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The boundary profil, can be calculated using the sum method . How to
• formulat. this a.thod using the cluster variation method (CVM) and the

natural iteration method (MDI) is presented. Then the sum method is
applied to antiphase boundaries (APE.) inside the Cu3Au phase and to
int.rphaae boundaries (IPEs) between CU3AU and disordered phases. At a
constant composition, O

~
p
~ 
has a maximum at T of about 0.6 of the die-

ordering temperature TD. At TD the APB is made of two IPBs separated by
the disordered phase in between; this is the complete wetting of the APE
at TD by the disordered phase.

• A two—dimensional lattice—gas model was used to study the grain boundary
• (GB). When the excess entropy S is plotted against -log (Tm~

T) , Tm being
the melting temperature, the curve is made of two distinctly separated
linear portions, indicating the possibility of distinguishing the low-
temperature structure from the high—temperature structure of the GB. The
transition between the two structures is gradual because of the one—
dimensional nature of the GB in this model. The GB at the melting point
is completely wet with the liquid phase.
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SECTION 1

INTRODUCTION AND SUMMARY

During this contract, three papers were published and two others

are in print. A sixth paper is now being prepared for publication.

These papers (listed in chronological order as Ref s. 1 through 6) are

included as Appendices 1 through 6.

These papers fit into two categories: (1) the study of the scalar—
1,3product (SP) expression of the boundary free energy and (2) the study

of the structure of the antiphase (APB) and interphase (IPB) boundaries

and grain boundaries using the sum method2’4’5’6 rather than using the

SF method .

If used with care, the SP method is simpler than the sum method in

obtaining the boundary free energy value. Appendix 1 concludes that the

SF method is reliable , and Appendix 3 extends the original SP formulation

to the case of long—range interaction energy. However, during the three—

year contract period, the SP method has not been used to its full capacity.

The sum method has the advantage that it gives the profile (which

the SP method cannot give) across the boundary; however, the computation

is more lengthy than with the SP method. Appendix 2 introduces a crucial

concept that opens up a way of using the sum method to the boundary

structure, and the procedure is shown with an example in a b.c.c. ordered

structure.

The method developed in Appendix 2 is put to full use in Appendices 4

and 5, in which the APBs within the ordered Cu3Au p
hase and the IPBs

between the Cu
3
Au phase and the disordered phase are studied . This work

• is a revival of cooperation on a similar subject with Dr. John W. Cahn

• (now at the National Bureau of Standards). Appendices 4, 5, and 6 rely

heavily on Dr. Cahn’s knowledge concerning the metallurgical aspects of

the problems considered .

Three new findings came out of the study of the Cu3Au phase boundar—
• les. The first is the behavior of the APB free energy a, whic h shows

a maximum at a temperature of about 0.6 of the disordering temperature

The second is the complete wetting of the APB at TD , and the third5
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is the di scovery of a series of second—order phase transitions within

the APB slightl y below T
D
.

The structure of grain boundaries (CBs) was studied during the

contract. Although work in this area is not yet complete , preliminary

f indings are being written up6 for publication (probably in Physical

Review Letters). The main discoveries are first tha t distinct dis-

tinguishable low— and high—temperature structures of the CBs exist , and

second that the GB is completely vet at the melting point.

6
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SECTION 2

THE NATIONAL ITERATION METHOD WITH CONSTRAI NTS

The natural iteration method (NIM) was introduced some time ago7 in

solving high—order simultaneous algebraic equations appea ring in the
cluster—variation method (CVM). As NIM app lications increased , it

became necessary to treat cases in which subsid iary conditions were

imposed . Appendix 1 shows that these subsidiary conditions can be treated

based on a concept similar to the original NIM. Within each iteration

step originally designed (which we call the “major” iteration), we do
• what we call “minor” iterations to satisfy subsidiary conditions. In

Ref. 7 we proved that the major iterations always converge; in contrast ,

we have not proved that the minor iterations converge. However , in all

the cases during the last three years in which we used the minor itera-

tions, they never failed to converge.
• When subsidiary conditions exist, we can classify the variables as

• independent or dependent. One way of solving the equilibrium state is

to minimize the free energy with respect to the independent variables

(rather than using Lagrange multipliers for subsidiary conditions).

When this is done, the resulting simultaneous equations are not of the

form for which the NIM is applicable. In such a case, the Newton—

Raphson (N—R) method can certainly be applied , but it is often quite

time consuming to find the right initial guess of variables for the N—R

method, since otherwise the N—R method does not converge to the desired

equilibrium state. In the boundary studies described below in

Appendices 2,4,5, and 6, it is practically impossible to use the N—R

method because there are several thousand independent variables.

7
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SECTION 3

THE SP FORMULATION OF THE BOUNDARY ENERGY

The scalar—product (SP) formulation of the boundary free energy,

first proposed by Clayton and Woodbury, 8 calculates the boundary free
energy a using the formula

1/2
exp(—Aa/RT) =~~~~[Pi

(v) P2(V)] , (1)

where A is the sectional area parallel to the boundary. This formula is

written for a lattice structure having phase 1 on the left, phase 2 on

the right, and the boundary in between. F
We consider a lattice plane parallel to the boundary but far away

from it, and well inside the bulk phase i (i = 1 or 2). A configuration

within the plane is denoted by v, and is the probability of finding

the configuration V in the plane inside the bulk phase i (i = 1 or 2).

Since the right side of Eq. 1 has the form of the SP of two vectors

[Pi(V)]
”2 with i — 1 and 2, we call Eq. 1 the SP formula of the boundary

free energy a.

Eq. 1 is noteworthy in that a can be calculated by knowing only the
properties of the two bulk phases. Expression 1 ic reasonable since,

when phases 1 and 2 are identical, a vanishes because P1(v) is normalized

to unity and since, when the two bulk phases are very different in their

properties, a is large.

Eq. 1 is rigorous when V is for the configuration of an infinitely

wide plane parallel to the boundary. In Eq. 1, however, approximations

must be introduced . In Ref. 9, we had calculated Eq. 1 using the general

CVM approach. Another feature of Eq. 1 is that a rigorous proof was

lacking; Clayton and Woodbury ’s proof 8 was not sufficient, and our attempt

in Ref. 9 still lacked mathematical rigor. Therefore, to use Eq. 1 with

enough confidence, we felt it necessary to use better approximations in

the CVM and to compare the result with Onsager’s1’0 rigorous result in a

9
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two—dimensional square lattice Ising model. In Ref. 9, we used the pair

approximation and the square—angle approximateion of the CVM. In

Appendix 1, we improved the treatment using the double square 1or the

(1,0)—direction boundary and the W—shaped cluster for the (l ,l)—dire~ction
boundary, both for the two-dimensional square Ising lattice. Since the

results are converging to Onsager ’s rigorous result, we concluded in

Appendix 1 that we can use the general expression (Eq. 1) with

confidence.

The general idea behthd the derivation of Eq. 1 is given below.

Consider a three—dimensional system as made up of two—dimensionally

large planes stacked on top of each other. Write the free energy F of

the entire system using th CVM in terms of the probability variables

for two adjoining planes P (1i ,V), where n indicates the locatio n o f the

planes. Minimizing F with respect to P~ (~i .v) y ield s a relation that

expresses P~ (u1 v) as proportional to [P~ (~ ) P
~+1(v) 11”2 . If the system

is homogeneous (i.e., no boundary in i t ) ,  th is  procedure leads to the

eigenvalue formulation with which Onsager started)0 The detai ls of

the derivation of Eq. 1 from this point on are presented in Refs. 3 and 9.

____________ 
_ _ _  • IJI~TI±J
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SECTION 4

THE SP EXPRESSION FOR LONG-RANGE INTERACTION

Eq. 1 considers or~ lattice plane in each bulk p
hase. This

expression is good when the interaction potential is of the nearest—

neighbor type. But it must be modified when the interaction potential

goes beyond the nearest neighbor. This problem is worked out in

• Appendix 3. The resultant formula modifies Eq. 1 as

exp(-AO/RT) ~~~~[P1(~1~
V2~ 

...,vk
) P2(v1,V2, ...,Vk

)]h/2 (2)

x exP[cz1
(v
i~
V
2~ 

...,V
k
) 

~2~~l”~2~ 
...)V

k)]

where P
1

(v
1
,v2, ...,vk) is the extension of Pi

(v) and is the probability

that consecutive 1,2 ...,k planes inside the bulk phase I take the

configurations v1
,v2, . ..,v~ . The variable c11(v1,v 2 .. . ,v~) is a

Lagrange multiplier to guarantee continuity of the form

,V
k
) - P1(V 1,v2, . . . IVk,~~) . (3)

Eq. 2 can take into account the long—range interactions up to the

interaction between the lattice 1 and the lattice (k + 1). Eq. 2 reduces

• to Eq. 1 when k — 1 and when the symmetry of the lattice

P1(u,
v) P1

(v,~i) 
(4)

holds.

‘

1).
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The general expression, Eq. 2, was tested for the two-d imensiona l

leing model using a 3 x 2 cluster (i.e., a double—square cluster made of
six lattice points) with the “i”—side perpendicular to the boundary.3

The result agrees well ‘~1’~h that of the double square in Appendix 1 when
the ~i terms in Eq. 2 are included .

12



SECTION 5

THE SUM METHOD OF CALCULATING BOUNDARIES

For lack of a better name, we call this method the sum method in
contrast to the SP method . Both methods are based on the CVM mode of

thinking,~~ but differ as to the step at which and the method by which

they introduce the approximation into the formulation. The two methods

produce similar but different results. Although the SP method has the

advantage that it can define the transition point within the boundary

more clearly ,3 it cannot give the information about the structure across

the boundary. The sum method can give the latter information, but
usually at the cost of more computer time. Sometimes the approximation

used in reducing the SF formulation to the tractable level makes the

• results unacceptable on a physical basis (such a case is discu~sed in

Appendix 5). A similar trouble has not been encountered with the

approximate treatments of the sum method .

When the sum method was used more than ten years ago,
12’13 the NIM

was unknown. After the NIM had been devised in l974,~ we tried to

apply it to the boundary structure. However, a difficulty was encoun-

tered in handling the normalization condition for individual planes

(parallel to the boundary) until the work of Weeks and Gilmer14 was

noticed .

In Appendix 2, we treat the. boundary between the + spin phase and

the — spin phase (of the Ising model) in a b.c.c. structure using a

tetrahedron (irregular) as the basic cluster. Appendix 2 presents how

the idea of Weeks and Gilmer14 can be incorporated in the CVM—based

treatment. The advantages of the latter over the original method in

Ref. 14 are that the excess free energy is obtained with ease from the

treatment and that it can be extended to larger clusters (e.g., the
• tetrahedron) systematically.

The result of the tetrahedron treatment in Appendix 2 was compared

with that of the pair treatment12 done many years ago. We also did SP

4.

13 
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calculations and compared the results with others. These different

methods compare nicely, and the relations among them are understandable.

• As expected , the SP method can pinpoint the transition temperature

within the boundary, but the sum method cannot.

14
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SECTI ON 6

PHASE BOUNDARY AT I - 0

• In Appendi x 5, we study the structure of boundaries In the Cu—Au

alloy . The work in AppendIx 5 was made possible by the prev ious theore—

tical calculation of the phase diagram of this alloy worked out by
15,16 17Kikuchi and deFontaine extending the work by van Baar.

During the work discussed In Appendix 5, it became evid ent that

many propertie s of the alloy near T— O  are singular theoretically and

hence~ that more detailed knowledge is needed than that given in Refs. l~
and 16 about the behavior near 1 0 of the Cu

3Au p
hase and ;ilso about

the’ phase’ boundary between Cu3Au and the disorde r ed phase. Thus, we

did the s t u t l v  near I — 0 and discussed our results in Appendix 4. The

phase d iagram of the Cu—Au a l l o y  in Appendix 5 Is  calcula ted  us ing  t h e

t et r a h e d r o n  as the basic cluster of CVM and also using the mutt iaiom ic

In t e r a c t  Ion pot ent t a t  . The 1st t er  means that  t et r ahedra  CuCuCuAu and

CuAuAuAu c o n t r ib u t e  d i f f e r e n t  fou r—body I n ter ac t ion  p o t e n t i a l s .  The

four-bod y in t e r a c t  ton can i nduce the asymmetry observed in exp er imen t s
between t ht~ Cu— i .k• anti t he  Au—s ide in the phase diagram.

~b. I Ott. - t~. i.1 v i~ I e. ’ I s represt~n t~d by two parameters c and ~
rh. rang. .~ t vs Lues ot .iiid t~ in wh t . h  the phases Cu

3
Au , CuAu , and

CuAu ii. - s tab le  ~~s l iv . ’. t I ga t ed. Tb.’ t t.t’ hn i que of analysis was the

near p. ogrs tng set ho~I . which had been used b y Cah n b e f o r e .  17 , 18

Tb i s  ~‘- i t ~1? t h.’ ~~rk w~ lon e by I)r . .1 . W . Cahn of the Nat t e n t I Bureau

ot St . ,ti ta rt*s . ~~h,i ~ eI.e r.u t i i tg In th is pr o j t ’ e t

I n  a I • .i I . .  t I • iLi s ’ It  ..gr*•s • t I s ot ten he’ 1 p l u  I to know pha sc’

bo.tnila , t .5  ~t t I — 0. 1 .- was no t !t. e r v I o t ren t t hi  s problem be fore.
App en d i ~ ‘.h.’~ . Pt. .

~~ to do it . At a I l i i i ti t e’mpera t ure , a pita Si’

hotin i r v is c i  I u I . i  1 by draw ing a coimnon tangent  to f r ee— en .  r gv  (‘U i •V t ’

F 1 and F
2 

I or t h.~ t~~’ ~‘ha’~.’ s p Lott ed against t he’ compost t ion. As cils —

covered in Ai’p. ’nd i x  4 • the p fwi s. boundary between the di sorder.-.i pha ;e

m d t ..‘ orde’. .‘d Cu 
1
A ti pha’..’ - .mn I~. c a l cu l a t e d  by the lot lowing procedure

15
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Configurations of the tetrahedral cluster are limited to CuCuCuCu

and CuCuCuAu only (the rest of the configurations, e.g., CuCuAuAu ,

having zero probability 01 appearance) .  Using these two confi gurations ,

we write the entropy expressions for the disordered phase SD and for

the ordered phase S0 as functions of the composition . Figure 7 of

Appendix 4 shows an example. Then we draw a common tangent to the S
D

and S0 curves. The points of contact of the common tangent to SD and

S0 g ive the two composition values of the coexisting phases~
The procedure of finding the common tangent to S curves Is equiva-

lent to the following . At a finite temperature , constructing the corn—

non tangent to the F curves is equivalent to finding the intersection of

two grand potential C curves f o r  the two phases plotted against the

chemica l potential 
~~
. Wh en I is Infinitesimally small , ~i and C near

the phase boundary can he expanded as

i i —  1J0 
+ akT +

(5)

c — c  + bkT+ ...
0

where and ar e common to the two coe x isting phases. The coef-

ficient b is derived when the value of a is assigned . Then two b curves

fo r  the two phases are plot ted agains t  a to f i nd  the in tersec t ion , which
gives the coe x i s t i n g  phases for  the l i m i t  T -

~~ 0. It is illustrated

in  Fi gure 8 of Appendix 4.

16
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SECTION 7

INTERP HASE AND ANTIPHASE BOUNDARIES IN Cu3Au

The f.c.c. lattice can be separated into four equivalent simple

cubic sublattices. When one of the s.c. sublattices is preferentially

• occupied by Au atoms and the other three s.c. sublattices are equivalent ,

we obtain the Cu3Au structure (also called the Ll2 structure).

An APB in Cu3Au is formed when the Au atoms on the left side of

the boundary preferentially occupy sublattice 1 and those on the right

side preferentially occupy sublattice 2, (See Figures 1, 2, and 3 of

Appendix 5.) When the left side of the boundary is the Cu
3
Au phase and

the right side is a disordered phase, we call the boundary the inter—

phase boundary (IPB).

APBs and IPBs are studied in Appendix 5 using the sum method . The

technique is an application of one developed in Appendix 2. We take a

tetrahedron as the basic cluster and assign a variable Z~(i,j,k,2~) to

the configuration (i,j,k,9) of the tetrahedron. The Cu and Au atoms

are designated by i = 1 and 2, and n indicates the location of the

tetrahedron relative to the boundary.

The grand potential

C — F — (p
1
N1 + u2N2

) (6)

for the entire system including the boundary region is written in terms

of Z~(i,j,k,R) and is minimized (keeping T and ~i fixed) with respect

to the Zs. (We can choose _
~
Il 

= u.) The resulting equations are

- solved for Zn(i,j,k,9) using the NIM. The excess free energy C a t t r i b u t e d

to the boundary is calculated as the difference between G thus calcu—

lated and the value of C for the homogeneous phase.

The G curves for the APBs are given in Figure 6 of Appendix 5.

The special features are the following:

(1) A C curve for a constant p increases monotonic’ally as
T decreases. Although in the phase diagram (Figure 5
of Appendix 5) all the p—constant curves converge to

17
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the stoichiometric state x — 1/4 as T + 0, the
a curves for different ps tend to different values
as T 0. This Is one of the singular behaviors of
the Cu3Au phase near T — 0.

(2) The lower two 0 curves in Figure 6 of Appendix 5 are
for constant composition a, the x being the value for
the peak (the congruent point) of the Cu3Au phase.
Different from the p—constant curves, these two
o curves go through maxima at about 0.6 of the dis-
ordering temperature and reduce to zero at I — 0.

(3) The general shape of the lower two a curves in
Figure 6 of Appendix 5 resembles that of the shear strength
curves of Ni—based superalloys (e.g., N13AI).19’20
The resemblance Implies that the APR behavior is
an important factor in understanding the shear
strength of these superalloys. The APR and the shear
strength are related through the creation of an APB
when a disloca tion enters a dispersed ordered prec i-
pi tate within the disordered matrix .

(4)  The disorder—Cu3Au IPBs were calculated and are
shown in Figures 7 and 8 of Appendix 5. The note-
worth y feature is that the IPB is exactly one—half
of the APR at the same point In the phase diagram .
In other words, when the disordered phase (D) coexists
with the Cu3Au phase, the APR inside the Cu3Au phase
at this point is made of two D—Cu3Au IPBs. This
property, which is also seen by comparing Figure 11(a)
with Figure 11(b) in Appendix 5, means that the APR
at this point is completely wet with the disordered
phase.

(5) The density profiles across the boundary are shown in
Figures 11(a) and 12 of Appendix 5. Although the
bulk phase is Cu3Au (LI.2) structure , there is a
CuAu (Li0) type region near the center of the boundary.
The onset of the LI0 region is interpreted as a second—
order phase change from the behavior of the plane next
to the center as shown in Figure 14 of Appendix 5.
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SECTION 8

GRAIN BOUNDARY STUDIES

As the first step in studying the structure of grain boundaries,

we worked on a two—dimensional lattice—gas model that is capable of pro-

ducing gas, liquid , and solid phases and also two different orientations

of the solid phase. The region near the grain boundary is shown in

Figure 1 of Appendix 6.

The grain boundary free energy a for a constant chemical potential p

is shown in Figure 3 of Appendix 6. Along with C, we calcula ted the

excess entropy S due to the grain boundary. A remarkable discovery is

that the S curve is clearly made of two portions, as shown in Figure 5
of Appendix 6. For low temperatures, T < 0.3 Tm 

(T
m being the melting

temperature for this ii), S is almost equal to ktn2. For high temperatures,

T > 0.6 Tm~ 
S is linear in —log(T — T), diverging at T .

This remarkable property of S, combined with the calculated values

of ~ for the grain boundary and the IPB (the boundary between the solid

phase and the liquid phase), indicates that the grain boundary is com—

plete].y wet at the melting point.

19
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Natural iteration method and boundary free ener gy *

Ryoichi Kikuchi
Hugites Reaserci, Lgborstori,,. Malibu. California 90263
(Recs,ved 23 August 1976)

• The natural ~Mrntice “~‘usiq—v. which wes proposed by the author se a method ci solving equations of
the cluster variation method, iextanded to the cese in which variables are subject to subsidiary conditions
due to symmetry requiremei,ta Ike .uaisidlery ~~diuons are treated by minor iterations at each step ci the
— iteration. The technique ci evaluating the second order transition point for such problems i.
presented; the technique applies, us general, to problems for which the number ci variables is large. As
examples, cluster variation methods imng a five-point W-thaped duster and a six.point double..quare
cluster are presented for the two dimensional lu ng modeL An improved proof ci the scalar product (SP)
expression for the boundary free margy I given. The results of the examples are used in the SP expression 

-to evaluate the boundary free enerD ci the lsuig model in ceder to test the accuracy ci the approximations
involved.

I. INTRODCUTION growing.”13 The iteration method recent ly proposed by
Weeks and Gthner t for studying boundary structuresT h s  paper has dual purposes. One is to show in the 
can also be Interpreted as a variation of the NI methodnatural iteration (NI ) method how to treat W1SZY 
with subsidiary conditions1’conditions and how to calculate the second-order transi-

tion point , and the other is to report further results ob- When the author wrote a paper on the scalar product
tam ed by the scalar product expression of the boundary (SP) expression of the boundary free energy, ~‘ supple-
free energy. These two are closely tied, as the results menting the work by Clayton and Woodbury, ’~ the proof
of the former are used in the calculation of the latter, of the SP expression was incomplete. For that reason ,

the surface tension a of the boundary between two two-The cluster variation (CV) method~’ for cooperative dimensional Ising spin phases was calculated using thesystems had been in use for many years. One basic dli- proposed method and was compared te with the exact re-ficult y which had prevented wide use of the method ~~~ suit due to Onsager. Since the publication, the proof ofbeen the step to solve simultaneous algebraic ~~~ the SP expression has been Improved and it is reportedof high orders. 5 This difficulty had been dissolved by in Sec. W. Results of Secs. H and Iii are used in thethe natural iteration method.4 Many applications of the 
SP expression to calculate the boundary free energy innew technique have been and are currently worked Sec. V.out.”

The applications of the NI method , however, have II . THE W.APPROXIMATIONbeen limited to either the pair approximation or the tet- 
A. Free energy and its minimizationrahed ron approximation (both for the fcc and the bcc lat-

ticee), which do not need subsidiary conditions on the We present discussions on the NI method in this sec- -
•

probability variables except for the normalization to tion using the W-approximation of the two-dimensionalunity. As the application of the NI method widens, need Isthg net as an example. This approximation uses aarises that additional conditions or the probability van - five-point cluster, A—B—C—D —E of Table IA, as theables are to be taken into account without damaging the basic cluster. The degeneracy factor fl , for this caseversatility of the NI method. It will be shown in Secs. was shown in Table I of Ref. 2 and is reproduced In Ta-H and LU that subsidiary conditions due to symmetries bin lB. Reference 2 is to be consulted for the meaningof variables can be treated by way of iterations of a kind of the parentheses notation in fl 1.. Expression ci, issimilar to the main NI procedure, used in writing the entropy of the system as
One of the advantages of the NI method is that it 15 S k lnfl,. (2. I)

unnecessary to carefully choose the Independent van-
The plus and minus spins are designated by i - 1 and 2,ables and then to write the relations among the depen- 

respectively. The probability of finding a spin configu-dent and Independent variables. When we work with 
ration i—j—k—i—rn on A— B—C—D — E points of the cluster 

- 

-first-order phase transitions, there is no particular 
is written as w,~,,,,, as shown in Table IC. Other van-complication. In the case of the second-order transi- 
ables , v, z and y, are also defined In Table IC. Usingtion , however , the critical point T~ is to be calculated 
these variables, the entropy (2. 1) for a system uf I~’as the point at which a certain determinant vanishes, 
lattice points can be written explicit ly asA m ethod of calculat ing elements of the determinant,

without explicitly listing relations among the dependent s 
=[E~~ v 1)+E.c(t ’i51~.)] — E £ (w1,,,,,and independent variables and hence without spoiling the

• spirit of the Ni technique , is presented in Sec. U, It
Is believed timely and useful to report on these tech- + E £(Z t,,,) — ~~ £( v,,) , (2.2)niques of handling subsidiary conditions and the deter--
minant for 7’~ because the Interest in the CV method is where the £ operator Is defined as

The Journa l of Chemical Physic s, Vol . 66, No. 11 , 1 December 1976 Copyright C 1976 American Institute of Phytics 4545
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TA8L~ I. The W oinsI.r.

•

~~~ 

~~ ,- •SM. 5. M ’  (2. 9)

The mirror symmetry Is easy to tak, care of because
the NI treatment, to be described Us detail below, keeps
this symmetry intAct through the iterations If the initial
inpul es  satisfy th. symmetry.

•~
The tranalattonal symmetry Ii taken Into accoun t by

(*\/
C
\J

I (~ c ii) adding in. following Lagrange terms to the free energy
on:- 

(*\ /
C%~

•
~~
/SJ 

ezpre.bi

L5. ~~ ~~ (w ,,11,,• — r u,,,, ) ,
I,,,,., a

au ‘unuos ~~~~~~en’q amam,

— ~~~~ 
(a,,,, — aIM.’) WI,,,., . (2. 10)

5 .aa~~~tst~v~~~~~~ . We can now prove that the Lagrange multipliers a’s
obey the following symmetry relations:

S a

~~~~~ “i ” °tm, ~,,s* (3. 11)
Th, proof is the following, We form

I 1.

i 
/ \, ‘S 

~~~ E (“ t,asa — ws,,,,,,) • 
~~~~~~~ ~~~~ ~~~~~~~~ — 

~~~~~~~~a

I 5 a ~~. —1 (a,,,, • a,.,,) ~~~~ 
((w,91~, — r_,,,,)+ (n ’,,,, , —

I ‘a a

+ 
~ 

(a,m, — a,,,,) E ((“~ ,,. 
— ?t’~~ j~,) — (

~ ‘itJ ,. — ‘uiIS~$~~

£(4.xlnx—x . (2.3) (2.12)
Each sum mation in (2.3) Is to be done over the values We see that in. first swnmand In ~~_ vanishes when the
and * of the subscripts In the suram and. Tb, ~~ 

mirror symmetry (2 $) i~ satisf ied; this allows us to
terms in (2. 2) are equal, but are written separately in choose aIM, + a,,,, • 0, which is (2. 11). ThIs relation
order to make the subsequent NI formulation symmetric, ~~ i1~ vs. also proved in (11.9) of Ref. 2 in general

notation.
In a system of N lattice points, the total number of It-

clusters we are interested in , I.e. , those ty ing parallel Using relations obtaljsed so far in this section , ‘se
to each other, i.e ZN. The energy of the system is then can write the free energy F- F — TS as
written as $E S

N N bY
(1.4)

— 2  E (aus, + a.’,55) ar,15 .’ • X$ (i —

Ml.’where e,,,,, is the energy per W-cluster and is written, (2. 13)in turn , tn terms of pair-w ise energy ~~ *5 where

(l(~ j+ Cj( + (~ $ • ~~ a)  . (2.5) $. 1/bT ~
We define c,, as and we use E of (2.4) and S/kN ot (2. 2) in (2. 13). We

then minimise F In (1. 13) wIth respect to ~~~~~ In
— e , when order to keep the symmetry, we use

(2.6)
5 —  + , when i e j  . *~~,II W 115J •1

a
Our program is to minimise the t ree energy with re- and

spect to u ,,,~‘s. The w var iables obey not only the
normaliration: “e~” 

W4 j ~~. ’ • (2. 14)

5”rn’a • . 
for ,‘, ,, and 

~~~~~~~ 
In (2. 2). The differentiation t~( (2. 13)

1.1.5,l , • leads to

last also rO symmetry requirements. One of them is bss’,,,,1a1 )$+ 1it~ ’~~~,_ + atm, • ~ a,tj . (2 . ISa)
the “mir r. .r” symmetry : where’

_,,,, , (3.6) 1nM’~L,. — ø(t,SSa + I lfl(I’4j1~1 t ’g~~;,, 545a/ Vp) • (2. tSb)

and the oti • a’ Is the “translational” symmetry: We have introduced ~~~~~~~~~ for the sake of convenience in
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the following discussions. ç’ 
~~,S~~,,,, ” ~~~, u ,,,,_ exp( a_,,,)

Equation (2. 15) is the “superposition” relation4 which a

I. ready to be used in the NI treatment, Except for a’s, Our procedure of satIsf ying (2.20) Is to do a series of
which wilt be discussed in the next subsection, the Ni “minor” iterations to determine a’s at each “major ”
starts with an input set {w,,,,. }, and calculates the iteration step.
rigbt-hand side of (2. iSa) to obtain the output set

a , , In the method we propose, we use Input a a on theiw~~,•i. The input v s are derived from w a using 
right-hand side of (2. 20a) and evaluate a,1,, on the left-(2. 14), and the uWut z a and v a are from hand side as the output of a minor Iteration step. This
output Is used as the next Input on the right -hand side.

• £~~ _ ~~ _ This technique for the minor iteration is of the same
(2. 16) spirIt as the NI major Iteration steps and, although we

= z5,_ . have not analytically proved convergence of the minor
iterations, they do converge in all sim ilar cases we

In order to start the NI procedure , we assign the val- have worked so far. Speaking in qualitative terms , the
ue of kT/s and initial guess of w,,,,.,. Instead of sped - output a11,, in (2. 20) Is derived as a weighted average
fying all 32 w’s independently , it is sufficient to start of input a’s on the right-hand side; the averaging pro-
with giving probabilities of a single spin x, and x5 (x, cess is interpreted as helping convergence.
+ x,r 1) and then write w’s as a Bragg—Williams-type At each major iteration step, the minor iterationsproduct:

are tested using
= x 1 x, r, x,x_ . (2. 17)

This initial assignment works even for low tempera- ,,
~~, 

a,,,,— & ,,,,~ . (2.21)

tures.
When 4,.,,, becomes less than a criterion value 8.,,,,,,

We call the iteration step of going from the Input set the iteration is judged converged . The number of mi-
(W I~~,_} to the output set {i~ ,,,,_}, which is the next Input nor iterations for one major iteration step depends on
set, the “major” iteration step. Convergence of the 4,.,,., and also on the progress of the major iterations ,
major iterat ion is tested by the following sum for each and gradually reduces to one as the major iteration ap-
step: preaches its convergence. A typical example of the be-

havior of the minor iteration is shown In FIg. 2.
= E m w ,,,,,, — lna~,,,,.I . (2. 18)

As an alternative method, the simultaneous nonlinear
A typical example of ~~_,,, as a function of use major it- equatIons in (2. 20) for a’s can be solved by the Newton—
eration step is shown In FIg. 1. It Is better to use a
logarithm in defining ~~~ as in (2. 16) than using a aim-
pie sum ~I w,151., — ~~ ,,.,I used In Ref. 4, because some 10 1
of the w’s become very small for low temperatures and
do not contribute to 1w — .~I , although they do to (2.18). kTk - 1.6 (ORDERED PHASEI

We need accurate digits of these small tv’s, partIcularly 100 - INITIAL VALUES: -

in calculating the boundary free energy using the scalar \ X1 .0.96. X2 - 0.06

product expression in Sec. V. \ ‘~mnt. c -

In the present problem, Fig. 1 shows that 4,,,,, be- 1~~’~ - -

haves In the same way as was reported In Ref . 4 and
logA.’,,, decreases linearly as the iteration progresses.
It Is safe to use 4,,~- 10” as the criterion of the con- 10—2 - -

vergence .

