ISI/TM-78-7
January 1978

690

ARPA ORDER NO. 2223

MA07YL
".g'g*?

PRIM System:

® Tool Builders Manual
® User Reference Manual

A

>—
& ..
| Lovis Gallenson
. Alvin Cooperband
, I:-l..l Joel Goldberg
=
'e.D [DISTRIBUTION STATEMENT A
‘E:
}

Approved for public release|
Distribution Unlimited

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way/ Marina del Rey[California 90291
UNIVERSITY OF SOUTHERN CALIFORNIA

(213)822-1511

st F

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE pErREAD INSTRUCTIONS
m J 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
(itlj IST/TM-78-7 |

4. TITLE (and Subtitle) [5. TYPE OF REPORT & PERIOD COVERED
. \ -~ e - N—

/

: ‘ : i ans et
(-4) PRIM System: (PREM Tool Builders Manual and C / Technical manual . /
~ VY User Reference Manual , p . - - Inl:l

S — S
7. AUTHOR(s) FrRr T)Tmm'r NUMBER(s)
{ Louis fGallenson. | Pl RS e A
, Alvinﬁﬁoperbah)d / :\/ﬁ DAHCJ S C‘BS,B,B//((
JoeléGoldberg {
. R NIZATION NAME AND ADDRESS 40 s D ECT, TASK
Information Sciences Institute - / :
4676 Admiralty Way 7 ARPA Order=2223 |
Marina del Rey, CA 90291 s it i el
1. CONTROLLING OFFICE NAME AND ADDRESS "4 E_W
Defense Advanced Research Projects Ag,ency/ / / J Jan 78
1400 Wilson Blvd. (A4 1
Arlington, VA 22209

. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Otfice) 18. SECURITY CLASS. (of this report)
e HAEOSS]
/)\ z '/J/ Unclassified

T8a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

This document approved for public release and sale; distribution
unlimited.

7. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, if different from Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

debugging tool, emulated I/0, emulation-based programming tools,
emulators, microprogramming

20. ABSTRACT (Continue on reverse side {f y and identify by block ber)

This is a two-part manual for developers of PRIM-based emulators.
The manual describes the capabilities of PRIM, the requirements
for PRIM-based emulators, and the MLP-900 microprogrammable processor.

oM. 1473 eormow oF 1 Nov 88 13 omsoLETE UNCLASSIFIED ‘*Qh:
s/N ono:-ot:-/;ola r7 (75,- SECURITY CLASSIFICATION OF THIS PAGE Dete Entered)

—— e ——— . o

S, - P — il NSRS,

ISI/TM-78-7
January 1978

ARPA ORDER NO. 2223

Ll
!
PRIM System:
[]
L]
® Tool Builders Manual
s ® User Reference Manual
b= e
| BI /
| i
Lovis Gallenson
Alvin Cooperband
Joel Goldberg
! | L
D1 { |
po - | C dli
i
|
} INFORMATION SCIENCES INSTITUTE
f 4676 Admiralty Way/ Marina del Rey/ California 90291
{ . UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511
I THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHCIS 72 C 0308, ARPA ORDER
l NO. 2223, PROGRAM CODE NO. 3D30 AND 3P10.
VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S ANLD SHOULD NOT BE INTERPRETED AS REPRESENTING THE
! OFFICIAL OPINION OR POLICY OF ARPA, THE U.S. GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM
! THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED.
} —
~

— S e T e

- e A

 aaa

iii

PRIM Tool Builders Manual*

Abstract

0.

PRIM is an interactive microprogrammable environment used for creating and running
emulators of existing or newly specified computers, with major emphasis on debugging
tools that can be operated by the user in the language of the original system. This
document serves as a manual for programmers interested in writing emulation tools to run
under PRIM. It covers an overview of the PRIM system design, requirements for emulators
that are to run under a PRIM framework, the MLP-900 microprogrammable processor, the
GPM language for programming emulators to run on the MLP-900, PRIM exec and debugger
commands for the tool builder that supplement the commands available to the general PRIM
user, and the TENEX MLP-900 driver interface for those MLP-900 users who might not
want to run under PRIM.

-

e This research is supported by the Advanced Research Projects Agency under Contract No. DAHC15 72 C
0308, ARPA Order No. 2223,

Contents

Preface 1

Chapter 1 Overview of the PRIM System Design 2
1.1 The PRIM System Architecture 2
1.2 The PRIM Framework 3
1.3 The PRIM Emulation Model 4

Chapter 2 Emulation Tool Requirements §
2.1 The Microvisor Environment §
2.1.1 Action Requests 5§
2.1.2 Extended Stack 5§
2.1.3 Stopping and Starting 6
2.1.4 Microvisor Calls 6
2.2 The Framework Environment 7
2.2.1 Required Allocations 7
2.2.2 Mainframe Emulation Standards 7
2.2.3 Registers and Switches 8
2.2.4 Target Memory 8
2.25 Timing and Emulated Clocks 8
2.2.6 Time Synchronization 9
23 1/0 Emulation 9
2.3.1 1/0 Configuration 9
2.3.2 Device Slots 9
2.3.3 Device Handlers 10
2.4 1/O Server 1
2.4.1 Supported Device Classes 11
2.42 1/OCalls 12
2421 RSTAT 13
2422 CLOSE 1
2423 GISTS 13
2.4.2.4 SFPTR and RFPTR 13
2.4.25 BIN and BOUT 14
2426 SIN and SOUT 14
2.4.2.7 DUMPI and DUMPO 14
2.428 MIOPR 14
2.429 RESET IS5
2.43 Call Completion 15
2.4.4.1 Waiting for Completion 1§
2.43.2 Aborted Requests i5
25 Breakpointing 16
2.6 Emulator Control Structure 17
2.6.1 CInitialize Emulator” 17
2.6.2 "Reason to Stop" 17
2.6.3 "Stop" 18
2.6.4 "Respond to Switches and Buttons” 18
2.65 "Time to Serve Next Scheduled Device" 14
2.6.6 "Service Scheduled Devices" 18

vi

2.6.7 "Cycle Mainframe" 19
2.7 Emulator Descriptor Tables 19
2.7.1 Structure of the Descriptor-table Source file 20
2.7.2 Spaces 21
2.7.2.1 Symbols 22
2.7.2.2 Mapping Functions 23
2.7.3 Distinguished Spaces, Locations, and Cells 24
2.7.4 Events 25 '
2.75 Character Sets 26
2.7.6 Break Tables 27
2.7.7 Numbers 27
2.7.8 Expression Evalutation 27
2.7.9 Machine Instructions 28
2.7.9.1 Instruction Fields 29
2.7.9.2 Parsing Rules 29
2.7.9.3 Formats and Opcodes 31
2.7.10 Devices 31
2.7.11 Tool Parameters 32
2.7.12 Parameter Cells 33
2.8 Emulator Installation 34

Chapter 3 MLP-900 Reference Manual 35
3.1 Primary Language Symbols 36
3.1.1 Identifiers 36
3.1.2 Reserved Identifiers 37
3.1.3 Numbers 37
3.1.4 Blanks 37
3.1.5 Nonalphanumeric Characters 37
3.1.6 Examples of Primary Symbols 37
3.2 Operating Engine 38 :
3.2.1 Operating Engine Operands 38
3.2.1.1 R.37 General Registers 39
3.2.1.2 M.17 Mask Registers 40
3.2.1.3 MISC.37 Miscellaneous Registers 40
3.2.1.4 A.1777 or N.PC.3 Auxiliary Memory 41
3.2.1.5 XBUS Exchange Bus 41
3.2.1.6 XLATOR.777 Translator Memory 41
3.2.2 Operating Engine Operators 4]
3.2.2.1 GEAR CkEneral ARithmetic 42
3.2.2.2 CEDE Conditional External Data Kxchange 46
3.2.2.3 SHIN SHift INstruction 49
3.2.2.4 GENT CGENeral Data Transfer 53
3.3 Control Engine 54
3.3.1 Control Engine Operands 54
3.3.1.1 F.377 Flip-Flops 55
3.3.1.2 P.17 Pointer Registers 57
3.3.1.3 CE.77 Miscellaneous Registers 60
3.3.1.4 S.17 Subroutine Stack 60
3.3.2 Control Engine Operators 61
3.3.2.1 BRAT BRAnch with Test 61
3.3.2.2 BENT RBranch and ENTer 62

.

vii

3.3.2.3 BORE Branch Or REturn 63
3.3.24 BRAD BRanch /Ind moDify pointer 63
3.3.25 BEAD Branch Extended ADdress 64
3.3.2.6 BLOT BLOck Transfer 66
3.3.2.7 MAST MAnipulate STatus 68
3.3.28 MOVE MOVE CE Registers 69

3.3.3 Action Requests 70

3.4 1/0 Interface 71 :

3.4.1 Command/Status Register 74

3.4.2 DATAO and DATAI 74

3.4.3 MLP-900 Interface Manipulation 74

3.4.4 PDP-10 Interface Manipulation 75

3.45 IPL Mode 76

Chapter 4 General Purpose Microprogramming Language 77
4.1 Program Structure 77
4.1.1 Declarations 77
4.1.1.1 EQUATE Declaration 78
4.1.1.2 TEMPORARY Declaration 78
4.1.2 Statements 78
4.1.3 Closing 79
4.2 Statement Types 79
4.3 Pseudodeciarations 79
43.1 ORIGIN 80
432 COMMENT 80
433 INCLUDE 80
4.3.4 Output Control 80
4.3.4.1 Source Listing Control 81
4.3.4.2 Code Listing Control 81
4.4 Assignment Statements 81
4.4.1 Arithmetic Assignments 81
4.4.1.1 Mask (amask) 82
4.4.1.2 Test Mode (testmode) 82
4.4.1.3 Shift (ashift) 82
4.4.1.4 Operators (aop) 82
4.4.15 Result (aleft «) 83
4.4.2 Boolean Assignments 83
4.43 Data Transfers 84
4.43.1 36-bit Transfers 85
4.43.2 16-bit Transfers 85
4.433 8-bit Transfers 86
4.4.4 INCREMENT and DECREMENT 86
4.45 SHIFT 87
45 Control Statements 87
45.1 Blocks 87
452 BREAK 88
453 Branches 88
454 Loops 89
455 Conditional Control 89
455.1 Block-structured IF Statement 89
455.2 Conditional-branch IF Statement 90

A ke

viii

45.6 Switches 90
45.6.1 Switch Tags 90
45.6.2 Switch Values 91
45.6.3 Programming Considerations 91
4.6 Low-level and Constant Statements 91
4.7 The GPM Compiler 92
4.7.1 Source Program 93
4.7.2 Label Table 93
4.7.3 Code Listings 94

Appendix A Additional Exec and Debugger Commands
A.l Exec Commands 95
A.2 Debugger Commands 97
Appendix B TENEX MLP Driver Interface 99
B.1 Control of an MLP-900 Process 99
B.2 TENEX JSYS’s Involving the MLP-900 99
Appendix C GPM Reserved Words 101

References 102

Index 103

95

e

Preface

This manual is intended for PRIM users who are interested in building their own emulation
tools or in extensively modifying existing tools. The tool builder must be aware of three levels
of control or interface protocols. At the first level, the PRIM framework must interface to the
operating system in which it is is embedded (TENEX or NSW). To utilize the PRIM system, the
tool builder--as well as the tool user--must have access to and knowledge of the basic
commands of the appropriate operating system (operating manuals for TENEX and NSW ere
generally available to interested users; information contained in such manuals is beyond the
scope of this manual). A second level of interfacing is between the user and the PRIM exec or
debugger command interpreters (general user information for PRIM can be found in PRIM
System: Qverview and PRIM System: Usor Reference Manual, which {oo! builders are assumed
to have read; information for specific existing tools can be found in a User Cuide for that tool).
The third level of interface, between an emulator and the PRIM framework, is covered in this
manual.

The manual is organized into four chapters and three appendices. Chapter 1 presents
an overview of the PRIM system design. Chapter 2 discusses requirements for emulators that
ere to run under a PRIM framework. Chapter 3 describes the MLP-900 microprogrammzble
processor. Chapter 4 presents the GPM language for programming emulators to run on the
MLP-900. Appendix A discusses those PRIM exec and debugger commands svailable to the tool
builder that supplement the commands available to the general PRIM user. Appendix B
describes the TENEX MLP-900 driver interface for those MLP-900 users who might not want to
run under PRIM. Appendix C lists GPM reserved words.

sl

Chapter 1
Overview of the PRIM System Design

For some applications the native machine is not the system of choice in which to develop
software, as when the target machine is unavailable (because it is still being developed, is
obsolete, or is inaccessible) or inconvenient (as when there is minimal target-system support
for debugging). In such cases, simulation or emulation may be preferred. Simulation has the
advantage of giving the user intimate access to the target machine, usually through a rich
debugging package. Typically, however, this richness is achieved at a high development cost
for the simulator and at a target-system performance degradation of four or more orders of
magnitude. Emulation can offer processing speeds comparable to the target system (even
taster, for slow target machines), but typically does not support a rich debugging environment.
The PRIM system attempts to retain the best features of both the simulation and emulation
approaches while at the same time minimizing their disadvantages. PRIM provides a sharable,
uniform framework for running emulations of target machines; within that framework is a rich
user interface that supports interactive target-system and emulator debugging. When the user
is not engaged in debugging, the target system runs at emulator speeds, but a sophisticated
debugging package is available immediately when needed. PRIM was developed within the
TENEX timesharing system so as to provide convenient access, a file system, resource
management, and a large set of utilities without the cost of developing yet another operating
system.

By cleanly and sharply separating the debugging and target-machine emulation tasks,
PRIM has been able to avoid most of the disadvantages of simulation and emulation while at the
same time combining their advantages. In achieving this sharp separation of function, PRIM
established a uniform and systematic structure for the development of emulators. This
structure not only minimizes the involvement of the emulator in the debugging process, but also
greatly simplifies the task of emulator development as it utilizes a standard package of 1/O
service routines and provides a convenient control structure suitable for a large family of
target-machine emulations. As most of PRIM consists of sharable system-level and user-level
code that is common to this potentially large family of target system emulations, a more
extensive development effort (with its consequently more sophisticated design) was called for
than would have been appropriate for a single-machine emulation or simulation.

1.1 The PRIM System Architecture

The emulation of a target machine under PRIM involves three different system levels: the
TENEX .timesharing system, which runs on a PDP-10; the PRIM framework, which runs at user
level under TENEX; and target-machine emulation tools controlled by that framework, which run
on a sharable MLP-900 microprogrammable processor. The timesharing system hardware and
software provide shared access to the MLP-900. The PRIM framework supports interactive
users at terminals and provides access to the file system for the emulator. The emulator
maintains the complete target-system environment. The PRIM framework can be used for both
emulator development and target program debugging.

The PDP-10 is a large, general purpose computer to which new devices can be connected
fairly easily, since the 1/0 bus is extensible and the multiported memory is external to the
processor. TENEX is strongly oriented toward the support of interactive computing, serving
both local users and remote users connected via the ARPANET. It does not interact directly

™

e 2t

Overview of the PRIM System Design 3
1.1 The PRIM System Architecture

with the user, but rather allocates resources, manages the file system, and supports the
execution of TENEX processes, each process running in its own paged virtual memory and
interacting as appropriate with its own user via a terminal of some kird. To support PRIM,
TENEX was extended with software to provide access to the MLP-900 by TENEX processes; the
MLP-900 was extended with hardware and software to guarantee the integrity of TENEX, even
against errant microcode.

The MLP-900 is a large, fast, vertical-word, microprogrammable processor with a writable
control memory. The processor consists of an operating engine and @ control engine. The
operating engine is a 36-bit arithmetic/shift unit with 32 general registers, 16 mask registers,
and a 1K internal memory. The control engine is a control unit with interrupt and branch logic,
a subroutine-call stack, 128 programmable flip/flops, and 4K of writable control memory. Cycle
time is 300 nanoseconds, during which either one or both engines can execute a 32-bit
instruction. The MLP-900 is interfaced as a peripheral device on the PDP-10 1/O bus with
direct access to the PDP-10 memory via one of the four existing memory ports; it has no
peripheral devices of its own. The 1/0 bus interface allows the exchange of control information
between the MLP-900 and the PDP-10; via this interface, either processor can interrupt the
other. Hardware modifications were required only in the MLP-900; they consisted of the
interfaces to the PDP-10 and a supervisor/user state that provides protection against user
microcode for the 1/O bus interface, the MLP pager (an address translator in the memory
interface that mimics the TENEX pager), most of the MLP-900 interrupt system, and the
MLP-900 control memory itselt.

At the system level the soiiware consists of a small operating system resident in the
MLP-900, known as the microvisor, and a TENEX device driver to shake hands with the
microvisor and govern access to the MLP-900 by TENEX processes. The MLP device driver is
the only module added to the TENEX operating system; it allows a TENEX process to create, run,
and control s subordinate MLP process in much the same way it can a subordinate TENEX
process. It also schedules use of the MLP-900 among contending users and supervises the
microvisor. Most of the microvisor is devoted to swapping emuiator contexts (control memory
and MLP registers) as the driver passes control of the MLP-900 from one user to another; the
rest responds to emulator requests for service, manages the MLP pager, and performs other
tasks required by the driver in TENEX. The microvisor runs in the privileged supervisor state
that allows access to all resources; emulator microcode runs in the user state that protects all
the critical resources from modification. PDP-10 memory Is not directly addressed by
microcode; instead, memory references are to addresses in a virtual memory identical to that of
a TENEX process. These virtual addresses are translated to resl addresses by the MLP pager,
which is controlled (via the microvisor) by the driver in TENEX. A reference to a page not in
memory results in a page-fault interrupt into the microvisor, which passes the fault to the
driver and retries the memory operation after the page is felched by TENEX.

The net effect of this design Is a sharable emulation facility in which each emuleior runs
independent of all others in its own context, accessing its own virtual memory under control of
the PRIM framework that created it. The framework has potentisl access to all of its emulator’s
context and memory and may inspect and/or modify them.

1.2 The PRIM Framework

The PRIM framework consists of TENEX processes that define and implement the PRIM
user command language, create an MLP-900 emulation process and control its execution at the
user’s behest, and provide /0 service for that emulation process. The 1/O service implements

Overview of the PRIM System Design 4
1.2 The PRIM Fremework

a set of primitives that allow the emulator to transfer data to or from the TENEX file system.
The emulator invokes these primitives to perform target |/O operations on installed devices
after the user has associated them with TENEX files.

An emulator is required to cooperate in the debugging process, although the demands are
minimal. Essentially, an emulator is expected to stop cleanly when interrupted by the
framework or on the occurrence of a small number of predefined events that it monitors and to
report its reason(s) for stopping. When the emulstor halts or is interrupted by user
intervention, control returns to the user at command level via the framework.

The tool builder must supply the PRIM framework with tables that define the target
system architecure and symbols and drive a target system assembler and disassembler. Except
for machine and user symbols and target assembly language, the same command interactions
apply to the use of every emulator and framework. The framework contains two separate
command processors, known as the exec and the debugger. Although both offer automatic
command completion and help facilities, each uses a language tailored to its functions.
Typically, a user interacts with the exec only briefly when starting and ending a session; during
the session he Interacts primarily with a target program or the debugger. General user-level
exec and debugger commands are discussed in detail in PRIM System: User Reference Manual;
additional commands available to emulator developers are presented in Appendix A.

1.3 The PRIM Emulation Model

A prototypical PRIM emulator has been developed based on the constraints cf the
emulator’s environment, the objectives of the PRIM system, the requirements of the PRIM
fremework, and the specific interface conventions that framework defines. The environment
consists of execute-only microcode residing in control memory, the MLP-900 registers, and a
256K 36-bit (virtual) main memory; the registers and virtual memory together comprise the
context into which are mapped the registers and memory of the target machine plus various
other regions devoted to required PRIM functions. The mapping is arranged at the convenience
of the tool builder, with accompanying tables describing this mapping to the PRIM framework.
The emulator can modify its context in the course of emulation, stop (thereby returning contrel
to the framework), and request I/O services from the framework.

The prototypical control structure allows an emulator to stop after any cycle and
subsequently resume emulation in a manner totally transparent to the target machine. While a
single target instruction constitutes the typical cycle, other events, such as interrupts or 1/O
data transfers, are also treated as emulator cycles.

Target timing in PRIM is virtual. The prototypical emulator increments an internal,
high-resolution, virtual timer to reflect the passage of target-machine time; there is no fixed
relationship among target time, MLP-900 time, PRIM framework time, and real time. Emulated
cycles that consume target time (e.g., instruction execution) advance the virtual timer; emulated
cycles that nominally occur in parallel with the former (e.g., 1/0O controller activity) are
scheduled for service relative to that timer. The result is a small, event-driven, discrete
simulation system with target instruction execution being treated as a background task.

Chapter 2

~ Emulation Tool Requirements

This chapter presents emulation tool requirements in eight parts: (1) the microvisor
environment, (2) the framework environment, (3) I/0 emulation and timing, (4) |/O server,
(5) breakpointing, (6) overall control structure, (7) tool descriptor tables, and (8) emulator
installation.

2.1 The Microvisor Environment

The MLP-900 microprogrammable processor is a sharable resource of the TENEX system.
Access is controlled by the TENEX MLP driver, which together with the MLP microvisor allows
TENEX processes to run emulation processes in a time-shared MLP-900. There is no
interaction among emulation processes.

An emulator consists of microcode written in the GPM language to run in user state on
the MLP-900 (see Chapters 3 and 4). Co-resident with the emulator in MLP-900 control
memory, occupying locations 7000 through 7755 octal, is the microvisor--the operating system
under which the emulator runs. The emulator resides in the remainder of control memory and
has available all the nonprivileged registers of the MLP-900. These control memory locations
and registers together constitute the emulator’s context; all of it is swapped into the MLP-900
when the emulator is started and all but control memory is swapped out when the emulator is
stopped. The emulator cen read and write a (virtual) main memory of 256K 36-bit words.

The microvisor runs in supervisor state. It processes all privileged action requests and
provides a set of routines that can be called by an emulator to perform necessary services.
The entry points for these calls are defined in the file <PRIM>ENTRY-VECTOR.GPM, which should
be included in every emulator (see the GPM INCLUDE command in Section 4.4.3).

2.1.1 Action Requests

The servicing of privileged action requests (AR’s) by the microvisor is completely
transparent to the emulator. The principal such services concern the swapping of emulator
contexts into and out of the MLP-900 and the servicing of page faults that occur on emulator
references to main memory.

There are eight user-level action requests (see Section 3.3.3), flops F.130 through F.137,
governed by the flop ARL5 (F.150). Associated with these user AR's are the interrupt
locations 7756 through 7775 octal, respectively, which are considered part of user control
memory. The TENEX MLP-900 driver and the microvisor cooperate to permit the controlling
TENEX process to set any of these user AR’s while the emulator is running; unless ARLS is set,
a user-level AR interrupt results. <

2.1.2 Extended Stack

The microvisor supporls an extended stack that is used when hardware-stack overflow
or underflow occurs. Whenever the microvisor is entered, whether by a cell or an AR
interrupt, two levels of the stack are used. As a result, an emulator may require the extended
stack if it uses more than twelve levels of routine nesting, including nesting due to user-level
AR interrupts.

Emulation Tool Requirements 6
2.1 The Microvisor Environment

The extended stack consists of sixteen 16-word blocks (in each of which the first word
and last two words are not touched) in the last page of MLP-900 auxiliary memory (locations
A.1400 through A.1777). The total capacity of the extended stack is 210 words. The tool
builder may treat as general auxiliary storage those blocks not needed for the extended stack.
The four high-order bits of P.6 select the block to use when the hardware stack overflows.
When the extended stack itself overflows, block zero is used. Incrementing or decrementing
P.6 through zero produces an extended-stack overflow and causes an emulator error-stop. It

should be noted that since not every word of a block of the extended stack is used, P.6 may "

not go up and down uniformly by one on calls and returns.

2.1.3 Stopping and Starting

Whenever the controlling TENEX process runs/resumes an emulator, the microvisor
returns control via the top of the stack. An emulator is stopped, its context swapped out of
the MLP-900, and the controlling TENEX process notified on any of the following:

The emulator calls MLP.STOP

The controlling TENEX process halts the emulator.

Any of the following action requests occur: CMADR, SUPVF, PROT, or VADR.
An extended-stack overflow or underflow occurs.

A reference is made to a protected page of memory.

2.1.4 Microvisor Calls

The available entry points and calling sequences for microvisor routines are:
¢ MLP.STOP - stop until resumed externally. The calling sequence Is
CALL MLP.STOP ;

A call to MLP.STOP relinquishes control of the MLP-900. The microvisor and TENEX
MLP driver swap the emulator’s context out of the MLP and notify the controlling
TENEX process of the stop. If that process resumes emulation, the call to MLP.STOP
returns at the next micro-instruction.

® MLP.CALL - pass parameter to the controlling TENEX process. The calling
sequence is
R.37 « call paramotor ;
CALL MLP.CALL ;

The parameter value in R.37 is passed to the controlling TENEX process via the
TENEX MLP driver. (The PRIM framework interprets calls to MLP.CALL as requests
for 1/O service; see Section 2.4.) After the parameter word is passed to the driver,
the call to MLP.CALL returns at the next micro-instruction.

® MLP.RCM - read control memory. The calling sequence is

(P.2) « control memory address ;
CALL MLP.RCM ;

Emulation Tool Requirements 7
2.1 The Microvisor Environment

A call to MLP.RCM allows user microcode to examine MLP-900 contro! memory. The
call returns immediately to the next micro-instruction with the contents of the
designated control memory location in R.37.

2.2 The Framework Environment

FrRIM is intended to support emulations of small- to medium-sized computers, with word
sizes up to 32 bits and I/0 configurations of moderate size and variety, including tapes, disks,
terminals, and unit-record equipment. The tool buiider should strive for a complete,
bit-compatible emulation of the target machine, including not just instructions and registers, but
also clocks, interrupts, machine states, memory protection and relocation, and nearly real 1/O.

2.2.1 Required Allocations

The PRIM framework requires main memory to be divided into three fixed regions:
working memory, buffer memory, and configuration memory. Buffer memory is defined in the
emulator’s descriptor tables by buflow and bufhi (see Section 2.7.2). The region below
buflow is working memory, containing target memory and any other large storage areas
needed by the emulator. Buffer memory is shared between the 1/0 server and the emulator
for transfers to and from the TENEX file system. Configuration memory lies above bufhi and
contains machine and device parameters; at a minimum it consists of the last page of main
memory, addresses 777000 through 777777 octal. Each device parameter must be allocated
within its device control block (see Section 2.3.2); global machine parameters may reside either
in MLP-900 auxiliary memory or in configuration memory.

A few flops associated with MLP-900 action-request interrupts are used by PRIM for
fixed purposes.

® F.130 (TRAC) and F.153 (ITRAC) are used in the implementation of the
MLP-single-step command, as are the two control memory locations associated with
the TRAC action request, 7756 and 7757 octal. The emulator should avoid using
any of these locations.

® F.131 is the STATUS action request, requiring the emulator to return the target
status to the framework as soon as possible. The emulator may report status either
by stopping--in which case STATUS and QUIT are identical--or by issuing an RSTAT
call (see Section 2.4.2.1).

® F.132 is the QUIT action request, requiring the emulator to stop #t the end of the
current cycle (see Section 2.6.3).

The emulator must either contain interrupt routines to handle F.131 and F.132 interrupts or
disable user interrupts and poll F.131 and F.132.

2.2.2 Mainframe Emulation Standards

A complete instruction set, functionally identical to that in the emulated CPU, must be
implemented. As the actual details of implementation are transparent to the user, the emulation
need be verifiable only at the point where the emulator stops. The possibility of additional
meta-instructions for any given machine should not be precluded.

A full interrupt facility, functionally identical to that in the emulated CPU, must be
implemented. For interrupt conditions that cannot occur because execution is emulated (e.g., @

Emulation Tool Requirements 8
2.2 The Framework Environment

memory parity error), there should still be some way for the user to cause the interrupt, such’

as implementing & user-settable indicator that represents the pending interrupt condition. In
general, the detection of an interrupt condition and the "taking" of the interrupt are best
treated as distinct emulator cycles with a set of interrupt-pending bits holding the state
information between the two cycles.

2.2.3 Registers and Switches

All programmable registers and switches should be implemented, except those listed
below. Momentary switches (e.g., master-ciear/reset) are to be noticed by the emulator and
cleared; normal toggles are to be read-only. It is not necessary to store console toggles in
MLP flops; they can be assigned where most convenient. The following switches should not be
implemented:

® Power On/Oft

® Run/Stop switch (it is replaced by the external control of the emulator itself).

® Switches used for machine diagnostics and maintenance that deal with machine minor
cycles and such nasty things.

2.2.4 Target Memory

Target memory is mapped into the emulator’s working (PDP-10) memory, beginning at
location zero and using as many words as required. The packing of target words is restricted
only in that the four high-order bits of each 36-bit PDP-10 word are reserved for meta-bits.
In general, it is recommended that a single addressable target memory location be stored in
each PDP-10 word.

Any memory paging, relocation, and protection offered by the target machine must be
implemented faithfully by the emulator at the functional level. Target memory is to be treated
as the machine’s physical memory, not as a target user’s virtual memory.

2.2.5 Timing and Emulated Clocks

Timing is done through an internal (36-bit) virtual timer whose unit is some smallest time
of interest, at most a machine minor cycle. The interval must be fine enough for accurate
timing; it must be large enough that the number of intervals required to schedule the longest
event can be represented in 35 bits. A time of 50 nanoseconds is proposed as a standard,
allowing events of approximately 30 minutes duration. Instruction execution, memory
references (by devices or CPU), and anything else that takes time, all advance the virtual timer
appropriately. For machines with inexact timing--due to asynchronous functional units,
interleaved memory, or data-dependent execution times--only statistically correct timing may
be possible.

The virtual timer is used not only to establish emulated execution time but also to
provide a time frame in which to run I/O devices, slow clocks, and whatever else operates
(infrequently) in parallel with the mainframe. This time frame allows the handlers for such
devices to schedule themselves for service at (regular or irregular) intervals to reflect
asynchronous operstion accurately. The emulator treats the virtual timer as a continuous
circular counter; PRIM keeps track of the high order portion for purposes of reporting time to
the user.

Emulation Tool Requirements 9
2.2 The Framework Environment

2.2.6 Time Synchronization

Synchronization of emulated (virtual) time with the PRIM framework--and, through it, with
other processes or emulations--is un optional feature. If implemented, it requires a global
parsmeter that will contain the synchronization interval and » scheduled pseudo-clock that
generates an RSTAT call (see Section 2.4.2.1) ot the end of each such interval of virtual time.

2.3 1/O Emulation

All 1/O device control and timing is emulated. Each device type supported by an emulator
is implemented by 8 microcoded device handler. Execution of a device handler is scheduled
relative to the (high-resolution) virtual timer: the initial execution of a handler is scheduled by
the CPU or by emulator initialization, then each time a handler runs it reschedules itself for its
next execution as necessary.

The device handler is responsible for all of the control and state logic associated with the
emulsted device. The data medium of the device is the TENEX file system; the PRIM framework
includes an 1/O server that gives the device handler access to it.

2.3.1 1/0 Configuration

Configuration in PRIM consists of the user “installing" supported 1/O devices, "mounting”
files on installed devices, and specifying assorted parameters assoclated with these devices and
files. The Installation of devices is allowed only prior to initializing the emulator and may,
therefore, be assumed to be fixed over a normal emulator stop/resume sequence. Although the
mounting of files is dynamic, with the user able to change file assignments and characteristics at
eny time, it is of no concern to the emulator, as the 1/0 server is responsible for all TENEX file
management. Device parameters are divided into two classes: those that may be set only at
installation time and those that may be altered by the user any time the emulator is stopped.
Device parameters (and the class to which they belong) are defined in the emulator’s descriptor
tables (see Section 2.7.11; parameters marked EXPLICIT or FIXED may be set only at installation
time, and those marked DEFAULT may be modified at any time).

Up to 64 devices may be installed. Each installed device is assigned a PRIM device
number (PDN) by the framework as it is installed. A given device type may be installed any
number of times, but each instance must have a unique device address (see the discussion for
word 5 of a device control block in Section 2.3.2).

2.3.2 Device Slots

The PRIM framework contains 64 identical, configurable device slots, each capable of
handling the 1/0O requirements of one emulated device. There is a one-to-one correspondence
between device slot and PON. The actual assignment of device slots to emulated devices is a
configuration function. Associated with each of the 64 device slots is an eight-word device:
control block in configuration memory (at octal location 777xx0, where xx is the PDN). Each
block Is for the exclusive use of its device and handler; it includes both the (fixed) configuration
information that is pessed to the emulator and the 1/0 call block for executing actual /O
operations. The allocation of control block words is given below:

Emuiation Tool Requirements 10
2.3 1/0 Emulation

0. 1/O-server call-block code and status word (initially zero).
1-3. 1/0O-server call-block parameters (not initialized).

4, Device handler parameters and private storage. This word contains
device-specific parameters; any parts not used for parameters are initially zero.

5. Handler type (H.0--bits B4-19) and a unique device-address (H.1--bits B20-35).
The handler type identifies the device handler for this device in this emulator
and thus associates an emulated handler type with this control block. A handler
type of zero (actually a word of zero) is reserved to mark an unused control
block; handler indices thus begin wilth one. The device address is the location in
the target-system 1/O address space for this device and thus associates a target
device with its control block. The device address will usually consist of an 8-bit
primary (channel and/or controller) address and, where needed, an 8-bit
secondary (unit) address.

6. <XWD <buffer size (in words)>, <buffer first word address>>. For devices that
do not require a buffer (where all 1/0 is done with BIN or BOUT calls) this word
is zero. Since buffer size requirements for each device type are determined at
configuration time from the emulator’s descriptor tables, all buffers will be the
right size.

7. Device time. This is a 36-bit value giving some basic time unit for the device (in
units of the virtual timer interval), typically the inter-byte transfer time. It
should be used to pace the emulated device properly. The user should be able
speed up or slow down a device by altering this value.

2.3.83 Device Handlers

Each different type of device (or controller) is implemented by a microcoded device
handler that issues the necessary calls to the I/O server in the PRIM framework. The creation
of new handlers for a given emulator is a demand function; the possible number of handlers is
limited principally by the size of control memory. Each handler must be made known to the
framework via appropriate descriptor-table information to allow the proper installation of the
implemented device. Each installed device is associated with a unique device control block; the
PRIM /O server transfers data between the TENEX file system and that control block or its
buffer in response to emulator calls.

The emulator performs a target |/O command by locating the appropriate device control
block and using the handler type it contains to select the proper handler. A device handler
must implement the 1/O operations relevant to its device, using |/O server calls to manipulate
the associated TENEX files. It must move transferred data between the appropriate mainframe
locations and the allocated device buffer (or the control block, for single-byte transfers). It
must also emulate the device timing, using its device time parameter to schedule its next
e* ~tion. A device handler must be re-entrant so that a device or controller can be installed
mo. - ‘han once; thus all storage required by a device handler (including the device control
block) must be associated with a device slot and not with the device handler itself.

The level of detail in the 1/0 emulation is determined by the requirements of the
expected applicetions. Thus for some applications a card reader that reads in the entire card

Emulation Tool Requirements i1
2.3 /0 Emulation

at once (at the conclusion of the necessary elapsed emulated time) might be adequate, while
other applications might require a card reader to schedule the read of each column separately.

The internal structure of device handlers, and the conventions for interacting with the
mainframe, are not here specified (except implicitly by the configuration requirement that all
handlers work indirectly through control blocks). Certain large classes of emulsted machines
(e.g, NTDS) will use common programming conventions for all their handlers in order to
share con.mon devices.

