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SECTION 1
INTRODUCTION AND SUMMARY

This is the first quarterly technical progress report for the
Intelligent Bandwidth Compression (IBC) Program (Contract No. DAAIC7O—78—

C—0l48). The report describes the results of the first three months of a

seven—month technical effort to develop techniques and algorithms for

achieving a 1,000:1 bandwidth compression in image data transmission rate
for remotely piloted vehicle (RPV) applications. The period covered by

this report is 1 November 1978 to 31 January 1979. Mr. David Singer i~
the contract monitor.

The overall objective of this program is to develop high—ratio

bandwidth—compression techniques based on image understanding, advanced
scene analysis, and spatial and temporal image sampling. Our approach to

achieving a 1,000:1 bandwidth compression of RPV derived imagery utilizes
the information—extraction and image—understanding techniques developed

in the Army ATAC and DARPA Terminal Homing programs in conjunction with

a knowledge—based control scheme developed under a Hughes IR&D program.
Scene—analysis techniques are used to extract key features and detect

targets in the images. Knowledge—based control schemes are applied to

adaptively evaluate and match the available targets with mission goals
for priority assignments and to make decisions on the allocation of

resources in the available channel bandwidth capacity. Conventional

coding techniques are used to encode the resources for transmission to,
and reconstruction by, the ground station.

The IBC system consists of three major components: an image inter-
preter , an adaptive priority controller, and a data link encoder/decoder.
Figure 1 shows these major components and their interactive connections.
The image interpreter operates on digitized images from the IBC data base
and perf orms three primary operations: target detection , statistical tar—
get identification, and structural/feature analysis. Control information

about where (i.e., addresses in the input image) and how (i.e., specif ice—
tions of features and analysis procedures to be used) the interpretation

is to be performed is supplied by the adaptive priority controller. This
particular control path is the most important in the system because it
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I
I closes the control 1oop on the interpretation system, allowing interactive

refinement of the results. The image interpreter provides a list of the

target descriptors that go to the adaptive priority controller and a
collection of image descriptors that go to the data link encoder/decoder.

Three types of target descriptors are contained in the list sent to

the adaptive priority controller: a cued target at a given location, an
initial classification of the target, and a structurally refined scene—

4 analysis classification. The adaptive priority controller utilizes these

inputs to determine what type of processing is necessary and what the

image interpreter should be doing next. The control policy for this
- 

decision is contained in a table of control parameters that lists the

target and scene object priorities as well as the allocations allowed for
- different scene components for the encoded signals to be transmitted.

Through the uplink. input, the operator can change this table of control

parameters dynamically to suit his needs.

- 
The image descriptors from the image interpreter consist of edge

Image subwindows and target/object descriptors. These are encoded by
the encoder/decoder , transmitted through a simulated downlink (with
j ai ing and noise) , and decoded for reconstruction in the simulated
ground station for display. This display represents a 1,000:1 bandwidth

I compressed Image of the original sensed scene.
The resource allocation for available channel capacity in the

1,000:1 bandwidth compression scheme is shown in Table 1. The channel
capacity requirement used for image—cc~pression comparison is based on an
image data rate derived from a 512 x 512 pixel , 8—bit , 30 frames—per—sec
(f pa) video data stream. Under this asausption , the channel capacity re-
quired for full rate image tranamissio~ is 63 Mbit/sec. Thus , for the

1 1,000:1 bandwidth compression required, the available channel capacity
for image transmission is reduced to 63 kbit/sec. As shown in Table 1,

a the IBC program produces the required 1,000:1 compression while main—
I tam ing all essential scene information by allocating resources as follows:

. A 32 a 32 pixel high-priority target window t ransmitted at full
1 resolution and updated at 7.5 fps.

I
1 
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Table 1. IBC Resource Allocation j
_______________________________________________ _____________________ __________ ____________ ___________________

Data Composition Pixels FPS BPP Data Rate
kbit/sec

Edge map 256 x 256k 1.0 1.0 16.4

Priority target window 32 a 32 7.5 1.5 11.5

Orientation window 128 x 128 1.0 1.0 16.4

Secondary target windows(6) 32 x 32 1.0 1.5 9.2

Symbolic Descriptors — 1.0 — 9.5

Total 63.0

a. Edge map transmitted at reduced resolution (128 x 128 pixel) and
replicated to 256 a 256 size at ground station.

• An orientation (or reference) window of 128 a 128 pixel size
centered about the detected (high-priority) targets and updated
at 1 fps.

• An edge map of the image reduced in resolution by a factor of 2
and replicated to 256 x 256 pixel size at the ground station.
The update rate is also 1 fps.

• Six secondary target windows of 32 x 32 pixel size updated at
1 fps.

• Approximately ~00 symbolic descriptors to denote scene content
information of interest, both supplementing and complementing
the above stated resources.

The exact composition of the resource allocation can be dynamically changed

depending on the scene content. This can be accc~ plished either automati-

cally by the adaptive priority controller or manually by the operator

through the uplink coemand. For example, the secondary targets and a

portion of the symbolic descriptor allocations can (if desired) be redi-
rected to provide an additional high-priority target window at a 7.5 f pa
update rate.

