacancies, we can choose without loss of genemlii:y

4 =y, R A (12)

where p is twice the diffusion potential defined by Larché and Cahn [31].
Incalculati:gt}eequilibriunstate,wefixTamu, and find the

minimum of 6 (30]. The minimization of ?; leads to the following set of

equations: : ; p

z (1,3.0,0) = 28 P (L3000 ep (BA_ +a (1,9 -, 0,0]  (3a)

where

20 (1,3,k,0) = @ [-Be(i, i k) + 3 B(ut wst wt u))] x
. % 1]k, exp 2] 1K, 7 P\H; "j e )
]1/2

Ly, (L 3Vpp (A KV por (458 g (5K 0o ()Y, g G, T x [ (1)

w (30, Oy (231758 - a
In (13a), the quantity A_ is the lLagrange multiplier for the normalization
in (4) and has the meanﬁxg, aftér the iteration has converged, that the
gmndpofentialéofthesysteniswpittmas
G=N ikn. ' ; (1)
Note that N is the number of lattice points within one parallel plane.
The quantities an(i,j) and “Ml(k”') in (13a) are the Lagrange @tiplim
to take cane of the continuity constraints in (3). The quantity B in
(13) is equal to 1/KkT. !

The process of solving the set {zn(i,j,k,z)} from (13) for the
equilibrium state is divided into the maj.or and minor iteration steps.
One major iteration starts with the values of z 0 (i,3,k,2) in (13b).
Then the I.agmnge. multipliers {an(i,j)} are solved iteratively to satisfy
the continuing relations (3). The iterative process of solving .

T v —
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(cn(i..j)) is called the minor iteration. In this process we can choose,
without loss of generality,

un(l,l) = 0 for every n ! (15)
because of the normalization on y's:

yn(i,j) = 1 for every n (16) |

] i

The details are similar to those in Eq. (4.14) of the b.c.c. boundary
paper [S5]. * 1 3

When un(i,j)'s are thus solved the output of one mjw' iteration
step is obtained from (13a). This output {zn(i,j,k,l)} is used as the

input for the next major iteration step. This iterative solution of z's

has been called the Natural Iteration Method (NIM).

As was discussed in length before [22,29,30], the NIM has the
advantages (i) that the grand potential é always decreases at each iteration
step, (ii) hence that it always converges whatever initial values the
iteration may start, and (iii) that the formulation avoids subtraction so
that all the variables alw.ays stay positive however small the value may be.

Far the boundary computations, we choose a system made of either 60
a 80 parallel planes. The number N of atoms in one parallel plane drops
out when we assume that N is sufficiently large and neglect the end effect.
For the initial conditions, we choose the 1eft half of the system to be
in domain I and the right half in domain II. ‘ With this initial condition,
the interaction converges after about a'thousand major iterations,
sometimes less sometimes more, and the number of minor iterations is
less than ten except near the beginning of iterations.

When the iteration has- converged, we know the structure of the
boundary expressed by the set of the pnaﬁability variables {zn(i,j,k,l)}.




~

The density profile across the boundary, for example, is expressed by
the point variables {xn(i)l ard {un(j)} of Table 2. Examples are shown
in later sections.

The excess free energy 0 is defined [5,10,32] as the excess of the
grand potential G in the inhamogeneous system containing the boundary
over the grand potential G in the hamogeneous phase, and o is nomalized
to unit area:

Qm=§-&h=r:::‘(xn-x_) ‘ ' _an
mx.isﬂevalmcflninﬁxe?mngmssysten,arﬂaisﬂ\eazea
per fcc lattice point in the parallel plane.

Derivative Quantities

In a recent paper [32], one of the authors prepared a general formula
to estimate derivatives of the IPB free energy. One of the formulas is

(s] [N, [N, ]
s N,' N,'
s N N,"
&, - - = -[S/MN,] )
g ol Vige
“1" N2"

In this expression, [S] is the entropy contained in a cylinder which is

perpendicular to the boundary and whose cross-sectional area is unity.
This cylinder extends far enough into each phase that it encloses

some of each homogeneous phase beyond the influence of the boundary. The

ith

quantity [N;] is the total mmber of the species (i=1 or 2) contained in

this cylinder. The quantity S' is the entropy per unit volume of the bulk

homogeneous, and .Ni' is the number of the ith

species in a unit volume of
the bulk phase I. The [S/NN,] is identified with the surface excess

entropy [32].




. We apply the expression (18) to the (100) IPB, for which the primed
phase is the disordered phase and the double-primed phase is the A.B ordered
‘phase. For this problem, we can simplify (1‘) using the relation

NN e a9)

and the corresponding equation for Ni".

