
- - - - —

I ~49i~i1 ISI/TM.78.7
~~~~~ 

Janu ary 1978

L~ -’~ ARPA ORDER NO. 2223

PRIM System :
U Tool Builders Manual
• User Reference Manual

D D C
f l L L1

IkHUL2ç~~~~Louis Gallenson J~i~ii iT!i-1Alv in Cooperband Au.J~ Joel Goldberg

C.D f~~i~~~TBuTicN S’l ATEMEN~~ir
Approved for pt .blj c re1eqa~L Diatributj o~ Ualimi$ 4

INFORMATION SCIENCES iNSTITUTE

46 76 Admiralty IPay/Marma del Rey/ California 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (21 3)  822 - 1511

-
~~~~~~~ 79°~~- . L ~!~-- L


-~~~

- - - - - -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (IThsn Data Ent.r.~

b~~Df1b1 I
~~E~~~~~~~~’ aa~~~~ READ R4STRUCT IONSn~~r~~~i~ I ~~~~~~~~~~ I~ I ~~ I l~~~l’ ~~~~~~ BEFORE COMPLETU4G FORM3 ,-~t\P O u ~~~5~ ___1/ 12.

GovT Acccss iow NO. 3. RECIPIENrS CATALOG NUMBER

4. lYL E (ond SubSist.) 5. TYPE OF REPORT & PERIOD COVERED

PRIM System: P~~~ Tool Builders Manual and
User Reference Manual , —

‘— t._._ _ _ _ _ _ _- * - -
, _ .. -~~~~ . 6. ~~~Rppn.n n~~ ~~~~~

~~ 7. AUTHOR(i)
_ _ _ _ ~~~~~~

. S. CONTRA CT OR GRANT NUM$ER(.)

/ ‘/ 5 ~~j~~~~~~~2
Joel/Goldberg I I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I W ERFORdsN6 ORGANI ZAT ION NAME AND ADD RESS / ~~~~~~~~~~~ ~~~~~~~ i. ,. ’w 4T, TASK
I A*LA—&- W$fl.-.Information Sciences Institute / /

4676 Admiralty Way / VARPA ()rder.’.’2223
Marina del Rey, CA 90291 -

11 . CONT ROLLINGOF FICE NAME AND ADDRESS / 12. REP9~~~~~ A~~E .,

Defense Advanced Research Projects Agencj /1 Jani._r’—.b~7~1400 Wilson Blvd. -is.inurr .I.ses J
Arlington , VA 22209 121

14. MONITORING AGENCY NAME S AODRESS(SI dUt.,.nS hons Confrottind OfiSc•) IS. SECURITY CLASS. (of Ski. P.po~f)(
~9 ~

- -
~p~~/ Unclassified
r ~j 15.. DSCLASSIFICATION/OOW NORAOING

/ I SCHEDULE
L.

16. DISTRIBUTION STAT EMENT (of Ski. R.poi S)

) This document approved for public release and sale ; distribution
unlimited.

Il. DISTRI SUTIOP4 STATEMENT (of ffi. .b.tract .n5 ,.d In hock 20. Ii diff.,wt f rom R port)

IS. SUPPLEMENTARY NOTES

15. KEY WORDS (ContSins, on r•v•r•• .id. H n.c.••~~~ ond idontHV b, block nt b e)

debugging tool , emulat~ed I/O, emilation-based prograilining tools,
emulators, microprogranining

20. ABSTRACT (Continu, on isv~t~ aidi it nscsss y .14 idsnH~~ $~ Sleek nu b..)

This is a two-part manual for developers of PRIM-based emulators .
The manual describes the capabilities of PRIM, the requirements
for PRIM-based em.ilators, and the MLP-900 microprograninable processor .

p

‘~~~~~~“ ~‘“ $/N 0102 .014 . $60 i
IS OS~~ LITI UNCLASSIFIED

~~~~~~~ 1,’~’O 7 9j
~~~~ICuBlTv CI..A$SIFICATION OF THIS Pl~Gt (Ilion D.s. £nt r.d)



~~~~~~~~ ISI/TM-78-7
January 1978

_________ 
AR PA ORDER NO. 2223

PRIM System:

• Tool Builders Manual
• User Reference Manual

Louis Gallenson
Alvin Cooperband
Joel Goldberg 

—

~

INFORMATION SCIENCES INSTiTUTE

4676 Admiralty Wa) /Mar ina del Rey/ California 9029!
UNIVERSITY OF SO VTHERN CALIFORNIA (21  ) 822. 1 5 1 1

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DANC1S 72 C 0300 . A RPA ORDER
NO 2223. PROGRAM CODE NO 3030 AND 3P10.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S A NJ SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF A RPA . THE US.  GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUM ENT APPROVED FOR PUBLIC RELEASE AND SALE : DISTRIBUTION IS UNLIMITED.



i- l i

PRIM Tool Builders Manual*

Abstract

PRIM is an interactive microprogrammable environment used for creating and running
emulators of existing or newly specified computers, with major emphasis on debugging
tools that can be operated by the user in the language of the original system. This
document serves as a manual for programmers interested in writing emulation tools to run
under PRIM. It covers an overview of the PRIM system design, requirements for emulators
that are to run under a PRIM framework, the MLP-900 microprogrammable processor, the
GPM language for programming emulators to run on the MLP-900, PRIM exec and debugger
commands for the tool builder that supplement the commands available to the general PRIM
user, and the TENEX MLP-900 driver interface for those MLP-900 users who might not
want to run under PRIPit

f

C
.

Thia ru.wdi Is .i~port d by the Advanced Mu..rch Projects Agency iiid.r Contract No. DAHCI6 72 C
030$, ARPA Order No. 2223.

— . p —



V

(

Contents

Preface I

Chapter 1 Overview of the PRIM System Design 2
1.1 The PRIM System Architecture 2
1.2 The PRIM Framework 3
1.3 The PRIM Emulation Model 4

Chapter 2 Emulation Tool Requiremonts 5
2.1 The Microvisor Environment 5

2.1.1 Action Requests 5
2.1.2 Extended Stack 5
2.1.3 Stopping and Starting 6
2.1.4 Microvisor Calls 6

2.2 The Framework Environment 7
2.2.1 Required Allocations 7
2.2.2 Mainframe Emulation Standards 7
2.2.3 Registers and Switches 8
2.2.4 Target Memory 8

t 2.2.5 Timing and Emulated Clocks 8
- - 2.2.6 Time Synchronization 9

2.3 I/C) Emulation 9
2.3.1 I/O Configuration 9
2.3.2 Device Slots 9
2.3.3 DevIce Handlers 10

2.4 I/O Server II
2.4.1 Supported Device Classes ii
2.4.2 I/O Calls 12

2.4.2.1 RSTAT 13
2.4.2.2 cl OSE 13
2.4.2.3 L~rSTS 13
2.4.2.4 SFPTR and RF PTR 13
2.4.2.5 BIN and BOUT 14
2.4.2.6 SIN and SOUT 14
2.4.2.7 DUMPI and DUMPO 14
2.4.2.8 MTOPR 14
2.4.2.9 RESET 1.5

2.4.3 Cell Completion 15
2.4.4.1 Waiting for Completion IS
2.4.3.2 Aborted Requests IS

2.5 Breakpolntlng 16
2.6 Emulator Control Structure Ii

2.6.1 initialize Emulator’ I ?
2.6.2 “Reason to Stop’ 17
2.6.3 ‘Stop’ II
2.6.4 “Respond to Switches and Buttons’ 18
2.6.5 ‘Time to Serve Next Scheduled Device’ Il
2.6.6 “ServIce Scheduled Devices” SR

- —ii- -.--- i- —- --- 

~

.- -



v i

2.6.7 ‘Cycle Mainframe’ 19
2.7 Emulator Descriptor Tables 19

2.7.1 Structure of the Descriptor-table Source file 20
2.7.2 Spaces It

2.7.2.1 Symbols 22
2.7.2.2 Mapping Functions 23

2.7.3 Distinguished Spaces, Locations, and Cells 24
2.7.4 Events 25
2.7.5 Character Sets 26
2.7.6 Break Tables 27
2.7.7 Numbers 27
2.7.8 Expression Evalutation 27
2.7.9 Machine Instructions 28

2.7.9.1 Instruction Fields 29
2.7.9.2 Parsing Rules 29
2.7.9.3 Formats and Opcodes 31

2.7.10 DevIces 31
2.7.11 Tool Parameters 32
2.7.12 Parameter Cells 33

2.8 Emulator Installation 34

Chapter 3 MLP-900 Reference Manual 35
3.1 Primary Language Symbols 36

3.1.1 Identifiers 36
3.1.2 Reserved Identifiers 37
3.1.3 Numbers 37
3.1.4 Blanks 37
3.1.5 Nonalphanumeric Characters 37
3.1.6 Examples of Primary Symbols . .37

3.2 Operating Engine 38
3.2.1 Operating Engine Operands .38

3.2.1.1 R..37 General Registers 39
3.2.1.2 M..17 Mask Registers 41)
3.2.1.3 M ISC..37 Miscellaneous Registers 40
3.2.1.4 / L.1777 or /J PC..3 Auxiliary Memory 4 1
3.2.1.5 XBUS Exchange Bus 4?
3.2.1.6 Xt./J TOR.. 777 Translator Memory 41

3.2.2 Operating Engine Operators 41
3.2.2.1 GEAR ClCneral ,lRithmetic 42
3.2.2.2 CEDE Conditional bxterna l Data bxchange 46
3.2.2.3 SHIN Sh ift INstruction 49
3.2.2.4 GENT CKNeraI Data Transfer 53

3.3 Control Engine 54
3.3.1 Control Engine Operands 54

3.3.1.1 I~’..377 Flip-Flops 55
3.3.1.2 P..17 Pointer Registers 57
3.3.1.3 CE_77 Miscellaneous Registers 60
3.3.1.4 S.. 17 Subroutine Stack 60

3.3.2 Control Engine Operators 61 4
3.3.2.1 BRAT BR/Inch with Test 61
3.3.2.2 BENT Branch and i NTer 62

— 
-~ - . - - p ...._........._.. ........... L...... -.-~----..



vii

(
3.3.2.3 BORE Branch Or REturn 63
3.3.2.4 BRAD BRanch Iind moDify pointer 63
3.3.2.5 BEAD Branch Extended /Ifldress 64
3.3.2.6 BLOT BlOck Transfer 66
3.3.2.7 MAST M/Jnipulate STatus 68
3.3.2.8 MOVE MOVE CE Registers 69

3.3.3 Action Requests 70
3.4 I/O Interface 71

3.4.1 Command/Status Register 74
3.4.2 DATAO and DATAI 74
3.4.3 MLP- 900 Interface Manipulation 74
3.4.4 PDP-1O Interface Manipulation 75
3.4.5 IPL Mode 76

Chapter 4 General Purpose Microprogramming Language 77
4.1 Program Structure 77

4.1.1 Declarations 77
4.1.1.1 EQUATE Declaration 78
4.1.1.2 TEMPORARY Declaration 78

4.1.2 Statements 78
4.1.3 Closing 79

4.2 Statement Types 79
4.3 Pseudodeclarations 794’ 4.3.1 ORIGIN 80

4.3.2 COMME~1T 80
4.3.3 INCLUDE 80
4.3.4 Output Control 80

4.3.4.1 Source Listing Control 81
4.3.4.2 Code Listing Control 81

4.4 Assignment Statements 81
4.4.1 ArIthmetic Assignments Si

4.4.1.1 Mask (amask) 82
4.4.1.2 Test Mode (testmode) 82
4.4.1.3 Shift (ashif I) 82
4.4.1.4 Operators (aop) 82
4.4.1.5 Result (aleft .) 83

4.4.2 Boolean Assignments 83
4.4.3 Data Transfers 84

4.4.3.1 36-bit Transfers 15
4.4.3.2 16-bit Transfers 85
4.4.3.3 8-bit Transfers 86

4.4.4 INCREMENT end DECREMENT 86
4.4.5 SI-JFT 87

4.5 Control Statements 17
4.5.1 Blocks 17
4.5.2 BREAK $8
4.5.3 Branches $8
4.5.4 Loops $9
4.5.5 Conditional Control 89

4.5.5.1 Block-structured IF Statement 19
4.5.5.2 CondItional-branch IF Statement 90

— -



v i i i

4.5.6 Switches 90
4.5.6.1 Switch Tags 90
4.5.6.2 Switch Values 91
4.5.6.3 Programming Considerations 91

4.6 Low-level and Constant Statements 9,
4.7 The GPM Compiler 92

4.7.1 Source Program 93
4.7.2 Label Table 93
4.7.3 Code Listings 94

Appendix A Additional Ewec and Debugger Commands ~A.I Exec Commands 95
A.2 Debugger Commands 97

Appendix B TENEX MLP Driver Interface 99
B. 1 Control of an MLP-900 Process 99
B.2 TENEX JSYS’s Involving the MLP-900 99

Appendix C 6PM Reserved Words 101

References 102

Index 103



Preface

This manual is intended for PRIM users who are interested in building their own emulatIon
tools or In extensively modifying existing tools. The tool builder must be aware of three levels
of control or Interface protocols. At the first level, the PRIM framework must interf ace to the
operating system In which It is is embedded (TENEX or NSW). To utilize the PRIM system, the
tool builder--as well as the tool user--must have access to and knowledge of the basic
commands of the appropriate operating system (operating manuals for TENEX end 145W are
generally available to interested users; information contained In such manuals Is beyond the
scope of this manual). A second level of interfacing is between the user and the PRIM exec or
debugger command Interpreters (general user Information for PRIM can be found In PRIM
System: Overview and PRIM System: 1./ic r Reference Manual, which toot builders are assumed
to have read; information for specific existing tools can be found in a User Guide for that tool).
The third level of interface, between an emulator and the PRIM framework, Is covered In this
manual.

The manual is organized into four chapters and three appendices. Chapter 1 presents
en overview of the PRIM system design. Chapter 2 discusses requirements for emulators that
are to run under a PRIM framework. Chapter 3 describes the MIP-900 microprogr.mr able
processor. Chapter 4 presents the GPM language for programming emulators to run on the
MLP-900. Appendix A discusses those PRIM exec and debugger commands available to the toot
builder that supplement the commands available to the general PRIM user. Appendix ~3describes the TENEX MLP-900 driver interf ace for those MLP-900 users who tnlght not want to
run under PRIM. Appendix C lists 6PM reserved words.

I



2 

-

Chapter 1
Overview of the PRIM System Design

For some applications the native machine is not the system of choice in which to develop
software , as when the target machine is unavailable (because it is still being developed, is
obsolete, or is Inaccessible) or inconvenient (as when there is minimal target-system support
for debugging). In such cases, simulation or emulation may be preferred. Simulation has the
advantage of giving the user intimate access to the target machine, usually through a rich
debugging package. Typically, however, this richness is achieved at a high development cost
for the simulator and at a target-system performance degradation of four or more orders of
magnitude. Emulation can offer processing speeds comparable to the target system (even
faster, for slow target machines), but typically does not support a rich debugging environment.
The PRIM system attempts to retain the best features of both the simulation and emulation
approaches while at the same time minimizing their disadvantages. PRIM provides a sharable,
uniform framework for running emulations of target machines; within that framework Is a rich
user interface that supports interactive target-system and emulator debugging. When the user
Is not engaged in debugging, the target system runs at emulator speeds, but a sophisticated
debugging package is available immediately when needed. PRIM was developed within the
TENEX timesharing system so as to provide convenient access , a file system, resource
management, and a large set of uttlittes without (he cost of developing yet another opereting
syste,n.

By cleanly and sharply separating the debugging and target-machine emulation tasks,
PRIM has been able to avoid most of the disadvantages of simulation and emulation while at the
same time combining their advantages. In achieving this sharp separation of function, PRI M
established a uniform and systematic structure for the development of emulators. This
structure not only minimizes the involvement of the emulator in the debugging process, but also
greatly simplifies the task of emulator development as it utilizes a standard package of I/O
service routines and provides a conven -ent control structure suitable for a large family of
target-machine emulations. As most of PPIM consists of sharable system-level and user-level
code that Is common to this potentially arge family of target system emulations, a more
extensive development effort (with Its consequently more sophisticated design) was called for
than would have been appropriate for a single-machine emulation or simulation.

II The PRIM System Architecture

The emulation of a target machine under PRIM involves three different system levels: the
TENEX .timesharlng system, which runs on a PDP-10; the PRIM framework, which runs at user
level under TENEX; and target-machine emulation tools controlled by that framework, which run
on a sharable MLP-900 microprogrammable processor. The timesharing system hardware and
software provide shared access to the MLP-900. The PRIM framework supports interactive
users at terminals and provides access to the file system for the emulator. The emulator
maintains the complete target-system environment. The PRI M framework can be used for both
emulator development and target program debugging.

The PUP-b is a large, general purpose computer to which new devices ten be connected
fairly easily, since the I/O bus is extensible and the multiported memory is external to the
processor. TENEX Is strongly oriented toward the support of interactive computing, serving
both local users end remote users connected via the ARPANET. It does riot Interact directly



OvervIew of the PRIM System Design 3
1.1 The PRIM System Architecture

with the user, but rather allocates resources, manages the file system, and supports the
execution of TENEX processes, each process running in its own paged virtual memory arid
Interacting as appropriate with Its own user via a terminal of some KIr~d. To support PRIM,
TENEX was extended with software to provide access to the MLP-900 by TENEX processes; the
MIP-900 was extended with hardware and software to guarantee the Integrity of TENEX, even

against errant microcode.

The MLP-900 is a large, fast, vertical-word, microprogrammable processor with a writable
control memory. The processor consists of en operating engine and a control engine. The
operating engine Is a 36-bit arithmetic/shift unit with 32 general registers, 16 mask registers,
and a 1K internal memory. The control engine is a control unit with interrupt and branch logic,
a subroutine-call stack, 128 programmable flip/flops, and 4K of writable control memory. Cycle
time Is 300 nanoseconds, during which either one or both engines can execute a 32-bit
instruction. The MLP-900 is lnterf aced as a peripheral device on the P1W-tO I/O bus with
direct access to the POP-JO memory via one of the four existing memory ports; It has no
peripheral devices of its own. The I/O bus Interf ace allows the exchange of control information
between the MLP-900 and the PDP-lO; via this interface, either processor can Interrupt the
other. Hardware modift~ations were required only in the Mt.P-900; they consisted of the
interf aces to the PUP-tO and a supervisor/user state that provides protection against user
microcode for the I/O bus interface, the MI-P pager (an address translator In the memory
Interface that mimics the TENEX pager), most of the MLP-900 interrupt system, and the
MLP-900 control memory itself.

At the system level the software consists of a small operating system resident in the
MLP-900, known as the microvisor , and a TENEX device driver to shake hands with the
microvisor end govern access to the MLP-900 by TENEX processes. The MI-P device driver Is
the only module added to the TENEX operating system; It allows a TENEX process to create, run,
and control a subordinate PtP process in much the same way It can a subordinate TENEX
process. It also schedules use of the MLP-900 among contending users and supervises the
microvisor. Most of the microvisor is devoted to swapping emulator contexts (control memory
and MIP registers) as the driver passes control of the MLP-900 from one user to another; the
rest responds to emulator requests for service, manages the M..P pager, and performs other
tasks required by the driver In TENEX. The microvisor runs In the privileged supervisor state
that allows access to all resou rces; emulator microcode runs In the user state that protects all
the critical resources from modification. POP-tO memory Is not directly addressed by
microcode; Instead, memory references are to addresses in a virtual memory identical to that of
a TENEX process. These virtual addresses are translated to reel addresses by the MI-P pager,
whIch is controlled (vIa the microvisor) by the driver In TENEX. A reference to a page not in
memory results In a page-fault interrupt into the microvisor, which passes the fault to the
driver and retries the memory operation after the page Is fetched by TENEX.

The net effect of this design Is a sharable emulation facility in which each emuls or runs
Independent of all others in its own context, accessing its own virtual memory under control of
the PRIM framework that created it. The framework has potential access to all of Its emulator ’s
context and memory and may Inspect and/or modify them.

1.2 The PRIM Framework

The PRIM framework consIsts of TENEX processes that define end implement the PRIM
user command language , create an MLP-900 emu latIon process end control its execut ion at the
user ’s behest , arid provide I/O service for that emulation process. The ItO service implements



Overview of the PRIM System Design 4
1.2 The PRIM Framework

a set of primitives that allow the emulator to transfer data to or from the TENEX file system.
The emulator Invokes these primitives to perform target I/O operations on installed devices
after the user has associated them with TENEX files.

An emulator is required to cooperate in the debugging process, although the demands are
minimal. Essentially, an emulator is expected to stop cleanly when interrupted by the
framework or on the occurrence of a small number of predefined events that It monitors arid to
report its reason(s) for stopping. When the emulator halts or is Interrupted by user
Intervention, control returns to the user at command level via the framework.

The tool builder must supply the PRIM framework with tables that define the target
system architecure and symbols and drive a target system assembler and dIsassembler. Except
for machine and user symbols and target assembly language, the same command Interactions
apply to the use of every emulator and framework. The framework contains two separate
command processors, known as the exec and the debugger. Although both offer automatic
command completion and help facilities, each uses a language tailored to its functions.
Typically, a user interacts with the exec only briefly when starting and ending a session; during
the session he interacts primarily with a target program or the debugger. General user-level
exec and debugger commands are discussed in detail In PRIM System: (liar Reference Manual;
additional commands available to emulator developers are presented in Appendix A.

1.3 The PRIM Emulation Model

A prototypical PRIM emulator has been developed based on the constraints cf the
emula tor’s environment, the objectIves of the PRIM system, the requirements of the PRIM
framework, and the specibc interface conventions that framework defines. The environment
consists of execute-only microcode residing In control memory, the MIP-900 registers, and a
256K 36-bit (virtual) main memory; the registers and virtual memory together comprise the
context Into which are mapped the registers and memory of the target machine plus various
other regions devoted to required PRIM functions. The mapping is arranged at the convenience
of the tool buIlder, with accompanying tables describing this mapping to the PRIM framework.
The emulator can modify its context In the course of emulation, siop (thereby returning control
to the framework), and request I/O services from the framework.

The prototypical control structure allows an emulator to stop after any cycle and
subsequently resume emulation in a manner totally transparent to the target machine. While a
single target ins t ruc t Ion consti tutes the typica l cycle, other events, such as Interrupts or I/O
data transfers, sra also treated as emulator cycles.

Target timing In PRIM is virtual. The prototypical emulator Increments an internal,
high-resolution, virtual timer to reflect the passage of target-machine time; there is no fixed
relationshIp among target time, MLP-900 time, PRIM framework time, end real time. Emulated
cycles that consume target time (e.g., instruction execution) advance the virtual timer; emulated
cycles that nominally occur In parallel with the former (e.g., I/O controller activity) are
scheduled for servIce relative to that timer. The result Is a small, event—driven, discrete
slmufstlon system with target instruction execution being treated as a background t ask.



5

Chapter 2
Emulation Tool Requirements

This chapter presents emulation tool requirements in eight parts: (1) the microvisor
environment, (2) the framework environment, (3) I/O emulation and timing, (4) I/O server,
(5) breakpointing, (6) overall control structure, (7) toot descriptor tabIe~, and (B) emulator
installation.

2.1 The Mlcrovisor Environment

The MLP-900 microprogrammable processor is a shar able resource of the TENEX system.
Access Is controlled by the TENEX MIP driver, which together with the MI-P microvisor allows
TENEX processes to run emulation processes in a time -shared MIP-900. There Is no
interaction among emulation processes.

An emulator consists of microcode written in the GPM language to run in user state on
the MLP-900 (see Chapters 3 and 4). Co-resident with the emulator in MIP-900 control
memory, occupying locations 7000 through 7755 octal, Is the microvisor--the operating system
under which the emulator runs. The emulator resides in the remainder of control memory and
has available all the nonprivileged registers of the MLP-900. These control memory locations
end registers together constitute the emulator’s context; all of it is swapped Into the MLP-900
when the emulator Is started and all but control memory is swapped out when the emulator is
stopped. The emulator can read and write a (virtual) main memory of 256K 36-bit words.

The microvlsor runs in supervisor state. It processes all privileged action requests and
provides a set of routines that can be called by an emulator to perform necessary services.
The entry poInts for these calls are defined in the file <PRIM>ENTRY-VECTOR.GPM, which should
be included in every emulator (see the GPM INCLUDE command in Section 4.4.3).

2.11 Action Requests

The servicing of privileged action requests (AR’s) by the microvisor is completely
transparent to the emulator. The principal such services concern the swapping of emulator
contexts Into and out of the ML.P-900 and the servicing of page faults that occur on emulator
references to main memory.

There are eight user-level action requests (see Section 3.3.3), flops F.130 through F.f 37,
governed by the flop ARL.5 (F.150). Associated with these user AR’s are the interrupt
locations 7756 through 7775 octal, respectively, which are considered part of user control
memory. The TENEX MLP-900 driver and the microvisor cooperate to permit the controlling
TENEX process to set any of these user AR’s while the emulator is running; unless ARL.5 Is set,
a user-level AR interrupt results.

2.1.2 Extended Stack
( The microvisor supports an extended stack that is used when hardware-stack overflow

or underflow occurs. Whenever the microvisor is entered, whether by a call or an AR
interrupt, two levels of the stack are used. As a result , an emulator may require the extended
stack If it uses more than twelve levels of routine nesting, including nesting due to user-level
AR Interrupts. 

- -



H’

Emulation Tool Requirements 6
2.1 The Mlcrovlsor EnvIronment

The extended stack consists of sixteen 16-word blocks (in each of which the first word
and last two words are not touched) in the last page of MLP-900 auxiliary memory (locations
A.1400 through A.1777). The total capacity of the extended stack is 210 words. The tool
builder may treat as general auxiliary storage those blocks not needed for the extended stack.
The four high-order bits of P.6 select the block to use when the hardware stack overf lows.
When the extended stack Itself overflows, block zero is used. Incrementing or decrementing
P.6 through zero produces an extended-stack overflow ~nd causes an emulator error-stop. It
should be noted that since not every word of a block of the extended slack is used, P.6 may ’
not go up and down uniformly by one on calls and returns.

2.1.3 StoppIng and Starting

Whenever the controlling TENEX process runs/resumes an emulator, the microvisor
returns control via the top of the stack. An emulator is stopped, Its contex t swapped out of
the MLP-900, and the controlling TENEX process notified on any of the followings

• The emulator calls MLP.STOP
• The controlling TENEX process halts the emulator.
• Any of the following action requests occur: CMADR, SUPVF, PROT, or VADR.
• An extended-stack overf low or underf low occurs.
• A reference Is made to a protected page of memory.

2.1.4 Microvlsor Calls

The available entry points and calling sequences for microvisor routines are:

• MLP.STOP - stop until resumed externally. The calling sequence is

CALL MLP.STOP ;

A call to MLP.STOP relinquishes control of the MLP-900. The microvlsor and TENEX
MLP driver swap the emulator’s context out of the MLP and notify the controlling
TENEX process of the stop. If that process resumes emulatIon, the call to MIP.STOP
returns at the next micro-instruction.

• MLP.CALI - pass parameter to the controlling TENEX process. The calling
sequence is

R.37 i- call parameter ;
CALL MIP.CALL;

The parameter value In R.37 is passed to the controlling TENEX process via the
TENEX MIP driver. (The PRIM framework interprets calls to MLP.CALI as requests
for I/O service; see Section 2.4.) After the parameter word is passed to the driver,
the call to MLP.CALI returns at the next micro-Instruction.

• MLP.RCM - read control memory. The calling sequence is

(P.2) ~
- control memory address ;

CALL MIP.RCM



Emulation Tool Requirements 7
2.1 The Mlcrovisor Environment

A call to MLP.RCM allows user microcode to examine MLP-900 control memory. The
call returns immediately to the next micro-instruction with the contents of the
designated control memory location in R.37.

2.2 The Framework Environment

Fs~IlM is intended to support emulations of small- to medium-sized computers, with word
sizes up to 32 bits and I/O configurations of moderate size and variety, Including tapes, disks,
terminals, and unit-record equipment. The tool builder should strive for a complete,
bit-compatible emulation of the target machine, including not just instructions and registers, but
also clocks, interrupts, machine states, memory protection and relocation, and nearly real I/O.

2.2.1 Re~uIred Allocations 
-

The PRIM framework requires main memory to be divided into three fixed regions:
working memory, buffer memory, and configuration memory. Buffer memory is defined in the
emulator’s descriptor tables by buflow and bufhi (see Section 2.7.2). The region below
hallow is workin g memory, co ntaining target memory and any other large storage areas
needed by the emulator. Buffer memory is shared between the I/O server and the emulator
for transfers to and from the TENEX file system. Configuration memory lies above bufhi and
contains machine and device parameters; at a minimum it consists of the last page of main
memory, addresses 777000 through 777777 octal. Each device parameter must be allocated
within its device control block (see Section 2.3.2); global machine parameters may reside either
In MLP-900 wxiliary memory or in configuration memory.

A few flops associated with MLP-900 action -request Interrupts are used by PRIM for
fixed purposes.

• F.130 (TRAC) and F.153 (ITRAC) ~re used in the Implementation of the
MI-P-single-step command, as are the two control memory locations associated with
the TRAC action request , 7756 and 7757 octal. The emulator should avoid using
any of these locations.

• F.131 is the STATUS action request, requiring the emulator to return the target
status to the framework as soon as possible. The emulator may report status either
by stopping--in which case STATUS and QUIT are identical--or by IssuIng an RSTAT
call (see Section 2.4.2.1).

• F.132 is the Q(JT action request, requiring the emulator to stop ‘4 the end of the
current cycle (see Section 2.6.3).

The emulator must either contain interrupt routines to handle F.131 and F.132 Interrupts or
disable user interrupts and poll F.131 and F.132.

2.2.2 Mainframe Emulation Standards

A complete instruction set , functionally identical to that in the emulated CPU, must be
Implemented. As the actual details of implementation are transparent to the user, the emulation

( need be verifiable only at the point where the emulator stops. The possibility of additional
meta-instruct ions for any given machine should not be precluded.

A full interrupt facility, functionally identical to that In the emulated CPU, must be
implemented. For interrupt conditions that cannot occur because execution Is emulated (e.g., a



Emulation Tool Requirements 8
2.2 The Framework Environment

memory parity error), there should still be some way for the use r to cause the Interrupt, such
as implementing a user-settable indicator that represents the pending interrupt condition. In
general, the detection of an interrupt condition and the “taking” of the interrupt are •best
treated as distinct emulator cycles with a set of interrupt-pending bits holding the state
information between the two cycles.

2.2.3 Reglstera and SwItc hes

All programmable registers and switches should be implemented, except those listed
below. Momentary switches (e.g., master-clear/reset) are to be noticed by the emulator and
cleared; normal toggles are to be read-only. It is not necessary to store console toggles in
NIP flops; they can be assigned where most convenient. The followIng switches should not be
Implemented:

• Power On/Of f
• Run/Stop switch (it is replaced by the external control of the emulator Itself).
• Switches used for machine diagnostics and maintenance that deal with machine minor

cycles and such nasty things.

2.2.4 Target Memory

Target memory is mapped into the emulator ’s working (PDP-,1O) memory, beginning at
location zero and using as many words as required. The packing of target words is restricted
only In that the four high-order bits of each 36-bit PDP-1O word are reserved for meta-bits.
In general, it is recommended that a single addressable target memory location be stored in
each PDP-10 word.

Any memory paging, relocation, and protection offered by the target machine must be
implemented faithfully by the emulator at the functional level. Target memory Is to be treated
as the machine’s physical memory, not as a tar get user’s virtual memory.

2.2.5 TimIng and Emulated Clocks

Timing Is done through an internal (36-bit) virtual timer whose unit is some smallest time
of interest, at most a machine minor cycle. The interval must be fine enough for accurate
timing; it must be large enough that the number of intervals required to schedule the longest
event can be represented in 35 bits. A time of 50 nanoseconds is proposed as a standard ,
allowing events of approximately 30 minutes duration, InstructIon execution, memory
references (by devices or CPU), and anything else that takes time, all advance the virtual timer
appropriately. For machines with inexact timing--due to asynchronous functional units,
interleaved memory, or data-dependent execution times- -only statistically correct timing may
be possible.

The virtual timer Is used not only to establish emulated execution time but also to
• provide a time frame in which to run I/O devices, slow clocks, and whatever else operates

• (Inf requently) in parallel with the mainframe. This time frame allows the handlers for such
devices to schedule themselves for service at (regular or Irregular ) Interva ls to reflect
async hronous operation accu rate~y. The emulator treats the virtual timer as a continuous
circular counter; PRIM keeps track of the high order portion for purposes of reporting time to
the user.



Emulation Tool Requirements 9
2.2 The Framework Environment

2.2.6 Time Sync hroni zation

Synchronization of emulated (virtual) time with the PRIM framework--and , through It, with
other processes or emulations--is tin optional feature. If implemented, It requires a global
parameter that wi N contain the synchronization interval and a scheduled pseudo-clock that
generates an RSTAT call (see Sect ion 2.4.2.1) at the end of each such interval of virtual time.

2.3 1/0 EmulatIon

All I/O devIce control and timing Is emulated. Each device type supported by an emulator
is Implemented by a microcoded device handler. Execution of a device handler is scheduled
relative to the (high-resolution) virtual timer: the initial execution of a handler is scheduled by
the CPU or by emulator initialization, then each time a handler runs it reschedules Itself for Its
next execution as necessary.

The device handler is responsible for all of the control and state logIc associated with the
emulated device. The data medium of the device Is the TENEX file system; the PRIM framework
Includes an I/O server that gives the device handler access to it.

2.3.1 1/0 Confi guration

ConUgurMion in PRIki consists of the user “instaiting” supported i/O devices , “mountingTM

files on installed devices, and specifying assorted parameters associated with these devices and
files. The installation of devices is allowed only prior to initializing the emulator and may,
therefore, be assumed to be fixed over a normal emulator stop/resume sequence. Although the
mounting of files is dynamic, with the user able to change file assignments and characteristics at
any time, It Is of no concern to the emulator, as the I/O server is responsible for all TENEX file
management. Device parameters are divided into two classes: those that may be set only at
installation tim, and those that may be altered by the user any lime th. emulator Is stopped.
DevIce parameters (and the class to which they belong) are defined In the emulator’s descriptor
tables (see Section 2.7.11; parameters marked tXPLICIT or FIXED may be set only at installation
time, and those marked DEFAULT may be modified at any time).

Up to 64 devices may be installed. Each installed device is assigned a PRIM device
number (PUN) by the framework as it is installed. A given device type may be Installed any
number of times, but each instance must have a unique device address (see the discussion for
word 5 of a device control block in Section 2.3.2).

2.3.2 Device Slots

Th. PRIM framework contains 64 identIcal, configurable device slots, each capable of
handling the I/O requirements of one emulated device. There is a one-to-one correspondence
between device slot and PUN. The actual assi gnment of device slots to emulated devices is a
confIguration function. Associated with each of the 64 devIce slots Is an eight-word device

• control block In configuration memory (at octal location 777xx0, where xx Is the PUN). Each
block is for the exclusive use of its device and handler; it includes both the (fixed) configuration
information that Is passed to the emulator and the I/O call block for executing actual I/O( operatIons. The allocatIon of control block words is given below:

a •
~ 

-.--,-•• -•--•• —• — — — • --—



Emulation Tool Requirements 10
2.3 I/O Emulation

0. I/O-server call-block code and status word (initially zero).

1-3. I/O-server call-block parameters (not initialized).

4. Device handler parameters and private storage. This word contains
device-specific parameters; any parts not used for parameters are inItially zero.

5. HandIer type (H.0--bits 84-19) and a unique device-address (Hi--bits B20-35).
The handler type identifies the device handler for this device In this emulator
and thus associates an emulated handler type with this control block. A handler
type of zero (actually a word of zero) Is reserved to mark an unused control
block; handler indices thus begin with one. The device address Is the locatIon in
the target-system I/O address space for this device and thus associates a target
device with Its control block. The device address will usually consist of an 8-bit
primary (channel and/or controller) address and, where needed, an 8-bit
secondary (unit) address.

6. <XWD <buffer sixe (in wordal’, <buffer first word address>>. For devices that
do not require a buffer (where all I/O is done with BIN or BOUT calls) this word
is zero. Since buffer size requirements for each device type are determined at
configuration time from the emulator’s descriptor tables, all buffers will be the
right size.

• 7. Device time. This is a 36-bit value giving some basic time unit for the device (In
units of the virtual timer interval), typically the inter—byte transfer time. It
should be used to pace the emulated device properly. The user should be able
speed up or slow down a device by altering this value.

2.3.3 Device Handlers

Each different type of device (Or controller) is implemented by a microcoded device
handler that issues the necessary calls to the I/O server in the PRIM framework. The creation
of new handlers for a ~iven emulator is a demand function; the possible number of handlers is
limited principally by the size of control memory. Each handler must be made known to the
framework vIa appropriate descriptor-table information to allow the proper installation of the
implemented device. Each installed device is associated with a unique device control block; the
PRIM I/O server transfers data between the TENEX file system and that control block or its
buffer in response to emulator calls.

The emulator performs a target I/O command by locating the appropriate device control
block and using the handler type it contains to select the proper handler. A device handler
must implement the I/O operations relevant to its device, using I/O server calls to manipu late
the associated IENEX files. It must move transferred data between the appropr iate mainframe
locations and the allocated device buffer (Or the control block, for single-byte transfers). It
must also emulate the device timing, using its device time parameter to schedule Its next

-. lion. A device handler must be re-entrant so that a device or controller can be installed
mci. han once; thus all storage required by a device handler (including the device control
block) must be associated with a device slot and not with the device handier itself.

The level of detail in the 1/0 emulation is determined by the requirements of the
expected applications. Thus for some applications a card reader that reads In the entire card



Emulation Tool Requirements 11
• 2.3 I/O Emulation

at once (at the conclusion of the necessary elapsed emulated time) might be adequate, while
other applications might require a card reader to schedule the read of each column separately

The internal structure of device handlers, and the conventions for interacting with the
mainframe, are not here specified (except implicitly by the configuration requirement that all
handlers work indirectly through control blocks). Certain large classes of emulated machines
(e.g., NTDS) will use common programming conventions for all their handlers in order to
share cor mon devices.

2.4 1/0 Server

I/O service Is performed by the PRIM framework asynchronously and In parallel with
emulator execution. I/O transfers take place between the TENEX file system and device buffers
(for multi—byte transfers) or device control blocks (for single-byte transfers). A device control
block (containing a four-word call block) is set aside in configuration memory by the framework
as part of device slot allocation (see Section 2.3.2), but a fixed relationship between call block
addresses and particular devices is neither required nor assumed. The emulator issues a
service request by building a call block and passing its address to the framework:

R.37 ~
- call block address I the high-order half must be zero

CALL MLP.CALI ;

The I/O server performs the requested operation using files currently mounted on the
designated device, replying (and returning status ) in the call block itself. When an operation
completes, the server sets a call-completed bit in the call block. Any number of requests may
be outstanding simultaneously, but only one call may be outstandi ng at a time from any given
ciii block.

2.4.1 Suppo rted Dev Ice Classes

The I/O server supports three classes of emulated devk es: sequential (communications,
paper tape, and unit record), random access (disks), and magnetic tapes.

e For sequential devices, simple sequential I/O Is performed on the mounted TENEX
file; for bidirectional (terminal-like) devices, two Independent files (or a real
terminal) are used. The mounted files may be declared as containing ASCII data , in
which case the server translates the file’s characters to or from the device’s
character set , or containing b,nary data, in which case no data transformation Is
performed. Data may be transferred a byte at a time (BIN and BOUT) or a record at
a time (SIN and SOUT). A terminal-like device may be declared half-duplex, In which
case the server echoes all Input to the output (file) as il ls read.

e For random-access (disk-like) devices, mounted flies are assumed to be binar y with
sequential , fixed-le ngth records. The relevant operations are BIN, BOUT, SIN, SOUT,

• SFPTR, and IWPTR.

( • For “magnet ic-tape” devices, either a real magnetic tape unit or a disk file may be
mounted. A magnetic-tape disk file is reed or written with both data and structure
information intermixed in a private format that requires a byte size of 9. Tap.
operations are limited to DUMPI, DUMPO, and MTOPR.



Emulation Tool Requirements 12
2.4 I/O Server

In all cases where different forms of files are allowed (ASCII or binary for sequential devices,
magnetic tape unit or disk file for tape-like devices), the I/O server handles the dIfference
transparent to the emulator.

2.4.2 1/0 Ca lls

The first word of a call block is used to pass an operation code from the emulator to the
I/O server (in the right half) and to return completion status from the server to the emulator (in
the left half); the emulator clears the status bits before issuing the service call and tests them
on its completion. The remaining three words of a call block contain parameters ared replies
specific to each operation. The reader familiar with the TENEX system may notice a strong
resemblance between the call codes. and JSYS numbers and between the call parameter words
(P1, P2, and P3) and JSYS accumulators (AC! , AC2, and AC3). The format of the first word of a
call block is:

BO-B6 (not used)
87 write-protected (input-only file)
88 at end of tape
89 at load point
910 at file mark
811 record-length error
BlO-BI 1 00 record matches buffer size

01 record less than buffer size
10 file mark encountered instead of record
11 record exceeds buffer size

612 (not used)
813-814 (valid only as GTSTS replies)
B15 TENEX end-of-file
816 call aborted
B17 call completed
818-835 call code (see below)

Bits B7 through 811 apply only to magnetic tape operations; 615 through Bi7 apply to all
operations.

All operations that refer to a particular device take a PON in parameter P1. The PDN is
an identifyIng handle similar to a TENEX EN.

Operations that transfer data to or from a buffer in buffer memor y take a PDP-10 byte
pointer as a parameter; the pointer addresses the byte before the first byte of the buffer (in
anticipation of a PDP-1O 1108 or IDPB instruction). A byte pointer whose left half is zero
causes one byte to be transfered per POP-lO word (starting at the indicated word, not the next
one); a byte pointer whose left half is all one-bits causes transfers to follow the standard ASCII
text packing for the POP- 10.

The I/O calls are listed below; parameters returned by the I/O server are enclosed in
parentheses; parameters reset by the I/O server are enclosed in braces:



Emulation Tool Requirements 13
2.4 I/O Server