Our efforts during the first quarter were directed toward developing

the image—interpretation and encoding/decoding components of the IBC

10



__________-

I system. The purpose is to first develop these two integral components

of the system and then also to gain an early insight into which format
of the reconstructed image would be most desirable from the operator/

I observer ’s point of view. The IBC data base—32 frames of visible band

images divided into 10 sequences of distinct scene content— was processed

I through the ATAC auto—cuer simulation (algoritlis) software. With some

minor modifications in the lw—level processing stage, the auto—cuer was

able to produce good segmentations of the targets. In addition, the

IBC data base was also processed by the edge—extraction (algorithm) sof t—

I ware, and dominant edge maps were produced for these images. Section 2
1 discusses the auto—cuer and edge—extraction results. The encoding and

-I - decoding of the allocated resources (e.g. edge map, orientation window,

I target subwindows) for 1,000:1 compression of the original image is dis—

- cussed in Section 3. Edge map coding, DPCM coding, and Hadamard coding
of the allocated resources were performed subject to various levels of bit

error rate (BER) . Section 3 also includes reconstructed images showing
the results of 1,000:1 bandwidth compression on typical IBC data base

- 

imagery. Several versions of the bandwidth compressed images using dif—
ferent formats are discussed. The final section , Section 4 , discusses
plans for the remainder of the program, including the development of the
adaptive priority controller.

I
I
I
I
I
I
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SECTION 2

SCENE CONTENT EXTRACTION

A. AUTOM&TIC TARGET CUEING

The auto—cuer incorporated in the image interpreter component of .
the ThC system consists of the software simulation algorithm developed

in the ATAC program. This auto—cuer had originally been designed for

use with FLIR (infrared) imagery. The minor modifications needed

(because of the visible band IBC data base imagery used) to adapt it
involved mainly the low—level processor, where new weighting parameters
for the linear discriminant of the auto—cuer had to be selected. The

weighting factors were redistributed to reflect the better edge—

definition targets contained in the visible band data base imagery as

compared with the ATAC FLIR imagery. The salient features of the ATAC

auto—~uer are presented here. Automatic target cueing of FLIR i~agery

has received much attention recently, and a representative litei~ ture

list is given in References 1 through 12.

The auto—cuer simulation utilizes a two—level approach to auto-
matic target cueing. A low—level processor examines the full—frame

image and selects points of interest where targets are likely to be

located. These points of interest are then sent to the high—level

processor for further, and more detailed, examination in window regions
centered about the interest points. Here, object segmentation and

feature extraction take place, and targets are detected and identified

by the classifier.

In determining the low—level points of interest, a small number of
easily calculated statistical parameters of the image are considered.
The ~~ tivation here is to form, by a proper choice of low—level param-
eters, a linear discriminant of these parameters so that target areas
are more likely to possess high discriminant values. By appropriately

threeholdiug the diacr4~ 1i*nt at this stage, a small rumber of interest
points are produced and passed on to the high—level stage for further

processing. The remaining, below threshold, points sufficiently far

13



from interest points are excluded from further consideration and

processing. The objective of the low-level processor is to locate as

many of the target/are...d as possible using interest points, while din—
carding as many areas of the image as possible from complex and time—
consuming calculations by the high level processor.

At the high—level stage, a window is centered about each interest
point in the image and objects from the background, or clutter, are
extracted with an object segmentation algorithm. Subsequently, all
segmented objects are characterized by several high—level features,

Finally, all the segmented objects are sent to the high—level classifier,
where targets are detected and identif led and clutter is rejected.

1. Low—Level Interest Operator

The function of the low—level stage of the auto—cuer ~s to select

and isolate those points of Interest in the image where targets are

most likely to be located. Low—level processing, as defined here, is
the process by which each 5x5 pixel region of the shrunk image is

assigned a value, via the linear diacriminant, intended to be representa-

tive of the probability that this region is partially or totally con-

tained within a target. The objective is to utilize only a small number
of easily calculated, statistical parameters of the image to extract a
high percentage of the targets, by means of the derived interest points,
while excluding a large portion of the image from further consideration

by the high—level stage. The selection of the features used in the low-

level processing were chosen not only for their usefulness in differenti-

ating targets from the background, but also for their potential ease of
implementation. The low—level features used in this auto—cuer simulation
study are shown in Figure 2. As the figure shows , a local window coii--
sists of a 5x5 pixel region, a large local window consists of a 60x60
pixel region, and global values are taken over the entire image. These

ten features are combined by the scalar to form eight contrast— and
offset—invariant features. These features are then used to form a

weighted sum for each small window (5x5 pixel) region. The small win-

dows of the low—level processor can be made to slide in an overlapping

-I14
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fashion or can be taken in contiguous sectors, The degree of overlap
is variable and can range from 1 to 5 pixels , resulting in a low—level
feature picture of the same size or one shrunk to a maximum of 1/5 the
size of the original image . The degree of overlap can also be taken to
be independent in the two directions. The weighting coefficients used
in our simulations are shown in Figure 2.