Since the farmulation in the present paper is based on the lattice
structure, we can write [S]uﬂ[Ni]umompaxunel planes n. By

using the relations in (19), we can refarmulate the general expression

(18) as
a2 30
- (ST) = -1 [S]n (20)
n
where
- < "'1 (0 0.
[S]n =z '(N2. - NZ") [N2' Y - N2 St ¢ N2,n(s - S")]+Sn (21)

Inthismssionsnmuznmtheentmpyandthenm\berofBatans
»

nd species) per lattice point on the nth parallel

(i.e., the atam of the 2
plane. Quantities S', S", N.‘,', and N2" are per lattice point of the
homogeneous phases.

A modification of this farmulation can be used for APB's [32], but

because the two hamogeneous domains have identical thermodynamic properties
there is little difficulty defining invariant surface excess quantities [10].
Ground State for IPB's and APB's :

As in the previous work on g-hrass APB's (8], it is instructive to
examine low temperature variation of boundary properties with the orientation
and compositional or chemical potential. To this we examine the ground state

and ground state degeneracy in this model of a system containing APB's

ard IPB's of various orientation. While no real system could reach

equilibrium at low temperatures, the calculated low temperature equilibria
display a clue to the understanding of trends that begin at higher temperatures.




We use the methods and notation of the preceding paper [33). For the

case considered here, w<0, a and 8 small we have for nonstoichiometric alloys:

E—4x!1 - -2(1+3u)v22 - (2+3a-8)w23 - 12(1+u)w24 when 0<x<% (21)

B-(2-4X)E; - (4x-1)E, = -2(1+3;)w20 % (2-3&-3§)wz3 % t&(l—&)uz4 when hcxdy

where X is the mole fraction of B atoms. For the ground state the r.h.s. of
these equations is z2ro, because the atoms can be arranged with 22-23-2;0
for the first case and with 20-23-24'0 for the second. If an IPB or APB

requires the presence of these higher energency clusters the increase in energy
per unit area is the limiting low temperature surface energy for such a boundary.
It is apparent that IPB's between fcc and ABB and between A;B and AB
can be created without introducing any higher energy clusters. It is
readily demonstrated by a construction such as Fig. 1 that (100) and
(001) APB can be created entirely from allowed clusters and thus with zero
energy. APB's with other orientation can always achieve zero energy by
facetting to cube orientations. Therefore ground state APB energies at
T=0 for nonstoichiometric crysta;.l are zero for all orientations.
Stoichiametric A,B alloys can contain only A,B clusters. The
formation of (001) APB requires no energy because it requires no other
clusters, but for all ofher orientations other clusters are required. It
is conven.ient to formulate the stoichiometric case in terms of chemical
potentials.
The result for the (100) APB is sketched in Fig. 4 as a three-dimensional
stereographic drawing of the (o,u,x) rela'tion together with its three
projections. The lines in Fig. 4 are

ga? _ { 2(1-3a) - u/[w]  when -4 < p/|w| < -2(1-3a)

Tl = { u/t- 6(148)  when -6(1+48) < u/[w| < -4 wo




and a is the length of the cube edge as shown in Fig. 2. These relations
are derived by counting bonds of the APB between two perfectly ordered
‘domains; we skip the details of derivations and present only their
interpretations. The (u,x) projection shows a step function in accardance
with Fig. 3 of the preceding paper [33], the (0,x) projection consequently
shows 0 as a f-function of the composition at the stoichianetry. The
(o,v) projection reflects that the adsorption by this APB is #1 B atom per

sectional area a2

, since (ao'/au).r is proportional to the excess B atoms
adsarbed on the APB. On the u<-4|w| side, the boundary is composed of

a layer of A" tétna.‘\ed'r\a, and on the.-u|w|iu. side there are A282
tetrahedra. At u=-4|w|, o is a maximum and either A, or A,B, tetrahedral
clusters give the same 0. The constant adsorption on the two legs of the
(o,u) projection are thus consistent with the Gii)bs adsorption equation.
The two values of u at the bottom of' the legs are resp. the values at T=0
for the disorder - A,B phase coexistence and for the A38-A282 phase
coexistence. The 0 converges to the point (T=0, x=1/4) non-uniformly as is
seen in Fig. 5, and the nature of the non-unifarmity is that the converged
values are different depending on u as is illustrated near T=0 in Fig. 6,

as well as in Fig. 4. .
The energy of APB's of other &ientatim in a stoichiametric alloy is

a strong function of orientation. A polar plot of o vs. orientation can be

described [8] as a rasberry figure composed of the outer envelope of four

spheres with diameters equal to ¢ (100) and centers at (*% o (100), 0, 0)

and (0, %o (100), 0)