We can prove that when the Iteration has converged,
the expression (2. 13) reduces to i, —3 - -

~ = F/N . (2.19)

B. The minor iterations -

The remaining question in the present case is how to
handle a’s which are to be determined so that the
translational symmetry (2. 9) is satisfied. When we 1O~~ - -

substttute (2. iSa) in (2. 9), we obtain

a,1,, = ~ th(S1, ,,,,/s0,,,,,) , (2.20*)
10’~I I I I 1

where 0 40 50 120 110 200 240
- ~~~~ (5) ..1 ‘a . M*JOR ITERATIOS4 STEP— ~~~~ tv .,115, ex~~a.,,,, , , ., 40b,

a FIG. 1. Convergence pattern of the major Itera t Ions .
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I Aw,,,,.,~ ~~~~~~~ — 14 l ’PVa~&

kilt • I 5(ORO(REO PI4A$EI ~1 Aa,,,, a a,,,, — a,.,.v ,. . (2,25)
4
~ 30~ I NIT IA L VALUE S X1-096 . X2 -006 

The expression g~ as defined in (2. 22b) and (2.23) c.,n

~~~ c 10’ be expanded In terms of these A ’s. In Other words, we
can st’ite in princIple

5410 j g~ = E c ~~~,. (2 .28)
0 20 40 50 So 100 120 140 150 150 200 The coefficient r ,~, Is ag.,/ef,,,, which we want in (2. 24) .

2 MAJOR ITER ATI O N STEP In order to evaluate C,,, we do not need to derive the
FtC . 2. Convergence pattern of th. manor Iterat ions , expression (2.26) analytically but can use the following

trick. We simply choose ~,= l and £. O for ~.v and
using substitutions (which we explain below) of many

Rapnson (N—R) method. The convergence is expected steps, we finally caicuiateg,. However complicated
to be good because both positAve and negative values of the substitutional steps may be, the value of g, thus cal-
a’s are allowed and there Is no danger of overshooting ciilated Is equal to C,,.
into unphysical regions. Different from the method we

We show the substitutional steps using g, of (2. 22b)are propt i~ ing in this section, however, the N—It pro- as an example. For the quantity A ,s’,,,~, in the paren-cedure needs evaluation of derivatives and an inversion these In (2. 22b), we use the relation derived fro m (2. 15) -•of a rnatrLx. In the present example, the N—R met hod
Is not so bad because the number of independ ent a’s is
only six us the ordered phase. For problems In which ~ 1~’t*U~~~ ~~~~~ R 

+ 4a1111 , . (2. 27a)
I ’ll’the number of independent a’s is larger, the method we

are proposing is faster, in deriving this expression from (2. l5a), we left out
A~~$) because X~ changes smoothly across 7’,, and henceC Dstsrminatlon of T~. I a(~ft)/aTp <c I e~,,/aTI at T,.. The first term in the

For the sake of convenience , we call a plus spin ~~~ parentheses In (2. 27a) is calculated from (2. 15b) as,
a minus spin complements, and write the complement again leaving out 8~,
of the subscript las e (~+t’ 3). The variables w,,,,., Au4i’~ 1 

~~ ÷ + (2. 27b)and w ,.,.,.p_ . become Identica l in the disordered phase 
~~~ 2\ V 1111 v._111 Z~~1 v~1and we define their difference as the long-range order

parameter 
~~~~~ (For ~ we use a different subscript sy s.. where we use differentiations of (2. 14) and (2. 16) (or

tern.) Because of the mirror symmetry, the number of Av ’s, As’s, and i y’s to write them as linear combina-
long-range order parameters is ten. An example is lions of Aw’s. For ia1,~ and 8~,51, in (2. 27a), we use

the differentiatIon 01 (2, 20)
• — . (2. 22a)

1 /AS,,,~,, ~~~~~ ‘~ (2. 28a)The list of subscripts of the first term w’s Is (11111), 4”~~~ i~s,,,,, — S5,,,,, )(11112), (11121), (11211), (11122), (11212), (12112),
(2 1112), (11221), and (12121) in the order of ~L = i~ ~~ (Aw?/,54+ w~~,,, 8a_,~ ) exp(a_,,,) ,2,. .. , 10. It is convenient to rewrite (2. 22a) as a

g~ ~‘ — (
~~‘i,ii, 

— W,IU1)= 0. (2. 22b) 
~~~~~~~~ = ~~~ (AW~~~,_ + w~~,., 4a ,,,,,) exp( a.,,,)

Beside the differences of w’s differences of a’s also (2. 28b)vanish in the disordered phase and can be defined as the The transition point thus determined from the vanish-long-range order parameters ~~~ - 11,..., 14). There ing of the determinant in (2. 24) Isare four of them:
kT,/ -2.36483, (2.29)‘~~u 

— ( a 11~,— a~~1)—0
which Is the same as the value report ed In Ref. 2 cx-ii — (a 1111 — a,,,1)a 0 (2. 23) cept for the last dIgit 3 which was reported as 0 prevt-

g15’ ~, —(a isu — a~~ )—O otlal)’.

- (a1~~ - a,111) -0  
III. THE DOUBLE-SQUARE APPROXIMATION• The second-order transition point 7’, is determined A. Free energy and its minimizationas the point at which the following 14 x 14 determinant

vanishes: As was discussed at lengt h In Ref. 2, the W.approxi-

0. (2. 24) the [111 direction, and is approprta t’ in calculating the} Del V t  mation treatment in Sec. U looks at the square net from

(11) boundary free energy. When we treat the lattice
Since we .ira working at 7’,,.., the long-range order pa- from the [10] direction , the basic cluster which is one
rani eter s f., are small. Thus we also write, along with step larger than the square is a double square as shown
~‘s Interch angeably , by A—B —C — D — ~~—F in Table hA . This cluster Is ap-

J. Clsem. Phys, , Vol. 66, No. I I , I Oscsmb.r 1976
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cu.mr.a
,, 

~~~~~~~~~ 

‘‘ There are two “mirror ” symmetries:

WtI,saa WaMuIA-s-c-.-’-,
and

~ i

I ~~~~~~~~ w~~l.,, • u ,~1,. ,  . (3. 4)
I II 1~~c~~Is—s These two symmetries in (3.4) can be kept through the

~~~~~
‘ n” I iterations , if they are satisfied in the starting Input w’S .

(a_c1 There are two more symmetries. One is the “transla-
5—0—P I tional” symmetry:

Ot~~ N~TI ~~IOf PaOSASILITV VA~IA$LU
= W~~~~, (3,5)

is.. a,.
• A—C--—-t I~ OSA~~IJT~VAR AIL IS and the other Is the “rotatIonal” symmetry of v’s;

= . (3. 6)

I I 
~~~
‘ The last one is to guarantee that the ,robability for the

spin configuration
~_4

I I  
(z z\I—I

• , ,_,, ‘a., ki 2)

is equal to that of

TABLI~ U. The double-sc~iare cluster, i(~ 2)propriate in calculating the (10) boundary. The (h~~ and hence the isot ropy of the system.tor for this case is also shown in Table jIB. This clus-
ter was studied independently by Allegra and Delise In The translational symmetry is taken into account by
Politechnico di Milano.” Lagrange terms similar to La in (2. 10):

The probability variables are defined In Table IJC. L,, = E (a4,,, + a.,,,,,) we,,,.,, , (3. 7)
As in Sec. II, I = I and 2 denote plus and minus spins, “a,
respectively. Using these variables and the fl~,5 factor, where we have used the symmetry of a’s:we can write the entropy S for a system of N lattice
points as a4111 — a,,~,. (3. 8a)

This relation can be proved by an argument similar to• S 
!(E .C(Vii,i )+ ~~~i~(V1ia.))  (2. 12). We may note that a’s obey another symmetryk N 2

relat ion:

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ Ogj~~= a1,,, , (S.8b)

which corresponds to the second symmetry of w’s in
— ~( ~~) + ~~~~ y,11,) ÷ ~~.C( y~ + E~” (3. 4). Because of these two symmetry requirements,

(3. 1) the independent a’s are three: aitu, aitu, and a,1~5.
where the £ operator is defined in (2.3) and the sum- Six a’s vanish.
mation of each term goes over the values 1 and 2 of the

The rotation symmetry (3.6) needs the followingsubscripts in the sum mand.• Lagrange terms:
In a system of N lattice points, the number of double-

square clusters is N. Thus the energy of the system L, = E (V~,a, ÷ V.sa~~) Wj,~ ,,,,, , (3.9)
is written as

where v’s satisfy the symmetry relations:
= N~~~,,,1,,,, w,1,,,,,, , (3. 2a) = — Vial,

where is now

~~~~~~ ~
(( ,, 4- C e + r,.,,)+ ~ 

(~~ ÷ c,,+ (~,,+ ( i,) . (S. Sb) V.,,, = Vji,a • (3. 10)

Because of these relations, 12 v’s vanish and there is
The pair energy c,, is defined in (2. 6). only one Independent y~1,,:

We now examine subsidIary condItions on .v’s. The Vi#~,t = Vi~t~ = — Viii, = )  ‘2)1 , (3, ii)
normalization is

The free energy expression corresponding to (2. 13)
(3.3) is
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= — — ~~(a,,,, + a,,,,, + y,1,, ÷ V,...,,) “ lm,a. (3. 16) to evaluate the output set {& , ~4 and repeat t l i ~N N i~N cycle until the iteration converges. At each major it-
eratlon step, the minor iterations are tested using .~~ .,,,

+ ~~~~ (i — ~~ w44...,.), (3. 12) simij ar to (2. 21) but Including the y term. The minor
iteratIons behave somewhat similar to Fig. 2, but rt -

where we use E of (3.2) and S/kN of (3. 1). When we doce faster to one; in the example of the same tern ~3er -
minimize (3. 12) with respect to ~~~~~~ we obtain ature, the points reduce to one In Fig. 2 around 80—100

a + lnwI °,L,.,,,÷ a ,~,1 ÷ a,,,~, + V.,A, ÷ V,.,,14 , major ite rations.

(3.13a)
where C. Oeter,mnatj ofl of T

— ,9c,,,,., We can determine 7’, using the method similar as
Sec. UC. Corresponding to (2. 22), there are ten equa-

+ 4 In(v,1,,, v,,,,,,z ,,,, z ,,,,) — ~ ln( Yi~ Y,.s Y ii ~~~~ tions of the form
(3. 13b) 4,, — ( w 41,~,,,, — w,.,.~ ,.,.,.)=O . (3. 17)Except for the minor iterations to be shown In the

next subsection, the natural iteration step starts with an The equations corresponding to (2. 23) reduce to two:
input set {w,,,, ,,,}, calculates the output set {A,~1 5 , }  g11a 4ii — ( a ,,11 — a~~1)using (3. 13), and then uses ~“s as the next input. The 

(3 18)input v’s are calculated from w’s in (3. 5), and the input g,, ~ — (a,,,, — a,,,,) ,
s’s and v ’s are from the following

and the determinant (2. 24) now becomes 12 x 12. The
= ,,, “rotat ional” symmetry parameter V,,,~ does not con-

tribute to this determinant because yb,,, — v,,,, = 0 even
(3. 14) in the ordered phase as is seen in (3. 11). The value of

we obtain from vanishing of the determinant Es
.5

We will call the iteration step from the input set kT,/c = 2.37619 . (3• 19)

{.v,,,,.,,,} to the next input set the major iteration. We It Is of interest to see the calculation for which the
can use an expression similar to (2. 18) as the test value “rotation” symmetry is not imposed. We find the dif-
4,,,,~, naturally with the six subscripts (ijklmn) in the ference is relatively small. The value of kT,/c for this
present section rather than five in (2. 18). The con- case Is almost the same as (3. 19) except that the last
vergence behavior in the present section Is similar to digit 9 is replaced by 3. As far as the values of v’s are
Fig. 1, but slightly faster, concerned, we have the following example. At kr/c

When the iteration converges, the value of x is again = 2. 38 which is just above 7’,, the disordered phase val-
equal to F/N as was the case in (2. 19). ues are

v11~~= v1111 =0. 031227 , (3.20a)
a. The minor iterations when the rotatIon symmetry is imposed , and

For each major iterat ion step, the output is’s have to =0. 031373 ,satisfy the “translational” and the “rotat ional” sym-
metry relations (3. 5) and (3.6). We have to solve the V1111 0. 031075 , (3. 20b)
following two sets of equations for three a’s and y~,,,: when it is not.

a,11, = ~ ln(S5, ,~ ,/S55 4j,, ) , (3. iSa) When we compare 7’, In (3. 19) for the double-square
where case with (2. 29) for the W approximation , we find the

W-vatue is about 0. 5% lower. Based on the generally
S,,4,,, = ~~~~~~~~~~~~~~~~~~~~~ , accepted rule, this means that the W-approxim ation is

is. slightly better than the D—S approximation. This dif-
(3. 15b) ference is information which was not available when

SD ,~J 1, = E ~~~~~~~~~~~ + V.,,,~g ) ,  Table I of Ref. 2 was wrItten.
—n

and
0. Comment on the double-square approximation

viz1, = ~ ln(R,,~/R0) , (3. 16a)

where The ‘1DS expression in Table Il ls the case C, of Table
I in Ref. 2, and treats the two-dimen4ional net layer

~~ n’~,~,,, exp(a,1,, ÷ o ,,,2 + y,,~ ,) 
wise. Explaining in detail , this 1l~~ ~ the number of
ways the lattice can be const ructed In such ~ way that
all the Isonzontall v placed double squares (like ,4—R-.

~~ w~~,.,,exp( a,,11. ° ..~~ + v.,,,~s) . (3. 16b) C—D— E— F in Table III) have the assl~ ned distribut ion
of spin configurations. ft is lmportai~ to note that this

In the Iteration technique we are proposing, the input 12DS does not pay attention to ve / iea? v placed double
set {a ,y} is used on the ~‘Ight- iand side of (3. 15) and squares (like A— B—G — H—D—C in Tab e Ill).

- 
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E M i l ~: Ifi. The 2’ ~l ,.id - 4 ‘3 ‘haat ois. We consider an ith crv .t .it line ’ pla,ie paraIl~ l It , (lit ’

~~~~~~ 

boundary and designate by , , a conflguratio,i ol the tn-
tire plane. T’ e probability that the j ib plane takes the

~~ configuration e 4 Is written as Mv ,). We define the

- -. 
quantities:

g,(v,) ‘ 1  p(~,) I ’’’ eX$) j ~~~~~

Ii. i}’ f’ •-•

~ ~4 f . } i,,(,,~) I p(i~,)~~’exp( — $t1(i . , )~ , ~~ 1)

- - which can be regarded as a eolum n vector g, and a row{EiIII]1 f. —.
~~ vector ii,, whose co,nponents are indexed by ii,. The

a(s’,) takes care of the continuity condition and vanishes
when the system is homogeneous. Because of the nor-

IEI I’ malizat ion of the probability distribution p(i’,) , the
scalar product of g and h, is unity:

I: ,, • t * 1.

If +~1tt~ 
hl ’(,a l . (4.2)

In Ref. 16 we showed that g and b , obey the recur-
rence rel ation s:

g, .exp(Ø ,,, ,1)P . II. , , (4. 3a)
When the Interaction energy is Limited to the near est b, -ex~~Ø~~ ,,1th , ’ P • 

(4. Sb)
neighbor A — h  and the second neighbo r A—I ) , then this
£1 ,,, expression is valid. However , when the thi r d where P is the transfer matrix and depends on the in-
netghbo r (like .4— E ) interaction is to be taken into Sc- teractio n energies . The parameter X,~,,, ~s related to
count , the fl D, expression En Table 11 tails. The r ue- the free energy F of the entire system as
son is that the distribution of the vertical third neighbo r
A - G  is not taken Into .it ’eount in the theory. In Table F ~~~~~~~~~~ . (4. 4)
V of his article,’ Burle y appli.d the fl ,, expr esetun in
Table U to the prob lem In which the third neighbo r in- When the system is homogeneous, g, - I,.i g40 so
tera ctton comes into play . His example, the refore, is that (4. 3a) reduces to
an exampl. in which th e method was not expected to g” -expt$Ii”)P ’ g101 (4, 5)
work , a. Burley agre ed with the author privately la t er.

U the th ir d neighbo r (like A — ( ) and th. fourth neigh- This is the elgenv atu e equat ion. The excess tree ener-
gy Aa attri buted to the bounda ry (A is the cross-nec-

bor (like A — H )  In teract ions are to be included , the A , tioeai area of the system ) Is written as
expression of the 11 factor in Table I of Ref. 2 should
be used. It ii reproduced as U,,,,~ 4,) In Table UI. This
0 t reats both horizontal and vertical double square . Aa - u r n  ~~~~ t .1i~ 

— A~°’) (4 . 13)
i s .— ’ . -—

equally , and ii app licabl e to the third and fourth neigh-
bor Interact ions, when the boundary region lies between i . — so and i iii .

As was listed in Table I of Ref . 2 , however , ~ lb. ~~~- 
From now on, we deviate from Ref. 16. in order to

teractlon is nearest neighbor only, then n5,, ~i Table u 
calculat, a, we consider a region bet ween I + m and

gives a better result than fl ,4(A ,) of Table 01. This + S’s outsid e of the boundary, in order to compare with

Indicate, that althoug h the latter works with the thi rd the boundary region. We assume n’ large enough so
and fourt h neighbor interactions , the appro ximation may that the region to ’- i Sin is sufficiently close to th e
not be as good as expected, We certa inly expect a ~ooi 

honteg.n.ou.pbase. This assumption allows us to wr ite
app roximation when a S ~‘e S cluster made of circled Ii,, ’ ,,, 1 , (4. 7)
points In Table ill ii used. For this raise the 0 factor which is a mod ification of (4.2) . We can also Wri t e
is given in A~ of Table I in Ret . 2 and is reproduced in
Table II! here also . g_ — exp(~3u, *~°’) P’ ’ g,_ , (4.8 )

I

I he same kind of ar t ~uInent about the hor izontal 
~~~ which t. obtained by applying (4.Sa) or (4.5) 2n ttnw~..v e i l  teal holds for the U approximation of Sec. II.

The boundary excess free energy can be’ d,-rtvs ’d as
follows. Oper ating (4. Sb) between — to and ,~~~, we derive

IV. PROOF OF THE BOUNDARY FREE ENERGY
EXPRESSION ~,_ _eip (~~ ~~ ~~~~ ‘ P~~~. (4. 9)

4.—rn.,

b Ret . 16 the sc*Iar product expression for the We form the scalar product ol 4. 9) ,&utl (4 . 8 ’ , .iiid use
I.o~ Jary excess free energy was derived . The proof (4. 6) and (4. 7) to arrive at

I e expression , how.’vei , contained a weakness, in
h i t - section we hir esent an improv ement of the proof. limb..,, ’ g. exp( — Mo) . (4, 10)

It v. ill be iiont’ using a three-d imensional nomenc lature.
I i i  -I , we briefly summar ize See. II of Ref. 11 . Going back to p(i , ) m (4. 1) , u~ can u n I t ’  (4 . 10) .ts
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ex~~— Mo) E [p,(~ )p,,(v)}’15 , (4. 11) + y4, In~,, — ~~~ ~~~~~~~~~~~ A~ (~ — ~~~~~
4. ,,’

where the subseript i I and U denote the first and ~.cond (5, 4)
phases which meet at the boundary. where £ is the operator defined in (2. 3) and

Although this proof is not wrItt s~n In mathematical -

rigor , and still contains some Implicit , albeit reason- y,, ’( y y ~~’~~ ”
able, assumptions how h_, and g ,  behave away from the (S. 5)
boundary, it is an improvement over the proof in Ref.
16, and is applicable to two-dimensional boundaries The A~ terms in (5.4) come from the normalization of
for which the location of the boundary cannot be sped- ~~~ and when (5.4) is minimized It reduces to
fled , ‘° as well as to three-dimensional boundaries. o~105 aj ~— A$ .  (5. 5)
V. CALCULAT IONS OF THE BOUNDARY FREE We note that the right-hand side of (5 ,4) is of the
ENERGY form of a tree energy of a one-dimensional system in
When we apply the scalar product expression (4 11) which ln~,, and m i ,,, play the role of energy (times ,~).

to the present problem, we can write for the (10) Since a one-dimensio nal system has only the disordered
boundary phase, i’s and y ’s obey the symmet ry ~~~ = ~~~ etc.

Minimization of (5,4) leads to an eigenvalue equation,
exp(— UO(,~ , a$) = l~l (z,,,}(p1{~,,,}p1, u,,, D111 e ’ being the elgenvalue. It is solved as

h a,,, )
(5. 1) e~~!i + u+F(~n~

_ .~iamY + 
~~Ju*

where a t~ the lattice constant and n is the number of 2 
~~
,, 

~~
,, 1’ ~u ~is F Yu ~u 

(5.7)

lattice point s in a line parallel to the boundary. The
quantity ‘ ,,, on the right -hand sIde is the probability As a check of this equation, we examine the high-
for a three-p oint cluster as is defin ed In Table fl temperature case when the homogeneous bulk phase is

diSordered. In such a case, i,, and ~~ of (5. 5) reduceThe sum over all configurations ~~ in (4. 11) is now to
written as the sum over the set {ijj ,} with the weight
factor 0{z ,,,}. This factor Is the number of different ~~~~~~~~~~~~~ ‘ and ,, rn z~~ — z ~~ , (5.8)

ways the line (composed of n lattice points) can take and we can show that e ’ of (5.7) reduces to unity and
the configuration specified by the distributi on jz ,,,}, and hence ~~~ = 0.
is written follo wing the c1uster-variat~on method’ for a
one-dimensional system The bound ary excess free energy ~~~ for the (10)boundary is then calculat ed from (5. 5), (5.6), and (5. 7)

P{z,,,}= J.T(ny,, ) 1/ IT (nz 4,,) I  . (5. 2) 
usIng the results of the equilibrium homogeneous bulk
phase of Sec. III. The dimensionless quantity c~,0~a/~Is plotted In Fig. 3 by a solid curve marked as double

In accordance with the sum over ‘~z,,,} in (5. 1) , the square. It Is compared with the exact result of
probability factor p,( v) In (4. 11) Is chang ed into Onsager” and the results based on the pair and the
p1 {z,,,}, which is the probability that a line of n lattice square approxima tions which are report ed prev iously . t’
points Imbedded in the equilibrium homogeneous bulk The boundary free energy at,,) of the (11) boundaryphase I takes a configuration specified by the set {z,,,}. can be calculated using (5. 5) and (5.7) again, but re-- 

- 

The conditional probability that a spin ~ is found next tO plkclng (5. 6) by
a pair of spins ~—j is *~J/y~’,’ in the phase I. Making
use of this property , we can write p1 as ~~ tn ,P~ an— x~~~ , (5. 9)

since the distance between two neighboring latti ce points
p,{z,,,}= 11 (z L)+* (nzt,~)/fl(y~’)se (n~4 1) , (5, 3) on a (11) line is ~~ a, For this boundary, y 4,  and z ,,,

4 .,, ’ in (5, 5) are those defined in Table I. Section II is used
where a double aster isk is the FORTR AN notation meaning to calculate (t(~~ ) through (5. 5), (5. 7), and (5. 9). The
“raised to the power of. ” In this expression , z~~ with result is shown by the broken curv e marked with W In
a superscript (I) is the value In the equilibrium homo- Fig. ~l it is to be compared with the exact result by
geneous bulk phase, and is to be distinguished from 

~ 1~1 
Fisher and Ferd inand’s and also with the angle approxi-

which is the summing variable in (5. 1). The other me- mation result ” which are also plotted in Fig. S with
b r  p,, in (5. 1) can be written by changing (1) ~ (5 5) broken curves.
into (11). The curves in Fig. S supp ort the correct r ’ess of the

scalar product expression of the boundary free energyWe are now ready to calculate a from (5. 1). Using
the standard technique of statistical mechanics , we re- 

as well as effectiveness of the It’- and double-square-
place the summation in (5. 1) by the maximum term. pp ms.t n of Sees. II and III.
For that purpose we write from (5. 1) VI. SUMMARY AND CONCLUSION
o(,,) ajl ” n u n  IE £(z,,,) — ~~ t (  y,,) This paper can be regarded as the follow on of or a

supplement to the several papers published previously,
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3 _____________ ‘a’’ makes most use of the superposition expressions wh i ch
form the starti ng point of the NI tre atment .

\

~~ The scalar product (SP) expression of boundary free
energy ” has Lacked a rigorous proof. Section IV pre-
sents an improvement of the proof . The SP expression
Is combined in Sec. V with the results of Secs. II and
Ill for the W- and double-square-approximations to cal-

~~~~~~~~~~~~~~~

\R 

culate boundary tree energies ~~~ and at , , >  for the two-
dimensional Ising model. The result in g curves in Fig.
3 leave no doubt that the a values calculat ed by the SP

2 

DOUBLE S o u E  

expression converge to the exact results of Onsager and
Fisher Ferdinand as the approximation is improved.
This convergence support s the correctness of the tin -

- plicit assumptions still left in the analytic proof in Sec.4 .
V , and now guarant ees that the SI’ expression can beSQUARE (ANGLE ) 
safely used for further studies of the boundary strue-

— tures.

— — 
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Structu re of phase boundaries *
Ryoichi Kikuchi
Hughes Research Laboratories. Malibu. Ca14/bniia 90265 - 

-

(Received 4 January 1977)
The boundary between plus and minus apis phases o( the lun g model is studied for the bce <110>
boundary. The iterative calculation due to Weeks and Giliner is interpreted as a modification of the
Natural Iteration computation (with subsidiary conditions) for deriving a free energy minimum. A
tetrahedron is used as the basic cluster in the cluster.variation scheme for this problem. Two formulations
are presented : one uses the scalar-product formulation and the other the boundary sum method. Previous
results of an order-disorder type phase transition within the boundary are confirmed. Results of
calculations on the boundary excess free energy and the boundary profile are compared for the pair and the
tetrahedron treatments.

I . INTRODUCTION the (v+ l)th plane will be called a C~ bond. The number-
In a recent publ icat ion, Weeks and GLlmer 1 proposed ing system ~.t for bonds Is indicated in Fig. 1. Actually ,

a novel iterative technique for numerically solving the we use g = p in numerical computat ions, but it is better
density profile across a phase boundary. They pre- to distingu ish them in the presentation.
sented their idea based on the original Bethe’ method Plus and minus spins are denoted by I = 1 and 2, respec-
of treat ing cooperative systems using consistency rela- tively. The distributions of spin configurations over a tat-tions. In Sec. fl of the present paper , we point out that tice plane and over bonds are defined as in Table I. We usethe Weeks—Giliner (WG) technique fits well with the dist r ibutions of nearest-neighbor pairs only in this section.cluster- variation method of formulat ing the boundary
structure by Cahn and the present author , ” and that the There are three kinds of constraints for these van - - 

-

WG iteration technique supplements the Natural Itera- ables: first , the set of normalizations
tion (NI) technique recently propo8ed by the present
author.5” The iterative technique of Sec. U can be E~a, ,,, = ~~~~~ 1 for all v’s and g’s; (2.1)

I .S  j , Nigeneralized to larger clusters. In Sec. IV we calculate
the boundary profile of the bce (110) boundary using a second , the symmetry relations
tetrahedron as the basic cluster. Ya~,i, =Y s~,ii for all v’s; (2.2)
Along with the boundary profiles, the excess free en- and third , the consistency relations

ergy of the boundary is calculated in Secs. II and IV.
In order to compare these resu lts with those obtained X..,t E Y B5 .) J ~ x5,, = ~~~~~~ (2. 3a)

I I
by the scalar-product ~~ Sec. ifi reports
the latter using the tetrahedron as the basic cluster. = Ycs,,,,’ 

X,,1,,, E YC l.,,Iu 
(2, 3b)

Particular emphasis is placed on the phase transition m

within the phase boundary . Examples are limited to the In Eqs. (2. 3b), remember that the Cg bond connects
(110) boundary of the bce 15mg model, lattice points between the vth plane and the (v + l)th

plane , as shown in Table I and Fig. 1.
II . ITERATIVE COMPUTATION OF TH E PROFILE The cluster-variation method starts with the free en-
The pair approximation formulation ergy expressio n. The energy of the system is written as

In this section we use the pair approximation of the
cluster-variation method to calculate the densi ty (spin)
profile across the bce (110) bounda ry and show where
the WG Idea fits into the for mulation and how their idea
facil itates numerical comput at ions. We work with the
nearest-neighbor interaction as in WG and use the Ising
model terminology, rather than ordered alloys . PHASE ! 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PHASE U

The crystal structure is illustrated in Fig. 1. We
consider the plane of the lattice points i—j—l to be paral-

~~~~~~~~~~~ 

— 
-~~

let to the boundary, and phase Ito be on the left and
phase U on the right. A lattice plane parallel to the
boundary Is called a “parallel” plane for short and Is

~~o kinds of nearest-neighbor bonds are to be din-

numbered by v, as In Fig. 1.

p
tinguished , to be called the B bond and the C bond for
short. A B bond is within a parallel plane and examples 1

are I—i and j .— l in Fig. 1. A C bond, such as i—rn In FIG. 1. Geometry of the bee lattice and the nomenclature used
FIg. 1, connects two lattice points on adjacent parallel in defining variables . Thin lines are nearest—neig hbor bonds .
planes. A B bond on the vth plane will be called a By and thick lines are second-neighbor bonds. Section 11 uses only
bond , and a C bond connecting points on the vthplane and thin line bonds.
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Ryoichi Kikuchi: Structure of ph~~e boundar ies 3353

TABLE I. oefinitlon of the dist r ibutat ion vari ables . The sub- where the £ operator originates from the St irling ap-
scripts ii in ar e symm et r ic as seen in (2 . 2) . For proximation of a factorial and Is defined as

the first subscript I refer s to the left side of the bond
as ehow n tn Fig. 1 . £(.r c ) e x l f l x — X  . (2. 7)

lJietr ibut ion
Conftguration variable In (2.6) , N Is the number of lattic e po ints in the system

and 2u~ is the coordinatIon number. For an inhomogene-
(-spin on the vth piano ous system In a bcc lattice ( w— 4 ) ,  which La what we are
i—I on a Dv bond Y . . ,tt interested in , we modify (2. 6) and write the entropy as
i—n , on a Cpbond ,
I on the ,-th plane, and S cM ,Im S — 