The value of the linear discrlminant , formed from the weighted
linear combination of features F1 through F8, gives a measure of the
probability that this small window region is partially or totally con-
tained within a target. That is, high—linear—discr{~ 1nJEnt—va1ued small
windows are more likely to be contained within targets . At this stage,
a threshold is set , and small windows that have linear discrtMEln.nt

values above threshold are chosen as regions likely to be within targets.
Those windows are labeled as interest points and tagged for further

processing by the high—level stage. All other points below threshold

and sufficiently far from interest points are excluded from further

consideration and processing. The relative values of the weighting coef-

ficients used for features F
1 
through F

8 are as shown in Figure 2.

In addition to the low-level features mentioned above, a moving
target indicator (!,ITI) which detects changes in either the original

image or the low—level interest points from frame to frame can be
incorporated into the linear discriminant, as shown in Figure 2. This

feature has not yet been implemented in the simulation studies.

2. Object Segmentation

After interest points are identified by the low-level processor,

regions of interest (defined by large windows 25 x 25 pixels in area) are

centered about the interest points. The extraction of targets from the

background , or clutter, takes place in the segmentation routine. It is

the function of the segmentation algorithm to separate those areas

believed to be interior to an object of interest from the background
enclosed by a large window (region of interest). The accurate segmenta-
tion of objects from the background constitutes a critical stage of the

16
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auto—cuer simulation. Reliable high—level features that characterize
target and clutter objects can be derived only if accurately segmented

I targets are extracted .

The initial step in the segmentation routine is the generation of

an edge value map within the region of interest. For this purpose, a

I modified Sobel operator of 3 x 3 pixel size was used in the simulation
studies. The form of the Sobel operator is shown in Figure 8. It is
assumed that the (Sobel) edge values corresponding to targets are among
the largest edge values in the region of interest. As used in this

algorithm, an object of interest is a contiguous area consisting of

interior points. An interior point is defined as a pixel that is sur-

rounded in most directions by edge points, an edge point being defined

as a point with an associated edge value that is above some threshold value.

Edge threshold value is determined adaptively using the histogram

I of edge values within the region of interest. Based on the expected

range of target sizes, the 80th 
(E) and 95

th (E95) percentile edge
values within the windows are used as control end point values, The
minimum percentile considered is the 80th percentile value, and the
maximum is the 95th percentile. In addition, two absolute (arbitrary)

edge values T
1 

— 100 and T2 — 50 are also chosen. To determine the

threshold value for a given region of interest, B80 is compared to T1.
t If B80 is greater than or equal to T

~
, then the threshold is set to

( If B80 is less than T1, then the next higher intensity value within the

region of interest is picked 
~~~~~~~~ 

and its corresponding percentile

~~next~ 
is noted . An expression

(T
1 —TA — P95 

— P80 nez 
—

J is computed and compared to 
~~~~~~ 

If the current Enext is greater than
or equal to TA, then the threshold is set to if not, the process

I is repeated by picking the next higher intensity level. Finally, if
I F95 is reached , it is compared to T2. If K95 is less than or equal to

17
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T2, then the threshold is set to T2. Otherwise, the threshold is set

to B95. In this way, the edge threshold is set adaptively in each region
of interest , depending on the target size, presence of other strong
edges, and the amount of noise present .

Once the above—threshold edge points have been determined , the
detection of interior points within the region of interest takes place .
An interior point is (arbitrarily) defined as a pixel that is surrounded
in six of eight directions by above—threshold edge points. A thinning
or filling operation then removes isolated interior points and fills in
gaps in the binary interior point image. The thinning and filling
operator consists of a 3x3 pixel overlapping window, which is slid
within the region of interest in both the x and y directions . If five
out of nine pixels in the 3x3 window are occupied by interior points,
then the center element of the window is set to 1; otherwise, it is
set to 0.

Because of the coarseness of the eight—direction edge point search,
concave and convex portions of objects tend to be filled in, or
shadowed; the same is true for regions between two objects that are in
close proximity to each other. To overcome this drawback, a maximum—

likelihood assignment of interior versus exterior points is carried out

next. To do this, histograms of the previously derived interior and
exterior regions are tabulated . Then, the intensity of each pixel in
the interest window is compared to the two histograms. The pixel in
question is now assigned as an interior or exterior point based on the
maximum likelihood that this pixel intensity belonged to one of the two
histograms. After this intensity assignment, another thinning and

filling operation is performed , again to el1~ 1n*te isolated interior

points or fill in gaps in the newly formed objects. The thinning and

filling operator is identical to the one described above. Subsequent to

the second thinning and filling operation, a connectivity routine is used

to merge those interior regions that are likely to be connected, but

were segmented as separate areas because of , for example, gaps or
degradations in the object caused by noise or thermal differ ences in
the target.

F
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Next, the connected interior point regions thus derived are
compared with the first interior point classification in the interest
window. Those areas having the most coincidence of interior points
with the original interior point map are designat ed as segmented
objects , and their corresponding original intensity values are substi—
tuted into the segmented objects. Dep.ndin~ on the scenario expected
in the images , one or more of the segmented objects with in the interest
window can be tagged as likely targets. In this sia”lation study , the
area with the largest coincidence was chosen as the segmented object.
Finally, a calculation is made (based on area and objec t center) to see
if it is likely that portions of the desired target lie outside the
interest window. If so, the window is repositioned and the segmenta-
tion is recomputed . These segmented objects are passed on to the high—
level feature extractor for classification.