TR,




V. Results

The results of the calculations yield the profiles and thermodynamic
properties of IPB's and APB's as a function of arientation ;\ in the
temperature-composition (or temperature-chemical potential) region where
these interfaces could exist. APB's could exist over the closed region
on the phase diagram where thcAaBphne is stable as shown in Fig. §;
IPB's can exist only at that portion of the boundary of this region where
both ordered and disordered phases are stable and can coexist. The
properties of APB's are determined by three variables (;,T,x) or (;\,T.u)
since u-r(‘l‘,-l&long the two-phase coexistence curve p and the x's of the
two phases are functions of T as shown in Fig. § of the preceding paper;
therefare IPB properties are determined by two varialbes; x: and either u,
T, or the x's of either phase.
IPB

Figures 7 and 8 show o for (100) and (110) IPB as a function of T and
of u, respectively. It is to be noted that there is only slight anisotropy
with (110) surfaces having qiightly higher 0. The anisotropy falls well
below the range that would result in facetting. The equililrium shape of
an ordered damain within a disordered matrix would be a "sphere" slightly
flattened‘ (by about 10%) along the (100) directions. This is consistent with
transmission electron microscope observations that small coherent ordered
CujAu and NijAl in disordered matrixes are close to spherical [3u-36]. As
the particles grow they tend incmsingly. towards rounded cubes. Several
factors in addition to surface free energy, particular.ly coherency strain
are important in determiniru particle shape, but surface free energy is
dominant for small particles [4]. It is also to be noted that neither a
minimm nor a maximum in 0 occurs at the congruent (i.e. maximum)
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temperature of the phase diagram. Indeed because the denominator of the :
r.h.s. of equation (18) is zero at this maximm temperature, do/dT is {
infinite unless the numerator is also zero at such a point. Unless there
are special conditions the numerator will not be zero and such an infinite
slope at the congruent point is a general result. '

The value of ¢ for an IPB is’ important in the nucleation of the #
ardered phase. One prediction is that the CujAu alloys enriched in Au
will nucleate the ordered phase more easily, i.e., at less undercooling

than alloys enriched in Cu.

Consistent with our model which has no interactions between neighbors
other than the first, o tends to 0 at 0 °K. In a real system low temperature
0 values must depend on other interactions. ' 3‘5

Thermodynamic self-consistency within the model is demonstrated by
Figure 9 in which o for (100) IPB is given at several values of T together
with a slope given by minus the surface excess entropy IS/N1N2] obtained at
that temperature from the same IPB profile used to calculate o in Fig. 6. |
This demonstration that equation (18) holds is a very sensitive test of ‘
self-consistency [10,37].

L] |

Because of the non-uniform convergence of p at the point (T,x) = |
(0, 1/4), we give in Fig. 6 0 va T for (100) boundaries both at constant x
and at constant u. At x = 1/4 and T = 0, y can range within the limits

given in equation (22), All the constant y curves converge to x = 1/4 at

0 °K and to finite values of 0, while all the x # 1/4 curves lead to
o = 0'at 0 °K, It is to be noted that the curves for a constant nonstoichicmetric
x show a maximum in o, ,
For the mnstoichia;tric constant x curves, the major term in the
low temperature dependence of ¢ cames from the adsorption. Because the

it i -~ i i e b S




reversible creation of APB removes excess species from the nonstoichiometric
MMMMMM.MMMMI'WWMW&S
them along the boundary with low entropy, the net entropy change for the
'-yut.is mtiwdmﬂmia'mmiblg} increased. As in the case
for bee APB's [10] the maximum in 0 occurs in the temperature range of
" desorption. Consistency with the Gibbs adsorption equation is demonstrated
in Fig. 10, to be compared with Fig. 6.

The anisotropy of APB'is pronounced. In this model the (001) APB has
" 0 =0 at all temperatures. The (100) and (110) results are compared in
Fig. 6. The ratio of %30 * %00° ard therefare %10 does not facet into
9 00 and 0,,. Ouwr calculation for (101) led to a value of ¢ which at all
temperatures exceeded v172 Oy The (101) APB cquld always reduce their
er\er"y by facetting to (001) and (100). Although we have not camputed
other orientations we would expect the anisotropy to be such that all
(h,k,2) orientation would facet to (h,k,0) and (001), while (h,k,0) would
be stable. .