~~~ Name P1 P2 P3
14 RSTAT target PC clock call block address
22 CLOSE PDN
24 GTSTS PON
27 SFPTR PDN record number record size
43 RFPTR PON (record number) record size
50 BIN PON (byte)
51 BOUT PDN byte
52 SIN PDN byte pointer record size
53 SOUl PDN byte pointer record size
65 DIJMPI PON byte pointer (record size)
66 DUMPO PDN byte pointer record size
77 MTOPR PDN operation count

147 RESET

2.4.2.1 RSTAT

RSTAT provides the framework with information about the state of the emulated machine.
The target PC (in P1) and high-resolution virtual timer (in P2) are always included in the call. If
the emulator Is currently waiting for a call to complete,P3 has the address of that call block; if
it is not waiting, or cannot determine its state, P3 has zero.

RSTAT has two distinct uses: for responding to a STATUS action request (see
Section 2.2.1 and Section 2.4.3.1) and (if necessary) for sychronizing emulated (virtual) time
with the PRIM framework. Synchronization requires that at the end of each scheduled RSTAT
interval the emulator wait for the previous synchronizing RSTAT call to complete and then Issue
a new synchronizing RSTAT call. The reporting RSTAT call and synchronizing RSTAT call
should use different cell blocks so that a status report can be made while awaiting completion
of the previous synchronizing call.

2.4.2.2 CLOSE (all devices)

CLOSE closes the TENEX file(s) associated with the designated PRIM devIce, Isaving the
device with no flies mounted.

2.4.2.3 CTSTS (all devices)

GTSTS returns status bits in the left half of the first word of the call bloclq two status
bits are specific to this call:

813 off-line (no files mounted)
614 input waiting to be read

2.4.2.4 SPPTR and RFPTR (primarily for disk.type devices)

SFPTR positions the mounted TENEX file to the beginning of the record specified by P2
(i.e., to the TENEX position P2sP3); if P2 is all one-bits, the file is positioned at its end and(the number of records in the file is returned in P2. RFPTR returns the current record number
(TENEX position/P3). For both of these operations, a negative (or zero) P3 Is taken to
represent a one-byte record. if SFPTR references a sequential device (see Section 2.4.1), it is
applied only to the input file.

• a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Emulation Tool Requirements 14
2.4 I/O Server

2.4.2.5 BIN and BOUT (primarily for sequential devices)

BIN reads one character from the (input) file mounted on the device; an end-of-file status
at completion indicates there had been no more characters to read. BOUT writes one character
to the (output) file.

2.4.2.6 SIN and SOUT (sequential or disk-type devices)

SIN transfers one record (of P3 bytes) from the (input) file to the buffer. SOUl
transfers one record (of P3 bytes) from the buffer to the (output) file. For SIN, en end-of-file
status at completion indicates that no data was transferred, since the file had been positioned
at its end.

Binary files are assumed to be pure data (no structure information). A short (last) input
record is padded with zero bytes.

ASCII files are processed one text line at a time, regardless of line length. Each SJN
reads through the next end-of-line (truncating lines longer than the buffer or padding shorter
ones with spaces), then translates the line and stores it in the buffer as a fixed length record
of the requested size; line terminators are not part of the translated lines. Each SOUl causes
the buffer to be translated, written into the file (with trailing spaces possibly stripped), and
followed by an end-of-line sequence (carriage return followed by line feed).

2.4.2.7 DUMPI and DUMPO (magnetic tape device only)

DUMPI reads one record to the buffer from a real magnetic tape or a disc file specialty
encoded to contain tape-structure information as well as data. The number of bytes
transferred Is the lesser of P3 and the actual record length; bits 810 and 611 of the status
word together indicate which of these governed the transfer. When the record Is shorter than
the buffer (610,611 01), the actual record length is returned in P3; when the record Is
longer than the buffer (810,611 11), the number of lost frame s is returned in P3. DUMPO
writes one record (of P3 bytes) onto a real magnetic tape or a specially encoded disk file.

2.4.2.8 MTOPR (magnetic tape device only)

The following MTOPR operations are implemented for magnetic tape devices; they do not
use P3:

I rewind
3 write EOF
6 forward-space one record
7 back-space one record

13 write gap
16 forward-space one file

• 17 back -space one file

The following MTOPR operations are implemented for sequential devices; P3 contains a
repeat count:

Emulation Tool Requirements 15
2.4 I/O Server

12 wrIte P3 ASCII line feeds (with no CR)
14 write P3 ASCIi form feeds (with no CR)
15 write P3 ASCII carriage returns
37 wrIte one ASCII CR followed by P3 IF’s

They are useful where the device’s character set does not contain form-control characterr. If
the file mounted on the device is binary , these MTOPR operations are ignored.

2.4. ..9 RESET

RESET requests the I/O server to abort all outstanding service requests. When the
RESET call is completed , all prior calls on the server are guaranteed complete. For each
outstanding call completed prematurely by the RESET call, the call-aborted status bit will be set.
RESET is the only call guaranteed to complete in a short time.

2.4.3 Call Completion

When the I/O server completes a call, it sets the status bits and reply words In the call
block. Until the call-completed bit is set , the call Is outstanding and the call block logically
belongs to the server. In general, the i/O server supplies the emulator with an error-free I/O
interf ace. If a file problem occurs (e.g., file not mounted, untranslatable characters) the
framework requests the emulator to stop via the QUIT action request and reports the error to
the user. Unless the user aborts the operation with a CANCEL command, the outstanding
request will be retried by the server when emulation is resumed. Emulation errors (e.g., use of
an unrecognized PDN) are treated similarly, except that the server automatically aborts the
request.

2.4.3.1 WaItin g for Completion

Since I/O service calls are processed asynchronously, a call can take an Indeterminate
amount of time to complete; some calls may never complete. For operations that have no fixed
emulated completion time (e.g., input of a character from an emulated operator’s console), the
device handler must poll the call block by rescheduling itself to test the call-completed status
bit again after some reasonable interva l. For the majority of service requests, however, the
emulated time of completion is fixed since the operation takes a known interval. When the
scheduled time for completion arrives, the device handler must wait for the call-completed bit In
the call block, thus synchronizing the I/O server with the emulated time frame. It is
lhIPIVR,fl’IVJ! that /11.1 , such waits include the ability to respond to QIJT arid STATUS
action requests before the request is completed. The eniy allowable exception to the above Is
a wait for a RESET call, since It is guaranteed to complete shortly.

2.4.3.2 Aborted Requests

An I/O server request can be aborted by the user-level CANCEL com mand, by an
emulator RESET request, or by the server itself. When any of these happens, the server sets
both the call-completed and call -aborted bits, indicating that it Is done with the cal l block but
the call was termInated prematurely. Should the emulator wish to abort a specific outstanding
service request (e.g., because the emulated device was reset), it may make the server call:

R.37 ~
- call block address + 400000000000 I sign bit is set

CALL MLP.CALL ;

—..---—
~~
- •—.-- -- .- ——- — —

Emulation Tool Requirements 16
2.4 I/O Server

The server will then abort that call shortly (unless it completes normally first).

2.5 Rreakpo lnt lng

An emulator must constantly look for conditions that will cause a break at the end of an
emulation cycle. These break conditions fall into two classes: references and events.

A reference break is caused by some emulated reference to a target location in which a
reference-break mete-bit is set. The locations subject to reference breaks, and the type(s) of
references to be monitored there, are indicated by the tool builder in the emulator’s descriptor
tables. Reference-break mete-bits are permitted in working memory or MLP-900 auxiliary
memory. The reference types are write (any modification), read (data fetch), and execute. All
three types of breaks should be allowed in target memory; other locations, such as target
registers, may be limited as deemed reasonable. A reference break does not suppress or
interrupt the reference; rather, the execution cycle is completed normally but the occurrence of
the reference break is logged for the debugger to process when the emulator stops at the end
of that cycle. (Interrupting execution at the end of the cycle Is consistent with the requirement
for stopping cleanly and also avoids a problem that would arise if execution were Interrupted in
mid-cycle on the occurrence of the break condition--that of responding to possible changes
made in the context dur ing the break while not reporting the same breakpoint repeatedly.) The
mete-bits are the four high-order bits of the 36-bit word:

BO: write break.
Bi: read break.
82: execute break.
83: not used.

An event break is caused by the occurrence of any of a set of predefined events for
which a corresponding mete-bit is set. One rneta -bit is assigned in the context for each type
of event. These mets-bits are described In the emulator’s de~scriptor tables. An event break
does not suppress or interrupt the event; rather, the execution cycle Is completed normally but
the occurrence of the event break Is logged for the debugger to process when the emulator
stops at the end of that cycle. The list of events is to include the following, and anything else
deemed reasonable:

• Anomaly: any occurrence of a predefined program anomaly.
• Store: any memory store.
• Jump: any (successful) jump/branch.
• Step: any CPU instruction execution (i.e., CPU single step).
• I/O: any I/O channel activity (i.e., I/O single step).
• Interrupt: any Interrupt sequence.
• Tick: every tick of the emulated clock(s) or other reasonsb~e Interval (such

as a millisecond) if there is no clock.

Some anomaly conditions may be forced automatically if they are considered of sufficient
importance by the tool builder, thus needing no associated mete-bits.

The occurrence of a break of either type Is recorded in one word of an eight word (or
larger) break -buffer. Each emulator cycle may use the entire buffer, from the begInning; the
buffer is cleared by the debugger before resuming after a breakpoint. The format of a
break-buffer word is

Emulation Tool Requirements 17
2.5 Breakpointing

Break Type 80 - 82 83 - 88
—

89 - 835
(Unused entry) 0 0 0
Event 0 Event Index Event parameter
Write break 1 Space number Target address
Read break 2 Space number Target address
Execute break 3 Space number Target address

The tool builder assigns event indices to message strings that are contained in the emu lator ’s
descriptor tables. Event parameters, if any, are specific to each event. The space number
corresponds to the SPACE declaration on which the referenced target address is declered in
the emulator’s descriptor tables (see Section 2.7).

2.6 Emulator Control Structure

The top-level structure of an emulator is assumed to be

initialize emulator ;
FOREVER DO
BEGIN

IF reason o stop
THEN BEGIN

stop ;
respond to sw itches and buttons ;
END ;

IF time to serve next scheduled device
THEN service scheduled device.
ELSE cycle mainframe ;

END ;

Except for the top-level loop shown in the control structure, an emulator may not have any
loop that can run for an arbitrarily long amount of time. Any emulated operation that can t ake
such tong times must be prepared to abort if a STATUS or QUIT action request occurs. Each of
the italicized phrases in the control structure is described below.

2.6.1 “InUlalize Emulator ”

InitialIzation Involves the setting up of locations, such as mask registers, whose values
are constant, although possibly a function of a configuration parameter. Inappropriate
configuration parameters may be transformed in the process but may not be destroyed as the
emulator must be re-initializable without harm.

The set of 64 device slots may be scanned to examine the configuration of installed
devices and to Initialize them properly (Installation of additional devices is not permitted after
emulator Initialization). Pseudo-devices (e.g., clocks) must also be initialized.

2.6.2 “Reason to Stop”

(Emulation must be suspended when the target machine halts, when any break condition
has occurred, or when the PRIM framework requests termination. When the emulator
encounters a break condition during the emulation cycle, it logs the break for the debugger to
process and flags a break state so as to stop at the end of that cycle. The framework
requests termination (at the end of the next cycle) via action requests (see SectIon 3.3.3).

Emulation Tool Requirements 18
2.6 Emulator Control Structure

2.6.3 “Stop ”

Before calling MLP.STOP, the emulator must leave the reason(s) for slopping in R.37,
coded as follows:

Quit request 1
Emulated halt 2
Break(s) 4

If more than one stoppIng condition occurs in any cycle, the above numbers are OR’ed.
Changes to the context made by the user during an emulator stop must appropriately affect the
target machine on resumption of emulation. In particular , this requires that the emulator have
no hidden copies of target state information when it stops.

2.6.4 “ Respond to Switc hes and Buttons ”

Upon resuming emulation after a stop, the emulator must check all manually setteble
switches that are not checked in the course of the normal emulation cycle (e.g., master clear,
load, etc.), and react appropriately. The emulator must also make sure that all hidden locations
that reflect user-addressable values are set up again (c.a., a global interrupt-check flop). In
general , anything that is user-addressable, and that the emulator assumes is constant during
execution, must be checked .t this time.

2.6.5 “TIme to Serve Next Scheduled Device”

The basic execution cycle consists of either asynchronous device service or a unit of
mainframe processing. Device service Is scheduled relative to the high-resolution virtual timer.
A convenient scheduling mechanism is to maintain a linked list ordered by service time (earliest
first) within an array of devices. Clock pseudo-devices, including the one used for
synchronization (if implemented), are most easily treated as though they were scheduled
devices of a unique type that is not installed.

Given a 36-bit, continuous, circular, virtual timer and events scheduled over a time span
requiring no more than 35 bits of that timer, the correct test to compare the timer (here called
R.TIME) with the scheduled time of an event (here called R.SCHED) Is:

R.TIME - R.SCHED \ 1;
GOTO +1 1 must let the shift settle into SHE
IF NOT SHE THEN

COMMENT scheduled time of the event has arrived ;

EN~
The same test can be used to compare scheduled times for ordering an event list.

2.6.6 “ Serv ice Scheduled Devices ”

Each configured device has, in word 5 of Its associated device control block (see Section
2.3.1), an assigned handler type that is used to select the appropriate handler for the device.
The tool builder specifies the handler type for each device in the emulator’s descriptor tables.
When a device is Installed , Its handler type is entered Into the control block. Serving a device

Emulation Tool Requirements 19
2.6 Emulator Control Structure

consists of removing that device from the scheduled device list and calling the pt oper handler.
Each device then reschedules itself for further service according to its timing parameters and
state.

A simple implementation of the wait-loop requirement of Section 2.4.3.1 Involves turning
a wait for completion into a rescheduling at the currently scheduled time. This puts the device
back at the head of the event list, forcing the main loop to serve it again and again until
completion of the request, while allowing any required stop to occur in the main control loop.

2.6.7 “Cycle Mainframe

All mainframe activities take place in a single time frame and thereby consume internal
(virtual) time. The selection of the appropriate mainframe activity for any emulation cycle is a
function of the machine’s internal design and priorities. A target interrupt, however, should be
treated as a separate emulation cycle, thus permitting a break to occur between the target
machine’s acceptance of the interrupt condition and the execution of the next instruction.
During mainframe execution, the emulator should maintain a jump history queue that records the
last few (at least sixteen) successful jumps in terms of old and new program-counter values, the
values being recorded circularly in two parallel spaces , typically In auxiliary memory (see
Section 2.7.2 for a discussion of spaces). The location of the most recent pair of entries must
be maintained in a pointer made known to the debugger via the emulator’s descriptor tables.

2.7 Emulator Descriptor Tables

PRIM requires each of its emulation tools to have an associated Ioadable descriptor-table
file containing a data base that identifies necessary elements of the emulation and defines the
target architecture as it appears to the user. This file supplies assembly language conventions
for the representations of numbers, operators, symbols, character sets, and Instructions. It also
defines the names, locations, and structures of addressable assemblages of cells of the tool
(such assemblages are referred to as “spaces”), along with other characteristics of its
architecture. This descriptor-table file is loaded automatically during PRIM initialization; the
tool builder may also load such a file explicitly with the TAE3LES command.

One of the principal functions of the tables is the identification and naming of all cells of
interest. Briefly, a cell is a set of contiguous bits contained within a single 36-bit word in
either the TENEX target fork (the emulator ’s virtual main memory) or the MLP context (the
emulator’s control memory and MLP-900 registers). A cell is identified for the PRIM exec or
debugger by an “extended PDP-10 byte pointer” In which the P (position) and S (size) fields
have their standard meaning, while I, X, and E are combined into a 23-bit extended address.
The extended byte pointers for all the MLP-900 registers (H..37, M..t7, MISC.. 17, CE..137,
~‘..377, P..7, S..??, and /1. 1777) are predefined in the tables using the GPM names. The
macros that generate extended byte pointers take two arguments, named byteptr and bit spec.
llyseptr is either one of the predefined extended byte pointers or an extended address that
implies a full-word byte pointer (P”O and S”36). The optional huapøc, if specified, defines a
sub-byte within the named byte. The two acceptable forms of bitapec are <a-b> and <e,h>
where a and b are Integer constants. In the first form, bits a through b are indicated, where
bits are number from 0 starting at the high-order bit in a byte. In the second form, a sub-byte
is indicated as being I, bits wide, positioned in the byte with a bits below (to the right of) Its
low-order bit. Addresses in the range 0 through 777777 (octal) are In the target memory;
addresses 1000000 through 1017777 (octal) are In the context; all other addresses are invalid.

Emulation Tool Requirements 20
2.7 Emulator Descriptor Tables

2.7.1 Structure of the Descriptor -table Source File

The relocatable descriptor-table file Is actually the result of assembli ng a
— descriptor-table source file containing calls to MACRO-lO macros. The definitions of the

macros used to build the tables are kept in the file MLP>TABLES.MAC; when assembled, this
file produces the file TABLES.UNV, which must be referentcd at the beginning of the
descriptor-table source file by using the MACRO-b directive SR/I RCII T/JR 1 25 (note that this
facility Is not completely supported prior to version 50 of M~CRO-10). Implicit in these
table-building macros is the assumption that the prevailing radix is decimal. If the tool builder
wishes, he may change this by using the BASE macro (but should not use the RADIX directive).
Since MACRO-b assembles the source file to produce the relocatable file, the MACRO-lO
conventions must be observed for the representation of numbers , character strin gs, and
symbols. Except where explicitly contraindicaled, the tool builder may freely use all of the
features of the MACRO-b assembler.

The second line of the source file must be a call on the EMULATOR macro. This macro
defines th. name of the machine, the width of several of the primary registers, the predominant
type of arithmetic used, and the timing of the machine:

EMULATOR emname, pewid, inawid, chrwld, aru?iwidth, cr1; haddr, buflow, bulb?, ml ne ye

e ainname is the name of the emulator.
• pewid, Inawid, and clirwid define the bit widths of the program counter, the basic

instruction, and characters in the prevailing character set of the machine,
respectively.