7 “ r

as on the (i’ 0th plane 
— 

~~~ 
(E £(x,.,, )+

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
I’- I I

+ 
~~ 

£tx ,,, )+ ~~ £(.x... ,.~.J ] (2. 8)
E.2n

~~~
e’,

~~~~
Ya,

~
u + ~~ Ycn .ti ] (2.4) 4 

~~
., ,

4.1 i.~ ~‘a 1

wherenis the number of lattice points on each of the parallel — 2E ~~~2(ya...si) ~] 
— 2  E £(y cs.,_ )

~i.1 I.i s~1 1,.
planes. Theenergyparametert4, forthelsing model is

+ ~ when ~ ;*.i, 
The four x terms in (2 . 8) are equal , except for the end ter ms ,
but are written separately to make the treatment symmetric .— a when i =j. (2.5) The — ~ terms in (2.8) take case of (~ — 1) In (2. 6).

In (2. 4), the parallel planes go fr om v = 1 through ~~, 
In minimizing the free energy, we want to treat all

and the bonds go from M = I through ~~~~ 
p5 — j , y ’S as independent . For that purpose we need Lagrange

multipliers for the following relations:
The entropy of the pair approximation of the cluster-

variation method Is written for a homogeneous phase of ~~ Yas.u ~~~Ycs. im

N lattice points as’9 I

= 
~~~ Ya s.,4 I  . (2. 9)

a I
S = k N [(2 w— l)E~~(xg )—  t&,~~~~ £(y,, ) + ( w— 1)] . (2. 6) 

We write the Lagrange terms as

r =~~ ~Ea L....[~~~~~ Y e V . I I  + Yav, u ) ” 2 
~~ Ycs.s_ ] + ~~ aRP.l[2~~~Yc t M..t) .as — E (y a ~.u +) a~.,,i ) J I

~ ~~~ + a~9,I — 
~ RS.4 a5~.1 ) Y59 ,4~ + ~~~~~~~~~ aL~ 1) YC~~im}  ‘ 

(2. 10)

In the fira t line of this express ion , Y8~ ,U ~~~Y3V.II 
F

~~~~~~~ 
t ,~,..~ )715 exp(— ~~Ej~~~

) . (2.13)
guarantees that Y,,.,ii Is invariant under the interc ha nge
of I and i. Note that the ii exchange symmetry of YDI.. I I  in (2. 2) Is

demons t rabl y satisfied by the expressions in (2. 12) and
The free ener gy of the entIre system F= E— TS is (2 13).

wr itten using E in (2.4) and S In (2.8) and adding the
Lagr ange terms r (actually — 21’) in (2. 10) as When 4’ In (2. i i)  is a minimum and (2. 12) and (2. 13)

- ~E 
~~ 

_ 2r +
~~~?i,( i_

~~~ Ya~,(,) 
hold , we can show that + reduces to

4’.—- V VN n kn
‘a F/n~~~~X 5~ +~~~ A~ 5 (2. 14)

(2. 11) ... 1 s•t
.

~ \ I,. / This F is the free energy of the entire system Including
The last two summations are the Lagrange terms to take the boundary region.
care of the normalizatIons (2. 1).

The Lagrange multiplier a’s are determined fro m
The equIlibrium state of the system containing the (2. 9). Let us define

boundary Is derived by minimizing 4’ in (2. 11). In thf-
ferenti at lng with respect to the y ’s, we regard x ’s in
each of the four terms in (2. 8) as dependent on the y ’s S5,,, ~~~~~~~ exp(— aa,.., + a~ ,1) ,

written explicitly In (2. 3). Minimizat iOn leads to

y5911 = y 1 1 exp(~~ ts~— a ,,~~— caLV, I + a.,,.,I + a RV , I ) ,  ScRV .IaEy~,
0
~.sm exP (_2aanwl .m)

IN

INY cs,j us. ,ca,,. eXP(~$)Icn +2a~~,j — 2a545.11 ,~ )
(2. 12) SCLp .4~~~~YI~~n.ti~ 5 exp(2a~ (,.t ) ,,) . (2. 15)

where

= (x5,1 x,,5 )~’ exp(— 8e4 4
) Substituting these In (2. 9), we obta inJ11.11
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exp(~~x 5, — aLV,I + aRl,.I )S1,.~4 = exP(48x~. + ~~~~~~~~~ , + ~~~ ~~ 
In(.~ .1/’.’,1)+ X~~4 — ~~~ . (2.21)

V.4
exp(~~ x C V l  — 2a~~ 4 )SCLV.4 Eac h term in the square brackets is nonnegative due to

= exp(4$x JV — aLV .4 + aR,s i )SSV ,4 . (2. 18) GIbbs ’ lemma, 10 and hence 4’ always decreases at each
The novel idea of Weeks and Gilmer t is to eliminate major iterat ion step as long as the minor iterations

the x ’s from (2. 16) by form ing ratios of I = 1 and t = 2 have converged and the continuity relations (2. 9) are
satisfied by both the input and the output y ’s.cases:

We have not attempted the analytic proof of the con-exp(— aL~.1+ a~,,.1)S5,,.1 = 
exp(2 a~,,.1)S~~,.,1 vergence of minor iterations. In numerical computa-exp(— aLV,2 + a ,,,,,6 ) s59,1 exp(2 a~5.5)SC59,5 tions they do converge , however , and the reason for this

exp(— 2a~9~ i)SCLP. j 
= 

exp (— aLP. I + a5,~ 1) s551 (2.17) convergence is interpreted as due to the averaging na- - -exp(— 2aRV,2)SCLV,2 exp(—. a,,5,5 + a55,2)S5~,5 ture of (2. iS)— (2. 18).
From these we can solve We want to point out that the iteration processes of

this sect ion are almost exactly the same as the itera-
— a51,,, = (3AL.II — AR, v )1’8 , 

tion method described by Weeks and Gilmer. ’ The only
aLW.I — a

~ ,Z = (AL.V — 3A5,9)/8 , (2 .18) difference is that they do not treat the major and minor
where the A’s are defined using the S’s in (2. 15) ~~ iterations as rigidly separated as in this section. In

the method proposed In this section the output set {&}
AR, V~ ln(S~~,.,1S51,,,/S~5w,,s51.,1) , makes the cont inu ity requirements of (2. 9) satisfied for

~~~~~~~~~~~~~~~~~~~~~~~~ (2. 19) the given {9’°’}, while in WG’s method the output {&}
of one minor Iteration cycle is regarded as the output

Since the y ’s satisfy the normalizations, we can choose, of the major Iteration cycle also. The fact that their
for example, iterations converge indicates that we do not need to be

so strict about minor iterations , although the conver-aLP.,— a51,,,= O (2.20) 
gence of the latter is used in our proof of 4 ’> .f. in (2.21).

without loss of generality.
We can derive equations in the Klkuchi—Cahn paper

The iteration procedure is divided into ‘major ” and from (2. 12) and (2. 13) by eliminating the x ’s and a’s:
“minor ” iterations. 6 A major iteration step starts with
the input set {xV ~}, {aL,.,,}, and {aRP,1}. Using these, ~~~~ Yc...iiYc~a-i .at 

/
~a.i\

we calculate y~~ 4, and Y~~ j m in (2. 13) and determine the Yav .22 Yccu-i ~~ zYcn.,, 
=

output set {&} by the minor iteration steps to be de- eMs = YCM.1L Y C .,.~~/ YC5 1SYC 5 2L 
$

scribed below. When the output &~s are determined,
the x ’s are calculated by substituting (2. 12) into the e yB P, t ty BP .,,/yB V,u . (2. 22)
normalizations (2. 1); then the Information of y °”’s, X ’s, These are exactly Eqs. (2. 8)— (2 . 10)of Ref. 3 for the
and &~s leads to the output sets {95V ,1I} and {~cp,J,.} from case ,= 4 and w, = = 2 in their notation. Although this
(2. 12). The output set ~~~ is obtained from (2. 9) us- set of equations is equivalent to the mathematical prob-
ing p’s. Thus , one major iteration cycle Is completed , lem we treated in this paper using the NI method , when
and ~~~~~ {&Lp ,4},  and ~~~~~~~~~ are used as the input set written in the form of (2. 22) the NI technique is of no —

for the next major Iteration cycle, help. The Kikuch i—Cahn paper solved it successively
starting from one end.The minor Iteration step Is as follows. The input for

the minor Iteration are the sets {~ (o)} and {a}. Using It may also ‘~e worth pointing out that the present
these values , we calculate the S’s in (2. 15) and further method which is based on the cluster-variation formula-
A ’s in (2. 19) and then obtain the output values a51,1 and tion allows us to calculate the free energy of the system
as,,,, of one minor Iteration cycle from (2. 18) and (2.20). in (2. 14) in terms of the Lagrange multiplier x ’s for
This output set a’s is then used as the input on the r ight- the normalizations. This is in contrast to the WG for-
hand side of (2. 15) for the S’s in the next minor itera- mulatlon which Is based on the original Bethe treatment
tion cycle, and does not lead to the free energy value In easy steps.

We can prove the convergence of the major Iteration The formulation In this section was used in calculating
by showing that the free energy function 4’ in (2. ii) al- the boundary structure for the interstit ial-center case
ways decreases at each major Iteration step. The cx- and the atomic-center case. The results agree with
pression 4’ is a functIon of the variables x ’s, y ’s, and those of Kikuchl—Cahn , 3 and are compared with those
a’s. When these variables take the output values , we of other methods in Sec. IV. 3.
write .~ with a caret , and we let 4’ denote the function of
the input values. Then using a technique similar to the III .  TETRAHEDR ON TREATMENT OF BOUNDARY
one used in Ref . 5, and assuming that the constraints FREE ENERGY USING THE SCALAR-PRODUCT
(2. 9) are satisfied, we can derive FORMULA

4’ 4’ = 2 E I Yiv,ig ln(y81,,4 5i~~,,,, , + ~~~ I — 
~~~~~ 

The Iterative calculation of the boundary profile pro-
,‘ ‘I posed by Weeks and Gilmer ’ and reinterpreted In the

+2 E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ previous sectIon In terms of the NI calculation suggestf
~. ,. that a similar technique can be used with .~ larger clue-
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ter than the pair. This is done In Sec. IV us ing a tetra — tetrahedron and 18 wr I t t e n  in terms ol th e  n e ar e s t  -he’dron as the basic cluster for the bce \ ll~~ boundary , neighbo r energy parame ’t ei -s s , , of (2. 5) as
As preparation for the’ formulat ion In See . IV , we — (

~ , t ,~ • 
~ ~, ) 6 . (3 .4)

solve the bulk properties of the bee Ising latt ice using
The dc l i i i  i~ iou of e • in I hIS liape’r is d Utcre ’nt From th atthe tetrahedron approximation in See. Ill.  The bulk
in Eq. (9) of Ret . 13; In the latter , e 11~~1 is del flied ase’aicula t - icin Is reported here as an introduction to the
the ’ energy contained in a tetrahedron and th e factor ofmore’ Involved formulat ion (or the boundary in See- . IV ,
6 results be cause a nea rest— icig-hbo r I’cnd is shared byand also because’ it Leads to the sealar-product (SI’)
SI X  tetr ahed i’a. l’he’ Pt~~Se ’llt det init  loll IS Pi’el erred ineva luat ion of the ex c ess bowidary free’ energy c . The

SP fo rniulat Ion is ui Sec . Iii. 2 and the results are C0111 
alit ic epat Ion of the fo r mul at ion~ i n which  th e ’ se’e’ouid—
neighbor inte ’i -actton energy is to be taket i int o ac-countpa red with those’ of Sec. IV in Sec . IV. 3.

‘Fhe Lagrange m ul t ip l ier  in (3. 3*) is to , the ne ’riual —The’ tel rati edron approx imat ion for the bulk reported
i/a t  ion condit 1(111he re ’ has been used before , some results were pub-

lish ed , ~~~~ and the method was briefly sketched previ - H~~~~1 - 1 (3~ 5)ously . 13 There are also three papers published by a
Russian group using the same cluster, ~ anti as is usua lly the case, is equal to the ’ free energy

of the s s tem , per la t t ice point:
1. Bulk p h i  using tetrahedron

F .V , (3.6)
The tetrahed ron we use in this calculatIon is i—~—i~—I whe n th t’ f ree e’nergy is a minimum .in FIg. 1, whIch is nol a regular tetrahedron but is made’

of four neare st—neighbo r bonds ~~~ u — I , ,—~~‘, ~—.l and Because of the symmetry of the’ bulk phase which IStwo second-neighbor bonds u — p  and $~—I. Th e distrIbu- contained in the u -~ ~ expression in (3. 3). we ’ do iiOI needtion variable (or a lattice ixlint is wr i t ten  as e~ and that add it ional svni n ietr v constraint s nor the’ Lagrange mu! —for a nearest-neighbor pair is writ ten as ~~ as can be t ip l i e r  cv ’s as arc used iii Sec . II and in Ref . 6. The’understood fro m Table I. Besides I and c , le e’ need Natu ral  I t erat ion procedure works when We’ Combine ’three other kinds of distribut ion variables : :,~ for a (3. 3) with the geometrical reduction relations:
second-neighbor pair (like i— p in Fig. I ) ,  ~~~~ for a tri-
angle of the shape : —, —l  in Fig. I . and 

~~~~ for a tet r a— — 
~~~~

u- l,U , 4j~ ~~~~~d .’ 6 ’hed ron i—i—k—i  in Fig.  1. I

The ent ropy of t he syst em is wr i t t en  as 
~‘~o = Eu1,,. 14 = E ‘~~ -

C
(3. 1)

For the measure of e’onvergence ’ of the NI procedure,
where fl is the number of ways in which :i system can be we take
constructed for spec if t~ 0 ~et of distribution varIables
~s 4,~j  and is written for a system of X lattice IX~Ui t S as lnu’4~~ ’ — lnu~~ 1~ , (3.8)

416$i~ ~fTr iangL e t~4 11 }~~{poIi~t ~J~~Tetrahedron 5 11111Y where the superscrIpt (n) denotes the uth iterat ion step.
~{Second-ne ghbor pair ~~,};

3 This test value ~~~“ decreases below l0~ when n is
about 400 iterations for almost any temperature in th e\ (Nearest-neighbo r pair r 4 ,};

4 
. (3. 2) 

ordered phase in this particular problem. The d iffei- -The meaning of the curly bracket notation is explained ence of logarithms in the measure ’ of the test as in (3. 8)in any of the cluster-variation publications prevIously is preferred to the straight difference of s”s, becausereferred to . ~~6 
the former yields same number of digits accuracy f o r

When the expression for (~ Is given as In (3.2) , it is a all s ’s, which is the accuracy we need in the sealar-
product evaLuatIon of the boundary fr ee energy as wassimple procedure to write the free energy of the system
discussed in Ref. 6.in terms of the distribution variables and then mInimize

it to obtain the equilIbrIum state. In the NI procedure
2. Scalar peoduct evaluation of owe treat the ,c 4,~, ’s as Independent and all other vari-

ables as dependent . Following steps similar to those’ The excess free energy o of the ~llO’ boundary can
presented In Sec. III of Ref . 5 to keep the symmetry of be calculated using the bulk phase results of Sec. II I. Ithe formulation explicit , we arrive at the “superposi- and the SP expression . A ~l l0’ plane ’ of the bee lattice
t lon ” expression is drawn In Fig. 2. The lattice constant a is indicated ,

IN 4’ p 416 , ~
5116 (01 (~ . ~~ The SP expression for the boundary excess free e’n-

where ergy has prev iously been derived and proved. ii. ~~ Ap-
plied to the present problem, we write

(01 exp(— 
~~~4I6l )( ~~,1w1j 6 u ~~ )i /2(~ I , ~~~‘(‘urn ’

exp(— 6IO~ 1101~~a ~2 1 
~~ 

Q{u416}( p1fs4,6}p11{u4,,} I I/ ~,x ~~~~~~~~~~~~~~~~~~~~~~~~ ) —I /6  (3. 3b) llIl~~6 i (3 p)I,

The energy parameter ~~~~~ is defined as the energy per a~here a~ ~2 is the area per atom In the’ ‘parallel
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,, I btinds , and .4B and ( ‘I) as I t t ’ st’cond—neighb V boii ~b- ,
— ~~ as indicated in I” ig.  2 of this pape’r. The’ result us

4 ‘ ,_A

1

A 
u , • {Se’conet— neighbo r iiair

- 
‘ Ne ar e st - iu ’ighis r pair

• s ~~~~~ ~~Triauigle ’ n ,,~~ {Poinl i,~~~ . ~3. 10)
- whe’re’ the ’ e t u i l v br ae ’ke’t notat ion has th e sa ne t i le ’5flhui i~
- “ j ,~ .uS that tum (3 . ~ 1 ou’ as in th ose’ iuu Ut’Is - 8 antI 9.

(~ir e ’ \I S ’ r ( e’ u l t e S  in Refs . 7, 17 , amid 6 tell  Its th at  W e

t a t  use’ the ’ sc he ’n iat mc In fe rn iat iOfl in fi of (3 , 10) wheti• ‘N we w r i t e ’ the ’ prot c .u tc i l i t  tun e’t ion I’ i~n , ,,~ appe’aring in
~3. ti ) . h i s  wr i t t en  as

I I’ i~ ’ , ,,~ ( [
~i~~~~1~ 1.1 p~~, p~~~

) ’ (3. 1 is
4 whe ’rt ’

Fk. ~~, 4 , 1 t o t  pL ~~ c,’ ‘I i i i , - I . e  l~~i l i , ’e’ . I t tc ’ • - .~ t , -~~t ~~~~~~~~ fi ~~~~~~~~~
i t  ,I :h, - ~~~~~~~ nt ~ I tI ’,c t  t ’ , .u, I t i c  . I I I%k 0 te i lh it (t in  t u i ~~’ ‘,‘ .C

t t t (  * i h4 ~’k l I t , , ’ , icc 4 ’ , ’ s t  i~~t ’t ~

~,, IJ (:~~‘)*. 
‘

pl ane’, u is t he’ total number of lattic e ’ Islint s In the
P t ’plant ’, and ~~~~ is the ,‘\t’ e’Ss bound ary I r e t ’ e’ uit ’i’ c 5y t ier  • , C 6

tin i t .u .i. ~)n the’ right — hand ~ tde ’ , p~ u 4 C t  i~ the ’ Prol —

. i tc i l th tha  a ~L Itl’- it li,, ’ slit’(’ i f u’.l by the’ ~e’t ot v ii’ — ‘1.~ 1%:~ )*s t~ . (3. 1 ib)

. tbht ’s - , , is r , a ! l / e d  i i i  phase I . and fl~u ‘6 ~ 
is the ’ 

-uiu n tb e ’ r ot ~e ,uv s the P I , t t is ’ c a t  he e’onstr eicteej whe ’i~ t h e’ Fhe ~ doub le a s ter i s k  IS the ’ Fortran 1(11(51 ion for r :i ised
St’t 

~~~ .~~ 
is spe’c i f i e ’t f ,  t o the ixleve ’r of , and is used here ’ to SVeiId St t ttSt ’t ’ i lt t s  of

;i superscr ipt In typcse ’tt ing. The quant itle ’s wi th  the
superscript (I) ~n (3. 11) , such as ~4 (t , are’ tho se’ for the ’The w eight f acto r t~~s. } can be calculated Lw slightly416 - ‘ bulk (1) phase. No te that the lk)(v e’rs on the p s on thenwd k~ ’ing the sCheme used in See. (, of Re!. 8. We’ -r i ght—hand sid e Of (3. 1 la) corresp end to those in (3. lOt .can follow the steps of Eq. t~ . 1) 11 we regard bonds .‘%t

and .41) in Fig. 8 elf Ref . 8 as the nearest—neighbor When we cisc’ (3. 10) and (3. 11) in (3. 9) , we de ’ri v t ’

0(Ilo)~~t
’lI~ 2 

~~~ £(u 4,C ) —  ~ £(~,)— E £‘(y~ )— E £( v 6) • ! [E~
’(ti ) L ’ (t1 ) E~ (e 6 )]4.1.6 4,1 4 .6 . t C

— 2  
~ 

54)5 ln~~m 1 24~ ln~4, ~ I 4~ lfl~45 E-”rn Ltl~,~4 . 1.6 4.1 4.6

— C 4 ln.1~ E~, m t 1 ~~ 
lnt*] (i — 

4.1, 1 1 )  
2E  (0 11 -6 — a6I — ‘~8j

)i4 4,C . (3, 12)

I-The £ operator Is defined in (2. 7). The quantity with a u 415 — a ~~ exp(i$\ ~~45 ~~~~~~~~ 
o 4 — ~,

) , (3. 16a)
caret Is defined as the geometric average of the corre-
sponding bulk-phase quantities for phases I and II as ~t crc

(t t,’ t )l/G ( . . >1/1
~4i6 (s~~ u~~~~~” ~I1C 

~~~~~~~~~~~ ~~~~~~~~T7U . (3. 16b)
) • ( ( i) 2 ( Zu i ) i/I et (3 13)4~ 

24, 4, When (3. 16) holds and o In (3. 12) Is a minimum . we’ can
The Lagrange multipl iers a

~ are Introduced to take show that
care of the symmetry of e~ :

\ 0 1110> (I ~2 , (3.17)
(3. 14) whic h la the excess boundary free energy per latt ice

point In the plane. It is easy to see tha t \ 0 when theIn minimizing a in (3.12) , we use the geometric rela- bulk phase is in the disordered state so that ~4 (I 1~~~~U I 1lions (16 (16
N4,6

£ 4~ i u ‘EN 4J. (3. 15) The Lagrange multipl iers , the e46 s, are de’tt ’rmine’d11 1,6 from the constraints In (3. 14). After translelrn(alions
together with (3.14). The mlnimlsatlon leads to similar to those in (2. 15)—(2. 19) , we arr ive ’  at
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(SI
exp(2~ 12 ). 

u +u~~exp(— ~~~ (3. 3 8) points. in each of the second-neighbor subscript pairs ,
exp(a15) ‘ the first one Is either above or on the left side of the

pair. The ic’s satisfy the following sy mme t ry relations
where among subscripts :

14’L.’.1461

and
4 ,1 ~ ~~~~~~~~ ~ ‘

~~~~~~~ ~~~~~~~~~~~~~~~~ 
. (3.19) (4.1)

We can solve the set of simultaneous equations by the As subclusters of these tetrahedra , we see there are
Natural Iteration technique. We need the major and five kinds of triangles , for which the distribution van-
minor iterations as was the case In Sec. LI. However , ablen are written as ~~~~~ u~~,416, 5

~~ ,4 ~ a ~~~~ 
and

since the constraint equatIon In (3. 18) in a fou rt h or-
der algebraic equation for exptâ 11), the m inor it er a- 5L .‘.IN.’ These five trIangles can be Identified by follow-

big the subscript s and the corresponding points in Fig.
tiona can be done by the Newton—Raphson IteratIon 1. Among the triplet subscripts like iji , the fi rst two
method without trouble. connect a pair of second-neighbor points. The u’s are

reduced from ic’s by the following two sets of geometric
3, Phase transition within the boundary relations :
As was rep orted in Ref. 17, the scalar-product treat-

ment of the excess boundary free energy a<1101 using the sit~~,.f , s ”Ei4 ’L,,,u6,, ‘P 6t, ( j N , ’~~~~~ ’J5v,41J . .  (4.2 ) 1
pair approximation leads to a second-order phase change I 1

in 
~~~~~~~~~ 

We may call this transition temperature T,,. and -
~~~

We expect a similar phase change In the tetrahedron
(bulk)-triangle (boundary) treatment of Sec . In . 2. u~~,,i,, ‘(‘L”.uICu = E w5 .414.. ‘

S IN - 1In the triangle formulation of Sec. 111.2 , we see that
there are two long-range order pa rameters: u5,,,u,, 4 ~

3
~~~~~KoC 6 . I , , , m IN

~~~~~WR,,, ,,u. ‘ j
~~~~~ ‘i

_ 
~~~~ ~a u iii usu . (3.20)

= 

~~ ‘(‘c u ,4,,I  = ~~~ U’L ( ~~il . , 1 N l N  . (4. 3)
The transition point T,, can be determined as the poInt / I
at which the following 2 \2  determinant vanishes in the The symmetry relations an -long the ic’s in (4. 1) are in-
disordered phase: herlted by u ’s through the geometric relations (4.2) and

detII8’o(110) /8~ ( 8~ ,lI ‘0 . (3.21) (4. 3). The equatIons among ic’s in (4. 3) necessitate j
Lagrange multipliers , as shown below,

The determirant can be worked out explicitly and the
equation takes the form Two kinds of distribution variables for a second— - -l

neighbor pair are written as Z 5,,~4j  (which Is within the
1 i._L0 . vth plane) and 

~~~~~~~~ 
which connects of the i’th plane( 

~~~

-

, 

— ÷ 
~~~~ ‘4U11

1— ~ 1 \ (
~ + ~~~~~ + 

~~10 (~ — — 2z~jJJ and nu on the (v + 1~ h plane. Together with ic, u. , and t
(3. 22) we also use v and y defined In Table I,

It may be commented that In the disordered phase 
~~ 

in Since we use u ’s as the Independent variables, the
(3. 19) vanishes and we do not need the m inor Iteration energy of the system in (2.4) 18 rewritten In terms of
of (3. 18). when we solve the disordered phase In Sec. ic’s as
111.2 and evaluate Eq. (3. 22), we do arrive at thesee- ,, .‘a-i

ond-order trans ition point 7’,,, qualitatively confirming E = 2i. ~~~ ~~~ ~~~~‘(‘~~.,gJ6 ,  + ‘(‘s” u ssi  + ~~~ 
‘(.c.. .4rn1 ]the prev ious conclusions of the pair approximation. ‘~ 4,1.6. 4 1 -s ~~i I’.i

The results are discussed in Sec. IV. 3. (4.4)

where ~~~ the energy per tetrahedron, is the same as •IV. TETRAHEDRON TREATMENT OF BOUNDARY the expressIon (3.4) for the bulk phase. The multlpli-
FREE ENERG Y USING THE SUM METHO D cative factor ,s In (4.4) is the number of lattice poInts
1. Free energy and its minimizati on within a plane parallel to the boundary; it should not be 

- 
I -

confused with the name of a lattice point n on the (~+ 
t )th 1:

We are now in a position to continue from Sec. II and plane in Fig. 1.
extend the pair treatment of the boundary sum into the
tetrahedron treatment. From Fig. 1, we see that there The I) expression for thIs case is derived by modify-
are three kinds of tetrahedra in an Inhomogeneous 5ys_ ing (3 In (3. 2). For example , the 12 trIangles appearing
tern: one poInting towards the lef t (t—~--k—i), one point, in (3.2) ar e not all the same’ In the present case. By
ing towards the right (i—f—I—rn), and a third one (i—~ — counting the frequencies of occurrence, we make the
i—in ) . We write the distribut ion variables correspond- following replacement :
ing to these three as W &3,,4161. u’5,,,,,,~ , and 44’C s,f,, ON ’ re-
spectively , where s and 

~ 
indicate the position as seen

in Fig. 1. CX the tour subscripts such as ,,kl , the fIrst
two and the last two connect the second-neighbor lattice ~~~~~~~~~~~~~~~~~ . (4. 5)
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Applying sImilar replacements to other factors , we ar- s5,,,,.~411 Eu4°,,~415, ~~~~~~ ~~L( , . -L) ,6u J  — aL (,.. l) . 6 I 41  ,

0’ J~ [{u,, ,41,}~ {u1~, g,s},,{up,...,,., },,{uaM,i,s}~ 
S,5,~,111 IN exp( a~ ~~~~ 

+ aR U , J ~JlN or ,.
X ~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~ i, ~~~~ t.i ~~~~‘~Itv.J1S~ 

exp( a50, 1.1 — a5~,,11j ,
Ix {Z~ ,.,gj } , {Z~~,..,,,}. ~~~~~~~~ {y5,.,4 ,}{ y~i.,~~},uJ”

(4. 6 S5~ ~~~~~ ~~~~~~~~~~~~~ exP( aLM ,4 ,IN + a~, ~, I IN,, ~~R$. INII
NThe free energy of the entire system can be derived

using (4.4), (4. 6), and S = kl n O as in (3.1). We will SLc$ ,4N_ IN
~~~w~°~,I,,I ,., exp[aL$.,,,.,,_ 

‘~Ru,lo’4 — a50.4041 ,
skip writing the free energy expression to save space,
and go directly to the relations obtained by mInimizing

SLLO..j) .4,,,., ~~~~~~~~ 4.1*4,, exp( aa .=~ 
,,,,,,, — athe free energy wIth respect to w ,,,4164, ~~~~~~~ and I

(4. 11)IVC . . IJuIIN :
* 

Then we can write the first equation in (4. 3) as— (0)W&,,.4M4 “ WL,,,l,bg exp $A L,, + a11,,41, — aL (M_ 1,.S,, 9— aL(,~.l) .Ifll u5,,,411 = exp(~~x~,,, + aaV .Ul )SBL,,,lJ,

Wa,..4,4,, = 5’5N~IjINl 
exp(~$7~a,. + 

~~~~~~ 
+ a5,,3 ’1 — a,N.(,S], = P $)4~ .. — aSV.I,,)S,3RV U. • (4. 12)

wC,.,u.,. _ w c$,I, ,u,, P EI c,.÷ a i.,.,l._ ÷a LM.,,.,,, . 
~~5 , ,1_4 

In treating this set of equat ions, we can follow Weeks
and Glimer ’s idea1 and eliminate x ’s by forming ratios,

— , (4. 7) as was done In Sec. II. Further we note that , since the
where w’s satisfy the normalization relat ions, one of the eight

equations (since each of i, j ,  and 1 takes two values 1
and 2) in (4. 12) is redundant. This redundancy also oc-

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
)..L/4 curs In the rest of the equations in (4. 3). Thus, we

C(,.—t),hI can choose without loss of generality, for example,
~

a51,, Z aRu.322 -.a LM 232 =0 . (4 . 13)
= exp(— 

~~~~~~~~~~~~~~~~~~~~~~~~~ By forming ratios from (4. 12) and us ing (4. 13), wex (x ,.,4 x,,.,x,,,,x,,,,i. _ )l/24 (zs , , u ,zc,.,,. obtain the follow ing set of equations to determine the
x 

~YBV .I I YI V . , I YC I N . 4 I I I YCM . I J
11 

I 
as:

= exp(— Dcl,,,. )~~R,,.f,,luR ~ 4,,4U~ ~~4,,~ UL ~~~~~~~~ 
aa~.i,u = 

~ 
1fl

~~sR,..(1,~~~Lv .2 /Saav.usSs~~. ui~~’

~~~~~~~~~~~~~~~ 
)u/*4~~ ~~~~

,juIS aR~~ ,,,4 in(SRc,.,u,,4SRR,..~~~ /SRcM u~SR~~,..,~~u ) ,P.1 IN Cs.t,,

x (y~11,,~~y,0,•1,• ,,,~,y~ 1,,4 ,,y00,,,,) i/I 
• (4.8) aL,..l,,. = ~ ~n(S,1~ (I , *1) .4NIN SLC M, 32V’Sj, L (I,.1) .SSZSLC,..j, , _ )

(4. 14)It can be seen that the three W ’°”5 in (4. 8) reduce to
44) 404 for the bulk phase in (3. 3b) when the system ~ 

From (4.11), we see that SilL,..4,, and SaRI.,4 ,, are in-
variant under the exchange of i andj, and thus a81,,41, inhomogeneous. 
(4. 14) retains this symmet ry. Because of this sym-

The Lagrange multIpliers x~1,, x a,,, and X C, .  In (4. 7) metry In a~,,,4j, , when the Input w’s satisfy the sym-
take care of the normalizations: metry properties in (4. 1), the symmetry is guaranteed

to be inherited by the outpu t ic’s.
~~~ WL,,.4,* , ~~~~~~~ W~ ,,.j,, j,, = 1
• . .4 4.1,l. m 4.5. .IN 

~~~~~~~~ 
2. The natural iteration computations

We solve the simultaneous equations in Sec. IV. 1 us-
• Similar to (2. 11) and (2. 14) for pair treatment, In the Ing the Natural Iteration method, As was mentionedpresent case the free energy of the entire system In. following (2. 20) in Sec. II , the iterations are dividedcluding the boundary Is written as the sum into the major and the minor ones. A major iteration

~

° ‘
~k-~ 

starts with the input data set {u 51,, u,,,,., Up,., u51,, u~ ,.} and
~~ Li.~ ’~~~~ x 51,+ 

~~~~
A cU • (4. 10) {a5,, ~~~~~ aU .  We calculate {wL~

?, w~~>,w~o~} from I -
‘I 

(4. 8). Then we do the minor Iterat ions to satisfy the
When we compare thIs equation to (3.6) for the bulk , we subsidiary conditions (4. 14). After the minor Item-
see that each xe.,,, x 51,, and x01, reduces to x/3 when the tions converge , the output is written as {&~,,, &R , , I  &L $}.
boundary is removed. That is the reason why the f l x~,, We use these together with the w 40 1’s in (4. 8), which
term in (4. 7) is divided by 2 In contrast to the factor have already been calculated, in (4. 7) to deriv e the out-
~

- in (3. 3a). put set {‘~>Li” ‘h., s~cU} together with the set {)
~LP, ) .5v~

~c }. The output ,2)’s lead to the next input set {~~ ,,,...,The Lagrange mult ipliers a’s in (4. 7) are determined 
~~,.} thus closing one major iteration cycle.

by the three continuity relations in (4. 3). Ii is conve-
nient to define In Cahn—Kikuchi’s work3’4 it was discovered that two

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  J
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cases should be distinguished ; one is the interstitial- 340 - -r - ‘ -‘—-i

is between two parallel planes, and the other is the I
center (IC ) boundary in which the center of the boundary

41 1 I P U T  OFatomic-center (AC ) boundary in wh i ch the cent er of ~he
boundary is on llnC of the parallel planes. V~c did cal-
culations fo r these two cases. En the IC case we took
th e n u m b e r  of par allel planes i -

. 20 (the center being 
between e 10 and 11) , and in th e AC case we took p,

~
,, .3 35

19 (the ct ’uter  at ~
- 10).