The domain structures observed for 013Au show both facets and rounded
" APB's that are mostly near cube planes [37]. We expect that the sharp
edges connect a (100) with a (001), while the rounded portions lie along
(h,k,0), comecting (100) with (010) segments. The (111) APB energies have
been determined experimentally at 350°C in a stoichiometric alloy to be
25 mJ/m?. We calculate @a/|w]=0.4 for this temperature for (h,k,0) APB's,

which is given 23 mI/m2

. Because of the strong anisotropy we calculate
18 m}/m? for (111) orientations.

Perfect Wetting and Phase Changes in APB's

Our camputed values of oa2/|w| at the congruent point are 0.1469 and
0.1541 for the (100) and (110) APB's respectively and 0.0722 and 0.0767 for
the (100) and (110) IPB's respectively. Taking into consideration of the
.special limitation in the capability of the computer in calculating the
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APB congruent point, we conclude that the camputer results indicate
for (h,k,0) orientations at the congruent point

o s 2°IPB (23)

“Thus the (100) APB could either consist of two (100) I‘PB‘s with a disordered
layer in between or it coincidentally has the same free energy. Figures
1lla and 11b show the calculated profiles of the APB and the IPB, and
confirm that the disordered layer is part of the APB and that indeed the
APB has become two IPB's. There is no reason why the thickness of the
equilibrium disordered layer exactly at the congruent point T, should rot
be infinite; the finite thickness shown in Fig. lla is the result of the
camputer calculation which is difficult to attain perfectly converged
solution in the finite camputer space allocated for the APB at T.-
We determined @ far (100) and (110) IPB's from kT/|w] = 0.50 on the
low Au side of the congruent point to the eutectoid te;npemtum on the
" high Au side (Fig. 5) and compaved this with the limiting values at the
two-phase boundary of the corresponding APB's. Equation (23) held everywhere.
The implication of this result is that in tm-i:hase alloys the disordered
phase will coat all (h,k,0) APB's near Tq- Since at equilibrium all other
arientations will facet into (h,k,0) and (001) APB's there will be only
(001) APB's mthm equilibrated particles of the ordered phase. By
analogy to ‘the com*espom.\.ng phenomenon in fluids, this is called perfect
wetting of the (h,k,0) APB's by the disardered phase. Perfect wetting has
been shown theoretically to cocur near all tricritical points [39] and it has
been found that in the f‘e—Al system the disbrdered phase coats all Fe-Al APB's
(40,41]. The general proof which applies near tricritical points is not
applicable to the A;B APB's and we do not know whether the finding of
perfect wetting is a general result.

point., Within each there is a thick layer in which each plane parallel to

Figure 11 shows the internal structure of (100).APB and IPB at the congruent
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the boundary is disordered (a pair of sublattices have equal occupations)
m.ajmutpmmmmmmea_inéccupaﬁmbya. This layer has
the CuAu (L1,) structure in vhich the CuAu order paremeter gradual i
" changes sign with distance perpendicular to the boundary. At the center
: . of the APB the order parameter is zero, all four sublattices having equal
k - occupation. The notation of Shockley [19] lists structures of phases

by the number of sublattices having identical occupation; (4) is disordered
fee, (3,1) is Qn3Au, (2,2). is CuAu. Using this notation we find that 4
" at the congruent point, the layers of the (001) IPB in Fig. 11b change from

(3,1) on the far right to (2,1,1) to (2,2) to on the far left (4) while

the (100) APB consists of two such IPB's.

As we lower the temperature at constant composition or chemical
potential the APB's diminish. The (100) APB profile is shown for two
temperatures in Fig. 12a and b. From the congruent temperature down to
KT/|w| = 0.90 the profile narrows but the sequence of the layers remains
the same. At KI/|w| = 0.87 the APB has lost the (2,2) and (4) layers and
contains (2,1,1) and (1,1,1.1) layers instead. Below this temperature,

- there is further narrowing, but this structure is retained to quite low
temperatures.

In order to ascertain whether or not there is a surface phase transition
between these two temperatures we give in Fig. 13 the values of the adsorption
and the excess in entropy for the (190) APB as a fmlétim of temperature.
There is a break in the slopes of these two curves at KT/|w| = 0.882.