• arithwidth and ari;haddr define the number of bits and type of arithmetic with
which the PRIM debugger is to evaluate input. Currently A.2COM and A.ADDR are
the only supported arithmetics; the former effects two’s complement arithmetic while
the letter interprets operands as unsigned magnitudes (other routines may be added
to PRIM as the need arises).

• buflow and ha fht delimit the region in target memory that may be allocated by PRiM
for I/O buffer space (by the routine DV.BUFF) such that hallow < bull ’? and both
are in the closed interval (400000, 776777], octal.

• mlncye specifies the number of emulated nanoseconds between successive ticks of
the high-resolution virtual timer of the machine.

The EMULATOR declaration is followed by definitions, In arbitrary order, of the tool’s spaces
and symbols, character set(s), break tables, number and expression syntax assembly formats
and opcodes , events, emulated devices, and tool parameters. The last tine of the source file
must contain the MACRO-b directive

END

In the macro descriptions that follow, each formal argument that ends with the su ffix lag
has it. corresponding actual argument converted into an assembly-time symbol by prefixing it
with a period; all such tags must therefore be unique In the first five cha racters. Such tags
never conf lict with the Internal symbols used by the table macros, so all valid MACRO-tO
symbols are allowed.

V

EmulatIon .Toot Requirements 21
2.7 Emulator Descriptor Tables

2.7.2 Spaces

A space is a two-dimensional array of cells that have been grouped together for
L convenience or necessity. Each column (or vertical slice) of the space consists of cells of

uniform wIdth; the concatenation of all the cells in a row of a space constitutes a locatI on” in
that space. The user addresses locations, not cells, although when there is only one column In
the space, as is very common, location and cell are identical. Typically, all the large spaces
correspond to obvious entities in the target machine--like the target machine’s main memory or
registers--and a few miscellaneous spaces hold the rest of the visible locations. The debugger
operations next and prior treat rows of a space as being circularly ordered, whether or not
there Is any inherent ordering of the locations.

Cells in a single location, as well as loca t ions in a single space, should be non-overlapping.
Different spaces may map the same bits In different ways. The first space defined must
correspond to the target machine’s primary memory; it is designated as space zero. Ordering
of subsequent spaces is important to PRIM only in that a space number that the emulator
reports in a reference breakpoint must correspond to the ordinal position (starting with zero)
of that space’; declaration in the file. The declaration of a space begins with the call:

SPACE apacesag, access, population, width , distance

• epacetag is the name of the space, unique in the first five characters; It Is equated
to the space number rather than an address in the tables since all internal
references to a space use its number. Those spaces used to communicate with the
debugger are Identified through unique apacelaga reserved for them.

• access is a sublist of the keywords READ, WRITE, READBREAK, WRITEBREAK, and
EXECLJTEBREAK or the keywords ALL or NONE, indicating the access and breakpoint
capabilities associated with this space. The first two refer to the user’s ability to
access and modify locations in this space (if READ is not specified, the space is
bypassed in symbol lookup) the next three indicate which, if any, of the reference
breakpoint types are supported in this space. For a multislice space, the debugger
brea k command sets meta-bits in the POP-b word that contains the first cell of
a location; for PDP-b0 words that are addressed by cells in more than one space,
breakpoint capabilities must be established only for the single space In which the
emulator actually reports such breaks. For a space with multiple locations within a
single POP-JO word, one set of mete -bits is associated with all the locations in the
word: thus mete-bits set by the debugger for one of the locations apply to all and
supercede those set earlier even for a different one of the locations that share the
word; the emulator cannot identify which of these locations is associated with the
break. For the tool builder (I.e., for a whiz--see Appendix A), all the debugger
access checks are bypassed: no-read spaces can be used to add all the tool
builder’s symbols and locations in the tables without their Interfering with the tool
user.

• population is the number of locations in this space; they are numbered from 0
through population-i.

• width I. the width, in bits, of the locations in this space.
• distance is an optional parameter of the form

RANGE(mln, mar)

that affects debugger symbolic output of addresses in this space for locations

/

Emulation Tool Requirements 22
2.7 Emulator Descriptor Tables

having no corresponding symbols. With the exception of memory, which may have
no machine symbols, all spaces are expected to be completely covered by their
symbols, making RANGE unnecessary. An address in a space is output by the
debugger using the closest defined symbol, provIded that that symbol is within the
range [symbol+min, symbol+max] inclusive, where mm and mar are both signed
integers.

Each SPACE macro call is followed by an arbitrary number of mapping function and
symbol-declaration macro cells to complete the definition of the space. The macro ENOSPACE
may be used after any SPACE macro to force its immediate definition. Since each successive
SPACE call completes the previous one, ENOSPACE is usually required only at the end of the
last space defined.

2.7.2.1 Symb ols

A symbol is the name by which the user knows a location. Each such symbol input to the
debugger is translated to a (space, index) pair, where index Is an integer between 0 and
population-i. Address arithmetic can then be performed on the Index part. On output the
debugger translates a (spac e , index) pair to a symbol or to a symbol with of fset (see RANGE
above).

Each SPACE declaration is followed by a list of SYMBOL macros declaring its associated
symbols. A simple symbol declaration consists of just a nam e and value (index), representing a
sing le symbol. Simple symbol entries are also created by the CELL, PROGRAMCOUNTER, and
STEPFLOP macros, which are described later in this section. A more complex declaration can
reference a recognizer function to designate a family of similar symbols, each of whose
composite name consists of a leading substring equal to the family (SYMBOL macro) name and a
trailing substring that is recognized or produced by the recognizer (which also is responsible
for the construction or decomposition of the space index from/to the symbol value). Multiple
symbols within a space may corresponti to the same index; all are valid for input but only the
first one declared is used for output. Symbols are entered into the currently open space using
the SYMBOL macro:

SYMBOL name, value, crcfunc(argl, arg2, ... , arg N) >, distance

• name is an arb itrary name used in other macros to reference this symbol.
• value is the row number (index) in the space where a simple symbol is located or Is

used by a recognizer function to generate an index.
• distance is an optional parameter of the form

RANGF(min, mar)

that overrides the space’s distance with respect to this symbol only. If unspecified,
the distance of the space will be used.

There are currently seven recognizer functions implemented in PRIM (in the BLISS module
SYMBOL) new functsons can be added if needed. The BLISS routine names for the recognizer
functions are of the form RC.xxx; the corresponding recognizer macros , wIth names of the form
RCxxx , are described below.

/

Emulation Tool Requirements 23
2.7 Emulator Descriptor Tables

Recognizer c!!!. Function

RCOCT(nils. met) Parses an octal-number string, a, between mm and mar
inclusive. Returns an index of: value + a.

RCOEC(min, mar) Similar to RCOCT, but with a decimal-number string.

RCHEX(mln, mar) Similar to RCOCT, but hexadecimal.

RCNINRD(mln, mar, 6, d, r) Parses a base-b number, a, between mm and mar
provided that n (mod d) — r. Returns an index of:
value + (a / d).

RCML.L(b, I, m) Parses a base-b number , it, between 0 and as, inclusive.
Return an index of: value + (n * I).

RCSTR(<string>) Parses no further input; instead, evaluates the ASCII
string and returns its value as the index. This is an
input recognizer only. It permits a symbol to be debited
in terms of an expression involving other symbols.

RCOPN() Parses no further input; instead, returns the index of the
open location, provided that it is in this space. This is
an input recognizer only.

To use recognizer functions that do not have predefined macros , use

RCEXT(RC.func, argument)

where RC.func is the name of the corresponding BLISS routine and argument is a 36-bit value
that may be the address of an argument vector.

2.7.2.2 MappIng Functions

Each slice (or column) of a space is specified using a mapping function that will translate
an index for that space into an extended byte pointer to the corresponding cell. For spaces
with more than one slice, the mapping functions are specified In order from the high-order byte
of each location through the low-order byte. (ihe slices of a space may have different widths.)

Currently there are two mapping functions implemented (routines M.DEF and M.PTR in the
BLISS module XVAL) new functions can be added if needed. MOEF uses a set of five
parameters to compute an extended byte pointer from an index, while MPTR simply indexes
Into an array of extended byte pointers.

The macro MOEF is used to describe a regular slice that can be handled by the M.DEF
routine:

(MOE F bosaaidreas, width, shift, density, increment

• baseaddresa is the extended address of the word containing the first cell of the slice.
• width i. the width of the slice in bits.

/
- - -- --

Emulation Tool Requirements 24
2.7 Emulator Descriptor Tables

• shift Is the number of low-order bits in the word that are not in the last (rightmost)
cell.

C density is the number of cells per word (packed every width bits from high-order to
low-order end).

• Increment Is the value added to baacaddresa to go from word to word.

All but the first argument may be omitted, with width defaulting to that of the space, shift
defaulting to zero (indicating right-justification), donalty defaulting to one (indicating one cell
per word), and Increment defaulting to one (indicating that cells are In successive words). A
symbol’s space index I is translated by M.DEF into the P, S, and K fields of an extended byte
pointer as follows:

Byte Location, P: shift + (density - I (mod density) - 1) * width
Width of Byte, S: width
Word Location, K: bnsnaddress + Increment * (I / density)

The macro MPTR is used to describe a slice by a list of extended byte pointers, one per
cell. MPTR is followed by population number of CELL macro calls (see SPACE and SYMBOL
macros), each supplying one pointerl the cells are indexed in the order specified:

MPTR
CELL byte ptr, bit, pec, name

CELL byteptr. bitspec, name
ENDCELL

• byteptr end bits pee have been described previously.
• name Is an optional argument; if supplied, it generates an implicit simple SYMBOL

entry for this space using the given v,amn and the index of this cell.

Newly implemented mapping functions may be referenced using the macro

MEXI function-name, argument-address

• function-name Is the name of the new mapping function.
• argument-address is the address of a block in memory containing its argumettt(s).

Q.7.~ Distin guished Spaces , Locat ions , and Cells

Distinguished spaces are recognized through the use of one of the reserved sp~scetags:
OLDPCSPACE, NEWPCSPACE, BREAKBUFFER, end EVEN1SPACE. The first three of these spaces
need not have any defined symbols.

• OIDPCSPACE and NEWPCSPACE are a pair of spaces of equal size (preferably a
power of two) with width equal to pcw ld (see EMULATOR macro); they are used to
hold the target machine’s jump-history queue, with a parallel pair of locatIons
holding the old and new program counter values for each jump. The debugger
assumes they are used circularly in the forward direction (0, 1, . . . , p op ulation-i,
0, . . .) .

• TOPOFJIJMPQ add resses the most recent entry in the circular buffers.
• BREAKBIJFFER is a 36-bit space containing the encoded breakpoint descriptors

reported to the debugger by the emulator.

---- --~ a ___

Emulation Tool Requirements 25
2.7 Emulator Descriptor Tables

• EVENTSPACE is a 1-bit--wide space that contains a location for each breakpoint
event supported by the emulator; the debugger recognizes the events by their
symbol names.

The following macros, which must each be used just once, Inform PRIM of various
distinguished locations that it uses implicitly. In addition to noting the distinguished locations
for PRIM, they function as simple SYMBOL macros. The locations are, of course, also directly
addres sable:

PROGRAMCOUNTER name, va lue
STEPILOP name, va lue

The PROGRAMCOUNTER macro specifies the location used in conjunction with the debugger go
command and the information message produced when the emulator stops. The STEPFLOP
macro specifIes the location of the single-step event flag for use by the debugger single-step
command.

The following macros, which must each be used just once, also inform PRIM of various
distinguished cells that it uses implicitly. The cells have no user -known names, although the
same bits can appear in some other space also:

CLOCK byte ptr, hitspcr
TOPOF .JUMPQ hyseptr , bits pec

The CLOCK macro declares the emulator clock that keeps virtual time; its unit is ,nlneye (see
EMULATOR macro); its value is used to keep track of target time. The TOPOFJUMPQ macro
declares a pointer to the lop of the jump-history queue; its contents are used by the debugger
jump-history command to identify th e locations within OLDPCSPACE and NEWPCSPACE
describing the most recent jump taken by the target machine.

2.7.4 Events

When the emulator detects and reports an event break, the debugger uses the event
table to decipher the 6-bit event code and respond to the event. Eath call to the ’EVENT macro
generates one entry In the event table; no ordering is assumed. This event table defines the
correspondence between event codes and event control bits (which are the locations in
EVENTSPACE):

EVENT code, prefix, parm(ype, suffix, evaddr, spacelype

• code is the event code reported to the debugger by the emulator.
• prefix and suffix are quoted strings to be output to the user by the debugger.
• pnrmlype interprets the event parameter accompanying the event; it is one of NONE,

NUMBER, or a spacesag (implying the address of a location in that space).
• evaddr is either empty or the index into EVENTSPACE for this event’s control bit,

which is used by the debugger to check whether a breakpoint was set for this
event and whether a break program is associated with it. Events that are not
selectable by the user have no associated control bit in EVENISPACE (and,
therefore, can have no break program).

• apacelyp. is one of the following: NONE (or empty), NUMBER, or INSTRUCTION.

Emulation Tool Requirements 26
2.7 Emulator Descriptor Tables

When an event break occurs, the debugger produces a message (based on the event code)
consisting of the corresponding prefix string followed by the parameter value, output according
to parmtype, followed by the contents of the location pointed to by the parameter, output
according to spaces ypii (provided that parmtype is a spacetag) , foll owed by the suffix string.

2.7.5 Character Sets

Several character sets may be employed within each - target machine. The
CHARACTERSET macro describes the several available character sets to the PRIM framework.
In text mode the debugger uses the first character set defined, assuming that characters of
width chrwid (see EMULATOR macro) are packed in locations. Any character set chartag may
be referenced by RADIX and DEVICE macros. Each non-ASCIi character set is defined using the
following sequence:

CHARACTERSET charsag
CHARS 0 <characters in ascending ordinal value>
CHARS m,<more characters, From the mth char>

CHARS n,<Iesg characters in the character set>
ENDCHARACTERSET

For en ASCII character set, the following declaration is used~
CHARACTERSET ASCII

The character set name, charsag, mus t be a valid MACRO-lO symbol unique in the first five
characters. The resulting translation table for a character set is organized such that the ASCII
character corresponding to the ith character In the character set is entered as the Ith
character in the table. Hence, the emulator builder supplies a list of ASC . characters in the
order of increasing ordinal value of the corresponding characters in the given character set.
For ASCII, a character set entry is built but the table is not.

The first argument to a CHARS macro indicates the ordinal value of the next character
specified. If this value Is greater than the number of characters generated thus far - for the
character set, an appropriate number of padding characters will be inserted first. The padding
character Is defaulted for each character set as en output-only ASCII blanki It may be changed
at any time using the macro

FILLER <character>

In this manner, sparse character sets may be specified compactly.

Due to MACRO-tO macro constraints, the following conventions have been adopted to
specify certain characters in a character set. Control characters follow the BLISS—lO
convention, using the question mark notation. Thus ?? is a question mark, ?C is control-C, ?G Is
control-C, ?O Is null, 71 is rubout , etc.; additionally, ?(and 7) are used to represent < and >,

which would otherwise interfere with the MACRO-lO scanner.

Some target-machine characters might not have ASCII equivalents. In such cases some
ASCII character must be supplied to facilitate translation of output. An apostrophe immediately
preceding a CHARS character declares that character to be for output only. That target

-- - — — ---- ~~-- —

Emulation Tool Requirements 27
2.7 Emulator Descriptor Tables

character will translate into the designated ASCII equivalent but that ASCII character will not
translat. back into the original character. For examp le, ‘?E occurring In position 12 in the
character set will allow the target character whose value is 12 to be translated to contrøl-E
when expressed in ASCII, but translation in the reverse direction will be prohibited. To enter a
literal apostrophe, precede it with a question mark, i.e., 7’.

ENOCI4ARACTERSET is an optional macro that need only be supplied to cause immediate
definition of the character set. A good practice is to place one after the last character set
definition.

2.7.6 Brea k Tables

To aid the PRIM debugger in parsing expressions input by the user, five bit-encoded
character-break tables are used: STARTSYMBOL, INSYMBOL, STARTNUMBER, STARTOPERATOR,
and INOPCOOE. All of these have identical calling sequences. STARTSYMBOL should contain all
characters that can start a target-system symbol. iNSYMBOL should contain all characters that
can follow the first caracter of such a symbol. STARTNUMBER should contain all characters
that can start a target-system number (not counting any prefix string that might be specified).
STARTOPERATOR should contain all characters that can start a target-system operator. And
INOP~OOE should contain all characters that can appear anywhere in a target-system opcode.
An example is:

INOPCODE <ABOX>

which declares that characters A, B, D, and X are the only characters occurring in any opcode.
The question-mark convention may be used to enter control characters as well as special ones,
though their occurrence in legitimate input atoms is improbable.

2.7.7 Numbers

The RADIX macro is used to describe to the PRIM debugger the target-system
assembly-language syntax for both numbers and character constants , in both cases assumed to
be a fixed prefixatring followed by digits or characters followed by a fixed suffixasring, where
either (or both) of the strings may be empty. For numeric constants, a base up to 36 is
allowed, using the set (0, 1, . . . , 9, A, . . . , Z) for the digits, in the call:

RADIX prefixstring, base, suff ixasring

A character constant normally would use a base equal to the character-set size:

RADIX prefixatring, base, sufj ixa sring, chartag

The base of Input numbers is self-defining as they must satisfy the syntax contained In the
table of radices that drives the parsing; output numbers are generated according to the RADIX
specification for those numeric radices supplied or as pure digit strings for other radices.
(There is no character-constant output.)

(2.7.8 Express Ion Evaluation

The operators in the target machine’s assembly language are defined, along with their
precedence, using the macros UNARY and BINARY:

- - - - a - :

Emulation Tool Requirements 28
2.7 Emulator ~~scr lpto r Tables

UNARY functionname, string, precedence
BINARY functionname, string, precedence

• air ing contains the arithmetic operator in the target assembly language, or an
invented name for use in PRIM, enclosed by delimiting characters.

• functlonname Is the name of an arithmetic function supported by PRIM that
corresponds to the target operation being declared (sea list of supported functions,
below); all unary operators are prefix and all binar’. operators are infix.

• precedence reflec ts the relative binding strength of the declared operator; larger
values take precedence over smaller ones.

The following functions are currently implemented:

Function Name Arguments Description
OP.ADO 2 Addition
OP.SUB 2 Subtraction
OP.MUI 2 MuItiplicetior~OP.DIV 2 Division
OP.MOO 2 Modulus (remainder)
OP.LSS 2 Less than
OP.LEQ 2 Less than or equal to
OP.EQL 2 Equal to
OP.NEQ 2 Not equal to
OP.GEQ 2 Greater than or equal to
OP.GTR 2 Greater than
OP.AND 2 Bitwise AND
OP.OR 2 Bitwise OR
OP.NOT 2 Bitwise NOT
OP.XOR 2 Bitwise Exclusive OR
OP.CON 1 Contents of
OP.ABS 1 Absolute value
OP.NEG 1 Negation

Parentheses native to the target machine’s assembly language or “invented~ for use 4n PRIM
may be declared by

PARENS openingparen, cloal,igp virnn

where the opcnlngprsren and cloaingparen must each be enclosed by delimiter characters. An
example of the use of the PARENS macro is

PARENS ~ (M
,

M)N

2.7.9 Machine Instructio ns

The debugger’s instruction assembler/disassembler is driven by a table of machine
instruction formats. These formats use a set of par sing rules and a set of instruction-field
descriptors. Fields, rules, and forma ts are each separately described below. Fields and rules
can be defined in arbitrary order and are referenced by tags In formats and rules; formats must
be collected into a single table. Symbolic opcodes are associated with instruction formats in a
manner similar to the association of machine symbols with spaces.

Emulation Toot Requirements 29
2.7 Emulator Descriptor Tables

2.7.9.1 InstructIon Fields

An instruction is treated as a contiguous sequence of bits of a length that is some
(initially unknown) multiple of inswid (see EMI.IATOR macro). For purposes of field definition,
the instruction bits are numbered consecutively from zero at the high-order bit; location
boundaries and/or PDP-10 word boundaries are ignored. A field identifies a set of (not
necessarily contiguous) bits that is being treated as a unit in some instruction; within a field
there may be one or more subtields consisting of contiguous bits. Fields are declared as

FIELD fieldiag, bits pee, funet ion
for a simple field, or as

FIELD fieldtag, , function
SUBFIELD bits pee

SUBFIELD bits pee
ENDFIELD

for a broken field.

• fieldtag must be a valid MACRO-tO symbol unique in the first five characters.
• bltspec Is a bit specification for the field or subfield of the form <a-b>, where a is

the high-order bit of the field and b is the low-order bit.
• function, If specified, is the name o~ an arithmetic conversion routine that converts

numbers to bits and bits to numbers; if not specified, it defaults to the machine
arithmetic routine, arithaddr, from the EMULATOR declaration.

Where a field consists of a list of subfields, the field itself is the concatenation of all the
subfield bits, with the first subfield at the high.-order end.

2.7.9.2 ParsIng Rules

A rule is an ordered list of parsing primitives thM operate for both input and output,
specifying the contents of instruction fields on assembly and generating an instruction string on
disassembly. The execution of a rule succeeds when each of its primitives in turn succeeds;
when any one fails, the rule fails. Rules deal with sequences of symbolic-expression fields and
delimiters, with allowance for alternative and optional fields. The RUl E macro begins a rule; it
is followed by the rule’s primitives in order:

RULE rulesag
rub pritnhive I
rule pr hnltivo2

ENDRULE

There are six ruleprimlilvea: MARK, EXPRESSION, CALL , TRY, IS, and ISNOT. Each takes its own
particular arguments and has its own criteria for succeeding or failing:

MARK <MeI,ar w> Assembly: parses a single charac ter of input and succeeds
if , and only if, that character matches char. -

Disassembly: appends the argument char to the string;
always succeeds. (Used for Indicating assembly language
delimiters.)

-

~~~~~~~~~~~~~

---
~~

-—-