2.4 1/0 Server

I/O service is performed by the PRIM framework asynchronously and in parallel with
emulator execution. 1/0 transfers take place between the TENEX file system and device buffers
(for muiti-byte transfers) or device control blocks (for single-byte transfers). A device control
block {containing a four-word call block) is set aside in configuration memory by the framework
as part of device slot allocation (see Section 2.3.2), but a fixed relationship between call block
addresses and particular devices is neither required nor assumed. The emulstor issues a
service request by building a call block and passing its address to the framework:

R.37 « call block address ! the high-order half must be zero
CALL MLP.CALL ;

The 1/O server performs the requested operation using files currently mounted on the
designated device, replying (and returning status) in the call block itself. When an operation
completes, the server sets a call-completied bit in the call block. Any number of requests may
be outstanding simultaneously, but only one call may be outstanding st & time from any given
call block.

2.4.1 Supported Device Classes

The 1/O server supports three clesses of emulated devices: sequential (communications,
paper tape, and unit record), rendom access (disks), and magnetic tapes.

® For sequential devices, simple sequential 1/0 is performed on the mounted TENEX
file; for bidirectional (terminal-like) devices, two independent files (or a real
terminal) are used. The mounted files may be declared as containing ASCIHl data, in
which case the server translates the file's characters to or from the device’s
character set, or containing binary data, in which case no data transformation is
performed. Data may be transferred a byte at a time (BIN and BOUT) or a record at
e time (SIN and SOUT). A terminal-like device may be declared half-duplex, in which
case the server echoes all input to the output (file) as it is read.

® For random-access (disk-like) devices, mounted files are assumed to be binary with
sequential, fixed-length records. The relevant operations are BIN, BOUT, SIN, SOUT,
SFPTR, and RFPTR.

® For "magnetic-tape” devices, either a real magnetic tape unit or a disk file may be
mounted. A magnetic-tape disk file is read or written with both deta and structure
information intermixed in a private format that requires a byte size of 9. Tape
operstions are limited to DUMPI, DUMPO, and MTOPR.

Emulation Tool Requirements 12
2.4 1/0O Server

In all cases where different forms of files are allowed (ASCIl or binary for sequential devices,
magnetic tape unit or disk file for tape-like devices), the |/O server handles the difference
transparent to the emulator.

2.4.2 1/0 Calis

The first word of a call block is used to pass an operation code from the emulator to the
1/0O server (in the right half) and to return completion status from the server to the emulator (in
the left half); the emulator clears the status bits before issuing the service call and tests them
on its completion. The remaining three words of a call block contain parameters and replies
specific to each operation. The reader familiar with the TENEX system may notice a strong
resemblance between the call codes. and JSYS numbers and between the call parameter words
(P1, P2, and P3) and JSYS accumulators (AC1, AC2, and AC3). The format of the first word of a
call block is:

B0-B6 (not used)

B7 write-protected (input-only file)
B8 at end of tape

B9 at load point

810 at file mark

Bl11 record-length error

B10-Bi1 00 record matches butfer size
01 record less than buffer size
10 file mark encountered instead of record
11 record exceeds buffer size

B12 (not used)

B13-B14 (valid only as GTSTS replies)
B15 TENEX end-of-file

B16 call aborted

B17 call completed

B18-B35 call code (see below)

Bits B7 through Bl1 apply only to magnetic tape operations; B15 through B17 apply to all
operations.

All operations that refer to a particular device take a PDN in parameter P1. The PDN is
an identifying handle similar to a TENEX JFN.

Operations that transfer data to or from a buffer in buffer memory take a PDP-10 byte
pointer as a parameter; the pointer addresses the byte before the first byte of the buffer (in
anticipation of a PDP-10 ILDB or IDPB instruction). A byte pointer whose left half is zero
causes one byte to be transfered per PDP-10 word (starting at the indicated word, not the next
one); a byte pointer whose left half is all one-bits causes transfers to follow the standard ASCII
text packing for the POP-10.

The 1/O calls are listed below; parameters returned by the 1/O server are enclosed in
parentheses; parameters reset by the I/O server are enclosed in braces:

Emulation Tool Requirements 13
2.4 1/O Server

Code _Name Pl P2 P3
14 RSTAT target PC clock call block address

22 CLOSE PDN
24 GTSTS PON

27 SFPTR PDN record number record size
43 RFPTR PDN (record number) record size
50 BIN PON (byte) ---
51 BOUT PDN byte ---
52 SIN PON byte pointer record size
53 SOUT PDN byte pointer record size
65 DUMPI PDN byte pointer {record size}
66 DUMPO PDN byte pointer record size
77 MTOPR PDN operation count

147 RESET --- - -

2.4.21 RSTAT

RSTAT provides the framework with information about the state of the emulated machine.
The target PC (in P1) and high-resolution virtual timer (in P2) are always included in the call. |If
the emulator is currently waiting for a call to complete, P3 has the address of that call block; if
it is not waiting, or cannot determine its state, P3 has zero.

RSTAT has two distinct uses: for responding to a STATUS action request (see
Section 2.2.1 and Section 2.4.3.1) and (if necessary) for sychronizing emulated (virtual) time
with the PRIM framework. Synchronization requires that at the end of each scheduled RSTAT
interval the emulator wait for the previous synchronizing RSTAT call to complete and then issue

a new synchronizing RSTAT call. The reporting RSTAT call and synchronizing RSTAT call:

should use different call blocks so that a status report can be made while awaiting completion
of the previous synchronizing call.

2.4.2.2 CLOSE (all devices)

CLOSE closes the TENEX file(s) associated with the designated PRIM device, leaving the
device with no files mounted. '

2.4.2.83 GTSTS (all devices)

GTSTS returns status bits in the left half of the first word of the call block; two status
bits are specific to this call:

B13 off-line (no files mounted)
Bl14 input waiting to be read

2.4.2.4 SFPTR and RFPTR (primarily for disk-type devices)

SFPTR positions the mounted TENEX file to the beginning of the record specified by P2
(i.e., to the TENEX position P2¢P3); if P2 is all one-bits, the file is positioned at its end and
the number of records in the file is returned in P2. RFPTR returns the current record number
(TENEX position/P3). For both of these operations, a negative (or zero) P3 is taken to
represent a one-byte record. If SFPTR references a sequential device (see Section 2.4.1), it is
applied only to the input file.

S PP

Emulation Tool Requirements 14
2.4 1/0O Server

2.4.2.5 BIN and BOUT (primarily for sequential devices)

BIN reads one character from the (input) file mounted on the device; an end-of-file status
at completion indicates there had been no more characters to read. BOUT writes one character
to the (output) file.

2.4.26 SIN and SOUT (sequential or disk-type devices)

SIN transfers one record (of P3 bytes) from the (input) file to the buffer. SOUT
transfers one record (of P3 bytes) from the buffer to the (output) file. For SIN, an end-of-file
status at completion indicates that no data was transferred, since the file had been positioned
at its end.

Binary files are assumed to be pure data (no structure information). A short (last) input
record is padded with zero bytes.

ASCHl files are processed one text line at a time, regardless of line length. Each SIN
reads through the next end-of-line (truncating lines longer than the buffer or padding shorter
ones with spaces), then transiates the line and stores it in the buffer as a fixed length record
of the requested size; line terminators are not part of the translated lines. Each SOUT causes
the buffer to be translated, written into the file (with trailing spaces possibly stripped), and
followed by an end-of-line sequence (carriage return followed by line feed).

2.4.2.7 DUMPI and DUMPO (magnetic tape device only)

DUMPI reads one record to the buffer from a real magnetic tape or a disc file specially
encoded to contain tape-structure information as well as data. The number of bytes
transferred is the lesser of P3 and the actual record length; bits B10 and B11 of the status
word together indicate which of these governed the transfer. When the record is shorter than
the buffer (B10,B11 = 01), the actudl record length is returned in P3; when the record is
longer than the buffer (B10,B11 = 11), the number of lost frames is returned in P3. DUMPO
writes one record (of P3 bytes) onto a real magnetic tape or a specially encoded disk file.

2.4.2.8 MTOPR (magnetic tape device only)

The following MTOPR operations are implemented for magnetic tape devices; they do not
use P3:

rewind

write EOF

forward-space one record
back-space one record
13 write gap

16 forward-space one file

17 back-space one file

NO W -

The following MTOPR operations are implemented for sequential devices; P3 contains a
repeat count:

.

Emulation Tool Requirements 15
2.4 1/O Server

12 write P3 ASCI line feeds (with no CR)
14 write P3 ASCIl form feeds (with no CR)
15 write P3 ASCIl carriage returns

37 write one ASCII CR followed by P3 LF’s

They are useful where the device’s character set does not contain form-control characters. |f
the file mounted on the device is binary, these MTOPR operations are ignored.

24._.9 RESET

RESET requests the 1/0 server to abort all outstanding service requests. When the
RESET call is completed, all prior calls on the server are guaranteed complete. For each
outstanding call completed prematurely by the RESET call, the call-aborted status bit will be set.
RESET is the only call guaranteed to complete in a short time.

2.4.3 Call Completion

When the 1/0 server completes a call, it sets the status bits and reply words in the call
block. Until the call-completed bit is set, the call is outstanding and the call block logically
belongs to the server. In general, the I/O server supplies the emuistor with an error-free 1/O
interface. If a file problem occurs (e.g., file not mounted, untransiatable characters) the
framework requests the emulator to stop via the QUIT action request and reports the error to
the user. Unless the user aborts the operation with a CANCEL command, the outstanding
request will be retried by the server when emulation is resumed. Emulation errors (e.g., use of
an unrecognized PDN) are treated similarly, except that the server automatically aborts the
request.

2.4.3.1 Waiting for Completion

Since 1/O service calls are processed asynchronously, a call can take an indeterminate
amount of time to complete; some calls may never complete. For operations that have no fixed
emulated completion time (e.g., input of a character from an emulated operator’s console), the
device handler must poll the call block by rescheduling itself to test the call-completed status
bit again after some reasonable inlerval. For the majority of service requests, however, the
emulated time of completion is fixed since the operation takes a known interval. When the
scheduled time for completion arrives, the device handler must wait for the call-completed bit in
the call block, thus synchronizing the I/0 server with the emulated time frame. It is
IMPERATIVE that ALl such waits include the ability to respond to QUIT and STATUS
action requests before the request is completed. The only allowable exception to the above is
a wait for a RESET call, since it is guaranteed to complete shortly.

2.4.3.2 Aborted Requests

An 1/O server request can be aborted by the user-level CANCEL command, by an
emulator RESET request, or by the server itself. When any of these happens, the server sets
both the call-completed and call-aborted bits, indicating that it is done with the call block but
the call was terminated prematurely. Should the emulator wish to abort a specific outstanding
service request (e.g., because the emulated device was reset), it may make the server call:

R.37 « call block address + 400000000000 ! sign bit is set
CALL MLP.CALL ;

Emulation Tool Requirements 16
2.4 1/O Server

The server will then abort that call shortly (unless it completes normally first).

2.5 Breakpointing

An emulator must constantly look for conditions that will cause a break at the end of an
emulation cycle. These break conditions fall into two classes: references and events.

A reference break is caused by some emulated reference to a target location in which a
reference-break meta-bit is set. The locations subject to reference breaks, and the type(s) of
references to be monitored there, are indicated by the tool builder in the emulator’s descriptor
tables. Reference-break meta-bits are permitted in working memory or MLP-900 auxiliary
memory. The reference types are write (any modification), read (data fetch), and execute. All
three types of breaks should be allowed in target memory; other locations, such as target
registers, may be limited as deemed reasonable. A reference break does not suppress or
interrupt the reference; rather, the execution cycle is completed normally but the occurrence of
the reference break is logged for the debugger to process when the emulator stops st the end
of that cycle. (Interrupting execution at the end of the cycle is consistent with the requirement
for stopping cleanly and also avoids a problem that would arise if execution were interrupted in
mid-cycle on the occurrence of the break condition--that of responding to possible changes
made in the context during the break while not reporting the same breakpoint repeatedly.) The
meta-bits are the four high-order bits of the 36-bit word:

BO: write break.
Bl: read break.
B2: execute break.
B3: not used.

An event break is caused by the occurrence of any of a set of predefined events for
which a corresponding meta-bit is set. One meta-bit is assigned in the context for each type
of event. These meta-bits are described in the emulator’s descriptor tables. An event break
does not suppress or interrupt the event; rather, the execution cycle is completed normally but
the occurrence of the event break is logged for the debugger to process when the emulator
stops at the end of that cycle. The list of events is to include the following, and anythbng else
deemed reasonable: ;

® Anomaly: any occurrence of a predefined program anomaly.

® Store: any memory store.

® Jump: any (successful) jump/branch.

¢ Step: any CPU instruction execution (i.e., CPU single step).

® |/O: any 1/0 channel activity (i.e., I/O single step).

e Interrupt: any interrupt sequence.

® Tick: every tick of the emulated clock(s) or other reasonable interval (such

as a millisecond) if there is no clock.

Some anomaly conditions may be forced automatically if they are considered of sufficient
importance by the tool builder, thus needing no associated meta-bits.

The occurrence of a break of either type is recorded in one word of an eight word (or
larger) break-buffer. Each emulator cycle may use the entire buffer, from the beginning; the
buffer is cleared by the debugger before resuming after a breakpoint. The format of a
break-buffer word is

Emulation Tool Requirements 17
25 Breakpointing

Break Type BO - B2 B3 - B8 B9 - B35
(Unused entry) 0 0 0

Event 0 Event index Event parameter
Write break i Space number Target address
Read break 2 Space number Target address
Execute break 3 Space number Target address

The tool builder assigns event indices to message strings that are contained in the emulator’s
descriptor tables. Event parameters, if any, are specific to each event. The space number
corresponds to the SPACE declaration on which the referenced target eddress is declured in
the emulator’s descriptor tables (see Section 2.7).

2.6 Emulator Control Structure
The top-level structure of an emulator is assumed to be

initialize emulator ;
FOREVER DO
BEGIN 4
IF reason to stop
THEN BEGIN
stop j
respond to switchos and buttons ;
END ;
IF time to serve next scheduled devico
THEN service scheduled devices
ELSE cycle mainframe ;
END ;

Except for the top-level loop shown in the control structure, an emulator may not have any
loop that can run for an arbitrarily long amount of time. Any emulated operation that can take
such long times must be prepared to abort if a STATUS or QUIT action request occurs. Each of
the italicized phrases in the control structure is described below.

2.6.1 "Initialize Emulator”

Initialization involves the setting up of locations, such as mask registers, whose values
are constant, although possibly a function of a configuration parameter. Inappropriste
configuration parameters may be transformed in the process but may not be destroyed as the
emulastor must be re-initializable without harm,

The set of 64 device slots may be scanned to examine the configuration of installed
devices and to initialize them properly (installation of additional devices is not permitted after
emulator initialization). Pseudo-devices (o.g., clocks) must also be initialized.

2.6.2 "Reason to Stop”

Emulation must be suspended when the target machine halts, when any break condition
has occurred, or when the PRIM framework requests termination. When the emulator
encounters a break condition during the emulation cycle, it logs the break for the debugger to
process and flags a break state so as to stop at the end of that cycle. The framework
requests termination (at the end of the next cycle) via action requests (see Section 3.3.3).

Emulation Tool Requirements 18
2.6 Emulator Control Structure

263 "Stop”

Before calling MLP.STOP, the emulator must leave the reason(s) for stopping in R.37,
coded as follows:

Quit request 1
Emulated halt 2
Break(s) q

If more then one stopping condition occurs in any cycle, the above numbers are OR’ed.
Changes to the context made by the user during an emulator stop must appropriately affect the
target machine on resumption of emulation. In particular, this requires that the emulator have
no hidden copies of target state information when it stops.

2.6.4 “"Respond to Switches and Buttons”

Upon resuming emulation after a stop, the emulator must check all manually settable
switches that are not checked in the course of the normal emulation cycle (e.g., master clear,
load, etc.), and react appropriately. The emulator must also make sure that all hidden locations
that reflect user-addressable values are set up again (o.g., a global interrupt-check flop). In
general, anything that is user-addressable, and that the emulator assumes is constant during
execution, must be checked at this time.

2.6.5 "Time to Serve Next Scheduled Device"

The basic execution cycle consists of either asynchronous device service or a unit of
mainframe processing. Device service is scheduled relative to the high-resolution virtual timer.
A convenient scheduling mechanism is to maintain a linked list ordered by service time (earliest
first) within an array of devices. Clock pseudo-devices, including the one used for
synchronization (if implemented), are most easily treated as though they were scheduled
devices of a unique type that is not installed. :

Given a 36-bit, continuous, circular, virtual timer and events scheduled over a iime span
requiring no more than 35 bits of that timer, the correct test to compare the timer (here called
R.TIME) with the scheduled time of an event (here called R.SCHED) Is:

R.TIME - RSCHED \1 ;
GOTO +1 ! must let the shift settle into SHE
IF NOT SHE THEN
COMMENT scheduled time of the event has arrived ;

END;
The same test can be used to compare scheduled times for ordering an event list.
2.6.6 "Service Scheduled Devices"
Each configured device has, in word 5 of its associated device control block (see Section
2.3.1), an assigned handler type that is used to select the appropriate handler for the device.

The tool builder specifies the handler type for each device in the emulator’s descriptor tables.
When a device is installed, its handler type is entered into the control block. Serving a device

Emulation Tool Requirements 19
2.6 Emulator Control Structure

consists of removing that device from the scheduled device list and calling the proper handler.
Each device then reschedules itself for further service according to its timing parameters and
state.

A simple implementation of the wait-loop requirement of Section 2.4.3.1 involves turning
a wait for completion into a rescheduling at the currently scheduled time. This puts the device
back at the head of the event list, forcing the main loop to serve it again and again until
completion of the request, while allowing any required stop to occur in the main control loop.

2.6.7 "Cycle Mainframe"

All mainframe activities take place in a single time frame and thereby consume internal
(virtual) time. The selection of the appropriate mainframe activity for any emulation cycle is a
function of the machine’s internal design and priorities. A target interrupt, however, should be
treated as a separate emulation cycle, thus permitting a break to occur between the target
machine’s acceptance of the interrupt condition and the execution of the next instruction.
During mainframe execution, the emulator should maintain a jump history queue that records the
last few (at least sixteen) successful jumps in terms of old and new program-counter values, the
values being recorded circularly in two parallel spaces, typically in auxiliary memory (see
Section 2.7.2 for a discussion of spaces). The location of the most recent pair of entries must
be maintained in a pointer made known to the debugger via the emulator’s descriptor tables.

2.7 Emulator Descriptor Tables

PRIM requires each of its emulation tools to have an associated loadable descriptor-table
file containing a data base that identifies necessary elements of the emulation and defines the
target architecture as it appears to the user. This file supplies assembly language conventions
for the representations of numbers, operators, symbols, character sets, and instructions. It also
defines the names, locations, and structures of addressable assemblages of cells of the tool
(such assemblages are referred to as "spaces"), along with other characteristics of its
architecture. This descriptor-table file is loaded automatically during PRIM initialization; the
tool builder may also load such a file explicitly with the TABLES command.

One of the principal functions of the tables is the identification and naming of all cells of
interest. Briefly, a cell is a set of contiguous bits contained within a single 36-bit word in
either the TENEX target fork (the emulator’s virtual main memory) or the MLP context (the
emulator’s control memory and MLP-900 registers). A cell is identified for the PRIM exec or
debugger by an "extended PDP-10 byte pointer” in which the P (position) and S (size) fields
have their standard meaning, while |, X, and E are combined into a 23-bit extended address.
The extended byte pointers for all the MLP-900 registers (R.37, M.1?, MISC.17, CE..137,
F.377, P.7, S.17, and A.1777) are predefined in the tables using the GPM names. The
macros that generate extended byte pointers take two arguments, named byteptr and bitspac.
Bytaptr is either one of the predefined extended byte pointers or an extended address that
implies a full-word byte pointer (P=<0 and $=36). The optional bitspec, if specified, defines a
sub-byte within the named byte. The two acceptable forms of bitspec are <a-b> and <a,b>
where a and b are integer constants. In the first form, bits a through b are indicated, where
bits are number from O starting at the high-order bit in a byte. In the second form, a sub-byte
is indicated as being b bits wide, positioned in the byte with a bits below (to the right of) its
low-order bit. Addresses in the range 0 through 777777 (octal) are in the target memory;
addresses 1000000 through 1017777 (octal) are in ihe context; all other addresses are invalid.

Emulation Tool Requirements 20
2.7 Emulator Descriptor Tables

2.7.1 Structure of the Descriptor-table Source File

The relocatable descriptor-table file is actually the result of assembling a
descriptor-table source file containing calls to MACRO-10 macros. The definitions of the
macros used to build the tables are kept in the file <MLP>TABLES.MAC; when assembled, this
file produces the file TABLES.UNV, which must be referenced at the beginning of the
descriptor-table source file by using the MACRO-10 directive SRARCH TABLES (note that this
facility is not completely supported prior to version 50 of MACRO-10). Implicit in these
table-building macros is the assumption that the prevailing radix is decimal. If the tool builder
wishes, he may change this by using the BASE macro (but should not use the RADIX directive).
Since MACRO-10 assembles the source file to produce the relocatable file, the MACRO-10
conventions must be observed for the representation of numbers, character strings, and
symbols. Except where explicitly contraindicated, the tool builder may freely use all of the
features of the MACRO-10 assembler.

The second line of the source file must be a call on the EMULATOR macro. This macro
defines the name of the machine, the width of several of the primary registers, the predominant
type of arithmetic used, and the timing of the machine:

EMULATOR emname, pcwid, inswid, chrwid, arithwidih, arithaddr, buflow, bufhi, mincyc

® emname is the name of the emulator.

® pewid, inswid, end chrwid define the bit widths of the program counter, the basic
instruction, and characters in the prevailing character set of the machine,
recpectively.

® arithwidth and erithaddr define the number of bits and type of arithmetic with
which the PRIM debugger is to evaluate input. Currently A.2COM and A.ADDR are
the only supported arithmetics; the former effects two’s complement arithmetic while
the latter interprets operands as unsigned magnitudes (other routines may be added
to PRIM as the need arises).

® buflow and bufhi delimit the region in target memory that may be allocated by PRIM
for 1/O buffer space (by the routine DV.BUFF) such that buflow < bufhi and both
are in the closed interval [400000, 776777]), octal.

® mincye specifies the number of emulated nanoseconds between successive ticks of
the high-resolution virtual timer of the machine.

The EMULATOR declaration is followed by definitions, in arbitrary order, of the tool’s spaces
sand symbols, character set(s), break tables, number and expression syntax, assembly formats
and opcodes, events, emulaled devices, and tool parameters. The last line of the source file
must contain the MACRO-10 directive :

END

In the macro descriptions that follow, each formal argument that ends with the suttix tag
has its corresponding actual argument converted into an assembly-time symbol by prefixing it
with a period; all such tags must therefore be unique in the first five characters. Such tegs
never conflict with the Internal symbols used by the table macros, so ell valid MACRO-10
symbols are sllowed.

-

Emulation -Tool Requirements 21
2.7 Emulator Descriptor Tables

2.7.2 Spaces

A space is a two-dimensional array of cells that have been grouped together for
convenience or necessity. Each column (or vertical slice) of the space consists of cells of
uniform width; the concatenation of all the cells in a row of a space constitutes a “"location” in
that space. The user addresses locations, not cells, although when there is only one column in
the space, as is very common, location and cell are identical. Typically, all the large spaces
correspond to obvious entities in the target machine--like the target machine’s main memory or
registers--and a few miscellaneous spaces hold the rest of the visible locations. The debugger
operations mext and prior treat rows of a space as being circularly ordered, whether or not
there is any inherent ordering of the locations.

Cells in a single location, as well as locations in a single space, should be non-overlapping.
Different spaces may map the same bits in different ways. The first space defined must
correspond to the target machine’s primary memory; it is designated as space zero. Ordering
of subsequent spaces is important to PRIM only in that a space number that the emulator
reports in a reference breakpoint must correspond to the ordinal position (starting with zero)
of that space’s declaration in the file. The declaration of a space begins with the call:

SPACE spacetag, access, population, width, distance

® spacetag is the name of the space, unique in the first tive characters; it is equated
to the space number rather than an address in the tables since all internal
references to a space use its number. Those spaces used to communicate with the
debugger are identified through unique spacetags reserved for them.

® access is @ sublist of the keywords READ, WRITE, READBREAK, WRITEBREAK, and
EXECUTEBREAK or the keywords ALL or NONE, indicating the access and breakpoint
capabilities associated with this space. The first two refer to the user’s ability to
access and modify locations in this space (if READ is not specified, the space is
bypassed in symbol lookup); the next three indicate which, if any, of the reference
breakpoint types are supported in this space. For a multislice space, the debugger
break command sets meta-bits in the PDP-10 word that contains the first cell of
a location; for PDP-10 words that are addressed by cells in more than one space,
breakpoint capabilities must be established only for the single space in which the
emulator actually reports such breaks. For a space with multiple locations within a
single PDP-10 word, one set of meta-bits is associated with all the locations in the
word: thus meta-bits set by the debugger for one of the locations apply to all and
supercede those set earlier even for a different one of the locations that share the
word; the emulator cannot identify which of these locations is associated with the
break. For the tool builder (i.e., for a whiz--see Appendix A), all the debugger
access checks are bypassed: no-read spaces can be used to add all the tool
builder’s symbols and locations in the tables without their interfering with the tool
user.

® population is the number of locations in this space; they are numbered from O
through population-1.

o width is the width, in bits, of the locations in this space.

® distance is an optional parameter of the form

RANGE(min, max)

that effects debugger symbolic output of addresses in this space for locations

Emulation Tool Requirements 22
2.7 Emulator Descriptor Tables

having no corresponding symbols. With the exception of memory, which may have
no machine symbols, all spaces are expected to be completely covered by their
symbols, making RANGE unnecessary. An address in a space is output by the
debugger using the closest defined symbol, provided that that symbol is within the
range [symbol+min, symbol+max] inclusive, where min and max are both signed
integers.

Each SPACE macro call is followed by an arbitrary number of mapping function and
symbol-declaration macro calls to complete the definition of the space. The macro ENDSPACE
may be used after any SPACE macro to force its immediate definition. Since each successive
SPACE call completes the previous one, ENDSPACE is usually required only at the end of the
last space defined.

2.7.2.1 Symbols

A symbol is the name by which the user knows a location. Each such symbol input to the
debugger is translated to a (space, index) pair, where index is an integer between O and
population-1. Address arithmetic can then be performed on the index part. On output the
debugger translates a (space, index) pair to a symbol or to a symbol with offset (see RANGE
above).

Each SPACE declaration is followed by a list of SYMBOL macros declaring its associated
symbols. A simple symbol declaration consists of just a name and value (index), representing a
single symbol. Simple symbol entries are also created by the CELL, PROGRAMCOUNTER, and
STEPFLOP macros, which are described later in this section. A more complex declaration can
reference a recognizer function to designate a family of similar symbols, each of whose
composite name consists of a leading substring equal to the family (SYMBOL macro) name and a
trailing substring that Is recognized or produced by the recognizer (which also is responsible
for the construction or decomposition of the space index from/to the symbol value). Multiple
symbols within a space may correspond to the same index; all are valid for input but only the
first one declared is used for output. Symbols are entered into the currently open space using
the SYMBOL macro:

SYMBOL name, value, <rcfunc(argl, arg2, ..., argN)>, distance

® name is an arbitrary name used in other macros to reference this symbol.

® value is the row number (index) in the space where a simple symbol is located or is
used by @ recognizer function to generate an index. .

® distance is an optional parameter of the form

RANGE(min, max)

that overrides the space’s distance with respect to this symbol only. If unspecified,
the distance of the space will be used.

There are currently seven recognizer functions implemented in PRIM (in the BLISS module
SYMBOL); new functions can be added if needed. The BLISS routine names for the recognizer
functions are of the form RC.xxx; the corresponding recognizer macros, with names of the form
RCxxx, are described below.

Emulation Tool Requirements 23
2.7 Emulator Descriptor Tables

Recognizer call Function
RCOCT(min, masx) Parses an octal-number string, n, between min and max

inclusive. Returns an index of: value + n.
RCDEC(min, max) Similar to RCOCT, but with a decimal-number string.
RCHEX(min, max) Similar to RCOCT, but hexadecimal.

RCNWRD(min, max, b, d, ¥) Parses a base-b number, n, between min and max
provided that n (mod d) = r. Returns an index of:
value + (n / d).

RCMUL(b, i, m) Parses a base-b number, n, between O and m, inclusive.
Return an index of: value + (n = i).

RCSTR(<string>) Parses no further input; instead, evaluates the ASCIl
string and returns its value as the index. This is an
input recognizer only. It permits a symbol to be defined
in terms of an expression involving other symbols.

RCOPN() Parses no turther input; instead, returns the index of the
open location, provided that it is in this space. This is
an input recognizer only.

To use recognizer functions that do not have predefined macros, use
RCEXT(RC.fune, argument)

where RC.func is the name of the corresponding BLISS routine and argument is a 36-bit value
that may be the address of an argument vector.

2.7.2.2 Mapping Functions

Each slice (or column) of a space is specified using a mapping function that will translate
an index for that space into an extended byte pointer to the corresponding cell. For spaces
with more than one slice, the mapping functions are specified in order from the high-order byte
of each location through the low-order byte. (The slices of a space may have different widths.)

Currently there are two mapping functions implemented (routines M.DEF and MPTR in the
BLISS module XVAL) new functions can be added if nceded. M.DEF uses a set of five
parameters to compute an extended bylte pointer from an index, while MPTR simply indexes
into an array of extended byte pointers.

The macro MOEF is used to describe a regular slice that can be handled by the MDEF
routine:

MDEF baseaddress, width, shift, density, increment

® baseaddress is the extended address of the word containing the first cell of the slice.
o wideh is the width of the slice in bits.

/

— m————— E

oo sop sttt st M

Emulation Tool Requirements 24
2.7 Emulator Descriptor Tables

® shifs is the number of low-order bits in the word that are not in the last (rightmost)
cell.

® density is the number of cells per word (packed every width bits from high-order to
low-order end).

® increment is the value added to hascaddress to go from word te word.

All but the first argument may be omitted, with width defaulting to that of the space, shift
defaulting to zero (indicating right-justification), density defaulting to one (indicating one cell
per word), and increment defaulting to one (indicating that cells are in successive words). A
symbol’s space index I is translated by M.DEF into the P, S, and K fields of an extended byte
pointer as follows:

Byte Location, P: shift + (density - I (mod density) - 1) ¢ wideh
Width of Byte, §: width
Word Location, E: basoaddross + increment # (I | density)

The macro MPTR is used to describe a slice by a list of extended byte pointers, one per
cell. MPTR is followed by population number of CELL macro calls (see SPACE and SYMBOL
macros), each supplying one pointer; the cells are indexed in the order specitfied:

MPTR
CELL byteptr, bitspec, name

CELL byteptr, bitspec, name
ENDCELL

® byteptr and bitspec have been described previously.
® name is an optional argument; if supplied, it generates an implicit simple SYMBOL
entry for this space using the given name and the index of this cell.

Newly implemented mapping functions may be referenced using the macro
MEXT Junction-name, argument-addrass

® function-name is the name of the new mapping function,
® argumont-address is the address of a block in memory containing its argument(s).

2.7.3 Distinguished Spaces, Locations, and Cells

Distinguished spaces are recognized through the use of one of the reserved spacetags:
OLDPCSPACE, NEWPCSPACE, BREAKBUFFER, and EVENTSPACE. The first three of these spaces

need not have any defined symbols.

® OLDPCSPACE and NEWPCSPACE are a pair of spaces of equal size (preferably a
power of two) with width equal to pcwid (see EMULATOR macro); they are used to
hold the target machine’s jump-history queue, with a parallel pair of locations
holding the old and new program counter values for each jump. The debugger
assumes they are used circularly in the forward direction (0, 1, . . . , population-1,
1 PR |

® TOPOFJUMPQ addresses the most recent entry in the circular buffers.

® BREAKBUFFER is a 36-bit space containing the encoded breakpoint descriptors
reported to the debugger by the emulator.

Emulation Tool Requirements - 25
2.7 Emulator Descriptor Tables

® EVENTSPACE is a 1-bit-wide space that contains a location for each breakpoint
event supported by the emulator; the debugger recognizes the events by their
symbol names.

The following macros, which must each be used just once, inform PRIM of various
distinguished locations that it uses implicitly. In addition to noting the distinguished locations
for PRIM, they function as simple SYMBOL macros. The locations are, of course, also directly
addressable:

PROGRAMCOUNTER nama, value
STEPFLOP name, value

The PROGRAMCOUNTER macro specifies the location used in conjunction with the debugger go
command and the information message produced when the emulator stops. The STEPFLOP
macro specifies the location of the single-step event flag for use by the debugger single-step
command.

The following macros, which must each be used just once, also inform PRIM of various
distinguished cells that it uses implicitly. The cells have no user-known names, although the
same bits can appear in some other space also:

CLOCK byteptr, bitspec
TOPOFJUMPQ byteptr, bitspec

The CLOCK macro declares the emulator clock that keeps virtual time; its unit is mineyc (see
EMULATOR macro); its value is used to keep track of target time. The TOPOFJUMPQ macro
declares a pointer to the top of the jump-history queue; its contents are used by the debugger
Jump-history command to identify the locations within OLDPCSPACE and NEWPCSPACE
describing the most recent jump taken by the target machine.

2.7.4 Events

When the emulator detects and reporls an event break, the debugger uses the event
table to decipher the 6-bit event code and respond to the event. Each call to the EVENT macro
generates one entry in the event table; no ordering is assumed. This event table defines the
correspondence between event codes and event control bits (which are the locations in
EVENTSPACE):

EVENT cade, prefix, parintype, suffix, evaddr, spacetype

® code is the event code reported to the debugger by the emulator.

prefix and suffix are quoted sirings to be output to the user by the debugger.

® parmtype interprets the event parameter accompanying the event; it is one of NONE,
NUMBER, or a spacetag (implying the address of a location in that space).

® evaddr is either empty or the index into EVENTSPACE for this event's control bit,
which Is used by the debugger to check whelher a breakpoint was set for this
event and whether a break program is associaled with it. Events that are not
selectable by the user have no associated control bit in EVENTSPACE (and,
therefore, can have no break program).

® spacetypo is one of the following: NONE (or empty), NUMBER, or INSTRUCTION.

Emulation Tool Requirements 26
2.7 Emulator Descriptor Tables

When an event break occurs; the debugger produces a message (based on the event code)
consisting of the corresponding prefix string followed by the parameter value, output according
to parmtype, followed by the contents of the location painted to by the parameter, output
according to spacetype (provided that parmtype is a spacetag), followed by the suffix string.

2.7.5 Character Sets

Several character sets may be employed within each target machine. The
CHARACTERSET macro describes the several available character sets to the PRIM framework.
In text mode the debugger uses the first character set defined, assuming that characters of
width chrwid (see EMULATOR macro) are packed in locations. Any character set chartag may
be referenced by RADIX and DEVICE macros. Each non-ASCIl character set is defined using the
following sequence: :

CHARACTERSET chartag
CHARS O,<characters in ascoending ordinal value>
CHARS m,<more charactors, from the mth char>

(EHI‘\RS n,<last characters in the charactor soi>
ENDCHARACTERSET

For an ASCl character set, the following declaration is used:
CHARACTERSET ASCII

The character set name, chartag, must be a valid MACRO-10 symbol unique in the first five
characters. The resulting transiation table for a character set is organized such that the ASClIl
character corresponding to the ith character in the character set is entered as the ith
character in the table. Hence, the emulator builder supplies a list of ASC . characters in the
order of increasing ordinal value of the corresponding characters in the given character set.
For ASCII, a character set entry is built but the table is nol.