Such .a break in the curves indicates that there is a discontinuity in

the second derivative of @ and that we have computed a second order

transition for the (100) APB with classical exponents.
_Another way of describing the transition is in terms of the thickness
of the (2,2) layer in the central region of the APB, In Fig. 1l2a it is

twn atom planes thick and is really a disordered (4) layer. It becomes
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six planes thick when KI/|w|is 0.99 and continues to increase to what
should be infinite thickness at the consolute temperatures. The increases in
thickness are monitored in Fig. 14 which shows two curves for the difference

. in occupation of two sublattices on a single atom plane for n=28 and n=30
(when the center of the APB occurs between n=30 and n=31). When the
difference in occupation drops to zero that plane has joined the (2,2)
layer. The n=30 curve shows the disappearance of the last remnant of the
(2,2) layer at KT/|w| = 0.882. The n=28 curve shows what appears to be
mannburofplusetﬁmitianasaociatedv;ithﬂnthickaﬁmofthe
(2,2) layer. It was not possible to improve the precision of Fig. 13
sufficiently to ascertain whether there were discontinuities in derivatives
of o corresponding to the thickening qf the (2,2) layer. The question of
these additional surface phase transition at the higher temperatures

~ requires further study.

Symmetry requires that the order parameter at the center of an APB

in the bee with CsCl order go to zero. No such symmetry requirement

exists for APB's in fcc with 1.12 order, and APB's below the 0.882 transition

an abrupt thicknening near KT/|w| = 0.99. There is a possibility that there

were ordered at thair center. Above the .882 transition the central
two planes are disordered consistent with the symmetry of an APB within
a (2,2) styucture.

The structure of the (11Q) IPB at the congruent point is shown in
Fig. 15. The (110) APB is not shown but it very closely resembles two
IPB's. If there were a (2,2) layer in this boundary it would not be
apparent in Fig. 15 which averages compositions on (110) planes that cut at
4S° to the layering in the CuAu structure. We did not' investigate whoether
or not a phase transition occurs in (110) APB's.




Discussion

Because statistical mechanical calculations of fcc phase diagrams
have only recently become possible, this is the first calculation of
“equilibrium properties of interfaces within and between phases based
on fcc. The first-order character of the phase transitions implies that
none of the higher-order critical point behavior could be expected for
these interfaces at the disordering transitions. Indeed the surface free
energies remain finite at the first-order transition point. Nonetheless
several interesting phencmena were uncovered. The (100) APB's undergo
second order surface transitions in which the internal structure of the
boundary changes, and at the disordering temperature the (h,k,0) APB's
contain a thick disordered layer. Indeed the APB has became two IPB's
at the congruent temperature T_, and near there the APB is perfectly wet
by the disordered phase. Modern high fesolution microscopy should be able
" to resolve these internal structures. :

The large anisotropy in IPB energy expected fram the cubically
diéta'ted sphere of large coherent particles was not calculated. Indeed
the observation that small par?;icles are more spherical is consistent with
these calculations and with the expectation that surface energy is the
dominant determiner of shape in small particle, while other factors such
as elastic anisotropy become impartant for large particles. APB's were
shown in Section II to have tetragonal symmetry and *o be surprisingly close
to isotropic in the zone of (001). Because of our neglect of second neighbor
interaction, (001) APB's have zero energy. This leads to a very high
anisotropy for all other orientations and a prediction that all (h,k,2) APB's
would facet into (h,k,0) and (001). Observations on APB's indicate both
runded and facetted. portions, and such damain structures should be reexamined
to establish the nature of the difference.




We next turn to applicability of our results to real systems. This
hinges on two aspects of the calculation, the model which is implicit in
the expression of the energy in terms of tetrahedral clusters in equation(s)
and the tetrahedron approximationn of the C.V.M. It is impartant to distinguish
what we assume in the model for the energy, which is couched in energies
' assigned to clusters, with the statistical problems of the basic clusters
in the C.V.M. In this calculation we used energies of tetrahedra for the

model and tetrahedra for the C.V.M. Far cbvious reasons the cluster in the
C.V.M. must contain (be the same or larger than) the cluster in the model,
unless one adds a Bragg-Williams approximation ([20].

. We have already noted that far fcc using clusters smaller than tetrahedra in

the C.V.M. gives unrealistic phase diagrams, while using tetrmahedral
clusters in a near-neighbor pair wise energy model gives a quite realistic
diagram in which there are three ordered phases which however have three
congruent points & almost the same temperature. ‘me;udapumtm
represent four-atom near-neighbor interaction energies which create differences
in congruent point temperatures. The small values used here were chosen to
£it the CuMu diagram. They should not affect the qualitative conclusion
reached here.