~~~~

--- - --

~~~~~~~~~~~~~



Emulation Tool Requirements 30
2.7 Emulator Descrip tor Tables

EXPRESSION fioldtag Assembiy: parses and evaluates an expression and stores
its value into the field named by fie ldeab; always succeeds
(empty expressions are permitted).
Disassembly: appends the value contained in the field
named by fieldtag as an appropriate string; always
succeeds.

CALL ru le I, rule2 Assembly or Disassembly: calls ruleS (as a subroutine)
TRY reid , rule2 and, if it fails , calls rule2. CALL succeeds if, and only if,

either of the called rules succeeds; TRY always succeeds.
Ruh,2 is optional; if absent it always fails.

IS fieldiag, value Assembly: stores value in the field named by fieldtag
always succeeds.
Disasse!~~~: succeeds if , and only if, the field named by
fi~ldeag contains value; no output.

ISNOT ficidtag, value Assembly: does nothing; always succeeds.
Disassem~~: succeeds If, and only if , the field named by
fieldtag does not contain value.

Note that the only primitive that directly causes rule failure on assembly is MARX, while iS and
ISNOT are the only direct causes of failure on disassembly. When a called rule (one referenced
by a CALL or TRY macro embedded in some rule, rather than one invoked directly via a FORMAT
macro) fails, all of Its side effects are undone--as are those of any rules it might have called.
On assembly this includes values stored in fields by EXPRESSION or IS as well as all input
characters parsed; on disassembly this includes characters added to the output string by MARK
or EXPRESSION.

The width of an instruction, on input or output, is derived from the rightmost field that is
referenced successfully.

As an example, the following two rules handle an optionally indexed address field, where
the index Is designated by a comm a fol lowed by an index-register specification and is zero it
not present. The fields ADDRFIELD and INDXFIELD designate the address and index fields,
respectively.

RULE INDXADDR
EXPRESSION ADORFIELD
CALL INDXRULE, INDXPAD

ENDRUIE

RULE INDXRULE
MARK <

11
,5.

ISNC T INDXFIELD,O
EXPRESSION INDXF$ELD

ENDRULE

RULE INDXPAD
IS INDXFIELD,O

ENDRU.E



Emulation Tool Requirements 31
2.7 Emulator Descriptor Tables

The first rule always succeeds on input, since INOXPAD always does; the second rule acce pts an
index specification ii a comma is present and allows an Index expression to be output if the
field ii not zero. (Actually, INOXPAD could be omitted and the call changed to TRY INDXR1,LE,
sinc, the instruction string Is initially cleared on input, provided that the index field is not
ne.d.d tc establish the length of the instruction.)

2.7.9.1 Formats and Opcodes

A format consists of an opcode field, a rule for parsing the rest of the instruction beyond
the opcode, and a list of opcodes that can be found in the opcode field:

FORMAT ruletag, fieldeag
OPC name, value, cvcfune(argumcns-list)>

OPC name, value, crcfunc(argumen:_Ust)>
ENOFORMAT

where ruictag and field;ag are tags (unique in the first five characters) of the primary parsing
rule and opcode-field definition for this format. An OPC macro has arguments identical to a
SYMBOL macro, but here value is the numeric operation code rather than an index into a space.
On assembly, a format is selected when one of its opcode names is recognized; the opcode
value I~ stored Into the field named by fieidsag and the rule nd.sag Is called. On
disassembly, a format is selected when the contents of the field named by finldtag matches the
value of one of the opcodes; the rule ruiegag is then called to complete the output.

2.7.10 DevIces

The descriptor table supplies the PRIM exec with device information required to install
and mount emulated devices. Each device macro specifies the name and assorted
characteristics qf one device type: -

DEVICE name, type, ftype, byseaise, chartag, paramtag, mm , max

• name is a quoted string giving the name of the particular device.
• type Is a 16-bit emulator handler type (see Section 2.3.2).
• ftype is one of the keywords: INPUT, OUTPUT, SINGLEIO, or TTY, Indicating the

number of file(s) that may be mounted on the device by PRIM and the direction of
data flow.

• bytesix. should be coded as zero (to indicate that only ASCII files are allowed ), a
reasonable byte size (less than 64, giving the default byte size for any binary file
that Is mounted), or 64 plus a reasonable byte size (to indicate a fixed byte size for
any binary file that is mounted).

• ehariag is the tag from the Ci-IARACTERSET macro (indicating the natural character
set of this device) or is empty (to indicate that there is no such set). When a

• characte r set is provided, ASCII text files may be mounted, with character translation
performed by the PRIM framework; when there is no such set, only binary files are
allowed. (If neither binary nor ASCII is allowed, we are in trouble.) The user is( asked at MOUNT time for file charac teristics only when the device entry leaves him
any choices.

• paramtag, if not blank, Is the tag of a parameter table used to complete installation
of this device (parameters are described in the next s.ction).

- - - - —- -



Emulation Tool Requirements 32
2.7 Emulator Descriptor Tables

• mm and mar delimit the number of units that may/mus t be installed. When the two
are unequal, the user is asked how many he wants; they default to 0,1.

The OEVCLASS macr o may be used to associate a device controller with a group of installable
devIces. The call is identical to that of the DEVICE macro, except that mm and mar are not
specified; it must be followed by a DEVICE declaration for each device in the group and
terminated by an ENDOEVCLASS macro:

DEVCLASS devatr, type, fsype, bygoaise , charsnt. parnmtag
DEVICE devsgr , type, flype , bytnsizc , charaet, parwutag, mm , mar

DEVICE devair, type, ftypo, byteaix~, chtzrset , param;ag, mm , mar
ENDDEVCLASS

A zero (or empty) type is taken to indicate a dummy controller that is riot actually installed; its
fsype, bysealae, and eharso; are ignored. The parameters gathered for this device class at
installation time are given to each of the actual devices in the class——whether or not it is
treated as a dummy controller.

2.7.11 Tool Parameters

A list of parameters is associated with each installable device (device parameters) and
with the target machine (global parameters).

PARAMS parameag
PARAM name, string, p1 ype, eclitag, argtype , arg ag, def val

PARAM puune, air ing, plype, eefltag, argtype, argiag, defvai
• ENDPARAMS 

-

• parameag is the name, unique in the first five characte rs, used to reference the
entire list of parameters; the global parameters are recognized by the reserved tag
MACHINE .

• name is a unique quoted name for each parameter in the list.
• string is an optional quoted (noise) string that describes the units of the parameter ’s

value.
• plype is one of the keywords EXPLICIT, DEFAULT, or FIXED, defining the manner and

timing of the setting of the parameter ’s value. FIXED and EXPLICIT parameters are
gathered only at device installation time and, therefore , are not applicable to global
parameters. EXPLICIT parameters are obtained from the user with no default
allowed; they appear to be part of the INSTALL command itself. FIXED parameters
are obtained from defval without consulting the user ( FIXED parameters need
neither name nor noise airing); they do not exist for the user. DEFAULT parameters
are initialized •t installation time to their default values; thereafter they may be
altered by the user v ia the SET command and inspected via the SHOW command.

• eel ltag is the tag of the parameter cell.
• erg; ype is one of the keywords IMMEDIATE, NUMERIC, or KEYWORD.
• argieg is the tag of a NUMERIC or KEYWORD macro (empty for IMMEDIATE).
• defval is the parame ter ’s default value.



7

Emulation Tool Requirements 33
2.7 Emulator Descriptor Tables

An erg-typ. of IMMEDIATE is used for a default parameter that is fully specified by its
nanse~, the defval is stored into ceiltag. It Is convenient for simple switches, with two
Immediate parameters addressing the same parameter cell with opposite values.

An argtype of NUMERIC is used to convert between a user-supplied number and an
internal value as directed by a NUMERIC macro with a numiag that matches argeag:

NUMERIC numtag, multiplicand, divisor, offset, eXponent

The conversion from a user number to an internal value is:

( multiplicand * user-number / divisor ] exponent + offset

where eXponent must be either 1 or -1; the computation is done using Integer arithmetic, with
multiplication being performed before division.

An .rgtype of KEYWORD allows the user to choose an entry from a menu of keywords
defined in the tables by a KEYWORD macro with a keying matching the arg’tag:

KEYWORD keying
KW keyword , value, bits

KW keyword, value, bits
ENDKEYWORD

Each keyword is a quoted string that , when recognized, causes the associated value to be used
for the parameter value. h iss is not currently used, but is intended eventually to supply 18
bits of information to the keyword routine. ENOKEYWORD is optional, forcing the immediate
definition of the keyword list.

2.7.12 Parameter Cells

Parameter values are stored in cells or, for devices, in pseudo-cells not in the actual
context. The CELLPTR macro is used to define each parameter cell, w hich is referenced by its
eel ltag.

CELLPTR cdhtag, bytopir, biispec, c/unct ion

• byseptr and biespec (defined previously) are the true pointers to a cell in
configuration memory or auxiliary memory for the global parameters. For device
parameters, bytepir and bisapec define a byte within the device’s context. The
context for a device includes both the device block in PRIM and the configuration
block In target memory; the following byte pointers are standard (but not
preclefined):

J,31,1> Half-duplex switch (for ITY type only). This parameter is
handled by the I/O server rather than the emulator. When( It is set , the server echoes input characters as the are read.

4,cO,36, Device parameter ‘ord.
5,c0,1$> Device address, of which the 8 high-order bits are called

the channel number and the 8 low-order bits are called the
unit number.



Emulation Tool Requirements 34
2.7 Emulator Descriptor Tables

6,cO,36> Buffer word, which is of the form XW D(buffer-slze,
buffer-address). The cfunc sion DV.BUFF (see below)
allocates buffers and is usually used with the buffer-word
cell pointer.

7,<0,36> Timing parameter word giving the device speed.

The cell pointers that are built may, of course, subdivide these bytes as needed; In
particular , the two parts of the device address are usually specified separately.

• cfunction, if specified, names a routine that may further modify the value to be
stored In the cell. The conversion functions, named DV.xxx , are found in the BLISS
module DEVICE. The only function of general interest is DV.BUFF, which converts a

• buffer size (the Input number) into a buffer word by allocating successive buffers
from the region between buflow and bufhi (see the EMULATOR macro call).

2.8 Emulator Installat ion

Installing a new emulation tool in PRIM requires the creation of four files in the <PRIM>
directory on the system Interf aced to the MLP-900:

• iool.SAV is the executable program that the user runs to get the emulation tool; it is
an extremely small program that gets the PRIM framework, leaving the toot name In
a fixed location. This file is most eas~Iy created by taking an existing such file and
replacing Its name with this tool’s name.

• tool.BIN is a binary file produced by the GPM compiler; it contains all control
memory code, constants for masks and auxiliary memory, and the starting address of
the emulator’s initialization code.

• •ool.DES~RlPTOR-TABLE is the relocatable output fi le produced by assembling the
emulator’s descr iptor-table source file (see Section 2.7h tool is also the emname
used in the descriptor file.

• •..l.cONFIGURATION is a PRIM SAVE file that contains the default target-system
configuration--the default values for all global parameters arid any universal devices
or debugger formats that are to be available to all users as Initial conditions, It is
created by running PRIM, loading the emulator ’s descriptor-table file, setting all the
parameters (configuring to the exten t necessary), and then executing the SAVE
CONFIGURATION command.

For each emulat ion tool, all uses of the name tool, above, must be identical.

News regarding an emulation tool may be posted by sending a message to the file
<PRIM>PR1M.NEWS, using the group name ~ieo l:~, as in

iool:s<PR1M’PRIM.NEWS

on the system interfaced to the MLP-900.

— - - - _~~~~~~~~~ a . —~~-~~- - --- -------—-------- -



35

Chapter 3
MLP-900 Reference Manual

This chapter describes the MLP-900 briefly and discusses its instructions. Although the
emulator writer ordinarily will not be concerned with the bit-level descriptions of the machine
instructions, the detailed descriptions are given for reference. It is suggested that on first
reading the hardware -level discussions be skipped or skimmed. The low-level syntax and
semantics discussions are useful background for the next chapter on the GPM language.

The MLP-900 is a large, ver tical-word, microprogrammable computer designed as a
general-purpose emulation host on which each user can create his own target machine. It is a
synchronous machine with a 300-nanosecond cycle time, 4096 words of control memory, and a
large set of internal registers. A number of original fealures help make the MLP-900 an
exceptionally powerful microprogramming tool; principal among these are a subroutine stack, a
multi-level interrupt mechanism, a two -state protection facility, paging and memory protection
hardware, and provision for user-specified language boards to provide hardware assistance for
particular applications (no user language boards currently exist or are contemplated, however).
It is characterized by two parallel computing engines, known as the operating engine (OE) and
the control engine (CE). The OE is a 36-bit-wide arithmetic and data-transfer machine; it
Includes the hardware for the main memory and external interfaces and the bulk of the register
space, including a 1K internal (auxiliary) memory. The CE is the instruction-sequencing and
control unit; it includes the stack-handling, in te rrupt , and protection mechanisms.

MLP-900 instructions are known as “ministeps; each engine has its own unique
instruction set. Ministep execution proceeds sequentially, either singly or in OE-CE pairs. An
MLP-900 ministep is contained in 32 instruction bits, occupying the low-order bits of the 36
accessible bits, in a control-memory word; the four high-order bits are used only in conjunction
with long immediate OE instruction, w here the second word contains a 36-bit literal constant.
The first four bits of each ministep constitute the opcodc and the next four, the sub-op; in
generil , the opcode determines the format of the remaining fields of that - ministep. The
high-order bit of the opcode designates the engine: 0 for an OE ministep, 1 for a CE ministep.
At the beginning of each cycle, the CE fetches a pair of ministeps from control memory--from
the current address and its successor--and examines them: if the first is an OE ministep end the
second is a CE min slep, then the pair is executed during this cycle; otherwise only the first
ministep is executed (the other will be the first ministep of the next cycle, barring a branch).
This parallelism serves to increase the effec tive machine speed and, with two exceptions, Is
transparent to the user: first , interengine data transfers require execution of an OE-CE pair;
second, CE registers modified as a side effect of an OE miriistep cannot be sensed by a paired
CE ministep that executes in the same cycle. Since all changes to the state of the machine
occur simultaneously at the end of the cycle, all computations and decisions are based upon the
values present at the beginning of I he cycle.

The MLP-900 hardware recognizes two distinct execution states: Muser u mode and
“microvisor TM (microprogram supervisor) mode. User-mode microcode is subject to three

• restrictions: privileged ministeps may no t be executed, privileged registers (in both the 0€ and( CE) may not be modified, and a branch to a microvisor location other than a designated entry
• point is illegal. Violation of any restriction results in a (privileged) interrupt and suppression

of the current cycle. These restrictions fully protect the external interface, the main—memory
protection and paging facility, and the microvisor itself from the user microcode; additionally,

— - —-- - --- -• - ___- -.. ---———S— —



MLP-900 Reference Manual 36
3.1 Primary Languag e Symbols

the microcode is restricted from modifying itself. Since this manual is intended for the emulator
developer, who will be writing MLP user-mode programs, privileged facilities are not discussed
In detail.

The MIP-900 main memory interface includes a memory-protection and paging scheme
that, together with some microvisor code, provides the user with a 256K vIrtual address space.
This scheme mimics the memory management provided by the TENEX pager on the POP-b .

3.1 Primary Language Symbol s

There is no assembler for the MLP-900. Instead, machine instructions may be written as
special low-level statements to be processed by the GPM compiler. The tow-level statements
for each machine instruction are described in this chapter. To define these low-level
statements completely, it is necessary to introduce the primary symbols of the 6PM language In
this chapter rather than in the chapter on the GPM language itself. The 6PM syntax equatiorts
are given in this chapter and the next as modified BNF definitions. Each definition is preceded
by a definition number within braces; each reference to that definition is immediately followed
by Its definition number within braces so as to facilitate cross references. Semantic comments,
where necessary, are enclosed in doubled angle-brackets immediately following the relevant
definition. All syntax equations before program~63) are in this chapter; the remainder are in
Chapter 4. The few primitive constructs referenced in definitions are given in italics, as in
emptyitring. GPM statements are composed of five primary symbols or syntactic entities:

• Identifiers (see Section 3.1.1)
• Reserved identifiers (see Section 3.1.2)
• Octal numbers (see Section 3.1.3)
• Blanks (see Section 3.1.4)
• Nonaiphanumeric characters (see Section 3.1.5)

3.1.1 Ident if iers

An identifier is a string of words (aiphanumerir strings) or numbers connected by
periods. The first field must not be a number, and words must nnot begin with a digit (0 - 7).
The last all-numeric field is referred to as the index; it is used extensively f or r~~erved
identifiers (e.g., R.O stands for the first general register and R.17 stands for the sixteenth
general register).

syntax :

(1) Id ::—
resnrvnd- idrneifj er . word{2) I word(2j I id{1 1. subid{4j

(2) word ::~afpha(3) word(2) alpha(3) word{2) digit{6)

(3) alpha ::—
8 I 9 I A l B I . . . I Y J Z I a ~~~b~~~...~~~y I z

(4) subid ::—
word{2) number(5)



MLP-900 Reference Manual 37
3.1 Primary Language Symbols

(5) number ::~digit(6) number (S) digit(6)

L (6) digit ::—
0 I 1 I . . . 1 6 1 7

3.1.2 Reserved IdentIfiers

Reserved Identifiers have the same syntax as Identifiers in 6PM but additionally include
all nonalphanumeric symbols (the nontrivial reserved identifiers are listed in Appendix C). In
this and the next chapter, all reserved identifiers are shown in upper-case; an arbitrary
member of a set of Indexed reserved identifiers (La,, an identifier with any of its permitted
index values) will be denoted by an italicized, indexed name where the index is given as the
double-dotted upper limit, as in the example below.

Example:
There are 32 general registers (R.O - R.37). The symbol lLtl represents any one
of the set of registers, {R.O, R.l, . . . , R.36, R.37).

Indexed reserved identifiers are assumed to have zero origin. Reserved identifiers cannot be
used as branch destinations (see Section 4.5.3) or as a title (see Section 4.1).

3.1.3 Numbers

All numbers in GPM, including identifier index fields, are octal. Thus A.1973 would be
interpreted as the two identifiers A.! and 973. The symbols 8 and 9 are always treated as
letters.

3.1.4 Blanks 
-

All nonprinting characters (space , tab, linefeed, carriage return, and form feed) are
converted by GPM to blanks. Blanks separate numbers and identifiers; otherwise they have no
syntactic or semantic function. There is one additional ‘blank character ,” an arbitrary string
starting and ending with a percent sign (1.). This “blank character ” is not the preferred method
of introducing a comment, as will be treated in more detail in the discussion of the 6PM listing
format in Section 4.7.

3.1.5 Nonalphanuineric Characters

All nonalphanumeric characters are reserved symbols. Except for the period, they are
all self-terminating and cannot appear as part of an identifier.

3.1.6 Examples of Primary Sy mbols

The string R.I A13Ce1248X 12A.B;C.3.4.X will be interpreted as:

P.1 Reserved identifier with Index of 1
( ABC identifier

* Character
124 Number
8X identifier 



/

MLP-900 Reference Manual 38
3.1 Primary Language Symbols

12 Number
A.B Identifier

— 
; Charac ter
C.3.4.X Identifier with index of 4

3.2 Operating Engine

The Operating Engine (OE) is a 36-bit data-transfer and -manipulation engine; it also
contains the interf aces to both main memory and the PDP-10 I/O bus. The computational
facility consists of a three-input (two operands and a mask) “primary adder” capable of various
arithmetic and boolean functions, a “primary shifter ,” and an “extension shifter ” used for single—
or double-word shifts. Operands are taken from, and results stored into, the general registers
(R...37)~, masks are taken from the mask registers (M..17) . One byte of CE flops (CE.14) is
devoted to functions associated with the adder and shifter(s). The memory and I/O bus
interfaces consist of a number of special registers (grouped together within MISC..37), the
main-memory address translator (Xt ./I TO R..777), and t he memory-referencing ministep (CEDE).

Note that in all OE ministeps involving a large constant operand, the ministep takes two
control memory words; while the hardware handles the decode automatically, the programmer
must be aware of the fact that such a ministep always executes without a paired CE cycle. A
large constant is one that cannot be expressed in six bits (i.e., not in the range 0-77, octal).

3.2.1 Operat Ing Engine Operan ds

Table 3.1
Operating Engine Address Space

Grou p Extension Register Mnemonic - Description
0000  xxxxx R...37 General Registers
0001  -xxx x M..17 Mask Registers
0010  xxxxx Al ISC..37 Miscellaneous Reg.’
O lxx xxx xxxxx /1.17 77 Auxiliary Memory
1000 --- XBUS CE Exchange Bus
1001 and
1010 xxx xxxxx XI,/ITO R..777 Translator Memory2

The OE operands are contained in one sparse 12-bit address space. In addition to the
mnemonics shown in Table 3.1, these operands may be addressed as OI~’..7777. The 0€
registers may be addressed directly, or indirectly through the CE pointer registers. As the
pointer registers are only 8 bits wide, the OE register group is specified in the instruction.
There are two types of indirect referencing available. Normal indirect (is) uses the pointer
value to select both the extension and the register. Special indirect (s) is similar, except that
the low-order bit is forced to 1.

I. MISC.20-MISC.37 ar, privileged.
2. Privileged.



MLP-900 Reference Manual 39
3.2 Operating Engine

Examples:
R.0 $ P.5
XLATOR.400 is P.7

A-Operands. An 0€ A-operand represents a reference to a general register (R.J7) either as
an explicitly stated general register or as an Indirect reference through a pointer register
(P..?). The encoding is shown in Figure 3.1.

00 01 02 03 04 06 00 01 02 03 - 04 05 06 07

Register j  RegIster
Figure 3.1 A-Operand Formats

Examples:
P.13
is P.11
* P.7

B-Operands. An 0€ B-operand represents a reference to a general register (as in an

A-op erand ), to a poInter register, or to an immediate operand. The encoding Is shown in
Figure 3.2.

00 
- 

01 02 03 04 05 06 
- 

07 
00 01 03 04 05 06

A Operand ~ 1 •Po~nter Re~ ister,

00 01 02 03 04 05 
- 

06 07 00 
- 

01 02 03 04 05 06 07

Short Immediate Data 1 1 Long Immedi ate  Dat a
(No sign extension) , (Data in next word)

Figure 3.2 B-Operand Formats

3.2.1.1 R..37 Cenetal RegIsters

There are 32 general reg isters (If..37), each 36 data bits wide. Four parity bits, one for
each 9-bit byte, irs maintained with each register. All 32 registers are addressable as inputs
to the primary adder. Only P.37 (the Shift Extension Register) has a dedicated function.



MIP-900 Reference Manual 40
3.2 Operating Engine

1.2.1.2 M..17 Mask Registers

There are 32 mask registers , but only Al.. 17 can be addressed by an 0€ instruction. The
high-order bit of the mask address is taken from the protected CE flop MBS (F.167). User
programs , therefore , see only 16 mask registers. The mask registers condition the adder
functions to accomplish subword operations.

3.2.1.3 MISC..37 Miscellaneous Registers

There are 32 miscellaneous registers ( MISC..37) dedicated to a number of different
functions. For addressing purposes, they have been gathered together into one set of
registers. Some registers are readable and writable, some are read-only, and others are
unimplemented. The implemented miscellaneous registers and their functions are

0 Data Entry Switches (read only)
1 Main Memory Address Switches (read only)
2 Processor Address Switches (read only)

The above three entries are pseudo-registers that make available the
three sets of switches on the console. The following two registers can
be read and written; they are tied into language boards.

4 Primary Instruction Register (PIR)
5 Secondary Instruction Register (SIR)

The b lowing two registers are used in memory referencing. For more
information, see the CEDE instruction (see Section 3.22.2).

16 VIrtual Address Register (VAR)
17 Memory Data Register (MDR) -

The preceding registers are . aIl available to the general user. The.
succeeding registers are privileged.

23 Real Address Register (RAP): used by the M(.P-900 when in direct (nontranslate)
address mode.

31 Key Register: contains a 7-bit key value that determines the validity of XLATOR
entries.

The following three registers are part of the control interface with the
PDP-1O (see Section 3.4).

32 DATAO
33 DATAI
34 Command/Status Register



MIP-900 Reference Manual 41
3.2 Operating Engine

36 Virtual Address Compare Register (VADRC): compared to the virtual address
(VAR) at every main memory reference, when enabled by SARM.1, and generates
an action request (VADR, F.124) when a match occurs (see Section 3.3.3).

37 Control Memory Address Compare Register (CMADRC): compared to the memory
address at every control memory reference , when enabled by SARM.O, and
generates an ac tion reques t (CMADR, F.1 10) when a match occurs (see
Section 3.3.3).

A data transfer to an unimplemented register is a no-op; a data transfer from an unimplemented
register yields -1.

3.2.1.4 A. 1777 or ,J.PG..3 Auxiliary Memory

There are 1024 words of 60-nanosecond auxiliary memory, which can be used as a
scra tchpad or cache. In practice, auxiliary memory must be treated as consisting of four
~pages” of 256 words each, since indirect references require the page to be specified in the
instruction rather then in the pointer. /1.PC..3 are the origin words for the auxiliary memory
pages (A.0, A.400, A.1000, and A.1400).

3.2.1.5 XBUS Exchange Bus

The 0€ exchange bus is a pseudo-register connected to the CE exchange bus (see
Section 3.3.1.3.). Data transfers between the engines are accomplished by an OE -CE
instruction pair, with the 0€ instruction either a GENT or a CEDE (which references the
exchange bus), and the CE instruction either a MOVE (which references the exchange bus) or a
BLOT (other than MOE). Since these instruction pairs are executed In parallel, the CE
instruction (GENT or CEDE) must appear first regardless of the transfer direction. In transfers
to the 0€, any bits not loaded by the CE instruction are transferred as zero. In transfers to
the CE, any bits not used by the CE instruction are ignored. A reference to the exchange bus
without a paired CE instruction is undefined.

1.2.1.6 X I /P TOR..777 Translator Memory

The translator memory consists of 512 20-bit words used to translate target-machine
virtual addresses to real addresses in the i’Dp-iO memory. Each word consists of a 7-bit key
value, an 11-bit real-page value, a write-permit bit, and a parity bit. Whenever translation Is
performed, the nine high-order bits of VAR are used as an index into the translator memory to
select a translator word; this word Is valid if the key value matches the key register (MISC.31)
and If either the write-permit bit is on or this is a fetch. Note that a GENT from the translator
memory reads the word selected according to the old value of VAR and iliac modifies the nine
high-order bits of VAR to address the requested word, which is not read except by coincidence.
Translator memory is privileged.

3.2.2 Operatin g Eng ine Operators

Four of the eight possible OE opcodes are defined. The other four produce undefined
results, but the general flavor of their ministep decoding is the same. In particular, the( B-operand decode (see Section 3.2.1) applies to oH 0€ miriisteps (even to defined ministeps
that hav, no B-op.rand)i whenever the B-operand specifies long immediate data , the following
word is taken as a 36-bit literal rather than as a ministep. The 0€ operators are:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
— 

.



MIP-900 Reference Manual 42
3.2 Operati ng Engine

• GEAR (General Arithmetic). Performs binary arithmetic, logical operations , and
single-register shifts.

• CEDE (Conditional External Data Exchange). Transfers addresses and data between
the 0€ and main memory.

• SHIN (Shift Instruction). Performs various single- and double-register shifts, plus
the iterated steps of multiply and divide ioops.

• GENT (General Data Transfer). Transfers data between the OE registers and to and
from the CE.

3.2.2.1 CEA R Cl~neraJ ,lRithmet ic

This ministep provides arithmetic and logical capability involving the general registers,
pointer registers, and constants. The GEAR internal coding is shown in Figure 3.3. The
arithmetic codes are listed in Table 3.2. The shift-amount coding is found In Table 3.3. The
test-mode and clear-mode bits are set to 1 when that mode is active. The A-operand (aa in
Table 3.2) and the B-operand (6?, in Table 3.2) are coded as described in Section 3.2.1.

oo 01 0203 05 06 07 oe og io 11 12 13 14 15 16 17 18 19 20 21 22 2 24 25 26 .27 28 29 30~31

Keg . A unt
~~~

I
~t~

0P

~~1 B Operand

Figure 3.3 GEAR Ministep

Table 3.2
GEAR Arithmetic Codes

Code -Primary Adder Operation
0 aa 4- NOT aa OR bb
1 aa~~ NOT aa AND bb
2 aa i- bb
3 aa 4- Sa AND NOT bb
4 aa .- aa OR NOT bb
5 aa~~ aa AN0 bb
6 a a 4 -aa OR bb
7 a a 4 - NOT bb

10 ma 4- aa XOR NOT bb
11 aa +- aa + bb
12 aa ~ bb + -aa + I (bb - aa)
13 aa~~ aa + bb + COF.1 (aa PLUS bb)

~i4 aa ~ aa + ‘bb ~ COF.1 (aa Mt$JS bb)
15 ac ~ bb + -aa + COF.1 (bb MNUS aa)
16 aa 4- aa 4 -.bb + 1 (as - bb)
17 aa + - aa XOR bb

The encoding for shift amounts for GEAR and SHIN ministeps is shown In Table 3.3.

MLP-900 Reference Manual 43
3.2 OperatIng Engine

Table 3.3
Shift Amount Encoding

Shift Amount
-

Shift Code

0 0 10 0
1 1 11 1
2 2 12 2
4 4 13 3
6 6 14 4

10 8 15 5
14 12 16 6
20 16 17 7

Syntax:

(7) gear ::—
ca(S) ‘- gexp(9) gmod{11J; gexp(9J gmodf 11);

(8) as ::—
R.J7 I • P—7 I * P~7

((9) gexp
aa + bb J aa - bb I bb - aa I
aa PL US bb I aa MINUS bb bb MINUS as I
aa AND bb j NOT aa ~ND bb (aa AND NOT bb
aa OR bb I NOT as OR bb I aa OR NOT bb I
aa XOR bb I NOT a XOR bb I NOT bb bb
<<see aa(8) and bb(10}>>
<<when using us. first Ferns of gear(7), aa heve and there muss 6. identical>>

(10) bb ::—
aa(8) I number(S) I PJ

(11) gmod :: .
amask(12) testmode(13) gshift(14) I gshift(14) amask(12} testmode(13) I .
<-camask, testmode, and gshift may he aperified in any order>>

(12) amask ::—
(M..17) (hf..l7 1 I emptys~ring

(13) test ::—
a empiyatr 1n~

(14) gshlft ::—
shdir(15) samount(18) I ernp tyainng

((15) shdir ::—
shleft(16) I shright(17)

MLP-900 Reference Manual 44
3.2 Operating Engine

.~J

(16) shteft ::—
LEFT I \

(17) shright ::~RIGHT I /
(18) samount ::—

0 1 1 1 2 1 4 1 6 1 1 0 1 14 1 20

Examples:
R.1 ~ R.1 + R.2;
R.7 *- R.7 - P.0 /I (M.1)st ;
P.37 ~ 173 - P.37 \2 (M.2);
ØP.O 4- iaP.O XOR NOT 3 (M.17);
*P.17 ~ sP.17 AND P.3 /4 [M.27] a;
~P.3 ~- NOT IsP.3 OR R.17 \20 (M.21);

~iP.1 ~- sP.1 MINUS tsP.! (M~3) C;

Semantics:

The GEAR ministep is used for arithmctic operations. It selects two operands and a mask,
routes them to the primary adder, and then specifies a shift of the result through the primary
shifter. The result is then stored back into the A-operand (see Section 3.2.1 for a discussion
of 0€ operands) in either clear or normal mode. This operation is shown in Figure 3.4.

Mask A Operand B Operand

j~~~rierL~~~~~~~~~~~~~~~~~~~~~~

Zero Masked-Out Bits

~ ZsP

If Not Clea r Mode

A Operand

Figure 3.4 Operating Engine: GEAR

The requested operation is conditioned by the value of the specified mask reg ister.
A one-bit (1) in the mask is a masked-in bit; a zero-bit (0) in the mask is a
masked-out bit. The default mask is MO.

MLP-900 Reference Manual 45
3.2 Operating Engine

Adding under ! !!~!!~
The primary adder treats all the masked-in bits as one

contiguous operand field; carry generation Is suppressed In masked-out bits, and
carry propagates over masked-out bits. For all operations, the masked-out
positions are forced to zero at the primary adder output. For the -, PLUS, or
MINUS operators , the third term in Table 3.2 (either +1 or cOF.1) is treated as a
carry into the low-order (masked-in) bit.

j fj j~g~ under ! ~~~~~~~~~~ The shifter ignores the mask.

Storing under a mask. In Clear mode, (M..17), the entire 36-bit output of the
primary shifter is stored; if the shift amount Is zero, then all masked-out bits are
necessarily cleared to zero. In normal mode, (M.. 17), only the masked-in bits are
stored; the masked-out bits remain unchanged in the register.

Test Mode
If “sa ~~~ is not specified In the GEAR, or if the test mode modifier “e is present,
the store into the A-operand (see Section 3.2.1) is suppressed. In any case, all
applicable flops (see Table 3.4) are set.

Operators
All valid operator combinations are listed in the syntax for gexp in Section 3.2.2.1.
Normal addition (+) and subtraction (-1 operators are two’s complement; NOT Is a
logical operator (One’s complement). PLUS and MINUS are one’s complement
operators and take flop cOF.1 as an initial low-order carry -in; these operators can
be used to produce multiple-precision results. Both the “-“ and ~MINUSN forms of
subtraction are defined in terms of complomentation, addition, and low-order
carry-in; carry-out is always generated by addition.

Shifts
All valid shift amounts are listed in the syntax for sninount in Section 3.2.2.1. The
prefix W/N designates a right shift (divide) and the prefix “\“ designates a left shift
(multiply). The default shift is 0RIGHT 0”. The boundary shift conditions are
shown In Figure 3.5.

SOS ~~

SH E - ~~

FIgure 3.5 Shifter Boundary Conditions

Fiip-FIoos
Table 3.4 lIsts all flops Involved In any GEAR.

(

MIP-900 Reference Manual 46
3.2 Operat Ing Engi ne

Table 3.4
GEAR Flops

Flop Active Condition
COP, COF.l, COF.2 +, -, PLUS, MINUS
ZSP, ZRF.1, ZRF.2 All GEAR operations
SOS Nonzero shift
SOF, SHE Nonzero left (\) shift

COP (F.300). This pseudo-f iop contains the carry-out value for +, -, PLUS, and
MINUS operations executed during the current cycle. It is valid only during the
current cycle (La., for testing by a paired CE instruction).

COF.1 (F.140). This flop contains the most recent setting of COP and thus has the
carry -out value of the last +, -‘

PLUS, or MINUS operation completed.

COF.2 (F.141). This flop contains a copy of the previous setting of COF.1, and thus
has the carry-out value of the next-to-last +, -, PLUS , or MINUS completed.

ZSP (F.301). This pseudo-flop is set if the mas~~d output from the primary adder
for this current operation is zero. Active for all GEAR operations, it is valid only
dur ing the current cycle.

ZRF.1 (F.142). This flop contains the most recent setting of ZSP (except in the
case of PLUS and MINUS, when it is set to the logical product of ZSP and its own
prior value) and thus reflects a zero result from the last GEAR completed.

ZRF.2 (F.143). This flop contains a copy of the previous setting of ZRF.1, thus
ref lecting a zero result from the next-to-last GEAR completed.

SOS (F.146). If there is a nonzero right shift (/), SOS is copied into ‘the vacated
bits.

SOF (F.147). If there is a nonzero left shift (\), each bit shifted out of the leftmost
bit is compared with SOS; if any is different , then SOF is set.

SHE (F.145). If there is a nonzero left shift (\), th c~ last b~t shifted out of the
leftmost bit Is left in SHE; the shifted-out bit is available only in subsequent cycles.

3.2.2.2 CEDE Conditional l~xternal Data l~xclsange

CEDE Is used to fetch and store main memory. All memory fetches or stores require The
execution of two CEDEs. The first CEDE provides an address that is treated as virtual or real
(depending on TRBY, F.165), initiates a translate cycle if virt~,aI (i.e., if not TRBY), and initiates
the memory fetch If reading. The second CEDE, which need not follow immediately, provides
the data for a store or waits for the data from a fetch. Page-fault action requests lake place
at the time of the second instruction (the wait or store) and cause that instruction to be
suppressed.

The CEDE exchange code (see Table 3.5) determines the sub-op being executed. The
A -operand and B-operand of FOP and SAD are identical to their coding in GEAR; the ‘Op A

MIP-900 Reference Manual 47
3.2 Operating Engine

Extend” and “Op A Group” fields are ignored. For WOP, SOP, and WOS, the A-operand specifies
any 0€ register, the 12-bit address being coded In three sections (the 4-bit group, the 3-bit
extension, and the 5-bit register); the operand may also be indirect through a pointer, in which
case the indirect addressing is done within the indicated group and the “Op A Extend” is
ignored. WOP, SOP, and WOS ignore (he B-operand.

Test mode inhibits fetching, storing, translating, ana the modification of any register, but
waiting and page faulting are still performed. The subtract bit, when set , specifies two ’s
complement subtr action instead of addition for thos e CEDEs that do arithmetic; the subtract bit
is ignored for other CEDEs.