In both cases the init ial  condit ion for the i t eration
was chosen such that the left —ha nd side 11! lb ,  boundary

Ik1RAPQ1A T 4D’~A L u t  EiJ 4 181 •ce nter is i i i  the bulk I phase and the right— hanu S III & ’ in
the bulk U phase . When 5(7 111, ’ c a r i a l i l t ’ is r ight at the

~~

center , oc u~ ,’d the averaged value ht-111 e, -n the t W O  bulk
pha se v .i Iue~ . The in i t ia l  values of a ’s are chosen as
.‘ ( - r  all  thr ~ugli the S V S I ( l l l . 0  200 300

In cares’ tug I f l i  this i t t ’ r, it  I Ca leul at ion . severa l  MAJOR I T  F R A T I O N S  n
comments are in orde r. 1’bu-~e ~

- i ’n imen t s  a r t ’ important E ’IG . 4 . Ttit ’ t’ t’~~~i~ I t e e  ts ’l’ t .\ 511,1 tI le e\T T11 1 1l la t t’ii I

wh en a sy stem is as large as the pr( ’sent one , in which 4 I ( I I ~ 14 1 ~I ,- I I - I l : t I i ’ I 1i~~Ing I l l , ’ ~,l nit’Ihod ,
the tota l number of independent ~ and a ’s is about 700. 

‘ 

-

(Ac tua l ly a system much larger than the present one has directly as the input i i  the next minor i terat ion ~~c lt ’ .
been successfully calculated by Sanchez at UCLA 18 using W e  use the : Iv cr ac .e as the next input :
the Natu ral Iteratio n technique . ) The fi rst comment
concerns the m i n o r  iteration procedure . Equation (4 .14) a,,,, ~~ = ~~~~ + ~~~,,tp . j t  ) . (4. 15)
cor responds to th~ minor iteration equation (2. 18) in the This brings the next  input (‘loser to the previous input
pair case and to Eq. (2 .20a ) in Ref. 6. I n See . U, Eqs. than using &,,,,.~ , and it works. Depending on the cir-
(2. l7)— (2. 19) w i r ~ and converge nice l  without trouble. cumstances , we can conceive of many modifications of
In the present case , however , when we start from the the ocheme in (4. 15). In the work reported in this pa-
initi al set a~~0, the outpu t & of the iterations from per , the number of minor iterations at each major ttcr-
(4. 14) diverges . This was not completeLy unexpected ati on step was about 60.
because the convergence of the minor  i teration is not
guaranteed , although the convergence of the maj or h era- The flext inWortant consideration we can make use of
tion can be analytically proved as In Sec. II. I n the is the extrapolation of the major iteration steps. For
present case the convergence was achieved by the follow— the measure of convergence of the major iteration we

used the following quantity:ing trick . Inst ead of using the output & fro m (4. 14)
(n-I ) (n) I

= 
~~~~ ~~~ U t4’ L~ , 4154 —

____________ ______________ 
4.1,5 . 4 w o r i

10~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 —

+ ( wR.,,4154 — 
~

‘Rn ’, (154 M C . ,(154 U’c,.,,(g,,I( I(n—il 4,,) I + ~ (,,— l (,, )

(4. 16)

- P4 ’S in (4. 16) , but it is adequate for our present pur-
poses. This test value ~~~“‘ decreases logarithmically
as illustrated in FIg. 3 for i~T t = 3 . 0, and w e can prove
that ~~~‘° is linear in the semilog scale for large num-

~4nl 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ D~ ferent from (3. 8), we did not take the logarithms of

ber ii of the major iteration.

- 

value ~~~ exponentially as is seen in an example oftO_ a 
In the same sense, c also approaches the converged

- kT/ e 3.0 in Fig. 4. Using this property , we can ex-
trapolate ~ starting with the assumptIon

(4.17)

where ~~~ is the value of the boundary excess free en-
- ergy at the uth major iteration. It is a simple matter

to derive

- o(*l = ~~~~ — ~~~~~~~~~~ (.~ ,, o ~~~~ — ~~ (*7)
0 100 200 300

whereMAJOR lie RAT I ONS . n
FIG . 3. The test measu re .~~~~ in (4. 16) , 1 ( t hC  ~ l ca lculat ion of ,~ _ 17 1~ ) , ,04n-~s) — o ~~~ . (4. 18)
the bce ~l t O ~ bou nda ry sun , method plotted sgain st the maJor
ite rat Ion in a sen lliog scale . The extrapolated value a~~ is a fu nct ion of H and m since

.1. Chem. Phy~., Vol . 56. No. 9, 15 Apri l 19??



.
~~~~~~~~~~~~~~ ----= ——~~~~~~~~~~~~ - -  

_ _ _ _ _ _ _ _ _ _ _

3360 Ryoichi Kikuch i :  Structure of phase boundaries

the exponential decay relation (4. 17) does not hold ex- - I I

actly unless n is very large. As we see in Fig. 3, j (.t ) 4

Is st ill slight ly curved in the semilog plot at n = 300.
The extrapolated value a i” is also plotted in Fig. 4 as
a function of n. It is almost flat . This plot is based
on the choice of m = 5, but other values (~n 10 and 20)
give practically the same extrapolated value for o ”~. 3 - -

The same extrapolation idea was used in the estimate
of the profile. Figure 5 shows how x~,1 for e 11 and 12
are extrapolated using the same scheme as (4. 18).

Actuall y, a much more desirable scheme is to ex- ~~
. 

2 -

t rapolate the entire set {w~,,, I 153 ’ ~ R~ , ( i3~n~ ~~ 
to

TI— ~ starting from a finite iteration step n using a for-
muia similar  to (4. 18). Such an extrapolation has oeen P A I R S  - P
tr ied and found successful in other applica tions of the
Natu ral Iteration method , but fo r no apparent reason
ha s not vet been appli ed to the present problem. 1 - 

TRH SUM ..~~ PA I R  SUM

3. Comparison of results °AC - °lC ,,
T R H S— P  \

Figure 6 compares the results of the excess free en- ~~~~~~~ .
~~~~

ergy a of this paper and previous ones. 3
~

1 Of t he four 
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I ‘ I
curves of a , the upper one indicated as PAIR S. - P. is o 2 4 6 8
the result of the scalar-product formula using the pair
approximation in Ref. 17. It has the second-order phase FIG. 6 . TIie boundary excess free energy r for the bce (110)
trans ition at 7’, of Table II , as shown by a cross in boundary calculated by four d i f fe rent  methods . See the text .
Fig. 6.

The broken curve named PAIR SUM is the result of Ic boundary and is lower than the AC value. The dther-
Sec. II of this paper and is the same as the result shown ence of the two boundaries, aAC.IC , is p lotted at the bot-
in the curve (2), Fig. 9 of Ref . 3. This curv e is for the tom of Fig. 6 in a broken curve,

The solid curve marked TRH S. -P. is the result of the
0.24 1 I I I scalar-product method in Secs. III. 2 and III. 3 of the

present paper. The second-order phase transition point
- 

EXTRAPOLATED - is again indicated by a cross at the value of 7; of Ta-
VALUE .• 

ble ll.
0.22 - ....•.•• -

The dot—dash curve which is the lowest and marked
- _ 5,,,,~ a 

- 
TEll SUM is the result of the method in Sec. IV of this
paper , calculated for the IC boundary. The AC case

- 
was also calculated and the difference 

~AC~~~IC is again
plotted by a dot—dash curve at the bottom.

- 
/

7/~ - The firs t general conclusion we can derive from the
VALUE AT THE 0th comparison of these four curves in Fig. 6 is that they

0.18 - ,p’ MAJOR I T E R A T I O N  - agree well qualitatively and thus guarantee that our
/ methods are sound. The second conclusion we derive

- / - is that the sum method of Secs. II and IV gives lower a
values than the corresponding approximation of the

I I scalar-product results , in Ref. 17 and Sec. IV. The
0.04 intrinsic reason for this is not known at this writ ing.

EXTRAPOLATED
- •., VALUE 

• • TABLE II. Transition point data. The value with an asterisk

N 002 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ was previously reported In Table I of Ref. 13.

- 
Curie point Transition
in the bulk point in c  a(a2

~~~~- e
Method kT,. C 8T ,- € at T,

0.0 I
0 100 200 Pair , Ref. 17 6 . 9521 2.8854 3. 5992

MAJOR ITERATIONS . ‘~ Tetrahedron .
FI G. 5. The plu. spin density at p = 1I  and 12 planes and their this paper 6. 4907* 2. 4918 3. 7267
extrapolated values.
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1 .0 T I I I I I I

CURVES ARE FOR (

‘
i t

kT / s • 2 . 0 , 3.0, 4.0, / ~I -08 -- ANO 5.0
(‘4

K 
/ -

~~~~~~~~~~

- U.
0 2 -  -0 -I- - 

TETRAHEDR ON PAIR
S UI
w - , — B Y  TETRAHEDRON - S
0 / I

0.2 - .‘ ‘ — - — — — 8Y PAIR - II—,
I

— I ,
______ _ _ .7’ I’ -

/,

0.0 • I I I I I
6 8 ID 12 14 16 I

LATTICE PLANES ‘ ACROSS THE BOUNDARY 0 I 2 3 4 5
kT/€FIG. 7. ProfIles of spin density for the bec ( l it ) ) boundary

calculated by the pair method (dotted cur v e) and by the tetra - FIG. 8. Thickness I. of the boundary defined by (4. 19) for the
hedron method (solid curve) . bce (110 ) boundary calculated by the two methods.

The profiles of the IC boundaries are plotted In Fig. dependent analysis of the boundary motion still remains
7. They are for temperatures kT/ c : 2.0 , 3.0, 4.0, a hopeful method of clarifying the nature of T~.
and 5.0 from the sharpest to the most gradual in this
order. The solid curves are the results of the tetra-
hedron treatment of Sec. IV and the dot curves of the 4. Summary
pair treatment of Sec. II. The former is always more The present paper shows that the iterative calculation
gradual tha n the latter for the same temperature, proposed by Weeks and Gllmer t can be interpreted as a

For the rough measure of the “thickness” L of the modified form of the NI calculation of the cluster-varla-
boundary layer , we use the definition used by Weeks and tlon method the author had proposed earlier. The rein•
Glimer ’ in theIr Eq. (38): terpretat ion of WG ’s method in the light of the NI tech-

nique makes It possible to extend their idea and to cal-
L (1 — 2 (111 )/( 1 — 2x~.11,, ) . (4. 19) culate boundary structures using larger clusters and

Note that the center of the boundary is between v = 10 and improved calculations. This is demonstrated in the
11. The quantity x~W,1 Is the bulk value. This “thick- present paper using the tetrahedron approximation for
ness” L Is plotted in Fig. 8. ReflectIng the fact that the the bce (110) boundary . The paper also shows how a
tetrahedron boundary is less sharp than the pair bound- tetrahedron can be used in calculating the excess bound.
ary , the L value for the former is larger than the latter. ary free energy of the bcc boundary using the scalar-

product expressIon. 11. IS The existence of the phase
The nature of the phase transitions within the bound- transition within a phase boundary ” is supported by the

ary , marked by crosses in Fig. 6, is one of the prime calculatIon In the present paper.
interests of Weeks—Gt lmer ’s paper ’ and of the present
work as well. In Ref . 17 it was suggested that the un-
stable disordered phase below 7’,, corresponds to the AC Work supported by the L I . S. Army Researc h Office,
boundary and the stable ordered phase to the IC bound- ‘J. p. Weeks and (I II.  Gllnw ’ r , .1. Chem , I ’hys. 63 , 3136
ary. The ~~~~~~ plotted in Fig. 6 Indicates that this (1975) .
identification almost holds but is not exact because the 

‘It flethe , Proc . Roy . Soc . Al SO , 552 (1935).
s it . Kikuchi and .1 . ~V, C alm , .1. I’hys. Chen , , Solids 23. 137tall of 0 AC~~

01C extends into the temperature above 7’,, (191 °)
However , the prediction (C) in Sec. IV of Ref. 17 that ‘.1. w. cairn and it, Ki ku eh i . J .  I’hys. Chem. SoIId~ 27 , I I I I :

~~~~~~ 
becomes smaller as the approximation Im-

proves and would vanish in the limit of the exact treat- 11. Kikuchi , J. Chem. t ’hys. 60 , 11171 (1974 ) .
ment is supported without doubt by comparison of the it . Klkuchi , 1 . Che n,. Phys. 65, 4545 (197(i).

two 0AC~~
0Ic curves In Fig. 6. ~~ KIk lIChl , .I . ‘hvIn .  I ’hys . 57 , 753 ( 1972).

a ll, Nl k ue h i , I ’ I I V $  - 11ev. 81. 958 (19511.
The curves for “thickness ” 1. we re studied by Weeks ~ii , Kikuc hl  and S. ~~. l I r u s h . J. Chen, . Phys. 47 , I ( I ~ (1967)

and Gllmer 1 to obtain a clue for the nature of the transi— tT j  W . Gibb s . “ l” I e l I I o n I a r y  Pr inc iples In Stat is t ical  Physics , ”
lion poi nt 7’,. The two curves in Fig. 8 do not give any— In Th( ’ ( ‘g l j J ( ’( ’l t’,i W, ,-k ’~ ‘1 .1. W, Gibbs  O’ale I’ n lve r s i l ’, ,

thing def inite to answer the question. N ow tInvt ’n , C l ’ . 1il~,7) , Vol . 2 , Chap . 11.
“ 11 . Sa lo and H, Klkucht , Al l ’ Conference Proceedings. No . 1~ ,

As was Commented in Sec . IV(E) of Ref. 17, t Ime— p. 605 ( 1974) .
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The scalar -product expression of boundary free energy for
long-range interacting system V~

Ryoichi Kikuchi
Hughes Research Laboratories. Malibu, Californ ia 90265
(Received 5 July 1977)

The scalar-produci formula of the excess free energy o~ of a boundary between two phases (based on the
lattice model) is proved for the case of interaction potential of the range longer than the nearest neighbor.
The formula is exp ( —~4o~/ k T ) = I [ p ~’1(v 1, v “k)  p (f l ) (v 1. y2...., V5 ) ] h12 exp(a °kv 1, v2,...,v5) —
a

lii)(y i,v;,.,.. ys)J. where A is the sectiona l area parallel to the boundary, v, is a configura tion of an ith
plane parallel to the boundary, p ~~~~~~~~~~~~~~~ is th e probability that k consecutive planes in the bulk I
phase take configurations i’ v5,  and the summation goes over all configurations v v5.  The
variable a~

1(L’ 1. v2 l,
~ ) is a Lagrange multiplier to guarantee continuity of p ID.

114p ~~~~~~~~~ = 15p °‘ v , v v1, s). The expression is checked by two examples. The o~ for
the two-dimensional lsing model is calculated using a 3 x 2 cluster (i.e.. a double square cluster made of
six lattice points) with the “3”-side perpendicular to the boundary, and is compared with the previous a’calculated with a 2 x 3 cluster (with the “3”-side parallel to the boundary). The calculated o~s agree well
when the a terms are included. As a second example , surface tension o~ of a liquid of a two-dimensional
lattice gas—liquid model (in which the first, second, and third neighbor pairs are excluded, and the
fourth and fifth neighbor pairs attract) is calculated . It is then compared with a’ calculated by a sum
method (which calculates the equilibrium state of & sandwich system made of the gas and the liquid phases
with the boundary between them). The agreement between the two calculations supports the correctness of
the proposed a’ expression.

I. INTRODUCTION helped solve6~
7 the puzzle in the square gradient theory8

of the boundary structure, and was also useful in pre-The purpose of this paper is to report how the scalar-
— product formula of the bou ndary free energy can be ex- dict lng the existence of a phase transition within a

boundary. ° In spite of these successes, problems re-tended to cases of interactions of longer range than the
main with regard to the SF formula. We consider thesenearest-neighbor distance.
problems in this paper.

The following formula of the boundary excess free en- When Clayton and Wocdburyt proposed the SF formulaergy a’ per unit area was first proposed by Clayton and
Woodbury’: (1.1), the proof was not as complete as had been hoped

for. Further study by the author 6”° has supplemented
e~

’4
~ =~~~[p~~

) (v)p (11) (v)J 1/2 , (1.1) the proof , but it still needs improvement . Another ,
somewhat related, problem is the case of interaction po-
tentlal of longer range than the nearest-neighbor dis-where A Is the sectional area of the system parallel to
tance. The long-range interaction case was discussedthe boundary, and ~ = 1/kr. When we consider a crys-
in Ref. 6, Sec. V, but the reported expression was intalline plane parallel to the bou ndary (called a parallel

plane, for short), v in (1.1) denotes one of the configu- error.
rations of the parallel plane. The probability that a The corrected proof of the SF expression Is presented
parallel plane takes a configuration v in the bulk phase I in Secs. II and III in the present paper for the general
Is written as p”1(v), and the correspondIng quantIty for case of a long-range interaction. An example of an Ising
the bulk phase H is p~ I) (p )~ When we regard the array model is presented In Sec. IV and another example of a
of pUJ (p)z /l for t.’ = 1, 2, ... as a vector, the expression gas—liquid phase boundary in Sec. V.
(1.1) can be interpreted as a scalar product of the two
bulk-phase vectors ~

‘
J,’° ( V) 115} and {p~~~ (p)h /2}, and thus II. PROOF OF THE SP EXPR ESSION OF BOUN DARY

we may call (1.1) the scalar-product (SP) expression of FREE ENERGY
the boundary free energy.

This section presents the corrected proof of the SF
In the SP formula (1. 1) , p is the configuration of an formula of the boundary free ene~gy for interaction po-

infinitely extend ed parallel plane of lattice points. tentials of longer range than the nearest-neighbor dis-
Therefore, to use (1.1) for numerical computations, it tance. In the proof , we avoid using the inverse of the
is necessary to approximate it using configurations of a transfer matrix P, which was used In the proof reported
finite-sized cluster. This approxLmation3

~
3 was done In Ref. 10.

using the cluster-variation method, and the results were
checked by comparing them with the exact results of In the system being considered, there is one phase
Onsager’ and of Fisher and FerdInand 5 for the two-di- boundary between the left (I) and the right (II) phases.
mensional Ising model. The comparison supports the A lattice plane parallel to the boundary is simply called
correctness of the SP expression. The SF formula a parallel plane. The position of a parallel plane is
___________ designated by i. Each parallel plane contains N lattice

points; a configuration of the plane is designated by a
‘1Supported by lisa U.S. Army Research Office. Greek letter (u, p, ~, or t~) that takes values from 1
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120 Ryoic hi Kik uchi : Boundary free energy

through KN . K being the number of species In the sys- the free energy F in terms of p,(~s, v , f), we use thetern . For simplicity, the formulation in th i s section is cluster-variation (CV)approach t ’ and appl y it to a clusterdone for a system which does not need superiattices . of three consecutive inf in i te ly  long ilnes . The method
is exact (contrar y to a widespread misconcept ion that t lit ’Its demonstrating the iong-raisge Interact ion formul a-  CV method Is always approximate ) since the system istlon, we use the probabil ity funct ion p ,(i~. i- , f). wh ich pseudu-one-dj ntetislorial . The method , whic ’h was cx -encompasses three consecutive parallel planes with the plain ed in Ref . 6, Sees . II and V, leads to the fo l lowi ngith plane at the center . The three-plane formulat ion is expression for the free energy of the entire Inhomog e-sufficient to induce the general case from it . In wr i t ing  rseous system: 

~~~~~~ -- - - -~~~-- --

~~ e(i~, ‘, ~ )p,(j,i , p ,

- kT~~~~~ ~~ £[P ,.i,a (M , v ) I  ‘
~~~ ~~~ EP ,.t ,a(e , ~)1- •~~ ~~‘

kT~~ ~~ 
{O,_~,~t:M, v) — Oi.~ ,~~(t) , i)}p ,(~ , v, E) +~~~~ x~~1 — ~~~p, l M, v, .

The notation differs slightly from that used in Ref. 6. It is important to note from (2 . 7) thatIn the first term , (M , p , I) is the energy per three-plane
reglon~ the £ operator is defined as 

~~~~~ 
h, . 115 (j.t , Lf r ) g , , 1 1 5 (~~, j~ I . (2.9 )

(2.2)
in which the normalization of p~.111(~.s, t ’) is used. Byand 

~~~~~~ i’) is the probability that the U — 1)th and the using the definitions of ~ and J , In (2.7) and subst i tu t ingith planes take configurations ~ and v, respectively. (2.8) Into the continuity relations in (2. 3) , the followingThe Lagrange multiplier a’s are used to satisfy the con- two relations can be derived:
tinuity requirements:

g,. a,z (~~, v) exp($A,)~~~r(~ . v, f)g1,111(i , ~) , (2 .10a)
P,—t ,a (M, v) = Ep,_1(

~, p, i’ ) = ~~ p,(jt , v, ~~) . (2.3) 1
I

The sign of a In this section is reversed from that of h,,115(e , f )  exp(~A , )~~ r( ~~, & , f ) h ,..1 11(~~, v)  . (2. lOb)
Refa . 3 and 6. The last terms in (2. 1) are for the nor-
malization of p, for every j, So far the transformations are simi l a r  to those in pre-

vious papers, i~ Now we formulate  the new proof of the
~~ p,(~ , v, ~

) 1 , (2.4) SP expression . We choose any two integers i and ) witha .,.,, the requirement
and A 1 are the Lagrange multipliers. 

. (2.11 )
Minimizing F In (2.1) with respect to p ,(M , ~‘, ~

) yields We first sum the following expression over ~ and use
P,(g~, 

v, V = exp[$A , ~~~~ 
(2. b a); we then sum over ~t and use (2. lob) to derive

x [p ,_ ,  ,s (M, v)p,, 119 (v , ~ )1l ~ h,..1 ,5 (~z , v)F(~, v, ~)g,.5 ,~~(“ , ~
)

x exp(a,..111(p, v)— a,.111(P, ~)J . (2. 5)

When P is a minimum , we can derive ~~ h, 115(~t . v) [ ex p ( —  $A,)g,..118(~~, v )j

F = F_ E  
~~ , (2.6) =~~~~~ [exp(_ $x ,)h ,,119( v ,~~)Ig, .115(i.,~~) . (2. 12 )

which shows that A 1 can be Interpreted as the local free When i =j, use of (2. 9) in the sums reduces (2. 12) toenergy. For further transformations it is convenient exp(— NA ,). In genera!, we can rewrite (2. 12) and de-to introduce rlve a general recurrence relation for shifting U,)) Into
g,.1~9(i’, ~)~ [p,,i ,a(t’, ~)P” exp(— a,4 19(v , t)] . (i+l , )+ 1).

h,..~,,(M, P ). [p ,_ 1 15(~~, v))113 ezp(a,s,5(u, v)J , (2.7) 
~~~~ 

h,_ 111(j,t , v )g,_ 115(~.s, ii)

p, ~)a ezp( $ (M , v, ~)]
and write (2. 5) as = ezp(— $A~ + $A,) ~~~~~~~ ,aUA , ~)g,.5 ,~~($4 , ii)

p,U~, v, V = ezp(
~A ,)h,j,9(M, ~‘) We start with = — ,n and J ,n + 1, and operate the re-

xr (u ,  p, ~)g,.115(v, ~) . (2.8) currence relation (2.13) M(> 2ni) times to obta in
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~~ ~~~~~~~ v)g,,,t,aUz, v)
U &‘

exp~— 8(A.., +A ..,,,.,t + . . .  * A_ )+ ~(A.,,,.,, +A .,l.~.t,N + ‘
~~~ ‘ + A,,,.,)) ~~~E h......s..i,a (M, P)g~, .1/,(J,L , I’) . (2.14)

a ,.

Note that A ,,,,~ + . . .  + ~~~~~ cancels between the — $( ) and the +~ ( ) sums. SInce M in (2 .14) can be arbitrarily
large , we let it become infinite. Then h..,,,,5..~12 and g ,~ .212 can be replaced by the values for the bulk lb phase so
that

lim 
~~~~~~~~~~~~~~~~ ~)gm .s.i~a(M , p) = 

~~~~ 
h””(M, v)g’’~(u, i’)= 1 , (2.15)a a a p

where we have used the normalization (2. 9).

We choose that the geomet ry of the sum In (2. 14) is such that the boundary lies between — ~ii and + m when the nz It
made large. In the limit of ~n — ~~, the A-sum part leads to

.

~~— $ l i m E (A , — A ’ °1)s — Ma , (2.16)m~ •~~~

where A~ > is the bulk value and a’ is defined as the boundary excess free energy per unit area. In the limit as m ~~~comes very large, h_1,.112 and g11=115 in (2. 14) approach the h< ” and gumn functions for the respective bulk phases.
Therefore, we obtain fro m (2.14) for the limit of nm —

e~~ ~~~ 
h”(~.u, v)g~

Z)(~ , v) . (2.17)
U I’

Writing this explicitly using (2. 7), we obtain

~~~ EE[pht ) ( , .u, ~)p 6” (i.~, v)~ 
2 exp[a”~(~.u , v ) — attfl (,i, v)I , (2.18)a a

where the superscripts I and II indicate the two phases.
The proof In this section can easiiy be generalized to the case where the probability fun ctions p(A 1, A5, . . . ,of k+ 1 parallel planes are used in formulating the free energy. Then (2.18) is generalized to

I.

e”5”~ =~~~ E ~ [p (V (p1, t’~, . . . , v5)p”1(v1, v8, . . . , v~))1~~ expla”>(v 1, v~ . .. , v5) — a(mn (v1, ti8, . . . , Li ,)~ ,

(2.19)

F

in which the a’s are the Lagrange multipliers introduced The proof of the SP expression in Sec. V of Ref. 6 for
in the bulk phase to satisfy the long-range interaction case, which incorrectly

omitted the a factor, is to be replaced by the correct
E ~~~~~~~ ~~~ P1 1. . .  , v~) proof in the present section.