3. Extraction of High—Level Features

Once object segmentation has been completed and interior points
have been separated from background clutter , a high—level feature vector
is calculated to characterize each segmented object within an interest
window. These high—level—feature vectors are used subsequently in the
K—nearest—neighbor classifier for target detection and recognition and
for clutter rejection. One purpose of the features is to reduce the
dimensionality of the decision regions from the total number of degrees
of freedom of the pattern to the number of features extracted . A second
purpose is to improve the performance of the classifier by only allowing
relevant pattern parameters to influence its training.

The high—level—feature—extraction algorithm first detects all
interior points as determined by the segmentation routine and replaces
each detected interior point by its original pixel intensity. All other
points within the interest window are set to zero. The centroid of the
segmented object is then determined , and a set of moments (up to and
including third—order moments) is calculated relative to the centroid ,
with distances scaled to the square root of the extracted area. These

I
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moments are then transformed to a set of seven moment transforms, 111—117,
which has the property that it is invariant to rotation , reflection ,
translation, and scale. Additionally, the calculated moments are used
to derive the length, width, and aspect (length/width) of the segmented
object. Finally, a measure of the object intensity against background
is also generated . The collection of all the feature vectors for the
segmented objects of the data base are then used for the training,
detection , and classification of targets.

4. Target Detection and Recognition

After the segmented objects have all been characterized by feature
vectors , they are ready for use in the high—level classifier . The
function of the high—level classifier is to perform clutter rejection
on the segmented objects and recognition on the detected targets . A
K—nearest—neighbor technique is implemented in the high—level classifier
for both target detection and recognition. In the K—nearest—neighbor
decision rule, a predetermined constant K is selected, and the K—nearest
training set feature vectors to the test feature vector .X are collected .
A Euclidean distance measure between feature vectors is used to deter-
mine the nearest neighbors. If n~ represents the number of feature
vectors of class i contained in these K nearest neighbors, and C~ is a

set of constants (one for each class), then the feature vector X is

said to belong to class j  if

cjnj  ~~ . 
Cm i

The choice of a test procedure requires that the advantages and
drawbacks of each method be considered . In general , recognition sys-
tems fall into two categories: those that perform recognition based on
a priori knowledge of the objects tn be recognized and those that

require sample data on which to train the classifier . For the latter
category of recognisers, of which the auto—cuer system is one, the best
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way to train and test the system is to assemble a large data base and
then to use a statistically representative sample for training and
another statistically representative sample for testing.

A problem arises however, when the data base is limited, because
the available data must be split between training and test sets. On the
one hand, choosing a large training set and a small test set results in
better classifier design, but the tested performance will have a large )
uncertainty interval associated with it , or may even be wrong. On the
other hand , making the test set large results in a good performance
measure of a poorly designed classifier. This dilemea may be resolved
by using the U, or leave—one—out , method. In this approach , one sample
is initially chosen for the test set , and the remaining samples are
assigned to the training set. The classifier is designed using the
large training set , and the removed sample is used f or testing perfor-
mance. Next , the test sample is assigned to the training set , and a
new sample is removed from the training set and used for testing. This
procedure is repeated until all samples have been tested . This procedure
results in both a better classifier design and a more statistically
significant measure of performaucei13’14 In general , it requires redesign—
ing the classifier many times. However , when the classifier used is the
K—nearest—neighbor classifier , no redesign of the classifier is neces-
sary because classification is performed by measuring distances in
feature space and determining classification according to the population
of the classes of neighbors about the test point. The robustness of the
classifier may be determined using the U method by counting the number
of neighbors out of K about the t s t  sample that belong to the correct
classification of that sample. In our measurement of auto—cuer perfor-
mance, the U method wag used as our basic test procedure.

In our K—nearest—ne ighbor classifier, a preprocessor stage was
used to reduce the number of distance calculations necessary to deter—

mine the K nearest neighbors of the test sample. The preprocessor first

calculates the radii of all sample points in the classifier data base
relative to an arbitrary origin. The calculation of nearest—neighbor

distances to the test sample proceeds until the radius of a training

I
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set sample ia lees than the distance between the sample and the test
sample. Then by the triangle inequality rule , all training set samples
with radii less than the one under consideration will produce a distance

to the test sample that is larger than the current distance. So

these training set samples can be ignored. Similarly for the other

direction of larger radii. Typically, the number of distance calcula-
tions was reduced by a factor of five for our runs, from 1,000 to 200.
A flow diagram of the K—nearest—neighbor classifier is shown in
Figure 3.

Some representative images which have been processed for the
1,000:1 compression ratio simulation are shown in Figures 4 through 7
together with the results derived from the auto—cuer and edge-map—
extraction algorithms. In each figure, the original IBC data base
image is shown in segment (a), the low—level interest point output from

the auto—cuer is shown in segment (b), the high—level segmentation
output f rom the auto—cuer is shown in segment (c) and the edge map of
key scene contents in the images is shown in segment (d). (The dis-
cussion of edge—element extraction is presented in Section 2.B.)