Table 3.5
CEDE Exchange Codes

2 FOP Fetch Operand
3 SAD Set Address

11 SOP Store Operand
14 WOP Wait for Operand
15 WOS Wait for Operand, Stream Mode
16 ROW Retry Operation

00 01 02 03)4 05 06 07 0$ 09 10 11 12 13. 14 15 16 1718 19 20 21 22 23 24 25.26 27 28 29 30 31

CEDE Xchng Op A Op A ~ ~ A Operand B Ope rand

~ 1 Code xten~ Group ~

Figure 3.6 CEDE Ministep

Syntax:

(19) cede ::—
cedeA(20) J cede8{23) cedeC(28)

(20) cedeA ::—
cedeAcode{21) aa{8) signf22} bb(1O) testmode(13) ;

(21) cedeAcode ::—
FOP SAD

(22) sign ::—

~~I —
(23) cedeB ::—

cedeflcode(24) o.loc(25) Iestmode(1 3);

((24) cedeScode ::.
sop WOP I WOS

0

- - - - p —

MLP-900 Reference Manual 48
3.2 Operating Engine

(25) oeloc ::—
oereg(26) I oepage(27) 0 P..? I oep age(27} * P.7 - I XBUS

(26) oereg ::—
11.37 I MISC...17 I M..l7 I /1..1777 I XIdJTOR.777

(27) oepage ::~oereg(26) IJ.PC..3 I XIIITOR.PC..l

(28) cedeC ::—
ROW testmode(13J ;

Examples:
FOP R.3 + R.6;
SAD 0 P.O -2;
WOP XBUS;
WOP R.1;
SOP R.O;
SOP MO 0 P. 10;

Semantics:

Name Affects Description
FOP Address (a) VAR and aa 4- aa +/- bb

Fetch Opet and (b) VAR command bits ~ “read”
(c) Translate3
(d) Fetch data into MDR4

SAD Address (a) VAR and aa - aa +/- bb

bet Address •(b) VAR command bits t- “store”
(c) Translate3

so~ Data (a) MDR 4- aa
Store Operand (b) Store data from MDR5

(Preceding CEDE must be SAD)

3. Translate: uses the contents of VAR as an m dcx Into translator memory and notes (Internalty) whether the
translation is OK.

4. F.tcln if the translation Is OK, initiates a f.tch from memory, remembers that there is an outstanding fetch,
and increments VAR by one (only the 9 low-order bits are effected; if they were all ones, then they are
made zero, but her, a no further carry). When the memory responds with the data, it Is stored In MDR
and the remembered fetch condition is cleared.

5. Store: If the (most recent) translation Is OK, initi ates a memory-store cycle of the word In MOR; If the
translation is not Ol(., sup~ esses this minlsl.p, and sets the PAGE action request (P.121). if the ‘store’
command is no~ set In VAR , the resul t Is Irdefined.

V

MLP-900 Reference Manual 49
3.2 Operating Engine

WOP Data (a) Wait 6
Walt for Operand (b) aa ~- NOR

L WOS Data (a) Wait 6
Wait for Data , (b) aa 4- NOR
Stream Mode (c) Triggers an asynchronous mode of continuous
(privileged) memory fetching from successive locations in

the same memory page at maximum memory
rate; WOS must be executed In a loop that is
faster than the memory (viz., one MIP-900
cycle) lest data be lost with no indication.

ROW Address (a) Trans late3
Retry Operation (b) Fetch if “read” is set in VAR4
(privileged) (Acts like FOP or SAD, depending on the old

contents of VAR.)

FOP and WOP are the basic memory-fetch pair, while SAD and SOP are the basic memory-store
pair. The memory currently accessed by the MLP-900 has a 750 nanosecond cycle time;
allowing for translation overhead, there are at least three “free ” NIP cycles available between
a FOP and the following WOP.

3.2.2.3 SHIN Sh ift INstruction

The SHIN ministep provides single- and double-register shifting by both fixed and
variable amounts. In addition, two variants provide the basic shift-and-add steps required for
multiplication and division operations. The SHIN internal format is shown in Figure 3.7. Shift
codes are listed itt Table 3.6 and shift amounts in Tab’e 3.2 (see Section 3.2.2.1). The mask ,
shift-amount, test , A-operand, and B-operand fields (where used) are identical to those of
GEAR. Indirect shift, if set, causes the encoded shift amount ~afthough not the shift direction)
to be ignored.

0001 02 03)4 05 06 07 08.09 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

~~ S H I N ~h~ft
Mask

~~

A Operand B Operand

Figure 3J SHIN Ministep

(
6. Walti If the last translation Is not OK, s~çpr ,sses his ministep and sets the PAGE action request (P.121).

If there is ~tilI a memmy fetch In ~ o~ ess, wails for It to complete (for the data to be In MOR).

-

MLP-900 Reference Manual 50
3.2 Operating Engine

Table 3.6
SHIN Shift Codes

0 SIJFT.EO.L (Shift even Into odd, linear)
I SHIFT.OE.L (Shift odd into even, linear)
2 SHIFT.SINGLE.L
3 SHIFT.DUAL L
4 SH1FT.EO.C (Shift even and odd, circular)
5 SHJFT.RE.L (Shift register into extension, linear)
6 SHIFT.ER.L (Shift extension into register , linear)
7 SHIFT.RE.C (Shift register and extension, circular)

11 MULTIPLY
12 DIVIDE

Syntax:

(29) shin ::—
shop{30) aa(8) shdir(15) shamount(31J shmask(32) testmode(13) I
mdop(33} aa(8} BY bb(10) shmask(32) Iestmode(13} ;

(30) shop ::—
SIIFT.OE.L I SHIFT.EO.L I SHIFT.SINGLE.L I SHIFT.DUALL StIFT.EO.C I
SIJFT.RE.L I SHIFT.ERL I SHIFT.RE.C

(31) shamount ::—
0 I 1 1 2 1 4 1 6 1 1 0 I I 4 I 2 O I o

(32) shmask ::—
(11.17) I amp* yssr ing

(33) mdop ::~MULTIPLY I DIVIDE

Note that aa, 6*, and •eat are identical to the same constructs in the GEAR ministep;
ahi-smoune Is similar to aamoune (see Section 3.2.2.1), with the addition of “0”, whIle shnsaak
Is similar to a GEAR mask, with the deletion of “(M..17]“.

Examples:
SHIFT.EO.L R.1 2 LEFT 6;
SHIFT.OE.C oP.4 RIGHT o;
MULTIPLY R.20 BY 12 (M17) ;

Semantics:

The SHIN ministep provides for the shifting of either a single register (SHIFT.SINGIE.L), an
even/odd register pair (SHIFT.E0.L, SHIFT.OE.L, SHIFT.DUAL.L, MULTIPLY, or DIVIDE), or a pair
comprised of the designated register and the shift-ex tension register , P.37 (SI-IFT.RE.L,
SI-IIFT.ER.L, and SHIFT.RE.C). Shifting is done In two 36-bit shifters , with the designated register
entering the primary shifter and the Implied register entering the extension shifter; after
shifting, the primary and extension shifters are copied back into the same two r.gister.. The
shift operations specify the various ways of connecting the two shifters.

MLP-900 Reference Manual 51
3.2 Operating Engine

ea: Designates the primary register to be shifted. For the even/odd double shifts,
an should be even, and the next-higher-numbered register is the Implied
second register of the shift; if an is an odd-numbered register, then two copies

— of its value enter the shifter; but only the primary shifter value Is stored (this
allows a circular shift of a single odd register; there is no circular shift of a
single even register available). F~or the register/extension double shifts,
where P37 is the implied register, there is no differe nce between an even an
and an odd an.

aMir: The direction must be specified in the ministep as either RIGHT (p 9 or LEFT (\) .

al,a,noune: The shift amount (in bits) may be either direct (allowed values are the
same as for GEAR) or indirect (n). Vacated bit positions are set to zero in all
left shifts and to the value of SOS in all right shifts. For indirect shifts, the
shift amount is taken from the shift counter, P.7; the actual shift amount is 0, 1,
2, 4, 10, or 20 (octal)--whichever is the largest value not exceeding the
contents of the pointer. The pointer is decremented by the amount of the
shift , and, if the new value is zero, the SHD (Shift Done) pseudo-flop is set. A
paired BRAT ministep can be used to create a one-cycle shift loop to shift by
an arbitrary shift amount. Note that an indirect shift cannot be paired with a
BRAD ministep since the NIP cannot modify two pointers simultaneously.

alunaak : The mask, if any, affec ts only the an reg ister itself; the Implied register is
always unmasked. Masked-out bits of the register enter the shifter as zero
bits; their value is not altered by the shift ministep (as In the GEAR normal
mode).

teat: Testmode, if set, leaves all the general registers unchanged; only flops (and P.7
in an indirect shift) are affected by the execution of a test -mode SHIN.

SIIFT.SINGIE.L Is a single-register shift identical to the shifting of a GEAR; this SHIN
Is useful only for an indirect single-register shift.

SIIFT.EO.L, SIJFT.OE.L, SI-IIFT.DUALL, SHIFT.OE.C are the straight even/odd shift
operations, differing only in the connections between the two shift registers:

-.E0.L (ICven-into-Odd linear) -- bits shifted out of the even word
(primary shifter) enter the odd word (extension shifter), white bits
shifted out of the odd word are lost.

-.OE.L (Odd-into-ICven linear). -- bits shifted out of the even word are
lost, while bits shifted out of the odd word enter the even word.

-.DUAL.L. -- bits leaving either word are lost.
-.E0.C (gven-and-odd Circular) -- bits shifted out of either word enter

the other one.

SIIFT.RE.L, SIIFT.ER.L, SHIFT.RE.C are the equivalent operations performed on the
designated reg ister and the extension register (R.37) as a pair:

—.REL (RegIst.r—irtto-1’xtension linear)
-.ER.L (Extension-Into-Register Linear)
-.RE.C (Register-and-Extension Circular)

— . _t______ .
._ _______ —

MLP-900 Reference Manual 52
3.2 Operating Engine

MULTIPLY is a single step of a multiplication loop, with the even/odd pair designating
the partial product and multiplicand, respectively, and the second operand
designating the multiplier. Except for timing (and, consequently, flop values)
the Operation “MULTIPLY X BY Y (M.Z)” Is equivalent to the sequence

XI #- X l AND 1 a I XI is the odd reg paired with X
IF ZSP THEN, BEGIN

X .— X + 0 (M.Z)
ELSE

X 4 - X + Y (M . 7) !addYl f l5B o f X l ls set
END ;
SHIFT.EO.L X RIGHT 1 (M.Z) ;

DIVIDE is a single step of a division loop, with the first operand (even/odd pair)
designating the dividend (which develops into quotient and remainder) and the
second operand designating the divisor. Except for timing, th, operation
“DIVIDE X BY V (M.Z)” is equivalent to the sequence

IF COF.1 THEN.BEGIN ! the current setting selects
X .- X - V (M.Z) I ... either subtraction

ELSE
X .- X + V (M.Z) ! ... or addition

END ;
SHIFT.OE.L X LEFT I (M.Z) ;
IF COF.1 THEN.BEGIN ! the new setting (from above)

Xl ‘- Xl OR 1! ... is the new quotient bit in X l
END ;

Note that COF.1 must be properly Initialized for a divide loop; subsequent
iterations use the value set by the previous iteration.

The following flops are used uniformly in all SHIN ministeps:

SOS--on all right shifts (including MULTIPLY) a copy of SOS Is brought into vacated
bit positions: into the unconnected register itt a linear shift or Into both
registers in the dual shift. SOS is not used in a circular shift.

SHE--on all linear left shifts SHE is set to the value of the last bit shifted out of the
unconnected register. SHE Is not affected by circular or dual shifts.

SOF--on all linear left shifts SOF is set if any bit shifted out of the unconnected
register Is different from the setting of SOS. SOF Is never cleared by a shift.
SOF is not affected by circular or dual shifts.

SiO--pseduo-f lop that is valid only during an indir ect-shi t t cycle.

The followIng flops are associated with the adder, and are affected only by the k<IPLY and
DIVIDE operations:

cOP, COF.1--reflect the carry-out of the adder (COP Is valid only duriaj this cycle;
COF.1 is valid only after this cycle). COF.1 Is also an input to DIVIDE.

COF.2--at the end of this cycle, contains the value of COF.1 fr om the beginnIng of
th is cycle.

L .. - - _ __- —

MLP-900 Reference Manual 53
3.2 Operating Engine

g.2.2.4 CENT CENcraI Data Transfer

This ministep performs data transfers between OE registers and is also used, In
conjunction wit h the CE ministep MOVE, to provide interengine data transfers. The GENT
internal coding is shown in Figure 3.8. GENT takes two operands: A and B. The direction of
the transfer is controlled by the To/From bit:

To/From Result
0 A 4 -R
I

The 12-bit address for the A-operand is coded in three sections as described for CEDE In
Section 3.2.2.2. If the A-operand addresses the mask registers, or if the destin&mtion is an
immediate value or a pointer register , the resulting operation is a no-op. The B-operand is
coded as described in Section 3.2.1, except that the “Op B Group” field Is used when bits 0 and
I are zero; otherwise, the “Op B Group” field must be zero. The registers addressed by the
“Op B Group” field are shown In Table 3.7.

00 01 02.03104106106 07106109.10 11 12 13.14J5 6 17 18 19 20.21.fl 23 24 25 26 27.28 29 30 31

GENT 10 0p A Op A OpB

~ ~ ~~ <1 xtend Group Grp A Operand B Operand

Figure 3.8 CENT Ministep

Table 3.7
GENT B Operand Group

Op B Group ReRisIer
0 Normal B-operand (see Section 3.2.1)
1 *1. 17 -- Mask Registers
2 MISC..37 -- Misc. Registers
3 XE3US -- Exchange Bus

$ynt ax:

(34) gent ::—
genta(35) .- gentb(37) ; 1 genta~35) 4- gentc~39) ; 1 gentbj37) ~- genta(35) ;

(35) genta ::—
gentar (36 I gentar(36) 0 P..? I gentar(36) * P_7 I XBIJS

/ (36) gentar ::—
(R.J7 I MISC..37 I /I .. 1777 I Xl ./1 7Y)R..777

(37) gentb ::—
gentbr(38) I gentbr(38J 0 P.7 I gentbr{38) * P..7 I XRUS

MLP-900 Reference Manual 54
3.2 Operating Engine

(38) gentbr ::—
R..37 I M.. Ii I MISC..37

(39) gentc ::—
number(5) I P..?

Examples:
R.12 ~ 1234567 ;
MISC.12 4- XBUS ;
A.123 ~ P.12;
XEJUS 4- CE.O ;
XI3US ~ A.1234 ;

Semant ics:

GENT performs transfers among the OE registers (see Table 3.1). The contents of the
right register is copied into the left register. Where XBUS is used as a destination (left
register) or a source (right register), t he GENT should be paired with a corresponding MOVE to
transfer data between the CE and OE.

3~3 Control Engine

The control engine is the ministep-decoding and -sequencing unit; It includes the
current -ministep address register , the control memory interface , a 16-word subroutine stack
(used for both subroutine calls and interrupts), the interrupt and protection mechanisms, 256
individually addressable flops, and eight 8-bi t pointer registers. MLP-900 interrupts are known
as “action requests” (AR’s). There are 32 AR levels, of which 24 are privileged. Of the eight
levels available to user microcode, only two have dedicated functions in PRIM (see
Section 2.2.1); the others can be defined by the user. CE ministeps allow conditional branching
(including subroutine calls and returns) and simple flop and pointer-register computations.

3.3.1 Control Engine Operands

CE Registers. A CE byte (register) consists of a 4-bit group number and a 4-bit register-
within-group number. This encoding is shown in Figure 3.9.

01 02 03 04 05
-
06 07

Register number Group number
(n mod 20) (n/20)

Figure 3.9 CF.n Encoding

Relative Addresses. A relative address is encoded in one byte; it Is relative to the
continuation address (the next instruction word). Thus a skip is coded as +1 instead of +2.
The relative offset is a signed, two’s-complement value in the range -200 through +177, octa l.
In GPM all relative addresses are specified relative to the current instruction (or through a
lable); because the encoded offset Is relative to the continuation address, however, the
effective range for relative addresses in GPM is -177 through +200, octal.

MLP-900 Reference Manual 55
3.3 Control Engine

~i22 Expressions. A flop expression is encoded in two and one-half bytes. Two bytes contain
the flops encoded as shown In Figure 3.11. The half-byte defines the function. Figure 3.10
shows where this information is placed in the instruction word. A flop and its associated true
bit are used In BRAT, BENT, BORE, BRAD, BEAD, and MAST ministeps to form flop terms. If the
true bit Is set , then the actual flop value is used; if it is off , then the flop’s complement Is used.

00 01 02 03 05 06 708 09.10 11 12.13.1415 6 17 18 19 2o 21 22 23 2 4 2 5 2 6 2 7 2 6 2 9 3 0 3 1

F;.~a
A F/ F B

Figure 3.10 BooleQn Expression Encoding

Table 3.8
Boolean Expression Types

Test Mode A True B True Boolean Expression
00 0 0 F.b ø- NOT F.a

• 1 NOT (F.b 4- F.a)
1 0 NOT(F.b 4- NOT F.e)

I F.b~- F.a

01 0 0 NOT F.b OR NOT F.a
1 F.b OR NOT F.a

1 0 NOT F.b OR F.a
.1 F.b OR F.a

1-0 0 0 NOT F.b AND NOT F..
1 F.b AND NOT F..

1 0 NOT F.b AND F..
I F.b AND F.a

11 0 0 NOT F.b XOR NOT F.a
I F.b XOR NOT F.a

1 0 NOT F.b XOR F..
1 F.b XOR F..

3.3.1.1 F..377 FIIp.FIop i

C1~’..37 represents 32 bytes of addressable flops, known individually as b’.J77, that may
be set and tested directly by most of the CE ministeps. Within a byte, flops are ordered from
high- to low-order bit. Flops are organized into two major functional groups: F.0-F.277 are
real flops; F.300-F.377 are pseudo-flops. For encoding purposes, the flops are divided into
two groups. F.0-F.177 are all in group 0, and F.200-F.377 are all in group 1. Thus F.327 Is
coded as flop number 127 in group 1. This encoding is shown In Figure 3.11.

MLP-900 Reference Manual 56
3.3 Control Engine

00 01 02 03 04 05 06 07

F/F Number F/F
(n mod 200) Grp

n/
200

Figure 3.11 F.n Encoding

Some ministeps affect specific flops only as a side effect. For example, GEAR and SHIN use and
modify one byte of flops and affect some pseudo-flops. Language boards and AR’s also use
certain flops. Some flops are protected; that is, the user cannot modify them but can reference
them. These protected flops are indicated in lable 3.9 and the text below by an asterisk (a)
beside the flop name.

Table 3.9 lists all the flops. iho flop number is the sum of the numbers .t the top of
the column and in the extreme left row in which the flop is located. Where the flop number
appears (e.g., F.135) rather than a mnemonic, the flop is unassigned; where three dashes (—--)
appear, the flop Is unimplemented. 1 he pseudo-flops in CE.30 (F.300-F.307), plus SHO (F.353),
reflect conditions that arise in the current cycle and are defined only when the appropriate
ministeps are being executed; all ot her flops reflect conditions as of the beginning of the
current cycle. A reference to any flop in CE.30 causes a one-cycle “hiccup”; the cycle requires
two clock periods to execute. ihe flops in CE.30 cannot be referenced In CALL or RETURN
ministeps. The following are real flops:

I”..57 General Indicators: available to user microcode for arbitrary usage.
* SI.IIC..17 (F.60-F.77) Supervisor Language Board Controls.
* POWFR, PANIC, OPAR, ... (F.l00-F.I27) Action Requests.

TRAC, ... (F.130-F.137) User-level AR’s: Each flop represents a specific pending
AR that causes a microcode interrupt whenever its appropriate level is
enabled. Each bit can be set either by the specific occurrence it represents or
by a ministep.7

COI l, COF.2, ZRF.1, ZRF.2, SHE, SOS, SOF (F.140-F.147) Carryout flops, zero
flops, shift extension, shif I-out sign, shift- out flag: OE-associated (GEAR and
SHIN) flops; fully described in the GEAR and SHIN sections.

ARE .5 (V. 150) AR Lockout: user-level AR lockout.7
ITRAC (V.153) Initiate Trace .7
F.154-FJ57 General Indicators: available to user microcode for arbitrary usage.

* S/JRM..I (F.160-F.161) Supervisor AR Masks: control the memory-compare AR.
* CKC (V.164) Clock Control.
$ 1 RRY (F. 165) Translator Bypass.
* CKT (F.166) Check Test.
• MRS (V.167) Mask Bank Selector: selects current mask bank.
a ARt 1-4 (F.170-F.173) AR Lockout: lockouts for privileged AR levels.7
* MOfl..1 (F.174-F.175) Mode Oils: stored in control memory by a RIOT WCM.
* SUPVLB (V.176) Supervisor LU: selects Supervisor LB.
a SUPVCT (F.177) Supervisor Control: forces MLP-900 into supervisor mode

regardless of the mode bit in control memory.
V.2004.237 General Indicators: available to user microcode for arbitrary usage.

7. S.. S.cllon 3.3.3 on AP i.

MLP-900 Reference Manual 57
3.3 Control Engine

The following are pseudo-flops.

COP (F.300) Carry-out PsoudoHop: see GEAR (Section 3.2.2.1) and SHIN
(Section 3.2.2.3) instructions.

ZSP (V.301) Zero-sense Pseudotlop: sec GEAR instruction (Section 3.2.2.1).
1147 (F.30’I) Through Zero: see BRAD instruction (Section 3.2.3.1).
WAR (V.305) Wait AR: one of V.1334.137 is pending.
CCP (V.307) Check-Carry Pseudotlop: carryout from the check-adder.
TRUE (V.310): always set.
.SSW..7 (F.340-F.347) Sense Switches: from the MLP control panels.
SHD (V.353) Shift Done: Sec SHiN instruction (Section 3.2.2.3).
OS!...I (F.354-F.357) One-sense Indicate: senses -1 in the corresponding P..3.
7.SI..7 (F.360-F.367) Zero-sense Indicate: senses 0 in the corresponding P_i.
TSI..l (V.3744.375) Three-sense Indicate : senses 3 in the corresponding P..J.
F SI.. I (V.376-F.377) Four-sense Indicate: senses 4 in the corresponding P..1.

3.3.1.2 P..? Point er Reg isters

There are eight 8-bit pointer registers that can be used in the 0€ to address registers
indirectly (e.g., R.0 a~ P.3 is the general register determined by the low-order 5 bits of P.3).
The pointer registers can be loaded by a MOVE instruction, modified by the BRAD Instruction,
and tested through the pointer-sense pseudo-flops. The following pointers have

(special-pur pose functions:

P.O-P.3 used and modified by the BLOT ministep; otherwise generally availab le.
P.6 stack pointer (dedicated for micro-PC).
P.7 shift counter for SHIN.

The following pseudo-flops are true if, and only if , the appropriate pointer has exactly the
specified value.

OSl..3 sense all ones (i.e,., - 1 or octa l 377) in the corresponding P..3.
• ZSI..? sense zero (0) in the corresponding P..7.

TSI..l sense the value three (3) in the corresponding P..I.

~81.. J sense the value four (4) in the corresponding P..!.

When a BRAD m.nistep both modifies a pointer and tests that pointer’s sense pseudo-flops, the
original value of the pointer Is sensed.

MIP-900 Reference Manual 58
3.3 Control Engine

Table 3.9
Flip-Flops (Names and Groups)

V.0 F.40 V.100 1.140

(CE O) (CU.4) (CE.1O) (CE.14)
00 F.O lAO POWER* C0F.1
01 F.1 F.41 PANICs .2
02 V.2 1.42 OPARa ZRF.1
03 1.3 1.43 EPAR. .2
04 1.4 1.44 SOVF* V.144
05 V.5 F.45 SUNFa SHE
06 V.6 V.46 UOVF * SOS
07 1.7 F.47 UUNF* SOF

(CE.1) (CE.5)
--

(CE.1 1) (CE.15)
10 V.10 V.50 CMADR* ARL.5
11 1.11 1.51 AERR* V.152
12 V.12 1.52 BERRa F.153
13 V.13 1.53 PERRa ITRAC
14 1.14 1.54 1.114* F.154
15 V.15 1.55 V.115* V.155
16 V. 16 V.56 MMERR* V.156
17 1.17 1.57 1.117* F.157

(CE.2) (CE.6) (CE.12) (CE.16)
20 1.20 SLBC.0s

• TASKs SARMOs
21 1.21 .1* PAGEa .1*
22 1.22 .2* SUPVF* F.162s
23 1.23 .3* PROT* V.163*
24 F.24 .4* VADR* CKC*
25 1.25 .5* V.125* TRBYs
26 V.26 .6* 1 126* 0(1*
27 1.27 .7* 1.127* MBSs

(CE.3) (CE.7) (CE.13) (CE.17)
30 1.30 SLBC.lOs TRAC ARL.1*
31 1.31 .11* V.131 .2*
32 V.32 .12* 1.132 .3*
33 1.33 .13* 1.133 .4*
34 1.34 .14* F.134 MOO.0s
35 V.35 .15* F.135 .1*
36 1.36 .16* 1.136 SUPVLBs
37 1.37 .17* 1.137 SUPVCT*

r)

MIP-900 Reference Manual 59
3.3 Control Engine

Table 3.9 (Continued)

1.200 1.240 F.300 1.340

(CE.20) (CE.24) (CE.30) (CE.34)
00 V.200 1.240 COP8 SSW.0
01 1.201 F.241 iSP8 .1
02 1.202 1.242 --- .2
03 V.203 1.243 --- .3
04 V.204 1.244 1HZ8 .4
05 V.205 F.245 WAR .5
06 1.206 F.246 - •• - .6
07 1.207 1.247 CCP8 .7

(CE.21) (CE.25) (CE.31) (CE.35)
10 V.210 F.250 TRUE
11 1.211 1.251
12 V.212 F.252
13 F.213 1.253 --- SHD8
14 1.214 1.254 - - - OSI.O
15 F.215 1.255 --- .1
16 1.216 F.256 - - - .2
17 F.217 1.257 - - - .3

(CE.22) (CE.26) (CE.32) (Cl..36)
20 1.220 1.260 --- ZSI.O
21 1.221 1.261 --- .1
22 F.222 1.762 --- .2
23 1.223 1.263 --- .3
24 F.224 F.264 --- .4
25 1.225 V.265 --- .5
26 1.226 F.266 - - - .6
27 V .227 F.267 -- - .7

(CE.23) (CE.27)
-

(CE.33) (CE.37)
30 V.230 F.270
31 1.231 1.271
32 1.232 F.272 -- -

33 1.233 V.273 -- -

34 1.234 1.274 - -- TSI.O
35 1.235 1.275 -- - .1
36 1.236 1.276 --- FSI.O
37 1.237 1.277 -- - .1

(

8. R.fl.cts cond~tlens only within th* c~ rent cyc~S.

MIP-900 Reference Manual 60
3.3 Control Engine

3.3.1.3 CE..?? Miscellane ous Registers

The double register pair (CE.60, CE.61) is the minif low status word, of which only 2 bits
are used.

00 01 0203 05 06 07 08 09 1011 12 13 14 15

Figure 3.12 Miniflow Status Word

LB selects the active language board set.

The double register pair (CE.62, CE.63) is the current address register. It contains the
address of the current instruction or of the first instruction of a pair. A MOVE to the current
address register is a no-op.

CE.64-CE.67 comprise the exchange bus from the OE into the CE; it is addressed as
X IIIIS...i on the left side of an assignment in the MOVE ministep. CE.70-CE.73 comprise the
exchange bus from the CE into the OE; it is addressed as X IMJS..3 on the right side of the
assignment in the MOVE ministep. XII(JS..3 are pseudo-reg isters connected to bits 4-35 of the
exchange bus in the 0€: XBUS.O connects to bits 4-1 1, XBUS.1 to bits 12-19, XBUS.2 to bits
20-27, and XBUS.3 to bits 28-35.

3.3.1.4 S..!? Subroutine Stack

The Subroutine Stack consists of sixteen 16-bit registers. The subroutine stack,
together with P.6 (the stack pointer), is automatically used in AR’s and in subroutinc calls and
returns. A subroutine call (a BEAD or BENT ministep) branches to the effective address and
pushes the return address onto the top of the stack. ihis is done by incrementing P.6 by 1
and then using the four low-order bits to select the stack word to be loaded with the return
address. In addition, if the four low-orde r bits of P.6 were octal 16 (indicating that the stack Is
being filled), either a supervisor stack overflow (1.104) or a user stack overflow (F.106) is
requested, according to the mode of the caller. Taking an AR consists of pushing the
interrupted address onto the stack and branching to the AR entry point, simultaneously setting
the appropriate lockout bit (ARL. I -ARL5).

A return (i.e., a BORE ministep) loads the current address register from the top of the
stack and then decrements P.6 by 1. If the stack is empty (the four low-order bits of P.S are
0) and If ARL.2 is off , a stack underilow of the appropriate kind is taken (1.105 if supervisor;
1.107 if user), the pointer is left unchanged, and the current address (I.e., the address of the
BORE instruction) is stacked in S.0. If the stack is empty but ARL.2 is on, the BORE returns
normally, decrementing P.S as it goes.

- —~~~~ --- _-~~---

MLP-900 Reference Manual 61
3.3 Control Engine

3.3.2 Control Engine Operators

The CE operators are:

• BRAT Branch with Test -- provides conditional jumps.
• BENT Branch and Enter -- provides conditional subroutine calls.
• BORE Branch or Return -- provides conditional subroutine returns.
• BRAD Branch and Modify -- provides loop control.
• BEAD Branch Extended Address -- provides conditional and unconditional

subroutine calls and jumps. It has a larger addressing capability than
BRAT or BENT.

• BLOT Block Transfer -- provides loop control together with dat. transfers
within the OE.

• MAST Manipulate Status -- manipulates flops.
• MOVE Move CE Registers -- the general data transfer instruction for the CE.

3.3.2.1 BRA T IIRIJiich with 7’est

The BRAT internal coding, given in Figure 3.13, consists of the BRAT opcode, a boolean
expression, end a relative address (see Section 3.3.1, Figure 3.10, and Table 3.8).