Because the model ignares the contribution of more distant neighbors to
the interaction energy it exaggerates the anisotropy of the APB's. Our
finding that 0'(001) is identically zerc is a direct result of a near-neighbor
model. Introducing higher neighbor interactions would require an incrvase
in the size of the cluster in the C.V.M. w:.th a large increase in the
computational effort. '

The accuracy of the C.V.M. is usually tested by having some rigorous
results available. For boc APB's such results existed at T=0 and the critical
temperature, and it was possible to show that ‘the pair approximation gave
‘quite adequate results., For foc the results merge with the rigorous predictions
at T=0.




The thermodynamic self consistency checks (Figs. 9 and 10) test neither:
the validity of the model nor the approximation in the C.V.M. but only checks
that the calculations were performed consistently with both. It is surprising
- how many calculations on surfaces fail this check. It fails e.g. whenever
there is an m:;ficial constraint on the thickness of the boundary, which
prevents it from equilibrating or whenever the boundary is between phases
that are not in equilibrium.

Corresponding to this theoretical check is the experimental use of the
Gibbs Adsorption equation as a true test for surface equilibria. An extreme
case of a mmquilibrium. surface between layers of water and sulfuric acid
gives no detectable surface tension. For such miscible phases one would
calculate a negative ¢ much as was done for an earlier theory of IPB's (23).

Same results of our calculation are campletely model independent. The
large difference in IPB energy on either side of the congruent point and
" the infinite value of dU/dT there follows directly from the Gibbs adscr:ption
equation. It implies that the hysteresis in arder-disorder kinetics due
to nucleation will be quite different on the two sides of any congruent
point. For the same reason, coarsem.ng kinetics of ordered precipitates
driven by reduction in surface area would be quite different on the two

sides of the congruent point.
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s i TABLE 1 Definition of the Pair Variables
Pair of Species , Probability variables
S W Y, (1.9)
Ton = Kp(ne1) Vppn (1:K)
19" = lq‘ﬂ*‘) vm ('.l)
Sgn = *p(ne1) Vgpn (3:K)
Jon ~ *a(me1) Yaan (1)

TABLE 2 Definition of the Point Variables

Configuration of a Point Probability variables

Pn xn“ )
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Figure Captions = |

An antiphase domain boundary separates two domains of the same ordered |
phase. a) (100) projection of two Li, phases showing difference between |
(010) and (001) boundaries, b) (001) frojection showing that (100) and
(010) boundaries are quite similar. Excess of either species can be
accamodated at the boundaries.

The convention for defining the four sublattices I, II, III and IV, the
planes (... n, ntl, ...), the layers (P,Q), and the tetrahedra.

The unit cell at the center belong to one domain and the other chree belong
to another. The three-fold axis has been destroyed and two of the three
four-fold axes have been reduced to two-fold axes. Only the (001) axis
remains a caomon four-fold axis for both domains.

The relationships among @, the ground state energy of (100) APB's, the
composition and the chemical potential is represented by a single curve.
Its projection gives the relationships among any two of them. Thus, while
O is zero except at stoichiometry it is a continuous function of u.

The Cu phase diagram showing curves of constant u's. Note the non-uniform
convergence at n=Q.25. : A

0 of (100) antiphase boundaries as a function of temperature. Curves i
are either for constant chemical potential p or constant composition x.
A curve for a (110) APB at constant composition is also given.

Mmdmedfzeemex'gycdtheinte!-ptnsebmhdarybetmenfccandthe
L], structure as a function of reduced temperature for (100) and (110). The
pe§kinddoes not occur at the peak temperature.

The same free energy as Fig. 7 as a function of reduced chemical potential
instead of temperature.

Thermodynamic consistency by plotting for each temperature the calculated
value of O and the slope calculated from equation (18) for the (100) IPB.
Campare with Fig. 7.

Consistency with the Gibbs adsorption equation for APB's is demonstrated by
giving for each temperature the calculated values of & and its temperature
coefficient. Compare with Fig. 6.

The calculated profiles of the (100) APB and IPB at the congruent point shows
that the APB has become two IPB's. The compocsition of each sublattice is
given for each plane parallel to the interface. Note the portion where the twc
sublattices in each plane are equally occupied (a (2,2) or CuAu layer).

Zhngre is a structural change in the care of (100) APB's between KT/|w| = 0.90
1 0.87. .

The excess entropy and adsorption of a (100) APB as a function of temperature
shows that the transition at KT/|w| = 0.882 is second order.

The ordering of atams on the two sublattices of a given (100) atom plane as a

function of temperature for one of the central planes (n=30) and the third
plane from the center (n=28).