~~~~~~~~~~ ,1~~, ~) , (2. 20) III. APPLICATION OF THE FINITE-SIZE CLUSTER
APPROXIMATION

and can be shown to obey the ant isymmetry relation
In the general SF expression (2. 19), v1 represents one

i’~) = — cxW(v8, . . .  , ti5, ti1) . (2. 21) of the K” configurations of a parallel plane (as was
mentioned in Sec. II), and the number K” is practicallyWhen the I and II phases are identical, the normalization 
infinite as far as the computer calculation is concerned .a of p makes a In (2 .19) vanIsh , as expected. 
Therefore, to make use of (2.19) in calculating a, it isThere is one remaining puzzle in the proof of this sec- necessary to Introduce a certain scheme which reduces

* 
tion. We required the condition i~ j  In writtng (2. 12). (2. 19) into a tractable form. The case of the one-planeThe choice I = — m and j  = m + 1 in (2 . 14) satisfies this probability function PU’) was done In Refs. 2, 3, and 10condition. However, the equalities In (2.12) and hence In using the finite-size cluster (FSC) approximation of the(2.13) seem to hold even when t ’j .  IC we allow I’) in cluster-variation (CV) technique.
(2.13) and use it M times starting with the values i— rn +1

Itt the general case of (2.19), however, the reductionand j  = — rn, this procedure is equivalent to reversing the scheme due to the FSC method faces a still-unsolvedsigns in front of the A’s in (2 . 13) and (2.14). The sign
reversal results In the expression ezp (+ Ma’) on the problem of reducing a~°(v 1, v8, . .. , v~ ) into a tractable

form. How to handle the a’s is studied in this section byleft-hand side of (2 .17); this obviously Is the wrong re-
sult . The int erpretation of the wrong result and the rea~- 

examInIng the homogeneous phase version of (2. 5) as an
eon why we need the condition isj in (2.11) are discussed example,
in the Appendix . To avoid cumbersome notation for a large-size three-
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122 Ryoichi Kikuchi: Boundary free energy

— — — - phase does not depend on the direction in which the basic
cluster is placed. The letter I in Table 1(c) stand s for

— — - — ~~~~~~~~~~ 
— the ith species (for example 1= 1 for a plus spin and I 2

for a minus spin) .

— — — — — — The purpose of this section “.u to study the meaning
0 of a In (3.1) . To do this , we look into the “superposi-
u tion” expressions in the bulk phase. When a DS is used

N 
— — —‘ — in the CV method, the free energy minimization leads

to the following expression [which was derived in (3. 13)

i ~~~~~~~~~~~~~~~~~~~~ ble 11 in Ref. 3. This is not surprising since the bulk

0 of Ref. 31:
A 

~~~~~~~ = 
~~~~~~ 

exp(A0$ + ~~~ + ~~~ + ‘~4J~, + ,~ , ) ,
R (3.2a)

— — —‘f- — — — — A C E where

( 
U) (ft (1) (i )) 1/ a

— —+ — — — B o F w~~,~~ = exp(— ~~~~~~ 
VlJ

i
v

m ; r 1 1 4  . (3.2b)

The notations are slightly different from those in Ref .
— — — — — — 3. The superscript Q) indicates the bulk phase (I);

~~~~~ Is the energy per DS; and exp(A~$) is the normal-
FIG. 1. A 2 X 3  and a 3 x 2  squares used In the formulation . Ization factor , where A0 has the meaning of the free en-

ergy per lattice point [in contrast to (3.1), in which A~
11

is the free energy per N lattice points in one long line] .dimensional cluster , we present the discussion in this
sectIon based on a two-dimensional system. The paral-
lel plane we considered in the previous section now be- TABLE I. The double—square cluster.comes a parallel irne. _________________________________________

In the homogeneous phase I , we can write (2. 5) as (a) THE DOUBLE SQUARE
ii , ~~) = exp[$A’” — 

~~(M, I’ ~)] CLUSTER 1 1” ‘1
x[p1”(M, v)p”~U’, ~)1~’~ 

A — B—C ’- D— E— F 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
-

x exp[a t” (M , v)+ ~~~~ ii)]  , (3.1)
1W THE 12 DS FACTOR

where ~u, v, or ~ represents one of K” possible config-
uratlons of a parallel line made of N lattice points , and A—C

v, ~
) is the probabIlity that the three-line cluster I I A C — E

takes the configu ration specifIed by Ut , ii, ~
) In the bulk 

- 
B D

phase I. We have used in wrItIng (3. 1) thn antisymme- - 

A—C —E
try relation a’”(v , ~

) = _  a°~(~, ii), which i sa  special I I I A — C
case of (2. 21). B—D—F

In the actual computation of a, we use an FSC. Our
program Is to rewrite p”t (M , i’, ~

) of (3.1) In terms of (ci DEFINITION OF PROBABILITY VARIA BLES
quantities of FSC and examine the a part of It. As an

SPIN CONFIGURATION OFexample, we take a two-dimensional square net for the
system and a double square (DS), Illustrat ed in the low- A— C— E  PROBABILITY
er part of Fig. 1, as the FSC. The system does not in- I I I VARIABLES

d ude sublattices, but is otherwIse general; It can be B — D — F
regarded as an Islng model system, a disordered phase -____________________ _____________

of an alloy, or a lattIce model of a gas—liquid system I — li—rn
(the latter will be treated In the next section). 

I I I W
~IkImfl

In Ref . 3, we used the upper cluster of Fig. 1, and
used the simpler a’ formula (1.1). To distinguish the
two directions of the clusters in Fig. 1, we will call the I—li
upper one a 2 x 3  or a DS(II ) and the lower one a 3x2 or I I ~,j kI
a D8(.L). Although the two cases look similar, the lower I~~~~ l
one needs the a’s, which are of concern In the present
paper. l—k—rn Zikm

The variables we use in treating the bulk homoge-
neous phase, U) or (II), using the DS(1) are listed In Ta- l k  ~‘ik
ble I. This table happens to be exactly the same as Ta- —
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Our aim Is to w r I t e  ~~~~ (o.  i -  ~) of (3. 1 using 14 Il) 
~f use the var iables listed l i i  Tabl e I , but th i s  t i me  w1 (hou t

(3. 2) and then to tind the quantity corresponding to the supers~’r(pt (1). In other words , when we look .iI mv
a ’0(M , i l  a ’’’U, i’) of (3 . 1). 3’ 2 cl uster port ion of the three—line  configuration

() , the probability of finding the co,dtguz’atlon ,—  r—In (3. 2a) , a and ~ are Lagrange multipl ier s , which k—i—ma—n is written as ,i , , , ,_ , . Using this quantity, weare Int r oduced to satisf y th~ continuity relations p”’(u, . ~
) ascan write

(II \ ‘  (0
.~~~ ~~~~~~~ ~ 

It’
~~:(,II 

(3. 3a) (a)
p(l) (p, “. £) II ~~~

~~~~ ‘U~I ** (Ne’1 ,,~...) . (3 6)

for a, and the rotational symmetries where a double asterisk Is a FORTRAN notatio n meaning

•‘I IH “ooi (3. 3b) “raised to the power of” and is used in this paper to( II  (0
avoid subscript s on a superscript. The number (6)

for ~~. The relations in (3. 3a) for a are sImilar to the above the product sign in (3. 6) indicates that th is s a
contInu ity requ irement in (2.3 ) , which Introduces si xfold product over i, j, k, 1, ma . a nd a. In (3.6) the
a,_ 1~~5(M, il. The rotational requirement did not appear factor in the square brackets is the condit ional proba-

• in Sec. II and needs a special discussion at the end of b i l i ty  of f i n d i ng i— k—r n  next to f— i—n when the latter Is
this section. known. The logic of wr it i n g (3. 6) is the same as that

When the syst em is a bulk homogeneous one, a’ antis- presented in Refs. 2 , 3. and 10.
ties the symmetry re lat ions We now go back to (3.2) for the FSC and use it (or

- (I ) (3. 4a) ~~~ In (3. 
6). The result ing express ion can be sirn-

(I)I*N --

pU ffed In several steps. Besides ~~~~~~~~ we use ,“ s and
and s’s as shown in Table I:

( I i  I
K’ l (~ i ,..,, t4’g~~,~ - (3. 4b) t’~j pI I dIp~,,,, .

We can prove that these relatIon s (3. 4) in turn lead to
the following symmetry relations for a and ~: 

~~~, . ~~~~~~~~~~ 
. (3. 7)

I.,. ..(II (U afl’ ~~ (3. 5a)= — . ~ a,,1~ We note the following relat ions:
Vim , ),ai, , . (3. 5b)(I) (I) ( ( I  ( ( I

In Eqs . (3 .21—13. 5), the variables with the superscript ‘1 ~~~ ~~~~~~~~ I

II) are those of the equil ibrium state in the bulk phase I. (3. 8)
Now we use these variables to write ~~~~~ i , ~) in (3.1) . flI~y~~ ~‘~‘) ** (Xtr jg , , , , ) IThe variables ~, i’ . and represent any, In general cx-
cit ed, state of the three consecutive lines In the bulk Using (3.8) and (3. 2) , we can t rans form p°’(~i , I .

phase 1. In designating such an excited state, we again (3. 6) to 

—~~~~~~~~~~~_______

exp (~~ 
(A 0~.3— ~~~~ 11

) .\w , i a .1) ~ri (ti .1.i
0’

u. ”
] •~(xy,, / 2

(II (I)
~ exp(’~~ (am, a~p, ‘i ~~~~~~~~~~ . t~ .

Next we compare (3.9) with (3. 1) . Based on the norm alI zat ion of ii’. we can Id en t i f y

U) (3. I

because A 11
~ is the free energy per .V I a t t i ’ t’ poin ts and X~ Is that per l a t t t t ’t ’ p0(111 . Fs~i- the energy , a e t , i i l  ld , ’II t t t v .

0
(U’ . I’ . Z) (i,u~ ,,.VU1 ipj_ , . 13. II

Similar to (3. 6). we can write
• (4)

I,) (I) (I)). .  (.Vr ,1,,) , 3. II (ml

‘4’
~(x 1  ((Ip111 (t’, ~~) fl 1, ,,_,, v,, 1.. (N,’~,_~) . 13. 12 1 , 1

Because of the defin it ion of ,‘~ ,~~, 
in (3.71. r ,~~, in (3. 12a) can hc replaced by e1 ~~~ a nd the pr xtut ’t in (3. 12 ,.i n be

changed over six indices I. j , k. 1, in, and ii as In (3.9) . Thus we can r ew r i t e  (3. 9) in  a form t’Ii ~~ t ’ I t ’  that of (3 . 1) :

exp($A ”t — skIM. a.’, ill tp ’” (u, v)p01(i’. 1)1’ ‘~

‘
~ exp(~ ~~~~~~~~ + ~~~~~~~~~~ )~~~, XI’ 1~,, 4 ~~ ~~~~~~~ . (3. 1 :(~
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124 Ryoich i Kikuch i : Boundary free energy S

one whI ch Is to be used in c a l cu l a t i n g  exp(— Mel I i O i I i- — —- 

I 

~1 (2.18 ) .
- —— --,- -- . - .  

~~~~~~~~~~~~~~~~ 0) 
~~~~ ~~ O-DlMENSIONAL ISING MODEL

1 1 As we did In our previous publ ications , ~‘ we go back
- . — -~m~ ~~~ to the two-dimens ional Ising model to check if the new a

~ 
I terms in the SP express ion are correct. We use the DS

- - - - - cluster of Sec . ill , and the only  d i f f e ren ce betw een the

I DS as perpendicul ar to the bowidary , as ni t h e  lower
present section and Sec. V of Ref . 3 is that we place the

- part of Fig. 1. rather than the par allel position of Ref.
3 shown in the upper part of Fig. 1.

I The expression for the excess boundary free energy
BOUNDARY a is (2. 18), combined with (3.16) for a ” ’ . Using FSCDIRECTION

notation , we obtain
FIG. 2. A 3 * 3 square used In the lbrmulauon,,

exp(— Na1101a13) ~~1.1141 1

When we compare (3.13) wIth (3. 1), we are tempt ed n1 , ~~(,~~~~
i) ) .

~to ident ify 
~ ,(v 14 ~-J ) . *  (~ .Vv ,, )

1141 -a”’(M , a.’) N ~~ (aj~, v j ~, )~’”’ (3A4) ~ ~~~ 
s-, 

~~ — a J ~ ) i.’a,J . (4. 1)( .1.4.1
This identification , however , cannot be Justified , be- where ~~~ is the excess free energy per unit  length , andcause a J ~, satisfies , as in (3. 5a) , the same kind of the a is the lattice constant, The variables with super-antisymnietry relation as a”’(v ,, a.’~, . . .,  ~4 ) in 12.21). scripts are those for the corresponding bulk phases,wh iie the symmetry property of vJ~1 In (3. 5b) is of a while 

~~~~ 
and v 1, without superscr ipt are the bou ndarydifferent ki nd.

variables to be determined , The definitions are in Ta-
When we thInk of the difference between the formula- ble I . The 0 factor is the weight factor given as

tion in Sec. II based on the infinitely long line , and that
(4 .2 )of the present section based on the FSC, we note that

the former does not need V’s because the rotational sym-
metry is au tomatically incorporated In the infinit ely long for which we have the relations
cluster. This s i tua t ion  suggests that even for the FSC
treatment the effect of ) ‘S wonid be small; this Is exact- 

~ 
I ,,,, - (4. 3~ly the case that was explicitly pointed out in Sec. III of 5 , 1

Ref. 3. In other words , even with ,~~, = 0 , the aniso - For the derivations of (4.1) and (4 . 2) . R e f a .  2 and 3 may
tropyo (th e system is small and can be neglected, be referred to.  As we have been discussing so [al , th e
Based on this observation , in reducing Sec. II to a tract- new aspect in this paper is the last factor In (4 .1 )  eon-
able FSC scheme of this section , we p ropose to tol erate ta m ing a.
a slight anisotropy of the system and make To calculate G (~ 4~ from (4. 1) . it Is convenient to  find

(3.15) the max i mum of the logarithm of the summ and on the
right-hand sIde, and in so doing use the natural  itera-Thus , Instead of (3. 14) , we identify t ion (NI ) method . 3.10 The Iteration converges w ith ease
and the results are show n In FIg. 3 by the solid curvea”’(u, a.’) = N (I) (I) (3.16) marked double square (I) .  It Is satisfy ing to see thatI, .4 , 1
DS (i) is close to 05(11 ), wh i ch is the previous resultThe result (3. 16) can be easily generalized to larger reported in Fig. 3 of Ref . 3. It is part i cularly note-clusters. We show only one example . When we use a worthy that , a-hen we deliberately put a~~, a~~~ - 0 in3 \ 3 FSC to calculate the bulk phase usIng the nIne-point (4, 1), the a curve moves way up to the dotted positionvariables ~~~~~~~ based on Fig . 2. &“ (M, v) In (3. 16) 
in Fig. 3; this fact show s the correctness of the a termsIs to be Identified as 
in (4 .1 )  and hence in the general formula (2.1 9) .

a~~(u i’) V ~~~ (I) II)
. a1.’4 , ,~~t 114 1~~ , (3.17) Because of the ant isy mmetry property of a~~ , In

(3. 5a) . we can replace the last exponential factor eon-
where ~~~~~ Is the Lagrange multiplier introduced for ta m ing a in  (4.1 ) liv
the t ranala~ional symmetry condition: 

— a~~~~r1141~ , ~~
t’osh V ~

I ,,, . i~~ ~~~
‘ U’~~ ~~~~~~~~~ ~~ - (3. 18) [‘ 

“~~~- IS I I ’

Therefor e the a curve for which a is taken i n t o  account
The FSC expression of a~~ (p, e) in (3 . 16) or (3, 17) Is the is always lower than the one for which a is  left out. The
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FIG. 3. Excess free energy a at the boundary of square net
Ising model, I I I I

—2.45 —2.40

DS(1) curve and the dotted curv e in Fig. 3 Satisfy this
general property. PIG. 5. Grand potential G versus chemical potential near the

Coexistence point for kr/a.  =0.50.

V. LATTICE GAS-LIQUID SYSTEM -

Although the Ising model example in the previous sec- Orban et al. 12 The model is illustrated in Fig. 4. When
tion is useful in supporting the validity of the a factor an atom sits at A, no atoms can come to the first , sec-
in (2. 18) and of the expression (3. 16), the quantity a for ond, or third neighbor points (indicated by crosses).
the Ising model as shown in Fig. 3 can be calculated by An atomic pair AB at the fourth neighbor distance at-
always starting with a double-line cluster parallel to the tracts with the potential — gE (( > 0), and a pair AC at the
boundary and applying the formula (1. 1). In other fifth neighbor attracts with — £. In their example, Or-
words, when the interaction is of the nearest-neighbor ban et al. chose g= 1. 2, and we wIll use the same num- F
type, we can do without the new formula (2 .18) or ber. They were interested in deriving three phases,
(2.19). The new formula is needed only when the Inter- gas, liquid , and solid, but in the presen t paper we will
action becomes longer range. We show an example of discuss the gas—liquid transition only. We will use a
the latter case in this section. 3x 3 cluster first to calculate homogeneous liquid and

gas phases and use the results to write (2. 18) to eval-We calculate the surface tension of a two-dimensiona l
gas—liquid phase boundary using a model proposed by Ca e O~

Since the formulation of the bulk phase calculations
follows the standard CV method, only some Importan t

- ________ .,. .~__. points are discussed in this section. In worki ng with
I gas and liquid phases, we fix the temperature and the

chemical potential ~i. The advantage of fixi ng M rather
- B C - than composition in the treatment of phase diagrams has

• been previously discussed .2
~~

15 When s~ Is fi xed, the
thermod ynamIc potential which is minimized is not the
free energy F = E — TS but the quantity

- — — ._ (A) ._ — 

a 
G=F—M NA (5.1)

which we call the grand potential; NA is the number of
atoms in a system.

Keeping T and 5L fixed , we minimize Ô with respect to
the six clu ster variables for a 3~~3 cluster which sped-

- — - fy the state of the system, using the natu ral interat ion
m ethod. 18 The resulting ~, which is now a function of
T and M, is made of two branches , one for the gas phase
and the other for the liquid phase as shown In Fig. 5.

FIG. 4. InteractIng paire AB and AC. The point at which the two branches cross gives the i~~•
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FIG . S. Phase sepa ration diagram of the ga.s and lIquid phases.

0 L~~~ ~ - • ~ L~~~~L _ .
-2.5 -2.4 2.3 -2.2 5 also gives i nformation about the densities of the coex-

FIG. 6. T vs ~~~~~ at coexistence Cor the gas—ll qut d model , isting gas and liquid phases. The curve marked 3 x 3 in
FIg. 8 shows the result.

fo r which two phases coexist. The curve marked by 3 ~ 3 A comparison of Figs. 6, 7, and 8 wi th the results
in Fig. 6 shows the Tvs  p , ,  relations , reported in Sec. IV of Ref . 12 show s them to be in good

agreement except for the estimate of the critical point.
Since the chemical potential p is the Gtbbs potential Our Fig. 8 shows clearly that the maximum of the curveper atom , thermodynamics tells us that C defined in Is at kT c~ 0. 54, while Fig. 9 of Ref . 12 estimates that(5. 1) is  equal to the critical value of k T e  is somewhere beyond 0. 7.

a — pA . (5.2) Later we discuss an additional evidence whi ch shows
that the esti mate of Ref. 12 is too large.where p is the pressure and A is the area of the system.

(In a three-dimensiona l system, the corresponding equa-
tion is C- — pV , V being the volume of the system. ) The r— 1~~~~~ 

- —— -r— -- -  — ________

value of C corresponding to p~~, gives the pressure of
coexistence, p~ 1 . The p0~ is plott ed aga i ns t T as the I

3\ 3  curve in Fig. 7. 0.2~ \
The crossing point (i . e. , the coexisting point) In Fig. \~

~o,0 
SUM~~~E~TH0D \

~~~~ -

,

0 —  
0.1 0.2 0.3 OA o~~~~~ o.e 0~~~~~~~~ O~2 ~~~ 

- 

~~~~~ 5 
- -

ku , kT~e
FIG. 7. T vs pressure p~,1, at coexIstence for the gas — liquId FIG . 9, Surrace tension o of the gas—Li quid system calculated
model, In Sec. V .
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Af ter the coexisting phases are thus determined, we 0.02 - 1 - --

use (2.18) to calculate the surface tension a. Since (as 1
we said at the outset of this section) the thermodynamic — -

potential is C rather’ thin F, the quantity a Is not the ex-
cess free energy but rather Is the excess trend poten- - -

tial. “j ’ With this understanding, we call a the surface
tension. The result of the calculat ion is plbtted by the —

solid curve marked SP, 3x 3 In Fig. 9. The dotted
curve accompanying it is the one for which a in (2.18 ) ~ 

- 

kT
is deliberately put equal to zero. Different from the 001 - 

- 0.4
Fig. 3 case, the solid and dotted curves do not differ 

-

much, although the dott ed curve (a = 0) is higher than - -

the solid curv e (a * 0), in agreement wi th the genera l
requirement mentioned at the end of Sec. IV. — -

The reason why the effect of a is large in the Ising 
— kT

model (Fig. 3) and is practically nil  in the gas—liquid 05 -

surface tension (Fig. 9) can be traced In mathematics, - - -

but the physical reason is still to be determined .
For the two-dimensional Ising model, the result of a 0.0

calculated by the SP method can be compared with the
exact calculation due to Onsager,4 as we did in FIg. 3. 

-

Since in the gas—liquid model of this section there is no - -

exact calculation to compare with, we calculate a using
two different methods to check the accuracy of the SP I I I ~~ J_._
method . One of them is the “sum ” method . We mini- 20 40 30

mize the grand potential C of an inhomogeneous system LATTICE LINE ACROSS THE BOUNDARY
that includes the gas—liquid boundary. We apply the CV FIG , 11. Local excess grand potential across the boundary
method ustog a 3x 3 square of FIg. 2 as the basic cluster , calculated by the sum method.
The technique is similar to the one used by Cahn and
Klkuch i 17” and modified later, 10 taking into account the
Weeks and Cilmer technique. ~ In calculation , we used pare the SP (3 x 3) curve and the sum curve, the former
80 lattice li nes and imposed the conditions that the left is higher than the latter for the region of physical sig-
two end lines are in the gas phase and the right two end nificance, kT/ e ” 0. 4. (For the temperatures below

lines are in the liquid phase. In minimi zing ~, the com- about 0. 4, the solid phase is more stable, as was shown
bination of T and p are fixed , the latter being the value ~fl Ret. 12, and the curves in Fig. 9 lose their meaning.)

~~, 
for which the gas and liquid phases coexist at that This situation qualitatively agrees with the bcc (110)

temperature, as deter mined in Figs. 5 and 6. boundary results reported in Fig. 6 of Ref . 10; in the
bcc case also, the SP curve is higher than correspond-

The results of a calculated by the sum method are ing sum curve
plotted by the broken curve in Fig. 9. When we corn-

We can then almost say that the SP expression (2. 18)
is supported by these calculations. There is, however ,

1.0 -~~~~ - 
~r- - r~~ r— one bothersome fea ture of the SP (3 X 3) curves in Fig.

- 
9: they bend over around kT/E = 0. 25. We can disre-
gard, If we want, this bending-over behavior, because

- 04 .._ it occurs in the (T , p )  r egi on in which the gas and liquid
phases are not stable, as we discussed above. (In this

- regard , we may quote Barker’° who pointed out that the

- 
CV calcula tion can sometimes give unphysical results
in the region where the phase being calculated is not the

- . most stable one. ) However, to fur ther verify the SP
meth.,d , we calculated a using a 3x4 cluster . The re-
suits are plotted by the curves marked 3x4 , SP in Figs.

I ~os . 6—9. The solid curve in Fig. 9 la the cr *O case and the
dotted one is the a = 0 case; the latter is higher , in

- agreement with the requirement at the end of Sec. IV.

- 
The 3X 4 , SP curve does not show the bending over that

- the 3 x 3 curve does, and behaves more normally; there-
i _j fore, we do not need to be concerned about the somewhat

20 
LA T TI CE LINE ACROSS THE BOUNDARY bothersome shape of the 3 x 3 curve for low tempera-

tures.
FIG, 10. Density profile versus the boundary calculated by the
sum method . One other result of the 3x4 cluster calculation worth

J. Chem. Phya. , Vol . 68, No. 1, 1 January 1978
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pointing out is the l iquid—gas diagram in FIg. 8. The vi.  SUMMARY
diagram show s that the critical temperature calculated
using the 3 ~ 4 cluster Is IT  e 0. 51. wh ich is lower than The scaiar-product ISP) expression of the eXcess

the value for  the 3~c 3 cluster. It is g eneraLl y  accept ed boundary free energy a wr ites  a In terms of the proper-

that the cr i t ical  temperature decreases as the approx i- t Ies of two bulk phases that meet at the boundary . Anoth-

mat ion improves , and Fig. 8 agrees s it h  t h i s  general er method of calculating a , called the sum method in

property. This property is the other evidence that the this paper, evalua tes a as the difference between th~
estimate of the crtt ical  region in R e f .  12 is too high.  free energy of an inhornogeneous system Inc l ud ing a
Although the surface tension a In Fig. 9 is for a two- boundary and that of the homogeneous phase. Compared

dimensional system , the  general feature agrees with with the sum method , the SP method has the advantag e

that of real  three-dimen sionai  l iquid, that it can calculate a more easily and can derive some
of the properties of a more accurateiy . In the papers

Although they are not the prime intere st  of th i s paper, published so far ,  the SP method has been applied un Iv  to

Figs. 10 and 11 show the boundary profi le  .irid the local cases of nearest-neighbor Interact ion. The present
excess grand potential dertved fr on i  the  sum method , paper extends the SP method to cases of longer range
The no C plotted by the broken curve In Fig. 9 is the interactions than the nearest neighbor. The extended
sum of the local vaiues In Fig . 11. A part of the curve SP formul a is in (2. 18) and more generally in (2. 19).
in Fig. I I  becomes negative. This  negative part is con- As examples , a’s are calculated f o r  a two-dimensional
trary to what we expect in the “ central hump ” reasoning Ising model (nearest-neighbo r interaction ) and for a two-
used in the square gradient treatment E of a , as was dis- dimensional gas—liquid model taking int o account up to

cussed in Ref. 6. and is worth further attention , the fift h neighbors .

___—- -- - ---- - --—-- - - -- - — - I

APPENDIX: SUPPL.EMENT TO THE PROOF IN SEC. i i

in this Appendix we f i rs t  show the meaning of the expression h1, 111 (p ,  e ) g 1, 111( p ,  v) which appears in (2.14 ), with
a particular emphasis on why i~ j  in (2.11) is required. Since the interaction potential in thi s formulation Is def ined
to be extended to the second neighboring plane but not farther , the joint probability distribution of four plane con-
figuration p,.113U~. i . (. 17 ) centered at the position i 1 2 is written without -approximation as

1. ~i) :p1(p, 11. l)Pi .i(” , 
~~. 

T7) ’
~~ .~ ,~ (i’, I). (Al)

We use (2. 8) for p, ( u. v , () and divide both sides of (Al) by r(p , v , () r ( e , (. i~, to obtain

exp($)i~ = ~~~~~~~~ v) g 1.3 13( E, 17) p1.113(p, v, (,17)exP(~e(M. v, 
~~~~

+ ik(e, ~, 17) 1 . (A2)

We can continue multiplying the conditional probabilities , as was done in (Al l , ,n times to arrive at the probability
distribution of (,n +1)—plane conf igurations i’s, v~ , i’~ e_ on plancs I, i +  I 1+ in as

exp($A,.j + Øx,,5+ ‘ • P) .,...,1 )h~.112(v0, y1)g,,_ 111(v , ,.,1, e, )

Pt. .,.~~eo, v1 e,,, )exp(~~e(1’0, ~~~ 
P 2) + •  ‘ . . ~~~~~ v,,1, i ) 1  . (AS)

This l~ the meaning of the factor h,4 12 ( p ,  e) g,.1 1~(p ,  e) .  In order that the expression (A3) be meaningful, in must be
larger than or equal to unity; this la the condition exactly equivalent to the condition :‘.i  required In (2.11) to accom-
pany (2. 13) .

Since the left-hand side of (A3) does not contain i - ’~~, v~, . . . , i’ ,,,.~ . the r ight-hand side is also independen t of these
configurations although they appear In the expression. Now we start with the expression

S~ exp($A,,1 
+ ‘ . .  ÷ $A,.~,) ~~ ~~ h1.1~5(p, v)r(p , ii, f )g,.,,, .1 ,~ (“. 1) , (A4 )

and sum this f irst  over ( and later over p. With the use of (2.10) . we obtain
S

S~~exp($X ,.1 + ’ ’ ’  +~~X ,._ 1)~~~~~~ k ,,111(p, v)g,,,,_j , a(p. 1’)

= exp(~A ,.~ ÷ .  ‘ ‘  ~~~~~~~ EE~’.~1’~’ E )g, .,,,,j~5(e , 1) . (AS)

The equality In (A5) shows that this sum is independent of the location z. When we choose I such that the r egion
from I to  I + in covers the boundary (this assignment is alway s possible because the boundary profile has been solved
beforehand, and pa is to be mad e very large), the invariance In (AS) leads to the a expression (2. 17).

Note that in thi s proof the expression S i n  (AS) is exactly the sum of (A3) over p ~v0~ i’,,, 1 and i’ - i~~ . ,,. and hence
that the boundary free energy Is closely tied to the multiplane distribution funct ion p ’  ~~~~ e1 ,,) across
the boundary.

Now we go to the puzzle mention ed at the end of Sec. II. The key to solve the puzzle is the fact that the probabil-
I ty expression for in 1 planes Pc. ..,u i (~o, ~‘i e~) In (A3 ) r equires that the h function lies always on the left of
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the g (unction. As ., niathen iat ical expression, however , we can interchange location 14 1 2 and 1+ r n — i  2 for Ii
and i~ and can work with 

~~~~~~~~~~ 
t~1 ) h,,~~i,2 (v .1, i’m ) . We now examine the physical meaning of this expression. Our

interpretat ion is that this new formul at ion corresponds to a different expression /‘~, ,•~ ,(v 0, t’~ , . - ‘ ,~~~) f or a mod-
el of different  interact ion energies. We use a caret to indicate a fun c f i on  in the redefined system. The Ii and i~

functions are defined using the quantities in the old system as

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
)
~ [ P,_ i ~~ i~. v )~~~~~~e x p t — a ,_ 1 1 z (~~~. i ’ ) I

~~~~~~~~~ Z ) ~~~h ,.~~~ ) - , ~ ) - [ p , .112 (i’ . ~l ; 112 ex i~~. O,.~~,, ( L - , ~)j . (A6)

The energy factor  r~ ., r . ~) in ( 2 . 7 )  a re replaced by I’ wh ich  obeys

~
- . r (~_ . v , T~i , (A7 a)

~ ( r (~. c , p) .

Then P ) M .  v , f( in ( 2 . 5 )  is replaced by

) = exp(— ~\ , )iz ,..u zU L . t ’ ) r (~~. . E )~‘~4 ,2(e , ~) . (A8)

Note that  ~~~ in  (2 .5 )  is replaced by — ~A , in the  new expression (A8) . The (in • 1)-plane probabil i t y corresponding
to (A 3) is wr i t t en  as

Pt . , . i (L &. i’ l e_ ) [t(v 0, c i, 2~I’(~ i. ~~ 
I i) ’ . .  r (i’~~~ , ~~~~~

- exp(— 4-k~ ,~ 
— ‘ . ‘ — ~~ ~~~~~ ,2 (i’0, ~~~~~~~~ ,2 (i ,,_ 1, v_ I

= exp(— 
~~~~~~~ 

— . . . — 
~~~~~~~ , 2 (v 0, V1 ) Ii ,._ _ 1,2 (v ,, 1, v_ ) . (A9 )

Note that  the h funct ion  appears on the r ight  of ~~ . a l though ~ appears on the  left  of ~ as requ ired . From the in-
variance argument s imi l a r  to (AS), we can prove that  the boundary free energy & for this  new system is

A &=— ~~~(\ — A ’°’) < O  (A lO)

as we said at the end of Sec. II. The negative & means that the newly defined system does not sustain a stable phase
bo.~ndarv in i t .

.Vote added in proof: As the answer to the comment
at the end of Sec. V . Professor J. W. Cahn told the Il K . Kikuchi , J . Cheni . Phys . 57 . 4633 (1972) .
author that the negative part of the local excess grand 10 R . Klku chi . J. Che m. Phys . 66 . 3352 (1977).

potential in Fig. 11 can be understood froni  the square 
0R. Kikuch i . Phys . Key . 81. 968 ( 1 9 5 1 ) .

gradient theory by a partial integration. 
Lj • Or ban . J. va n Graen , and A . Bellman s. .11. Chem. Ph ys .

0R . Kik ’uchi. .-~ct:i Met, 25 , 195 (1977) .
‘4 1t Kikuc hi , D . de Fontaine . M . Murakarni , and T. Nakamura ,

iD, B. Clayton and G. W. Woodbu ry, Jr .,  J . Che m. Ph ys. Acta Met. 25 . 207 (1977) .
55, 3895 (1971), ~ R. Klkuchi and 1) . de Fontaine , Scripta Met , 10 , 995 (1976) .

2 R . Kikuchi . J . Che m. Phys . 57 , 783 (1972).  ‘6 R. Kikuchi . J .  Chem. Ph ys. 60 . 1071 (1974) .
3R. Kikuchi . ~~. Chem. Phys . 65 , 4545 ( 1 9 7 6 ) .  °R. Kikuc hi and J . W . Caha , J . Ph ys. Chem . Solids 23, 137

‘L, Onsager , Phys. Rev . 65. 117 (1944), (1962).

~5!, E . Fisher and A . F~ Ferdinand , Phys. Rev . Lett . 19, ‘8J. W. Cahn and U .  Kikuchi . J . Phys . Che m. SolIds 27 , 1305
169 (1967). (1966).

~R , Kikucht , J. Chem. Phys . 57 , 777 (1972). °J . D. Weeks and -3 . 1’ . Gilmer , J . Chem. Phys . 63. 3136
T R, Kikuchi , J. Chem. Phys. 57, 7i~7 (1972), (1975),
8J . W. Cahn and J , E . lillllard . J. Chem. Phys. 28, 258 20J. A. Barker . Proc. K. Soc. London Ser . A 216, 45 (1953).
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ABSTRACT

The ground state of a b inary  fcc alloy with nearest—neighbor

interactions and tetrahedral  mult ia tom interactions (character ized by

two parameters a and ~) is derived and presented in a chart which shows

classification of phases in the space of a and 
~~~
. Where non-stoichio-

metric phases can occu r, the phase boundaries at T=0 are computed using

the tetrahedron approximation of the cluster variation method. Duality

ot the composition and the chemical potential is emphasized , and results

are presented and/or interpreted in the dual approaches.