00 01 0203 050607 08~~9• 1O 11 12 13 14 15 16 17 18 19 20 21.22 23 24 25.26 27 28 29 30.31

~

BRAT 1/F A F/V B Reiative

Figure 3.13 BRAT Mi ,tsstep

Syntax:

(40) brat ::—
/ IF flopexp{41) THEN GOTO rellabel(44) END ;

(41) flopexp ::—
flopterm(42) bop~43} f$opterm(42) (b’..277 ~- ttopterm(42))
NOT (F..277 .- f lopterm(42))

(42) f lopterm ::—
NOT FJ77 I”..377 I FALSE
<<FALSE is e shorthand for NOT TRUE’>

(43) bop ::—
AND I OR I XOR

• (44) rellabel ::—
offset (45) I id(1)

(45) offse t ::~
• number(S) - numbor(5}

_ f l_— - — -
- -

________ - -

-s----— - —~~~-

MLP-900 Reference Manual 62
3.3 Control Engine

Examples:
/11 (F.0 4- TRUE) THEN GOTO 4200 END;
/lF NOT (1.1 .- FALSE) THEN GOTO -177 END;
/lF 1.3 OR 1.3 THEN GOTO TAGI7 END;
/11 NOT 1.4 AM) 1.5 THEN GOTO +7 END;
1W 1.377 XOR NOT 1.377 THEN GOTO -3 END;
/11 NOT 1.1 OR NOT F.4 THEN GOTO +166 END;

Semantics:

This ministep provides conditional Jumps. If the boolnan expression flop xp evaluates to
true, then the branch is taken; otherwise execution continues with the next instruction. If a
store (.-) is specified in the boolean expression, the store occurs whether the branch is taken
or not. The branch destination is a location relative to the current instruction. The limits on
the branch destination are octal .200 and -177, inclusive. As with all relative branches,
addressing beyond or before the ends of control memory will cause a location-counter
wraparound. Thus a transfer to +70 from location 7747 will go to location 0037.

3.3.2.2 BENT Branch and ENTer -

The BENT internal coding, given in Figure 3.14, consists of the BENT opcode, a boolean
expression and a relative address (see Section 3.3.1, FIgure 3.10, and Table 3.8).

00 01 0203 05 06 070909 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25.26 27.28 29.30 31

11
~~~~~~~~~~~~ F/ F A F/F B ~~~~~

Figure 3.14 BENT Müiistep

Syntax:

(46) bent ::—
/ IF flopexp(41 } THEN CALL. rellabel(44) END ;

Examples:
/ll (F.17 4- NOT F.!) THEN CALL SUB END;
/lF 1.202 OR 1.206 THEN CALL +1 END;
/ll 1.4 XOR NOT 1.77 THEN CALL -27 END;

Semantics:

This ministep provides conditional subroutine calls. ihe execution of the BENT ministep
Is similiar to the BRAT. The only difference is that when the branch Is taken, a subroutine
entry Is executed, with the address of the next instruction being pushed onto the subroutine
stack (S~I7).



MLP-900 Reference Manual 63
3.3 Control Engine

3.3.2.3 BORE Ilranch Or RlCturn

The BORE internal coding, given in Figure 3.15, consis ts of the BORE opcode, a boolean
expression and a relative address (see Section 3.3.1, Figure 3.10, and Table 3.8).

00 01 0203 .05 0807 08.09 10 11.12.13 14 15 16 17 18 .19 20 21 22 23 24 25 26 27 28 29.30.31

BORE F/F A F/F B Re~atjve

~ 
Address

Figure 3.15 BORE Mirtistep

~ynt ax:

(47) bore ::—
/ IF flopexp (4 1) THEN GOTO rellabel(44) ELSE RETURN END ;

Examples:
/IF F.1 OR NOT F.3 THEN GOTO -3 ELSE RETURN END;
/ll TRUE OR 1.0 THEN GOTO 41 ELSE RETURN END;

Semantics:

This ministep provides conditional subroutine returns (there is no unconditional
subroutine return). The execution of the ministep is identical to BRAT if the boolean
expression evaluates to true. If the expression evalueles to false, then instead of continuing at
the next instruction, a subroutine return is executed. As with both BRAT and BENT, if a store
is indicated, it occurs whether the expression evaluates to true or false.

3.3.2.4 BRAD BRanch /lnd moDify pointer

The BRAD internal coding, given in Figure 3.16, consists of the BRAD opcode, a pointer
register number, a modifier (the pointer ’s increment/decrement), a flop term (which corresponds
to the B-part of a boolean expression), and a relative address (see Section 3.3.1, Figure 3.10,
and Table 3.8).

00 ~~~~~~~~~~~~~~~~ 08.~O9.10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25.26.27.28 29 30 31

BRA D 
~~Poln terIlodIffe F/F B RelatIve

~ 
Reg . Address

Figure 3.16 BRAD Miaistep

Syntax:

( (48) brad ::—
/ bradop(49) P.7 BY number(5) ; IF f lopterm(42) THEN GOTO rellabel(44) END;



MLP-900 Reference Manual 64
3.3 Control Engine

(49) bradop ::—
INCREMENT I DECREMENT

Examples:
/INCREMENT P.1 BY 7; IF TSI.1 THEN GOTO TAGS3 END;
/DECREMENT P.O BY 10; IF FSI.O THEN GOTO +12 END;

Semantics:

This minisiep provides primitive loop and count control. It Increments or decrements a
counting pointer (P..7) and does a conditional relative branch. (Note that BRAD should not be
executed in a pair with a SHIN ministep using indirect shift.) The largest increment is 7 and the
largest decrement Is octal 10. The through-zero (THZ) pseudo-flop is defined only for a BRAD
ministep; whenever the pointer value (taken as an 8-bit , non-negative number) overflows or
underflows, 1HZ is true and the new pointer value is correct modulo 400 (octal).

3.3.2.5 BEAD Branch Extended i71.) dress

The BEAD instruction provides for both conditional branching to any location in control
memory and unconditional indexed branching using a pointer. There are four forms of BEAD,
with syntax for all given in Section 3.3.2.5. They may each be used as a CALl., or a GOb , as
determined by the “Enter” bit shown in Figures 3.17-20: if “Enter” is set, a CALL occurs rathe r
than a GOTO.

BEADO. The BEADO internal coding, given in Figure 3.17, consists of a BEADO Opcode, a flop
term (see Section 3.3.1), and a 16-bit absolute address.

00 O1~02 O3 05 06 708,09,10 11 12 13 14 15 16 1718 19 20 21 22 23124 25.26 27.28.29.30 31

BEAD 

~~~ 

F/F A Extended Branch Address

Figure 3.17 BEADO Ministep

BEADI. The BEADI internal coding, given in Figure 3.18, consists of a BEAD1 opcode, a
pointer register number, and a 16-bit absolute address.

00 01 0203104 05 06 07j06,09 10 11 12 13 14 15 16 17 18.19 2021 22 23.24 25.26.27.28.29 30 31

BEA D
~ ~~PoInter Absolute

~
Extended Branch Address

U~gure 3.18 BEAOI Mlr i tstep

E3EAD2. The BEAD2 Internal coding, given in Flgu~e 3.19, consists of a BEAD2 opcode and a
pointer register number.

— --- --•— .. ._ __ - -- .~~~——-

MLP-900 Reference Manual 65
3.3 Control Engine

oo Ol 0203~~~

Jfl :u

~~~ l3 l4 l5
lj9202l

22 23 24 2s 2 6 2 l 2 8 2 9 3 0 3 l

Figure 3.19 BEAD? Misuslep

HEAD3. The BEAD3 internal coding, given in Figure 3.20, consists of a BEAD3 opcode, a flop
term (see Section 3.3.1), and a 16-bit two ’s-complement relative addre..s (relative to the next
instruction).

00 01 0203 0506 708~09,10 11 12 13.14 15 61718 .19.20.21,22 23 24 . ‘128 29.30 .31

BEAD 

r 

F/F A [ Extended Branc ’ ~~ 

~ress

Figure 3.20 BEAD3 Ministep

Syntax:

(50) bead ::—
bead0(51) I beadl(52} I bead2{53) I bead3(54)

(51) beadO ::—
/ IF flopterm{42} THEN trfrop{55} trfrlabel{56) END;

(52) bead! ::~/ trfrop(55) trfr label{56) P..7 >

(53) bead2 ::—
/ trfrop(55) #1 < P..7 > ,

(54) bead3 ;:—

/ IF flopterm(42) ‘TIIEN trfrop(55) sign{22) number(5) END;

(55) trf rap ::—
CALL I GOTO

(56) trfr label ::—
number(S) I id{1)

Examples :
/11 F.1 THEN GOTO TAG67 END;
/IF NOT F. 13 THEN CALL 200 END
/CALL TAG3 1 <P.57>;( /GOTO 277 <P.11>;
/CALL 41 <p~4>;
/GO1’O +l <P.11>;
/11 TRUE THEN GOTO 43711 END;



MLP-900 Reference Manual 66
3.3 Control Engine

/lF NOT F.1 I THEN GOTO -67 END;

Semantics:

This ministep provides unconditional or indexed jumps or subroutine calls. The major
function of the BEAD, however , is to provide extended branch-addressing capability. BEAD is
the only ministep that can transfer beyond the relative address range -200 through +177
(octal) since It can address all of control memory. All BEADS may optionally execute a
subroutine call. There are four forms of BEAD ministeps:

• READO - Conditional Absolute. If the specified flop cxpression (see
Section 3.3.1) is true, control is transferr ed absolutely to any location
(trfr label) in control memory.

• BF.ADI - Absolute plus Pointer. Control is transfc rrcd unconditionally to
the specified localion (trf rlabel), offset by the 8-bit positive quantity In
the specified pointer register.

• READ2 - Relative plus Pointer. Control is transferred unconditionally to
the location of the next ins truction of fset by the 8-bit positive quantity In
the specified pointer register. This instruction always transfers in a forward
direction.

• BEAD3 - Conditional Relative. If the specif ied flop expression (see
Section 3.3.1) is true, control is transferr ed to the location of the next
instruction offse t by a 16-bit two ’s complement displacement.

3.3.2.6 BLOT BU)ck 7’ransfer

The BLOT internal coding, given in Figure 3.21, consists of the BLOT code and a relative
address (see Section 3.3.1). BLOT codes are given in Table 3.10.

Table 3.10
BLOT Codes

0 RCM Road Control Memoryt
1 WCM Write Control Memoryt
2 RSB Read Subroutine Stack
3 WSB Write Subroutine Stack
4 MOE Move OE
5 WBP Write Contol Memory, Bad Parity

* (od’cates a pfivileged code.

0001 0203 05,06 07 08 09 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25,26.27 2829 30 31

~ 

BLOT ~~ BLOT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RelatIve

Figure 3.21 BLOT Mutistep



M1P-900 Reference Manual 67
3.3 Control Engine

Syntax:

(57) blot ::—
blotcode(58) rellabet(44) ;

(58) blotcode ::~RCM I WCM J RSB I WSB I MOE I WBP

Examples:
RCM 47;
WBP -5;

Semantics:

BLOT is used to establish loops to transfer blocks of data . The execution of a single
BLOT ministep can simultaneously move one word of data, modify some pointers, and
conditionally branch. There are six types of BLOTs--one facilitates moving data in the 0€, two
reference the subroutine return stack, and three reference control memory (the only
Instructions that do so). Three steps occur simultaneously in all types of BLOT transfers:

(1) Move CE data to or from the XE3US, as specified by the BLOT type.

(2) Modify Pointers. Pointer register modification is identical for all six types of block
transfers: P.O and (P.2, P.3) as a single 16-bit register are each incremented by one,
and P.! is decremented by one. Note that the data-move and conditional-branch
parts of the BLOT, plus any paired 0€ ministep, use the old values of the poin ter
registers.

(3) Conditional Branch. The conditional branch function is identical for ill six types of
block transfer. Each time BLOT is executed, P.1 (the word counter) is tested. When
a count of one is present, execution continues with the next instruction. If P.!
contains any count other than one , control is transferred to the branch address. A
word count of zero initially loaded into P.1 may be used to transfer a block of 256
words.

The data transfer fun ctions for the various BLOTS are:

MOE: No CE data is moved, but stops 2 and 3 above are performed.

R$B: Read one word from Subroutine Stack into XBUS (XBIJS.2, XBLJS.3).
WSB: Write one word into Subroutino Stack from XE3US.

These two BtOTs read and wri te subroutine-stack words. They are 16 bits
wide and read from or write to the rightmost 16 bits (i.e., H i )  of XBIJS. The
low-order tour bits of P.3 select the stack word (S.. Ii).

RCM: Read one word from control memory into XBUS.
WCM: Write one word into control memory from XEIUS with good parity.( WBP: Write one word into control memory from XBUS with bad parity.

These thr~~ privileged BLOTs are the only instructions that can reference
control memory. They are 36 bits wide, reading and writing via the XBUS and
using (P.2, P.3) to select the control -memory address. A control-memory word

p 
- - -—,— —. - , . —



MLP-900 Reference Manual 68
3.3 Control Engine

is 40 bits wide: thirt y-six data or instruction bits come from the XBtJS; two
mode bits come from flops MOD.0 (F.174) and MOD.! (F.175~ó one bit Is a parity
bit , either good or bad; and one is unused and is always 0. Parity Is generated
automatically. WCM generates odd (good) parity; WBP generates even (bad)
parity. RCM and WBP are used in diagnostics. WCM is used for swapping in a
new user.

3.3.2.7 MAST M/Jnlpulate STatus

The MAST internal coding, given in Figure 3.22, consists of a MAST opcode, a logical
function , two flop terms (see Section 3.3.1), and a result flop. The MAST logical functions are
given in rable 3.11; the operand notation follows Figure 3.22.

Table 3.11
MAST Logical Codes

0 IF F.b.term THEN F.rosult i- F.a.term
1 F.result F.iiterm OR F.b.term
2 F.result ~- F.a.term AND F.b.torm
3 F.result 4- F.a.terni XOR F.b.term

00 01 0203 ~4 G  06 )7 08.09 10 11 12 13 14 15 617 18 19 20 21 22 23 24 25.25,27 28 29 30 31

C

MAST .2 ~ Result
4J .o ~~ L. a a

~ ~~ 
—~~

_. F,F A F,F B

‘a-

Figure 3.22 MAS 7 Ministep

Syntax:

(59) mast ::—
I~ 277 .- f lopterm{42} bop(43~ f Iopterm{42~ ; I
/ IF flopterm(42) THEN i~’..277 ~- flopterm(42) END ;

Examples:
F.! +- F. 17 OR NOT F.20 ;
F.33 .- NOT F.106 XOR F.13 ;
F.106 ~ TRUE OR TRUE ;
/lF F.6 THEN F.!!! 4- NOT F.4 END ;
/lF NOT F.!! THEN F.4 ~ F.22 END ;

Seman t ics:

This ministep manipulate s flops. There are tw o typ es of MAST ministeps , the
unconditional and conditional store.

UnconditIonal MAST. This form of MAST stores a two-term boolean expression Into
a third flop. A flop may be referenced several times. For example, the
following will complement F.7:



MLP-900 Reference Manual 69
3.3 Control Engine

F.7 ~- NOT F.7 OR NOT F.7 ;

Conditional MAST. If the term being tested is true, a store is made. For example,
the following two MAST statements have the same result:

hF NOT F.7 THEN F.7 4- NOT F.10 END ;
F.7 4- F.7 OR NOT F.1O ;

3.3.2.8 MOVE MOVE CE Registers

The MOVE internal coding, given in Fi gure 3.23, consists of a from-address, a to-address,
and an Immediate mask. The from-address is a constant in the case of Move-Immediate; a flop
In the case of the Move-Flop; and a CE register for the other four MOVE’s. The to-address Is
always a CE register. The immediate mask is an 8-bit constant; it is not used in the
double-byte MOVE. The MOVE codes are given in Table 3.12,

Table 3.12
MOVE Codes

0 USI Move Immediate
1 . MOM Move Flop
2 MAR Move Register
3 MAC Move and Complement
4 MCL Move and Clear
5 . MOB Move Double Byte

00 01 02 03104 05 0607 08 09 10 11 12 13 14 15 16 17 18 19 20 21,22 23 24 25,25.27,28 29,30 31

MOVE MOVE From To I nsuediate
1 1 1 1 Code Address Address Mask

Figure 3.23 MOVE Müustep

Sy ntax:

(60) move ::—
Cb..137 msinglef6 l}; I ( Cl:..I37 ) ~- ( CE..13 7 ) ;

(61) mslngl. ::—
msource(62) I msource(62) ( number(S) ) I CK I37 ( number(S) J

(62) msourc. ::~number(S ) I F..377 I CK~a37 I NOT CIC~l37

Examples:( c E . 1 7 4 - 5 7 ;
P.O .-i7(75);
CE.1 11 ~ F.! 13 (355) ;
GOR.1 4- GIR.3 (377) ;



MLP-900 Reference Manual 70
3.3 Control Engine

XBUS.3 ~ NOT CE.4 ;
CE .4 4- XBUS.O [174] ;
(CE. 1) 4- (CE.0) ;
S.2 4- (P.0) ;

Semantics:

This ministep provides data transfer between CE reg isters; it is also used in conjunction
with the 0€ ministep GENT to provide intereng ine data transfers . There are six t ypes of MOVE
ministeps. All but one of these set one CE register , making use of an Immediate mask value
specified in parentheses or brackets. If the mask is not specified, a mask of all one-bits, (377),
is assumed. The mask va lue is similar to the mask register used in the 0€; only bits
corresponding to ones in the mask are modified. Note that in a MOVE to the exchange bus, the
mask is ignored and the entire byte is moved. The double MOVE copies an even/odd register
pair to another even/odd register pair; the mask is not used.

• MSI -- Move Immediate: CE.. 137 i- number (number).
All masked-in bits of the left CE register receive the corresponding value of the
specified constant right operand. As in the GEAR, the mask is specified In
parentheses ( ).

• MOM -- Move Flop: CI~..137 ~ b ..377 (number).
All masked-tn bits of the left CE register recewe the value of the specifIed flop.

• MAR -- MOVE: CE.. 137 4- CE..337 (number).
All masked-in bits of the left CE register receive the corresponding value of the
specified right CE register.

• MAC -- Move Complemented: CE.. 137 ~- NOT CE.. 137 (number).
All masked-in bits of the left CE register receieive the complement of the
corresponding value of the specified right CE Register.

• MCL -- Move and Clear: CK..337 ~ CE..I37 (number).
Same as MAR, but in addition the masked-out bits are cleared to zero. Note that
the parentheses ( ) and brackets [ ) are used in a manner similar to the GEAR
operation.

• MDB -- Move Double Byte: (CE.. 137) ~ (CE.. 1.37).
Moves one pair of CE regi sters to another pair of CE registers. The pairs are
always an even/odd register pair. T hus (CE.4) and (CE.5) both specify the pair
(CE.4, CE.5). When both registers specified are even or both odd, the MOVE will
be normal, that is, even to even and odd to odd. When the specified registers
are one even and one odd, however , the MOVE will be reversed, that Is, even to
odd and odd to even. S.. I? can be used to represent the appropriate even/odd
CE register -pair.

3.3.3 Action Requests

There are 32 action-request (AR) flops (F.100-F.137). Each one is connected to an
interrupt location (see thn Address column in Table 3.13); in addition, each AR is associated
with one of five lockout levels (ARL.1-ARL.5). ARL 1 locks out all ARs; ARL.2 all ARs on levels
2-5, etc.

When the CE senses the existence of an immediate AR that is not locked out, the current
clock cycle ii inhibited (i~n., the current ministep is suppressed) and In the next cycle the
MLP-900 takes the AR by performing a call (using the stack to store the interrupted address)



MLP-900 Reference Manual 71
3.3 Control Engine

to the AR entry point, simultaneously setting the lockout bit of the interrupt level being
entered. For those ARs of type “Wait ” (see Table 3.13), the AR remains pending until the next
WOP instruction, when the AR takes place (if not locked out by a higher level). Since the AR
f lops are not turned off by the interrupt itself , they must be turned off by the Interrupt
routine.

There are eight action-request (AR) levels availabte to the user microcode: three
immediate and five wait . Of these eight, only IRAC has an assigned function: a user trace
function is Implemented through the TRAC AR and the ITRAC flop. One cycle after the ITRAC
flop is set (by microcode ), the MLP-900 se ts TRAC and clears ITRAC. Thus a TRAC AR routine
of the f orm

TRAC 4- FALSE;
!trace conditions

ARL5 .- FALSE;
IF (ITRAC ~ TRUE) RETURN;

will be entered after every user ministep cycle (except other user AR routines). To initiate
tracing, TRAC must be set once.

3.4 I/O Interface

The I/O interface between the MLP-900 and the POP-b contains four registers:

• Command/status register MISC.34
• OAT AO register MISC.32
• DATAI register MISC.33
• IPI address register Not addressable

The MLP-900 can read or write these registers as part of the 0€ miscellaneous-register group;
writing these registers is allowed only in microvisor mode. The PDP-1O can read or write
these reg isters via the CONO, CONI, DATAO, and DATAI instructions. The MLP-900 appears to
the POP-lO as two devices on the I/O bus: MLPA, which handles all normal communications, and
MLPB, which helps to save and restore the state of the lnterf ace.

( 

~ -n ~~~~ r-~~- — -- — - -~~ - - - -



MLP-900 Reference Manual 72
3.4 I/O Interface

Table 3.13
Action Requests

Bit Type Address Level Cause

POWER’ Immediate 7700 ARL.1 Power loss warning

PANIC’ N 7700 “ Interrupt caused by POP-b

OPAR’ 7702 ARL.2 Parit y error from the odd bank of the
Control Memory

EPAR’ - 7704 ‘ Parity error from the even bank of the
Control Memory

SOUF’ 7706 “ Stack overflow from supervisor mode

SUNF’ “ 7710 “ Stack undorflow from supervisor mode

UOVF5 “ 7712 “ Stack overflow f rom user mode

UUNF’ “ 7/ 14 “ Stack underflow from user mode

CMADR’ “ 7716 ARL.3 Control Memory address comparand
(MISC.37) matches the Current
Address Register while SARM.0 Is on

AERR’ 7720 “ The two adders in the OE differed

BERR’ 7722 “ Parity error on internal Exchange Bus

PERR’ 7724 Parity error in the translator
memory

F.1 14’ 7726 “ iwo unassigned AR’s
F.115’ 7732

MMERR’ W 7730 N Main memory parity error

F.117’ 7734 Unassigned

* lndtcat.. a privøag.4 AR.

r-  .~~~~~~~ 
-.



MLP-900 Reference Manual 73
3.4 I/O Interface

Table 3.13 (Continued)

— Bit Type Address Level Cause

TASK’ Immediate 7736 ARL.4 Interrupt from the POP-lO

PAGE’ 7740 “ A CEDE Wait or Store notes that the
last translation is bad

SUPVF’ “ 7742 Attempt by user mode code to execute
a privileged ministep or modify a
pr ivileged register

PROT’ N 7744 An attempt by user mode code to
branch into microvisor code at other
than an entry point

VADR’ 7746 “ Virtual address comparand (MSC.37)
matches VAR while SARM.1 is on

F.125’ “ 7750 - Three unassigned AR’s
F.126’ 7752 N

F.127’ N 7754 N

TRAC “ 7756 ARL.5 Sct by user microcode, or by ITRAC
after a one-cycle delay

F.131 “ 7760 - Two unassigned AR’s
F.132 - 776 2

F.133 Wait 7764 “ Five unassigned AR’s
1.134 “ 7766 -

F.135 “ 7770
F.136 7772
1.137 7774 -

(



ULP-900 Reference Manual 711
3.4 I/O lnter~ace

3.4.1 Command/Status Register

The command/status register (MISC.34) is a 27-bit register , as shown in Figure 3.24.

~~PDP-10 __ j
~~MLp9 ~ rface and14.._MLP — _ I’N.PDP-1O—_~

I
OO

) j , )J ) j~8JO9. I2
~
13

~
14 15;16 17 1

~~12 ~~~~~~~~~~~~~~~~ ~ 32 33~34 35

4-,
f / / // / / / / / /~Z~’) 7 / / // / / / // / / / / / / / , Z~~ >.. 0. 1- I— I— 10 ~~ a C 1 ~~ 4J L

~~~~~~~~~~~~~~~~~~~~~~~ 4J ~ L 0 ~~ C.) 4-’ ~~ C 0 0 C.) 4-’ 4) C.) In 4-I 4)
Vfff/tfff//////J//ffi/ffJ//f//IfJffJ/ff~(fJA.— 1. — 4) In < (00 . L. ‘~~ In 4.’ < 0) In 1-I
~~~~~~~~~~~~~~~~~~~~~~~ I— . 1— 4 ..~~ .1—’ .— 0 < -~~ C i. I_ 0) 4) ~ 0) 4)

in S) > — 0  l n C 4) w I u~~~~ E~~~~~c ~~~E
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4 ‘0 E O < < — i ~~J ID ~~ ~~ 4-’ C (0 I n S )  0 ( 0
~~~~~~~~~~~~~~~~~~~~~~~ I- C — I— ‘0 1.. I-~ 1— 0. 0- I— ~ 0 0 ID 4) I.. w ~~~ Q) I-
r/////////I////////ir//////////////////~x(4 0. — U < — 0- 0 I— ~ 10

~~ 
0- 0-

Figure 3.24 Command/Status Register Format

IJits lJst~9— 1 1 F’riority —intcrrupt level
12-17 lack parameter (provided by the POP-3D along with a TASK AR)
18 Microvisor mode
19 DATAI-act ive
20 DATAO -active
21 lI1L-data mode
22 IPI-acld ross mode
23 TA SK-AR pending (1.120)
24 MLP-running (F.1611)
25 MLP Power-lip
26 I-lard-err or P1 (priority interrupt)
27 Data-ack F’l
28,29 Request parameter (expanding on the MLP-request Pt)
30 lask —ack P1
31 MLP-request Pl
32-35 Request parameter (expanding on the MLP-request P1)

3.4.2 DATAO and DA TAI

DATAO (MISC.32) and DATAI (MISC.33) are 36-bit data-transmission registers, usable in
either direction. Each is accompanied by an “active ” bit in the command/status register.
Writing into one of these registers by either the PDP- 10 or the MIP-900 sets the register ’s
ac tive bit; reading it clears the active bit (without altering the data). Note that an MLP-900
user may read these registers (and, by so doing, clear the active bit).

3.4.3 MLP.900 Interface Manipulation

The ULP-900 can read the command/status register and the DATAO and DATAI registers
via a GENT ministep. In addition, if SUPVLR (F.176) is true, the following command/status fields
are available directly as pseudo-flops and pointers:



Mt.P-900 Reference Manual 75
3.4 I/O Interface

— Field Found In
lack parameter (bits 12— 17) P.17
DATAI-active (bit 19) F.326
DATAO-actj ve (bit 20) F.227
I-lard-error P1 (bit 26) F.320
Data-ack P1 (bit 27) F.321
Task-ack P1 (bit 30) F.322
Ml.P-request P1 (bit 31) F.323

In microvisor state the MLP-900 can load the Command/Status, DATAO, or DATAI registers via aGENT ministep. Writing the command/status register loads Only bits 26-35; bits 0-25 cannot bewritten directly. Furthermore , if the MLP request P1 (bit 31) is zero (“new value”), theMLP-900 request parameter (bits 28, 29, and 32-35) is ignored and that field of thecommand/status word is cleared. Setting one or more of the four P1 bits (26, 27, 30, or 31)causes the MLP-900 to interrupt the POP-b on the priority interrupt level specified by bits9- 11 (if the Interrupt level is not zero); while their names suggest distinct functions, the four P1bits perform identically.

8.4.4 PDP - IO Interface Manipulation

The PDP-b0 recognizes the MLP-900 as two devices on the I/O Bus: MPLA is device 424and MLPB device 434, both octal. The POP-j o OATAI and DATAO operations on these devicestransfer 36-bit values to and from the DATAI and DATAO registers; the active bits are set by aDATAO operation and reset by a DATAI operation. On device MLPA, the DATAO operation loadsDATAO and the DATAI Operation reads DATAI. On device MLPB, however, the DATAO operationtoads DATAI and the DATAI operation reads DATAO. The POP-lO CONI and ~ONO Operationstransfer 18 bits to and from the command/status register , respec tively:

~ONO, MLPA; Commands Out

Bits Function
18-20 New priority interrupt level
21 Set IPL mode
22 Set panic AR (F.10l)
23 Set task request (F.120)
24 Set/ reset clock (F.164)
25 Reset interface
26 Reset hard error P1
27 Reset data ack P1
28 Reset task ack Pt
29 Reset MIP request Pt
30-35 New task parameter



MLP-900 Reference Manual 76
3.4 I/O Interface

CONI, MLPA; Status In

Bits Reads
18-25 Bits 18-25 of command/status register
26-29 Bits 26, 27, 30, and 31 of command/status, the four P1 bits.
30-35 Bits 28, 29, 32-35 of command/status register , the MLP-900

request parameter

CONO, MLPB; a NOP

CONI, MLPB; Read Commands

Bits Reads
18-20 Priority In terrup t Level
21,22 Zero
23,24 Bits 23, 24 of command/status
25-29 Zero
30-35 Bits 12-17 of command/sta tus (PDP-1O task parameter)

In general, MLPB is needed only to save the state of the interface; all normal communication is
done via MLPA.

3.4.4 JP L Mode

IPL mode is used to load MLP-900 control memory directly over the I/O bus. IPI mode is
initiated by a CONO to MLPA that sets IPL-mode (bit 21). This puts the MLP-900 Into
lPL-address mode; the next OATAO to MLPA loads the ll’L-address register and puts the
MLP-900 into IPL-data mode. Subsequent DATAO’s to MLPA are used to load successive
control memory locations, wi th the control-memory mode bit set to 2 (supervisor mode)’, the
IPL-address register is incremented- prior to each control memory store. lPt -mode is
terminated by any CONO to MLPA.



77

Chapter 4
General Purpose Microprogramming Language

The General Purpose Microprogramming (GPM) language Is an Implementation language
developed by the PRIM project as a machine-dependent microprogramming language for the
MLP-900. It is essentially a generalization of the machine-level lenguage forms presented in
Chapter 3. Its design follows an assemb ly language philosophy, which allows the programmerto predict all Instruction sequences and requires no run-time support system, although syntacticblock structure and high-level control structures are provided to assist the programmer . GPM
Is the primary language for the MLP-900 (no assembly language exists) and, as such, wasdesigned to be used for both diagnostics and emulators.

The syntax of GPM is given in this and the previous chapter as modified BNF definitions.
Each definition is preceded by a definition number within braces; each reference to that
def inition is immediately followed by its definition number within braces so as to facilitate cross
ref erences. All syntax equations before program(63) are in Chapter 3; the remainder are In
this chapter. The few primitive constructs referenced in definitions are given in italics, as in
empty a iriug.