The first argument to a CHARS macro indicates the ordinal value of the next character
specified. If this value is greater than the number of characters generated thus far for the
character set, an appropriate number of padding characters will be inserted first. The padding
character is defaulted for each character set as an output-only ASCIl blank; it may be changed
at any time using the macro

FILLER <charactor>
In this manner, sparse character sets may be specified compactly.

Due to MACRO-10 macro constraints, the following conventions have been adopted to
specify certain characters in a character set. Control characters follow the BLISS-10
convention, using the question mark notation. Thus ?? is a question mark, ?C is control-C, G is
control-G, 70 is null, 71 is rubout, ote; additionally, %(and ?) are used to represent < and >,
which would otherwise interfere with the MACRO-10 scanner.

Some target-machine characters might not have ASCIl equivalents. In such cases some
ASCIl character must be supplied to facilitate translation of output. An apostrophe immediately
preceding @8 CHARS character declares that character to be for output only. That target

Emulation Tool Requirements 27
2.7 Emulator Descriptor Tables

character will translate into the designated ASCIl equivalent but that ASCIl character will not
translate back into the original character. For example, '?7E occurring in position 12 in the
character set will allow the target character whose value is 12 to be translated to control-E
when expressed in ASCII, but translation in the reverse direction will be prohibited. To enter a
literal apostrephe, precede it with a question mark, i.e., 7"

ENDCHARACTERSET is an optional macro that need only be supplied to cause immediate
definition of the character set. A good practice is to place one after the last character set
definition.

2.7.6 Break Tables

To aid the PRIM debugger in parsing expressions input by the user, five bit-encoded
character-break tables are used: STARTSYMBOL, INSYMBOL, STARTNUMBER, STARTOPERATOR,
and INOPCODE. All of these have identical calling sequences. STARTSYMBOL should contain all
characters that can start a target-system symbol. INSYMBOL should contain all characters that
can follow the first caracter of such a symbol. STARTNUMBER should contain all characters
that can start a target-system number (not counting any prefix string that might be specified).
STARTOPERATOR should contain all characters that can start a target-system operator. And
INOPCODE should contain all characters that can appear anywhere in a target-system opcode.
An example is:

INOPCODE <ABDX>
which declares that characters A, B, D, and X are the only characters occurring in any opcode.

The question-mark convention may be used to enter control characters as well as special ones,
though their occurrence in legitimate input atoms is improbable.

2.7.7 Numbers

The RADIX macro is used to describe to the PRIM debugger the target-system.

assembly-language syntax for both numbers and character constants, in both cases assumed to
be a fixed prefixstring followed by digits or characters followed by a fixed suffixstring, where
either (or both) of the strings may be empty. For numeric constants, a base up to 36 is
allowed, using the set {0, 1, . . . , 9, A, . . ., Z} for the digits, in the call:

RADIX prefixsiring, base, suffixstring
A character constant normally would use a base equal to the character-set size:
RADIX prefixstring, baso, suffixatring, chartag
The base of input numbers is self-defining as they must satisfy the syntax contained in the
table of radices that drives the parsing; output numbers are generated according to the RADIX

specification for those numeric radices supplied or as pure digit strings for other radices.
(There is no character-constant output.)

2.7.8 Expression Evaluation

The operators in the target machine’s assembly language are defined, along with their
precedence, using the macros UNARY and BINARY:

— oot e — e St

Emulation Tool Requirements 28
2.7 Emulator Descriptor Tables

UNARY functionname, string, precedence
BINARY functionnamea, string, precedence

® gsring contains the arithmetic operator in the target assembly language, or an
invented name for use in PRIM, enclosed by delimiting characters.

® functionname Is the name of an arithmetic function supported by PRIM that
corresponds to the target operation being declared (see list of supported functions,
below); all unary operators are prefix and all binar\' operators are infix.

® precedence reflects the relative binding strength of the declared operator; larger
values take precedence over smaller ones.

The following functions are currently implemented:

Function Name Arguments Description

OP.ADD 2 Addition
« OP.SUB 2 Subtraction
OP.MUL 2 Multiplication
OP.DIV 2 Division
OP.MOD 2 Modulus (remainder)
OP.LSS 2 Less than
OP.LEQ 2 Less than or equal to
OP.EQL 2 fqual to
OP.NEQ 2 Not equal to
OP.GEQ 2 Greater than or equal to
OP.GTR 2 Greater than
OP.AND 2 Bitwise AND
OP.OR 2 Bitwise OR
OP.NOT 2 Bitwise NOT
OP.XOR 2 Bitwise Exclusive OR
OP.CON 1 Contents of
OP.ABS 1 Absolute value
OP.NEG 1 Negation

Parentheses native to the target machine’s assembly language or "invented” for use in PRIM
may be declared by

PARENS openingparen, closingparen

where the openingparen and closingparen must each be enclosed by delimiter characters. An
example of the use of the PARENS macro is

" PARENS (",)"
2.7.9 Machine Instructions

The debugger’s instruclion assembler/disassembler is driven by a table of machine
instruction formats. These formats use a set of parsing rules and a set of instruction-field
descriptors. Fields, rules, and formats are each separalely described below. Fields and rules
can be defined in arbitrary order and are referenced by tags in formats and rules; formats must
be collected into a single table. Symbolic opcodes are associated with instruction formats in a
manner similar 1o the association of machine symbols with spaces.

SRS UUESSRNUR GRS

Emulation Tool Requirements 29
2.7 Emulator Descriptor Tables

2.7.9.1 Instruction Fields

An instruction is treated as a contiguous sequence of bils of a length that is some
(initially unknown) multiple of inswid (see EMULATOR macro). For purposes of field definition,
the instruction bits are numbered consecutively from zero at the high-order bit; location
boundaries and/or PDP-10 word boundaries are ignored. A field identifies a set of (not
necessarily contiguous) bits that is being treated as a unit in some instruction; within a field
there may be one or more subfields consisting of contiguous bits. Fields are declared as

FIELD fieldiag, bitapee, function
for a simple field, or as

FIELD fieldiag, » function

SUBFIELD bitspec

SUBFIELD bitspec
ENDFIELD
for a broken field.

® [fieldtag must be a valid MACRO-10 symbol unique in the first five characters.

® bitspec Is a bit specification for the field or subfield of the form <a-b>, where a is
the high-order bit of the field and b is the low-order bit.

® function, if specified, is the name of an arithmetic conversion routine that converts
numbers to bits and bits to numbers; if not specified, it defaults to the machine
arithmetic routine, arithaddr, from the EMULATOR declaration.

Where a field consists of a list of subfields, the field itself is the concatenation of all the
subfield bits, with the first subfield at the high-order end.

2.7.9.2 Parsing Rules

A rule is an ordered list of parsing primitives that operate for both input and output,
specifying the contents of instruction fields on assembly and generating an instruction string on
disassembly. The execution of a rule succeeds when each of its primitives in turn succeeds;
when any one fails, the rule fails. Rules deal with sequences of symbolic-expression fields and
delimiters, with allowance for alternative and optional fields. The RULE macro begins a rule; it
is followed by the rule’s primitives in order:

RULE ruletag
ruleprimitivel
ruleprimitive2

ENDRULE
There are six ruleprimitives: MARK, EXPRESSION, CALL, TRY, IS, and ISNOT. Each takes its own
particular arguments and has its own criteria for succeeding or failing:

MARK <"char"> Assembly: parses a single character of input and succeeds
if, and oniy if, that character matches char.
Disassembly: appends the argument char to the string;
always succeeds. (Used for indicating assembly language
delimiters.)

Emulation Tool Requirements 30
2.7 Emulator Descriptor Tables

EXPRESSION ficldtag Assembly: parses and evaluates an expression and stores
its value into the field named by ficldtab; always succeeds
(empty expressions are permitted).
Disassembly: appends the vatue contained in the field
named by ficldtag as an appropriate string; always

succeeds.
CALL rulel, rule2 Assembly or Disassembly: calls rulel (as a subroutine)
TRY rulel, rule2 and, if it fails, calls rule2, CALL succeeds if, and only if,

either of the called rules succeeds; TRY always succeeds.
Rule2 is optional; if absent it always tails.

IS fioldtag, value Assembly: stores value in the field named by fieldtag;
always succeeds.
Disassembly: succeeds if, and only if, the field named by
Jieldtag contains value; no output.

ISNOT fieldtag, value Assembly: does nothing; always succeeds.
Disassembly: succeeds if, and only if, the field named by
fieldiag does not contain value.

Note that the only primitive that directly causes rule failure on assembly is MARK, while 1S and
ISNOT are the only direct causes of failure on disassembly. When a called rule (one referenced
by a CALL or TRY macro embedded in some rule, rather than one invoked directly via a FORMAT
macro) fails, all of its side effects are undone--as are those of any rules it might have called.
On assembly this includes values stored in fields by EXPRESSION or IS as well as all input
characters parsed; on disassembly this includes characters added to the output string by MARK
or EXPRESSION.

The width of an instruction, on input or output, is derived from the rightmost field that is
referenced successfully.

As an example, the following two rules handle an optionally indexed address field, where
the index is designated by a comma followed by an index-register specification and is. zero if
not present. The fields ADDRFIELD and INDXFIELD designate the address and index fields,

- respectively.

RULE INDXADDR
EXPRESSION ADDRFIELD
CALL INDXRULE, INDXPAD

ENDRULE

RULE INDXRULE
MARK <",">
ISNOT INDXFIELD,0
EXPRESSION INDXFIELD
ENDRULE

RULE INDXPAD
IS INDXFIELD,0
ENDRULE

Emulation Tool Requirements 31
2.7 Emulator Descriptor Tables

The first rule always succeeds on input, since INDXPAD always does; the second rule accepts an
index specification if @ comma is present and sliows an index expression to be output if the
field is not zero. (Actually, INDXPAD could be omitted and the call changed to TRY INDXRULE,
since the instruction string is initially cleared on input, provided that the index field is not
needed tc establish the length of the instruction.)

2.7.9.3 Formats and Opcodes

A format consists of an opcode field, a rule for parsing the rest of the instruction beyond
the opcode, end a list of opcodes that can be found in the opcode field:

FORMAT ruletag, ficldiag
OPC name, value, <rcfunc(argument-list)>

OPC name, value, <rcfunc(argument-list)>
ENDFORMAT

where ruletag and ficldiag are tags (unique in the first five characters) of the primary parsing
rule and opcode-field definition for this format. An OPC macro has arguments identical to a
SYMBOL macro, but here value is the numeric operation code rather than an index into a space.
On assembly, a format is selected when one of its opcode names is recognized; the opcode
value is stored into the field named by ficldiag and the rule ruletag is called. On
disassembly, a format is selected when the contents of the field named by fieldtag matches the
value of one of the opcodes; the rule ruletag is then called to complete the output.

2.7.10 Devices

The descriptor table supplies the PRIM exec with device information required to install
and mount emulated devices. Each device macro specifies the name and assorted
characteristics of one device type:

DEVICE name, type, [type, bytesize, chartag, paramtag, min, max

® name is a quoted string giving the name of the particular device.

® typais a 16-bit emulator handler type (see Section 2.3.2).

® fiype is one of the keywords: INPUT, OUTPUT, SINGLEIO, or TTY, indicating the
number of file(s) that may be mounted on the device by PRIM and the direction of
data flow.

® bytesize should be coded as zero (to indicate that only ASCH files are allowed), a
reasoriable byte size (less than 64, giving the default byte size for any binary file
that is mounted), or 64 plus a reasonable byte size (to indicate a fixed byte size for
any binary file that is mounted).

® chartag is the tag from the CHARACTERSET macro (indicating the natural character
set of this device) or is empty (to indicate that there is no such set). When a
character set is provided, ASCIl text files may be mounted, with character translation
performed by the PRIM framework; when there is no such set, only binary files are
sllowed. (if neither binary nor ASCIl is allowed, we are in trouble.) The user is
asked at MOUNT time for file characteristics only when the device entry leaves him
any choices.

® paramtag, if not blank, is the tag of a parameter table used to complete installation
of this device (parameters are described in the next section).

Emulation Tool Requirements 32
2.7 Emulator Descriptor Tables

® min and max delimit the number of units that may/must be installed. When the two
are unequal, the user is asked how many he wants; they default to O,1.

The DEVCLASS macro may be used to associate a device controller with a group of installable
devices. The call is idenlical to that of the DEVICE macro, except that min and max ere not
specified; it must be followed by a DEVICE declaration for each device in the group and
terminated by an ENDDEVCLASS macro:

DEVCLASS deuvstr, type, ftype, bytesize, charsot, paramtag
DEVICE devstr, type, fiype, bytesizo, charset, paramtag, min, max

DEVICE dewstr, typo, ftype, bytesize, charsot, paramtag, min, max
ENDDEVCLASS

A zero (or empty) type is taken to indicate a dummy controlier that is not actually installed; its
ftype, bytesize, and charset are ignored. The parameters gathered for this device class at
installation time are given to each of the actual devices in the class--whether or not it is
treated as a dummy controller.

2.7.11 Tool Parameters

A list of parameters is associated with each installable device (device parameters) and
with the target machine (global parameters).

PARAMS paramtag
PARAM nama, string, ptype, colltag, argiype, argtag, defval

PARAM name, string, ptype, calltag, argtype, argtag, defval
. ENDPARAMS '

® ‘paramtag is the name, unique in the first five characters, used to reference the
entire list of parameters; the global parameters are recognized by the reserved tag
MACHINE.

® name is a unique quoted name for each parameter in the list.

® string is an optional quoted (noise) string that describes the units of the parameter’s
value.

® ptype is one of the keywords EXPLICIT, DEFAULT, or FIXED, defining the manner and

timing of the setting of the parameter’s value. FIXED and EXPLICIT parameters are

gathered only at device installation time and, therefore, are not applicable to global

paramelers. EXPLICIT parameters are obtained from the user with no default

allowed; they appear to be part of the INSTALL command itself. FIXED parameters

are obtained from defval without consulting the user (FIXED parameters need

neither mame nor noise string); they do not exist for the user. DEFAULT parameters

are Initialized at installation time to their default values; thereafter they may be

altered by the user via the SET command and inspected via the SHOW command.

celltag is the tag of the parameter cell.

argtypo is one of the keywords IMMEDIATE, NUMERIC, or KEYWORD.

argtag is the tag of a NUMERIC or KEYWORD macro (empty for IMMEDIATE).

defval is the parameter’s default value.

® e 00

{ i

Emulation Tool Requirements 33
2.7 Emulator Descriptor Tables

An argtype of IMMEDIATE is used for a default parameter that is fully specified by its
name; the defval is stored into colltag. It is convenient for simple switches, with two
immediate parameters addressing the same parameter cell with opposite values.

An argtype of NUMERIC is used to convert between a user-supplied number and an
internal value as directed by a NUMERIC macro with a numtag that matches argtag:

NUMERIC numtag, multiplicand, divisor, of/set, exponent
The conversion from a user number to an internal value is:
[multiplicand ¢ user-number | divisor] C¥PONERt 4 or (0t

where exponent must be either 1 or -1; the computation is done using integer arithmetic, with
multiplication being performed before division.

An argtype of KEYWORD allows the user to choose an entry from a menu of keywords
defined in the tables by a KEYWORD macro with a keytag matching the argtag:

KEYWORD keytag
KW keyword, value, bits

KW keyword, value, bits
ENDKEYWORD

Each keyword is a quoted string that, when recognized, causes the associated value to be used
for the parameter value. Bits is not currently used, but is intended eventually to supply 18
bits of information to the keyword routine. ENDKEYWORD is optional, forcing the immediate.
definition of the keyword list.

2.7.12 Parameter Cells

Parameter values are stored in cells or, for devices, in pseudo-cells not in the actual
context. The CELLPTR macro is used to define each parameter cell, which is referenced by its

celltag.
CELLPTR celltag, bytoptr, bitapec, cfunction

® byteptr and bitspec (defined previously) are the true pointers to a cell in
configuration memory or auxiliary memory for the global parameters. For device
parameters, byteptr and bitspec define a byte within the device’s context. The
context for a device includes both the device block in PRIM and the configuration
block in target memory; the following byte pointers are standard (but not

predefined):
1,<31,1> Half-duplex switch (for TTY type only). This parameter is
handled by the 1/O server rather than the emulator. When
it is set, the server echoes input characters as the are read.
4,<0,36> Device parameter word.
5,<0,16> Device address, of which the 8 high-order bits are called

the channel number and the 8 low-order bits are called the
unit number.

Emuletion Tool Requirements . 34
2.7 Emulator Descriptor Tables

6,<0,36> Buffer word, which is of the form XWD(buffer-size,
buffer-address). The cfunction DV.BUFF (see below)
allocates buffers and is usually used with the buffer-word
cell pointer. ;

7,<0,36> Timing parameter word giving the device speed.

The cell pointers that are built may, of course, subdivide these bytes as needed; in
particular, the two parts of the device address are usually specified separately.

® cfunction, if specified, names a routine that may further modify the value to be

stored in the cell. The conversion functions, named DV.xxx, are found in the BLISS

module DEVICE. The only function of general interest is DV.BUFF, which converts a

" buffer size (the input number) into a buffer word by allocating successive buffers
from the region between buflow and bufhi (see the EMULATOR macro call).

2.8 Emulator Installation

Installing a new emulation tool in PRIM requires the creation of four files in the <PRIM>
directory on the system interfaced to the MLP-900:

® tool.SAV is the executable program that the user runs to get the emulation tool; it is
an extremely small program that gets the PRIM framework, leaving the tool name in
a fixed location. This file is most easily created by taking an existing such file and
replacing its name with this tool's name.

® 00lBIN is a binary file produced by the GPM compiler; it contains all control
memory code, constants for masks and auxiliary memory, and the starting address of
the emulator’s initialization code.

® 100l DESCRIPTOR-TABLE is the relocatable output file produced by assembling the
emulator’s descriptor-table source file (see Section 2.7); tool is also the emname
‘used in the descriptor file.

® 100l.CONFIGURATION is a PRIM SAVE file that contains the default target-system
configuration--the default values for all global parameters and any universal devices
or debugger formats that are to be available to all users as initial conditions. It is
created by running PRIM, loading the emulator’s descriptor-table file, setting all the
parameters (configuring to the extent necessary), and then executing the SAVE
CONFIGURATION command.

For each emulation tool, all uses of the name tool, above, must be identical.

News regarding an emulation tool may be posted by sending @ message to the file
<PRIM>PRIM.NEWS, using the group name "tool:", as in

tool:#<PRIM>PRIM.NEWS

on the system interfaced to the MLP-900.

35

Chapter 3
MLP-900 Reference Manual

This chapter describes the MLP-900 briefly and discusses its instructions. Although the
emulator writer ordinarily will not be concerned with the bit-level descriptions of the machine
instructions, the detailed descriptions are given for reference. It is suggested that on first
reading the hardware-level discussions be skipped or skimmed. The low-level syntax and
semantics discussions are useful background for the next chapter on the GPM language.

The MLP-900 is a large, vertical-word, microprogrammable computer designed as a
general-purpose emulation host on which each user can create his own target machine. It is a
synchronous machine with a 300-nanosecond cycle time, 4096 words of control memory, and a
large set of internal registers. A number of original features help make the MLP-900 an
exceptionally powerful microprogramming tool; principal among these are a subroutine stack, a
multi-level interrupt mechanism, a two-state protection facility, paging and memory protection
hardware, and provision for user-specified language boards to provide hardware assistance for
particular applications (no user language boards currently exist or are contemplated, however).
it is characterized by two parallel computing engines, known as the operating engine (OE) and
the control engine (CE). The OE is a 36-bit-wide arithmetic and data-transfer machine; it
includes the hardware for the main memory and external interfaces and the bulk of the register
space, including a 1K internal (auxiliary) memory. The CE is the instruction-sequencing and
control unit; it includes the stack-handling, interrupt, and pretection mechanisms.

MLP-900 instructions are known as “minisleps;" each engine has its own unique
instruction set. Ministep execution proceeds sequentially, either singly or in OE-CE pairs. An
MLP-900 ministep is contained in 32 instruction bits, occupying the low-order bits of the 36
accessible bits in a control-memory word; the four high-order bits are used only in conjunction
with long immediate OE instruction, where the second word contains a 36-bit literal constant.
The first four bits of each ministep constitute the opcode and the next four, the sub-op; in
general, the opcode determines the format of the remaining fields of that ministep. The
high-order bit of the opcode designates the engine: O for an OE ministep, 1 for a CE ministep.
At the beginning of each cycle, the CE fetches a pair of ministeps from control memory--from
the current address and its successor--and examines them: if the first is an OE ministep and the
second is a CE ministep, then the pair is executed during this cycle; otherwise only the first
ministep is executed (the other will be the first ministep of the next cycle, barring a branch).
This parallelism serves to increase the effective machine speed and, with two exceptions, is
transparent to the user: first, interengine data transfers require execution of an OE-CE pair;
second, CE registers modified as a side effect of an OE ministep cannot be sensed by a paired
CE ministep that executes in the same cycle. Since all changes to the state of the machine
occur simultaneously at the end of the cycle, all computations and decisions are based upon the
values present at the beginning of the cycle.

The MLP-900 hardware recognizes two distinct execution states: "user" mode and
"microvisor” (microprogram supervisor) mode. User-mode microcode is subject to three
restrictions: privileged ministeps may not be executed, privileged registers (in both the OE and
CE) may not be modified, and a branch to a microvisor location other than a designated entry
point is illegal. Violation of any restriction results in a (privileged) interrupt and suppression
of the current cycle. These restrictions fully protect the external interface, the main-memory
protection and paging facility, and the microvisor itself from the user microcode; additionally,

MLP-900 Reference Manual 36
3.1 Primary Language Symbols

the microcode is restricted from modifying itself. Since this manual is intended for the emulator
developer, who will be writing MLP user-mode programs, privileged facilities are not discussed
in detail.

The MLP-900 main memory interface includes a memory-protection and paging scheme
that, together with some micravisor code, provides the user with a 256K virtual address space.
This scheme mimics the memory management provided by the TENEX pager on the PDP-10.

8.1 Primary Language Symbols

There is no assembler for the MLP-900. Instead, machine instructions may be written as
special low-level statements to be processed by the GPM compiler. The low-level statements
for each machine instruction are described in this chapter. To define these low-level
statements completely, it is necessary to introduce the primary symbols of the GPM language in
this chapter rather than in the chapter on the GPM language itself. The GPM syntax equations
are given in this chapter and the next as modified BNF definitions. Each definition is preceded
by a definition number within braces; each reference o that definition is immediately followed
by its definition number within braces so as to facilitale cross references. Semantic comments,
where necessary, are enclosed in doubled angle-brackets immediately following the relevant
definition. All syntax equations before program{63} are in this chapter; the remainder are in
Chapter 4. The few primitive constructs referenced in definitions are given in italics, as in
emptystring. GPM statements are composed of five primary symbols or syntactic entities:

Identifiers (see Section 3.1.1)

Reserved identifiers (see Section 3.1.2)

Octal numbers (see Section 3.1.3)

Blanks (see Section 3.1.4)

Nonalphanumeric characters (see Section 3.1.5)

8.1.1 ldentifiers

‘An identifier is a string of words (alphanumeric strings) or numbers connected by
periods. The first field must not be a number, and words must nnot begin with a digit (0 - 7).
The last all-numeric field is referred to as the index; it is used extensively for reserved
identifiers (e.g., RO stands for the first general register and R.17 stands for the sixteenth
general register).

Syntax:
{1} idu=

roserved-identifier | . word{2} | word{2} | id{1}. subid{4}
{2} word u=

alpha{3} | word{2} alpha{3} | word{2} digit{6}
{3} aealpha u=

8|9 |A|B|...|Y|Z)alb]|...|lylz
{4} subid =

word{2} | number{5}

MLP-900 Reference Manual 37
3.1 Primary Language Symbols

{5} number ::=
digit{6} | number{5) digit{6}

{6} digit u=
(o 8 (8 (] STl I8

8.1.2 Reserved Identifiers

Reserved identifiers have the same syntax as identifiers in GPM but additionally include
all nonalphanumeric symbols (the nontrivial reserved identifiers are listed in Appendix C). In
this and the next chapter, all reserved identifiers are shown in upper-case; an arbitrary
member of a set of indexed reserved identifiers (i.s, an identifier with any of its permitted
index values) will be denoted by an italicized, indexed name where the index is given as the
double-dotted upper limit, as in the example below.

Example:
There are 32 general registers (RO - R37). The symbol R.37 represents any one
of the set of registers, {RO, R.1, . . . , R36, R37}.

Indexed reserved identifiers are assumed to have zero origin. Reserved identifiers cannot be
used as branch destinations (see Section 4.5.3) or as a title (see Section 4.1).

3.1.3 Numbers

All numbers in GPM, including identifier index fields, are octal. Thus A.1973 would be
inlerpreted as the two identifiers A.1 and 973. The symbols 8 and 9 are always treated as
letters.

8.1.4 Blanks

All nonprinting characters (space, tab, linefeed, carriage return, and form feed) are
converted by GPM to blanks. Blanks separate numbers and identifiers; otherwise they have no
syntactic or semantic function. There is one additional "blank character," an arbitrary string
starting and ending with a percent sign (7). This "blank character" is not the preferred method
of introducing a comment, as will be treated in more detail in the discussion of the GPM listing
format in Section 4.7.

3.1.5 Nonalphanumeric Characters

All nonalphanumeric characters are reserved symbols. Except for the period, they are
all self-terminating and cannot appear as part of an identifier.

3.1.6 Examples of Primary Symbols -
The string R.1 ABC#1248X 12AB,C.3.4X will be interpreted as:

R.1 Reserved identifier with index of 1
ABC Identifier
" Character
124 Number
8X Identifier
a— — T ——

MLP-900 Reference Manual 38
3.1 Primary Language Symbols

12 Number

AB Identifier

} Character

C3.4.X Identifier with index of 4

3.2 Operating Engine

The Operating Engine (OE) is a 36-bit data-transfer and -manipulation engine; it also
contains the interfaces to both main memory and the PDP-10 1/O bus. The computational
facility consists of a three-input (two operands and a mask) "primary adder” capable of various
arithmetic and boolean functions, a "primary shifter," and an "extension shifter” used for single-
or double-word shifts. Operands are taken from, and results stored into, the general registers
(R..37); masks are taken from the mask registers (M.17). One byte of CE flops (CE.14) is
devoted to functions associated with the adder and shifter(s). The memory and /O bus
interfaces consist of a number of special registers (grouped together within MI1SC..37), the
main-memory address transiator (XLATOR..777), and the memory-referencing ministep (CEDE).

Note that in all OE ministeps involving a large constant operand, the ministep takes two
control memory words; while the hardware handles the decode automatically, the programmer
must be aware of the fact that such a ministep always executes without a paired CE cycle. A
large constant is one that cannot be expressed in six bits (i.e., not in the range 0-77, octal).

3.2.1 Operating Engine Operands

Table 3.1

Operating Engine Address Space
Group Extension Register Mnemonic Description
0000 --- XXXXX R..37 General Registers
0001 --- “XXXX M.17 : Mask Registers
0010 -) XXXXX MISC.37 Miscellaneous Reg.'
Olxx XXX XXXXX n.1777 Auxiliary Memory
1000 ——- eeeee XBUS CE Exchange Bus
1001 and
1010 XXX XXXXX XLATOR..777 Translator Memory’

The OE operands are contained in one sparse 12-bit address space. In addition to the
mnemonics shown in Table 3.1, these operands may be addressed as OK.7777. The OE
registers may be addressed directly, or indirectly through the CE pointer registers. As the
pointer registers are only 8 bits wide, the OE regisler group is specified in the instruction.
There are two types of indirect referencing available. Normal indirect (®) uses the pointer
value to select both the extension and the register. Special indirect (¢) is similar, except that
the low-order bit is forced to 1.

1. MISC.20-MISC.37 are privileged.
2. Privileged.

MLP-900 Reference Manual 39
3.2 Operating Engine

Examples:
RO+ PS5
XLATOR.400 & P.7

A-Operands. An OE A-operand represents a reference to a general register (R..37) either as
an explicitly stated general register or as an indirect referance through a8 pointer register

(P.7). The encoding is shown in Figure 3.1.

1 Pointer
Register i

-
-

Register

Figure 3.1 A-Operand Formats

Examples:
R.13
o P.l11
s P.7

B-Opersnds. An OE B-operand represents a reference to a general register (as in an
A-operand), to a pointer register, or to an immediate operand. The encoding is shown in

Figure 3.2.

00 01|02 03 04 05 06 07 -~
p 9 A Operand [/
00 01]02 03 04 05 06 07 00
)
| p | Short Immediate Data | long Immediate DataZ
(No sign extension) // (Data in next word)?
7 2

Figure 3.2 B-Operand Formats

3.2.1.1 R.37 General Registers

There sre 32 general registers (R..37), each 36 data bits wide. Four parity bits, one for
each 9-bit byte, are maintained with each register. All 32 registers are addressable as inputs
to the primary adder. Only R.37 (the Shift Extension Register) has a dedicated function.

MLP-900 Reference Manual 40
3.2 Operating Engine -

3.2.1.2 M.17 Mask Registers

There are 32 mask registers, but only M..17 can be addressed by an OE instruction. The
high-order bit of the mask address is taken from the protected CE flop MBS (F.167). User
programs, therefore, see only 16 mask registers. The mask registers condition the adder
functions to accomplish subword operations.

3.2.1.83 MISC.37 Miscellaneous Registers

There are 32 miscellaneous registers (M/SC..37) dedicated to a number of different
functions. For addressing purposes, they have been gathered together into one set of
registers. Some registers are readable and writable, some are read-only, and others are
unimplemented. The implemented miscellaneous registers and their functions are

0 Data Entry Switches (read only)
1 Main Memory Address Switches (read only)
2 Processor Address Switches (read only)

The above three entries are pseudo-registers that make available the
three sets of switches on the console. The following two registers can
be read and written; they are tied into language boards.

4 Primary Instruction Register (PIR)
5 Secondary Instruction Register (SIR)

The folowing two registers are used in memory referencing. For more
information, see the CEDE instruction (see Section 3.2.2.2).

16 Virtuat Address Register (VAR)
17 Memory Data Register (MDR)

The preceding registers are.all available to the general user. The
succeeding registers are privileged.

23 Real Address Register (RAR): used by the MLP-300 when in direct (nontransiate)

address mode.
31 Key Register: contains a 7-bit key value that determines the validity of XLATOR

entries.

The following three registers are part of the control interface with the
PDP-10 (see Section 3.4).

32 DATAO
33 DATAI
34 Command/Status Register

MLP-900 Reference Manual 4]
3.2 Operating Engine

36 Virtual Address Compare Register (VADRC): compared to the virtual address
(VAR) at every main memory reference, when enabled by SARM.1, and generates
an action request (VADR, F.124) when a match occurs (see Section 3.3.3).

37 Control Memory Address Compare Register (CMADRC): compared to the memory
address at every control memory reference, when enabled by SARM.O, and
generates an action request (CMADR, F.110) when a match occurs (see
Section 3.3.9).

A data transfer to an unimplemented register is a no-op; a data transfer from an unimplemented
register yields -1.

3.21.4 A.1777 or APC.3 Auxiliary Memory

There are 1024 words of 60-nanosecond auxiliary memory, which can be used as a
scratchpad or cache. In practice, auxiliary memory must be treated as consisting of four
"pages” of 256 words each, since indirect references require the page to be specified in the
instruction rather than in the pointer. A.PG.3 are the origin words for the auxiliary memory
pages (A.0, A.400, A.1000, and A.1400).

3.2.1.5 XBUS Exchange Bus

The OE exchange bus is a pseudo-register connected to the CE exchange bus (see
Section 3.3.1.3.). Data transfers between the engines are accomplished by an OE-CE
instruction pair, with the OE instruction either a GENT or a CEDE (which references the
exchange bus), and the CE instruction either a MOVE (which references the exchange bus) or a
BLOT (other than MOE). Since these instruction pairs are executed in parallel, the OE
instruction (GENT or CEDE) must appear first regardless of the transfer direction. In'transfers
to the OE, any bits not loaded by the CE instruction are transferred as zero. In transfers to
the CE, any bits not used by the CE instruction are lgnored A reference to the exchange bus
without a paired CE instruction is undefined.

3.2.1.6 XLATOR.777 Translator Memory

The translator memory consists of 512 20-bit words used to translate target-machine
virtual addresses to real addresses in the PDP-10 memory. Each word consists of a 7-bit key
value, en 11-bit real-page value, a write-permit bit, and a parity bit. Whenever trenslation is
performed, the nine high-order bits of VAR are used as an index into the translator memory to
select a translator word; this word is valid if the key value matches the key register (MISC.31)
and if either the write-permit bit is on or this is a fetch. Note that a GENT from the translator
memory reads the word selected according to the old value of VAR and then modifies the nine
high-order bits of VAR to address the requested word, which is not read except by coincidence.
Translstor memory is privileged.

3.2.2 Operating Engine Operators

Four of the eight possible OE opcodes are defined. The other four produce undefined
results, but the general flavor of their ministep decoding is the same. In particular, the
B-operand decode (see Section 3.2.1) applies to all OE ministeps (even to defined ministeps
that have no B-operand); whenever the B-operand specifies long immediate data, the following
word is taken as a 36-bit literal rather than as a ministep. The OE operators are:

MLP-900 Reference Manual 42
3.2 Operating Engine

® GEAR (General Arithmetic). Performs binary arithmetic, logical operations, and
single-register shifts.

® CEDE (Conditional External Data Exchange). Transfers addresses and data between
the OE and main memory.

@ SHIN (Shift Instruction). Performs various single- and double-register shifts, plus
the iterated steps of multiply and divide loops.

® GENT (General Data Transfer). Transfers data between the OE registers and to and
from the CE.

8.2.2.1 GEAR CkEneral ARithmetic

This ministep provides arithmetic and logical capability involving the generai registers,
pointer registers, and constants. The GEAR internal coding is shown in Figure 3.3. The
arithmetic codes are listed in Table 3.2. The shift-amount coding is found in Table 3.3. The
test-mode and clear-mode bits are set to 1 when that mode is active. The A-operand (aa in
Table 3.2) and the B-operand (bb in Table 3.2) are coded as described in Section 3.2.1.