1. In t roduc t ion

S ta t i s t i ca l  n ’ech .ut ic.ti ~al:~~.ations of al loy problems u s ua l l y

assum e a clo(Icl w i t h  ) i t - -~~is~ i:~:~ ract i on energies. Even the s inip l est

model wi:h iiear neighbot’ pair-wise interactions on an undistorted

lattice poses a formidable rrcS~~~ wh ich has not been solved in th ree

dimens...cns) The cluster variatizi a method (CV?!) has been a widely used

tool for  per form in~ .~pproxii at e  ~ st increasingly accurate calculations

on such m odels.
2

To make the models more realistic , several routes are op°’ . Higher—

neighbor interactions can be co .s..dered ,
3 but in the CVH thc ~plexity

of the calculation increases wit’: cluster size and the minimum cluster

size is dictated by the largest :~teraction distance. An alternate

possibility is to assume multiat~~i interactions such that the energies

of clusters are given by ri umrhe~ s that cannot be obtained by summing

pair-wise energies.*

These possibi lities have beea explored in fcc ordering reactions .

With near neighbor pai r-wise interactions the Bragg-Williams approximation

gives a completely unrealistic phase diagram which is unal tered by

considerii’~g higher nei ghbor pafr-~ ise energy.
4 In the CV?! the pair

approximation is unrealistic for different reasons.5 It is not until

the tctr~ t~~roa ap~’roxi:natiea t~.:t a phase diagram which resembles a

symm etric version of the Cu-Au diagram is obtained. With practically no

* It ~ay re remarked that cc:iposition-dependent pair-wise ener)’~ieS is

a mu l ~ ; “ I  luteraCtion concept ia which the energy of a pai r depends on

all t~~t . ‘. ‘~s i n  t~ i~ vo]urae ele-..eit over which composition is i- t’asun’d.

_ _ _  -
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can he m t  reduced in the  CVfl ca icu lat .  inns  that m a t c h  t h e  asynuu~ t t i Cu—

Au phase d i ag r a m . 7

There are ways of demons t ra t ing  that pair-wise interactions are

in .tdequtte to describe alloys .8 Furthermore , there are quantum umechaitiLal

methods that lend themselves to the direct calculation of multiato rnic

clus ter energ ies,
9 

. that eventually these may become available as

input for the statistical mechanical calculation .

Because of the use of multiatom forces in statistical mechanical

phase diagram calculations in fcc , we undertook a calculation~
0 of

antiphase and interphase boundaries (APB and IPB) in such a system . As

in previous calcul~ tions ,~~~~
3 it became apparent that the ground

ctate~
’4’15 

was a clue to some of the low temperature behavior. We

therefore undertook a study of the ground state reported in this paper.

The IPB and APB arc th~ subject of a companion paper .’°
2. Ground State Ene~g1 -

We use the linear programming method of Allen and Ca h n) 5  The

problem is to minimize the energy used by Kikuchi and deFontaine 7

E/N = 3w (l + a) + 4w2
2 

+ 3w (1 + ~) Z
3 

(1)

where ~ the tot.il numilber of fcc lattice sites , Zn 
is the fraction

of fc. - - 
- ~~~ tetrahedra containing exactl y n B atoms and (4-n) A 
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atoms ,t w is an interaction ~~r~ y and ci and ~ are dimen ~;ionh ~ss uu :iibers

that express the s t ren g t h  of the f : ar -b od y forces. I f  p a i r — w i s e  n ea r -

neighbor interactions suffice to desc r ibe  the energy, a = 0.

Equation (1) is subject to two constraints:

l = Z 0 + z 1 + Z 2 + 2 3 + z 4 (2)

and the compos ition, given as a fraction x of atoms that are B,

4x = 2
1 
+ 2Z2 + 32

3 
+ 42

4 (3)

Using the constraints (2) and (3) to eliminate two of the five Z
n
’s we

obtain a linear equation for E in terms of the remaining three which

then is subject on ly to the constraints that 0 < < 1. If ‘the

coefficients of these remaining Z’s in these expressions are

positive, E is a m inimum when these 2’s are zero. By successively

t In the notation of Reference 7 and in a later section of this

paper vario~s tetrahedral clusters that differ only by rot ation

are distinguished , and A’ s are called 1 and B’s are called 2.

Thus, Z-, , , 2  and z1211 both represent the tetrahedron A3
B with

the B atom r r t  different corners of the tetrahedron. The Z’s

in the p r~~~’c~t section are given in terms of z’s with four

subscrip ts by the following relations

= zi l il

‘2111 21211 + Z fl21 + 21112 , etc.

Also , Li i~ : Reft’m’encc 7 eq. (4.2) is written as w in the present

paper.

---~~~~—-- —- -—- - -~~~~~~~~~~~~~~-~~~~~~~~~ -- -- --~~~~~~--— --~~~—~~~~~~~~~~~— --- ~~~~~~~~~~~~~



c l i i ,  mit t ng a 11 :‘ - s of 2 ’ s the m i n i  ma i i i  E are expl ort~’I . fr’o t. i :m t .m i t

eq. (1) is alread y i n  the form of Z
o and e l i m i n a t e d . Th e r e ’f o r t - , i f

~~~~ 1+t~>0, 1+1;>o , (.Y 1

then the ~iaimum in occurs at

.

Z
0 = 1 -  4x , (5)

24 = 4x.

From the constrair~t that the 2’s lie between 0 and 1 it follows t h i t

0 < x < 1/4.

If instead we solve eqs . (2) and (3) for and Z
2
:

= (2-4x) - 22o + Z3 + 224
22 = (‘Sx-]) + 20 

- 2Z
3 

- 324

and use these to e l im i n a t e  Z~ and 2
2 from eq. (1), we obtain

- 3w(l+a) (2-4x) - 4w(4x-1)

= - i) 20 
- v(2-3(a+fl))  Z3 

- 6w(1-a) 2
4 

(6)

Thus , w~-

w (1+3cz) <0

w(2-3(a+~)) <0 (7)

and

w(1-a) -<0

the rir . . -
. v a i n  for E is gi ven by

- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - ~~~~~~~~~~~~ ~~~~. — —
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3 w ( l - t a ) ( 2 — 4 x ) 1- 4 w ( 4 x . - l )  (~~;~~~~)

‘.. hen

20 = 23 = 0, Z1 2-4x, Z2 = 4x-l , 0 .25 ( x ‘ ~‘ .50. ($b)

These equations and inequalities are more easily obtained by

consic~ertng eqs. (1-3) as three simultaneous equations in six unknowns.

16,17L~~ng C~ aner s rule , we obtain

l Enm i ~~I knm I Zk (9a)

~.here l Enini and are determinants formed by three columns from

the matr ix

0 3w(l+a) 4w 3w(l+~) 0 E/N

1 1 1 1 1 1  (9b)

O 1 2 3 4 4x

labell’d ,n ,m , and k,n,m respectively. The first five columns of

the m at r i~.: , label led 0 to 4 are the coefficients of 20 to 24 respectively

in eqs. (1-3), and the last colrmn labelled E is composed of the r ema in -

ing  ~~~~~ ~ecause a determinant in which a col umn is repea ted is zero ,

the t : .~ ir .volv ing  
~~ 

and vanish in eq. (9a) .  Se t tin g  (Enin( to

zero ~~~~~~~~~~~ the grount~ state energy when tetrahedra 11 and in arc present ,

~~ ir~eq uali ties are given by requiremen ts th at I knin I  have the same

sign a~ i - ~t ) .  Thus , eq. (4) may bç written in terms of d e t e rm i n an t s

:io ~ 2.~. • 1 3C4 1 , (5) in ter m s of 1 041 (7) in te rms  of 10 12 1 ,

312 , and (8) in terms of El2 1 , where each s\’mbol r ep resen t s  .i

colm.nn :,

- _ _ .
~~~~~~~

-
~~~~~ 

— - --
~
-
~~~~~~~
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Therefor e the a cu rve lot- wh ich 0 is  taken int o  account
The P~SC expression of a 04 (~~. v)  in (3. 16) or (3.17) is the is a l w ay s  lower than the one for which o t s  left out. Thc

.1. Cham. Phyt . Vol. 68, No- 1, 1 Januar y 1978

~~ ~~~~~~~~~~
- - - - - -~~ - _

The results are summarized tn Tables 1 and 2, and iii f i g u r e  1. ‘1h~

conditions in Table I are constructed from the above rules , he ’.i t - i ng  in

mind that permutation of ’ two columns changes the sign of a deter i ~~n - in t .

Each line segment in figure 1 is a boundary where one of the deter’iiiiant:;

is zero and thus changes sign . Regions in which a particular intermediate

phase will appear at the appropriate composition form polygona in f ig u r e

1.

3. Ground State Degeneracy

This linear programming method gives the combination of clusters

that would give the lowest energy . At most , two types of clusters can

be in the ground state. The presence of any others would raise the

energy above the minimum . For example , eq. (6) indicates that Z1 and

5 can be in the ground state , but the presence of any other clusters

raise the energy above the minimum . Since each cluster type by i tself

gives a stoichiometric phase , a two-phase mixture of stoichiometric

phases would have the ground state energy apart from any excess due to

unwanted c lus ters  at the interfaces between the stoichiometric phases.

In this model , however , the ground state can have many different

configurations. There ar-c three sources of degeneracy in the ground

state. Each stoichiometric ordered phase can have one dim ensional

disorde -~ithout raising the energy . Parallel planes of certain anti-

phase b;..ndarias (APR) can be created without changing the cluster type.

Both the li (Cu3Au) structure and the DO22 
(Nj

3V) structure are in- -de tip

of only .~,.B c lus te rs . The DO22 s t ruc tu re  can be thought of as LI 2 wi th

evenly s;~~eed (00 1) APB ’ s , and vice~versa. In fac t , any d i s t r i bu t ion  of

paralle’ :~~ l) APR has the ground state energy . The same holds t r u e  fo r

AP R ’ s in ~.l , (CuAn) of the type that  converts i t  i n t o  the CuAn I I  s tru c -

ture .5



method.1 The resuLttng t~; whtch is now a funct ion of
T and j~, is made of two branches, one for the gas phase

FIG. 4. Int.raothig pairs AB arsi AC . The point at which the two branch:: :ross gives the~~~
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When a systenm is exactly at a stoichiometric cc~p3sition where o n ly

one cluster is present , the APB’s discussed above are the onl y dc 1:t ’mme r .icy.

APB’ s wi th  other or ienta t ions  create c lus ters  tha t  r a i se  the energy . In

non-stoichiometric systems , when the pairs of clusters present. are uum .

adjacent  in composition , lm—nl�1 , the ground state phases cannot deviate

from stoichiometry for that would always create clusters adjacent in

composition and raise the energy. All interp hase boundaries (IPB) also

raise t~e energy, as do APB’ s except the type discussed above . Thus ,

for non-adjacent clusters the only degeneracy is that due to one kind of

parallel APE ’ s.

For adjacent clusters , I m— nk 1, in a non-stoichiometric system there

are severa l more sources of degeneracy. Adjacent clusters can be mixed

to give non-stoichionietric phases, nonuniform phases including mixtures

of reg ion with differing composition, “IPE’s” where such regions meet,

and APB’ s. Any such arrangement will have the ground state energy as

long as only the two types of clusters are used. “Two-phase” disper-

sions on any scale down to the atomic is permitted.

As the composition varies from one stoichiometry to the next a

symmetry change is occurring and there must be a phase transition .

Thus , as B is added t o  pure A in a (0-1) case the ground state requires

only tha: zo two B’s are neighbors. When x is small , this must look

like a dilu:e almost-random solid solution , but as x approaches 0.25, it .

mus t  t et.d :cward an ordered a l loy.  The quest ion of the n a t u r e  of the

orderi :~; tra~tsition is examined in the next section .

T~ e \r~~s involved in one-dimet~sjonal disorder have zero excess

ener~ .- . do AP~ ’s and IPB’s when adjacent clusters are present in th e

ground ~t-.:’ (e.g., clus ter pairs 0-1 and 1-2). For all the other

conditic:~ :he~.e boundaries have finite energies at T=O. For the APfl’~; 

TI l l - ,,...
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t h i s  s i t u a t i o n  is s i m i l a r  t o  the r c s t m 1 t ~ of .m n i nvest  igat  ~on ut th- ~ c~~

s tr u c t u r e ,~~ and will be used to understand th ’ limiting hr h . m v m o r  - ‘f

ca l cu l a t i on s  on IPB ’ s and APII ’s in the con ip .in ien papt ’r . 1°

4. The Order ing  L im i t s  at T~O

In the groun d s ta te  under condi t ions  when w< O and A38 c lus ter s

exist 1(0,1) -in Table 1) there must be a phase transition from the fcc

(disordered) Lu l.he .~\3B s t i uct u re  as s increases from 0 to 0.25 . The

energy provides uo clue since it is linear over the entire range , ( f ig .

2) .  The classical common tangent construction based on the energy does

not provide definite compositions , for it is tangent along the ent ire

enmptlsition range . For the same reason chemical potentials  are also

con3ta nt over t h i s  composition range ( f i g. 2) .  The terminal composition

x O  is not the phase limit for obviously a dilute mixture of B in A need

no t be a two-phase system. The answer is not to be found in the energy but

in the entropy or the ground state degeneracy as it affects  the entropy .

In this section then we first undertake to calculate the free energy at

finite temperature and examine the low-temperature limit under the

condition where the (0,1) limit of Table 1 applies. Later in this section ,

we derive t~-.e combin:torial equations using the tetrahedron approx-

imation for ground state degeneracy and examine the entropy for two-

phase be~ av i c r .  The two procedu res g ive equiv a len t resul ts.

Th~ ‘.~o species A and B are designated by i 1  and 2, r e spec t ivel y .

In the ~~~ r ahedr on approx ima t ion  of CV~l , the bas ic  va r i ab le  Z i jk i  
is

the pr c~~~’i1ity of f i n d i n g  atomic species i , j ,  k and ~ on t h e  f on ,

v e r t i c e 3  o~ a t e t r a h e d r o n .  We fu r tl4e r  requi re  tha t  t h e  f o u r t h  subscri 1’~

-- — - -
~~ 

—



LATTICE LINE ACR~~S THE BOUNDAR Y bothersome shape of the 3 )< 3 curve for low tempera-
FIG. 10. DensIty profile versus the boundary calculated by ~~ 

tures.
sum method . One other result of the 3x4 cluster calculation worth
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2 is for the atom located on the sublattice which is ~ L’ ’1t ’r c n t 1 .m i l .

occup ied by B atoms in t ime orde red A
3
B structure . For the  saI~c of

brevity we call this sublattice the B sublattice and the rest the A

sublattices ; the three A subtattices are equivalent .

— Besides z.. ‘s we use the pair variables y.. and v. together
13k1 3.2

with tle point variables x. and u . For y.. both atoms are on the
1 2

A sublattices while in v. the first and second subscripts indicate the
11

species on the A and B sublattices , respectively. For the point

variables , x. is the probability of finding an ~th species on an

A subla “e point, and u2 is the corresponding quantity on the B

sublattice. These variables are connected by the geometrical

relations :

— 
k,2 ijk2

v z (11)
U j,k ijk2

= z (12)X
1 j , k,2 ijk2

— z (13)U2 
— i,j,k ijk2

The nor a~~.ization of z ’ s is

1 = E z (14)
i ,j , k ,2 i jkf  



that the boundary f;ee energy Ia closely tied to the mult iptane distribution function p,~ •~~,, 
,.~ (v,. ‘

~ 
c,, ) ad 058

the boundary .
Now we go to the puzzle mentioned at the end of Sec. II. The key to solve the puzzle Is the fact that the probab il-

ity expression for in + t planes Pu ,.,~1U’,, v1 v,.) in (A3) requ &res that the h func t t on lies always on the left of

J. Chain. Phya , Vol. 68, No. 1, I January 1978
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When the gr3lmd po ten tial C

C = E - TS ~E1J .N. (15)

is writ t er~ in terms of Zij k2 ’S and then is minimized with respect to

z ’s , we obtajn the following set of equations :

= ex~[(~ + ~~~~~~ /kT] ~~j k1 
1/2 ~~~~~~~~~ (16)

a - + (~i1 
+ + + ,.l

~~
)/ 8 (17)

~ij ki ~ij  1~ik 1’jk ~z2 ~~~ (18)

a x. x . X
k 

u2 (19)

Although the order of subscripts are meaningful in z . .  , Y.. and
~j k2 1J k2

Xi.k2, the order is imm aterial in Wiik2 since the energy parameter

£ijki does not depend on the order of the subscripts. The quantity

exp (~ /2~::) in (16) is the normalization factor and is determined

from the .ormalization condition (14).

When ~he energy parameters e~~k2 and the chemical po tentia ls

p1 together with the temperature T are given, the equilibrium state

of tha s:~~.t~~~ is solved by finding z
~~.k2

’s which satisfy eqs . (10)



L 
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t hr o u gh  (19) .iul Lamme ous I . t’-’hert these c lu a t i o l t s  .j i-c so I v c l  , t II-

p a t - :n ;iete r  A is i d e n t i f i e d  .‘s the  g r an d  p o t en t i a l  G per la tt i , e po ut

A = C/N (20)

where ~ is the total number of lattice points in a system .

Be:ai~se - the system we are c a l cu l a t ing  has a f ixed number of l a t t i c e

points N , individual chemical potentials are not defined; onl y their

d i f f e ren c e  is .  We can a r b i t r a r i ly choose

P .  (21)

At TzO , the entropy part does not contribute and we can write

— 3E/Np2 ~~~~~~~

2ii (22)

- 18The quant i ty  2p is the diffusion potential of larche and Cahn .

It is tabulated in Table I for  the various ground states . From Table

1 and f i gure 2 we see that  p is a step function of composition. In

the (0-i~ ra~~ e app lying equation to the energy listed in Table 1 we

obtain

p = 2E 1 
- 6(l+a) lv i  (23)

Note ~~~~ ~(O. This mu st  also be the value of p for  the two-p hase

equ ii i :-~~.-t  T~ 0. At low temp era tu~re , We expand p away f rom ti e-

v a lue  ~~ -‘i)  and w r i t e

L



- .  -- - - -

— 
‘ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

p — 6( 1it~) ~. f  ...~ T F . (24)

in which a is the expansion coefficient v’L undeterr~jgied . Iii the

quant i t ies  w .Jk2  in (17) we use the de finiti on of the energy

parameter 
~~ 

.

~~~~~~ 

in e’q. (4.2) of Keference 7. The expl ic i t  form ofI]

w i .k ~~~
S are written in eq. (31) below in the following section . For

the derivation of this section , we use the first two : w1111 and

Since the numerator of kT Lu eq. (16) b im ould vemiish at T=0 we

expand A also as

A = - 6( 1+ci) Iw l  + bkT + . . . .  (25)

Wlieu We use the expansions (24) and (2 5) ,  we see that  w1111 and

are d i f f e r e n t  by a/4.  Then the general formulas in (16—19)

reduce to the following :

= 
( b a’~~

’l l~~~ll
1111 exP~ 2 2/ 3 \5/8

(x 1 U
1)

/ \3/2
b t.Yu V

12)
= exp

(
~ 

- 

\5/ 8 (26)

~1 “2/

i 2 2 \ l/ 2
lb a\ V’ii y 12 V 11 V

21)

~u:i = = - 

4) ~~~~~~~~~~~~~
~~~~~~ 

x 2 U
11

The re :~t 
- -

~ 
2ijk ~~

8 are neg li gible and are not needed. These

are for  :Le A3B phase. The Zj jk~
’S for  the d isordere d p h - ’~ e

can be c~~~’ ined fro m (26) by impo sih g the d i s o r d e r i n g  c o n d i t i o n s :

= - - .
-

-
: 

~~ ~~~~ =
1) ~~.. ‘ 1 
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The f o r m u l a t i o n  is now cOi~m p l e t m ’ . We ~,;e the commI put cr  t i ~ ~L ‘~~. I lu

set of equat ions  in  (26) f o r  d i f f er e n t  v a l u e s  of a.  For t he  c o mi l l i t at  L o l l

we used the va lu es of ~~0.0l and ~~ — 0 . 0 8  which can make t im e  Cu
3

Ami 
~~~~~~~~~~~~

d iagram best f i t  with experiments as w i l l  be discussed in the accompany-

ing p~ ;’~r)~° The q u a n t i t y  b is determined as a func tion of the qu.mtity

a tract the norma liz a t ion of z ’s:

1 = z1111 + + 3z 1121 (27)

Note that the rest of z..~~ ’s a re neg ligibl y small. The solid curve in

figure 4 shows the result. We repeat the solution for the disordered

phase , and obtain the dashed curve in f igure  4.

Since A is the grand potential as was mentioned in (20) , the point

at which the two curves cross in f igure  4 represent the coexistance of

the two phases.  The value of a at the in tersect ion is a 0.8l09 and is

the r ight  value of the gradient of the kT vs.  p curve at T 0  in f igu re

5.

The disorder-Cu
3
Au phase boundary points at. T0 in figure 6 were

calculat ed  in th i s  way.  S ince  the exponent ia l  f ac tors  in (26) do not.

depend on T , the phase boundary curves in this figure are vertical near

T 0. it i. believed that this vertical property is a general result.

~~~~~~~ genera l proper ty  we can deduce from (26) is the fact. that.

the e - ,~ a :ion s  are independent of the parameters  a and ~ w i t h i n  the

l imit s  im~ used by (0-1) in Table I .  Because of this , the positions of

t he  -
~~~~~~

. h~’un dar ie s  a t  T -‘ 0 are i idependent of o and 
~~~
. T hi S  i:;

r e adj i  _ : ~erstood since t h is problem involves onl y d i f f e r e n t  ways of

ar r an ~~ :~ ~~~~~~ same ground state clusters . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ _________



Simi 1~~r calculat ions were done fo r  the Cu..~Au— Cu:\u b o t m r m d , m  ‘v a t

T -
~ 0 and the results  arc  plotted in f igure 6.

As was mentioned iu the introductory paragraph of this section ,

to start from eq. (16) is not the only way of deriving the T~0 p hase

bouudar . An alternative method is to work with the entropy . For

the (0-1) cltister pa ir , the groun d state energy is linear in the corn-

position x as is shown in the first. row of Table 1, and thus does not

contribu te to the phase separation. Therefore, the phase boundaries at

T 0  between the disordered fcc phase and the A
3
B phase are to be calculated

by the common tangent construction based on the two entropy curves as

shown schematically in figure 7.

We now show that to draw S
D and S

0 
as functions of the composition

x and then determine the phase boundaries X
D 

and x0 from the common

tangent is equivalent to the method presented in this section.

For this purpose, we introduce a parameter a and define functions

D
(a) and •0(a) as I

:

?1~x [sD(x) 
- ax]

(28)

flax ESO
(x) - ax]

When w° p~~: the two functions 41D(a) and 4’0(a) against the parameter a ,

they ~~~~ as in figure 8. The point P at which the two curves cross

corres;~~ d~ to the common tangent situation in fig;ii.v’ 7, The proof is

the  fc l l~.w~ ~g:

At I .~~~ have

.--

~

. ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _



I

= S
D

(x
D

) - a OxD = S0(x
0) 

- a
0
x
0 = (2 9 :m )

and since the •‘s are maxima

dSD (xD) d S0(x0)
— 

. dxD 
= a0 = (29b)

Thus, we obtain

S0(x0) - SD
(x
D

) d S
D

(x
D

) d S0(x
0)

- 
= a0 — 

dxD 
= dx0 

(30)

This shows that the two curves SD (xD) aiid S0(x0) posses a common tangent.

Therefore, XD 
and x

0 are the boundaries of the two phases.

When we formulate the entro py using the tetrahedron approximation

of the CVN , and proceed formulating the functions and 4~~, we arrive

exactly at the eqs . in (26).

One conclusion which is clearly derived from the illustration in

fi gures 7 and 8 is that the phase boundaries are determined by the

entropy formula only , and thus depend on the approximat ion used in the

cvfl .

The singularity at T0 is illustrated in figures 5 and 6. Each of

the six 1i~~ s numbered 1 through 6 in the two figures are two represen-

tatioc~ cf an approach to T0 . For any x in the range in the range

0(x<l/.~., ~i approaches the same limit , each x in figure 6 corresponding

to a fix~~ limi ting slope in f i gure 5.

_ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~
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5. A l t ~~~~~:ive Der iva tion of Fi gure 1.

Co~bi~ ations of figures 5 and 6 and of figures 7 and 8 indicate

the d ua l  ;:~~‘erties between the p and composition space analysis. in

the preser.t section we briefly show an alternative derivation of fi~ ure

1 based on the p space analysis.

We go back to eq. (16) for Z
Uk.g• In this expression the Y and

X parts ccne from the entropy expression and hence we can disregard

in our derivation of figure 1. The energy and the chemical potential

information is contained in the quantity w1~~2. Because of the

permutation symmetry among the subscripts, there are five

which are written explicitly here :

wllll = -~~~p

3 1
= - ~~~ (1+a)w - p

= - 2w (31)

= - (l+~ )w + p

1
2222

Each ~f the five W ..k~
’S in (31) is a line in the Wii k~ 

vs. p

- . 

space. Of these, w1111, w1],22, and w2222 are independent of ci and

~ and .~.re :-awn by thick lines in figure 9. For the purpose of

illust-a::::, figure 9 is drawn for the case w(0.

I: ~~~~~ 9 for the region p<— 41w1, w1111 is larger than w1122.

- I This n~a:: that in this region of p, the cluster liii is more stable

than t~’e - - .ster 1122 in T 0  because’ Wij k~ 
is divided by 1. By dr aw-



jug five wij k2 S of (31) on this diagram and coinpari~ g ~4tich is the

largest, we see which cluster is present in the system for a given v~]’it-

- ‘

~. of ~i. When two ~~~~~ lines cross, it means the two clusters can cc~~xist.

The in (31) depends on ci and is drawn by a chain line of

negative slope in figure 9. The w1222 , which depends on ~ , is dra wn by

a chain line ’ of positive slope.

When ~<-l/3, w1222 is always suppressed , as indicated by the w1222

line marked by 
~~~~~

. This corresponds to the fact that AB
3 
does not

appear in the region D<-1/3 in figure 1(a).

At the point P in figure 9, three lines meet: w1112 (ci,,) ,  w1122 and

w1222(~2). ~or when a is in the range -l/3<a<a2, all, five clust;ers

can be stable at some value of p. The combination and c i a
2 

is a

boundary such that either a2<a or makes the w112,, phase suppressed .

At P, the equations

= w1122 = w1222 (32)

hold and use of (31) leads to the relation

= (33)

which is the line marked (P) in figure 1(a).

At 
~ 

i~ fi gure 9, three lines meet: w1112(a~) , v1222 (f ~2 ) and

w~,222. Proceeding in the similar way, as in the preceding para-

graph , c.~ arrive at 
-

a—3~3=2 (3~)

which i~ the line marked (Q) in figure 1(a). The line marked CR)

in figure 1(a) corresponds to the point R in fi gure 9.—-

- - - 
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6. Stumnary~and Concludin~ Remarks

Hul.tiatom forces (char.acterized by two parameters a and ~1),

rather than the composition-dependent .-~nergy parameters, were used

recently successfully in deriving the asynmietry of Cu
3
Au phase diagram .