4.1 Progra m Structure

A GPM program starts with a title declaration; the title Identifier must be nonreserved
(see Appendix C). The body of the program has two parts: a declaration list and statement
list.

syntax:

(63) program ::—
TITLE id(1) bodyf64) closing~7O)

(64) body ::—
declarationlist(65) ; stmtlist(66} stmtl ist{66)

(65) declar.tionlist :;—

declaration(67) declarationlist(65) ; detlaration(67)

(66)  sttntlist ::—
statement(69) stmtlist (66) ; statement{69}

4.1.1 DeclaratIons

Declarations define conditions that will be active for the scope of the body in which they
are made.

-~~~ — - . :.



/

‘3PU Languag e 78
4.1 Program Structure

Syntax:

(67) declaration ::—
— pseudodeclrtn(72) TEMPORARY rlist(68) I

EQUATE id(1) id(1) EQUATE id(1) id{1) number(S)

(68) rlist ::—
R..37 rlist{68) R..37

4.1.1.1 EQUATE Declaration

There are two forms of the EQUATE statement. The first takes two symbols and equates
the first to the second (i.e., the first will be treated as if it were the second). For example,
af ter the declaration EQUATE PC R.3; every occurrence of PC within the scope of the
declaration will be interpreted as R.3. The following examples are legal EQUATE statements of
this form:

EQUATE INDEX P.6;
EQUATE MINUS.ONE 777777777777;
EQUATE EQ EQUATE;
EQ INFINITE.LOOP.START DO.BEGIN;

The second EQUATE form takes two indexed identifiers and a number as arguments; it is used to
equate blocks of indexed names. For example, after the declaration

EQUATE AC.0 R.10 10;

every occurrence of AC.0 through AC.7 within the scope of the declaration will be Interpreted
as R.1O through R.17, respective ly.

1.1.1.2 TEMPORARY Declaration

The TEMPORARY declaration declares general reg ister s that may be used as temporar ies
by the GPM code generators. This declaration allows more complicated arithmetic operations
and data transfers to be compiled.

1.1.2 Statements

The statement types are discussed in detail in Section 4.2. All statements may be
tagged by one or more identifiers , which can be used as statement labels. Reserved Identifiers,
numbers, end nonalphanumeric characters may not be used as statement labels.

$yntax:

- 
(69) statement ::—

id(1} : statement (69} substmnl(71)

- ~~-- . - - -. - - --- . - .- - -  -- -.--~~~~~~~~~---—- - ---.--- --— 



CPU Language 79
4.1 Program Structure

4.1.9 ClosIng

A GPM program is closed with the reserved word FINISH, optionally followed by an
identifier. This identifier, If present, specifies the starting statement label of the program to
the MIP loader.

Syntax:

(70) closing ::—
FINiSH I FINISH id(1)

4.2 Statement Types -

Six classes of statement may appear in CPU programs: pseudodeclarations, assignment
statements, control statements , switch tags, low-level stateme nts, and constants.
Pseudodeclarations, which are discussed in Section 4.3, do not generate any code and only
condition the compilation or listing generation that fol lows. Assignment sta tements, which are
discussed in Section 4.4, evaluate expressions and move data within the MLP-900. Control
statements, which are discussed in Section 4.5, determine the control flow of the program.
Sw itch tags Identify entry points into switch-selected code sequences; they are discussed In
Section 4.5.6. Low-level statements each compile to exactly one ministep; they, and constants,
are presented in Section 4.6.

Syntax:

(71) substmnt ::—
pseudodeclrtn{72) I assignment{76} control(103) j switchtag{114) I
lowlevel{117) I constant{118)

4.9 Pscudodeclaratlopis

Four types of pseudodeclaration may appear anywhere in a CPU program: ORIGIN
statement , COMMENT statement , INCLUDE statement , and output -control statements. The
pseudodeclarations ignore block boundaries.

Syntax:

(72) pseudodeclrtn ::—
ORIGIN number(5) ; COMMENT eny-asrln~-nos-consai nin~-.-aentkoIon ; I
outputctrl(73J ;

(73) outputctrl ::~PRINTOFF PRINTON outputtype(74) modeset(75)

(74) outputtype ::—
HEXADECIUAL.cODE I NORUAL.CODE I LABEL.TABI..E

( (75) modeset ::~
MODE TRUE MODE FALSE

— ________



CPU Language 80
4.3 Pseudodeclarations

4.9.1 ORIGIN

The CPU compiler produces absolute code. 1 he ORIGIN statement is provided to allow
the programmer to specify where the code that follows should be placed In control memory.
The number In the origin statement is the location to receive the next Instructions compiled.
All succeeding instructions will be placed in successive locations. The initial value for the
origin is 0.

4.3.2 COMMENT

The COMMENT statement is provided to allow the programmer to document his program.
In addition to the COMMENT statement , there is also a feature to allow a comment to be entered
on eac h line as one might do in assembly code. This feature causes any string starting with an
exclamation point (9 and continuing through the following end-of-line to be interpreted by the
compiler as a semicolon.

Example:
COMMENT comment facility example;
P.O 4- 0 !zero general register zero
R.l ~~- R.O + 1 ! set general register one to one
COMMENT end of comment facility example !!!!U!

4.3.3 INCLUDE

The INCLUDE feature may be used anywhere within a CPU program. It is simply
~INCLUDE” followed by a standard TENEX file name. Included files may INCLUDE other files. It
is good practice when working with INCLUDE files to use the proper directory name within the
file , so the file can be used by others.

Example:
PRINTOFF
COMMENT sample include file
BEUIN NAMED INCLUDE.F ILE.$AMPLE
EQUATE P.S INPUT Isotup some register definitions
EQUATE P.13 OUTPUT ;
INCLUDE <OESTREICHER>SQUARE-R00T.lNc
COMMENT if this is used when not connected to COESTREICHER> It will still work ;
END NAMED INCLUDE.FILE.SAMPLE !close any open blocks
PRINTON

4.3.4 Output Control

Several pseudocleclarations are provided to control the generation of the source listing
and the code listing. A complete listing consists of four parts:

• The reformatted source file with errors flagged and corrected (where possible)
• The label table
• The compiled code listed in octal (normal code)
• The compiled code listed in hexadecimal



GPM Language 81
4.3 Pseudodoclarat ions

4.3.4.1 Source Listing Control

Two pseudodeclarations control the generation of the source listing: PRINTOFF and
PRINTON (see the example in Section 4.3.3). PRINTOFF will always turn off the listing; PRINTON
will turn on the listing only if there has been one PRINTON for each preceding PRINTOFF, thus
enabling the user to nest PRINTOFF-PRINTON pairs. This is useful with nested INCLUDE files
(see Section 4.3.3), which usually are not desired in the output listing. There Is a compiler
switch to allow all PRINTOFF’s to be ignored, thus forcing a complete listing (see Section 4.7).

4.3.4.2 Code LIsting Control

A pseudocleclaratjon exists to control each of the three other parts of the output listing.
If several of these statements appear, the last one will be In effect when the listings are
generated at the end of the compilation. The initial settings are

LABEL.TABLE MODE FALSE;
NORMAL.CODE MODE FALSE;
HEXADECIMAL.CODE MODE FALSE;

Compiler switches exist to change these initial settings (see Section 4.7).

4.4 Assignment Statements

The five types of assignmen t st a temen ts are

• Arithmetic. Assigns the value of an arithmetic expression to a general register (OE).
• Boolean. Assigns the value of a boolean expression to a flop (CE).
• Data Transfer. Copies data from one machine register to another (0€ and CE).
• Increment or Decrement. Increments or decrements a pointer’s value.
• Shift. Shifts a general register ’s contents and replaces them.

Syntax:

(76) assignment ::—
arithmetic{77 ) I booloan{84) I datatransfer(89) I incrdecr(100) I shreg(l01)

4.4.1 ArIthm etic Ass Ignments

The arithmetic assignment statement has three parts: assignment to a result register , an
arithmetic expression, and modifiers. Only the arithmetic expression must be present. The
first two parts define an ordinary arithmetic calculation, while the modifiers condition the
evaluation of the expression.

Syntax:

(77) arithmetic ::—
aa(8) 4- erithmetic(77) I aoxp{78) amod(82)

(78) aexp ::—
ate rm(79) aterm(79) sop(81) aexp(78}



GPM Language 82
4.4 Assignment Statements

(79) aterm ::~aprimary(80} NOT aprimary(80)

(80) aprimary ::—
aa(8) I number(S) I P..7 C arithmetic{77J

(81) aop ::~+ I - I P L U S I MINUS I AND I OR I XOR

(82) amod ::=
amask{12) testmode(13) ashift(83 ) ashift(83) amask(12) testmode(13) I
<camask, testmode, and ashift may be specified In any order>>

(83) ashlft ::—
shdir(15) number{5) I emplys ring

4.4.1.1 Mask (amas k)

If no mask modifier is specified, N(M.O)N is used. In nested expressions, the outer
specif ication (if there is one) will replace the default value. The mask (M..ll) or “[M_17J’
specifies which mask register will be used for the calculation; parentheses around the mask
register Indicate that clear mode is false end brackets indicate that clear mode Is true.

4.4.1.2 Test Mode (testmode)

Test mode is set if the test-mode symbol (a) is present, but the preferred method of
specifying test mode is by omitting the assignment (see Section 4.4.1.5). For nested
expressions, each test-mode symbol complements the test-mode bit.

4.4.1.3 Shift (ashtft)

If no shift Is specified, none will occur. Right shift (divide) is specified by a “/“ end left
shift (multiply) Is specified by a N\ M  Extra ministeps will be generated if the shift amount is not
one given In Table 3.3.

4.4.1.4 Operators (sop)

The unary one’s-complement NOT is of highest precedence. No precedence Is associated
with any of the binary operators (aop). If order of evaluation Is important , it must be
controlled with parentheses. The binary operators are

+ Two’s complement add
- Two’s complement subtract
PLUS Long add (see Section 3.2.2.1)
MINUS Long subtract (see Section 3.2.2.1)
AND Logical and
OR Logical or
XOR Logical exclusive or



GPM Language 83
4.4 Assignment Statements

4.4.1.5 Result (aa 4-)

If no assignment of a result is specified, the operation will be done with test mode true.
The result register can be specified directly, or indirectly through a pointer register.
Both * I’..7 and s P..7 specify indirect references to the general registers. The
character 0 is a normal indirect; the register number is taken from the five low-order bits of
the specified pointer register. The charac ter * is a special indirect; it acts like a normal
indirect, except that the low-order bit is forced to 1 in the register number.

Examples:
COMMENT if R.4 P.11 GOTO equal.tag ;
P.4 XOR P.11 !result will be zero on equals
IF ZSP GOTO EQUAL.TAG ;

COMMENT U.! contains 7700, M.2 contains 77770 ;
COMMENT number in R.3 field Ml added to R.4 field M.2 ;
P.4 ~— P.4 + ( P.3 [U. 1] /3 ) (M.2) ;

4.4.2 Boolea n Assignments

The boolean assignment statement provides a method to set flops to the value of a
bootean expression. The booloan expression is composed of flop names, the bootean constants
T RUE and FALSE, and the logical Operators AND, OR, XOR, and NOT. As In the arithmetic
expression, the unary one’s complement NOT is of highest precedence and there is no
precedence among the binary operators (bop). If order of evaluation is important, it must be
specified with parentheses. The booiean assignment is a generalization of the MAST mlnistep,
which is limited to expressions involving at most two flops; no temporary storage is used by the
boolean assignment in evaluating more complex expressions.

Examples:
F.3 4- F.3 XOR F.5 fif F.5 then complement F.3
F.7 ~ F.! OR F.2 OR NOT F.3 ;
F.!! +- (F.O AND F.5) OR NOT (F.7 AND F.6)

Syntax:

- (84) boolean ::—
I~’..277 ~ bexp(85} ;

(85) boxp ::—
bexprj86} I boolean(84}

(86) bexpr ::—
bterm(87) I bexp(85) bop(43) bterm{87}

(87) bterm ::—
bprlmary(88) I NOT bprimary(88)

(88) bprimary ::—
I”Jf77 I TRUE FALSE I ( bexp(85 ) )



GPM Language 84
4.4 Assignment Statements

4.4.3 Data Transfers

The left and right sides of the data transfer statement must represent data objects of
matching size. ihe possible sizes are 36, 16, and 8 bits. The optional dinoi in the 8-bit
transfer causes a one’s complement NOT. Left and right operands may not both be 0€
registers for 8-bit or 16-bit transfers.

Syntax:

(89) datatransfer ::~
dxfr36bits (90) I dxfr l6bits{92} I dxfr8bits(98)

(90) dxfr36bits ::~oeloc(25) .- dt36source{9 1);

(91 ) dt36source ::~oeloc{25) I number(5) P..7

(92) dxfr l6bits ::—
oeloc{25) II..I 4- ceregpair{93) ; I
ceregpair(93) 4- dtnot(95) dtl6sourcel96) cemask{97 ) ;

(93) ceregpair ::~ -

( cereg(94) ) I ( cereg(94} , cereg(94 } )  I S..I7

(94 ) cereg ::~CE.. 137 I P..7 I X IIUS..3

(95) dtnot
NOT I empty~uring

(96) dt l6source ::~oeloc(25) II.. I I ceregpair(93) I number(S)

(97) cemesk ::—
( number(S) ) I ( number(S) ] I .~:npsyasri~ig

(98) dxfr8bits ::~oeloc(25) 133 4- dtnot(95} cereg{94) ;
cereg (94 ) ~- dtnot{95} dt8source(99 cemssk(97J ;

(99) dt8source ::—
cereg(94} I oeloc{25) 11.3 I number{5} I t ..377

The mask notation is similiar to that in arithmetic assignment , except that the mask Is specified
as an immediate constant instead of as a mask register. The parentheses specify a normal
mask, where all masked-out bits (zero mask bits) remained unchanged. The brackets specify a
clear mask , where all masked- out bits are zeroed. If no mask is specified, an all-ones mask. of
the appropriate size Is used. Transfers to the OE cannot be masked!

0 
— — — — — —-— —.e,-—- —._-_ ~ -—- ——— --—-- - - —-—- -— — — -



GPM Language 85
4.4 Assignment Statements

4.4.3.I 36-bit Transfers

The 36-bit left operands are OE registers. The right operands are OE registers,
constants, or pointer registers. in the case of pointer registers, the high-order 28 bits are
zero. A 36-bit transfer generates either one or two GENT ministeps; transfers that cannot be
done In a single ministep (e.g., M..l7 4- conas ane) require a TEMPORARY register for the
intermediate result. The OE registers are

• R..37 32 general-purpose registers
• M..17 16 mask registers
• ?.IISC..37 32 miscellaneous registers
• /l..17 71 1024 aux iliary-memory registers
• Xl./P7OR..777 512 translator-memory registers (only microvisor-mode access

allowed)

OE registers may he referenced directly, or indirectly through a pointer register. OE registers
are divided into pages of up to 256 registers. The 8-bit pointer registers can address any
register w ithin a page. It is possible to address registers indirectly only within single
designated pages. As with the arithmetic assignment statement , the * indirect operator will
force the low-order register number bit to a 1.

4.4.3.2 16-bit Transfers

There are tw o types of 16-bit left operands. A 16-bit transfer in which an OE location
Is the destination is limited to a single GENT-MOVE pair of rninisteps; a transfer from the 0€, or
entirely within the CE, generates one or more MOVE ministeps. These and constants comprise
the possible right operands. The two left operand types are

(1) OF register half-words -- oeloc lI..l
Half-words are numbered -from left to right. The high-order four bits are not
referenced. ihus ~L1 refers to the low-order 16 bits and H.O refers to the next
lowest 16 bits. Note that whenever half-word references are used as the left
side of a data transfer , the remainder of the specified OE register Is zeroed.
Note additionally that OF registers may riot appear as both left and right
operands.

(2) CE register pair - -  (cereg) or (cereg, cereg) or S.. 17
The CE register-pair construct references an even/odd pair of CE registers. If
only a single CE register is named within the parentheses , the designated
register is treated as if it were the first of an explicitly named pair and the
other register from the even/odd pair is taken as the second. The two
examples following will each cause a swapped data transfer; the first will
transfer (P.1, P.0) Into P.O and the second will transfer (P.4, P.5) Into (P.1, P.0):

Examples:
R.0 RI 4- (P.1);

( (P.1)4- (P.4);

If both CE registers are named explicitly within the parentheses, they must be In
the same even/odd pair; otherwise , they cannot be moved to or from an OF
register half-word. The following Is an impossible data transfer because P.!



GPU Language 86
4.4 Assignment Statements

and P.2 are not both in the same even/odd CE register pair; the transfer occurs
as if (P.1, P.0) had been specified:

(P.1, P.2) ~- R.17 H.O;

The construct S.n is equivalent to (CE.100+2n) or (CE.100+2n, CE.101+2n).

4.4.3.3 8-bit Transfers

An 8-bit transfer in which an OE location is used as either source or destination
generates a GENT-MOVE pair of ministeps; a transfer entirely within the CE generates one or
more MOVE ministeps. There are two types of 8-bit left operands:

(1) OE register byte -- oeloc 11.3
Bytes are numbered from left to right. The high-order four bits are not referenced.
Therefore 0.3 refers to the low-order 8 bits , 0.2 refers to the next lowest 8 bits, d c .
Note that if the OE register is a left operand, masking is ineffective since it is
performed in the CE as the store takes place; also, the bytes of the OF register that
were not specified are zeroed. Note additionally that OE registers may not appear
as both left and right operands.

(2) CE regis ter -- cereg
The CE registers are:

• CE.. 137 all CE registers
• l’..7 pointer registers (CE.40-CE.57)
• XB(IS..3 CE exchange bus (CE.70-73 as left operands; CE.64-67 as

ri ght operands)

In addition to the two operand t ypos discussed above, 8-bit right operands may also be either
constants or flops. In the case of flops, the right operand is interpreted as an 8-bit quantity
where all bits contain a copy of the value of the specified flop.

Examples:
P.0~~ NOT A.173 [777h
A.PG.O is P.1 4- A.PGI is P.1;
M.17 RI 4- NOT 5.12;
M.1 • 717777777777 ~P.3 B.3 4- P.17;
R.3 - P.17;
P.17 4-CE O;
P.3 4- NOT F.144 (123);

4.4.4 INCREMENT and DECREMENT

An increment or decrement statement allows a constant to be added to or subtracted
from a pointer register , respectively. When one of these statements Is followed by an
unlabeled conditional branch, the compiler may generate a BRAD that incorporates (part of)
both statements.



V

GPM Language 87
4.4 Assignment Statements 

-

Syntax:

(100) incrdecr ::—
bradop{49) P.7 BY number(5}

4.4.5 SHIFT

The shift instructions provide for single- and double-register shifting by fixed or variable
amounts. One or more SI-UN ministeps are generated, depending on the shift amount.

Syntax:

(101) shreg ::~shop{30J aa (8) shdir(15) shamt(102} shmask{32) testmode(!3)

(102) shamt ::~is I number(S)

4.5 Control Statements

There are six types of control structures in GPM:

• Blocks Prototype compound statement form (see Section 4.5.1)
• BREAK Standard block exit mechanism (see Section 4.5.2)
• Branch Unconditional transfer of contro l (sec, Section 4.5.3)
• DO Looping mechanism (see Sec tion 4.5.4)
• IF Conditional execution and compilation (see Section 4.5.5)
• Switch Case analysis (index branch) mechanism (see Section 4.5.6)

Syntax:

(103) control ::~btock(104) I break(106) I branch(107) I do(11O) I if(111) I swltch{112)

4.5.1 Blocks

The BEGIN...END block is the prototype compound statement form in GPM. The DO.BEGIN
(see Section 4.5.4), IF...THEN.BFLGIN (see Section 4.5.5), and SWITCHON...INTO.BEGIN (see
Section 4.5.6) statements are special cases of blocks. All have the characteristics of the
standard block In addition to special features of their own.

Syntax:

(104) block ::—
BEGIN name(105 ) body(64) END name(105) ;
<<lIoll, inh1an~ea of name muat be identical>>

( (105) name ::—
NAMED id( 1) I ernp tyatring



6PM Language 88
4.5 Control Statements

The block defines the scope for any declaration statc ments that may appear In the block
body. In the special blocks, the 8EG(N...END also delimits the scope of the control structure
involved. Blocks can be named by following the BEGIN with “NAMED name,” which enables the

— program to reference the block by name. i his is used for two purposes: first , an END may be
named, thus closing all blocks within the named block; second, the bt~sck name may be used by
the BREAK statement to specif y which block to exit.

4.5.2 BREA K

The BREAK statement will cause program control to branch to the end of the named
block, excep t that If no name is supplied with BREAK, the current block will be exited. Note
that this is different from a RETURN statement: RETURN exits a subroutine to the called location
(determined at runtime), whereas BREAK exits a block to its end (determined at compile time).

Syntax:

(106) break ::~BREAK name(105) ;

4.5.3 Branches

There are three types of unconditional branches: CALL, RETURN, and GOTO. The CALL
s tatement pushes the location of the next sequential instruction in control memory onto the top
of the hardware subroutine stack and goes to that location. The RETURN statement transfers
control to the location on the top of the subroutine stack and pops the stack. The 6010 simply
branches to the specified as the branch destination. In addition to the unconditional branches
provided by the branch statements , 6PM also has conditional branches; these are special forms
of the IF statement described in Section ‘1.5.5.

~yntax : -

(107) branch ::~CALL bnchdest(108} ; I RETURN ; GOTO bnchdest( 108) ;

(108) bnchdest ::~Iocetion{ 109) I ~~ P..7 > loeat ion( 109) < t’..7 >

( 109) location ::~trfr label(56) I offset{45) I id{1} offset{45)

The f orm <I’..?> in a branch des tination represents an offset , either from the continuation
address (the next instructien word) or from any location that is supplied immediately preceding
It.

There are two types of branch-destinations: relative (offset ) end absolute. tit her type
can be indexed by the value of a pointer reg ister. With indexing, the unindexed branch
location is always calculated fir st and the value of the pointer register Is then added. This
addition might cause overflow , in which case the branch destination will wrap around to tow
co..~rol memory. If the branch destinatio is only a pointer register (no location supplied), then
the index is relative to the next sequential instruction in control memory. An absolute
destination may reference a statement-label identifier (see SectIon 4.1.2) or an absolute



6PM Language 89
4.5 Control Statements

Jocetlon specified by a number. A relative destination may be merely an offset relative to the
current location In control memory or an offset from some specIfied statement -label Identifier.

Example:
6010 TAG;
CALL 100 <P.3>;

TAG:
CALL TAG +3;
RETURN
6010 -4;
CALL +1CP.1>;

4 5.4 Loops

The D0.BEGIN. END statement unconditionally repeats the body of code contained within
the block. This Is the looping construct in 6PM. The loop must be exited with a BREAK
command.

Syntax:

(1 10) do
D0.BEGIN name(105) body(64J END namel 105)( <<boil, instances of name mun be identical>>

4.5~ Conditional Control

There are two types of conditional-control statements: block-structured and
conditional-branch. The first is for the conditional execution of sections of code and the
second for the conditional transfer of control. The first is sufficient In all cases, but the second
is easier and more efficient where appropriate. Note that the form “THEN.BEGIN name ... END
names Is a special form of a block (see Section 4.5.1).

Syntax:

(111) If ::~ IF bexp{85} THEN.BEGIN name(105) body(64} ELSE stmtlist(66) END name(105) ;
if bexp(85} THEN.BEGIN name(l05) body(64) END name{105) ; I
IF bexp(85) BREAK name(105) ; IF bexp(85) RETURN; I
IF bexp(85) CALL ld{l); I IF bexp(85) 0010 id(1) i
<<both Instances of name muss be li*mtlc.I In each of ii.. f irst iwo firMa)>

4.5.5.1 BlocIc-st ructured IF Statement

Th. block -structured IF stat ement has two forms, the most ~enersI of which is the “IF
boolean-expresaj on THEftBEG$N...ELSE...END” form. If the boo leart expression is true , the
body follow ing the THEN.BEGIN will be executed and the statement list follow ing the ELSE will
not be executed. If the boolean express ion Is 1.1,,, the opposit , will happen: the body will( not be executed and the statemen t list will be. Any declarati ons that follow the THEN.BEGIN
will be activ, both for statements in the body following the THEN.BEG$N end for the statement
list fo llowi ng the ELSE. The second form of IF simply omits the ELSE sect ions.

-



CPU Language 90
4.5 Control Statements

Each boolean expression is evaluated at compile time. If it evaluates to the constant
TRUE or FALSE in an IF statement , then only code for the appropriate statements will be
compiled and no test will be compiled at all. ORIGIN’s and statement -label assignments can also
be conditionally compiled using this facility. There is no way to specify declarations
conditionally for a block.

4.5.5.2 Conditional.bra iicj, IF Statement

The conditional-branch IF statement does not contain either the THEN.BEGIN or the END of
the block-structured IF statement. Immediately following the booiean expression Is a branch
statement (BREAK, CALL, RETURN, or 6010). The branch statements are restricted, however, In
that only statement-label names may be used for the CALL or 6010 destinations. Note that a
BREAK Inside a block-structured IF statement will exit only that IF-block if the BREAK is not
NAMED. This means that the following two statements are no; equivalent:

IF ZSP THEN.BEGIN BREAK END
IF ZSP BREAK;

4.5.6 Switches

A switch statement generates a control structure consisting of an indexed branch into a
switch table that follows the code generated by statements within a switch block (which, in
turn, branches around the switch table). The switch table contains branches to code generated
for statements following switch tags that occurred within the switch block. The switch table
has one entry for each possible Index value from zero through the largest switch value
declared In a switch tag (within that switch block).

Syntax:

(112) switch ::—

SWITCHON < P..7 > switchb lk{1 13) ;

(113) switchblk ::~INTO.BEGIN name(1O5) body(64) END name(105)
<<bosh inssanrcs of name muss be idn,ti ical>>

4.5.6. 1 Switc h Tags

There are two switch-tag statements: ENTRY and CASE. The ENTRY statement specifies
a list of pointer-register values that are to cause control to transfer to the first statement
following the ENTRY statement. The CASE stateme nt is equivalent to the ENTRY statement
except that an initial Bt~EAK out of tho switch block precedes the entry point to prevent
execution of a prior ENIRY or CASE from dropping into the statements associated with the
current CASE.

5yntax:

(114) swItchtag ::—
ENTRY switchllst(1 15); I CASE switchlls%(1 15} ;



GPM Language 91
4.5 Control Statements

(115) ~witchIlst ::—

swltchvalue(116} I switchlist(115) , swltchvalue(116)

(116) switchvalue ::—

number(S) number(S) THRU number(5) number{5} THRU I
I HRU number(S) ) ThRU

4.5.6.2 Switch Va lues

Switch values are either numbers or ranges of numbers. The maximum range of a switch
value Is 0 through 377, octal. On the THRU version of the switch value, 0 Is assumed for an
unspecified start and 377 is assumed for an unspecified end. Also, If some particular number
has been assigned previously, the THRU specification will ignore it. On the other hand, a single
number specification will override.

4.5.6.1 Program ml ng Considerations

Each switch value declared produces one instruction of overhead. The switch Is assumed
to have a zero origin. For example, “CASE 2,4” will have five (0-4) instructions of overhead.
No run-time check is made on the value of the pointer register. Any unspecified values below
the maximum specified value will transfer control to the location immediately following the
switch table. Values above the maximum, however , will transfer to a location beyond the
switch table, producing unexpected results. The first executable statement following the
INTO.BEGIN of a switch block (other than declarations) should be an ENTRY statement; a CASE
will produce an unnecessary BREAK.

Example:
SWITCHON <P.1> INTO.BEGIN

ENTRY 2,4;
COMMENT CASES 2,4;

CASE 1 THRU 6,10;
COMMENT CASES 1,3,6,10;

ENTRY 5;
COMMENT CASES 1,3,5,6,10;

END

4.6 Low-level and Constant Statements

The low-level GPM statements are

• GEAR (see Section 3.2.2.1)
• CEDE (see Section 3.2.2.2)
• StNN (see Section 3.2.2.3)
• GENT (see Section 3.2.2.4)
• BRAT (see Section 3.3.2.1)
• BENT (see Section 3.3.2.2)
• BORE (see Section 3.3.2.3)( • BRAD (see Section 3.3.2.4)
• BEAD (see Section 3.3.2.5)



CPU Language 92
4.6 Low-Level Statements

• BLOT (see Section 3.3.2.6)
• MAST (see Section 3.3.2.7)
• MOVE (see Section 3.3.2.8)

Syntax:

(117) Iowlevel ::—

gear(7) I cede(19) I shin{29) I gent{34) I brat(40} I bent(46}
boref47) I brad(48} I bead(50) I blot(57) I mast(59) I move(60)

A constant statement generates one word containing the 32 low-order bits of the number.

Syntax:

(118) constant ::—

number(S)

4.7 The CPM Compiler

The CPU compiler is available as a TENEX subsystem under the name GPM. The GPM
command prompt is a double colon; a command consists of a single letter and Is executed
Immediately. The “C” (compile) command prompts for its source, binary, and listing files.
Compilation begins as soon as the last file is confirmed.

Example: —

øGPM

MI P-900 Language System
Type ? for help

MONDAY, NOVEMBER 11, 1974 14:29:0 1-PST
U SED 0: 0: 0. 5 IN 0: 0: 1.45
Compiler Version GPM.4.74.7
::H HEXADECIMAL.CODE MODE TRUE
::L LABEL.TAI3LE MODE TRUE
::C
source I ile:PROGRAM.GPM;6 (Old version)
binary fite:PROGRAM.BIN;6 [Old version]
listing file:PROGRAM.L$T;1 (New version)

tL
WROGRAMNAME GPI~t4.74.7 11-NOV-74 14:3057 Pg 20 2

7.ssNo Errors Detecteds*7.

MONDAY, NOVEMBER 11, 1974 14:31:02-PST
USED 0: 0: 20.20 0: 2: 2.30

If no binary file I, desired, a null binary file (N114 should be specified. The same Is true for
the lIsting Ill. (the compilation will run more quickly if no listing is generated).



CPU Language 93
( 4.7 The GPM Compiler

The listing file can be recompiled without any editing. One should be careful, however,
since the compiler will “correct” all errors in the source file, and these “corrections” will
disappear after recompiling the listing file.