00 01 0203

GEAR
popo

B Operand

Figure 3.3 GEAR Ministep

Table 3.2
GEAR Arithmetic Codes

Code ‘Primary Adder Operation -

0 aa « NOT aa OR bb

1 aa « NOT aa AND bb

2 aa « bb

3 aa « aa AND NOT bb

q aa « aa OR NOT bb

5 aa « aa AND bb

6 aa « aa OR bb

7 aa « NOT bb
10 aa « aa XOR NOT bb
11 aa « aa + bb
12 aa « bb +-aa + | (bb - aa)
13 aa « aa + bb + COF.1 (aa PLUS bb)
14 aa « aa + ~bb + COF.1 (aa MINUS bb)
15 aa « bb + ~aa + COF.1 (bb MINUS as)
16 aa « @a + -bb + 1 (aa - bb)
17 aa « aa XOR bb

The encoding for shift amounts for GEAR and SHIN ministeps is shown in Table 3.3.

i PP, P — S —

8

MLP-900 Reference Manual 43
3.2 Operating Engine

8 (100 left Right
0 0 10 0
1 1 11 1
2 2 12 2
q q 13 3
6 6 14 4
10 8 15 5
14 12 16 6
20 16 17 7
Syntax:
{7} gear i=
ea(8] « gexp{9) gmod{11}; | gexp{9} gmod{l1};
{8} aau=
RJ37 | ®P.7 | P2
{9} gexp u=
@aa+bb | aa-bb | bb-aa |
aa PLUS bb | aa MINUS bb | bb MINUS aa |
aa AND bb | NOT aa AND bb | aa AND NOT bb |
aa OR bb | NOT aa CRbb | aa OR NOT bb |
2a XOR bb | NOT sa XORbb | NOT bb | bb
<<gee 0a{8} and bb{10}>>
<<whon using the first form of gear{7}, aa hore and there must be identical>>
{10} bb :=
aa{8} | number{5) | P.7
{11} gmod :=
amask{12} testmode{13} gshift{14} | gshift{14} amask{12} testmode{13} | ...
<<amask, testmode, and gshift may be spocificd in any order>>
{12} amask u=
(M.a7) | [M.17]) | emptystring
{13} test :=
| empiystring
{14} gshift =
shdir{15} samount{18} | emptystring
{15} shdir u=

Table 3.3
Shift Amount Encoding

Shift Amount . Shift Code

shleft{16} | shright{17}

MLP-900 Reference Manual 44
3.2 Operating Engine

{16} shleft =
LEFT | \

{17} shright ==
RIGHT | /

{18} samount :=
o|J1|2|4|6|10] 14| 20

Examples:
R.1 « R1 + R2;
R7 « R7 -PO /1 [M1] #;
R37 « 173 - R37 \2 (M.2);
6P.0 « @P.0 XOR NOT 3 (M.17);
sP.17 « ¢P.17 AND P.3 /4 [M.27] s;
®P.3 « NOT ®P.3 OR R.17 \20 (M.21);
6P.1 « sP.1 MINUS ®P.1 (M3) #;

Semantics:

The GEAR ministep is used for arithmetic operations. It selects two operands and a mask,
routes them to the primary adder, and then specifies a shift of the result through the primary
shifter. The result is then stored back into the A-operand (see Section 3.2.1 for a discussion
of OE operands) in either clear or normal mode. This operation is shown in Figure 3.4.

Mask A Operand B Operand

! !
V

Primary Adde'r

(carrier)

Zero Masked-Out Bits

———————— 7/SP

!

Wy S Primary
SHE Shifter ")
If Not Clear Mode
A Operand

Figure 3.4 Operating Engine: GEAR

Mask
The requested operation is conditioned by the value of the specified mask register.
A one-bit (1) in the mask is a masked-in bil; a zero-bit (0) in the mask is a
masked-out bit. The default mask is M.0.

MLP-900 Reference Manual 45
3.2 Operating Engine

Adding under a mask. The primary adder treats all the masked-in bits as one
contiguous operand field; carry generation is suppressed in masked-out bits, and
carry - propagates over masked-out bits. For all operations, the masked-out
positions are forced to zero at the primary adder output. For the -, PLUS, or
MINUS operators, the third term in Table 3.2 (either +1 or COF.1) is treated as a
carry into the low-order (masked-in) bit.

Shifting under a mask. The shifter ignores the mask.

Storing under a mask. in Clear mode, [M.17), the entire 36-bit output of the
primary shifter is stored; if the shift amount is zero, then all masked-out bits are
necessarily cleared to zero. In normal mode, (#{..17), only the masked-in bits are
stored; the masked-out bits remain unchanged in the register.

Test Mode

If "aa «" is not specified in the GEAR, or if the test mode modifier "#" is present,
the store into the A-operand (see Section 3.2.1) is suppressed. In any case, all
applicable flops (see Table 3.4) are set.

Operators

All valid operator combinations are listed in the syntax for gexp in Section 3.2.2.1.
Normal addition (+) and subtraction (-) operators are two’s complement; NOT is a
logical operator (one’s complement). PLUS and MINUS are one’s complement
operators and take flop COF.1 as an initial low-order carry-in; these operators can
be used to produce multiple-precision results. Both the "-" and "MINUS" forms of
subtraction are defined in terms of complementation, addition, and low-order
carry-in; carry-out is always generated by addition.

All valid shift amounts are listed in the syntax for samount in Section 3.2.2.1. The
prefix "/" designates a right shift (divide) and the prefix "\" designates a left shift
(multiply). The default shift is "RIGHT 0". The boundary shift conditions are
shown in Figure 3.5.

S0S — —

SHE —=— — f)

Figure 3.5 Shifter Boundary Conditions

Flip-Flops
Table 3.4 lists all flops involved in any GEAR.

MLP-900 Reference Manual 46
3.2 Operating Engine

Table 3.4
GEAR Flops

Flop Active Condition
COP, COF.1, COF.2 +, -, PLUS, MINUS
2SP, ZRF.1, ZRF.2 All GEAR operations
SOS Nonzero shift
SOF, SHE Nonzero left (\) shift

COP (F.300). This pseudo-flop contains the carry-out value for +, -, PLUS, and
MINUS operations executed during the current cycle. It is valid only during the
current cycle (i.e., for testing by a paired CE instruction).

COF.1 (F.140). This flop contains the most recent setting of COP and thus has the
carry-out value of the last +, -, PLUS, or MINUS operation completed.

COF.2 (F.141). This flop contains a copy of the previous setting of COF.1, and thus
has the carry-out value of the next-to-last +, -, PLUS, or MINUS completed.

ZSP (F.301). This pseudo-flop is set if the masked output from the primary adder
for this current operation is zero. Active for all GEAR operations, it is valid only
during the current cycle.

ZRF.1 (F.142). This flop contains the most recent setting of ZSP (except in the
case of PLUS and MINUS, when it is set to the logical product of ZSP and its own
prior value) and thus reflects a zero result from the last GEAR completed.

ZRF.2 (F.143). This flop contains a copy of the previous setting of ZRF.1, thus
reflecting a zero result from the next-to-last GEAR completed.

SOS (F.146). If there is a nonzero right shift (/), SOS is copied into the vacated
bits.

SOF (F.147). If there is a nonzero left shift (\), each bit shifted out of the leftmost
bit is compared with SOS; if any is different, then SOF is set.

SHE (F.145). If there is a nonzero left shift (\), the last bit shifted out of the
leftmost bit is left in SHE; the shifted-out bit is available only in subsequent cycles.

3.2.2.2 CEDE Conditional External Data Kxchange

CEDE is used to fetch and store main memory. All memory fetches or stores require the
execution of two CEDEs. The first CEDE provides an address that is treated as virtual or real
(depending on TRBY, F.165), initiales a translate cycle if virtual (i.e, if not TRBY), and initiates
the memory fetch if reading. The second CEDE, which need not follow immediately, provides
the data for a store or waits for the data from a fetch. Page-fault action requests take place
at the time of the second instruction (the wait or store) and cause that instruction to be
suppressed.

The CEDE exchange code (see Table 3.5) determines the sub-op being executed. The
A-operand and B-operand of FOP and SAD are identical to their coding in GEAR; the "Op A

MLP-900 Reference Manual 47
3.2 Operating Engine

Extend” and "Op A Group" fields are ignored. For WOP, SOP, and WOS, the A-operand specifies
any OE register, the 12-bit address being coded in three sections (the 4-bit group, the 3-bit
extension, and the 5-bit register); the operand may also be indirect through a pointer, in which
case the indirect addressing is done within the indicated group and the "Op A Extend" is
ignored. WOP, SOP, and WOS ignore the B-operand.

Test mode inhibits fetching, storing, translating, and the modification of any register, but
waiting and page faulting are still performed. The subtract bit, when set, specifies two’s
complement subtraction instead of addition for those CEDEs that do arithmetic; the subtract bit
is ignored for other CEDEs.

Table 35
CEDE Exchange Codes

2 FOP Fetch Operand
3 SAD Set Address
11 SOP Store Operand
14 WOP Wait for Operand
15 WOS Wait for Operand, Stream Mode
16 ROW Retry Operation

Figure 3.6 CEDE Ministep

Syntax:

{19} cede :=
cedeA{20} | cedeB{23} | cedeC{28}

{20} cedeA :=
cedeAcode{21} aa{8} sign{22} bb{10} testmode{13} ;

{21} cedeAcode ::=
FOP | SAD

{22} sign u=

+ | -

{23} cedeB :=
cedeBcode{24} oeloc{25} testmode({13}

{24} cedeBcode ::=
SOP | WOP | WOS

MLP-900 Reference Manual
3.2 Operating Engine

{25} oeloc u:=

48

oereg{26} | oepage{27} ® P.7 | oepage{27} * P.7. | XBUS

{26} oereg u:=

R.37 | MISC.37 | M.17 | A.1777 | XLATOR.777

{27} oepage =

oereg{26} | A.PC.3 | XLATOR.PG.1

{28} cedeC :=
ROW testmode{13} ;

Examples:
FOP R.3 + R6;
SAD ® P.O -2;
WOP XBUS;
WOP R.1;
SOP RQ;
SOP MO @ P.10;

Semantics:

Name ‘ Affects
FOP Address

Fetch Operand

SAD Address
Set Address

SOP Data
Store Operand

J. Translate: uses the contents of VAR as an indox into translator memory and notes (internally) whether the

translation is OK.

4. Felch: if the transiation is OK, initiates a fetch from memory, remembers that there is an outstanding fetch,
and increments VAR by one (only the 9 low-order bits are affected; if they were all ones, then they are
made zero, but there is no further carry). When the memory responds with the data, it is stored in MDR

Description

(a) VAR and aa ¢ aa +/- bb
(b) VAR command bits ¢« "read”
(c) Translate?

(d) Felch data into MDR*

(a) VAR and aa « aa +/- bb

(b) VAR command bits « "store”

(c) Translate?

(a) MDR « aa
(b) Store data from MDRS
(Preceding CEDE must be SAD)

and the remembered fetch condition is cleared.

5. Store: if the (most recent) translation is OK, initiates a memory-store cycle of the word in MDR; if the
transiation is not OK, suppresses this ministep, and sets the PAGE aclion request (F.121). It the “store®

command is not set in VAR, the result is undefined.

MLP-900 Reference Manual 49
3.2 Operating Engine

woP Data (a) Waitb

Wait for Operand (b) aa « MDR

wos Data (a) Wait6

Wait for Data, (b) aa « MDR

Stream Mode (c) Triggers an asynchronous mode of continuous
(privileged) memory fetching from successive locations in

the same memory page at maximum memory
rate; WOS must be executed in a loop that is
faster than the memory (viz., one MLP-900
cycle) lest data be lost with no indication.

ROW Address (a) Translate?
Retry Operation (b) Fetch if "read" is set in VAR#
(privileged) (Acts like FOP or SAD, depending on the old

contents of VAR.)

FOP and WOP are the basic memory-fetch pair, while SAD and SOP are the basic memory-store
pair. The memory currently accessed by the MLP-900 has a 750 nanosecond cycle time;
allowing for translation overhead, there are at least three "free”™ MLP cycles available between
a FOP and the following WOP.

$.2.2.3 SHIN SHift INstruction

The SHIN ministep provides single- and double-register shifting by both fixed and
variable amounts. In addilion, two variants provide the basic shift-end-add steps required for
multiplication and division operations. The SHIN internal format is shown in Figure 3.7. Shift
codes are listed in Table 3.6 and shift amounts in Table 3.2 (see Section 3.2.2.1). The mask,
shift-amount, test, A-operand, and B-operand fields (where used) are identical to those of
GEAR. Indirect shift, if set, causes the encoded shift amount {(although not the shift direction)
to be ignored.

00 01 020304 05 06 07|08 09 10 11112 13 14 151611718 19 20 21 22 23|24 25 26 27 28 29 30 31

A Operand B Operand

Figure 3.7 SHIN Ministep

6. Wait: it the last transiation is not OK, suppresses this ministep and seis the PAGE action request (F.121).
It there is otill a memory fetch in progress, waits for it to complete (for the data to be in MDR).

MLP-900 Reference Manual 50
3.2 Operating Engine

Table 3.6
SHIN Shift Codes

SHIFT.EQ.L (Shift even into odd, linear)

SHIFT.OE.L (Shift odd into even, linear)
SHIFT.SINGLE.L

SHIFT.DUAL.L

SHIFT.EQ.C (Shift even and odd, circular)
SHIFT.RE.L (Shift register into extension, linear)
SHIFT.ER.L (Shift extension into register, linear)
SHIFT.RE.C (Shift register and extension, circular)
MULTIPLY

DIVIDE

N=NOODDWN-O

—

Syntax:

{29} shin =
shop{30} aa{8)} shdir{15} shamount{31} shmask{32} testmode{13} |
mdop{33} aa{8)} BY bb{10} shmask{32} testmode{13} ;

{30} shop =
SHIFT.OE.L | SHIFT.EO.L | SHIFT.SINGLEL | SHIFT.DUALL | SHIFT.EOC |
SHIFT.RE.L | SHIFT.ERL | SHIFT.RE.C

{31} shamount ::=
oOj1|2|4|6|10|14]|]20 | e

{32} shmask :=
(M.I7) | emptystring

{33} mdop u=
MULTIPLY | DIVIDE

Note that aa, bb, and test are identical to the same constructs in the GEAR ministep;
shamount is similar to samount (see Section 3.2.2.1), with the addition of "®", while shmask
is similer to @ GEAR mask, with the deletion of "[M..17]"

Examples:
SHIFT.EO.L R.12 LEFT 6 ;
SHIFT.OE.C ®P.4 RIGHT ® ;
MULTIPLY R.20 BY 12 (M.17) ;

Semantics:

The SHIN ministep provides for the shifting of either a single register (SHIF T.SINGLE.L), an
even/odd register pair (SHIFT.EO.L, SHIFT.OE.L, SHIFT.DUAL.L, MULTIPLY, or DIVIDE), or a pair
comprised of the designated register and the shift-cxlension register, R37 (SHIFT.RE.L,
SHIFT.ER.L, and SHIFT.RE.C). Shifting is done in two 36-bit shifters, with the designated register
entering the primary shifter and the implied register enlering the extension shifter; after
shifting, the primary and extension shifters are copied back into the same two registers. The
shift operations specify the various ways of connecting the two shifters.

MLP-900 Reference Manual 51
3.2 Operating Engine

aa: Designates the primary register to be shifted. For the even/odd double shifts,
aa should be even, and the next-higher-numbered register is the implied
second register of the shifl; if aa is an odd-numbered register, then two copies
of its value enter the shifter; but only the primary shifter value is stored (this
allows a circular shift of a single odd register; there is no circular shift of a
single even register available). For the register/extension double shifts,
where R37 is the implied register, there is no difference between an even aa
and an odd aa.

shdir: The direction must be specified in the ministep as either RIGHT (/) or LEFT (\).

shamount: The shift amount (in bits) may be either direct (allowed values are the
same as for GEAR) or indirect (®). Vacated bit positions are set to zero in all
left shifts and to the value of SOS in all right shifts. For indirect shifts, the
shift amount is taken from the shift counter, P.7; the actual shift amount is O, 1,
2, 4, 10, or 20 (octal)--whichever is the largest value not exceeding the
contents of the pointer. The pointer is decremented by the amount of the
shift, and, if the new value is zero, the SHD (Shift Done) pseudo-flop is set. A
paired BRAT ministep can be used to create a one-cycle shift loop to shift by
an arbitrary shift amount. Note that an indirect shift cannot be paired with a
BRAD ministep since the MLP cannot modify two pointers simultaneously.

shmask: The mask, if any, affects only the aa register itself; the implied register is
always unmasked. Masked-out bits of the register enter the shifter as zero
bits; their value is not altered by the shift ministep (as in the GEAR normal
mode).

test: Testmode, if set, leaves all the general registers unchanged; only flops (and P.7
in an indirect shift) are affected by the execution of a test-mode SHIN.

SHIFT.SINGLE.L is a single-register shift identical to the shifting of 8 GEAR; this SHIN
is useful only for an indirect single-register shift.

SHIFT.EO.L, SHIFT.OE.L, SHIFT.DUALL, SHIFT.OE.C are the straight even/odd shift
operations, differing only in the conneclions belween the two shift registers:

-EO.L (Even-into-Odd Linear) -- bits shifted out of the even word
(primary shifter) enter the odd word (extension shifter), while bits
shifted out of the odd word are lost.

-0E.L (Odd-into-Even Linear) -- bits shifted out of the even word are
lost, while bits shifted out of the odd word enter the even word.

-.DUAL.L -- bits leaving either word are lost.

-EO0.C (Even-and-0Odd Circular) -- bits shifted out of either word enter
the other one.

SHIFT.RE.L, SHIFT.ER.L, SHIFTREC are the equivalent operations performed on the
designated register and the extension register (R.37) as a pair:

-.RE.L (Register-into-Extension Linear)
-ER.L (Extension-into-Register Linear)
-.RE.C (Register-and-Extension Circular)

MLP-900 Reference Manual 52
3.2 Operating Engine

MULTIPLY is a single step of a multiplication loop, with the even/odd pair designating
the partial product and multiplicand, respectively, and the second operand
designating the multiplier. Except for timing (and, consequently, flop values)
the operation "MULTIPLY X BY Y (M.2)" is equivalent o the sequence

X1 « X1 AND 1 # ! X1 is the odd reg paired with X
IF ZSP THEN, BEGIN

X e X+0(M2)
ELSE

XeX+Y(M2Z)!add Y if LSB of X1 is set
END ;
SHIFT.EO.L X RIGHT 1 (M.2) ;

DIVIDE is a single step of a division loop, with the first operand (even/odd pair)
designating the dividend (which develops into quotient and remainder) and the
second operand designating the divisor. Except for timing, tho operation
"DIVIDE X BY Y (M.2)" is equivalent to the sequence

IF COF.1 THEN.BEGIN ! the current setting selects ...
X« X -Y(M2)!..either subtraction ...
ELSE
X eX+Y(M2)!..or addition
END ;
SHIFT.OE.L X LEFT 1 (M2);
IF COF.1 THEN.BEGIN ! the new setting (from above) ...
X1 « X1 OR 1!..is the new quotient bit in X1
END ;

Note that COF.1 must be properly inilialized for a divide loop; subsequent
iterations use the value set by the previous iteration.

The following flops are used uniformly in all SHIN ministeps:

SOS--on all right shifts (including MULTIPLY) a copy of SOS is brought into vacated
bit positions: into the unconnected register in a linear shift or into both
registers in the dual shift. SOS is not used in a circular shift.

SHE--on all linear left shifts SHE is set to the value of the last bit shifted out of the
unconnected register. SHE is not affected by circular or dual shifts.

SOF--on all linear left shifts SOF is set if any bit shifted out of the unconnected
register is different from the sctting of SOS. SOF is never cleared by a shift.
SOF is not affected by circular or dual shifts.

SHD--pseduo-flop that is valid only during an indirect-shift cycle.

The following flops are associated with the adder, and are affected only by the MULTIPLY and
DIVIDE operations:

COP, COF.1--reflect the carry-out of the adder (COP is valid only during this cycle;
COF.1 is valid only after this cycle). COF.1 is also an input to DIVIDE.

COF.2--at the end of this cycle, contains the value of COF.1 from the beginning of
this cycle.

MLP-900 Reference Manual 53
3.2 Operating Engine

3224 CENT CENeral Data Transfer

This ministep performs data transfers between OE registers and is also used, in
conjunction with the CE ministep MOVE, to provide interengine data transfers. The GENT
internal coding is shown in Figure 3.8. GENT takes two operands: A and B. The direction of
the transter is controlled by the To/From bit:

To/From Result
0 AeB
1 BeA

The 12-bit address for the A-operand is coded in three sections as described for CEDE in

Section 3.2.2.2. If the A-operand addresses the mask registers, or if the destination is an

immediate value or a pointer register, the resulting operation is a no-op. The B-operand is
coded as described in Section 3.2.1, except that the "Op B Group" field is used when bits O and
1 are zero; otherwise, the “Op B Group" ficld must be zero. The registers addressed by the
"Op B Group" field are shown in Table 3.7.

Figure 3.8 GENT Ministep

Jable 3.7
GENT B Operand Group
Op B Group Regisler
0 Normal B-operand (see Section 3.2.1)
1 M..17 -- Mask Registers
2 MISC.37 -- Misc. Registers
3 XBUS -- Exchange Bus
Syntax:
{34} gent =

genta{35) + gentb{37}; | genta{35} « gentc{39); | gentb{37} « gentai{35} ;

{35} genta =
gentar{36) | gentar{36} ® P.7 | gentar{36} + P.7 | XBUS

{36} gentar :=
R.37 | MISC.37 | N.1777 | XLATOR.777

{37} gentb u=
gentbr{38) | gentbr{38} m P.7 | gentbr{38) ¢+ P.7 | XBUS

MLP-900 Reference Manual 54
3.2 Operating Engine

{38} gentbr ::=
R.37 | M.17 | MISC..37

{39) gentc =
number{5} | P.7

Examples:
R.12 « 1234567 ;
MISC.12 « XBUS ;
A.123 « P.12;
XBUS « CE.QO;
XBUS « A.1234 ;

Semantics:

GENT performs transfers among the OE registers (see Table 3.1). The contents of the
right register is copied into the left register. Where XBUS is used as a destination (left
register) or a source (right register), the GENT should be paired with a corresponding MOVE to
transfer data between the CE and OE.

8.3 Control Engine

The control engine is the ministep-decoding and -sequencing unit; it includes the
current-ministep address register, the control memory interface, a 16-word subroutine stack
(used for both subroutine calls and interrupts), the interrupt and protection mechanisms, 256
individually addressable flops, and eight 8-bit pointer registers. MLP-900 interrupts are known
as "action requests” (AR’s). There are 32 AR levels, of which 24 are privileged. Of the eight
levels available to user microcode, only two have dedicated functions in PRIM (see
Section 2.2.1); the others can be defined by the user. CE ministeps allow conditional branching
(including subroutine calls and returns) and simple flop and pointer-register computations.

3.3.1 Control Engine Operands

CE Regislers. A CE byte (register) consists of a 4-bit group number and a 4-bit register-
within-group number. This encoding is shown in Figure 3.9.

00 01 02 03)04 05 06 07

Register number| Group numbar
(n mod 20) (n/20)

Figure 3.9 CE.n Encoding

Relative Addresses. A relative address is encoded in one byte; it is relative to the
continuation address (the next instruction word). Thus a skip is coded as +1 instead of +2.
The relative offset is a signed, two’s-complement value in the range -200 through +177, octal.
In GPM all relative addresses are specified relative lo the current instruction (or through a
lable); because the encoded offset is relative to the continuation address, however, the
effective range for relative addresses in GPM is -177 through +200, octal.

- PN

. MLP-900 Reference Manual 55
3.3 Control Engine

Flop Expressions. A flop expression is encoded in two and one-half bytes. Two bytes contain
the flops encoded as shown in Figure 3.11. The half-byte defines the function. Figure 3.10
shows where this information is placed in the instruction word. A flop and its associated true
bit are used in BRAT, BENT, BORE, BRAD, BEAD, and MAST ministeps to form flop terms. If the
true bit is set, then the actual flop value is used; if it is off, then the flop’s complement is used.

F/F A F/F B
F.a F.b

Figure 3.10 Boolean Expression Encoding

Table 3.8
Boolean Expression Types

Test Mode A True B True Boolean Expression

00 0 0 F.b « NOT F.a
1 NOT (F.b « F.a)
i 0 NOY { F.b « NOT F.a)
| F.b « F.a
0l 0 0 NOT F.b OR NOT F.a
1 F.b OR NOT F.a
i 0 NOT F.b OR F.a
1 F.b OR F.a
10 0] 0 NOT F.b AND NOT F.a
1 F.b AND NOT F.a
) 0 NOT F.b AND F.a
1 F.b AND F.a
11 0 0 NOT F.b XOR NOT F.a
1 F.b XOR NOT F.a
1 0 NOT F.b XOR F.a
1 F.b XOR F.a

8.3.1.1 F.377 Flip-Flops

CE..37 represents 32 bytes of addressable flops, known individually as F.377, that may
be set and tested directly by most of the CE ministeps. Within a byte, flops are ordered from
high- to low-order bit. Flops are organized into two major functional groups: F.0-F.277 are
real flops; F.300-F.377 are pseudo-flops. For encoding purposes, the flops are divided into
two groups. F.O-F.177 are all in group 0, and F.200-F.377 are all in group 1. Thus F.327 is
coded as flop number 127 in group 1. This encoding is shown in Figure 3.11.

Aabe.

MLP-900 Reference Manual 56
3.3 Control Engine

00 01 02 03 04 05 06| 07
F/F Number F/F

(n mod 200) Grp

n/

200

Figure 3.11 F.n Encoding

Some ministeps affect specific flops only as a side effect. For example, GEAR and SHIN use and
modify one byte of flops and affect some pseudo-flops. Language boards and AR’s also use
certain flops. Some flops are prolected; that is, the user cannot modify them but can reference
them. These protected flops are indicated in Table 3.9 and the text below by an asterisk ()
beside the flop name.

Table 3.9 lists all the flops. The flop number is the sum of the numbers at the top of
the column and in the extreme left row in which the flop is located. Where the flop number
appears (e.q., F.135) rather than a mnemonic, the flop is unassigned; where three dashes (---)
appear, the flop is unimplemented. The pseudo-flops in CE.30 (F.300-F.307), plus SHD (F.353),
reflect conditions that arise in the current cycle and are defined only when the appropriate
ministeps are being executed; all other flops reflect conditions as of the beginning of the
current cycle. A reference to any flop in CE.30 causes a one-cycle "hiccup™ the cycle requires
two clock periods to execute. The flops in CE.30 cannot be referenced in CALL or RETURN
ministeps. The following are real flops:

F.57 General Indicators: available to user microcode for arbitrary usage.

¢ SLBC..17 (F.60-F.77) Supervisor Language Board Controls.

* POWER, PANIC, OPAR, ... (F.100-F.127) Action Requests.

TRAC, ... (F.130-F.137) User-level AR’s: Each flop represents a specific pending
AR that causes a microcode interrupt whenever its appropriate level is
enabled. Each bit can be set either by the specific occurrence it represents or
by a ministep.’ ;

COF.1, COF.2, ZRF.1, ZRF.2, SHE, SOS, SOF (F.140-F.147) Carryout flops, zero
flops, shift extension, shift-out sign, shift-out flag: OE-associated (GEAR and
SHIN) flops; fully described in the GEAR and SHIN sections.

ARL5 (F.150) AR Lockout: user-level AR lockout.”

ITRAC (F.153) Initiate Trace.”

F.154-F.157 General Indicators: available to user microcode for arbitrary usage.

SARM..1 (F.160-F.161) Supcrvisor AR Masks: control the memory-compare AR.

CKC (F.164) Clock Control.

TRBY (F.165) Translator Bypass.

CKT (F.166) Check Test.

MBS (F.I67) Mask Bank Selector: selects current mask bank.

ARL.1-4 (F.170-F.173) AR Lockout: lockouts for privileged AR levels.”

MOD..1 (F.174-F.175) Mode Bils: stored in control memory by a BLOT WCM.

SUPVLB (F.176) Supervisor LB: selects Supervisor LB.

SUPVCT (F.177) Supervisor Control: forces MLP-900 into supervisor mode
regardless of the mode bit in control memory.

F.200-F.237 General Indicators: available to user microcode for arbitrary usage.

L R R IR JEE R R)

MLP-900 Reference Manual 57
3.3 Control Engine

The following are pseudo-fiops.

COP (F.300) Carry-out Pseudoflop: see GEAR (Section 3.2.2.1) and SHIN
(Seclion 3.2.2.3) instructions.

ISP (F.301) Zero-sense Pseudoflop: see GEAR instruction (Section 3.2.2.1).

THZ (F.304) Through Zero: see BRAD instruction (Section 3.23.1).

WAR (F.305) Wait AR: one of F.133-F.137 is pending.

CCP (F.307) Check-Carry Pseudoflop: carryout from the check-adder.

TRUE (F.310): always set.

SSW.7 (F.380-F.347) Sense Switches: from the MLP control paneis.

SHD (F.353) Shift Done: sce SHIN instruction (Section 3.2.2.3).

0S1.3 (F.354-F.357) One-sense Indicate: senses -1 in the corresponding P..3.

7SI.7 (F.360-F.367) Zero-sense Indicate: senses O in the corresponding P.7.

TSI.1 (F.374-F.375) Three-sense Indicale: senses 3 in the corresponding P..1.

FSI..1 (F376-F.377) Four-sense Indicate: senses 4 in the corresponding P..I.

$.3.1.2 P.7 Pointer Registers

There are eight 8-bit pointer registers that can be used in the OE to address registers
indirectly (e.g., RO ® P.3 is the general register determined by the low-order 5 bits of P.3).
The pointer registers can be loaded by a MOVE instruction, modified by the BRAD instruction,
and tested through the pointer-sense pseudo-flops. The following pointers have
special-purpose functions:

P.O-P.3 used and modified by the BLOT ministep; otherwise generally available.
P.6 stack pointer (dedicated for micro-PC).
P.7 shift counter for SHIN.

The following pseudo-flops are true if, and only if, the appropriate pointer has exactly the
specified value. -

0S81.3 sense all ones (i.e., -1 or octal 377) in the corresponding P.3.
728).7 sense zero (0) in the corresponding P..7.

7811 sense the value three (3) in the corresponding P..l.

F¥Sl..) sense the value four (4) in the corresponding P.i.

When a BRAD ministep both modities a pointer and tests that pointer’s sense pseuvdo-flops, the
original value of the pointer is sensed.

MLP-900 Reference Manual
3.3 Control Engine

00
01
02
03
04

06
07

11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

58

Table 3.9
Flip-Flops (Names and Groups)

F.0 F.40 F.100 F.140
(CE.0) (CE.Q) (CE.10) (CE.149)
F.0 F.40 POWERs COF.1
F.1 F.41 PANICx 2
F.2 F.42 OPARs# ZRF.1
F.3 F.43 EPAR# 2
F.4 F.44 SOVF# F.144
F5 F.45 SUNF# SHE
F.6 F.q6 UOVF# SOS
EZ F.47 UUNF % SOF
(CE.1) (CEB) (CE.11) (CE.15)
F.10 F.50 CMADRx% ARLS
F.11 F51 AERR# F.152
F.12 F.52 BERR% F.153
F.13 F.53 PERR# ITRAC
F.14 F.54 F.llas F.154
F.15 F.55 F.115# F.i55
F.16 F.56 MMERR# F.156
F.17 F.57 F.117% F.157
(CE.2) (CE.6) (CE.12) (CE.16)
F.20 SLBC.0# TASK# SARM.0%
F.21 A= PAGE#* Bk
F.22 2% SUPVF« F.162¢
F.23 3% PROT# F.163¢
F.24 Az VADR# CKCs
F.25 5% F.125% TRBY#
F.26 6% F.126% CKTs
F.27 J% F.127% MBS+
(CE.3) (CE.7) (CE.13) (CE.17)
F.30 SLBC.10% TRAC ARL.1#
F.31 dls F.131 2%
F.32 A2% F.132 Re}
F.33 J3% F.133 Ax
F.34 4x F.134 MOD.O+
F.35 15% F.135 BE
F.36 .16% F.136 SUPVLB#*
F.37 A7% F.137 SUPVCT#

MLP-900 Reference Manual
3.3 Control Engine

00
0l
02
03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

59

Table 3.9 (Continued)

F.200 F.240 £.300 F.340
(CE.20) (CE.28) (CE.30) (CE.38)
F.200 F.240 cop? SSW.0
F.201 F.241 zsp8 1
F.202 F.242 2
F.203 F.243 3
F.204 F.244 THZ8 4
F.205 F.245 WAR 5
F.206 F.246 6
F.207 F.247 ccpl i
(CE.21) (CE.25) (CE31) (CE.35)

F.210 F.250 TRUE
F.211 F.251
F.212 F.252
F.213 F.253 _— sHD3
F.214 F.254 0S1.0
F.215 F.255 R
F.216 F.256 2
F.217 F.257 3
(CE.22) (CE.26) (CE.32) (CE.36)
F.220 F.260 2510
F.221 F.261 A
F.222 F.262 2
F.223 F.263 3
F.224 F.264 A4
F.22% F.265 5
F.226 F.266 6
F.227 F.267 7
(CE.23) (CE.27) (CE.33) (CE37)
F.230 F.270
F.231 F.271 -
F.232 F.272
F.233 F.273
F.234 F.274 TS10
F.235 F.275 3
F.236 F.276 FSIO
F.237 F.277 - 1

8. Reflects conditions only within the current cycle.

ML.P-900 Reference Manual 60
3.3 Control Engine

3.3.1.3 CE.77 Miscellancous Registers

The double register pair (CE.60, CE.61) is the miniflow status word, of which only 2 bits
are used.

00 01102 03]04 05 06 07|08 09 10 11 12 13 14 15

Figure 3.12 Miniflow Status Word
LB selects the active language board set.

The double register pair (CE.62, CE.63) is the current address register. It contains the
address of the current instruction or of the first instruction of a pair. A MOVE to the current
address register is a no-op.

CE.64-CE.67 comprise the exchange bus from the OE into the CE; it is addressed as
XBUS..3 on the left side of an assignment in the MOVE ministep. CE.70-CE.73 comprise the
exchange bus from the CE inlo the OF; it is addressed as XBUS.3 on the right side of the
assignment in the MOVE ministep. XBUS..3 are pseudo-registers connected to bits 4-35 of the
exchange bus in the OE: XBUS.O connects to bits 4-11, XBUS.1 to bits 12-19, XBUS.2 to bits
20-27, and XBUS.3 to bits 28-35.

3.3.1.4 S.17 Subroutine Stack

The Subroutine Stack consists of sixteen 16-bit registers. The subroutine stack,
together with P.6 (the stack pointer), is automatically used in AR’s and in subroutine calls and
returns. A subroutine call (a BEAD or BENT ministep) branches to the effective address and
pushes the return address onto the top of the stack. This is done by incrementing P.6 by 1
and then using the four low-order bits to select the stack word to be loaded with the return
address. In addition, if the four low-order bils of P.6 were octal 16 (indicating that the stack is
being filled), either a supervisor stack overflow (F.104) or a user stack overflow (F.106) is
requested, according to the mode of the caller. Taking an AR consists of pushing the
interrupted address onto the stack and branching to the AR entry point, simultaneously setting
the appropriate lockout bit (ARL.1-ARL.5).

A return (i.e, a BORE ministep) loads the current address register from the top of the
stack and then decrements P.6 by 1. If the stack is empty (the four low-order bits of P.6 are
0) and if ARL.2 is off, a stack underfiow of the appropriale kind is taken (F.105 if supervisor;
F.107 if user), the pointer is left unchanged, and the current address (i.e., the address of the
BORE instruction) is stacked in S.0. If the stack is empty but ARL.2 is on, the BORE returns
normally, decrementing P.6 as it goes.

MLP-900 Reference Manual 61
3.3 Control Engine

8.3.2 Control Engine Operators

The CE operators are:

® BRAT Branch with Test -- provides conditional jumps.

® BENT Branch and Enter -- provides conditional subroutine calls.

¢ BORE Branch or Return -- provides conditional subroutine returns.

¢ BRAD Branch and Modify -~ provides loop control.

e BEAD Branch Extended Address -- provides conditional and unconditional
subroutine calls and jumps. It has a larger addressing capability than
BRAT or BENT.

e BLOT Block Transfer -- provides loop control together with dats transfers
within the OE.

® MAST Manipulate Status -- manipulates flops.
¢ MOVE Move CE Registers -- the general data transfer instruction for the CE.

3.3.2.1 BRAT BRAuch with Test

The BRAT internal coding, given in Figure 3.13, consists of the BRAT opcode, a boolean
expression, end a relative address (see Section 3.3.1, Figure 3.10, and Table 3.8).