#

. g i . " o~ e J




(15) The profile of a (110) IPB at the congruent point, to be compared with
figure 11b.
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Recent calculations of a two-dimensional lattice gas model has

led to vapor, liquid and crystalline phases.l'2

In addition to
permitting the phase transitions to be studied, such a model can be
used in studying linear interfaces between all pairs of phases as
well as the grain boundary between two crystals of the same solid
phase differing in orientation (Figure 1), We report finding a gradual
but well defined transition in the grain boundary structure well
below the melting point of the crystal; as the transition region is
passed, the grain boundary structure changes from its low temperature
configuration into such a structure that there is a layer along the
grain boundary whose thickness increases to infinity as the logarithm
of the undercooling and that the properties of the grain boundary -
approach that of two solid-liquid interfaces separated by a liquid.
As the melting point is approached, the grain boundary shows a
singular behavior in that the excess entropy and the excess specific
heat due to the grain boundary (of a unit length) becomes infinite.
Our model is a two-dimensional square lattice gas with inter-
action potentials chosen to match a prior computer simulationl. We
used the cluster variation method (CVM)3 and natural iteration (NI)4
to caicu1ate the equation of state and the phase diagram. Figure 2
indicates that the phase diagram so calculated matches that obtained
by the computer study. The properties of interphase interfaces and

the grain boundary shown in Fig. 1 were calculated along the appro-

priate two-phase coexistence of Fig., 2 and for the grain boundary

(R P




between two solid state domains of different orientations as in
Fig. 1; the CVM and NI were used as in our previous studies of anti-

5-7 If we consider

phase domains boundaries in ordered structures,
crystallization model to be an ordering of holes (V) and atoms (A)
into a V4A structure, the grain boundary is indeed a boundary between
two ordered domains, It is also a model of domains in an adsorbate
layer which can crystallize with a rotation with respect to the
underlying substrate.8'9

The particular grain boundary in Fig. 1 is a symmetric tilt
boundary, With this much tilt a £ = 5 coincidence lattice exists
in which one in five atoms (e.g., P and P') occupy a site that could
belong to either crystal structure. The underlying lattice is known
as the DSC Iattice.lo If we let a be the lattice constant of the
DSC lattice, the lattice constant of the crystal (as marked by white
or black circles in Fig. 1) is /5 a.

For the basic cluster in CVM, we used the nine-site cluster
shown at the bottom of Fig, 1. Pair of atoms were not allowed closer
than AB, the energy of pairs at distances AB and AC was assumed

attractive, being respectively -1.2¢ and -E.l’z

There is no inter-
action between atoms further apart than the distance AC. We calculate
the equilibrium state of the entire system including the boundary, and
obtain the probabilities of encountering each of twenty possible
arrangements of atoms on the nine-site clusters centered on each site

in a strip of width PP' along the grain boundary and extending from




j=1toj =81 (sometimes 61 or 41) into each grain. From these

cluster probabilities we compute the excess (compared to an equili-

brated single crystal) in the grand potential for this strip
c=E-TS - uNa (1)

where E is the excess potential energy, T is the absolute temperature,

S is the excess entropy, u is the chemical potential and Na is the

excess number of atoms in the strip of width PP'. We will define the

unit length along the boundary to be the distance PP' = SJE-a where

a is the lattice constant of the underlying DSC lattice. Thermodynamic
self-consistency requires thatll
do = -SdT - N du (2)
which is a useful test for equilibrium7 and forms the basis for our
extrapolation (v.i.).
Fig. 3 shows o calculated as a function of temperature for
u/e = =1,5. The low temperature behavior is readily understood by
examining Fig. 1. The pair QQ' are forbidden and either site must
be empty. For the unit length of the boundary this leads to
S =k In2, Na =<l and E = SEAB - EAC at T = 0, Hence for low ©
o =5¢ + p- kT 1n2 (3)
which agrees with the curve for kT/e<0.3.
The density profiles perpendicular to the boundary are shown in
Fig. 4 for various temperatures, The low temperature W shape near
the center of the boundary is consistent with the expectation that