6’7 
—

This formulation forms the basis of the accompanying paper on phase

boundaries.’0 As a study to back up the use of the parameters a and ~~,

their effect on the stability of phases at T0 is worked out in the

first part of the present paper. The results are shown in figure 1.

In figure 1, as well as in previous studies~
4’~

’5 of possible phases

at T=0, only the energy expression of the system comes into play. In

the second part of the paper, we derive the position of phase boundaries

at T~0. This is done using the entropy expression, and hence the position

of the boundary depends on the approximation used in the entropy cx-

pression. Figures 4, 5 and 6 show the results. A general conclusion is

that in the temperature T vs. composition x plot, a phase boundary near

T0 is always parallel to the T axis and comes straight down to the x

axis.

The dual nature between the composition and the chemical potential

p is one the~ne repeated in the paper. The fact that p takes the same

constant value for a range of x in the single phase regions is illustrated

in figur~s S and 6.
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Table 1

Clusters Range Energy Chem. Conditions
p,resent (n ,m) m x  (see Table 2) Pot.. (p) (see Tabli’ 2)

0,1 0—1/4 4xE
1 2E 1 1 0121 >0 1 0131 >0 1 014 >0

0,2 0-1/2 2xE
2 E1 1 0121 <0 1 0231 >0 1 0241 >0

0.3 0-3/4 ~xE3 ~E3 1 0131 <0 ~023j <0 034j >0

0,4 0-1 0 0 1 0141 <0 1 024 1 <0 1 0341 <0

1,2 1/4—1/2 (2—4x)E1+(4x—l)E2 2(E2—E1) 1 0121 >0 1 1231 >0 1 1241 >0

1,3 1/4-3/4 (~ -2x)E1+(2x- ~)E3 (E3-E1) 1 0131 >0 1 1231 <0 1 1341 >0

1,4 1/4-1 ~(1—x)E1 
— 
~E1 1 0141 >0 1 1241 <0 1 1341 <0

2,3 1/2-3/4 (3-4x)E2+(4x-2)E3 2(E3-E2) 1 0231 >0 1 1231>0 f 234j >0

2,4 
- 

1/2-1 2(l—x)E2 
- E2 1 0241>0 1 1241>0 1 2341 <0

3,4 3/4-1 4(l-x)E
3 

- 2K3 1 0341 >0 1 134 1>0 1 234 1>0 

- ~~~~~~~~~ _ _ _ _ _ _ _ _ _ _
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Table 2

D etcrm it . nt s

~~O 12 I ~ -(1+3cE)~ y~~I034 I — ( l~~~ ---

~~0l3I -(2+3a-~)w l23~: -(2-3(a+~))-.:

i-~I0141 -(l+a)w ~ ll24I = -(l-a)w

~ j1 36k -(2-c~+3~ )w

y~I0241 -w ~ I234l -(l+3~).

Energies

= 3w(1+a) E2 = 4w £3 3w(1*~) 

—- -rn -- .-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~- --—~~~~—--~~~~~~~~~~--~~~~~~~~~~~~~ -~~~ --



Figure C ap t i o n s

F:;.  . .  C l a s s i f i c a t i o n  of stable phast- s i n  th1~ ~ .ti ht ~ s~~~~~. (a )  is

x~or ~~0 and (b) is for w>0.

Fi g.  .. A~ example of the ground state energy-c~’~:q’osit ~~-: ~~agra ~~.

This is for the case where A
3B and .~S are’ the  o n v  ::ter ~ ediate

phases. In the range 0<x<1/2 sol id solutions .ir~ ssible .

The question of two phase regions shown dashed i~ ~xa~ ined in

Section 4. Where there is a missing intermediate ;~ ase in the

ra nge l/2<x<1 no solid solutions ar e p~’ss ible in ground

state.

F ig .  3. The chemical potential corresponding to  the s itu ~:~.:~ in f ig .

2. Note that this is a step function. The chen~c.~ potentials

at two-phase equilibrium are fixed in this constr~ c .ion ,

although the coexisting composi tions are not .

Fi;. — . Plots of b vs. a from computer calculations . Nc’:e ::at the

disorder and the A
3B phases cross at a = 0.8 109. The te t rahedra l

r.iltiatomic interaction parameters chosen are a C .  C . and ~~~~~
-

0.08 .

Fi:. ~‘. The chemical potential p and temperature diagrar~ ca .culated

for w<0, a O.0l and ~~-0.08. Note that p -(6+cf) at T0 .

:~ lines indicated by 1 through 6 all radiate fr:~ this

; i:t.

F i r .  :. T:.~ composition and temperature phase diagram cor~~~s~~onding

to f igure  5. The short numbered lines corrcspon.~ t .~ the

:ir ~es with the same number’ ~n f i gure 5.

- ~~~~~~~ --—-,——-—~~~-~~~~-- -~~ ~~~~~~---- -~~~- ---— ~~~~~~~~~~~~—  A
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Fig. ~~~. ~chemat.ic diagram of entropy curves , SD for the dist~~dr’r
.
~d

;hase and S0 for the ordered .~3B phase. The coi~ion tang”nt L 
-

determines the phase *0 and x~ .

Fig. 3. Schematic plot of the functions •0(a) and 4’0(a) in eq. (28). -~~ ~~~
-

The point P at which the two curves cross correspond to the 
—

coexistence of two phases.

Fig. . Working diagram which is used to lead to fig. 1(a) from the

alternative treatment of Section 5. Points P, Q and R corre-

sponds to the lines (P), (Q) and (R) in fig. 1.
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Abe~~~~
Equilhlx’ita antiphase (APB) and inter~*iaM (IFS) boundaries in

the Cu-Au systen are examined thecretically using the cluster variation

. n~thod with ~a~lti-atan interactions iè~ se magnitudes ~were previc*isly

obtained ~~~~ a fit of the phase diagram. ~~~ IFS er~ rgy between

e uili~~ium discrdered fcc and ordered Cu3Au phases is strongly

teaçeratwe (and hence ocsiposition) dependent , being su ch higher for the

cc~per-rich side of the ccn~~~ent point T
~ 

and having a maxinuin on

that side at about 0.95 Tc• The IFS energies are only slightly anisotropic. -

~~~ APB energies at constant chamical potential decrease norx tonically

with increasing tenperatiz’e; at constant ncnstoichiar~tric ocinposition

they increase at l~ ri teiçeratwe to a ma,ci.nun wefl be]~~i the disordering

tençeratwe.. Near the congruent point , the APB undergoes ons or sore

second order s~ ’face phase transition in which an interfacial layer

phase develops within the boundary.

L~FU APB with (hkO) orientation (in o~w nctaticn) should be perfectly wet

by the disordered phase at the disordering tamperature for that particular

ccurçositicn. . 
- 

. 
- 

- .
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I. Introduction -

In ordering systens there occur t~~ kisxls of particularly simple

coherent interfaces, antiphase danain boundaries (APB) and coherent

inter’phase boundaries (IPB) . If we ignored the difference in the

identity of the atanic species , the t~~ danains or phases ~naeting at

coherent interface would be part - of the sai~ single , crystal as is

illustrated in Fig. 1. An APB separates t~~ dcznairis of the sane ordered

j *iase. An IPB separates t~~ different phases. IPB ‘5 can occur between

disordered phases differing in ocinposition, between an ordered and a

disordered phase , or between t~~ ordered phases.

APB ‘S can exist in all ordered phases. ‘fl~ y result frc*n the sy1~netry

trea)dng during ordering processes which can start in different ways in

various locations in a disordered lattice. The APB’s form wherever t~~

such regions contact . APB’s result also fran the preseroe (or notion)

of dislocations whose Burger’s vector are rot translation vectors of

the superlattice. The machanical properties of superlattices are strongly

affected by the fact that notion of such dislocations changes the area

of APB ‘s. Often deformation can only occur by groups of dislocat ions

whose Burger ’s vectors sun to a superlattice translation vector, and

w~cse notion as a group resotres long-range order in the structure [1,2].

The IPB’s are iiiçortant in alloys which order by first-order transition.

The free ener~ r of an IPB is a factor in determining the rate of

nucleation [3] of the crdered phase on cooling or the disordered phase

on heating . For multiphase alloys it also affects the shape and dispersion

of particles and is the main driving for ce in the long-t line coarsening

of such a dispersion (4). 
-

- - - - — -~~~~~~—~~~~~--- ——- ~~~~~~~~~~~~~~~~~~ 
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Phase trensitions within such interfaces have been predicted (5],

bit the order of the transition is very high, so that all properties

~Mt ~~‘e related to low derivatives of the surface free energy will

be ccmtiz*ious through this transition. There ~~uld be important

Implication of a change in character of these interfaces on troperties -

of such alloys, if the order of the surface transition ~~~e lower.

~~ether the ordering transition itself is first order ~
order is an important fa~tcr in discussing such interfaces . At the critical

t~~çerature o~ a higher-order transition the disordered and the various

danains of the ordered phase all becane identical to each other.

Consequently APB’ s disappear as the critical terçerature is approached

and their energy vanishes (6-10) . Because there 
- 
is no ooexisteroe of

rdered and disordered phases (except trivially at the critical temperature)

there axe no equilibriun IPB ‘5 between phases related by higher-order

transitions. -

For first-order trensitions tw>-phase equililriun occurs over a

range of temperatures and the t~o phases are never identical . The ordered

FMse retains a finite ~ iount of order up to the transition temperature.

Consequently both APB’s and IPB ’s exist right up to the transition ter~érature

and there is no reason to assi.m~ that their energy ~~u1d vanish there.

Several ordering transitions are first order. In this paper we

shall examine IPB’s and P1PB’s in an fcc (Cu—Au type) system which undergoes

an ordering transition to form a phase with the Cu3Au structure (Li2 ) .

In addition to the Cu-Au system these interfaces also occur in a nunber of

important nickel-base systems, notably in the Ni-Al system which is the

has is of superalloys. These alloys are treated to form a fine scale

dispersion of coherent Ni3A1 in a disordered nickel solid solution.

—---

~

-- -— - -
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They axe useful because their strength i~~ ’eases with increasing temperatures

to approximately 800°C, and then declines at higher temperatures [11,12].

.Increases of strength with increasing temperature seemi to be quite

~~mx)ni.y observed in ordered alloys (13-18).

APB’s have been studied thacretically for the CsC1 (or CuZn )

- - structure derived fran the ordering of bcc (8-10]. In the model chosen ,

(nsar-neighbor pair-wise interaction energies) this is a second-order

transition. The corresponding model for fcc gave crxnpletely unrealistic

phase-diagrams (19] until it was recently s]x~ n that these resulted fran

the &‘agg—Williams and pair approximation [18-21] rather than the model

itself . A cluster-variation method (CVM) in the tetrahedron approximation

can give a phase diagram in which there are three ordered phases, A3B , AB

arid AB3, which disorder by first-order transitions (20-2 1]. A close

match to the phase diagram found for the Cu-Au system is obtained if

fcw’-body interactions are introduced (22] . The phase diagram calculation

made it feasible to tmdertake a theoretical study of APB ’ s arid IPB ‘s in

such a model system.

A previous study of IPB’s in orderir~g systa~ (23] suffers - fran

several assunptions and possibly sane canputational errcrs that have

limited its applicability. In this study IPB ‘s were creat ed theoretically

between phases of arbitrary canposition and order, not necessarily ones

that ~~u1d ever be in equilibrium with each other,by cutt ing arid join ing

and caiçuting the energy fran the changes in the bond count . No

rearrar~~ nent of atc*i~ near the boundary was permitted . Such “weld”

interfaces can have negative energies as well as posit ive and the ener~

can a1’~ost always be reduced further~ Under sane conditions rearrang~nent might

tend even to canplete hai~genizaticn by rearrangement . We note that

for msny of the ground state cases we obtain rigorous results that differ

- rn’S- _ _
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fran t)~se obtained ~zsviously (23] even when we assui~ the s~~~ interaction

ensrgiee. The etwly also ec~nin~d APB enez’gics wit)x*at r~~ard to whether or

•r~ t the initial jthase could be in equilibritmt. For the U2 phase negative

AIB energies were reported (23] w~ er condition where DO22 should have

been the stebl~ ~~c*.v~t state s~~3cttre (24) . Here the ‘W’B” wes the first

• step t~~~ ds equililriun .

In this paper we will use the ucdel with fo~w-body interaction energies

c1~ sen to match the Cu-Ala phase diagr~ a and calculate jrop erties of

APB’ s and IPB’s which have been allowed to equilikzate with respect to

all atanic rear’range~ nt in a crystal constrained to have t~~ different

t1t~n~i~~ or phases. At high t~nperatwes and/or s]~~i defonna tion rates

the e is time for diffusional rearrangenent. &ich equilibrated boundaries

• ~~~ all the la.is of surface th ri~ dyn~nics iix~l~xIing the Gibbs &iscE’ption

equation whieb can be used for a sensitive check on the calculation

If an APS is oreated so x’api~ly by shearing that there is ixt time

for diffusionai. rearra ng~~ent of atc~na , we obtain a very different

boundary. Calculations of the jzoperties of such bound aries have been

made for various ~~dels (7 ,25] and will be examined in a subsequent

paper for the ncdel used here (26) .
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II. ~ ysta11cgrep~~ and Definition of .&rface Orien tation Indices

~~ di d~~~d phase is fcc (fln~~) with four equivalent sites with

~~~~point sy~~~try at O0O, l/2 1/2 O, l/2 O l/2 and O 1/2 1/2. Th.

orde,d phase has the O.a~Au ~ yetal str~uct~r (Pm~n) with one kind of

oo~, ,ation for the ‘site .rbitrarily chosen at 000 with m~n sy*mtiy and

another occupation at the thre. equivalent sites with ‘e/nim~ eynm~try at

1/2 1/2 0, 1/2 0 1/2 and 0 1/2 1/2 (273. Fc*.u’ &~~1ns are possible

because ~w of the f~~~ equivalent Bites in foe could have becane the

origin for the Oi3Au str ucture.

It has been cuetanery in this field to des’oribe the fcc structure by -

four inter-penetrating ~1n 1e cubic “sublattices” each centered on one

of tj~e fc*n’ equivalent sit .. (Fig. 2) . The Cu3Au type ordering occurs

whsn the occupation of one of the sub].attioes beoQnea different f run the

occupation on the other t)wss.

We define aw crystallographic axes along the cube axes ocim~n to both

structures. For the IPB we choose the origin of the coordinate system

such that it coincide s with the atan having m3m point synmetry in the ordered

phase. For the APB we place the origin at this point in one of the dcznains

and arbitrarily choose the n-axis so that the m3m position occurs at

1/2 1/2 0 in the other dcinain (See Fig. 3) .  The orientation of the boundary

~s ap.cified by its normal n , but all such properties isist be invariant

to symetry operation. of a point group which is camon to both danains

or pheass. !~~~the IPB thip ccma~n point group is m3m. For the AP~3- it is

4/n,m~ because the translation which carries the occupation fran the site

at 000 to the 1/2 1/2 0 aLt. destroys the th ree—fold axes id t~~ of the

~~ w—fo1d axes (Fig. 3) ,  k~ocrdingly while (100), (010) and ( 001) IPU ’s
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er. o~~ 4et.1y .q.zival.nt, (OQ1) APS’s differ fran (010) ad U00).

The for~~v is called a conservative APS because it could have been
- 

created fran a single &,n&in by ocmser’vative slip; while the (100) and
— 

(010) ar. nonconservative, ad with perfect order either t~o enriched or

depl.t.d layers are adja cent at the APB. may have also been called

4~nciari.e of the first ad second kind. We m a y  represent all scaler

m.a~face properties by plots on the unit sphere, but the synsetry makes

the tria ngle with corners at (001), (101) ad (111) sufficient to describe

all orientatio ns for the IPB, while the larger triangle with cor~ers at

(001) , (100) aM (110) is necessary for the APS ’s.

The symnetry properties of bicrystals with planar boun laries have recently

been developed (28]. The foumalation is general enough to include APB ‘S

(r~ orientation change , just a translation of one crystal relative to the

other) ad IPS ‘S. Application of this r~~z group-theoretical mathod to the

• present system leeds to equivalent descriptions.
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tU. General Fonmi].ation 
-

In this section we develop the fornulationa of the (100) APB as an

exanple. The foum.zlaticn for other orientations differ only in the interactions

and configurations of atanic planes parallel to the interface . The APB

can exist ~ier the entire range of teiçerature ad ccmpositicn (or chemical

potential) in which the ordered phase is stable . For IPB ‘s there is

the limitation on chemical potential imposed by the phase rule that different

phases nx~st coexist at the interface For each ter~er~ture where the

phases coexist , an IPB occurs at discrete chemical potentials .

We shall call the four simple cubic sublattices I, II , III and IV as

in Figure 2. We shall call the A
3

B domains in âiich the I sublattice is

preferentially occupied by B atans the danain I; the .ot)~~ danains are

• correspondingly defined. The (001] axis is then determined by our convention.

The (100) APB is fo raed when doaaina I and II are placed on oppo aite aide .

of th. boundar y and allowed to relax to the equilibriu m configuration .

By the definition of &znains I ad II , the III and IV sublattices

are preferentially occupied by A atans in both phases while the occupancy

pattern changes between the I ad II sublattices as we go fran danain I

to II. Therefore we see that the entire system can be regarded as a

layer struct ur e pertperx1icular to the boundary consisting of P layers

m~~stly of A atans and Q layers ca’nposed of mixed A and B ata ns.

We can. lattice planes parallel to the boundar y as “parallel” planes ,

for short ; t hey are n~jnbered . . ., n , n+l , . . . ,  as in Fig . 2.

In formulating the free energy including the boundary layer using

the cluster variation method (CVM) , we take a tetrahedron like the I-II -II I-IV

connected in Fig. 2 as the basic cluster . Each tetrahedron is made of

~~~~~



tu~ points on one parallel plane (like I ad III on the ~th plane) and

of t~~ points on an edjacent p~ *Ue1 plans (like II and IV on the

plane). Also we rote that one of the tw points (like III) on one

parallel plane lies on a P layer and the other point (like I) lies on a
Q ]ayer.

In a binary system an A atan ad a B atcm are called the ~~~ and the
21~ species, respectively , for mathenetical ~~ *venience. We let denote

~~~~jth specjes, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose
the flI , I , IV ad II points connected as a tetrahedron in Fig . 2 ar e

occupied by the ~~~ jth, kth and 1th species , respectively , men using
au~ rotat ion we can say that this connected tetrahedron has the configuration

1m ~~ ~Cp(~~1) !Q(n+l) We r~~i introduce the basic variabl e zn (i ,j ,k ,S.) of the

theoty; this variable designates the probability tha t the configuration
(i,j,k,&)appe s in the ccnnectedtetrei~edr~~~of Fjg. 2. •

For the pair var iable there are five kinds as defined in Tab le 1.

ibte that the order of argtaaents has significance. Table 2 defines

the probability variables for a lattice point .

There ~ e geanetrical relations ~iaig the variables:

= E Z (i ,j, k ,L)
k,t ~

v~~ (i~k) = z (i ,j ,k ,L )
j ,t n

- (1)
v (j,t) = E z~(i~i1k,t )

j ,k

VQpfl(i~k) = E z~(i,j,k,t)

_ _ _ _ _ _ _ _ _  a-
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.x~(i) ~ z (i,j,k,&) (2)
j ,k ,t T

~ • 
.

= E z (i ,j, k ,&)
i,k ,t ~

Also we have continuity constraints

y~(i,i) = E z~(i,i,k~L) = Z~ 1(k,L,i,j) 
- (3)

k,t

ad the iximalization of z is

i = E z (i ,j,k,1) (14 )
i,j,k,t ~

We have t}iis defined the variables. Na,i we go on to write the free

energy of the system. The runber of lattice points in a plane parallel

to the boundary is written as N. Then the muter of tetrahedra connecting

~~ ~
th ar~i the (fl 1)th planes is 2N. The total energy of the system is

then written as

E = 2N ~~ E t (i ,j,k ,t) z~(i ,j, k ,t ) (5)
n i,j,k,t

~Eiere c(i,j,k,&) is the energy per tetrahedron ad is written as

e(l,l,l,l) 0.0

c(l ,l,l,2) = 1.5 w(14u )

t(l,l,2,2) = 2.0 ~, 
(6)

e(1.,2,2,2) = 1.5 w(l+~)

• c(2 ,2 ,2 ,2) 0.0

In those expressions, ~râ~ith are the same as Eq. (14.2) in Kiluchi-de Fontaine’s

paper t22) , the order of argunents i nc i s lnineterial. The parameterwis

for an interaction of an A-B pair , ad its magnitude is re lated to the

_ _ _ _  _ _ _ _ _ _ _ _ _ _  -~~~~~~~



t~~~~~t~ scale. The ti~ dlaenticmlese ~~~ aeters ~ ad ~ r epresent the

fair—body interactions ad make the *mase diagr.n aay etr ic. 1~~ values

d~een for the best fit (29] for the o~~erved Cu-Au diagrmn ~ e

w /k= -663°X
A

a : 0.01 (7)
A

8 = —0.08

~kijcJm ii. well within the range of values that give the proper ground

state as wes sh*r~ in the preceding paper . me k is the Boltznann constant .

The entroyexpression is taken fran , for ex~~~le, rq . (3.5 ) of the

Natur al Iteration Method (NIH ) paper (30) as

S : k N  ~ ((~~ .C(y (j,j )) + E L(v~~ (i,k)) + E £(v (j,t)) +
mm i,j ~ i,k i i .

£ .t(v ~~(j,k)) + E .C.(v (j,t)) ~i,k Q j,t k,L
(8)

— 2 E C (z (i,j,k,&)) — 1 — EE .C (x~(i)) + t L(u~(i)) +
i,j,k,t “ i - 5

E L(x~~1(k
)) + t

b*~~e th~ Z operator is defined as

L(x) xlrmx—x - (9)

In treating a system of aa~ present interest we f~~a.m1ate the grand

potential G defined by
2 A

G = E — T S — E i m ~N~ • (10)

~~~~ ~i 
is the chemical potential of ~ * 1

th species ad Nj is the total

nijther of the 1t1m species in the entire system incltzling the boundary

region. We can also write the last term of (10) as

~~~~~~~~~~~~~~~~~~ ~
_ j



•~ -

2
— I i*~Nj = —(NJ’i) £ £ (~~+ 

~~~~ ~~ 
Mt

)Z (i,j,k,t) (11)
jal n i,j,k,I. n

Si~~e we have only ba, substitutional species in the system and we have

mo v.caroies, we can choose without loss of generality

(12)

mEiere p is twice the diffus ion potentIal. defined by .Larché ad Cahn (31] .

• In calculating the equilibriun state , we fix T ad p , ad find the

minfnun of G (30]. me minimization of C leads to the following set of

equations: 
•

z~(i,j~k,t) z1~
0
~ (i,j,k,t) exp (~~A~ + cm~(ij )  — a~~1(k ,t)] (13a)

z~~~ (i,j ,k,t) = ~~~ (-8e(i ,5,k,L) + ~~B(u~+ P . + Uk~ Ui
)] x

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x [x~(i)

• %
(j )

%~1
(k)

%~1
(L)] 5” 8 -

. 

• 

(l3b)

In (13a), the quantity A~ is the Lagrange ntaltiplier for’ the rxxmalization

in (Li ) ad has the meaning, after the iterat ion has converged, that the

grad potential G of the system is written as

G = N Z A  . (114)
n fl 

• 

-

Note that N is the zunber of lattice points within one parallel plane.

me quantities u~(i ,j) and c&~~1(k ,L) in (l3a ) are the Lagrange nultipliers

to take care of the continuity constraints in (3). The quantity 8 in

(13) is equal to l/k’l’.

The process of solving the set {z~(i , jk ,i)} fran (13) for the

equililriLmm state is divided into the major ad miror iteration steps.

One major iteration starts with the values of z~
0
~(i,j ,k ,t) in (l3b) .

Then the Lagrange nultipliers (a~(i j)) are solved iteratively to satisfy

the continuing relations (3). The iterative process of solving 

—--- . - • ---  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ iii i~~ 
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is celled the mirrr itera tion. In thi* process we can choose,

withcu.t loss of generality,

a~(l,l) = O for every n • (15)

because of the rlxlMlization on y ’e:

I y ( i , j ) : ] f o r every n (16)• j j fl

• 1~~ details are similar to those in I~ . (14.114) of the b.c.c. boundary

paper (5) .

• 

- 
%~ en iz~(i~i)’s are thus solved the output of c~me major ’ iteration

step is obtained fran (]3a). This output (z~(i j ,k ,t)) is used as the

input for the next major iteration step. This iterative solution of z ‘s

has been called the Natura l Ite ra tion Method (N1?1).

As was di scussed in length before (22 ,29 ,30) , the NIH has the

advantages Ci) that the gra d potential G always decreases at each iteration r
step, (ii) hence that it always conver ges ~*matever initial values the

iteration may start , ad (iii) that the fornulation avoids subtraction so

that all the variables always stay positive however smell the value may be .

For the boundary cxmçutatiorms, we choose a system made of either 60

or 80 parallel planes . The muter N of atczmms In one para llel plane chops

cut ~E~en we asstnne that N is sufficiently large ad neglect the end effect .

For the inItial conditions, we choose the left half of the system to be

in danain I and the right half in danain II. With this initial condition,

the interaction converges after about a thousand major iterations ,

sarctinmes less sanetimes nore, ad the ntz~ber of minor iterations is

less than ten except near the begimwd.ng of iterations.

When the iteration has converged , we know the stn.mcture of the

boundary expressed by the set of tbe probability variables (z~(i ,j ,k,t)).
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‘ftis density profile ~~ ‘oss the boundary, for exan~ 1e, is express ed by

the point variables {x~(i)) aid (U~(j )) of Table 2. ~~a~~les are s1~x~an

in later’ sections . -

~~~ excess free energy a is defined (5,10,323 a~ the excess of the

grend ~~tent1al G in the Inhci~ geneous system containing the boundary

.~ier the grad potential % in the horcgeneous phase, ad a is rumalized

to unit area:

(17)

where ).,, is the value of in the ]xmcgeneous system, and a is the area

per fcc lattice point in the parallel plane.

~~‘ivative Quantities

In a recent paper (32] , one of the authors prepared a general fontu].a

to est im ate derivatives of the IPB free energy. ~~~ of the forim.ilas is

(5] (N1] (N2] -
. 

•

S’ N1’ N2 ’

S” N1” N2• 4,!) - ___________________ — U� /M~ iJ~ IT P  
Nf N2’

N1” N2”

In this expression , (5) is the entropy contained in a cylinder which is

perperdicu]ar to the boudary ad whose cross-sectional are a is unity .

This cylinder extends far enough into each phase that it encloses

sane of each lulogeneous phase beyond the influence of the boundary. The -

quantity (Ni) is the total zunber of U~ fh specie s (il or 2) contained in

this cylinder. 1~~ quantity S’ is the entrop y per unit voltine of the t~i1k

luiogeneous, and N~’ is the munber of the 1th species in a unit volume of

the bilk phase I. ~~ (S/N1?12] is identified with the surface excess

entropy (32) .

- 

_ _
~
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• ~~ apply the expression (18) to the (100) IPS, far which the primed

phess is the disordered phase ad the ~~ib1e—irisad phase is the A3B ordered

iMes. For tJ~jg probles, we can sinçlify ()~~) using the relation

~I~’ i t 4~’ z l  
. 