These figures show that the interest points isolate the targets
quite accurately in the low—level auto—cuer outputs (Figures 4(b),
5(b), 6(b) , and 7(b)). Although the number of interest points could have
been reduced somewhat by imposing a higher threshold value on the linear
discriminant, this would have been at the expense of losing some of the
interest points corresponding to low contrast targets. The linear
threshold value chosen for these images represents a compromise between

a reasonable number of interest points -selected and a high extraction
probability of target locations for the high—level processor.

The segmented objects (Figures 4(c), 5(c), 6(c), and 7(c)) are poten-
tial targets that must be identified through the auto—cuer classifier.

These are normally characterized by unique and prominent features,
which are then used to separate the targets from the background clutter.
Because of the limited number of independent images and correspondingly
small number of targets in this data base , a statistically meaningful
classification of all the targets has not been made at this point.

23
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Figure 4 . Feature extraction on IEC data base: (a) original
image, (b) and (c) auto—cuer results, (d) edge
extraction.
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Figure 5. Feature extraction on IBC data base: (a) original

I image, (b) and (c) auto—cuer results , (d) edge
extraction.
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Figure 6. Feature extraction on IBC data base: (a) original
image, (b) and (c) auto—cuer results, (d) edge
extraction. - 14
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I Figure 7. Feature extraction on ISC data base: (a) original
image , (b) and (c) auto—cuer results, (d) edge
extraction.
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Those objects in the representative images shown in Figures 4 through 7

which have been classified as targets were used for the high priority

target window allocations in the resource allocation and reconstruction
L

simulations.

B. EDGE MAP

The IBC data base images were procc~ssed through the edge—based
boundary—extraction algorithms to derive edge maps of the images for
use in the bandwidth—compression scheme. As 8een from Table 1, the
edge map forms the basis of provid ing an overall representation of the
dominant scene features, with, specific local areas superceded by gray—
level windows of the targets and surrounding terrain. An accurate edge
map would, therefore, convey the scene content concisely to an operator
for interpretation.

In edge—based feature generation, the position and orientation of
the edge element are determined accurately because they are relatively

insensitive to gradient threshold selection. The basic shortcoming of
this processor is its inability to discriminate between boundary edge
points and “texture” edge points. As a result of this difficulty,
numerous short “texture-edge” line segments are extracted, and subse-

quent scene boundary connectivity is poor. We have used a Sobel opera-

tor for edge extraction. The Sobel edge operator was applied to each

pixel position in an image, and gradients in two principal directions
were extracted. This process is shown schematically in Figure 8 • Each
edge magnitude is tested against a threshold T to ostablish the presence
of a dominant edge. Further, each above—threshold edge is parameterized

by its orientation, 0 — tan~~ óy/~z, and its principal direction. The

edge element principal direction is defined as the direction of its
principal gradient . This divides the extracted edge elements into four
directional groups separated by 450 diagonals in the x—y image plane
(see Figure 9).
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76 10-1

A B C

D E F Vx  = (C + 2F + J) — (A + 2D + G)

G H J = (G + 2H + J) — (A + 2B + C)

• SOBEL EDGE GRADIENTS, Vx ANDVy, ARE EXTRACTED WITH
9-ELEMENT WINDOW CENTERED AT PIXEL POSITION E.

• EDGES ARE ESTABLISHED BY THRESHOLD TEST OF EDGE
- MAGNITUDE, IVxI + I~

7yI

1 IF VX I + IVY~ > 1, EDGE IS ESTABLISHED AT PIXEL POSITION E.

I •EDGE ORIENTATION, 0 = tan~~ [Vy /VxJ .

Figure 8. Sobel edge extraction.
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Figure 9. Edge element principal directions.
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I
I
I Several steps of edge element filtering were carried out to reduce

the image edge density and to keep only those edge elements contributing

i to significant scene structure . These filters are local windowing
U operations, which eliminate adjacent edge elements with isotropic

orientations and thin contiguous edge element clusters in each of theI four principal Sobel directions . The first filter step tests each
extracted edge element for co~~~n orientation with adjacent edge ele—

I ments. The straight—line edge filter retains an edge element at pixel
position Pi,j with orientation 0 if and only if a minimum of u edge

I elements with angles in the range 0 ± t~O are formed within a window of
length 1 and width w centered at pixel Pi,j and oriented in the 0 direc—
tion (see Figure 10).

I The next step in the filtering process is to thin the edge—element
clusters to el{m(nate multiple edges and shadow effects. This thinning

I filter first groups the edge elements by the principal gradient direc-
tions and thins each group in its respective direction . The operation

I is a simple one, testing triplets of pixels oriented parallel to the
selected principal gradient direction to determine the pixel position

1 with the maximum gradient. This th4ni~1ng filter, shown in Figure 11,
and a second application of the straight—line edge filter using the
filter parameters previously described are applied separately in each

I of the four principal directions. Application of the thinning filter
skeletonizes the multiple and shadowed edges; the second application
of the straight—h a edge filter eliminates noncontiguous edge elements
revealed by the thinning process.