00 01 02 03]04 05]06]07|08,09 10 11 12 13 14 1516 17 18 19 20 21 22 23|24 25,26 27,28 29 30 31

Relative

Address

Figure 3.13 BRAT Ministep

Syntax:

{40} brat =
/ IF flopexp{al} THEN GOTO rellabel{44} END ;

{41} flopexp :=
flopterm({42} bop{43} flopterm{42} | (F.277 « tlopterm{42}) |
NOT (F..277 « flopterm{42})

{42} flopterm :=
NOT F..377 | F.377 | FALSE
<<FALSE is a shorthand for NOT TRUE>>

{43} bop ::=
AND | OR | XOR

{44} rellabel ::=
offset{45} | id{l}

{45) offset ::=
+ number{6} | - number{5}

MLP-900 Reference Manual 62
3.3 Control Engine

Examples:
/IF (F.0 « TRUE) THEN GOTO +200 END;
/IF NOT (F.1 « FALSE) THEN GOTO -177 END;
/IF F.3 OR F.3 THEN GOTO TAGL7 END;
/IF NOT F.4 AND F.5 THEN GOTO +7 END;
/IF F.377 XOR NOT F.377 THEN GOTO -3 END;
/IF NOT F.1 OR NOT F.4 THEN GOTO +166 END;

Semantics:

This ministep provides conditional jumps. If the boolean expression flopexp evaluates to
true, then the branch is taken; otherwise execution continues with the next instruction. If a
store («) is specified in the boolean expression, the store occurs whether the branch is taken
or not. The branch destination is a location relative to the current instruction. The limits on
the branch destination are octal +200 and -177, inclusive. As with all relative branches,
addressing beyond or before the ends of control memory will cause a location-counter
wraparound. Thus a transfer to +70 from location 7747 will go to location 0037.

3.3.2.2 BENT UBranch and ENTer

The BENT internal coding, given in Figure 3.14, consists of the BENT opcode, a boolean
expression and a relative address (see Section 3.3.1, Figure 3.10, and Table 3.8).

Relative
Address

Figure 3.14 BENT Ministep

Syntax:

{46} bent u=
/ IF flopexp{41} THEN CALL rellabel{44} END ;

Examples:
/IF (F.17 « NOT F.1) THEN CALL SUB END;
/\F F.202 OR F.206 THEN CALL +1 END;
/\F F.4 XOR NOT F.77 THEN CALL -27 END;

Semantics:

This ministep provides conditional subroutine calls. The execution of the BENT ministep
is similiar to the BRAT. The only difference is that when the branch is taken, a subroutine
entry is executed, with the address of the next instruction being pushed onto the subroutine
stack (S..17).

MLP-900 Reference Manual 63
3.3 Control Engine

3.3.2.3 BORE MNranch Or REturn

The BORE internal coding, given in Figure 3.15, consists of the BORE opcode, a boolean
expression and a relative address (see Section 3.3.1, Figure 3.10, and Table 3.8).

Relative

Address

Figure 3.15 BORE Ministep

Syntax:

{47} bore :=
/ IF flopexp{41} THEN GOTO rellabel{44} ELSE RETURN END ;

Examples:
/IF F.1 OR NOT F.3 THEN GOTO -3 ELSE RETURN END;
/\F TRUE OR F.0 THEN GOTO +1 EL.SE RETURN END;

Semantics:

This ministep provides conditional subroutine returns (there is no unconditional
subroutine return). The execution of the ministep is identical to BRAT if the boolean
expression evaluates to true. If the expression evaluales to false, then instead of continuing at
the next instruction, a subroutine return is executed. As with both BRAT and BENT, if a store
is indicated, it occurs whether the expression evaluates to true or false.

3.3.2.4 BRAD BRanch /And moDify pointer

The BRAD internal coding, given in Figure 3.16, consists of the BRAD opcode, a pointer
register number, a modifier (the pointer’s increment/decrement), a flop term (which corresponds
to the B-part of a boolean expression), and a relative address (see Section 3.3.1, Figure 3.10,
and Table 3.8).

00 01 020304 05 06]07/08,09 10 11112 13 14 15[16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31

™
Z|PointerModifie F/F B Relative
Reg. Address

Figure 3.16 BRAD Ministep

Syntax:

{48} brad :=
/ bradop{49} P..7 BY number{5} ; IF flopterm{42} THEN GOTO rellabel{44} END ;

MLP-900 Reference Manual 64
3.3 Control Engine

{49} bradop ::=
INCREMENT | DECREMENT

Examples:
/INCREMENT P.1 BY 7; IF TSL.1 THEN GOTO TAG53 END;
/DECREMENT P.0 BY 10; IF FSI.O THCN GOTO +12 END;

Semantics:

This ministep provides primitive loop and count control. It increments or decrements a
counting pointer (P.7) and does a conditional relative branch. (Note that BRAD should not be
executed in a pair with a SHIN ministep using indirect shift.) The largest increment is 7 and the
largest decrement is octal 10. The through-zero (THZ) pseudo-flop is defined only for a BRAD
ministep; whenever the pointer value (taken as an 8-bit, non-negative number) overflows or
underflows, THZ is true and the new pointer value is correct modula 400 (octal).

3.3.2.5 BEAD Branch Extended /ADdress

The BEAD instruction provides for both conditional branching to any location in control
memory and unconditional indexed branching using a pointer. There are four forms of BEAD,
with syntax for all given in Section 3.3.25. They may each be used as a CALL or a GOTO, as
determined by the "Enter” bit shown in Figures 3.17-20: if "Enter” is set, a CALL occurs rather
than a GOTO.

BEADO. The BEADO internal coding, given in Figure 3.17, consists of a BEADO opcode, a flop
term (see Section 3.3.1), and a 16-bit absolute address.

00 01 02 0304 05]0607]08 09 10 11 12 13 14 1516 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31

Absolute
Extended Branch Address

Figure 3.17 BEADO Ministep

BEADL. The BEADI internal coding, given in Figure 3.18, consists of a BEAD1 opcode, a
pointer register number, and a 16-bit absolute address.

Absolute
Extended Branch Address

Figure 3.18 BEAD! Ministep

BEAD2. The BEAD2 internal coding, given in Figure 3.19, consists of a BEAD2 opcode and a
pointer register number.

MLP-900 Reference Manual 65
3.3 Control Engine

7 7/

Figure 3.19 BEAD2 Ministep

BEAD3. The BEADS3 internal coding, given in Figure 3.20, consists of a BEAD3 opcode, a flop
term (see Section 3.3.1), and a 16-bit two’s-complement relative address (relative to the next
instruction).

00 01 02 03]04 05{06]07|08 09 10 11 12 13 14 15/16 17 18 19 20 21 22 23 24 . 27,28 29 30 31

Relative
Extended Branc! ress

Figure 3.20 BEAD3 Ministep

Syntax:

{50}

{51}

{52}

{53}

{54}

{55}

{56}

bead =
bead0{51} | beadl{52} | bead2{53} | bead3{54}

bead0 :=
/ IF flopterm{42} THEN trfrop{55} trfrlabel{56} END ;

beadl :=
/ trfrop{55} trfrlabel{56} < P..7 >; -

bead?2 :=
| trirop{55} +1 < P.7 >;

bead3d ::=
/ IF flopterm{42} THEN trfrop{55} sign{22} number{5} END ;

trfrop ::=
CALL | GOTO

trfrlabel ::=
number{5} | id{1}

Examples:

/IF F.1 THEN GOTO TAG67 END;
/IF NOT F.13 THEN CALL 200 END;
JCALL TAG31 <P.57>;

/GOTO 277 <P.11>;

JCALL +1 <P.4>;

/GOTO +1 <P.11>;

/IF TRUE THEN GOTO +3711 END;

MLP-900 Reference Manual 66
3.3 Control Engine

JIF NOT F.11 THEN GOTO -67 END;
Semantics:

This ministep provides unconditional or indexed jumps or subroutine calls. The major
function of the BEAD, however, is 1o provide extended branch-addressing capability. BEAD is
the only ministep that can transfer beyond the relative address range -200 through +177
(octal) since it can address all of control memory. All BEADs may optionally execute a
subroutine call. There are four forms of BEAD ministeps:

® BEADO - Conditional Absolute. If the specified fiop expression (see
Section 3.3.1) is true, control is transferred absolutely to any location
(trfrlabel) in control memory.

® BEADI - Absolute plus Pointer. Control is transferred unconditionally to
the spe specified location (trfrlabel), offset by the 8-bit positive quantity in
the specified pointer register.

® BEAD2 - Relative plus Pointer. Control is transferred unconditionally to
the location of the next instruction offset by the 8-bit positive quantity in
the specified pointer register. This instruction always transfers in a forward
direction.

® BEAD3 - Conditional Relative. If the specified flop expression (see
Section 3.3.1) is true, control is transferred to the location of the next
instruction offset by a 16-bit two's complement displacement.

3.3.2.6 BLOT BLOck Transfer

The BLOT internal coding, given in Figure 3.21, consists of the BLOT code and a relative
address (see Section 3.3.1). BLOT codcs are given in Table 3.10.

Table 3.10
BLOT Codes

RCM Read Control Memory*

WCM Write Control Memory?*

RSB Read Subroutine Stack

wsB Write Subroutine Stack

MOE Move OE

wBpP Write Contol Memory, Bad Parity*

axwWwN=-—O

b Indicates a privileged code.

Relative
Address

Figure 3.21 BLOT Ministep

MLP-900 Reference Manual 67
3.3 Control Engine

Syntax:

{57} blot ::=

blotcode {58} rellabel{44} ;

{68} blotcode ::=

Examples:

RCM | WCM | RSB | WSB | MOE | weP

RCM +7;
WBP -5;

Semantics:

BLOT is used to establish loops to transfer blocks of data. The execution of a single
BLOT ministep can simultaneously move one word of data, modify some pointers, and
conditionally branch. There are six types of BLOTs--one facilitates moving data in the OE, two
reference the subroutine return stack, and three reference control memory (the only
instructions that do so). Three steps occur simultaneously in all types of BLOT transfers:

(1
(2)

3)

Move CE data to or from the XBUS, as specified by the BLOT type.

Modify Pointers. Pointer register modification is identical for all six types of block
transfers: P.O0 and (P.2, P.3) as a single 16-bit register are each incremented by one,
and P.l is decremented by one. Note that the data-move and conditional-branch
parts of the BLOT, plus any paired OE ministep, use the old values of the pointer
registers.

Conditional Branch. The conditional branch function is identical for all six types of
block transfer. Each time BLOT is executed, P.1 (the word counter) is tested. When
a count of one is present, execution continues with the next instruction. It P.1
contains any count other than one, control is transferred to the branch address. A
word count of zero initially loaded into P.1 may be used to transter a block of 256
words.

The data transfer functions for the various BLOTS are:

MOE: No CE data is moved, but steps 2 and 3 above are performed.

RSB: Read one word from Subroutine Stack into XBUS (XBUS.2, XBUS.3).
WSB: Write one word into Subroutine Stack from XBUS.

These two BLOTs read and write subroutine-stack words. They sre 16 bits
wide and read from or write to the rightmost 16 bits (i.e., H.1) of XBUS. The
low-order tour bits of P.3 sclect the stack word (S..17).

RCM: Read one word from control memory into XBUS.
WCM: Write one word into control memory from XBUS with good parity.
WBP: Write one word into control memory from XBUS with bad parity.

These three privileged BLOTs are the only instructions that can reference
control memory. They are 36 bits wide, reading and writing via the XBUS and
using (P.2, P.3) to select the control-memory address. A control-memory word

MLP-900 Reference Manual 68
3.3 Control Engine

is 40 bits wide: thirty-six data or instruction bits come from the XBUS; two
mode bits come from flops MOD.O (F.174) and MOD.1 (F.175); one bit is a parity
bit, either good or bad; and one is unused and is always 0. Parity is generated
automatically. WCM generates odd (good) parity; WBP generates even (bad)
parity. RCM and WBP are used in diagnostics. WCM is used for swapping in a
new user.

3.3.2.7 MAST M/nipulate STatus

The MAST internal coding, given in Figure 3.22, consists of a MAST opcode, a logical
function, two flop terms (see Section 3.3.1), and a result flop. The MAST logical functions are
given in Table 3.11; the operand notation follows Figure 3.22.

Table 3.11
MAST Logical Codes

IF F.b.term THEN F.result « F.a.term
F.result « F.aterm OR F.b.term
F.result « F.a.term AND F.b.term
F.result « F.aterm XOR F.b.term

WN - O

00 01 0203]04 05]06]07]08 09 10 11 12 13 14 15116 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31

Result

F/F

Figure 3.22 MAST Ministep

Syntax:
{59} mast =

F.277 « flopterm{42} bop{43} flopterm{42} ; |

/ ¥ flopterm{42} THEN F..277 « flopterm{42} END ;
Examples:

F.1 « F.17 OR NOT F.20 ;

F.33 « NOT F.106 XOR F.13 ;

F.106 « TRUE OR TRUE ;

/IF F.6 THEN F.111 « NOT F.4 END ;
/IF NOT F.11 THEN F.4 « F.22 END ;

Semantics:

This ministep manipulates flops. There are two types of MAST ministeps, the
unconditional and conditional store.

Unconditional MAST. This form of MAST stores a two-term boolean expression into
a third flop. A flop may be referenced several times. For example, the
following will complement F.7:

MLP-900 Reference Manual 69
3.3 Control Engine
F.7 « NOT F.7 OR NOT F.7 ; U

Conditional MAST. If the term being tested is true, a store is made. For example,
the following two MAST statements have the same resuit:

JIF NOT F.7 THEN F.7 « NOT F.10 END ;
F.7 « F.7 OR NOT F.10 ;

3.3.2.8 MOVE MOVE CE Rcegisters A

The MOVE internal coding, given in Figure 3.23, consists of a from-address, a to-address,
and an immediate mask. The from-address is a constant in the case of Move-Immediate; a flop
in the case of the Move-Flop; and a CE register for the other four MOVE’s. The to-address is
always a. CE register. The immediate mask is an 8-bit constant; it is not used in the
double-byte MOVE. The MOVE codes are given in Table 3.12.

Table 3.12
MOVE Codes

MSI Move Immediate
. MOM Move Flop
MAR Move Register
MAC Move and Complement
MCL Move and Clear
MDB Move Double Byte

O wWwN-O

00 01 020304 05 06 07]08 09 10 11 12 13 14 15]16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31

From To Immediate

Address Address Mask

Figure 3.23 MOVE Ministep

Syntax:

{60} move :u=
CE..137 « msingle{61}; | (CK.137) « (CK..137)

{61} msingle :=
msource{62} | msource{62} (number{5}) | CK.137 [number{5}]

{62} msource ::=
number(5) | K.377 | CK.137 | NOT CK.137

Examples:
CE.17 «5(7);
PO « 17 (75);
CE.111 « F.113 (355) ;
GOR.1 « GIR.3 (377);

MLP-900 Reference Manual 70
3.3 Control Engine

XBUS.3 « NOT CEA4 ;
CE.4 « XBUS.0 [174];
(CE.1) « (CE.O) ;

S.2 « (P.O);

Semantics:

This ministep provides data transfer between CE registers; it is also used in conjunction
with the OE ministep GENT to provide interengine data transfers. There are six types of MOVE
ministeps. All but one of these set one CE register, making use of an immediate mask value
specified in parentheses or brackets. If the mask is not specified, a mask of all one-bits, (377),
is assumed. The mask value is similar to the mask register used in the OE; only bits
corresponding to ones in the mask are modified. Note that in a MOVE to the exchange bus, the
mask is ignored and the entire byte is moved. The double MOVE copies an even/odd register
pair to another even/odd register pair; the mask is not used.

® MS! -- Move Immediate: CF..137 « number (number).
All masked-in bils of the left CE register receive the corresponding value of the
specified constant right operand. As in the GEAR, the mask is specified in
parentheses ().
¢ MOM -- Move Flop: CFK..137 « F.377 (number).
All masked-in bits of the left CE register receive the value of the specified flop.
® MAR -- MOVE: CE..137 « CE..137 (number).
All masked-in bits of the left CE register receive the corresponding value of the
specified right CE register.
® MAC -- Move Complemented: CE..137 « NOT CE..137 (number).
All masked-in bits of the left CE register reccicive the complement of the
corresponding value of the specified right CE Register.
® MCL -- Move and Clear: CK..137 « CE..137 [number].
Same as MAR, but in addition the masked-out bits are cleared to zero. Note that
the parentheses () and brackets [] are used in a manner similar to the GEAR
operation.
MDB -- Move Double Byte: (CFE..137) « (CK..137).
Moves one pair of CE registers to another pair of CE registers. The pairs are
always an even/odd register pair. Thus (CE.4) and (CE.5) both specify the pair
(CE.4, CE5). When both registers specified are even or both odd, the MOVE will
be normal, that is, even to even and odd to odd. When the specified registers
are one even and one odd, however, the MOVE will be reversed, that is, even to
odd and odd to even. S§.17 can be used to represent the appropriate even/odd
CE register-pair.

3.3.3 Action Requests

There are 32 action-request (AR) flops (F.100-F.137). Each one is connected to an
interrupt location (see the Address column in Table 3.13); in addition, each AR is associated
with one of five lockout levels (ARL.1-ARL.5). ARL.1 locks out all ARs; ARL.2 all ARs on levels
2-5, etc.

When the CE senses the existence of an immediate AR that is not locked out, the current
clock cycle is inhibited (i.e., the current ministep is suppressed) and in the next cycle the
MLP-900 takes the AR by performing a call (using the stack to store the interrupted address)

MLP-900 Reference Manual 71
3.3 Control Engine

to the AR entry point, simultaneously setting the lockout bit of the interrupt level being
entered. For those ARs of type "Wait" (see Table 3.13), the AR remains pending until the next
WOP instruction, when the AR takes place (if not locked out by a higher level). Since the AR
flops are not turned off by the interrupt itself, they must be turned off by the interrupt
routine.

There are eight action-request (AR) levels available to the user microcode: three
immediate and five wait. Of these eight, only TRAC has an assigned function: a user trace
function is implemented through the TRAC AR and the ITRAC flop. One cycle after the ITRAC
flop is set (by microcode), the MLP-900 sets TRAC and clears ITRAC. Thus a TRAC AR routine
of the form

TRAC « FALSE;

e trace conditions
ARLS « FALSE;
IF (ITRAC « TRUE) RETURN;

will be entered after every user ministep cycle (except other user AR routines). To initiate
tracing, TRAC must be set once.

3.4 1/O Interface

The 1/0 interface between the MLP-900 and the PDP-10 contains four registers:

® Command/status register MISC.34
e DATAO register MISC.32
o DATAI register MISC.33
® [PL address register Nol addressable

The MLP-900 can read or. write these registers as part of the OE miscellaneous-register group;
writing these registers is allowed only in microvisor mode. The PDP-10 can read or write
these registers via the CONO, CONI, DATAO, and DATAI instructions. The MLP-900 appears to
the PDP-10 as two devices on the 1/0 bus: MLPA, which handles all normal communications, and
MLPB, which helps to save and restore the state of the interface.

i Becsnncnsii

MLP-900 Reference Manual 72
3.4 1/O Interface

Table 3.13
Action Requests

Bit Type Address Level Cause

;;')-\;I-E-R‘ lmm;diale 7700 ARL.1 Power lo;s warning

PANIC* o 7700 * Interrupt caused by PDP-10

OPAR! = 7902 MRLZ Farity error from the odd benk of the
Control Memory

EPAR* = 7704 # Parity error from the even bank of the
Control Memory

SOUF* 5 7706 i Stack overflow from supervisor mode

SUNF* s 7716 " Stack underflow from supervisor mode

Uovr* " e * Stack overfiow from user mode

UUNF* " 7714 , Stack underflow from user mode

CMADR® “ 7756 AL CofitlMmicy sidess el

(MISC.37) matches the Current
Address Register while SARM.O is on

AERR* . 7720 " The two adders in the OE differed
BERR* - 7722 - Parily error on internal Exchange Bus
PERR* " 7724 Y Parity error in the translator
memory
F.114* 2 e " Two unassigned AR’s
F.115* * e "
MMERR* " 7730 . Main memory parity error
F.117¢ = 7734 = Unassigned

MLP-900 Reference Manual
3.4 1/0 interface

73

Table 3.13 (Continued)

Bit Type Address Level Cause

TASK® Immediate 7736 ARL.4 Interrupt from the PDP-10

PAGE* = 7740 " A CEDE Wait or Store notes that the
last translation is bad

SUPVF* < 7742 . Attempt by user mode code to execute
a privileged ministep or modify a
privileged register

PROT* = 7744 . An attempt by user mode code to
branch into microvisor code at other
than an entry point

VADR* ¥ 7746 = Virtual address comparand (MISC.37)
matches VAR while SARM.1 is on

F.1256* " 7750 = Three unassigned AR’s

F.126* X mz

F.127* " 7754 ¢

TRAC = 7756 ARLS5 Set by user microcode, or by ITRAC
after a one-cycle delay

F.131 ~ 7760 v Two unassjgned AR’s

F.132 * 7762 %

F.133 Wait 7764 = Five unassigned AR’s

F.134 by 7766 >

F.135 gy 7770 3

F.136 i 7772 "

F.137 y 7774 -

MLP-900 Reference Manual 74
3.4 1/0 Interface

3.4.1 Command/Status Register

The command/status register (MISC.34) is a 27-bit register, as shown in Figure 3.24.

Interface and
PDP=10 --mMLP -S¢ HLP Status ¢ MLP --=PDP-10—»
0809 10 11]12 13 14 15 16 17{18 [19]20(21]22|23]24]25]26|27]28]29]30 |31 |32 33 34 35
wh ; >
//%// >~‘5.) || olx|z| o cf | [BV) “
%“ g3l 5 |gdsEesiesldcidsoly v s
7%// L oL ~ o - al<|x|elu| T olo] T3] o e
g °8y 52 |3=(lll85gSzE 5S35
// EEY CB SEEEEFETagLels g5
=
Figure 3.24 Command/Status Register Format

Bits Use

9-11 Priority-intcrrupt level

12-17 Task parameter (provided by the PDP-10 along with a TASK AR)

18 Microvisor mode

19 DATAIl-aclive

20 DATAO-active

21 IPL-data mode

22 IPL-address mode

23 TASK-AR pending (F.120)

24 MLP-running (F.164)

25 MLP Power-Up

26 Hard-error Pl (priority interrupt)

27 Data-ack Pi

28,29 Request parameter (expanding on the MLP-request Pt)

30 Task-ack Pl

31 MLP-request Pl

32-35 Request parameter (expanding on the MLP-request Pl)
3.4.2 DATAO and DATAI

DATAO (MISC.32) and DATAI (MISC.33) are 36-bit dala-transmission registers, usable in
either direction. Each is accompanied by an "aclive" bit in the command/status register.
Writing into one of these registers by either the POP-10 or the MLP-900 sets the register’s
aclive bit; reading it clears the active bit (without altering the data). Note that an MLP-900
user may read these registers (and, by so doing, clear the active bit).

3.4.3 MLP-900 Interface Manipulation

The MLP-900 can read the command/status regisier and the DATAO and DATAI registers
via a GENT ministep. In addition, if SUPVLB (F.176) is true, the following command/status fields
are available directly as pseudo-flops and pointers:

MLP-900 Reference Manual 75
3.4 1/0 Intertace

Field Found In
Task parameter (bits 12-17) P.17
DATAI-active (bit 19) F.326
DATAO-active (bit 20) F.327
Hard-error Pl (bit 26) F.320
Data-ack Pi (bit 27) F.321
Task-ack Pl (bit 30) F.322
MLP-request Pl (bit 31) F.323

In microvisor state the MLP-900 can load the Command/Status, DATAQ, or DATAI registers via a
GENT ministep. Writing the command/status register loads only bits 26-35; bits 0-25 cannot be
written directly. Furthermore, if the MLP request Pl (bit 31) is zero ("new value"), the
MLP-900 request parameter (bits 28, 29, and 32-35) is ignored and that field of the
command/status word is cleared. Setting one or more of the four PI bits (26, 27, 30, or 31)
causes the MLP-900 to interrupt the POP-10 on the priority inferrupt level specified by bits
9-11 (if the interrupt level is not zero); while their names suggest distinct functions, the four PI
bits perform identically.

8.4.4 PDP-10 Interface Manipulation

The PDP-10 recognizes the MLP-900 as two devices on the 1/0 Bus: MPLA is device 424
and MLPB device 434, both octal. The PDP-10 DATAI and DATAO operations on these devices
transfer 36-bit values to and from the DATAI and DATAO registers; the active bits are set by a
DATAO operation and reset by a DATAI operation. On device MLPA, the DATAO operation loads
DATAO and the DATAI operation reads DATAIL On device MLPB, however, the DATAO operation
loads DATAI and the DATAI operation reads DATAQ. The PDP-10 CONI and CONO operations
transfer 18 bits to and from the command/status register, respectively:

CONO, MLPA; Commands Out

Bits Function

18-20 New priority interrupt level
21 Set IPL mode

22 Set panic AR (F.101)

23 Set task request (F.120)
24 Set/reset clock (F.164)
25 Reset interface

26 Reset hard error P

27 Reset data ack PI

28 Resel task ack Pl

29 Reset MLP request Pl

30-35 New task parameter

S

MLP-900 Reference Manual 76
3.4 1/0 Interface

CONI, MLPA; Status In

Bits Reads

18-25 Bits 18-25 of command/status register

26-29 Bils 26, 27, 30, and 31 of command/status, the four Pl bits.

30-35 Bits 28, 29, 32-35 of command/status register, the MLP-900
request parameter

CONO, MLPB; a NOP

CONI, MLPB; Read Commands

Bits Reads

18-20 Priority Interrupt Level

21,22 Zero

23,24 Bits 23, 24 of command/status
25-29 Zero

30-35 Bits 12-17 of command/status (PDP-10 task parameter)

In general, MLPB is needed only to save the state of the interface; all normal communication is
done via MLPA,

3.4.4 IPL Mode

IPL mode is used to load MLP-900 control memory directly over the 1/O bus. IPL mode is
initiated by a CONO to MLPA that sets IPL-mode (bit 21). This puts the MLP-900 into
IPL-address mode; the next DATAO to MLPA loads the IPL-address register and puts the
MLP-900 into IPL-data mode. Subsequent DATAQ's to MLPA are used to load successive
control memory locations, with the control-memory mode bit set to 2 (supervisor mode); the:
IPL-address register is incremented: prior to each control memory store. IPL-mode is
terminated by any CONO fo MLPA.

77

Chapter 4
General Purpose Microprogramming Language

The General Purpose Microprogramming (GPM) language is an implementation language
developed by the PRIM project as a machine-dependent microprogramming language for the
MLP-900. It is essentially a generalization of the machine-level language forms presented in
Chapter 3. Its design follows an assembly language philosophy, which allows the programmer
to predict all instruction sequences and requires no run-time support system, although syntactic
block structure and high-level control structures are provided to assist the programmer. GPM
is the primary language for the MLP-900 (no assembly language exists) and, as such, was
designed to be used for both diagnostics and emulators.

The syntax of GPM is given in this and the previous chapter as modified BNF definitions.
Each definition is preceded by a definition number within braces; each reference to that
definition is immediately followed by its definition number within braces so as to facilitate cross
references. All syntax equations before program{63} are in Chapter 3; the remainder are in
this chapter. The few primitive constructs referenced in definitions are given in italics, as in
emptystring.

4.1 Program Structure
A GPM program starts with a title declaration; the title identifier must be nonreserved

(see Appendix C). The body of the program has two parts: a declaration list and statement
list.

Syntax:

{63} program :=
TITLE id{1} body{64} closing{70}

{64} body :=
declarationlist{65} ; stmtlist{66} | stmtlist{66}

{65) declarationlist ::=
declaration{67} | declarationlist{65} ; declaration{67}

{66) stmtlist =
statement{69} | stmtlist{66} ; statement{69}

4.1.1 Declarations

Declarations define conditions that will be active for the scope of the body in which they
are made.

GPM Language 78
4.1 Program Structure

Syntax:

{67} declaration ::=
pseudodecirtn{72} | TEMPORARY rlist{68} |
EQUATE id{1} id{1} | EQUATE id{1} id{1} number{5)

{68} rlist ::=
R.37 | rlist{68} R..37

4.1.1.1 EQUATE Declaration

There are two forms of the EQUATE statement. The first takes two symbols and equates
the first to the second (i.e., the first will be treated as if it were the second). For example,
after the declaration EQUATE PC R3; every occurrence of PC within the scope of the
declaration will be interpreted as R3. The following examples are legal EQUATE statements of
this form:

EQUATE INDEX P.6;

EQUATE MINUS.ONE 777777777777;
EQUATE EQ EQUATE;

EQ INFINITE.LOOP.START DO.BEGIN;

The second EQUATE form takes two indexed identifiers and a number as arguments; it is used to
equate blocks of indexed names. For example, after the declaration

EQUATE ACO R.10 10 ;

every occurrence of AC.0 through AC.7 within the scope of the declaration will be interpreted
as R.10 through R.17, respectively.

4.1.1.2 TEMPORARY Declaration

The TEMPORARY declaration declares general registers that may be used as temporaries
by the GPM code generators. This declaration allows more complicated arithmetic operations
and data transfers to be compiled.

4.1.2 Statements

The statement types are discussed in detail in Section 4.2. All statements may be
tagged by one or more identifiers, which can be used as statement labels. Reserved identifiers,
numbers, and nonalphanumeric characters may not be used as statement labels.

Syntax:

{69} statement ::=
id{1} : statement{69} | substmnt{71}

—wr———

GPM Language 79
4.1 Program Structure

4.1.8 Closing

A GPM program is closed with the reserved word FINISH, optionally followed by an
identifier. This identifier, if present, specifies the starting statement label of the program to
the MLP loader.

Syntax:

{70} closing ::=
FINISH | FINISH id{1}

4.2 Statement Types

Six classes of statement may appear in GPM programs: pseudodeclarations, assignment
statements, control statements, switch tags, low-level statements, and constants.
Pseudodeclarations, which are discussed in Section 4.3, do not generate any code and only
condition the compilation or listing generation that follows. Assignment statements, which are
discussed in Section 4.4, evaluate expressions and move data within the MLP-900. Control
statements, which are discussed in Section 4.5, determine the control flow of the program.
Switch tags identify entry points into switch-selected code sequences; they are discussed in
Section 4.5.6. Low-level statements each compile to exactly one ministep; they, and constants,
are presented in Seclion 4.6.

Syntax:

{71} substmnt :=
pseudodecirtn{72} | assignment{76} | control{103} | switchtag{114} |
lowlevel{117} | constant{118}

4.3 Pscudodeclarations

Four types of pseudodeclaration may appear anywhere in a GPM program: ORIGIN
statement, COMMENT statement, INCLUDE statement, and output-control statements. The
pseudodeclarations ignore block boundaries.

Syntax:

{72} pseudodecirtn ::=
ORIGIN number{5} ; | COMMENT any-string-not-containing-a-semicolon ; |
outputctri{73} ;

{73} outputctrl ::=
PRINTOFF | PRINTON | outputtype{74} modeset{75}

{74} outputtype :=
HEXADECIMAL.CODE | NORMAL.CODE | LABEL.TABLE

{75} modeset ::=
MODE TRUE | MODE FALSE

GPM Language 80
43 Pseudodeclarations

4.3.1 ORIGIN

The GPM compiler produces absolute code. The ORIGIN statement is provided to allow
the programmer to specify where the code that follows should be placed in control memory.
The number in the origin statement is the location to receive the next instructions compiled.
All succeeding instructions will be placed in successive locations. The initial value for the
origin is 0.

4.3.2 COMMENT

The COMMENT statement is provided to allow the programmer to document his program.
In addition to the COMMENT statement, there is also a feature to allow a comment to be entered
on each line as one might do in assembly code. This feature causes any string starting with an
exclamation point (!) and continuing through the following end-of-line to be interpreted by the
compiler as a semicolon.

Example:
COMMENT comment facility example;
RO« O lzero general register zero
R1«<RO+1! set general register one to one
COMMENT end of comment facility example Mt

4.33 INCLUDE

The INCLUDE feature may be used anywhere within a GPM program. It is simply
"INCLUDE" followed by a standard TENEX file name. Included files may INCLUDE other files. It
is good practice when working with INCLUDE files to use the proper directory name wuthin the
file, so the file can be used by others.

Example:
PRINTOFF
COMMENT sample include file ;
BEGIN NAMED INCLUDE,FILE.SAMPLE
EQUATE RS INPUT lsctup some register definitions
EQUATE R.13 OUTPUT ;
INCLUDE <OESTREICHER>SQUARE-ROOT.INC
COMMENT if this is used when not connected to <OESTREICHER> it will still work ;
END NAMED INCLUDE.FILE.SAMPLE !close any open blocks
PRINTON

4.3.4 Output Control

Several pseudodeclarations are provided to control the generation of the source listing
and the code listing. A complete listing consists of four parts:

® The reformatled source file with errors flagged and corrected (where possible)
® The label table

® The compiled code listed in octal (normal code)

® The compiled code listed in hexadecimal

GPM Language 81
4.3 Pseudodeclarations

4.3.4.1 Source Listing Control

Two pseudodeclarations control the generation of the source listing: PRINTOFF and
PRINTON (see the example in Section 4.3.3). PRINTOFF will always turn off the listing; PRINTON
will turn on the listing only if there has been one PRINTON for each preceding PRINTOFF, thus
enabling the user to nest PRINTOFF-PRINTON pairs. This is useful with nested INCLUDE files
(see Section 4.3.3), which usually are not desired in the output listing. There is a compiler
switch to allow all PRINTOFF’s to be ignored, thus forcing a complete listing (see Section 4.7).

4.3.4.2 Code Listing Control

A pseudodeclaration exists to control each of the three other parts of the output listing.
If several of these statements appear, the last one will be in effect when the listings are
generated at the end of the compilation. The initial seltings are

LABEL.TABLE MODE FALSE;
NORMAL.CODE MODE FALSE;
HEXADECIMAL.CODE MODE FALSE;
Compiler switches exist to change these initial settings (see Section 4.7).

4.4 Assignment Statements

The five types of assignment statements are

® Arithmetic. Assigns the value of an arithmetic expression to a general register (OE).
® Boolean. Assigns the value of a boolean expression to a flop (CE).
® Data Transfer. Copies data from one machine register to another (OE and CE).
® Increment or Decrement. Increments or decrements a pointer’s value.
® Shift. Shifts a general register’s contents and replaces them.
Syntax:

{76} assignment ::=
arithmetic{77} | boolean{84} | datatransfer{89} | incrdecr{100} | shreg{l101}

4.4.1 Arithmetic Assignments

The arithmetic assignment staiement has three parts: assignment to a result register, an
arithmetic expression, and modifiers. Only the arithmetic expression must be present. The
first two parts define an ordinary arithmetic calculation, while the modifiers condition the
evaluation of the expression.

Syntax:

{77} arithmetic ::=
2a{8} « arithmetic{77}; | acxp{78} amod{82) ;

{78} aexp :=
aterm{79} | aterm{79} aop{81} aexp{78}

GPM Language 82
4.4 Assignment Statements

{79} aterm u=
aprimary{80} | NOT aprimary{80}

{80} aprimary u=
aa{8} | number{5} | P.7 | (arithmetic{77})

{81} aop u:=
+ | - | PLUS | MINUS | AND | OR | XOR

{82} amod u:=
amask{12} testmode{13} ashift{83} | ashift{83} amask{12} testmode{13} | ...
<<amask, testmode, and ashift may be specified in any order>>

{83} ashift =
shdir{15} number{5} | emptystring

4.4.1.1 Mask (amask)

¥ no mask modifier is specified, "(MO)" is used. In nested expressions, the outer
specification (if there is one) will replace the default value. The mask "(M..17)" or “[M..17]"
specifies which mask register will be used for the calculation; parentheses around the mask
register indicate that clear mode is false and brackets indicate that clear mode is true.