(19)

ad the c~*t .spcwdthg equation for

Since the fcz ,imlation in the Iresant paper’ is baaed on the lattice

$tx~~t~re, we can im’ite ($3 aid (N
1
) as sim s over pereflel planes n. By

using the relations in (19), we can refcrnulate the gener al expression

(18 ) as

~~ (~~r) = — E (S]~ (20)

where

(S]~ — (N2’ 
— N2

”) 1 (N
2 ’ S” — N2

t S’ + N2,~(S’ — S9)+S~ (21)

In this expression S~ ad N2 ~ 
are the entropy ad the ntmnber of B atans

(i.e., the atan of the 2’~ species) per lattice point on the ~th p a f l~~

plane. Quantities S’ , S”, N2’, aid N2
t’ are per lattice point of the

~~~ ga~~us —.

A ~~d4fication of this fcz ie~1aticxt can be used for APB ’s (32), bit

• because the two ~ nogeneous danains have identical thenrodynamic properties

• there is little difficulty defining invariant surface excess quantities (101.

(~ ourid State for IPB ’s and APB ’s

As lit the previous ~~rk on B—tress APB ’s (8), it is instructive to

examine low tençerature variation of boundary properties with the orientat ion

ad canpositi~~~1 or chemical potential. ‘lb this we examine the ground state

and ground state degeneracy in this nodel of a system containing APB ‘s

ad IPS ’s of various orientation. While no real system could re~tch

equilitrium at low temperatures, the calculated low temperature equi1ibri~

display a clue to the understanding of tr erd s that begin at higher temperatures .

-- •



We use the .sthods and notation of the preceding paper [33] . For the

case considered hers, w<0, ~ and B small we have for nonstoichiometric alloys:

E—4 zR~ — —2(1+3a)w22 — (2+3u—B)wZ 3 — 12(14c&)wZ4 when O<x<¼ (21)

E— (2—4X) E1 — (4X—1)E 2 — —2(1+3a)wZ0 — (2—3ct—3 8)wZ 3 — 6(1—a)wZ 4 when ¼<x~½

where X is the ~~1e fraction of B atoms. For the ground state the r.h.s. of

these equations is zaro , because the atoms can be arranged with Z2
1Z
3 Z4

EO

for the first case and with Z0—Z3 Z4-O for the second . If an IPB or APB

requires the presence of these higher energency clusters the Increase In energy

per unit area is the limiting low temperature surface energy for such a boundary .

It is apparent that IPS’s bet~~en fcc ad A3B aid between A3R and AB

can be created wit)~ ut introducing any higher energy clusters. It is

readily de~cnstrated by a construction such as Fig. 1 that (100) and

• (001) APB can be created entirely fran allowed clusters arid thus with zero
• energy. APE’s with other orientation can always achieve zero energy by

facetting to cube orientations. Therefore grumrxl state APB energies at

T~0 for ronstoichiamietric crystal are zero for all orientations.

Stoichic,netric A3B alloys can contain only A3B clusters. The

formation of (001) APB requires no energy because it requires no other

clusters, bit for all other orientations other clusters are required. It

is convenient to for’in.ilate the stoichicmnetric case in tenns of chemical

• potentials.

The result for the (100) APB is sketched in Fig. 4 as a three-dimensional

stereographic drawing of the (a ,~i ,x) relation together with its three

projections . The lines in Fig . 4 are

- ( -2(1-3a) - ~1/fW 1 when -4 < < -2(1-3d)
WI - t p /tW l— 6(l~~ ) when —6(1+&) < < ...‘3 (2 2)

_________ ~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~ - - - -~~~~~~~~~~~~~~ 



ad a is~ the length of the cube edge as e]vwn in Fig. 2. These relations

are derived by counting bonds of the APE between t~~ per fectly ordered

danains; we skip the detail s of der ivations ar id present only their

interpretations. The (p ,x) projection s}~~ia a step function in accordance

with FIg. 3 of the preceding paper (33], the (a x) projection consequently

ah,ws a as a $ -function of the ocrçoeitlon ~t the stoiçhianetry . The

(a ,p) projection reflects that the adsorption by this APB is *1 B atan per

sectional area a2, since ( aO’/
~
)u) T is proportional to the excess B atc*ns

adsorbed on the APE. On the p<-k iv i side , the boundary is canposed of

a layer of A.~ tetrahedia, and on the _4~w~qi side there are A2B2
tetrahedra. At p :_4 lv i , a is a maxinun arid either A.~ or A2B2 tetrahedral

clusters give the same O~ The ccristant adsorption on the t~~ legs of the

(a ,~i) projection are thus consistent with the Gibbs adsorption equation .

lbs t~~ values of p at the bottan of the legs are ras p . the values at T 0
• for the disorder - A3B phase coexistence aid for the A3B-A2B2 phase

cx existence. The a converges to the point (T=0 , x=l/4) non-uniformly as is

seen in Fig. 5, arid the nature of the ron -unifcrni ty is that the converged

walues are different depending on p as is illustrated near T 0  in Fig. 6 ,

as well as in rig. Le. •

The energ y of APE ’s of other orientation in a stoichianetric alloy is

a strong function of orientation . A polar plot of a vs. orientation can be

described (8] as a rasberry figure canposed of the outer envelope of four

spheres with diameters equal to a (100 ) and centers at a (3.00), 0 , 0)

arid (0, ~~~a (100) , 0)

_ 
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IV. Results

The results of ths calculations yield the profiles arid th~~nodyn~nic

properties of IPS ’s ar id APB ’s as a function of orientation n in the
• turipsrature-ocmçositicn (or t npsrature-ch.nioal potential ) region where

thes , interfaces could exist . APB’s could exist over the closed region

on the phase diagr~n where tM A3B phaae is atab1e as shown jn Fig. 5;

can exist only at that portion of the boundary of this region where

both ordered and disordered phases are stable ar id can coexist . The

properties of APB ’s are deter mined by t)u’ee variables (n ,T x )  or (n ,T ij )

eiz~e ~* aptCT i4~ Along the two-phase coexistence curve p ad the x ‘S of the

two phases are functions of T as &~~ n in Fig. 5 of the preceding paper ;

therefore IPB properties are determined by two varialbes ; n arid either p ,

or the x ’s of either phase .

IPE

Figures 7 and 8 s)x~, a for (100) ad (110 ) IPS as a ftznction of T and

of p , re spectively . It is to be noted that there is only slight anisotropy

with (110) sur faces having ~1ight ly higher a. The anisotropy falls well

bela~i the range that ~~i1d result in facetti ng . The equili~z’iuin shape of

an ordered daMin within a dieor dereJ nstrix would be a “spher& slightl y

flattened (by about 10% ) along the (100) directions. This is consistent with

tranmnission electron microscope observations that mnall coherent ordered

Cu3Au and Ni3A]. in disordered nstrixes are close to spherioal (34-36). As

the particles grow they tend increasingly t~~ar ds rounded cubes . Several

factors in addition to surface free energy , particu larly coherency strain

are Important In detenidning particle shape, but eurface free energy is

dcininant for mna1l particles (le]. It is also to be noted that neither a

nor a maxIim~n in a occurs at the congruent (i .e.  ~ax1irnzn )

________ _____________________________________________________________________________ __________ _______ 
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t~~ ierat~r. of the phase di.gr . Iridsed beosus. the d.ncainator of tt~
r.h .s. of squation (18) i. zero at this maxlj*s~ t~~~eratw’s, 6,/dr is

infinite ~ 1es. the rui~~’ator is also zero at such a point . Unless there

are special conditions the nueerator will not be zero and such an infinite

slcçe at the congruent point is a g.nsril result.

The value of a for an IPS is iu xrtant in the izicisation of the

ordered phase. One prediction is ~~~t the Cu3Au alloys enriched in Au

will molests the ordered phase nore easily, i.e., at less ~.md.rcooling

than alloys enriched in Cu.

Consistent with an’ n~de1 which has no interactions between neighbors

other than th~ f irst , a tends to 0 at 0 °K. In a real syaten low tenpereture

a values im~st depend on other interactions.

Thenicdynmnic self-consistency within the ucdel is d~~~nstrated by

Figure 9 in which a for (100 ) IPB is given at several values of T together

with a slope given by minus the surfac. excess entropy (S/N1N2) obtained at

that tenperiature fran the sene IPB prof ii. used to calculate a in Fig. 6.

This deii,nstration that equation (18) holds is a ver y sensitive tea t of

self—ca~sistency £l0 ,37].

Because of the non-unif~m convergence of p at the point (T,x)

(0, 1/4), we give in Fig. 6 a vs T for (100) boundaries both at constant x

arid at constant p. At x ~ 1/se arid T a, ~ can range within the limits

given in equation (22) • All the constant p curves converge to x = 1/4 at

0 °K and to finite values of a , while all the x � 1/4 curves lead to

= 0 at 0 °K. It is to be noted that the curves for a constant ronstoichicinet rh

x show a maxlnijn in a,

For the nonstoichianetric constant x curves, the maj or term in the

low t.içerature dependence of a canes fran the adsorption. Because the

_



rever sible ~~.ation of APE r~~~~ss excess species fr~~ ~~ icnstoichicinetric

order ed phase where they have high partial molar ent~~py arid concent ra tes

then along the ~~ ndary with low entropy , the net entr~~y change for the

systen is negative **en APE area is reversibly Increased. As in the case

for boc APB’s (10] the ma,dnun In a occur s in the te~,erature range of

ds.crption. Consistency with the Gibbs adsorption equation is dercnstrated

In Fig. 10, to be oarpared with Fi&. 6.

The anisotrcçy of APB• is pronounced. In this model the (001) APB has

= 0 at all tenperatur es. ~~~ (100) ad (110) results are oaiçared in

Fig . 6. The rati o of ~~~~ ~° ~ oo’ ar id therefore 0110 does not facet into

~~~~ arid 00~~ OI.n’ calculation for (101) led to a value of a which at all

tenperatures exceeded v1.7~ ~~~~ 
The (101) APB could always reduce their

energy by facett ing to (001) aM (100). Although we have not ocmpited

other orientations we would expect the anisotr opy to be such that all

(h ,k ,t) orientat ion would facet to (h ,k 0 )  arid (001), while (h ,k ,0) would

be stable.

The dansin structur es observed for C).i3Au s~~ both facets and rounded

APB’s that are mostly near cube planes (37]. We expect that the sharp

edges cormect a (100) with a (001) , while the rounded portions lie along

(h ,k,0), connecting (100) with (010) se~ ents. The (111) APE energies have

been determined experimentally at 3500C in a stoichianetric alloy to be

25 mi/rn2 . We calc aate Ga 2/ I w l :0.4 for this temperature for (h ,k ,0) APB ’s ,

— 

which is given 23 iri J/rn2. Because of the strong anisotropy we calculate

18 jnj /in2 for (111) oz~ientations.

Perfect Wetting arid R~ase Changes in APB’ s

Our canputed values of aa2/ I w I at the congruent point are 0.1469 aM

0,155s1 for the (100) arid (110) APB ’s respectively arid 0.0722 arid 0.0767 for’

the (100) and (110) IPB ’s respectivel y . Takir€ into consideration of the

special limitation in the capability of t~e ccmçuter’ in calculating the

_ : _

~ -
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APS coi~~’usnt point , wa conclude that the c~~ uter results indicate

for (h ,k,0) orientations at the ccn~~ient point

0Affi - 2aIPE (2 3)

- This the (100) APB could either consist of two (100) IPB ’s with a disordered

layer in beNeep or it coincidentally has the same free energy. Figures

ila arid llb show the calculated profiles of the APE ar id the IFS , and

conf inn that the disordered layer is part of the APE and that indeed the

APB has beocine two IPB ’s. There is no reason why the thickness of the

equilitr iun disordered layer exactly at the con~ ’uent point T0 s)~~ild not

be infinite; the finite thickness sbown in Fig. ].la is the result of the -
;

canputer calculation which is difficult to attain perfectly converged

solution in the finite canput er space allocated for the APB at T0 .

We deter,nined-0 for (100) and (110) IPB ’s fran kT/ Iw I = 0.50 on the

1.0w Au side of the congruent point to the eutectoid tenperatu~e on the

high Au side (Fig . 5) and ocinpared this with the limiting values at the

two-phase boundary of the correspondii~g APE’ s. Equation (23) held everywhere.

~ m implication of this result is that in two-phase alloys the disordered

phase will coat all (h ,k ,0) APE’ s near T0. Since at equilhtritnn all other

orientations will facet into (h,k,0) arid (001) APE’s there will be only
(001) APB ’s within equilibrated particles of the ordered phase . By

anelogy to the cor responding pherrznenon in fluids , this is called perfect

wett ing of the (h ,k ,0) APB ’s by the disordered phase . Perfect wetting has

been shown theoretically to cocur near all tricritica]. points [39] and it hai~
been found tha t in the Fe-Al system the disbrdered phas e coats all Fe-Al APB ‘s
(40 ,41]. The general proof which applies near tricriti cal points is not

appl icable to the A3B APB ’s and we do not know whether the finding of

perfect wett ing is a general result .

Figure 11 s1~~as the internal structure of (100) APB and IPB at the congruent

point . Within each there is a thrck layer in which each plane parallel to
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the bc*indaxy is disordered (a pair of sublattices have equal occupations)

bit adjacent planes are sodulated In occupation by B. This layer has

tI
~ 

Ci.~ u (U0
) s~~ict~we in which the CuAu order paremeter gradual

changes sign with distance perpendicular to the boundary. At the center

of the APE the order par~~eter is zero, all. four sublattices having equal

occupation. The notation of Sbockley (19] lists structures of phases

by the zu±er of sublattices having identical occupation ; (4) is disordered

fcc , (3,1) is Qi3Au , (2,2) is CuAu. Using this notation we find that

at the ocr gruent point, the layers of the (001) IPB in Fig. i].b change fran 
-

• (3,1) on the f ar right to (2,1,1) to (2,2) to on the fax left (4) while

(1.00) APB consists of two such IFS ’s

As we 1~~~’ the temperature at constant canposition or chemical

potential the APB ’s diminish. The (100) APE profile is s1u~n for two

t~nperatures in Fig. 12a arid b. Fran the congruent t~nperature down to

Kr/Iw I = 0.90 the profile narr ows bit the sequence of the layers remains

the ~~~ At 1cr/~w~ 0.87 the AFB has lost the (2,2) and (4) layers arid

contains (2,1,1) arid (1,1,1.11 layers instead. Below this temperature,

there is further narrowing, bit this structure is retained to quite low

temperatures.

In order to ascerta in whether or not there is a surface phase transition

between these two temperatures we give in Fig. 13 the values of the edsorption

and the excess in e~tr~~y for the (1001 APB as a funãtion of temperature.

There is a break in the slopes of these two curves at KT/ I wi 0.882.

%ch .a break in the curves indicates that there is a discontinuity in

the second derivative of C’ ad that we have canputed a second order

transition for the (lOfl) APE with classical exponents.

Mother way of describing the tr ansition is in tenns of the thickness

of the (2,2) layer in the central region of the APB. In Fig. 12a it is

tw. atan planes thick arid is really a disordered (4) layer. It beocines 
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six planes thick when )~ / ~w$ is 0.99 ad ccntimies to ir~~ease to what

&~ou]d be Infinite thidcnese at the coneolut. t~~~eratwes. The increases in

thickness are ~~nitcr.d in Fig. lie which st~~~ two o.u’ves for the difference

in occupation of two sublattices on a slz~~e stan plane for n 28 and n: 30

(when th. center of the APE occtge between n30 and ns3l) . ~~~~ the

differenos In occupation ±~op. to zero that plans has jo ined the (2 ,2)

layer. ~~ na30 curve s~~is the disappearance of the last raw~ant of the

— (2,2)]sy.r at KT/I wI :0.882. The nz2S cux’ve &uis itiat appeare to be

an abrupt thicknening near )
~/ Iw I = 0.99. There is a possibility that there

are a runber of phase transitions associated with the thickening of the

(2,2) layer. It wes not possible to impr ove the precision of Fig. 13

sufficiently to ascertain whet~~~ there were discontinuities in derivatives

of 0’ ccrrespording to the thickening of the (2,2) layer. The question of

these ~~ itiona1 surface phase transition at the highe~ terçeratures

requires further st~dy.

S~a~ try requires that the order par~~~ter at the center of art APB

in the boc with Cad order go to zero. ?b such synitetry requirement

exists for APE’s in fcc with I~12 order, arid APE’s below the 0.882 transition

were ordered at their center . Above the .882 tra nsition the central

two planes ar~ disordered consistent with the syninetry of an Al’S within

a (2 ,2) atzucture.

The structure of the (110) IPB at the congruent point is s)~~an in

Fig. 15. The (110) Al’S is not s)~~an bit it very closely resembles two
— IFS’s. If there were a (2 ,21 layer in this boundary it would not be

apjb~went in Fig. 15 which averages cxmçositions on (110) planes that cut at

45° to the layering in the CuAu structure. We did not invest igate wht~ther

or not a phase transition occurs in (110) APB ’s. 

• 

• 

;
•

.
. •



Discussion

Because statistical mechanical calculations of fec phase diagrams

hive only recently become possible, this is the first calculation of

equilitriltn ~zoperti.e of Interfaces within arid between phases based

on fcc • The first-order character of the phase transitions iisplies that

ncne of the higher-order oritical point behavior could be expected for

these interfaces at the disordering transitions. Indeed the surface free

energies remain finite at the first-order transition point . Nonetheless

several intere sting phenomena were uncovered. The (100) APB ’s undergo

second order surface tra nsitions in which the internal structure of the •

boundary changes, and at the disordering temperature the (h ,k , 0) APB ‘s

contain a thick disordered layer. Indeed the APB has become two IPB ’ $

at the congruent temperature T~, aid near there the Al’S is perfectly wet

~~ the disordered phase . !bdern high resolution microscopy should be able

to resolve these interital structures .

The large anisotropy in IPB energy expected fran the cubically

distorted sphere of large coherent particles ~~s rot calculated . Indeed

• the c~servat ion that ~na11 particles are ncre spherical is consistent with

these calculations arid with the expectation that surface energy is the

dominant determiner of shape in email particle, while ot~~ ’ factors such — 

-

as elastic anisotropy become important for large particles. APR ’s were

shc*m in Section II to hive tetragonal syntnetry and “o be surprisingly close

to isotropic in the zone of (001). Because of ar neglect of second neighbor

interaction, (001) Al’S ‘s have zero energy. This leads to a very high

anisotropy for’ all other orientations and a prediction that all (h ,k,t) APB ’s

~~u1d facet into (h ,k ,0) and (001). Observations on APB’s indica’e both

rurided arid facett ed portions arid such domain structures should bt~ reexamined

to establish the nature of the difference.

L - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



• Ws next t’.wn to applicability of ~w ramalts to isal systems. This

hinges on two aspects of the calculation, the r~xiel which is implicit in

t~s mqrsasicm of the ar~r~~ in t~~~ of tetrahscfral clusters in equation(s)

ad the tetrahedron ap rc~dmaticn* of the C.VJI . It is 1~ x:rtant to distinguish

iràiat i~ _____ in the ~~d.l fCr~ the energy , which is couched In energies

assigned to clusters, with the statistical ircbl~~~ of the basic clusters

In the C.V JI. In this calculation we used energies of tetrabsira for the [
~~del arid tetrahecha for the C.V .M. For cbvic*zs reasons the cluster in the

C.V.M. iiijst contain (be the s~~~ or larger than) the cluster in the ncdel,

unless or~ adds a &‘agg-Williatis apprcxlmation (20] .

- b~ have already roted that for fcc using clusters emal].er then tetrahedra in

the C .V .M. gives unrealistic phase diagrane , while using tetrahedral

clusters in a near-neighbor pair wise energy nr del gives a quite realistic

diagrecn in which there are t)~ ee ordered phases which )~~ever have three

congruent points & abicet the same ten~eratwe. The ~ aM 8 parameters

relx’esent four-atca near—neighbor . Interaction energies which create differences

in o~~~~ient point temperatures. ‘1~~ me&ll values uaed )~~e were chosen to

• fit the CuAu diagrun. They should rot affect the qualitative conclusion

reached here.

Because the ncdel ignores the contribution of nore distant neighbors to

• the interaction energy it exaggerates the anisotropy of the Al’S ‘s. (Xir

finding that 0(001) is ident ically zero is a direct result of a near—neighbor

- 

t nodel . Introducing higher neighbor Inter actions would require an incr~ase

in the size of the cluste r in the C.V.M. witha ].a rg einorease in the

computational effort .

~~~ accuracy of the C.V.H is usuall y tested by having sane rigorous

results available . F~t’ bce APR ’s such results existed at T 0  and the critical

temperat ur e, and it wes possible to s)~*a that the pair approxlimat ion gave

quit. adequate result s • Thr fcc the results merge with the rigorous predictions

- :  a t T O .  -

-
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~~ th~iz~dynamic self consist~~~y checks (Figs. 9 arid 10) test nei4h~v -

the validi ty of the nodel nor the ap~~odmetion in the C .V .M. but only checks

that the calculations were performed consistently with both . It is surprising

1~~. meny calculatio ns on surfaces fail this check . It fails e.g. whenever

there Is an artificial constraint on the thickness of the boundary , which

rrevents it fran equilibrating or whenever the bcxiMax~y is between phaseS

• that are rot in equilftrit.sn.

Cc~~-esponding to this theoretical check is the experimental use of the

Giths Adsorption equation as a true test for surface equilibria. An extreme

case of a ronequilibrium surface between layers of water and sulfuric acid

gives ro detectabl e surf ace tension. For such miscible phases one ~.x uld

calculate a negativ e 0 nuch as was done for an earlier theory of IPB ’ s (23 ) .

Sane results of our calcu lation are completely model independent. The

• large difference in IPB ener gy on either side of the cxrngruent point arid

the infinite value of dO’/dT there foll~ as directly fran the Gibbs ~ Isorption

equation . It implies that the hysteresis in order-disorder kinetics due

to ii~c1eation will be quite different on the two sides of any congruent

point. For the same reason, coarsening kinetics of ordered precipitates

driven by reduction in surfa ce area ~~ild be quite different on the two

sides of the congruent point . 

~~~~~ - -- ~~~~~~~~~~
•
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TABLE 1 Definit Ion- of the Pair Variables

Pair of Species - Probability variables

• ~~~ 3Q5 Y,~ (1 .J)

— kP(n+l) Vpp~ (t ,IC)

i~~ - VpQ~~(i ,L)

~Qn kP(n+l) VQp~ (j,k)

SQ11 - tQ(n+1) ~~n ~~~~~~~

TABLE 2 Definition of the Point Variables

Configuration of a Point Probability variables 



-•
~~-•••,.

- --

FLgiwe Captions

(1) An anti�lase &“~in boundary separates t~~ &znains of the sane ordered
phase. a) (100 ) projection of t~~ Li, phases alxMing difference between
(010) arid (001) boundaries, b) (001) projection showing that (100) arid
(010) boundaries are quite SII ~L iL ~T’. Dccess of either species can be
ar~xm~dated at the boundaries.

(2) ~~~ convention for defining the four sublattices I, II , III and IV , the
planes (... n, nfl, ...), the layers (P ,Q) , and the tetrahedra.

(3) 1~~ unit cell at the center belong to ~~ dcm~in arid the other chree belongto ancther. The t1~uee-fo1d axis has been destroyed ar id t~~ of the three
four-fold axes have been reduced to t~~-fold axes. C~].y the (001) axis
remains a cainon four-fold axis for both danains.

(14) The relationships amng 0, the ground state energy of (100) APR’s, the
ccmposition arid the chenical potential is represented by a single curve.
Its projection gives the relationships anong any t~~ of then. Thus, while0’ is zero except at stoichiaretr’y it is a continuous function of u .

(53 ~~~ Q.i~,Au phase diagren s~~~ing curves of constant ii ‘s. Note the ron-uniform
ocnver~ ence at n :Q.25. 

-

(6) 0 of (100 ) antiphase boundaries as a function of temperature. Curves
are either for constant chemical potential p or constant canposition x.
A curve for a (u10~ APB at constant canposition is also given .

(.71 The reduced free energy 0 of the interphase boundary between fcc and the
Li structure as a function of reduced temperature for (100) and (110). The
pJk in 0’ does rot occur at the peak temperature.

(8) ~~~ sane free energy as Fig. 7 as a function of reduced chemical potential
Thst ead of teiçerat ur e.

(91 Therur~dynainic consistency by plotting for each t~ erat~z’e the calculated
value of 0 ar id the slope calculated fran equation (18) for the (100 ) IPB .
Canpar.e with Fig. 7.

(10) Consistency with the Gibbs adsorption equation for APB ’s is de~onstrated by
giving for each temperature the calculated values of 0 arid its temperature
coefficient . Ccmpare. with Fig. 6.

(1].) The calculated profiles of the (1OQ) APB and IPB at the congruent point shows
that the APB has becane t~~ IPB ’s. The cunpo!ition of each sublattice is
given for each plane parallel to the inter face . Note the portion where the t ’~csublattices in each plane axe equally occupied (a (2 ,2) or CuAu layer ) .

(2.2) There is a structural change in the care of (100 ) APB ’s between XT/IwI 0.90
arid 0.87.

(13) The excess entropy and adsorption of a (100) APR as a function of temperature
shows that the transition at lcr/ Iwj 0.882 is second order .

(lii ) The ordering of atans on the t~~ sublattices of a given (100) atan plane as a
function of temperature for one of the central planes (n :30) and - the third
plane fran the center (n :28).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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(15) ~~~ profile of a (110) IPS at the ccn~ ’uent point, to be ca~~ared with
figure llb.
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Recent calculations of a two -dimensional lattice gas model has

led to vapor, liquid and crystalline phases .1’2 In addition to

permitting the phase transitions to be studied , such a model can be

used In studying linea r interfaces between all pairs of phases as

well as the grain boundary between two crystals of the same solid

phase differing in orienta tion (Figure 1). We report finding a gradual

but wel l defined transition in the grain boundary structure wel l

below the melting point of the crystal ; as the transition region is

passed , the grain boundary stru cture changes from its low temperature

configuration into such a structure that there is a layer along the

grain boundary whose thickness increases to infinity as the logari thm

of the undercooling and that the properties of the grain boundary -

approach that of two solid-liquid interfaces separated by a liquid .

As the melting point Is approached , the grain boundary shows a

sin gul ar behavior in that the excess entropy and the excess specifi c

heat due to the grain boundary (of a unit length ) becomes infinite .

Our model is a two-dimensional square l atti ce gas wi th inter-

action potentials chosen to match a prior computer simulation ’. We

used the cluster varia tion method (CVM)3 and natura l iteration (NI )4

to calculate the equation of state and the phase diagram. Figure 2

indica tes that the phase diagram so calculated matches that obtained

by the computer study . The prope rties of interphase inte rfaces and

the grain boundary shown in Fig. 1 were calcul ated along the appro-

pria te two-phase coexistence of Fig . 2 and for the grain boundary

L
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between two solid state domains of di fferent or ientations as In

Fig. 1; the CVN and NI were used as in our previous studies of anti-

phase domains boundari es In ordered structur es .5 7  If we consider

crys tal l i z ation model to be an ordering of holes (V) and atoms (A)

into a V4A structure , the grain boundary is indeed a boun dary betwee n

two ordered domains , It is also a model of domains in an adsorbate

layer which can crystallize with a rotation with respect to the 
• -

underlying substrate .8’9

The particular grain boundary in Fig . 11 $ a synanetric tilt

boundary, Wi th this much tilt a E 5 coIncidence lattice exists

In which one in five atoms (e.g., P and P’) occupy a site that could

bel ong to either crystal structure . The underlying lattice Is known

as the DSC latti ce ,1° If we let a be the lattice constant of the

DSC lattice , the lattice constant of the crystal (as marked by whi te

or black circles in Fig. 1) is $a.

For the basic cl uster in CVII , we used the nine-site cluster

shown at the bottom of Fig . 1. Pair of atoms were not allowed c loser
than AB, the energy of pairs at distances AB and AC was assumed

attractive , being respectively -1.2c and There Is no inter—

action between atoms further apart than the distance AC. We calcul ate

the equi librium state of the entire system Includi ng the boundary , and
obtain the probabilities of encountering each of twenty possible

arrangements of atoms on the nine-site clusters centered on each site

in a strip of width PP’ along the grain bounda ry and extending from

-ii

~ 

- - .
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= 1 to .j 81 (sometimes 61 or 41) into each grain. From these

cluster probabilities we compute the excess (compa red to an equ ili -

brated single crystal ) in the grand potential for this strip

a E _ T S
~~uNa (1)

where E is the excess potential energy , T is the absolute temperature ,

S is the excess entropy, u is the chemical potential and Na is the

excess nunter of atoms in the stri p of width PP’ . We will define the

un it length along the boundary to be the distance PP’ = 5/~ a where

a is the lattice constant of the underlying DSC lattice. Thermodynami c

sel f-consistency requi res that1’

dci = —SdT — Nad3
~
L (2)

which is a useful test for equil ibrium 7 and forms the basis for our

ex trapolation (v.1.).

Fig. 3 shows a calculated as a function of tempe rature for

—1.5. The low temperature behavi or is readily understood by

examining Fig. 1. The pair QQ’ are forbidden and either site must

be empty. For the uni t length of the boundary this leads to

S = k l n 2 ,Na
= _ l a n d E = S C AB

_ C
AC at T = 0 .  Hence for low a

a =5c + ~~~ kT ln2 (3)

which agrees wi th the curve for kT/c<O.3.

The density profiles perpendicular to the boundary are shown in

Fig , 4 for various temperatures, The low temperature W shape near
the center of the boundary is consistent wi th the expectation that

the layer on either side of center is hal f occupied . As the melting

_ _ _ _  — - ----~ •-- - -.---
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point Is approached a low density layer Is formed near the center of

the boundary and the thickness of the layer approaches our computer

capacity . The excess quan tities S and -N8 tended to increase wi thout

limi t as did — acilal as the melting point Is approached.

FI gure 5 plots S vs. _log(T~_T). For p/c • -1.5 , Tm is 0.71629 c/k.

It Is observed that the curve In Fi gure 5 is made of two distinct ly

di fferent portions, For low temperatures (kT/c-<0.20), we see
S~~ k ln2 (4)

for high temperatures (kT/c>O .45), S is linear In log (T~_T) as

S • —3.681 — 4.1520 ln(Tm
_ T) (5)

Making use of these relations for S in Fi gure 5, we can integrate

JSdT to obtain the estimate of o(T) for the high temperature

region:

cYHI 1.523 - (1 -1) [_o.471 + 4,152 lfl(Tm
_T
)} (6) h

This Is shown as a sol i d curve In FIg. 3.

The good agreement between the solid curve and Indiv idually

computed a values Indicated by dots shown In Fig. 3 serves as a test

of Eg. (2), the sel f—consistency of the formulation , but it also

permits extrapola tion of a to the melting temperature where its value

is 1.523.

We separately calculated the solid-mel t Interfaclal properties

for the orientation corresponding to that of our grain boundary . The

val ue of its reduced a was found to be 0.763, while Its dens ity

profile closely matched that of either hal f of the grain boundary . 

-- - --—---- — - -~- - - ------ -~~--- -- - - -- --



We concluded not only that the grain boundary has become a melted

layer at the melting poin t, but that -ft behaves as if it is coated

with a melted layer for a considerable temperature interval below

the meltIng poin t. At some temperature near O.35c/k there is a gradual

transition in structure from the low temperature profi le  to a struc-

ture which wit h Increasing temperature increasingly tends to resentle

a mel ted layer and which exhibits a singularity as Tm is approached .

Since the grain bounda ry -is completely wet at Tm~ 
it is legit imate to

call the gradual transition near T = 0.35c/k the wetting transition .

The possibility that a grain boundary woul d have a liquid l ayer

at the melting point was first discussed by Gibbs .’2 Whenever a {
for the grain boundary has a tendency to exceed twice the a for the

solid-liquid Interface, the transition we found Is expected to occur .

Smith 13 attempted to formulate the temperature behavi or of this

transition by comparing two models of the grain bounda ry. The solid

model was assumed to possess a known value of a. The value of a

for the melted layer model was assumed to consist ~f three terms

• ~1L 
2c
~L 

+ 

~~
(Tm_T) + E(A) (7)

where 2cYS1 -is the contribution of the two solid-melt interfaces ,

XAS(Tm_T) is the contribution of a mel ted layer of thickness x , AS

Is the entropy of fusion , and E(A) Is an unknown repulsive energy .

If 2a51 was less than a, the melted layer took over. Minimizing

with respect to A at a fi xed temperature we obtain a relation for A

DE/d A + AS(Tm
_T) = 0 (8) 

--- — - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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When thi s relation holds , and when a~ and AS are assumed independent 
- 

-

of temperature, we can further obtain

da1,~/dT -A~S (9)

Since this derivative Is -S, our findi ng In Fig. 5 and Eq. (5) Implies

that A linearly depends on ~
ln(Tm~

T)
~ 

and integration of Eq. (8) leads

to an expression :

E(A ) E(O) + C1exp(-C2x) (10)

This Indica tes the reasonable nature of the repulsive term in Smith’s

formulation (7). When we use these relations , we can wri te the

temperature dependence of a In (7) in the form

a~~= 2cY~ - (Tm_I) [c3 + C4 
•Ifl(T

m_T)} (11)

which has the name (Tm_T)_dePendence as (6). 
-

In the present pape r, we used a two-dimensional la tti ce gas—

li quid—soli d model, and thus the graIn boundary Is essential ly

one-dimensional. ThIs one -dimensional behavior is consistent wit h the

nature of the gradual transition from the low-temperature behavior

to the high-temperature behavIor demonstrated clearly in FIg. 5. If

we work on a three-dimensional system with a two-dimensional grain

boundary, it is expected that the nature of the low- to high-temperature

behavior may be a sharper one; for exampl e, a second-order phase transition .

A mel t ing transition in real metal s has been observed4 as a functi on
of orientation difference and explained in terms of a disloca tion model

with liquid cores .15 The temperature dependence of such a model might
show several transitions .  
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