Some representative edge—maps of images in the IIC data base are
shown in Figures 4(d) , 5(d) , 6(d) and 7 (d) . )4ost of the key scene

I contents (such as roads, vehicles, structures, and domin-.nt ground
textures) are shown to have been extracted and represented in detailed

i outline form by the thinned and filtered edge points. The density of
I edge points in the edge maps can be controlled by adjusting the toler-

ances and threshold levels in the filtering ~nd th~’mtysg proceas, These

I
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Figure 10. Straight—line edge filter. 
- 

-

1!
32 

-



‘ I
I
I
I
I
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Figure 11. Edge element thinning.
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edge maps form a key component of the 1,000:1 compressed image and
are sent to the encoder/decoder segment of the IBC system for encoding,
transmission, decoding, and reconstruction at the ground station. This
aspect of the system is discussed below.
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I SECTION 3

CODING AND RECONSTRUCTION

The source and channel coding schemes being considered for the IBC
system have been computer simulated. A block diagram showing a general

I model of a video transmission system is shown in Figure 12. From a

coixinunications point of view, the source and channel encoder are the

I two highest—level components of the remote IBC terminal. Note that, from
this viewpoint, the source encoder contains all of the sophisticated
image—interpretation and priority—control functions of the IBC system.

The function of the source encoder is to represent the image as eff i—
ciently as possible (i.e., with the fewest bits) while the channel encoder
intentionally adds redundancy to make the information less subject to
errors (i.e., jamming).

I Three classes of data are extracted by the IBC system for trans-
mission on the dovnlink: the edge map video , the conventionally corn—
pressed sub—image windows , and the symbolic descriptors . A typical
channel resource allocation a 1 000:1 compression ratio is shown in
Table 1. The preliminary edge map source encoding method is 1—bit scan-
ning at 1/4 resolution. This requires 16.4 kbit/sec at 1 fps update.

A 32 x 32 pixel sub—image, centered on the highest priority target, is

encoded at 1.5 bits per pixel (bpp) and updated at 7—1/2 fps. A 128 x 128

— pixel orientation (or reference) window is transmitted at 1 bpp and
1 1 ps to provide orientation information to the ground station operator.
The channel resource allocation also provides for transmission of sub—

windows of 32 x 32 pixel size for secondary targets. These are updated
at 1 fps and would be coded at 1 to 2 bpp , depending on the n~miber of

I secondary targets to be transmitted. The symbolic descriptors are merely
digital messages of approximately 48 bits in length. Hence, performance
of the communications system in transmitting these messages can be readily
evalua ted (e.g. , bit error rate curve) and was not simulated during the

- 
- first  quarter. Computer simulation results of source and channel coding

of the edge map and conventionally compressed image subwindows , as well
as the reconst ructed IBC images, are discussed below.

I
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SOURCE 
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SOURCE ____ CHANNEL ____ SIMULATED ____
IMAGE ~ ENCODING CODING CHANNEL

_____ CHANNEL _____ SOURCE _______ RECEIVED
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Figure 12. General model of video transmission system.
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I
I
1 1. Edge Map Coding

Four images from the IBC data base are shown in Figure 13, with the

I corresponding full resolution (256 x 250) edge maps shown in Figure 14.

Using the raster transmission format , the edge maps are seen in Fig—

ure 15 to be rather robust. Even at BER — 10— 1, the edge map is still
I very usable. However , a typical modem operating point is more like

BER — l0~~. A ground—restoration technique called edge-map filtering

J was used to remove isolated point errors • The filtering algorithm removes
any indicated edge point that does not have nearest neighbors, as dia—
gramed in Figure 16. The performance of these filtering techniques can
be readily estimated. At an error point in a black region of the edge

I map , the probability that more of the eight neighbors are also in error
I is (1_PB

)8 , where P3 is the channel bit error rate. Substituting a chan-
nel BER — 10— 2 give the result that 92 percent of the channel errors
should be removed by the filtering algorithm. The result of applying

- the filtering algorithm on the noise-corrupted edge maps of Figure 15
are shown in Figure 17. Note that at BER — 10 2 , 644 corrections were
made out of 676 errors , which is consistent with the 92 percent error
correction prediction. The channel capacity at 1,000:1 compression
(i.e. , 63 kbit/sec) is insufficient for transmission of the full resolu—

I tion edge map. Therefore, the edge images were reduced in resolution by
a factor of two in each dimension using the reduction/expansion algorithm
shown in Figure 18.

The final results of the edge map coding simulation are shown in
Figure 18 for a channel BER — 102 . Note that these images hav, been
processed as follows: (1) resolution reduction , (2) channel error simu-
lation, (3) edge map filtering, and (4) expansion to a 256 x 250

II_ resolution.

Encoding of the IBC data base using the two conventional techniques
of differential pulse code modulation (DPQ1) and one—dimensional Hada.ard
transform is discussed below.