4.4.1.2 Test Mode (testmode)

Test mode is set if the test-mode symbol (#) is present, but the preferred method of
specifying test mode is by omitting the assignment (see Section 4.4.15). For nested
expressions, each test-mode symbol complements the test-mode bit.

4.4.1.3 Shift (ashift)

It no shift is specified, none will occur. Right shift (divide) is specified by a "/" and left
shift (multiply) is specified by a "\." Extra ministeps will be generated if the shift amount is not
one given in Table 3.3. '

4.4.1.4 Operators (aop)

The unary one’s-complement NOT is of highest precedence. No precedence is associated
with any of the binary operators (aop). If order of evaluation is important, it must be
controlled with parentheses. The binary operators are

+ Two’s complement add

- Two’s complement subtract

PLUS Long add (see Section 3.2.2.1)
MINUS Long subtract (see Section 3.2.2.1)
AND Logical and

OR Logical or

XOR Logical exclusive or

GPM Language 83
4.4 Assignment Statements

4.4.1.5 Result (aa +)

If no assignment of a result is specified, the operation will be done with test mode true.
The result register can be specified directly, or indirectly through a pointer register.
Both ¢ P.7 and ® P.7 specify indirect references to the general registers. The
character ® is a normal indirect; the register number is taken from the five low-order bits of
the specified pointer register. The character * is a special indirect; it acts like a normal
indirect, except that the low-order bit is forced to 1 in the register number.

Examples:
COMMENT if R4 = R.11 GOTO equal.tag ;
R.4 XOR R.11 'result will be zero on equals
IF ZSP GOTO EQUAL.TAG ; :

COMMENT M.1 contains 7700, M.2 contains 77770 ;
COMMENT number in R.3 field M.1 added to R4 field M.2 ;
R4 «RA +(R3[M1]/3)(M2);

4.4.2 Boolean Assignments

The boolean assignment statement provides a method to set flops to the value of a
boolean expression. The boolean expression is composed of flop names, the boolean constants
TRUE and FALSE, and the logical operators AND, OR, XOR, and NOT. As in the arithmetic
expression, the unary one’s complement NOT is of highest precedence and there is no
precedence among the binary operators (bop). If order of evaluation is important, it must be
specified with parentheses. The boolean assignment is a generalization of the MAST ministep,
which is limited to expressions involving at most two flops; no temporary storage is used by the
boolean assignment in evaluating more complex expressions.

Examples:
F.3 « F.3 XOR F.5 !if F.5 then complement F.3
F.7 « F.1 OR F.2 OR NOT F.3 ;
F.11 « (F.0 AND F.5) OR NOT (F.7 AND F.6)

Syntax:

{84} boolean u=
F..277 « bexp{85} ;

{85} bexp :=
bexpr{86} | boolean{84}

{86} bexpr ::=
bterm{87} | bexp{85} bop{a3} bterm{87}

{87} bterm :=
bprimary{88} | NOT bprimary{88}

{88} bprimary :=
F.377 | TRUE | FALSE | (bexp{85})

GPM Language 84
4.4 Assignment Statements

4.4.83 Data Transfers

The left and right sides of the data transfer statement must represent data objects of
matching size. The possible sizes are 36, 16, and 8 bits. The optional dtnot in the 8-bit
transfer causes a one’s complement NOT. Left and right operands may not both be OE
registers for 8-bit or 16-bit transfers.

Syntax:

{89} datatransfer ::=
dxfr36bits{90} | dxfr16bits{92} | dxfr8bits{98}

{90} dxfr36bits ::=
oeloc{25} « dt36source{91} ;

{91} dt36source :=
oeloc{25} | number{} | P.7

{92} dxfr16bits ::=
oeloc{25} II..1 « ceregpair{93}; |
ceregpair{93} « dinot{95} dt16source{96} cemask{97} ;

{93} ceregpair ::=)
(cereg{94}) | (cereg{94}, cereg{94}) | S.17

{94} cereg u=
CE.137 | P.7 | XBUS.3

{95} dtnot :=
NOT | emptystring

{96} dtl6source u:=
oeloc{25} JI..1 | ceregpair{93} | number{b}

{97} cemask :=
(number{5}) | [number{5}] | emptystring

{98} dxfr8bits ::=
oeloc{25} B..3 « dtnot{95} cereg{94}; |
cereg{94} « dtnot{95) di8source{99} cemask{97} ;

{99} dt8source :=
cereg{94} | oeloc{25} B..3 | number{5} | F.377

The mask notation is similiar to that in arithmetic assignment, except that the mask is specified
as an immediate constant instead of as a mask register. The parentheses specify a normal
mask, where all masked-out bits (zero mask bits) remained unchanged. The brackets specify a
clear mask, where all masked-out bits are zeroed. If no mask is specified, an all-ones mask of
the appropriate size is used. Transfers to the OE cannot be masked!

S Ty il ——

GPM Language 85
4.4 Assignment Statements

4.4.3.1 36-bit Transfers

The 36-bit left operands are OE registers. The right operands are OE registers,
constants, or pointer registers. In the case of pointer registers, the high-order 28 bits are
Zzero. A 36-bit transfer generates either one or two GENT ministeps; transfers that cannot be
done in a single ministep (e.g., M.17 « constant) require a TEMPORARY register for the
intermediale result. The OE registers are

® R.37 32 general-purpose registers

e M.I7 16 mask registers

® MISC.37 32 miscellaneous registers

® N.1777 1024 auxiliary-memory registers

® XILATOR.777 512 lranslator-memary registers (only microvisor-mode access
allowed)

OE registers may be referenced directly, or indirectly through a pointer register. OE registers
are divided into pages of up to 256 registers. The 8-bit pointer registers can address any
register within a page. It is possible to address registers indirectly only within single
designated pages. As with the arithmetic assignment statement, the # indirect operator will
force the low-order register number bit to a |.

4.4.3.2 16-bit Transfers

There are two types of 16-bit left operands. A 16-bit transfer in which an OE location
is the destination is limited to a single GENT-MOVE pair of ministeps; a transfer from the OE, or
entirely within the CE, generates one or more MOVE ministeps. These and constants comprise
the possible right operands. The two left operand types are

(1) OE register half-words -- oeloc I/..1
Half-words are numbered from left to right. The high-order four bits are not
referenced. Thus H.1 refers to the low-order 16 bits and HO refers to the next
lowest 16 bits. Note that whenever half-word references are used as the left
side of a data transfer, the remainder of the specified OE register is zeroed.
Note additionally that OE registers may not appear as both left and right
operands.

(2) CE rcgister pair -- (cereg) or (cereg, cereg) or S..17
The CE register-pair construct references an even/odd pair of CE registers. If
only a single CE register is named wilhin the parentheses, the designated
register is Ireated as if it were the first of an explicitly named pair and the
other register from the even/odd pair is taken as the second. The two
examples following will each cause a swapped data transfer; the first will
transfer (P.1, P.0) into RO and the second will transter (P.4, P.5) into (P.1, P.0):

Examples:
RO H.1 « (P.1)
(P.1) « (P.4);

If both CE registers are named explicitly within the parentheses, they must be in
the same even/odd pair; otherwise, they cannot be moved to or from an OE
register half-word. The following is an impossible data transfer because P.l

A s i

GPM Language 86
4.4 Assignment Statements

and P.2 are not both in the same even/odd CE register pair; the transfer occurs
as if (P.1, P.0) had been specified:

(P.1, P.2) « R.17 HO;
The construct S.n is equivalent to (CE.100+2n) or (CE.100+2n, CE.101+2n).
4.4.33 8-bit Transfers

An 8-bit transfer in which an OEF location is used as either source or destination
generates a GENT-MOVE pair of ministeps; a transfer entirely within the CE generates one or
more MOVE ministeps. There are two types of 8-bit left operands:

(1) OFE register byte -- oeloc B..3
Bytes are numbered from left to right. The high-order four bits are not referenced.
Therefore B.3 refers to the low-order 8 bits, B.2 refers to the next lowest 8 bits, ete.
Note that if the OE register is a left operand, masking is ineffective since it is
performed in the CE as the store takes place; also, the bytes of the OE register that
were not specified are zeroed. Note additionally that OE registers may not appear
as both left and right operands.

(2) CE register -- cereg
The CE registers are:

e CE.137 all CE registers
o p7 pointer registers (CE.40-CE.57)
e XBUS.3 CE exchange bus (CE.70-73 as left operands; CE.64-67 as

right operands)

In addition to the two operand types discussed above, 8-bit right operands may also be either:
constants or flops. In the case of flops, the right operand is interpreted as an 8-bit quantity
where all bits contain a copy of the value of the specified flop.

Examples:
RO « NOT A.173 [777};
APGO ® P.1 « APGI @ P.];
M.17 H.1 « NOT S.12;
M.1 « 777777777777;
R3 B3 « P.17;
R3 « P.17;
P.17 « CE0;
P.3 « NOT F.144 (123);

4.4.4 INCREMENT and DECREMENT

An increment or decrement stalement allows a conslant to be added to or subtracted
from a pointer registér, respectively. When one of these statements is followed by an
unlabeled conditional branch, the compiler may generate a BRAD that incorporates (part of)
both statements.

GPM Language 87
4.4 Assignment Statements

Syntax:

{100} incrdecr ::=
bradop{49} P..7 BY number{5}

4.4.5 SHIFT

The shift instructions provide for single- and double-register shifting by fixed or variable
amounts. One or more SHIN ministeps are generated, depending on the shift amount.

Syntax:

{101} shreg ::=
shop{30} aa{8} shdir{15} shamt{102} shmask{32} testmode{13} ;

{102} shamt ::=
® | number{5}

4.5 Control Statements
There are six types of control structures in GPM:

® Blocks Prototype compound statement form (see Section 4.5.1)

® BREAK Standard block exit mechanism (see Section 4.5.2)

® Branch Unconditional transfer of contro! (sce Section 4.5.3)

® DO Looping mechanism (see Section 4.5.4)

e |F Conditional execution and compilation (see Section 4.5.5)

® Switch Case analysis (index branch) mechanism (sec Seclion 4.5.6)

Syntax:

{103} control ::=
block{104} | break{106} | branch{l07} | do{110} | if{111} | switch{112}

4.5.1 Blocks

The BEGIN..END block is the prototype compound statement form in GPM. The DO.BEGIN
(see Section 4.5.4), IF..THENBEGIN (sce Section 455), and SWITCHON..INTO.BEGIN (see
Section 4.5.6) stalements are special cases of blocks. All have the characteristics of the
standard block in addition to special features of their own.

Syntax:

{104} block ::=
BEGIN name {105} body{64} END name{105} ;
<<hoth instances of name must bo identical>>

{105} name ::=
NAMED id{1)} | emptystring

GPM Language 88
45 Control Statements

The block defines the scope for any declaration statcments that may appear in the block
body. In the special blocks, the BEGIN..END also delimits the scope of the control structure
involved. Blocks can be named by following the BEGIN with "NAMED name," which enables the
program to reference the block by name. This is used for two purposes: first, an END may be
named, thus closing all blocks within the named block; second, the bluck name may be used by
the BREAK statement to specify which block to exit.

452 BREAK

The BREAK statement will cause program conirol to branch to the end of the named
block, except that if no name is supplied with BREAK, the current block will be exited. Note
that this is different from a RETURN statement: RETURN exits a subroutine to the called location
(determined at runtime), whereas BREAK exits a block to its end (determined at compile time).

Syntax:

{106} break ::=
BREAK name{105} ;

4.5.3 Branches

There are three types of unconditional branches: CALL, RETURN, and GOTO. The CALL
statement pushes the location of the next scquential instruction in control memory onto the top
of the hardware subroutine stack and goes to that location. The RETURN statement transfers
control to the location on the top of the subroutine stack and pops the stack. The GOTO simply
branches to the specified as the branch destination. In addition to the unconditional branches
provided by the branch statements, GPM also has conditional branches; these are special forms
of the IF statement described in Section 4.5.5.

Syntax:

{107} branch ::=
CALL bnchdest{108} ; | RETURN; | GOTO bnchdest{108} ;

{108} bnchdest ::=
location{109} | < P.7 > | location{109} < P..7 >

{109} location u:=
trfrlabel{56} | offset{a5} | id{1} offset{ab}

The form <P.7> in a branch destination represents an offset, either from the continuation
address (the next instructicn word) or from any location that is supplied immediately preceding
it.

There are two types of branch-destinations: relative (offset) and absolute. Either type
can be indexed by the value of a pointer register. With indexing, the unindexed branch
location is always calculated first and the value of the pointer register is then added. This
addition might cause overflow, in which case the branch destination will wrap around to low
co...rol memory. If the branch destinatior is only a pointer register (no location supplied), then
the index is relative to the next sequential instruction in control memory. An absolute
destination may reference a statement-label identifier (see Section 4.1.2) or an absolute

GPM Language 89
45 Control Statements

location specified by a number. A relative destination may be merely an offset relative to the
current location in control memory or an offset from some specified statement-label identifier.

Example:
GOTO TAG;
CALL 100 <P.3>;

TAG:

CALL TAG +3;
RETURN
GOTO -4;
CALL +1<P.1>;

4.5.4 Loops

The DO.BEGIN..END statement unconditionally repeats the body of code contained within
the block. This is the looping construct in GPM. The loop must be exited with @ BREAK
command.

Syntax:

{110} do u:=
DO.BEGIN name{105} body{64} END name{105)
<<both instances of name must be identical>>

4.5.5 Conditional Control

There are two types of conditional-control statements: block-structured and
conditional-branch. The first is for the conditional execution of sections of code and the
second for the conditional transfer of control. The first is sufficient in all cases, but the second
is easier and more efficient where appropriate. Note that the form "THEN.BEGIN name ... END
name"” is a special form of a block (see Section 45.1).

Syntax:

{111} if ==
IF bexp{85} THEN.BEGIN name {105} body{64} ELSE stmtlist{66} END name{105} ; |
if bexp{85} THEN.BEGIN name{105} body{64} END name{105} ; |
IF bexp{85} BREAK name{105} ; | IF bexp{85} RETURN; |
IF bexp{85} CALL id{1}; | IF bexp{85} GOTO id{1};
<<both instances of name must be identical in cach of the first two forms>>

4.5.5.1 Block-structured IF Statement

The block-structured IF statement has two forms, the most general of which is the “IF
boolean-expression THEN.BEGIN..ELSE..END" form. f the boolean expression is true, the
body following the THEN.BEGIN will be executed and the statement list following the ELSE will
not be executed. If the boolean expression is false, the opposite will happen: the body will
not be executed and the statement list will be. Any declarations that follow the THEN.BEGIN
will be active both for statements in the body following the THEN.BEGIN and for the statement
list following the ELSE. The second form of IF simply omits the ELSE sections.

B]

GPM Language 90
45 Control Statements

Each boolean expression is evaluated at compile time. If it evaluates to the constant
TRUE or FALSE in an IF statement, then only code for the appropriate statements will be
compiled and no test will be compiled at all. ORIGIN’s and statement-label assignments can also
be conditionally compiled using this facility. There is no way to specify declarations
conditionally for a block.

4.5.5.2 Conditional-branch 1F Statement

The conditional-branch IF statement does not contain either the THEN.BEGIN or the END of
the block-structured IF statement. Immcdiately following the boolean expression is a branch
statement (BREAK, CALL, RETURN, or GOTO). The branch statements are restricted, however, in
that only statement-label names may be used for the CALL or GOTO destinations. Note-that a
BREAK inside a block-structured IF statement will exit only that IF-block if the BREAK is not
NAMED. This means that the following two statements are not equivalent:

IF ZSP THEN.BEGIN BREAK END;
IF ZSP BREAK;

4.5.6 Switches

A switch statement generates a control structure consisting of an indexed branch into a
switch table that follows the code generated by statements within a switch block (which, in
turn, branches around the switch table). The switch table contains branches to code generated
for statements following switch tags that occurred within the switch block. The switch table
has one entry for each possible index value from zero through the largest switch value
declared in a switch tag (within that switch block).

Syntax:

{112} switch =
SWITCHON < P..7 > switchblk{113} ;

{113} switchblk ::=
INTO.BEGIN name{105} body{64} END name ({105}
<<hoth instances of name must be identical>>

4.5.6.1 Switch Tags

There are two switch-tag statements: ENTRY and CASE. The ENTRY statement specities
a list of pointer-register values that are to cause control to transfer to the first statement
following the ENTRY statement. The CASE statement is equivalent to the ENTRY statement
except that an initial BREAK out of the switch block precedes the entry point to prevent
execution of a prior ENTRY or CASE from dropping into the statements associated with the
current CASE.

Syntax:

{114} switchtag ::=
ENTRY switchlist{115} ; | CASE switchlist{115};

GPM Language 91
45 Control Statements

{115} switchlist ::=
switchvalue{116} | switchlist{115} , switchvalue{116}

{116} switchvalue ::=
number{5} | number{5} THRU number{5} | number{5} THRU |
THRU numberi{b} | THRU

4.5.6.2 Switch Values

Switch values are either numbers or ranges of numbers. The maximum range of a switch
value is O through 377, octal. On the THRU version of the switch value, O is assumed for an
unspecified start and 377 is assumed for an unspecified end. Also, if some particular number
has been assigned previously, the THRU specification will ignore it. On the other hand, a single
number specification will override.

4.5.63 Programming Considerations

Each switch value declared produces one instruction of overhead. The switch is assumed
to have a zero origin. For example, "CASE 2,4" will have five (0-4) instructions of overhead.
No run-time check is made on the value of the pointer register. Any unspecified values below
the maximum specified value will transfer control to the location immediately following the
switch table. Values above the maximum, however, will transfer to a focation beyond the
switch table, producing unexpected results. The first executable statement following the
INTO.BEGIN of a switch block (other than declarations) should be an ENTRY statement; a CASE
will produce an unnecessary BREAK.

Example:
SWITCHON <P.1> INTO.BEGIN
ENTRY 2,4;
COMMENT CASES 2,4;
CASE | THRU 6,10;
COMMENT CASES 1,3,6,10;
ENTRY 5;
COMMENT CASES 1,3,5,6,10;
END :

4.6 Low-level and Constant Statements
The low-level GPM statements are

GEAR (see Section 3.2.2.1)
CEDE (see Section 3.2.2.2)
SHIN (see Section 3.2.2.3)
GENT (see Section 3.2.2.4)
BRAT (see Section 3.3.2.1)
BENT (see Section 3.3.2.2)
BORE (see Section 3.3.2.3)
BRAD (see Section 3.3.2.4)
BEAD (see Section 3.3.2.5)

® 0 @00 0 0 00

—_— T P

GPM Language 92
4.6 Low-Level Statements

¢ BLOT (see Section 3.3.2.6)
® MAST (see Section 3.3.2.7)
® MOVE (see Section 3.3.2.8)

Syntax:

{117} lowlevel ::=
gear{7} | cede{19} | shin{29} | gent{34} | brat{40} | bent{d6} |
bore{d7} | brad{48} | bead{50} | blot{57} | mast{59} | move{60}

A constant statement generates one word containing the 32 low-order bits of the number.

Syntax:

{118} constant :=
number{5)

4.7 The GPM Compiler

The GPM compiler is available as a TENEX subsystem under the name GPM. The GPM
command prompt is a double colon; a command consists of a single letter and is executed
immediately. The "C" (compile) command prompts for its source, binary, and listing files.
Compilation begins as soon as the last file is confirmed.

Example: 2
oGPM

MLP-900 Language System
Type ? for help

MONDAY, NOVEMBER 11, 1974 14:29:01-PST
~USED 0:0:0.5IN 0:0: 1.45

Compiler Version GPM.4.74.7

#H HEXADECIMAL.CODE MODE TRUE

L LABEL.TABLE MODE TRUE

«C
source file:PROGRAM.GPM;6 [Old version]
binary file:PROGRAM.BIN;6 [Old version]
listing file:PROGRAM.LST;1 [New version]

L
7PROGRAM.NAME GPM.4.74.7 11-NOV-74 14:30:57 Pg 20 %
7+sNo Errors Detecteds*+7

=Q
MONDAY, NOVEMBER 11, 1974 14:31:02-PST
USED 0:0: 20.20 O0: 2: 2.30

¥ no binary file is desired, a null binary file (N/l.) should be specified. The same is true for
the listing file (the compilation will run more quickly if no listing is generated).

T s A

GPM Language 93
4.7 The GPM Compiler

The listing file can be recompiled without any editing. One should be careful, however,
since the compiler will "correct” all errors in the source file, and these "corrections” will
disappear after recompiling the listing file.

The set of GPM commands is

C Compile. Compiles GPM source program (shown in ahove example).

F Fast compilation. Sets flag for syntax check; no code generation.

H HEXADECIMAL.CODE MODE.?

L LABEL.TABLE MODE.?

N NORMAL.CODE MODE.?

P PRINTON. Forces complete listing; sels flag to suppress any PRINTOFF
statements in the program source.

Q Quit.

S Switch status. Prints the current switch setlings as determined by the
commands F, H, L, N, and P.

T Teletype Test-compile. Same as C, except that binary file is NIl: and both

source and listing file are 1'T'Y:
A complete GPM listing contains four parts:

® The source programs with errors flagged and corrected (where possible).
® The label table.

o The compiled code listed in octal (normal code).

¢ The compiled code listed in hexadecimal.

Section 4.3 discussed the GPM pseudostatements that affect whether or not these listings are
produced. This section discusses in detail the contents of each part of the listing.

4.7.1 Source Program

The source listing is primarily a reformatted copy of the input with 8 few changes. The
most important change is that all text bracketed by percent (7) delimiters is lost, along with the
delimiters, because the compiler itself uses % in the listing file to delimit page headings and
error messages, which are not proper parts of the listed program.

The output of the GPM compiler can be fed back into the compiler and processed, usually
with fewer errors. In attempting to correct errors, the compiler either inserts what it believes
to be a missing symbol or "erases" offending symbols by enclosing them in 7 delimiters. If all
the corrections made in the outpul listing (possible new source file) are satisfactory, no
recompilation is necessary.

4.7.2 Label Table

The label table is output after the FINISH statement and is bracketed by percent-signs.
It has three columns: octal location, hexadecimal location, and label name.

9. This command controls the generation of @ section of the GPM listing. The control setting alternates every
time the command is entered; the new value is printed by the GPM compiler. The initial value is false (i.e.
no output).

GPM Language 94
4.7 The GPM Compiler

Example:
Z LABEL TABLE 7
2 7702 FC2 TAGA YA
%2 7750 FE8 TAGB 7

4.7.3 Code Listings

The code listing comes in five fields. The first threc are the location of the code word, a
flag digit, and the op code. The fourth field contains the instruction coding; the fifth field is a
translation of the single MLP instruclion back into a GPM statement. This last field is provided
for easier reading of the compiled code.

The flag digit is not copied to the MLP by the loader. The 1 flag marks long immediate
instructions and causes the location-counter value to advance two instead of one. The 4 and 2
flags mark ORIGIN’s and labels.

In a normal (octal) listing, the location and instruction-code fields are in octal.

Example:
77701 0 BEAD 2 121 7027 /IF TRUE THEN GOTO 7027 END;7
77702 1 GEAR4 037 77 R37 «R.37 OR NOT 777777777657(MO)7.
77704 0 GENT O 2 33 36 MISC.33 «R.36;7

A hexadecimal listing is the same as the normal one, except that the location and instruction
fields appear in hexadecimal instead of octal.

Example:
7FC1 0 BEAD 291 EL7 /IF TRUE THEN GOTO 7027 END;Z
7ZFC2 1 GEAR 4 0 IF CF R.37 «R.37 OR NOT 777777777657 (MO)%
7FC4 0 GENT 0. 2 1B CB MISC.33 «R.36;7

e

95

Appendix A
Additional Exec and Debugger Commands

The general PRIM exec and debugger commands are discussed fully in PRIM Systam:
User Reference Manual, which the emulator writer is expected to have read. This appendix
discusses exec and debugger commands or subcommands not in the reference manual. PRIM
keeps a flag, known as the "whiz" flag, that gives the user access to additional facilities and
commands not required by the emulator user. When a user runs PRIM directly with the
command

®<PRIM>PRIM

he begins as a whiz; when he gets to PRIM indirectly by running a working emulator, he is not a
whiz. An additional intervention character is available to the whiz during emulator execution:

MI1.P-halt (initially cntl-Q) halts the emulator at an arbitrary point between
MLP-900 cycles. This halt does not require the cooperation of the emulator as does
the abort intervention (which sets the QUIT AR bit, F.132).

A.1 Exec Commands

The following commands are either not discussed in the reference manual in their
entirety or have privileged subcommands that are not discussed:

CHANGE =
ENABLE

LOAD

NO

SAVE

TABLES

There are several additional, undocumented, privileged commands specifically for the PRIM
developers that should be ignored by other privileged users. In particular, any command
involving the name "6-12" (which is the name of the debugger for the PRIM framework itself)
should be avoided.

Change additionally allows the MLP-halt intervention character to be changed.

Enable sets flags that control the state of the PRIM framework. For the nonprivileged user,
only the whiz stale may be enabled. When whiz has been enabled, ali the features discussed in
this appendix are available. CALL-STOP and STOP-STOP are particularly useful in the earliest
stages of emulator debugging, since jointly they disable all PRIM framework servicing of the
emulator. 10-TRACE and RESUME-STOP are more useful when the emulator basically works.

Additional Exec and Debugger Commands 96
Exec Commands

>aCRCNABLE P WHIZ
ENRBLE wf8CH]Z Cr
>0"SCNABLE ? One of the follouingt
CALL-STOP
10-TRACE
RESUME-STOP
ST10P-STOP

HH1Z

XOFF

ENARLE x®SCOFF Cr
>

CALL-STOP causes the PRIM framework to print--rather than process--the value of the call
parameter contained in R37 on an emulator call to MLP.CALL and to stop the emulator.
Because the microvisor returns control to the emulator as soon as the call parameter has been
passed to the TENEX MLP driver, the emulator will progress an indeterminate amount before
being stopped by the framework.

I0-TRACE causes the 1/0 server to print the (pertinent) information from the call block and the
returned status bits for each 1/O call.

RESUME-STOP causes the PRIM framewark to stop instead of resuming execution on emulator
calls to MLP.STOP that would normally have resumed automatically, such as status stops and
break stops whose breaktime programs cause resumption.

STOP-STOP causes the PRIM framework to stop on any emulator €all to MLP.STOP, ignoring the
parameter contained in R.37.

XOFF causes the PRIM framework to insert XOFF font-shifting and superscripting characters in
the transcript file to distinguish control codes and user input from PRIM output. ASCIl control
codes are superscripled; PRIM outputs are switched to font A; and user inputs are switched to
font B. The transcripts in each PRIM User Guida, thc User Reference Manual, and this
document were produced using the XOFF ‘command with an A-font of FIX8 and a B-font of
BOD9I.

Load loads a GPM binary file inlo the emulation context without first clearing it. MLP-900
registers (including auxiliary memory) can be loaded from GPM code (usually via a constant
statement) that is assembled at an ORIGIN corresponding to that register’s location in the
swapped-out context. A map of the context appears in Scction B.l. It is recommended that
only registers containing constant values (i.n., most of the mask registers) be specified in the
GPM source.

No disables the various state-control flags that are sel by the ENABLE command.
Save has the following additional subcommands for privileged users:

BREAKS

EMULATOR

REGISTERS-AND-AUX
TARGET-FORK

Additional Exec and Debugger Commands 97
Exec Commands

Tables loads an arbitrary descriptor-table relocatable file.

>1a®8CBLES (from file) 7 File name
>TABLES (from 1ite) <PRIM>U1050.DESCRIPTOR-TABLE; 13407

A.2 Dcbugger Commands

The additional debugger commands all involve the MLP-900; they fall in the
execution-control, display, and storage categories. These commands are available only to users
for whom whiz has been enabled. In each case, a single coded character effects the command:

Command Coded Character
MLP break 8 (control-1)
MLP step -

MLP type *

MLP change /

MLP Break. Sets an execute breakpoint in the MLP-900. Only a single MLP breakpoint may be
set at any time. To clear an MLP breakpoint, the command is entered without an argument.

lT"n.x—nLP-n Ser
’

MLP Step. Single-steps the MLP-900. Note in the examples below that, on each line in which
an MLP-step is shown, the first hyphen was entered by the user and the balance of the line »
was completed by the debugger.

#-_> WLP-step to 16

#--> NLP-step to 17

#--> HLP-step to 21

#Go (t0) ©F

--> NLP-908 CM Rddress Compare at 5 Used 6:00.8 (MLP time)
’

MLP Type. Displays MLP-900 control memory symbolically. The output is the compiled code
produced by the GPM compiler. Consecutive control memory locations are displayed until an
abort intervention character is entered.

1/ ocr
[] @ BERD 3 221 16 /IF TRUE THEN CALL 16 END;
1 O GENT @ 106 16 200 R.1216.0 ;
2 @ MAST 4 221 221 16 /F.7 «NOT TRUE OR NOT TRUE
3 OMOVE © © 8 377 CE.0 «0(377)
4 @ BERD 3 221 261 /IF TRUE THEN CALL 261 END;
5 OGENT © @ 37 200 R.37¢0 ;
6 OBERD O 2 10 /IF NOT F.) THEN GOTO 10 END;'X

Additional Exec and Debugger Commands 98
A.2 Debugger Commands

MLP Change. Permits GPM statements to be compiled into MLP control memory. The GPM
statements entered for compilation must be terminated by an escape. The debugger prefixes
these GPM statements with a dummy program title and ORIGIN statement and follows them with
a semicolon and a program closing; the resulting "program” is then passed to the GPM compiler.
The compiler’s summary is displayed and its binary output file is loaded into the control memory
image, replacing what was in the same locations. Note that the binary file is loaded even if the
compiler detects errors.

¥/ 670005

6766 O GEARR @ © @ @ R.8 «NOT R.® OR R.8 (M.0);
6761 OGERR © © 0 @ R.8 «NOT R.6 OR R.6 (n.8);1X
r 5¢esc ceny GALL 67000%c ...

X GPN.76.11.2 18-NOV-77 10:36:19 Pg 2 X

YesNo Errors Detectedssk

% 6700cr :
cett: CE.1¢0;R.37« 0;RETURNes¢e .

X GPH.76.11.2 18-NOV-77 10:36:58 Pg 2 X
Y##No Errors Dotecteds?

1/ esc

6768 @ MOVE @ © 28 377 CE.l1 «8(377),

6761 @ GENT @ © 37 200 R.37.0 ;

6762 @ BORE 14 221 221 @ /IF NOT TRUE XOR NOT TRUE THEN GOTO +1 ELSE
RETURN END;

6763 O GEAR @ © © O R.6 «NOT R.6 ORR.8 (n.o)TX

1/ 5esc
5 @ BERD 3 221 6768 /IF TRUE THEN CALL 6700 END;
6 OBERD 0 2 16 /IF NOT F.1 THEN GOTO 10 END;

7 @ GEAR 6 8 37 284 R.37 «R.37 OR & m.a),“
4

For a whiz, the various space-access attributes in the emulator’s descriptor tables (see
Section 2.7.2) are ignored; all symbols (including the built-in symbols describing the MLP-900)
are available and all meta-bits can be set in every space.

29

Appendix B
TENEX MLP Driver Interface

B.l Control of an MLP-900 Process

A TENEX process (fork) can create and control an MLP-900 process (emulator) through
the interface to the MLP driver in the TENEX monitor. The driver interface is implemented
using a new device type known as "MLP:" and existing file and device JSYS’s. The emulator’s
context is swapped into and out of a ten-page region in the fork itself; the emutator’s main
memory is mapped into a target fork that can be either the controlling fork or an inferior fork
created for the purpose.

Since the target fork is directly accessed as the emulator’s main memory, the fork can
communicate with the running emulator through shared memory as well as through calls
(MLP.CALL) and MLP action requests (F.130 through F.137). The context, however, is copied
into the MLP-900 at each starl/resume and back out at each stop; thus the fork can validly
manipulate the context only when the emulator is stopped. The context region of the fork
begins on a page boundary and has the following organization:

0-6777 control memory locations 0 - 6777
7000 - 7037 RO - R37
7040 - 7057 MO - M.17
7060 - 7077 MISC.0 - MISC.17, excepting:

7074: MISC.36 (VADRC)
7075: MISC.37 (CMADRC)

7100 - 7157 (CE.0) - (CE.136), 16 bits per word, right justified:
7100 - 7117 (CE.O) ff.
7120 - 7123: (P.0) = (CE.40) ff.
7140 - 7157: $.0 = (CE.100) f/.
7160 - 7755 not used
7756 - 7777 control-memory locations 7756 - 7777
10000 - 11777 AO - A1777

When the emulator stops, only the OE and CE registers and auxiliary memory are swapped out,
since control memory cannot be altered by the emulator.

B.2 TENEX JSYS's Involving the MLP-900

A JFN obtained for the MLP-900 with the GTJFN JSYS is then used in the following
JSYS’s:

¢ OPENF opens the JFN; it must be performed before any other JSYS using that JFN.
Use byte size of 36, read access, and mode of zero.
® CLOSF closes and releases the JFN.

—————

TENEX MLP Driver Interface 100
B.2 TENEX JSYS's involving the MLP-900

® MTOPR controls the emulator. Four operaiions are defined:
1 define interrupt channels

AC3: 0-5 emulator STOP PS| channe! (>36 for no
interrupt)

6-11 emulator CALL PSI channel (>36 for no
interrupt)

12-36 not uscd
2 halt emulator and swap out
3 slart/resume emulalor
AC3: 0-17 context address
18-35 target fork handle
4 interrupt emulator (send action request)
AC3: 10-17 mask
28-35 bits

© BIN reads next call parameter-word from the call buffer (waits if none available)
® SIBE skips if the call buffer is empty ‘
® BKJFN does not work for "MLP:"
® GDSTS returns status of the emulation process in AC2, AC3, and ACA:

AC2: 0-17 status; O = running

18-35 emulator micro-PC
AC3: action requests pending in the driver
(not from F.130-F.137)
AC4: total MLP time (milliseconds)

The AC? bits describe the reason(s) the emulator is slopped. If the emulator is currently in the
driver’s run queue, it appears to be running (status 0). The bits are

BO-B5 reserved

B6 supervisor facility violation (action request)

B7 protection violation (action request)

B8 virtual address compare (action request)

B9 control memory compare (action request)

810 extended stack overflow

Bl11 not used

B12 MLP.STOP call (also set whenever any of B6-811 are set)
BI3 MLP hard error (probably fatal)

B14 MLP soft error (probably did no damage, but no guarantees)
B15 frozen (the call buffer is full)

Bl6 illegal memory reference (no targer fork or protected page)

B17 halted (by "MTOPR 2")

The driver keeps a word containing pending action requests that have not yet been
inserted info the MLP flops F.130 through F.137. This word is returned by the GDSTS JSYS in
AC3 and is altered by AC3 of an "MTOPR 4" JSYS as follows: when the mask is zero, the bits
are OR’ed into the driver’s pending word; when the mask is not zero, the pending bits that are
masked-in are loaded from the corresponding bits in AC3. Note that only action requests that
are still pending in the driver can be cleared; once transferred to the MLP flops they cannot be
reset by the fork except by halting the emulator and clearing the bits in the context.

101

Appendix C
GPM Reserved Words

An alphabetic list of GPM reserved words follows. Equivalent forms are shown in

parentheses.