the layer on either side of center is half occupied. As the melting
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point is approached a low density layer is formed near the center of
the boundary and the thickness of the layer approaches our computer
capacity. The excess quantities S and 'Na tended to increase without
limit as did -3¢/ 9T as the melting point is approached,
Figure 5 plots S vs. -IOg(Tm-T). For u/e = -1.5, 4 is 0.71629 €/k.
It is observed that the curve in Figure 5 is made of two distinctly
different portions. For low temperatures (kT/e<0.20), we see
S =k 1n2 (4)
for high temperatures (kT/e>0.45), S is linear in log(Tm-T) as
S = -3.681 = 4,1520 In(T -T) (5)
Making use of these relations for S in Figure 5, we can integrate
]§dT to obtain the estimate of o(T) for the high temperature
region:
Oy = 1.523 - (Tm-T)[;0.471 + 4,152 In(Tm-TJ (6)
This is shown as a solid curve in Fig. 3.
The good agreement between the solid curve UHT and individually
computed o values indicated by dots shown in Fig. 3 serves as a test
of Eg. (2), the self-consistency of the formulation, but it also
permits extrapolation of o to the melting temperature where its value
is 1.523.
We separately calculated the solid-melt interfacial properties
for the orientation corresponding to that of our grain boundary. The '
value of its reduced owas found to be 0.763, while its density
profile closely matched that of either half of the grain boundary.




We concluded not only that the grain boundary has become a melted
layer at the melting point, but that it behaves as if it is coated

with a melted layer for a considerable temperature interval below

the melting point. At some temperature near 0.35¢/k there is a gradual

transition in structure from the low temperature profile to a struc-
ture which with increasing temperature increasingly tends to resemble
a melted layer and which exhibits a singularity as Tm is approached.
Since the grain boundary is completely wet at Tm’ it is legitimate to
call the gradual transition near T = 0,35¢/k the wetting transition.
The possibility that a grain boundary would have a liquid layer

12 Whenever o

at the melting point was first discussed by Gibbs.
for the grain boundary has a tendency to exceed twice the o for the
solid-1iquid interface the transition we found is expected to occur.

Smithl3

attempted to formulate the temperature behavior of this
transition by comparing two models of the grain boundary. The solid
model was assumed to possess a known value of o. The value of o
for the melted layer model was assumed to consist of three terms

Gy = 205 * XAS(Tm-T) + E(2) (7)
where ZUSL is the contribution of the two solid-melt interfaces,
AAS(Tm-T) is the contribution of a melted Tayer of thickness A, AS

is the entropy of fusion, and E(A) is an unknown repulsive energy.

If 2°SL was less than o, the melted layer took over. Minimizing

ML with respect to X at a fixed temperature we obtain a relation for A

DE/dX + AS(T -T) = 0 (8)

el i,




When this relation holds, and when °SL and AS are assumed independent

of temperature, we can further obtain

do“L/dT = -AAS (9)
Since this derivative is -S, our finding in Fig. 5 and Eq. (5) implies
that A 1inearly depends on -ln(Tm-T), and integration of Eq. (8) leads
to an expression:

E(A) = E(0) + Cyexp(-C,2) (10)
This indicates the reasonable nature of the repulsive term in Smith's
formulation (7). When we use these relations, we can write the
temperature dependence of ML in (7) in the form

oy= 20 = (Tp=T)|C5 + €, In(T-T) (11)

which has the name (Tm-T)-dependence as (6).

In the present paper, we used a two-dimensional lattice gas-
1iquid-solid model, and thus the grain boundary is essentially

one-dimensional. This one-dimensional behavior is consistent with the

nature of the gradual transition from the low-temperature behavior

to the high-temperature behavior demonstrated clearly in Fig. 5. If

we work on a three-dimensional system with a two-dimensional grain
boundary, it is expected that the nature of the low- to high-temperature
behavior may be a sharper one; for example, a second-order phase transition.

A melting transition in real metals has been observedM as a function

of orientation difference and explained in terms of a dislocation model

with liquid cores.15 The temperature dependence of such a model might

show several transitions.
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Figure 1. A two-dimensional model of a grain boundary.
Position of atoms in the crystalline state
are shown by circles. This illustration

is the unrelaxed state, and thus is
schematic.
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Figure 2. The equation of state (u versus T) of the homo-
geneous phases derived from the present model.
Black circles are the values obtained by the
computer simulation method in Ref. [1].
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Density profile across the grain boundary. The center
of the boundary is chosen at the 4lst lattice plane.
The profile is repeated on the right of the 4lst plane
as a mirror image. u/e = -1.5 and starts from a very
low temperature.
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Figure 4(b). Density profile across the grain boundary. The center
of the boundary is chosen at the 4lst lattice plane.
The profile is repeated on the right of the 4lst plane
as a mirror image. u/e = -2.2 and shows how the
profile changes near the melting temperature (T, =
0.5031638). The curve for Ty, is for an intermediatce
stage of convergence.
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" Figure 5. The excess entropy S of the present work plotted
against -log(Tm -T).