I
I
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Figure 13. Representative images from IBC data base.
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IBC1O7 1BC209
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Figure 14. Edge maps (full resolution).
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IBC1O1 BER = 10 3
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BER~~10
1 BER 10 2

Figure 15. Edge coding. j 
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FILTERING ALGORITHM: IF P~ 1 (EDGE POINT) 
-

AND NONE OF ITS 8 NEIGHBORS ARE = 1. THEN SET P
~ 

0.

NOTES: AT BER V 10_i P (NO NEIGHBORS IN ERROR~~11 = ERROR) (1 — 

~~

Figure 16. Edge point filtering.
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IBC1O1 BER = 10 3
(158/78 REMOVED)

BER = 10~ BER 10 2
(2605/6371 REMOVED) (644/676 REMOVED)

Figure 17. Filtered edge map.

~1

42 II



8751 —3• • •
“OR” 

REPLICATION
- 

~~• •
• •~~ • •
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Figure 18. Reduction and replication algorithm.
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Figure 19. Edge coding (reduced resolution). Ii
(Note: the replication error at the left
columns of these figures was due to a minor
problem in software. This has been corrected ,
and the corrected photographs will be used in
final report.)
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2. DPCM Coding

DPCM is a simple technique that is frequently used for image
coding. By encoding the difference between a predicted pixel amplitude
(based on previous samples) and the actual amplitude, a dynamic range
reduction and subsequent bandwidth reduction are achieved . The mean and
variance on both a per pixel and a differential baae were computed on

subject images from the NVL data base. The statistics for image IBC 101
are shown in Table 2. Note the reduction in variance by a factor of >20
achieved by differential encoding. The computed inter—pixel correlation
coefficients , which are used by the predictor , were typically very large
for this data base. However, a large prediction coefficient causes
channel errors to propagate extensively . Hence, a prediction coefficient

of only 0.9 was used in all DPCM coding simulations, the results of which
are shown in Figure 20 for 4—bit DPCM. At BER — i0~~ , the image is seen

to be very streaked due to error propagation .

3. Badamard Transform Coding

• - The Eadamard transform coding simulation is shown by the block dia-
gram of Figure 21. The image (or sub—image) is first operated on by a

one-third power memory-less nonlinearity and then undergoes a coordinate
transformation via the one—dimensional , 16—point Waish—Hadamard transform.
Each transform coefficient is then individually quantized (i.e., the

bandwidth reduction) depending on the component’s importance in terms of

energy contents and the human sensitivity to errors in that component.

Table 2. DP~M Statistics

IBC 101

Mean (Pixel) 116

Variance (Pixel) 1841

Correlation Coefficient 0.98

Mean (Delta) —0.1

Variance (Delta) 76.8
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CODING ERR OR DECODING
GENERATOR

~ RECONSTRUCTION H 1 
( ) 3

Figure 21. Hadamard transform coding simulation block
diagram.
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The quantized coefficients would then be error correction encoded and

corrupted with bit errors by the channel simulator. The decoding opera-
tion is essentially the reverse of the encoding operation.

The one—third power preprocessing mimics the nonlinear processing
found in the human visual system (typically modeled as a logaritlusic

function) and is intended to reduce the human perception of the quantize—
tion errors.15 The quantizers are designed as nonlinear instantaneously

companding quantizers in which a memory—less nonlinearity is performed

prior to uniform quantization. A logaritlunic function is indicated to
minimize the human perception of encoding errors.15 A useful feature of
these instantaneously companding quantizers is that, to more coarsely
quantize a coefficient (i.e., greater bandwidth compression), bits are
simply deleted from the quantizer output without changing the quantizer
cut points. The logaritimic quantizer is diagramed in Figure 22 with
the cut points shown as solid lines and the reconstruction levels shown
as dotted lines.

The transform domain image statistics (Table 3) are used to deter— 
P

mine bit allocations among liadamard coefficients (sequencies) and the

dynamic range (spread) of the quantizer. The four columns in Table 3

are the sequency, sequency mean, sequency variance, and percentage of
total picture variation. Note that there is little difference in the

image variance distribution among transform components whether the
one—third power preprocessing is used (Table 3e) or is not used
(Table 3b) . The Hadamard transform coefficient bit allocations for
2 bpp and 1 bpp are shown in Table 4. Note that these allocations
account for human sensitivity to encoding errors and were not just

derived from a rate—distortion theory and mean—squared—error computation
based on image statistics of Table 3 (the allocations are substantially
different). The results of Walsb—Hadamard coding of the NVL data
base are shown in Figure 23 f or 2 bpp and in Figure 24 for 1 bpp.
The quantizer designs were not perfected at this point , which is
apparent in the 1 bpp coded images.
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Table 3. Ha ’amard Statistics (IBC1O1) -

Sequency Sequency Z of Total
Sequency Mean Variance Picture Variation - -

0 4~2.’i2475 2406:3.15600 0.90545
1 ..1Li875 1391.49840 0.052:32
2 0.08025 :353.83481 0.013:30
3 1.33525 308.42336 0.~i11E0 -

~~

4 -0.21775 60.48983 ~i .0€i22?
5 0.03925 77.48471 0.~~~~31 1
6 —0.06425 79.43212 0.00299 