A.0-1777 (OE.2000) FALSE P.0-17 SUPVCT (F.177)
A.PG.0-3 (OE.PG.4) FINISH PAGE (F.121) SUPVF (F.122)
AERR (F.111) FOP PANIC (F.101) SUPVLB (F.176)
AND FSI.O-1 (F.376) PERR (F.113) SWITCHON
ARL.1-4 (F.170) PIR (OE.1004)
ARLS (F.150) GOTO PLUS TASK (F.120)
POWER (F.100) TEMPORARY
B.0-3 H.0-1 PRINTOFF THEN (THEN.BEGIN)
BEGIN HEXADECIMAL.CODE PRINTON THRU
BERR (F.112) PROT (F.123) THZ (F.304)
BLOT.0-7 F TITLE
BREAK INCREMENT R.0-37 TRAC (F.130)
BY INDIRECT.O-1 RCM TRBY (F.165)
INTO (INTO.BEGIN) RETURN TRUE
CALL ITRAC (F.153) RIGHT 151.0-1 (F.374)
CASE ROW
CCP (F.307) LABEL.TABLE RSB UOVF (F.106)
CE.0-377 LEFT UUNF (F.107)
CED.0-177 $.0-17 (CED.40)
CKC (F.164) M.O0-17 SAD VADR (F.124)
CKT (F.166) MBS (F.167) SARM.0-1 (F.160)
CMADR (F.110) MINUS SHD (F.353) WAR (F.305)
COF.1-2 (F.140) MISC.0-37 (OE.1000) SHE (F.145) wBP
COMMENT MMERR (F.116) SHIFT.0-10 WCM
COP (F.300) MOD.O-1 (F.174) SHIFT.DUAL.L woP
MODE SHIFT.EQ.L WOS
DATAI (OE.1033) MOE SHIFT.ER.L wsB
DATAO (OE.1032) MULTIPLY SHIFT.0E.C
DECREMENT SHIFT.OE.L XBUS (OE.4000)
DIVIDE NAMED SHIFT.REC XBUS.0-3
DO (DO.BEGIN) NORMAL.CODE SHIFT.RE.L XLATOR.0-777 (OE.2400)
NOT SHIFT.SINGLE.L XLATORPG.O-1 (OE.PG.11)
ELSE SIR (OE.1005) XOR
END OE.0-7777 SLBC.0-17 (F.60)
ENTRY OE.PG.O-17 SOF (F.147) ZRF.1-2 (F.142)
EPAR (F.103) OP.0-17 SoP 2S1.0-7 (F.360)
EQUATE OPAR (F.102) S0S (F.146) 2SP (F.301)
ERS (F.340) OR SOVF (F.104)
ORIGIN SSW.0-7 (F.340)
F.0-377 0s1.0-3 (F.354) SUNF (F.105)
et e

-

102

References

Bobrow, D. G, J. D. Burch, D. L. Murphy, and R. L. Tomlinson, "TENEX, A Paged
Time-Sharing System for the PDP-10," Communications of the ACM, Vol. 15, No. 3,
March 1972, pp. 135-143.

Meyer, T. H, J. R. Barnaby, and W. W. Plummer, TENEX Executive Language Manual
Jor Users, Bolt Beranek and Newman, Inc., Cambridge, Mass., April 1973.

MLP-900 Muliilingual Processor--Principles of Operation, STANDARD Computer
Corporation, Santa Ana, Calif., 1970.

DECsystem-10 Assembly language liandbook, Digital Equipment Corporation, Maynard,
Mass., 1972.

TENEX User’s Guide, Bolt, Beranek and Newman, Inc., Cambridge, Mass., January 1973,

-’

(™

——,

()
(P.2)

/

| F

/ IF ... THEN CALL
/ IF ... THEN GOTO
/ IF ... THEN GOTO

<>
[]

N.1777

- A.2COM

A.ADDR
NPGC.3
aa{8}

AERR
aexp{78}
ALL

alpha{3}
amask{12}
amod{82}
AND

aop{81}
aprimary{80}
arithmetic{77)
ARL.1-ARL.4
ARL.1-ARL5
ARL.2

ARLS

ashift {83}

« ELSE RETURN

assignment, arithmetic
assignment, boolean

assignment{76}
aterm{79}
auxiliary memory

103

Index

&0
43, 45

43, 45, 50, 69, 82, 84
6

38, 48
42, 43, 45, 46, 47, 61, 82
42, 43, 45, 46, 47, 61, 82

46, 51
68
62, 65
61, 656
63

88, 90
38, 48, 50, 51, 87

19, 41, 48, 53
20

20

41, 48

43

56

81

21

36

13

82

42, 43, 55, 61, 82
82

82

81

56

60, 70

60

5, 56

82

83

83

81

82

6,7, 16, 19, 33, 34, 41

Index

nJ3

BASE

bb{10}
BEAD
bead0{51}
beadl{52}
bead2{53}
bead3{54}
bead{50}
BEGIN

BENT
bent{46}
BERR
bexpr{86}
bexp{85})
BIN

BINARY
bitspec
block{104}
BLOT
blotcode {58}
blot{57}
bnchdest{108}
body {64}
boolean{84}
bop{43}
BORE
bore{a7}
80UT
bprimary{88}
BRAD
bradop{49}
brad{48}
branch{107}
BRAT
brat{40}
BREAK
break buffer
BREAKBUFFER
BREAKS
break{106}
bterm{87}
buffer memory
bufhi
buflow

BY

byteptr

C (compiler command)
CALL
call block

104

84
20
a3
64
65
665
65
65
65
87
62
62
56
83
83
11,13
27,28
19
87
66
67
67
88
77
83
61
62
63
11,13
83
51, 63
64
63
88
51, 61
61
88, 89
16
24
96
88
83
7,12
7,20
7,20
63, 87
19

93
29, 30, 62, 65, 88, 89
9,10,11,12,13,15

Index

CANCEL

CASE

ccp

CE..137

CE.37

CE.14

CEDE

cedeAcode{21}
cedeA{20}
cedeBcode {24}
cedeB{23}
cedeC{28}

cede{19)

CELL

CELLPTIR

cemask{97}
ceregpair{93}
cereg{94}

CHANGE
CHARACTERSET
CHARS

CKC

CKT

CLOCK

CLOSE

closing{70}

CMADR

CMADRC

COF.1

COF.2

command status register
COMMENT

conditional compilation
conditional control
configuration memory
constant{118}
control block
control{103}

cop

current address register

data entry switches
data transfer
DATAI

DATAO
datatransfer{89}
declarationlist{65)
declaration{67}
DECREMENT
DEFAULY

default listing settings
descriptor table

105

15

90

57

19, 69, 84
55

38

46

497

47

q7

47

48

47

22,24

33

84

84

84

95

26, 31

26

56

56

25

13

79

6, 56

q]

45, 46, 52, 56
46, 52, 56
74

79, 80

90

89

7,9 11,33
92

7,9 10,11, 18
87

46, 52, 57
60

40

85, 86

40, 74, 75
40, 74, 75
84

77

78

64, 86

9, 32,78
81

7,9 10, 16, 17, 18, 19, 34

Index

DEVCLASS
DEVICE

device number
device service
device slot
device type
digit{6)

DIVIDE
DO.BEGIN
do{110}
dt16source{96}
dt36source{91)
dt8source{99}
dtnot{95}
DUMPI

DUMPO
DV.BUFF
dxfr16bits{92}
dxfr36bits{90}
dxfr8bits{98)

ELSE
EMULATOR
ENABLE

END

ENDCELL
ENDCHARACTERSET
ENDDEVCLASS
ENDFIELD
ENDFORMAT
ENDKEYWORD
ENDPARAMS
ENDRULE
ENDSPACE
ENTRY

EPAR

EQUATE

EVENT

event break
EVENTSPACE
exchange bus
EXECUTEBREAK
EXPLICIT
EXPRESSION
extended stack

F (compiler command)
F.2717

F.377

F.57

F.101

F.104

106

32

26, 31, 32, 34
9,12

18

9, 10, 11, 17
9, 10, 18, 31, 32
37

50, 52

89

89

84

84

84

84

11,13, 14
11,13, 14
20, 34

84

a4

84

89

20, 24, 25, 26, 29, 34, 96

95
87, 89, 90
24

26, 27
32

29

31

33

32

29

22

90

56

78

25

16
24, 25
41, 60
21

9, 32
29, 30
5

93

61, 68, 83

19, 55, 61, 69, 83, 84
56

75

60

Index

F.106

F.114
F.115

F.117
F.120

F.121

F.130

F.130 - F.137
F.130-F.137
F.131

F.132

F.140

F.141

F.142

F.143

F.145

F.146

F.147
F.150

F.153
F.154-F.157
F.l1e4

F.165

F.167

F.176
F.200-F.277
F.300

F.301

F.320

F.321

+.322

F.323

F.326

F.327
FALSE
FIELD
FILLER
FINISH
FIXED
flopexp{a1}
flopterm{42)
FoP
FORMAT
FSl..1

GEAR
gear(7)
GENT
gentar{36}
genta{35)
gentbr {38}
gentb{37)

107

60

56

56

56

74, 75
48, 49
7

5

56

7

7

46

46

46

46

46

46

a6

5

7

56
74,75
46

40

74

56

46

a6

75

75

75

75

75

75
61, 78, 83
29

26

79

9, 32
(7]

61

46, 47, 48, 49
30, 31
57

42, 56
43
52
53
53
54
53

Aade

Index

gentc{39}
gent{34}

gexp{9}
gmod{11}

GOTO

GPM compiler use
gshift{14}

GTSTS

H (compiler command)
n..1

H.0

H.1

half duplex
HEXADECIMAL.CODE

1/0 interface
id{1}

IF

IF ... THEN GOTO
if{111}
IMMEDIATE
INCLUDE
incrdecr{100}
INCREMENT
index field
indexed identifiers
indirect oE Operands
INOPCODE
INPUT

INSTALL
installation
INSTRUCTION
INSYMBOL
INTO.BEGIN

IS

ISNOT

ITRAC

jump history

KEYWORD
KW

L (compiler command)
label table
LABEL.TABLE

LEFT

LOAD

location{109}

loops

lowlevel{117}

108

54

53

43

a3

61, 65, 88, 89
92

43

12,13

93

. 84
85
67, 85
11,33
79

71

36

68, 89
63

89

32, 33
5, 80
87

64, 86
36

37

38

27

31

32
4,9, 10, 17, 18, 31, 32, 34
25

27

90

29, 30
29, 30
7,56, 71

19, 24, 25

32,33
33

93
94
79
41, 51
95
88
89
92

A ke

Index

M.17

MO

M.DEF
MPTR
MACHINE
main memory
main memory address switches
MARK
MAST
mast{59}
MBS
MDEF
mdop{33}
MDR
meta-bits
MEXT
microvisor
miniflow status word
MINUS
MISC.17
MISC..37
MISC.0
MISC. 1
MISC.16
MISC.17
MISC.2
MISC.23
MISC.31
MISC.32
MISC.33
MISC.34
MISC.36
MISC.37
MISC.4
MISC.S
MLP.CALL
MLP.RCM
MLP.STOP
MMERR
MOD..1
MODE
modeset{75}
MOE

MOUNT
MOVE

move {60}
MPTR
msingle{61}
msource {62}
, MTOPR
MULTIPLY

109

19, 38, 39, 43, 48, 50, 53, 54
a4

23, 24

23

32

99

20

29, 30
68, 83

68

40, 56

23

50

40, 48, 49
8, 16, 21
24

5, 6

60

42, 43, 45, 46, 82
19

38, 40, 48, 53, 54
a0

40

a0

a0

20

20

10, 41

40, 74
10, 74
a0, 74

ai

a1

20

40

6,11, 15, 99
6

6,18

56

56, 68

78

79

67

31

53, 54, 69
69

24

69

69

11,13, 14
50, 52

Index 110

N (compiler command) 93
NAMED 87
name{105} 87
NEWPCSPACE 24, 25
news 34
NO 95
NONE 21,25
NORMAL.CODE 79
NOT 42, 43, 45, 55, 61, 69, 82, 83, 84
NUMBER 25
number {5} 37
NUMERIC 32, 33
OE register page 85
0OFE.7777 38
oeloc{25} 48
oepage{27} 18
oereg{26} a8
offset{45} 61
OLDPCSPACE 24, 25
OP.ABS 28
OP.ADD 28
OP.AND 28
OP.CON 28
OP.DIV 28
OP.EQL 28
OP.GEQ 28
OP.GTR 28
OP.LEQ 28
OP.LSS 28
0oP.MOD 28
OP.MUL 28
OP.NEG 28
OP.NEQ 28
OP.NOT 28
OP.OR 28
oP.su8 28
OP.XOR 28
OPAR 56
oPC 31

OR 42, 43, 55, 61, 82
ORIGIN 79, 96
0s1.3 57
ouTPUT 31
outputctri{73} 79
outputtype{74) 79

P (compiler command) 93
P.7 19, 39, 43, 48, 53, 54, 57, 63, 64, 65, 82, 84, 8
P.0 67

P.1 67

e

Index

P.17

P.2

P.3

P.6

P.7

PAGE

PANIC

PARAM

PARAMS

PARENS

PDN

PERR

PIR

PLUS

pointer registers
POWER

primary language symbols
PRINTOFF

PRINTON
processor address switches
PROGRAMCOUNTER
program{63}

PROT
pseudodecirtn{72}

Q (compiler command)

QuUIT

R..37

R.37

RADIX
RANGE

RAR

RCOEC
RCEXT
RCHEX

RCM

RCMUL
RCNWRD
RCOCT
RCOPN
RCSTR
READ
READBREAK
reference break
REGISTERS-AND-AUX
rellabel{44}
RESET
RETURN
RFPTR
RIGHT
rlist{68}

111

53

67

67

60

51

48, 49, 56
56

32

32

28

9,12, 13,15
56

10

A2, 43, 45, 46, 82
57

56

37

79

79

40

22,25

77

6, 56

79

93
7, 15, 17

19, 38, 39, 43, 48, 54, 78
6,7, 11, 15, 18, 39, 50, 51
26, 27
21, 22

40

23

23

23

67

23

23

23

23

23

21

21

16

96

6J

13, 15
63, 88, 89
11,13
44,51

78

Index

ROW
RSB
RSTAT
RULE

S (compiler command)
S.17

112

47, 48, 49
67
7,9,13
29

93
19, 60, 62, 67, 70, 84, 8S

SAD 46, 47, 48, 49
samount{18} a4
SARM..1 56
SAVE 95
SET 32
SFPTR 11, 13
shamount{31} 50
shamt{102} 87
SHD 51,52, 56, 57
shdir{15} a3
SHE 46, 52, 56
SHIFT 87
shift extension register 39
SHIFT.DUAL.L 50, 51
SHIFT.EO.L 50, 51
SHIFT.ER.L 50, 51
SHIFT.OE.C " 50,51
SHIFT.OE.L 50, 51
SHIFT.RE.C 50, 51
SHIFT.RE.L 50, 51
SHIF T.SINGLE.L 50, 51
SHIN 49, 52, 56
shin{29} 50
shleft{16} a4
shmask{32} 50
shop{30} 50
SHOW 32
shreg{101} 87
shright{17} 44
sign{22} a7
SIN 11, 13, 14
SINGLEIO 31
SIR 40
SLRBC.17 56
SOF 46, 52, 56
sopP 46, 47, 48, 49
S0S 46, 52, 56
SOUF 56
SouT 11,13, 14
SPACE 17, 21, 22
SSw.7 57
STARTNUMBER 27
STARTOPERATOR 27
STARTSYMBOL 27
statement {69} 78

——— T

Index

STATUS
STEPFLOP
stmtlist{66}
SUBFIELD
subid{4}
Subroutine Stack
substmnt{71}
SUNF

supervisor stack overflow
SUPVCT

SUPVF

SUPVLB
switchblk{113)
switchlist{115}
SWITCHON
switchtag{114}
switchvalue{116}
switch{112)
SYMBOL

T (compiler command)
TABLES

target memory
TARGET-FORK
TASK
TEMPORARY
test{13}
THEN.BEGIN
THRU

THZ

TITLE

TOPOF JUMPQ
TRAC

TRBY
trirlabel{56}
trirop{55)
TRUE

TRY

Ts1I.1

T1Y

UNARY

UOVF

user stack overflow
UUNF

VADR
VADRC

VAR

virtual timer

WAR

113

7,13, 15, 17
22, 25

77

29

36

60

79

56

60

56

6, 56

56, 74

90

91

90, 91

90

91

90

22, 24, 31

93

19, 95
7,8, 19, 20, 33
96

56

78, 85

43

89

91

57, 64

77

24, 25
7,56, 71
46, 56

65

65

57, 78, 83
29, 30

57

31

27,28
56
60
56

6, 56

4]

40, 48, 49

4,8,9, 10, 13, 18, 19, 20

57

Index 114

WBP 67

WCM , 67

woP 46, 47, 49, 71
word{2} 36

working memory 7,8,16

WOS 46, 47, 49
WRITE 21
WRITEBREAK 21

wsB 67

XBUS 41, 48, 53, 67
XnBus..3 60, 84
XLATOR..777 38, 48, 53
XLATOR.PG..1 48

XOR ; 42, 43,61, 82
XVAL 23

ZRF.1 46, 56

IRF.2 46, 56

281.7 57

ZSP 46, 57

& 43, 45, 50, 69, 84
\ 46, 51

& 42, 43, 15, 53, 55, 61, 62, 68, 69, 81, 83, 84

PRIM SYSTEM: USER REFERENCE MANUAL

Contents

Introduction 1
General input conventions 1

PRIM Exec 3

PRIM Debugger 14
Arguments 14
Values 14
Expressions 14
Expression ranges 15
Lists of expressions or ranges 15
Spaces 15
Syntactic units 15
Literals 16
Symbols 16
Punctuation 16
Error detection and editing 17
Commands 17
Debugger control 17
Execution control 20
Display 22
Storage 24

Target Execution State 25
Target I/0 25
I/O errcr messages 26

|

PRIM SYSTEM: USER REFERENCE MANUAL

INTRODUCTION

This document is the common reference manual for all users of the PRIM system,
both those using one of the existing emulation toois and those writing new emulators. | or
the former, this manual is supplemented by the appropriale tool-specific guide (e.p., PRIM
System: U1050 User Guide)k for the emulator writer, the supplcment is PRIM System: 100l
Iuilder Manual

The PRIM systcm is always in one of three states, known as the cxec, the debugger,
and the target execution states. The transition belwecn states is controlled by the uscr.
Gotlh of the first two slates are PRIM command processors that talic commands from the
uscr and execule them. The exec, whose command prompt characicr is “">%, is uscd
principally for setling up a target environment; the debugger, whose command prompt is
"#", is used for the detailed examination and control of thc executing target
machine. Target execution includes the emulation of not only the CPU, but also clocks and
assorted peripheral I0 devices. The three sections following the introduction describe
cach of the slates in turn.

The PRIM exec and debugger commands are illustrated with examples taken from
aclual session transcripls. in all the examples, user input is italicized to distinguish it
from PRIM output. Input control characters appear as their abbrevialions superscripted
(e.q., 05€).

'GENERAL INPUT CONVENTIONS

User input to PRIM, both exec and debugger, is pcnerally frec-format and
casc-independent. Leading spaces and tabs are ignored, and lower case is treated as its
upper case equivalent (except in quoted strings, where case is polcntially significant).
Uscr input to the target machine during target execution state is in the format required by
the target system.

Certain characters have becn assigned editing and inlcrvention functions when input

" by the user. The editling characters apply only to the PRIM excc and debugper, while the

intervention characlers apply to the target execution state as wcll. The specific
characters assigned to most of the functions may bc allercd (via the exec Change
command) to suit one’s needs. The editing functions arc valid al any time during PRIM
command input; commands are not executed unlil after the final character has been
accepted.

HBack-space (cnti-H) erases a character from the current word or term of input. The
back-space is echoed as a backslash (\) followed by thc erascd character. When
there are no erasable characters, a bell (cntl-G) is echoed instead.

ANlternate back-space (initially cnti-A) performs a function identical to back-apace; it is
provided as a convenience. '

PRIM System: U-er Reference Manual Page 2

Backup (initially cnll-W) erases the current word or term of input. It is echoed as
backslash (\) followed by the first character of the erased word.

Retype (initially cnll-R) retypes the current input linc; it is useful after a'confusing
amount of ediling has occurred.

Delete (inilially DEL or RUBOUT) aborts the current input command or subcommand,
allowing the user to re-enter it. It is echoed as " XXX".

Question (?), when enlered at the beginning of a command ficld, elicits a description of
the expected input, followed by a retype of the line. When the expected input is a
selection from a list (or menu), the entire list is shown.

The intervention characters are valid at any time, including command input, command
interpretation, and target execution.

Ahore (initially cntl-X) inlerrupts the current activity and returns control to the
command level of either exec or debugger. When used to cancel an exec or debugger
command, conirol rclurns to the top level of the same state; abort is the only means of
canceling a command when the user is in subcommand mode. When used to interrupt
target execution, control returns to the state from which execution was initiated; abort
is the only mcans of stopping a looping target machine.

Status (initially cnti-S) produces a one-line summary of target machine status, including
program counter, emulated elapsed time, and active 10 devices. The command is valid
at any time, but useful primarily in execution state.

The following character is active only during target execution.

Control-shift (initially cntl-1) permits the user to enler (during execution) a control
code thal cannotl be enlered directly because it is intercepted by cither PRIM or the
opcrating system; the PRIM characters inolved are status, ahort, and control-shift itself.
The next ASCIl character following the control-shift (olher than the digils O thru 9) has
its two Icading bits cleared, thus converting it to an ASCH contro! code (/A or a o
entl-/1, etc.). Control-shift followed by a digit results in an input that is outside
the normal target characler set and is used for parlicular target-machine-dependent
functions. 1he control-shift character itsclf is not echoed, and not passed to the
target machine. |If execution terminates before that next characler is input to the
targel device, the control-shift is canceled; it is not retained for the next resumption of
execution.

PRIM System: Uscr Reference Manual Pape 3

PRIM EXEC

The PRIM exec is the initial state of a PRIM session. Execc commands are concerned
primarily with building target configurations, saving PRIM scssion results, restoring
previously saved sessions, and accessing or creating files (within the file space of the host
operaling system).

The exec prompt character is ">", indicating that PRIM is in exec state and that the
exec is awaiting a new command; it is always shown on a new linc. Individual input ficlds
consist of keywords (a word selecled from a menu), decimal numbers, and file names.
Exec commands are composed of fixed sequences of fields, each terminated by a delimiter
character; a final confirmation consisting of a return is oflcn required.

Keywords are selected by any unambiguous leading substring. Oflen, a single
character suffices; three characters are always sufficicnt. Numbcrs are specified in their
cntircty. File names are spccified according to the convenlions of the operating system.
All commands that will use a file for output require the name of a new file (except the
Mount-Append and Mount-Old commands, which modify cxisting files); all other file
commands require the name of an existing file. In TENEX, an exisling file name -- and a
new file that is a new version of an existing file name -- is recognized (and completed) in
response to an input escape.

The normal delimitars that terminate command fields arc retwrn, escape, and space.
Liscape and space funclion identically except that the former generales fecdback 1o the
uscr while the latter generates none; the feedback produced by escape includes both field
completion and next-field prompting (which is given in parenthesss). Return is used to
complele a command immediately, bypassing any remaining ficlds and confirmation; if
further input is required, the return is treated as an escape. (In the examples that follow,
escape termination is used to show the prompls.)

Keywords that involve either devices or paramcters are machinc-dependent; the
scleclions shown in the examples are meant to be illustralive ralther than definitive.
Device specification is further complicated when two (or more) of the same peneric device
arc installed. Therefore, for device names, two further delimiters are utilized, at ("@") and
colon (™"). A fully qualified device name consists of pgeneric-name ® channel-number :
unit-number; the numbers are required only to the cxtent nccessary to specify a
parlicular device. When a device name is terminated by one of the standard terminators,
and when further disambiguation is required, the exec prompis explicilly repardiess of the
{crminator.

The remainder of this section consists of the descriptions of the exec commands in
alphabelical order. Each command description begins with a transcript showing one or
more examples of the command and its various options. Those commands that require a
sccond keyword show that list via an input question. The excc commands arc:

R A

PRIM System: User Reference Manual Page 4
Exec

>P One of the following:
CANCEL
CHANGE
CLOSE
CONNANDS
Di BUG
FILESTATUS
Go
INSTALL
MOUNT
NEUS
PERIPHERALS
aulvy
REASSIGN
RESTORE
REHIND
SAVE
SET
SHou
SYHROLS
TINE
TRANSCRIPTY
UNINSTALL
UNHOUNY
>

Comiment.

>; this line is a commant®
>

Any line begin'ning with a semicolon is treated as a comment. Comments are recorded in
the transcript if one is open (see Transcript command).

Cancel abandons all outstanding I0 operations for a designated device.

>ca®SONCEL (10 for device) 1a®5CPE-UNIT €F

>
This command is inlcnded for use when, after an 10 error halt (described in the section on
target execution), the user wishes to abandon the device operation rather than mount a
file and retry the operation. The list of outstanding 10 operations, by device, is part of
the Peripherals command output.

PRIM System: User Reference Manual Page 5
Exec

Change reassigns the PRIM control functions.

>ch®5CANGE (input code for) ? One of the following:

ARORT

AL T-BACKSPACE

BACKUP

DLLETE

RETYPE

SIATUS

CONTROL-SHIFT

>CHANGE (input code for) ah®5CORT (from tX to) P R Control Code.
>CHANGE (input code for) ABORT (from tX 10} TP cr

>chCACANGE (input code for) d®ACELETE (from to) @5€ (not changed)

>
This command allows the user to change the ASCIl control code assigned to any of the
listed PRIM control functions from its current assignment to another (currently unassigned)
control character. The function name is the second word of thc command; when it is
terminated with an escape, the current assignment is noled in the noisc. 1he entire set of
ASCIl control codes (including delete) is available excepting null, back-space, line-foed,
return, escape, and unit-separator (TENEX end-ef-line) which have fixed functions in
PRIM. For ahort and status the set is limited to entl-A thru entl-Z.

Close terminates the current transcript file if one is cpen.

>cl®5COSE (transcript file.) ©F
>

A transcript filc is opened using the Transcript command; it is automatically closed at the
end of a session.

Commands redirects suhsequent input from a file.

>co®SCHIANDS (from (ile) command.fila®sc €r

> . .
This command causes PRIM to read its subsequent command input from the named file
instead of the user terminal (or current command file). The file input is ircated exactly as
terminal input except that intervention functions (abort and status) are valid only from the
terminal. Should a command in the file cause execution to be resumed, input that normally
would come from the user terminal is taken instead from the file. Input reverts to the
previous source al the end of the file; an abort terminates all command files and reverts
input to the user terminal. Command files may be nested. Command files are very useful
for common session-inilialization sequences.

Dcbug transfers control to the PRIM debugger.

>d *5CERUG

#return (to EXEC) ©F

>
The PRIM debuggcer is described in the next section; control is returned to the exec via the
debug Return command.

PRIM System: User Reference Manual Page 6
Exec

Filcstatus returns information about mounted files for all or designated devices.
>[C5CILESTATUS (for device) O5€ ALL

Record File Name Oavice

12 CARD.DECK CARD-READER

12 User Tty PRINTER

825 TERHINAL . INPUT TERRINAL (In)
12345 TERM.OUT TERNINAL (Out)
246 ARCD.EFG TAPE-UNIT: 0

>JCECILESTATUS (for device) ea®SCRD-RERDER
Record Type Byte/Last File Name
12 Binl2 960/1286 CARD. DECK

>

When the device field is empty (return or escape) all mounted files are listed; otherwise
just the file(s) on the named device are listed. The latter case gives more complete status
than does the former. 1he output fields are:

Record tells the current position of the device or the number of records which have
been processed. For disks, it is a sector number; for card readers and punches, a
card count; for communication lines, the total number of bytes transferred; for mag
tape unils, the position from beginning of tape expressed as files + records.

File Name is the name of the file; the name “"User Tty" is displayed when
THIS-TERMINAL is the file.

Device is the emula_ted device on which the file is mounted.

lype describes the type of file, either Ascii or Binxx, where xx is the file byte size.
The type may have been explicitly specified at mount time, or it may have been
assumed by PRIM.

Byle/Last is, for a mounted disk file, the current byte position in the file and the total
number of bytes in the file.

The marginal notation "[not opened]" indicates that the named file could not be found (this
occurs only to a restored file) and that the device must be reassigned to another file (or
to the same file via a new path name).

Go transfers control to the target execution state.

>a75%C0 (from 1234) €©F

=-> NACHINE running at 5670, Used 0:00.4
~-> NACHINE halted at 6543, Used 0:01.0
>

This command transfers control from the PRIM exec to the emulator or target machine, in
its current state. Control returns to the exec when the target machine halls or a
breakpoint is encountered (see the debugger Break command) or the user interrupts
execution with an ahort.

In the example, the user followed the command with a status request (the status character
itself is not echocd) resulting in the first reply line (MACHINE running at ..); the target
machine is still running. Eventually the target machine halted, producing the second status
line and returning control to the exec as evidenced by the exec prompt.

PRIM System: User Reference Manual Page 7
Exec

Install adds a designated type of device to the machine configuration.

>IPSCNSIALL (device) P One of the folloning:
CARD-READER

PRINTER

TAPE-CONTROLLER

TERMINAL
>INSTALL (dnvice) pCSCRINTER (CHANNEL) Jo%C
>>7 SPEFD

>>8C8CPEED (characters per second) T5C300
»>Cr

>I?SCNSTALL (device) $a®SCPE-CONTROLLER (CHANNEL) 3asc €r
Hou many TAPE-UNIT’s do you want? 2€7

For the first TNAPE-UNIT, (UNIT) 0fsc cr

>>Cr

For tho second TAPE-UNIT, (UNIT) J¢r

> €r

>

The device typc is sclected from among those implemented. The user is prompted for
each necessary item of information, typically including an address for the device in the
target 10 address space and the number of units to install. After the required information
is galhcred, sub-command mode (">>" prompt) is entered to pather oplional paramcters;
any optional paramcter not supplied takes on its default value. Subcommands are
terminated by an emply command, return only. An installed device is initially unmounted
-- there is no file associaled with the device for purposcs of actual 10.

When the device being installed is a mulli-unit controller, the dialoguc procecds through
each of the individual units to gather their parameters. After the command is completed,
the controller is no longer visible; only the individual units are. An ahort aborts the entire
command, not just the current unit.

Installation is permitied only. before any execution has taken place. lypically, a user or
user group inslalls a standard configuration and then saves it for usc in all subscquent
scssions (sce the Save-Configuration and Restore commands). The optional parameters of
an installed device may be changed at any time using the Set command.

PRIM System: Uscr Reference Manual ~ Page 8
Exec

Mount associates a file with an installed device.

>mTSCOUNT (R, 1,N,0L,0U,7,7) P One of the folloning:

APPEND

INPUT

NCW

oLD

ouTPUT

THIS-TERMINNL
>HOUNT (A, 1,N,0L,0U,T,?) EP5CHIS-TERNINAL (on device) pSCRINTER €F

>meSCOUNT (A, 1,N,0L,00,7,?) RTSCEY (in & out tile) AABCD.EFC;1°%¢ (on device)
ta"5CPE-UNIT ©F

>

>m i"5CNPUT (trom file) card.deck®3C (on device) ca®SCRD-READER €7
>>? BINARY or RSCII

>>hCSCINARY (uith byte size)]2€7

>>0r

>

Associating a file with an installed device causes subsequent emulated |0 for that device to
be directed to the file. The second keyword following Mount determines the direction of
data flow and thc choice of an old (existing) or ncw file. A file must be mounted on a
device before any actual 10 can take place.

APPEND mounts an old filc for output only, with the subsequent output being appended
to the previous contents of the file.

INPUT mounts an old file for input only.
NEW mounts a new file for both input wnd output (the file is initially empty).

OLD mounts an old file for both input and output (subsequent output overwrites any
existing file dala).

OUT mounts a new file for output only. For a disk or tape device, QU1 is treated as
NEW.

THIS-TERMINAL associates the user terminal -- instead of a named file -- with the
named device. The mounling is for both input and output unlcss a file has already
becen mounted for one, in which case the terminal is mounted only for the other. The
terminal is known to be an ASCIl "file". The terminal may be mounted only once for
inpul; it may be mounted for output (or on an output-only decvice) any number of
times, but the output is not labeled as to source.

Only some of the forms above are applicable to any given device. For a disk- or tape-like
device, an INPUT, OLD, or NEW file is expected; an OLD filc is one that was NEW in a
previous PRIM session, and is being re-used, while an INPUT file is an old read-only file.
For a bidirectional communicalion device (a.4., a terminal), two files are required: an INPUT
file and either an OUTPUT or APPEND file. Alternatively, a real terminal may be used for
both (or either one). For an input-only device, INPUT and OLD are identical; for an
output-only device, OUT and NEW are identical.

Aeade.

PRIM System: U-<er Reference Manual Page 9
Exec

For those devices that deal exclusively with character data, the mounted file is always
taken as an ASCIlI text file; character translation is performed as part of the I0 process.
(This allows the file lo be created and/or processed by any operating system utility that
deals with text files.) For tape and disk devices, the file format is internal to PRIM (and
therefore not requested from the user); the data is recorded directly. For other devices
the user is asked, via subcommand mode (">>" prompt), whether the mounted file (NOT the
device) is an ASCIl text file or a binary file containing a stream of pure data in bytes of
some fixed size. The default is a binary file of a device-dependent byte size.

Once a file has becn mounted on a device, all exec commands that refer to the file require
the device name as the specifier; for communication devices, where two files are normally
mounted, thc device name is followed by a direction selector. 1hc file name itself is not
used as the internal identifier.

News rcads the PRIM on-line news file.

>nCiCEUS

Do you want to sce 4-APR-77 Changes in PRIN ?: CACYES

{ Here comns the message regarding changes of 4-APR-77 ...)

Do you want to see 24-NAR-77 Preliminary Documentation ?: del yyx

>
The date of the most recent news message is shown aulomatically at the start of each
scssion. In rcsponse to the command, each messape’s dale and subject is shown,
beginning with the most recent message. For cach messape, the body may be seen (Y KS)
or skipped (N()), or thc command may be terminated {deleta or abori).

Peripherals returns information about the installed devices.

>pTSCERIPHERAL S

Chan Unit MNounted Device
1 0 Ne ~ PRINTER
2 [} Yes TERMINAL
3 (] Yo TAPE-UNIT
3 1 Yosu TAPE-UNIY

active devices: TERHINAL

>
This command produces a listing of all the installed devices, together with their 10
addresses and a nolation concerning whether they have files mounted. It also lists all
devices which have suspended 0 operations. Ordinarily, suspended operations are limited
to (1) 10 error condilions and (2) input operations where the input file is a real terminal
and no inpul was available when target execution stopped.

Quit terminates a PRIM session.

>qTunT
Quitting MICHINE ([Confirm) €
e

Terminating the PRIM session involves closing all open files and returning control to the
process thal iniliated the PRIM session. The session cannol be continucd.

Aals

PRIM System: User Rcference Manual Page 10
Exec

Reassign specifies a new file for a mounted device.

>roaCiCSSIGN (device) 1a"5CPE-UNIT (to file) mew.file?sc cr
>

This command is used to substitute a new file specification when, after a prior Restore
command, a previously mounted file cannot be found. In particular, a restore done from a
different directory than the one in force at save time has trouble finding any of the
mounted files. Reassign may only be used for devices/files that are marked “"[not
opened]” in a file-slatus display. The new file is assumed to have the same
characteristics as the old one and is positioned at the same file position.

Reslore recovers the state information saved in a file.

>rasCACTORE (from SAVE file) ABCD.CONFIG;]05¢ cr
restored CONFIGURATION from TUESDRY, MAY 3, 1977 12:35:08.PDT
>

The current context is updated with the complete or partial cnvironmenlt previously saved
in the designated file by the Save command. For the addressable regions -- machine
memory, registers, etc. - the saved data replaces the current data only for those cells
that were actually saved; cells not saved are not cleared. (Thus, nonoverlapping memory
images arc merged.) For nonaddressable regions -- symbol, configuration, and breakpoint
-- each one is completely replaced if present in the file. The date and region(s) saved are
shown, followed by a list of any mounted files that cannol be found.