-

7 t :i .h2775 78.37916 ~ .00295
8 u.o1925 l .71188
9 *i.1~ 675 i6.t .4?85 ~~~~~~~~

10 ~i.1~5Ø75 16.85267 0.00063 -

11 ~i.07175 16.62110
12 -0.0-9825 20.33760 0.00076
13 4.i11675 23.40997 0.00068 -

14 -L 1.L11475 ~5.?8803
15 ~~~~~~~ 27.99729

(a)

Sequency Sequency Sequency Z of Total 
-

Sequency Mean Variance Picture Variation

0 1~~.t f2c.4 5.73112 0.84962
1 L.0349? 0.55466 ~ .08223 -

2 -i.0~iO86 0.14132 ~.E12095 -

3 ~‘.041E .~.i . 12358 ~..~~1631 -

4 --.1.~JO267 ~i.~i2505 0.~~0371 -

0.o:3159 ci.0046~. 
-

6 ~‘.U@135 0.03257 ~i. L . .046:i -
7 ~.U1 032 ‘~.03E43
8 -1 . ~~~~~ 0.~M629 ~ .I~1I It 3
9 ~~~~~i1~ -~ 0.00759 ‘.00113 1.

10 p.00050 0.~ 0?62
11 L1.UO 1@6 0.~~0734 0.0010~ - -

12 --~~.001it j.0€1894 0. 133
13 -1.00021 ‘j . i1014 :1.~~i0150 -

14 —-1 :1.ee,Oat ~.‘i’1 121
15 j i~ iC1585 ~.‘.Q.11209 ~~~~~~~

(b) I
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I Figure 23. 2—bit Hadamard Coding.
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Table 4. Hadamard Bit Assignments

2 bpp l bpp

S0 4

S1 5 4

s2 S3 3 2

S4 57 2 1

~8 ~15 _
~
j_

Total 32 16

4. INC Reconstruction

Figure 25 shows the sia3latsd ground display at a data rate of
50 kbps, with Hadamard sub—image coding . This display shows the edge—map,
the 128 x 128 orientation window, and a 32 x 32 priority target sub—image.

We felt that using the average background gray scale as the non—white
level in the edge maps would enhance the ground display. This enhance-
ment technique is shown in Figure 26 with a background level of 127 out
of a range of 0 to 255. If the gray scale had actually been chosen as
the average background level , the display would have been even more
pleasant. 

0

Figure 27 sh ows a reconstructed image that has been completely
processed by the computer—simulated INC system. The auto—cuer results
indicated 5 detections , 2 of which were false alarms. Each indicated
target was coded with a 32 x 32 pixel subwindow at 2 bpp . The 128 x 128
orientation window is coded at 1 bpp and the edge map was transmitted at
(1/2) 2 resolution. In Figure 27 , the subi.ages were coded using DPCM 8
BER — io.2 , while in Figure 28 a comparison La made with Hadamard trans-
form coding. Note that sharp edges (e.g., the road) in th. orientation
window are much better preserved with the transform coding.
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IBC1O1

1000:1 BANDWIDTh COMPRESS~0N
HADAMARD COOING -

(NO CHANNEL ERRORS) -

Figure 25. IBC reconstructed imagery, 1 1

data rate <50 kbs .
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1000:1 BANDWIDTH COMPRESSION
(EDGE MAP GREY SCALE - 127)

Figure 26.
INC reconstructed imagery with edge
map enhancement, data rate < 50 kbs.
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Figure 27. IBC reconstructed imagery,
data rate <50 kbs.
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DCPM CODED

HADAMARD CODED
(NO CHANNEL ERRORS)

I Figure 28.
IBC reconstructed imagery comparison .
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SECTION 4

PLAM S FOR R~~(A INDER OF PROGRAM

The investigations performed dur ing the first quarter of this
program have demonstrated the f easibility and usefulness of a 1,000:1
bandwidth compression in image transmission. The results have shown

that key features and target information of the image can be accurately
extracted and reconstructed for display to a ground station operator.

The results have also shown that the composite display of an edge map,
an orientation gray scale window, and gray scale full resolution target
windows can accurately and vividly portray the major image content inf or—
mation of value to an RPV mission to the ground station operator.

For tt~e remainder of this program , the major emphasis will be placed
on the development of the adaptive priority controller system. The assign-
ment of priorities to the target descriptors , the sorting of these

priority descriptors into a priority queue, the decision of how to fur-
ther refine the detected targets for better classification, and the allo-

cation of channel capacity to accoemodate the available resources are all
to be developed and tested using the INC image data base.

In addition, more efficient source edge map coding will be investi—
gated. In particular, attention will be directed at a form of (synchron—
izable) run—length coding. For comparison, the images will also be
coded with one-dimensional discrete cosine transform, two—dimensional
transform (e.g. , 4 x 4 Walsh Hadamard , and a hybrid Hadamard/DPCM. The

effec ts of error protection encoding will be simulated based on the (7 ,4)
Hamaing code. As time permits , the effort will be extended to include
the (23,12) Golay code.

1
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