Rewind returns a device's mounted file(s) to the beginning.

>rewCiCIND (device) $aCSCPE-UNIT €F

>rew terCSCHINAL (B,1,0,?) 2 One of the following:
BOTH

INPUT

ouTPUT
>REH TERMINAL JOSCNpyy ©F

>

This command is uscful for relrying a program without unmounting and remounting files.
(Files are always rewound when mounted, except for Append files, which cannot be
rewound.) For a terminal-like device that requires separate input and output files, the user
oplionally specifics which file is to be rewound; the default is BOT'II.

Save copies seleclted slate information into a file.

>8aC5CVE ? Ono of the following:

aLL

CONF IGURAT 1ON

FORNATS

ML MORY

SYNROLS

>SAVE e2CONF IGURATION (on f11e) aBCD.CONFIG;Icr

>
This command saves on the (new) file an image of the region(s) sciected for saving. The
contents of the filc can later be restored for use in this or another session. The second
word of the command selects one of the save options.

PRIM System: Uiser Rcference Manual Page 11
Exec

ALL saves everything -- a complete checkpoint of the target machine and debugging
stale. "Everything” includes memory, all addressable repisters, installed devices,
mounted files together with their positions, debug breakpoints and their programs,
debug formals and modes, defined symbols, and the internal slate of the emulated
machine.

CONFIGURATION saves all the machine configuration data, including installed devices,
mountcd files (if any), machine parameters, and debug formats and modes. This
command is allowed only before any execution takes place. Uscful for creating a
slandard machine configuration (possibly with some standard files mounted) for use in
subscquent scssions.

FORMATS saves all the formats that have beon defincd (using thc debugger Format
command).

MEMORY saves those regions of the machine memory that are not clcar. (At the start
of a PRIM scssion, memory is already cleared.)

SYMBOLS saves all the user-defined symbols, both those loaded via the exec Symbols
command and those defined directly via the debugger New-symbols command. The file
that results is a SAVE/RESTORE file, not a SYMBOLS file!

Sct changes the values of user-settable parameters.

»80C8CT (cempty> or dovice) €F

»>>? Ono of the follouing:

CLOCK

MEHORY

SPLED

>>¢5CLOCK (ticks per second) ?5C1pgg €F

>>MCSCENORY (8K modules) 4C7
»>Cr

>80CSCT (<compiy> or dcv;co) PrECRINTER
>>8TSCPEFN (characters per second) 150€7
>,CI‘

>
Following the command word, the user selects the group of parameters he wishes to alter.
An immediale reinrn sclecls the global machine parameters; a device name selects the
paramelers of that particular installed device (thc parameters of multiple installed
instances of the same device type need not have identical setlings).

Any number of paramclers from the sclected group may be changed. In response to the
subcommand prompt (">>"), the name of a parameter and ils new value are entered; each
change is made immediately and a new subcommand prompt appcars. The command is
terminaled by an cmply input, return only, or by an abort (which docs not undo any
parameters previously changed). The list of possible paramelers is highly machinc- and
device-dependent; it typically includcs the size of memory and lhe spced of each device.

The value of a parameter is either a (decimal) number or a, keyword from a
parameler-specific list; a quastion in the value field reveals which is expected. An escape
scls the parameter to its default value.

PRIM System: User Rcference Manual Page 12
Exec

Show displays the values of all the parameters in a group.

>sh®5€oY (<empty> or dovice) €

CLOCK is 1000 ticts per second

NENORY 18 4 8K modules

SPEED is 750 nanoseconds per memory cycle

>sh®5CoU (<ompty> or device) pCSCRINTER

SPEED Is 200 characters per socond

>
Following the command word, the user selects either the global machinc parameters
(return) or thc parameters of an installed device. The names and current values
of all the paramelers are displayed.

Symbols reads an ASCIl symbol-table file.
>8y"5CHROLS (from file) SYMBOLS.EXAMPLESe er

>

This command causcs PRIM to build a user-defined symbol table from the data in the
named file, which is a structured ASCII text file. The file may define values for both global
symbols and program-local symbols that are organized into programs. In the PRIM
debugger, the global symbols plus the local symbols of the currently open program are
accessible at any time. Symbol values in the file are octal. The form "name =- value"
defincs a global symbol; the form "name = value” defincs a local symbol; the form "name:"
establishes a program name to which subsequent local symbols are assipned. The file is
free-format in that spaces, tabs, commas, and new-lines may occur anywhere -- except in
the middle of names or values. The following is a sample symbols file.

ALPHA--45

BETA==12345

PR1: A-2000, B-2132, C = 2241
XY7:

A-3212 AA=3245, AAA=3261,AAAA=7/77

Symbol files are intended lo support the moving of symbolic label data from an assembler
or linking loader inlo PRIM for use in symbolic debugging.

Time displays time-of-day and time-used information.

>ti®SCHE (is) TUCSONY, MAY 3, 1977 12:34:33-PDV

Usnd 0:14.6 PRIN timo; Usod 8:02.7 MLP time.

>
This command displays the date, lime of day, the amount of PRIM timc uscd and the amount
of MIP-900 time uscd in this PRIM session. (Elapsed target machine time is displayed in
response (o statns.)

Transcript transcribes the subsequent PRIM session on a new file.

>trCSCANSCRIPT (to file) new.fila0kc €r

>
All transaclions with the user terminal, including execution-time 10 to THIS-TERMINAL, is
transcribcd until either the user terminates the session (with a Quit command) or closes
the transcript. Only one transcript may be open at a time. A header line containing the
date and time is placed at the head of the file.

-

by~ P

PRIM System: Usecr Reference Manual Page 13
Exec

Uninstall removes an installed device.

>Hni®SCNSTALL (devica) ? PRINTER or TAPE-UNIT

>UNINSTALL (device) ta®ACPE-UNIT (unit); Jese cr

>
This command is the inverse of the Install command; it removes an installed device from the
configuralion, first unmounting its files if necessary.

Unmount unmounis the file(s) from a device.

>UnmCECOUNT (dovice) pPSCRINTER ©F

>Unm ter®SCHINAL (B,1,0,?) ? One of the following:

BOTH

INPUT

ouPUT

>UNH TERMINAL ©SC ROTH ©F

>
The unmounted file(s) are closed. For a terminal-like device that rcquires scparate input
and output files, the user optionally specifies which file is to be unmounted; the default is
BOTH.

BRE e S R

PRIM System: Uscr Reference Manual Page 14

PRIM DEBUGGER -

The PRIM debugger is a table-driven, target-machine-independent, interactive
program for debugging a PRIM emulator or a target program running on such an emulator.
It is tailored to a specific target machine by tables prepared as part of an emulation tool.
Basically, it permits a user to set and clear breakpoints and to cxamine, modify, and
monitor target system locations. Target system assembly language and symbolic names
arc recognized, and arithmetic is performed according to the conventions of the target
machine. The debugger command prompt character is "#"; each level of subcommand adds
another "s" to the prompt.

ARGUMENTS

Most debugper commands take arguments in the form of values, expressions,
cxpression-ranges, lists of expressions, or lists of expression-ranges as defined below.

Values

A value is an assembly-language instruction, a form, text, or an expression-list.
Assembly language instructions are parsed by a table-driven assembler/disassembler that
accepts the same syntax as the assembler for the target machine. User symbols will be
rccognized it they have been supplied in user symbol-table files (sce the exec Symbols
command) or have becn declared individually (see the debugrer New-symbol command).

A form requires that the user previously definc a corresponding format (scc the
dcbupper Format command). A form is represented by the format name followed by an
cxpression-list, as in the following example.

F10,7,3

lext is represented as a double-quote ("), followed by an arbitrary delimiler
characler, followed by a sequence of other (non-delimiler) characters, followed by another
occurrence of the delimiter character, as in the following example.
"/This is text./

Expressions

An expression is any well-formed sequence of constanls and symbols that are
defined for the target machine; the symbols (which are machine-specific) may represent
cither locations or operators whose rules of combination determine what is a well-formed
cxpression. A location symbol may represent a named hardware element or a globally or
locally defined uscr location. An opcrator may either be unary (preceding its operand) or
binary (coming between its operands in infix notation). The precedence of operators is a
funclion of the targel machine, except that all unary opcrators are assumecd to have the
same precedence value, which is higher (more strongly binding) than that for any binary
opcerator. If brackels are permitted (e.q., parentheses), their precedence value is higher
than that of unary opcralors. For example, A-B and -B+A will evaluale the same, but will
diffcr from -(B+A), which will evaluate the same as -B-A. A bracketed subexpression may
itsclf attain the full complexity of an expression. The behavior of opcrators is
machine-specific.

N SMINTICTIR S - DI O .

PRIM System: User Rcference Manual Page 15
Debugger

Expression ranges

An expression-range consisls of the triple: exprcssion (lower bound), colon,
expression (upper bound). It rcpresents a sequence of locations slarting at the lower
bound and continuing through successive locations to include the upper bound. The upper
bound may not be less than the lower bound. Wherever an cxpression-range is allowed, a
single expression is accepled and treated as if it had becn entered as both the lower and
upper bounds of a range. If the two bounds in a range address diffcrent spaces (see the
discussion of Spaces below) within the target machine, the sequence of locations is
restricted to that space addressed by the lower bound. Two special forms of expression
ranges are recopnized. If the second expression in a range is "-1" it is treated as being
the largest address in lhe space referenced by the first expression. f the second
expression in a range is of the form "+ expression”, il is treated as if it were “(lower
bhound) + expression.”

Lists of expressions or ranges

A list of expressions consists of at least one expression, followed, optionally, by any
number of occurrences of a comma followed by an expression. A list of
expression-ranges has the corresponding structure of at least one range, followed,
optionally, by any number of occurrences of a comma followed by a range. An example of
a list of ranges is

0:10, 20, 30:50
Nele that the second element of the list (20) is an example of a range with a defaulted
upier bound.

SPACES

Addressable localions in a target syslem are organized into constructs called spaces.
A space consisls of a scl of addressabie locations that is closed under a successor
function and its inverse (a predecessor function). For example, main memory constilutes a
space, lypically starling at location zero and continuing through an arbitrary number of
locations. 1he successor lo the last element of a space is the first element in that space;
and the predecessor of the first element is the last one. In some cases, machine locations
are grouped inlo a space for convenicnce, even when the concept of a successor function
for clecments of that space has no correspondence in the actual target system. Such a
space might consist of testable indicators. The machine symbols are identified in the
tool- specific user guide.

For purposes of the debugger, every addressable location in a target syslem is
represenled by a pair: (space, element). When a range is specificd, two such pairs
(a,h)(e,d) arc implicd. 10 avoid ambiguities where a and e differ, the
debugger ignores ¢ and treals such a range as a sequence of locations, all in space a,
slarling with element b and continuing through element d.

SYNTACTIC UNITS

The basic syntactic units the debugger deals with are
1. Literals
2. Symbols
3. Puncluation

= s e

PRIM System: User Reference Manual Page 16
Debugger

Literals

Literals are character conslants, numeric constants, or single characters that’ have
same encoded mcaning (which may be context-dependent). A character constant is
supplied to the debugger as a machine-specific character-constant prefix string followed
by a string of data characters of arbitrary length, followed by a machine-specific
character-constant suffix string of the general form:

prefix-string charactor-data-siring suffix-string.

If the first character of the suffix string is to be included in the data string, it must appear
doubled. Character constants are converted to binary (right justified) and are truncated
lo fit the element in question. As the form of a character constant is machine-spccific, it
is described in the tool-specific user guide.

A numeric constant is supplicd to the debugger as a machine-specitic (and optional)
radix-prefix string followed by a string of digit characters followed by a machine-specific
(and optional) radix-suffix string of the general form:

prefiz-siring digit-string suffix-string
The prefix and suffix strings establish the radix within which the digit characters are
cvaluated. The digit characters for any radix.r are the first r characlers of the set
{0,...9A,...,2}.

Coded characters have independent meaning only within ccrtain contexts: at
appropriale points in the dialogue they designate a particular debugper command, a mode,
a breakpoint type, etc.

Symbols

There are five types of symbols: machine symbols that are as«ipncd to hardware
clements in the target machinc, predefined opcodes for symbolic instructions,
uscr-supplied names of formats, operators for expressions, and user symbols that can be
a.signed to arbitrary memory locations. Machine symbols arc given in the tool-specific
uscr guide; other symbols are assumed to be familiar to the user.

Uscr symbols are either loaded from a file using the exec Symbols command or
individually defined using the debugger new-symbol command. The symbols include both
clobal symbols and program-local symbols that belong to specific named programs. The
global symbols are available at all times; the program-local ones only when theirs is the
open local symbol table.

Punctuation

Punctuation marks are characters with a predefined syntactic (and usually semantic)
role. The puncluation characlers are the separalors (comma and, in format definitions,
space), the lerminators (return, escape, and, in rcplacement operalors, back-slosh and
up-arrow), and a scmanlics-free delimiter (space). Escape is uvscd as a terminator
instcad of return to invoke a subcommand or an addilional feature of a command (e.q., in
Mode or Breakpoint commands described below).

' \
_—

PRIM System: User Reference Manual Page 17
Dcbugger

ERROR DETECTION AND EDITING

Debugger commands are examined for errors as they are entered, character by
character. As soon as an error has been detected, a bell (becp) is echoed and further
input is rejecled, except for the generic editing characters back-space, retype, backup,
delate, or abort.

COMMANDS

Debugger commands are all single characters; they can be organized into several
rroups: dcbugger control, execution control, display, and storage. Each is listed below.
Unless otherwise indicated, the command character is the first character of the command
name.

Debugger Control

Dcbugger Control commands provide for user control over scveral aspects of the
behavior of the debugger. They permit the user to execule commands indireclly or
conditionally, to return from the debugger to the PRIM cxec, and to control the debugger’s
rcpresentation of data. The Debugger Control commands are:

llie. Calls a designated break-time program as if some brcakpoint associaled wilh that
program had just occurred. A program number must be designated that corresponds to an
cxisling break-time program. Program numbers are shown when the breakpoint data base
is displayed (see the break command); the program itsclf can be secn using the
program-cdil command.

#Uso -program ?(numher of an existing break program)

#Usa-program 2¢F !
It the use command is itsclf in a break-time program, then a go command excculed in the
called program causes termination of the calling program as well as of the called program.

If. esls the supplied expression and, if it is true, executes the following subcommand. A
true expression is one whose value is odd; relalional aperators yield a value of one when
true and zero when false. The tested expression must be terminated by an escape.

211 ?(oxpression)

11 3°5€ cthen> #4T'ype OCF

00: 60 #

211 205¢ cthons 84T'ype 0T
’

Return, Relurns control to the PRIM exec; confirmation is required.

#Roturn (to EXEC) ©F
>

PRIM System: User Reference Manual Page 18
Debugger

Made. Interrogates default and current modes and changes modes. A question after the
command character M will elicit the default and current mode setting; another qunmon will
list all mode seltings and associated mode-code-characters.

#Moade P

Current and (Default) mode settings:
Feodback Verbose (Verbose)
Output Bits Bits)
Rddresses Symbol I (Symbol ic)
Line-format Donse (Danse)
Rad i x 8 (8)

Type ? for more

Node P
Fecdbhack

[Concise

v Verbose
Outputs

B Bits

F Formatted (format-name)

| Instruction

& N Numer ic

T Text

Addressest

(] Ahsolute
S Symbo | ic
Line-format:

(1] Dense
E . Expanded
Radixs #
Rn Radix-base n (1 < n < 37 decimal)
'

A list of mode scltings is expected following the Mode command; if none is supplicd, the
default scttings are reestablished. |f the list is terminated by a retnrn, the current modes
are changed. If the list is terminated by an escape, a temporary change is made that
applies only to the following subcommand, as in the following example.

#Mode Instruction 75¢ ga'ype 01234C°

612341 JUIP 8567

’
Modes are established for feedback (verbose or concise); oulput (bils, formattied,
instruction, numeric, or lext); addresses (absolute or symbolic); output line format (dense
or cxpanded); and output radix (any base from 2 through 36).

The fecdback modcs control how debugger commands are reflected to the user:
concise suppresscs all "noise” fecdback (such as command completion); verbose enables
it. The output modes control the general representation of data: bita lreats a datum as an
unsipned magnitude; formaned lreats it as a patlern of bits parlitioncd into contipuous
ficlds according to a designated format (sece Format command); instruction treats il as a
machine instruction and disassembles it; numeric treals it as a sipned value, if that is
appropriate for thc machinc; and text treals it as a representation of a string of
characters. 1he address modes control whether numeric-mode values are to be converted
to symbols (if possible): ahsoluse suppresses the symbol look-up; symboelic enables it. The
line-format modcs confrol the density of displays: dense suppresses most

PRIM System: User Reference Manual Page 19
Debugger

debugger-generaled line-feeds so as 10 show more information per line, expanded enables
them.

When formatted output is selected, the name of the output format must be specified,
as in:
#Mode Formatted F] €,

Output radix scts the number base for the representation of numeric data (note that
numeric input dala sclf-identify the number base). For example,

#Modo Radix 16 €
causes current output radix to become hexadecimal.

Format. Permits the uscr to name and define a format as a list of ficlds, each of which is
a designaled number of bits wide. The field widths are supplicd as a list of numeric
conslants (separaled by commas or spaces).

#Format k' |05c 2 4 6 ger
’

#Mode KFormatied K1 053¢ gaType 0CF

00: 60,00,00,00 #
If the formal command is terminated without having defined a format, all defined formats
are displayed, as in

#lormat ©r

F12,4,6,8 ¢

Comment. Following an initial semicolon, ignores all subsequent inputs up to and including
a linc terminator.

THIS IS N COMMENT--IT DOLES NOT GET INTERPRETED.cr
4

New-symbol. Adds a list of new user symbols to the (possibly emply) global symbol
lable. Each new symbol in the list is supplied as a name followed by a apace or an escape
followed by an expression giving its location.

#Neu-symbols ?(((nou-symbol) <ESC> (expression))-1ist)

Meu-symbois I’ATCIHCSC <car> 07000007

#Type PATCHPATCH-1,PATCH « Jor

PATCH: 60 067777: 00 PATCH+01: 00 #

Kill-symbol. Removes a list of user symbols from the open local or global symbol table.
#Ki11-symbols ?(1ist-of-user-symbols)
Nitt-symbats PATClHICT
#Type 067777:4207
067777: @0 ©70000: 60 0700011 60 #

Open-symbol-table. Opens a local (program-specific) symbol table if onc is specified; the
currently open local symbol table, it any, is closcd in any case. Afler this command is
executed, the available symbols include the global symbols plus the local symbols of the
specified program; if no program is specified, only the global symbols are available.

#(pon-program-symbols P(program-name) or not <close the open local symbo! table>

#0pen-program-symhols 7
’

— e —————— —~———— - -

I'RIM System: User Reference Manual Pape 20
Debupger

Execution Control

Exccution control commands provide for user control over execution of the target
program. They permit the user to continue execution, transfer to a designated location,
scl and clear breakpoints or edit break-time programs, and single-step the target program.
The execution control commands are

Go. Passes control to the target machine in its current state. If an argument is supplied,
its value is first stored into the program counter. The argument can be an arbitrary
cxpression, so long as it evaluates to a legal memory address.

#Co (to) ?loxpression) or empty

#Go (to) Ol000OCT

frcak. Displays or sets breakpoints in the targel machine. The two classes of
breakpoints are known as event breakpoints and reference breakpoinis. There is a fixed
scl of cvent breakpoints defined for any given target machine; each describes a type of
cvent whose occurrence causes the emulator to break if the corresponding event
breakpoint is scl. The sct of event breakpoints always includes (1) cvery
inzlruction-cxecution (single step), (2) every branch of control, and (3) cvery memory
writc; other events are defined for each machine as appropriate. Reference breakpoints
couse the emulator to break when a specific type (recad, write, and/or cxecute) of
rcfcronce to a specific localion occurs. Reference breakpoints may always be sct on
mcemory locations; other spaces in which reference breakpoints may be set are detailed in
the tool-specific user guide. Any number of reference breakpoinls may be sct at any
fime.

The break command followed immediately by a return causcs all cxisting breakpoints
(i.e., those in the brecakpoint data basc) to be displayed; if a break-time program is
associaled with a breakpoint, its number is also displaycd. Othcrwise, a list of ecither
cvents or ranges (reference locations) for the selling of breakpoints is supplicd. |f a list
of ranges has been enlered and terminated with an escape, then a list of read, wrile, or
cxecule reference-break conditions is specified next (as permitted at those locations); the
default is all threc types. Whenever a breakpoint is sct for an event or a location, any
carlicr breakpoint for that same event or location is supcrscded.

If the lisl of evenls or break types is terminatcd by an eseape, a< in the sccond
cxample below, a break-time "program” may be supplicd to be execuled by the debugper
when the break is encountered. 1he following commands are permilted within such a
brcak program: Clear, Comment, Debreak, Evaluate, Go, If, Jump-history, Locate, Modc,
Open, Sel, Type, and Use. Recplacement within a locate or type command is not permitled
in a break-time program. Any number of commands can be included in a break program;
the program is terminated by an empty command (terminator only).

—,'_w;'-_“——*

PRIM System: Uscr Reference Manual Page 21
Debugger

#Nroak (at) Plovent-list) or ((expression-range)-list) or <RETURN>
<? for list of events>

#Mreak (at) 0]23:0456, 071205C (after doing) ©F

<R, U, X> #

#Break (at) 0100075¢ (atter doing) Xecute 08C
24 T'ype 0°F

#Go (10) O

”er

<Program numher is (11> #

#Breax (at) TICKCT

’

#Break (at) €

8123-0456 <R, M, X> 0712 <R, U, X> 01808 <X>{1}] TICK <event> #

During program execulion, if an event break is delected, or if a rclerence break
(read, write, or cxecule) is detected at a location for which the corresponding break type
has becn specified, then execution is terminated before beginning the next target machine
cycle and conlrol passes to the debugger to process the break. If a break-time program
has bcen supplicd for that break event or (ocation, the program’s commands are executed
in order by the debugger until either a go command or the end of thc program is
encounlered. If scveral breaks occur on the same cycle, the program acsociated with each
of them is cxecuted; the order of break-program execulion corresponds to the order in
which the breaks are reported by the emuiator. If every break causes execulion of a Go
command, then the target program is automatically resumed, provided there is no
ambiguily as to where execution is to resume. Otherwise (i.e., if any break had no
program or failed lo execute a Go command), a message describing each of the breaks is
displayed and the normal command level of the debugger is entcred.

Debreak. Clears event breakpoints or reference breakpoints at locations in the target
machine. The_ defaull is to clear all breakpoints. Examples of debreak commands are

#Debreak (from) 0234:4407

#Break (at) €7

0123-0233 <R,H,X> 0241-0456 <R,¥,X> 0712 <R,H,X> 01000 <X>[1)
TICK <event> &

#Dcbreak (irom) @€ Aty fcontirm) ¥
#lraar (at) ©F
’

Program-edil. Displays a designated break-time program or pecrmits it to be edited. A
program numbcr musl be designated that corresponds to an cxisting, break-time program.
Program numbers are shown when the breakpoint data base is displayed (sce the break
command). If the command is terminated by a return, the entire program is displayed; if
by an escape, the program is displayed line by line for editing.

PRIM System: User Reference Manual Page 22
Debugger

2hreax (a1) STEPOse

2¢Type &OLDCCET

#4Go (to) OF

rer

<Program numher iIs (2)> #llreak (at) €

0123-0233 <R,H,X> 0241-0456 <R,H,X> 0712 <R,W,X> 01000 <X>(1)

TICK <event> STEP <event»(2])

#Program-adit ?(program-number) (<ESC>-10-edit or <RETURN>-to-view)

#rogram-edit 2€7

Type €0LNCC
Go (to)

]
When editing a linc of a break-time program, the user can spccify that the next (\) or
prior (1) linc be displayed or that a replacement (R) of the current line or an insertion (1)
in front of the current line be made. Editing is terminated by an empty editing
spccificalion. Recplacement or insertion is identical to the spccification of a break-time
program within the break command in that a subcommand mode is enlered where
successive break-tlime commands can be entered until an empty command is supplied; then
cditing continucs with the next line of the program. An extra (dummy) last line is added
when editing a program so that new commands can be inserted at the end; the dummy line
is discarded when the command is terminated.

#Program-adit 205C

Type €0LDCC 1 7(T <prior>) or (\ <next>) or ((l<nsort>) or (R<eplace>)
(commands))

Type €0INCC s Replace

#4Mode Instruction 5¢ s0aType ®OI.DCCET

Y7iia
Go (to) :€F

#'rogram-cdit 207
Hode Instruction #4##Type €0LDCC
Go (to) -

’

Single-step. Transfers control to the target program through the program counter for
execulion of onc instruction. The single coded character line- feed effects this command.

Display

The display commands permit the user to search or examine the contents of
designated locations (and, in two cases, optionally permil their replacement) or to evaluate
expressions. 1he commands are:

Jype. Displays location and contents of a list of cxpression-ranges, pcrmitting the
conlents of each location to be replaced if the list is terminatcd by an escape, as in the
following, example.

#1'ypo 7 ((ovprozsion-range)-11st) optional-<escapes>-to-modify

#ype (:205¢ 80: @0 « JCr

fl: 60 = 207

02: 00 « JCT

’

The replacement value can actually be a list of expressions, the values of the expression

e N

EREESEERSS IR

PRIM System: User Reference Manual Page 23
Debugger

in the list going into successive locations starting with the one last displayed. If no new
value is supplied before the terminator, the existing value is not modified.

#Type 0:20%¢ 80: 81 = 205C 9], 92 = OC 92; 03 = |O5C g

In Display-with-rcplacement only, the coded characters hack-slash and up-arrow can
also serve as terminatlors and perform special functions: back-slash causes the next
localion to be displayed for rcplacement and up-arrew causes the prior location to be
displayed for replacement; both of these terminator characters permit the user to step
beyond the limits of the ranges entered as arguments to the Type command.

#Type 010°%¢ 010: @0 = IT 071 08 = 2\ ©010: 01 « 3\ ©11: 00 = |

010: 03 = 4T 07: 02« 5T 06: 00 « \ 07: 65\ 010: 04 = \

0111 80 « 6\ 912: 60 « 7€

’
The last location displayed by a type command becomes the “open" location, and the
location following thc last one displayed or replaced becomes the “next™ location (see the
next four commands).

Same. Redisplays the "open" location (scc the Type command). The single coded
character ":" cffecls this command. The commands Same, Prior, and Next are all shown in
the following example.

#: 02: 01 41 @11 02 4\ 02: 61 4\ 031 00 &

Prior. Displays the location at one less than the "open” location (scc the Type command).
The single coded character up-arrow effects this command. Sec the examples under 1ype,
Same, and Equals.

Next. Displays the "next” location (See the Type command; the mode in which the open
locatlion was last displayed delermined how far it was advanced lo the "next” locations.)
The single coded character hack-slash effects this command. Scc the examples under
Type, Same, and t quals.

Equals. Displays the "open” location (see the Type command) as bits or as a number if
the current output mode is already bits. The single coded character "=" effects this
command. In the following example format K2 has becn declared consisting of four
half-word ficlds.

#Mode Formatied V207
#: 010: 00,01,02,03 4#- 010: 61 4\ O11: 62,03,04,05 4\ 013: 06,07,00,01
#T 0121 04,05,06,087

Locate. Finds cells in a list of expression-ranges that contain (or do not contain) a
specificd value, examining only those bits designated by an optional mask, and displays
their locations and contents, permitting each displayed value to be replaced if the list is
lerminaled by an escape. Thc comparison value and mask are cxpressions terminated by
an aescape; lhe comparison value defaults to "NON 0" and the mask defaulls to all 1’s. The
scarch is performed over a list of ranges, as for the Type command. '

#l.ocate ?(texpression) or NON (oxpression)) <match value dolaults to NON 8>
Nocate NON 0°%€¢ (uith mask) ?(optional-expression) <wmask valuo>

M ocate NON 0 (uith mask) ®5Ccnot zero> (In) ?((expression-range)-1ist)
optional-<ESC> to-modify

Mocate NON O (uith mask) <not zero> (in) 0:020°7

00: 01 01: 02 02: 03 . 07: 05 010: 04 011: 06 012: 07

PRIM System: User Reference Manual Page 24
Debugger

It is important that the comparison value, the mask, and the data be properly aligned. For
cxample,

#l.ocate 07078¢ (uith mask) 0700%¢ (in) 0:31€7
displays all cells from O through 31 whose second octal digit from the right contains all 1's.

When the command is terminated by an escape the debugger stops after each
display to permit replacement, as for the Type command.

#l.ocate 5Ccnon-zero> (uith mask) 0795¢ (in) 0:0200%¢ 00: 0) = J°r
812: 07 = CF
’

Jump-history. Displays the most recent target-program jumps in the order they occurred.
The number of such jumps to display (taken modulo the default value) may be supplicd.
#Jump-history P((expression) or (empty <all>))
Hdump-history J¢r ;
01000--0200(2 times) ©300--0168 #

Evaluate. Prints the value of a single expression. i has no effect on the open location

and does not permit replacement.

#Nou-symhois PATCII®AC <at> 07000007
#lvatuate PATCII®%C - 970000 #

Storage

Storage commands change the contents of designated locations without displaying
them and without changing the "open” location. The storage commands are

Clcar. Clears the conlents of a list of expression-ranges to all zero bils. Clearing an
cvent for which a breakpoint has becn established causcs the event 1o be deactivated; it
may be reactivated with a Set command. This may be of benefit when a break-time
program has becn associated with the event as the breakpoint dala-base emry for that
cvent is not affected.

#Ciroar 0305¢

Scl. Scels the contents of a list of expression-ranges lo the value of an cxpression or (on
default) to all onc-bits. If the list is terminated by an escape, a single replacement
cxpression is accepled; if it is terminated by a return, the default value of all 1's is uscd.
The replacemenl expression is truncated to fit into the dcsignaled localions, if nccessary.
Sclling an event for which a breakpoint has not been cstablished (i.e., for which there is
no entry in the breakpoint data base) causes the evenl to be aclivaled for a single
occurrence of thal evenl (with no break program associaled), afler which the event is
automalically cleared.

#Set ?((axprossion-range)-1ist)

#set 0300

#Set 0308c . 201
'

iAo

PRIM System: User Reference Manual Page 2%

TARGET EXECUTION STATE

Target execution is initiated, or resumed, through explicit commands . (excc Go,
debugger Go or Single-step). Execution proceeds until a terminating event occurs, causing
conlrol to return to thc appropriate PRIM command level. When execution tcrminates, the
cnlire emulated context -- including clocks and outstanding 10 opcrations -- is cleanly
frozen until the next time execution is resumed. Except for explicit modifications to the
context made by the user at the command level, the termination and subscquent
resumption of execution is transparent to the target machine. The terminating events are

The targel machine haltls normally or is interrupted (by thc emulator) due to the
occurrence of some anomaly condition. A message to that effect is generated. The
anomalies being monitored are listed in the tool-specific user guide.

The user enters an ahort. The abort character is echocd and, after execution is
slopped, a status message is output indicating the poinl of interruption.

The emulator detects the occurrence of a break condition cstablished by the uscr via
the debugger breakpoint command. The establishment of breakpoints and the
subscquent interruption of execution at the time of their occurrence is the primary
program debugging tool in PRIM.

An 10 crror occurs. A message detailing the particular device involved and the nature
of the error is output. 10 errors always return control to the exec state; the error
messages and their meanings are listed at the end of this sectlion.

When one of these conditions occurs, it is logged and cxecution continues unlil the end of
lhe current cycle of the target emwator. It is therefore possible for multiplc conditions to
result in a single stop. When this {s the cdse, the action and message appropriate to cach
of the conditions is produced.

When a breakpoint is detected, the debug program, if any, associatcd with each
breakpoint is executed by the debugger before control returns to the command level.
Should some break program lerminate without a Go -- or should thcre be some break with
nho brcak program -- a message describing the break is output and the command level is
cntered. Otherwise, execution is automatically resumed; the user receives no indication
that a breakpoint occurred unless the break program itsclf produccd output.

TARGET 1/0

The target machine that runs in PRIM consists of a processor (CPU) in some
parlicular configuration buill by lhe user to resemble the aclual configuration required by
his programs. A configuration is built -- before execution is bepun -- by inslalling
pcripheral devices and establishing values for various machine oplions (sce the exec Install
and Sel commands). After an emulated device has becn installed, and before 10 operations
can procecd on that device, a (1ENEX) file or assignable device must be associated with
that emulated device (see the exec Mount command). Subsequent 10 opcralions addressed
to thal device arc then performed on the mounted file.

A mounted file may conltain either direct device data (binary) or ASCHl text; in the
laller case, characters are translated between ASCH and the actual device character set as

A ke

PPRIM System: User Rcference Manual Page 26
Target Execution

they are processed. (If the device character set does not include lower case, input lower
case lellers are converted to upper case before translation.) When the target device is a
rccord-oricnted device (o.q., card reader or punch) and the file is ASCIl, then each rccord
opcration is performed on a line of the ASCIl text file, including truncation and/or blank
padding on input.

The mount option T'HIS-TERMINAI. associales the user terminal (the one being
uscd to communicate wilh PRIM) with a given device. When the terminal has becen
maunted on some device, then input from the terminal is switchcd between PRIM and the
target machine every time execution is resumed and terminated. T1he intervention
characters, however, relain their intervention meanings. 1o allow the full ASCIl character
sct to be input to the target device from the terminal, there is a control-shift cscape
character defined during target execution. To help distinguish PRIM output from target
output directed to THIS-TERMINAIL, all PRIM-generated output is prefixed with the
herald "--> * al the beginning of a new line. This applics in particular to both stopping
messages and typeout resulting from break-time debugper programs.

1/0 ERROR MESSAGES

Various 1/O errors may occur. When any one occurs, cxccution -- including the
crror-gencrating operation -- is suspended, and control returns to the PRIM exec. When
cxecution is next resumed, the suspended operation is retried unless it has been explicitly
canceled by the user using the exec Cancel command.

“File not mounted.”
The indicaled device has no file mounted. If a file is mountcd before execution is next
rcsumed, the opcration will be performed then. (An installed device to which no 10 is
directed nccd not have a mounted file in order to run.) The operalion may instcad be
canceled.

This message is also produced when an output opcration occurs on a device which has
bren mounted for input only, and vice versa. Again, a second file must be mounted on
the appropriate side of the device in order to procecd normally with the program.

"tile not open.”
The indicated device has an inaccessible file mounted on if. The device must cither be
rcassigned or unmounted and then mounted. 1he siluation is similar to the case
above, except for the possibility of reassigning,.

“Improper tape format detected.”
TENEX filcs which are mounted on target magnelic tape devices are encoded in a
unique internal formal that requires such files to be used only for PRIM mapnetic tape
devices. The mounted file is inconsistent with that formal. 1he device must be
unmounted and replaced with a proper tape file.

"Device nol installed.”
A device that is referenced by the program is not installed. Should the missing dévice
be required, there is no way to continue this scssion, since device installation is no
longer allowed. Should the reference be a mistake, execution may be continucd down
a different path (the operation will be automatically canceled when execution resumes).

PRIM Syslem: U-«cr Reference Manual Page 27
Target Execution

"ASCH input character nol recognized -- ignored.”
The last characler read from the ASCIl input file on the designalcd device was not
translatablc into the character set of the device. The characler has been skipped
over; resuming execulion causes the read operation to continue with the next
characler in the file. 1he position of the offending character in the file may be
determined via the exec Filestatus command, specifying the indicated device.

Any olher error indicales a bug either in the emulator or in PRIM. Such errors should be
rcporied.