The set of GPM commands is

C Compile. Compiles GPM source program (shown in above example).
F Fast compilation. Sets flag for syntax check; no code generation.
H HEXADECIMALCODE MODE.9
I LABEL.TABLE MODE.9
N NORMAL.COOE M00L 9
P PRINTON. Forces complete listing; sets flag to suppress any PRINTOFF

statements in the program source.
Q Quit.
S Switch status. Prints the current switch settings as determined by the

commands F, H, L, N, and P.
T Teletype Test-compile. Same as C, except that binary file Is N1I~ and both

source and listing file are 7TY:

A complete GPM listing contains four parts:

• The source programs with errors flagged and corrected (where possible).
• The label table.
• The compiled code listed in octal (normal code).
• The compiled code listed in hex adecima~.

Section 4.3 discussed the CPU pseudostatements that affect whether or not these listings are
produced. This section discusses in detail the contents of each part of the listing.

4.7.1 Source Program

• The source listing is primarily a reformatted copy of the Input with a few changes. The
most Important change is that all text bracketed by percent ( 7.) delimiters Is lost, along with the
delimiters, because the compiler itself uses ~ in the listing file to delimit page headings and
error messages, which are not proper parts of the listed pcogr.m.

The output of the CPU compiler can be fed back Into the compiler and processed , usually
with fewer errors. In attempting to correct errors, the compiler either Inserts what It believes
to be a missing symbol or “erases ” of fending symbols by enclosing them In 1 delImiters. if all
the corrections made in the output listing (possible new source file) are satisfactory, no
recompilation Is necessary.

4.7.2 Label Table

The label table Is output after lhe FINISH statement and Is bracketed by percent-signs.
It has three columns: octal location, hexadecimal locatIon , and label name.

(
9. This commond controls the g.n.ratlon of a section of the OPM ftstin~. Tb. control ~~ttlng altsrn.t.s every

tIme the conenond Is entered; the new value I. printed by the OPM con~llIr . The WWII& value Ii t•l~. (I.e.
no out~~~.

---- - .-- -- - ,•



CPU Language 94
4.7 The CPU Compiler

Example:
2 LABEL TABLE 1.
1. 7702 FC2 TAGA 2
2 7750 FE8 TAGB 7.

4.7.3 Code Llst lii gs

The code listing comes in five fields. The first three are the locatIon of the code word, a
flag digit, and the op code. The fourth field contains the instruction coding; the fifth field is a
translation of the single MIP instruction back into a GPM statement. This last field is provided
for easier reading of the compiled code.

The flag digit is not copied to the MLP by the loader. ihe I flag marks long Immediate
instructions and causes the location-counter value to advance two instead of one. The 4 and 2
flags mark ORIGIN’s and labels.

In a normal (octal) listing, the location and instruction-code fields are in octal.

Example:
2770 1 0 BEAD 2 121 7027 hF TRUE THEN GOTO 7027 END7.
27702 1 GEAR 4 0 37 77 P.37 ~-R.37 OR NOT 777777777657ft~40)Ø
7.7704 0 GENT 0 2 33 36 MISC.33 4-R.36;Z

A hexadecimal listing is the same as the normal one, except that the location and Instruction
fields appear in hexadecimal instead of octal.

Example:
7.FC1 0 BEAD 2 91 E17 /lF TRUE THEN GOTO 7027 ENDI.
7.FC2 1 GEAR 4 0 IF CF P.37 ~R.37 OR NOT 777777777657 (t~t0)2
2FCI 0 GENT 0. 2 lB CD MISC.33 4-R.36;7.

3



95

Appendix A
Additional Exec and Delrngger Commands

The general PRIM exec and debugger commands are discussed fully In PRIM System:
(‘icr Refarenre Manual, which the emulator writer is expected to have read. This appendix
discusses exec and debugger commands or subcommands not in the reference manual. PRIM
keeps a flag, known as the “whiz” flag, that gives the user access to additional facilities and
commands not required by the emulator user. When a user runs PRIM directly with the
command

tc<PRIM>PRIM
he begins as a whiz; when he gets to PRIM Indirectly by running a working emulator, he is not awhir. An additional intervention character is available to the whiz during emulator execution:

MI.P-I,alt (initially cntl-Q) halts the emulator at an arbitrary point between
MLP-900 cycles. This halt does not require the cooperation of the emulator as does
the ehors intervention (which sets the QUIT AR bit, F.132).

A.1 Exec Commands

The following commands are either not discussed in the reference manual In their
entirety or have privileged subcommands that are not discussed:

CHANGE -

ENABLE
LOAD
NO
SAVE
TABLES

There are several additional, undocumented, privileged commands specifically for the PRIM
developers that should be Ignored by other privileged users. in particular , any command
Involving the name “6-12” (which is the name of the debugger for the PRIM framework Itself)
should be avoided.

Change additionally allows the MLP-halt intervention character to be changed.

Enable sets flags that control the state of the PRIM framework. For the nonprIvileged user,
Only the whiz state may be enabled. When whiz has been enabled, all the features discussed in
this appendix are available. CALL-STOP and STOP-STOP are particularly useful In the earli est
st ages of emulator debugging, since jointly they disable all PRIM framework servicing of the
emulator. 10-TRACE and RESUME-STOP are more useful when the emulator basically works.

(

-~~ - - —~~~~~~~~~ ..•~~ —-.-.- -



Additional Exec and Debugger Commands 96 -

Exec Commands

).ncM’NPBLE P 141112
(NIIBLE w~5’H12 

cr

>flnicNnBlE P One of the felIcMtn ~:
CALL-STOP
10— TRACE
RESUIIE—STOP
SlOP-STOP
WHIZ

ENAPLE X ?SCOFF cr

CALL-SlOP causes the PRIM framework to print--rather than process--the value of the call
parameter contained in R.37 on an emulator call to MLP.CALL and to stop the emulator.
Because the microvisor returns control to the emulator as soon as the call parameter has been
passed to the TENEX MLP driver, the emulator will progress an indeterminate amount before
being stopped by the framework.

10-TRACE causes the I/O server to print the (pertinent) Information from the call block and the
returned status bits for each 110 call.

RESUME-STOP causes the PRIM framework to stop ~ns%ead of resuming execution on emulator
cells to MLP.STOP that would normally have resumed automatically, such as status stops and
break stops whose breaktime programs cause resumpt.on.

STOP-STOP causes the PRIM framework to stop on any emulator call to MLP.STOP, Ignoring the
parameter contained In R.37.

XOFF causes the PRIM framework to insert XOF F font-shifting and superscripting characters in
the transcript file to distinguish control codes and user input from PRIM output. ASCII control
codes are superscripted; PRIM outputs are switched to font A; and user Inputs are switched to

• font B. The transcripts in each PRIM liter Guide, the Liter Reference Manual, and this
document were produced using the XOFF command with an A-font of FIX8 and a B-font of
B009l.

Load loads a CPU binary file into the emulation context without first clearing it. MLP-900
registers (including auxiliary memory) can be loaded from CPU code (usually via a con*,rzni
statement) that is assembled at an ORIGIN corresponding to that register’s location In the
swapped-out context. A map of the context appears in Section B.I. It is recommended that
only registers containing constant values (i.e., most of the mask registers) be speclf led in the
CPU source.

No disables the various state-control flags that are set by the ENABLE command.

~~~~ has the following additional subcommands for privileged users:

BREAKS
EMULATOR
REGISTERS-AND-AUX
TARGET-FORK

Additional Exec and Debugger Commands 97
Exec Commands

Tables loads an arbitrary descriptor-table relocatable file.

ia~~~BLES ((roe, f i l e) 7 FI le na,,,.
>TQRLES ((roe, (t ie) <PRI M > U105 0.DE sCILIPTOR - Tf lf lhJC ; 134~

A.2 Debugger Commands

The additional debugger commands all involve the MLP-900; they fall in the
execution-control, display, and storage categories. These commands are available only to users
for whom whiz has been enabled. In each case, a single coded character effects the command:

Command Coded Character
Mt P break TU (coniro(- lf)
MLP step -

MLP type *
MLP change /

MLP Break. Sets en execute breakpoint in the MLP-900. Only a single MLP breakpoint may be
set at any time. To clear an MLP breakpoint, the command is entered without an argument.

5Cr -

S

MLP ~j~p Single-steps the MLP-900. Note in the examples below that, on each line In which
an MLP-step is shown; the first hyphen was entered by the user and the balance of the tine
was completed by the debugger.

i-—> fliP-st ep to 16
5-—> fli P—s tep to 17
5-— > PU P— ste p to 21

tCo (to) er
—— IILP—900 Cli flddrsii Compare at S Used •~00.S (fliP t im o l
S

MLP I~ Displays MLP-900 control memory symbolically. The output Is the compiled code
produced by the CPU compiler. Consecutive control memory locations are displayed until en
abort intervention character Is entered.

s~ ~~
8 8 SF 110 3 221 16 lIE TRUE THEN CALL 16 (NO ;
1 0 GENT 8 106 16 280 11.1216.0 I
2 S PUtST 4 221 221 16 /F.7 sNOT 1RUE OR NOT TRUE
3 5 MOVE 5 e a 377 C E O 1-0 (377);
4 5 81110 3 221 261 lIE TRUE THEN CAL L 261 END;
S S GENT I I 37 280 R .37s5 $(• • 8(110 5 2 10 III NOT 1.1 THEN GOTO 10 END 1 tX

S

Additional Exec and Debugger Commands 98
A.2 Debugger Commands

MLP Change. Permits GPM statements to be compiled into MLP control memory. The GPM
stat ements entered for comp ilat ion must be terminated by an escape. The debugger prefixes
these CPU statements with a dummy program title and ORIGIN statement and follows them with
a semicolon and a program closing; the resulting “program” is then passed to the CPU compiler.
The compiler’s summary is displayed and its binary output file Is loaded into the control memory
Image, replacing what was in the same locations. Note that the binary file is loaded even If the
compiler detects errors.

5/ 67OO”~’
6780 I GEAR 0 0 9 0 R.I s-NOT R.0 011 11.0 (M.0);
6751 0 GEAR 0 0 0 0 11.0 s-NOT 11.0 OR R.0 (fl.0)1 1X
ff 5fl1C GPM, CIlIA.. 6700CtC

XX CPII.76. 11.2 18-NOV—77 19:36~19 Pg 2 X

Xt*N* Errors Oet.ct.d**Z

S* 6lOOCt
GP M t CE.Fi O;R.37, O;RR TURN CIC

XX CPM.76.11.2 18—NOV-i? 1I~36tS8 Pg 2 X
Z,tNo Errors Pot•cted*sZ

5/ etC
6780 8 MOVE 0 8 29 377 CE.1 .-0 (37 7)$
6701 I GENT I 8 37 200 11.37.0
6702 0 BORE 14 221 221 0 /IE NOT TRUE XOR NOT TRUE THEN COTO .1 ELSE
RETURN END;
6783 I GEAR 5 0 8 0 R.0 s-NOT 11.0 OR R.0 ~~011X

1/ 5e5C

S S BEAD 3 221 6700 /IE TRUE THEN CR1.1. 6700 END;
6 5 8(110 I 2 10 /11 NOT F.1 THEN GOTO 10 END;
7 0 GEAR 6 0 37 204 11.37 .11.37 OR 4

I

For a whiz, the various space-access attributes in the emulator’s descriptor tables (see
Section 2.7.2) are Ignored; all symbols (including the built-In symbols describing the MIP-900)
are avaIlable and all mete-bits can be set in every space.

Appendix B
TENEX MLP Driver Interface

8.1 Control of an MLP..900 Process

A TENEX process (fork) can create and control art MLP-900 process (emulator) through
the intert ace to the MLP driver in the TENEX monitor. The driver Interf ace Is implemented
using a new device type known as “MLP:” and exis ting file and device JSYS’s. The emulator’s
context is swapped into and out of a ten-page region in the fork itself; the emulator’s n~ain
memory is mapped into a target fork that can be either the controlling fork or an Inferior fork
crea ted for the purpose.

Since the target fork Is directly accessed as the emulator’s main memory, the fork can
communicate with the running emulator through shared memory as well as through calls
(MLP.CALL) and MIP action requests (F.130 through I-.137). The contex t, however, Is copied
Into the MLP-900 at each start/ resume and back out at each stop; thus the fork can validly
manipulate the context only when the emulator is stopped. The context region of the fork
begins on a page boundary and has the following organization:

0 - 6777 control memory locations 0 - 6777
7000 - 7037 R.0 - R.37
7040 - 7057 - M.0 - M.17
7060 - 7077 MISC.0 - MISC.17, excepting:

7074: MISC.36 (VADRC)
7075: MISC.37 (CMADRC)

7100 — 7157 (CE.0) - (CE.136), 16 bits per word, right justified:
7 100 - 7117: (CE.0) ff.
7120 - 7123: (P.0) (CE.40) ff.
7140 - 7157: S.O (CE.100) ff.

7160 - 7755 not used
7756 - 7777 control-memory locations 7756 - 7777

10000 -11777 A.0 - A.1777

When the emulator stops, only the OE. and CE registers and atwlliary memory are swapped out,
since control memory cannot be altered by the emulator.

8.2 TENEX JSYS’s Involving the MLP.900

A JFN obtained for the MLP-900 with the GTJFN JSYS is then used in the following
JSYS’s:

• OPENF opens the JFN; it must be performed before any other JSVS using that JFN.
Use byte size of 36, reed access, and mode of zero.

• CLOSF closes and releases the JFN.

(

TENEX MIP Driver Interface 100
8.2 1 ENEX JSYS’s involving the MLP-900

• MTOPR controls the emulator. Four operations are defined:
1 define interrupt channels

0-5 emulator STOP P51 channel (>36 for no
interrupt)

6-11 emulator CALL PSI channel (>36 for no
interrupt)

12-36 not uscd
2 halt emulator and swap out
3 start/ resume emulator

AC3: 0’- 17 context address
18-35 target fork handle

4 interrupt emulator (send action request)
AC3: 10-17 mask

28-35 bits
a BIN reads next call parameter-word from the call buffer (waits if none available)
• S1RE skips if the call buffer is empty
• BKJFN does not work for “MIP:”
• GDSTS returns status of the emulation process in AC2, AC3, and AC4:

AC2: 0-17 status; 0 running
18-35 emulator micro-PC

AC3: a-ti on reques ts pending in the driver
(not from F.130-F.137)

AC4: total MLP time (milliseconds)

The AC2 bits describe the reason(s) the emulator is stopped, If the emulator is currently In the
driver’s run queue, it appears to bo running (status 0). The bits are

80-85 reserved
86 supervisor facility violation (action request)
137 protection violation (action request)
138 virtual address compare (actioii request)
139 control memory compare (action request)
810 extended stack overflow
1311 not used
1312 MLP.STOP call (also set whcncver any of 86-811 are set)
1313 MLP hard error (probably fatal)
814 M[P soft error (probably did no damage, but no guarantees)
815 frozen (the call buffer is full)
1316 illegal memory reference (no targer fork or protected page)
817 halted (by “MTOPR 2”)

The driver keeps a word containing pending action requests that have not yet been
Inserted into the MEl’ flops F.130 through F.137. This word is returned by the GDSTS JSVS in
AC3 and is altered by AC3 of an “MIOPR 4” JSYS as follows: when the mask is zero, the bits
are OR’ed Into the driver ’s pending word; when the mask is not zero, the pending bits that are
masked-in are loaded from the corresponding bits in AC3. Note that only action requests that
are still pending In the driver can be cleared; once transferred to the NIP flops they cannot be
reset by the fork except by halting the emulator and clearing the bits in the context.

-
-

101

Appendix C
GPM Reserved Words -

An alphabetic list of 6PM reserved words follows. Equivalent forms are shown In
parentheses.

A.O-1777 (OE.2000) FALSE P.0-17 SUPVCT (F.177)
A.PG.0-3 (OE.P6.4) FINISH PAGE (F.~2l) SUPVF (F.122)
AERR (P.111) FOP PANIC (P.101) SIJPVIB (F.176)
AND F SI.0-I (F.376) PERR (F.1 13) SW1TCHON
ARL.1-4 (F.170) PIR (OE.1004)
ARL.5 (P.150) GOTO PLUS TASK (F.120)

POWER (F.100) TEMPORARY
8.0-3 11.0-I PRINTOFF THEN (THEN.BEGIN)
BEGIN HEXADECIMAL.CODE PRINTON THRU
BERR (F. 112) PROT (F. 123) 1HZ (P.304)
BLOT.0-7 IF TITLE
BREAK INCREMENT R.O-37 TRAC (P.130)
BY INDIRECT.0-1 RCM IRBY (P.165)

INTO (INTO.BEG%N) RETURN TRUE
CALL ITRAC (P.153) RIGHT 151.0-1 (F.374)
CASE ROW
CCP (P.307) IABEL.TABLE RSR UOVF (F.106)
CE.0-377 LEFT LJIJNF (P.107)
CED.O-177 5.0-17 (CED.40)
CKC (P.164) MO- 17 SAD VADR (F. 124)
CKT (P.166) MBS (P.167) SARMO-1 (F.160)
CMADR (F.1 10) MINUS SHD (F.353) WAR (P.305)
COF.1-2 (F.140) MISC.0-37 (OE.1000) SHE (P.145) WBP
COMMENT MMERR (P.116) SHIFT.0-10 WCM
COP (P.300) MOD.O-1 (P.174) SHIFT.DUAL.1 WOP

MODE SHIFT.EO.L WOS
DATAI (OF.1033) MOE SHIFT.ER.1 WSB
DATAO (0(1032) MI.LTIPLY SHIFT.OE.C
DECREMENT SHIFT.OE.L XBUS (OE.4000)
DIVIDE NAMED SH;FT.RE.C XBUS.0-3
DO (OO.BEGIN) NORMAL.COOE SIUFT.RE.L XLATOR.0-777 (0(4400)

NOT SHWT.SINGLE.L XLATOR.PG.0-1 (OtPG.1 1)
ELSE SIR (OF. 1005) XOR
END OE.0-7777 SEBC.0-17 (P.60)
ENTRY 0E.PG.0- 17 SOt (P.147) ZRF. 1-2 (P.142)
EPAR (P.103) OP.0-17 SOP ZSLO-7 (F.360)
EQUATE OPAR (P.102) SOS (P.146) ZSP (P.301)
ERS (P.340) OR SOVP (P.104)

ORIGIN SSW.0-7 (P.340)(P.0-377 051.0-3 (P.354) su~ (F.1o5)

____ A

r

102

References

1. Bobrow, 0. G., .1. D. Burch, D. I. Murphy, end R. L Tomlinson, “TENEX, A Paged
Time-Sharing System for the PDP-1O,” Communications of the 11CM, Vol. 15, No. 3,
March 1972, pp. 135-143.

2. Meyer, T. IL, J. R. Barnaby, and W. W. Plummer, TkNEX Executive Language Manual
for 1/icr,, Bolt Beranek and Newman, Inc., Cambridge, Mass., April 1973.

3. MLP-900 Multilingual Procesaor--Princl pies of Oper-etion, STANDARD Computer
Corporation, Santa Ana, Calif., 1970.

3. DECsysten,-IO Ilucmhly Language Ilanilbook, Digital EquIpment Corporation, Maynard,
Mass., 1972.

5. 7RNEX User’s Guide, Bolt, Beranek and Newman, Inc., Cambridge, Mass., January 1973.

1’)

F’

103

-

Index

* 43,45

() 43, 45, 50, 69, 82, 84(P.2) 6

* 38,48

+ 42, 43, 45, 46, 47, 61, 82
- 42, 43, 45, 46, 47, 61, 82

I 46,51
/ lF 68
/ IF ... THEN CALL 62, 65
/ IF ... THEN GOTO 61, 65
/ IF ... THEN GOTO ... ELSE RETURN 63

88,90

• 38,48,50,51,87

IJ ..1777 19, 41, 48, 53
- A.2COM 70

A.ADDR 20
/L PC.J 41, 48
aa{8) 43
AERR 56
aex p(78) 81
ALL 21
alpha (3J 36
amaskf 12) 43
amod(82) 82
AND 42, 43,55, 61,82
aop(81) 82
aprimary(80) 82
arlthmetic(77) 81
ARt.. I -ARL.4 56
ARL.1-ARL.5 60, 70
ARL.2 60
ARL.5 - 5,56
eshif 1(83) 82(asslgnn*nt, arithmetic 83
assignment , boolean 83
asslg nment(76) 81
aterm(79) 82
auxilIary memory 6, 7, 16, 19, 33, 34, 41

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Index 104

fl..3 84
BASE 20
bb(1O} 43
BEAD 64
beadO(51) 65
beadl(52) 65
bead2{53} 65
bead3f54) 65
beadf 50) 65
BEGIN 87
RENT 62
bent(46) 6?
HERR 56
bexpr(86) 83
bexp(85) 83
BIN 11,13
BINARY 27, 28
bitspec 19
bloc k(104) 87
BLOT 66
blotcode(58) 67
blot(57) 67
bnchdest(108) 88
body{64) 77
boo leen(84J 83
bop{43) 61
BORE 62
bore(47) 63
ROUT 11,13
bpr lmery(88) 83
BRAD 51,63
bradop(49) 64
bred{48) 63
brancli{107) 88
BRAT 51,61
brat(40} 61
BREAK 88, 89
break buffer 16
BREAKBUFFER 24
BREAKS 96
break( 106) 88
bterm (87) 83
buffer memory 7, 12
hufbd 7, 20
buff..., 7, 20
flY 63,87
byteplr 19

C (compiler command ) 93
CALL 29, 30, 62, 65, 88, 89
call block 9, 10, 11, 12 , 13, 15



Index ios

CANCEL 15
CASE 90
CCP 57
( E..137 19, 69, 84
CE...57 55
CE.14 38
CEDE - 46
cedeAcorje(21} t17
cedeA(20J 47
cedeflcode(24) 

~I7cedeB(23) 47
cedeC(28J 48
cede{19) 47
CELL 22, 24
CFII.PTR 33
cemask(97) 84
ceregpalr(93) 84
cereg(94) 84
CHANGE 95
CHARACTERSET 26, 31
CHARS 26
CKC 56

( CXI 56
CLOCK 25
CLOSE - 13
closing (70) 79
CMADR 6,56
CMADRC 41
~OF.1 45, 46, 52, 56
COF.2 - 46, 52,56
command status register 74
COMMENT 79, 80
conditional compilati on 90
conditional control 89
configurat ion memory 7, 9, 11, 33
consta nt (118) 92
control block 7, 9, 10, 11, 18
control(103) - 87
COP 46, 52, 57
current address register 60

date entry switches 40
data transfer 85, 86
DATAI ‘10, 74, 75
DATAO 40, 74, 75
datatra nsferf89) 84 —
declarationltst(65) 77( dec larat ion(6 7) - 78
DECREMENT 64,86
DEFAUL T 9, 32, 78
del cult lIstIng sett Ings
descriptor table 7, 9, 10, 16, 17, 18, 19, 34 

-~~~~~--~~~~~ — -~ —

- 
- - -~~~~ ~~~~~~~~~~~~ :~~-- _ _ _



Index 106

DEVCLASS 32
DEVICE 26, 31, 32, 34
device number 9, 12
device service 18
device slot 9, 10, I i , 17
device type 9, 10, 18, 31, 32
digit{6) 37
DIVIDE 50, 52
DO.BEGIN 89
do(110) 89
dli 6source(96) 84
dt36source(91) 84
dt8source(99) 84
dino f (95) 84
DUMPI 11, 13, 14
DUMPO 13 , 13, 14
DV.BUFF 20, 34
dxf rl6bits{92) 84
dxfr36bits{90) 84
dxfr8bits{98) 84

[(SE 89
E MULATOR 20, 24, 25, 26, 29, 34, 96
E NABL E 95
END 87, 89, 90
ENDCELL 24
ENDCHARACTERSET 26, 27
ENDDEVCLASS 32
ENDFIEI.D 29
E NOFORMAT 31
E NOKEYWORD 33
ENDPARAMS 32
E NDRUIE 29
ENDSPACE 22
ENTRY 90
[PAR 56
EQUATE 78
EVENT 25
event break 16
EVENT SPACE 24, 25
exchange bus 41, 60
IXECUTEBREAK 21
EXPL ICIT 9,32
EXPRESSION 29,30
extended stack 5

F (compiler command) 93
F..277 61,68,83 I’)

19, 55, 61, 69, 83,84
56

F 101 75
P.104 60

-

~

—

~

--

~ —



Index 107

V.106 60
P.114 56
F.1I5 56
F.117 56
P.120 74, 75
F.121 48, 49
P.130 7
F. 130 - F.I37 5
F.130-F.137 56
P.131 7
P.132 7
1.140 46
1.141 46
1.142 46
F.143 46
F.145 46
P.146 46
P.147 46
P.150 5
P.153 7
F.154-F.157 56
F.164 74,75( P.165 46
P.167 40
P.176 74
F.200-F.277 56
F.300 46
F.30I 46
V.320 75
P.321 75
1 .322 75
F.323 75
1.326 75
F .327 7b
FALSE 61, 78, 83
FIELD 29
FLIER 26
FW~SH 79
FIXED 9, 32
flopexp(41) 61
flopterm(42) 61
FOP 46, 47, 48, 49
FORMAT 30,31
YSI.. , 57

GEAR 42,56
g.ar(7) 43
GENT 52
gentai (36) 53
gent a(35) 53
gentbr(38) 54
g.ntb(37) 53



Index 108 
- -

— a

gentc(39) 54
gent (34) 53gexp(9) 43
gmod(11) 43
GOTO 61, 65, 88, 89CPU compiler use 92
gshift(14J 43
GTSTS 12, 13

H (compiler command) 93
11.1 84H.0 85I-t i 67,85half duplex 11,33
HEXADECIUAL.cODE 79

I/O interface 71
id{ 1) 36
IF 68, 89IF ... THEN 0010 63
if{1Il) 89
IMMEDIATE 32, 33
INCL UDE 5,80lncrdecr(100) 87
INCREMENT 64, 86index field 36
Indexed IdentifIers 37indirect oE Operands 38
INOPCOOE 27
INPUT 31
INSTALL 32
installation 4, 9, 10, 17, 18,31, 32, 34INST RUCTIoN 25
INS YMBOI. 27
INTO.REGIN 90
IS 29, 30
ISNOT 29, 30
ITRAC 7, 56, 71

jump history 19, 24, 25

KEYWORD 32,33
KW 33

I (compiler command) 93
label table 94
LABEL.TABLE 79
LEFT 4’1,5i
LOAD 95
Iocat lon (109} 88 ~~~ 

-
______ 

-loops 89 
- ____lowl.v.l(1i7) 92 . 

_____

i~
_
~~~

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Index 109

M.. 17 19, 38, 39, 43, 48, 50, 53, 54
M.O 44
U.DEF 23, 24
U.PTR 23
MAClINE - 32
main memory 99
main memory address switches ‘10
MARK 29, 30
MAST 68, 83
mast(59J 68
MUS 40, 56
MDEF 23
mdop(33} 50
MDR 40, 48, 49
meta-bits 8, 16, 21
MI XT 24
microvisor 5, 6
mm ii low status word 60
MINUS 42, 43, 45, 46, 82
*IISC..17 19
If ISC..37 38, 40, 48,53,54

( MISC.0 40
M1SC.1 40
UISC.16 40
MISC.17 40
MISC.2 40
MISC. 23 40
MISC.31 40, 41
MISC.32 40, 74
MISC.33 40, 74
MISC.34 40, 74
MISC.36 4 1
MISC.37 41
MI$C.4 40
MISC.5 40
MLP.CALL 6, 11, 15, 99
MLP.RCM 6
MLP.STOP 6, 18
MMERR 56
MOi).. I 56, 68
MODE 78
modeset(75) 79
MOE 67
MOUNT 31
MOVE 53, 54, 69
,nove(60) 69( MPIR 24
msing le(61) 69
msource(62) 69
MTOPR 11, 13, 14
MULTIPLY 50,52



Index 110

U
N (compiler command) 93
NAMED 87
name { 105) 87
NEWPCSPACE 24, 25
news 34
NO 95
NONE 21,25
NORMAL .CODE 79
NOT 42, 43, 45, 55, 61, 69, 82, 83, 84
NUMBER 25
riumber (5) 37
NUMERIC 32, 33

OE register page 85
OI’..7777 38
oeloc(25) 48
oepage(27) 48
oereg~26) 48
ofIsct(45) 61
OLDPCSPACE 24, 25
OP.ABS 28
OP.ADD 28
OP.AND 28
OP.CON 28
OP.DIV 28
OP.EQI. 28
OP.GEQ 28
OP.GTR 28
OP.LEQ 28
OP.LSS 28
OP.MO0 28
OP.MUI 28
OP.NEG 28
OP.NEQ 28
OP.NOT 28
OP.OR 28
OP.SUB 78
OP.XOR 28
OPAR 56
OPC 31
OR 42,43,55,61,82
ORIGIN 79, 96
(ISI...1 57
OUTPUT 31
outputct rl(73) 79
outpu ttype (74) 79 ()
P (complIer command) 93
P.7 19, 39, 43, 48, 53, 54, 57, 63, 64, 65, 82, 84, 8
P.O 67
P.1 67



Index 111(

P.17 53
P.2 67
P.3 67
P.6 60
P.7 51
PAGE 48, 49, 56
PANIC 56
PARAM 32
PARAMS 32
PARENS 28
PDN 9, 12, 13, 15
PE RR 56
PIR 40
PIUS 42, 43, 45, 46, 82
pointer registers 57
POWER 56
primary language symbols 37
PRINTOFF 79
PRINION 79
processor address switches 40
PROGRAMcOUNT[-R 22, 25
progr .m~63} 77( PROT 6,56
pseudodeclrtn(72) 79

o (compiler command) 93
Q(JIT 7, 15, 17

R..37 19, 38, 39, 43, 48, 54, 78P.37 6,7, 11,15,18,39,50,51
RADIX 26, 27
RANGE 21 ,22
PAR 40
RCOEC 73
RCEXT 23
RCHEX 23
RCM 67
RCMUI 23
RCNWRD 23
RCOCT 23
RCOPN 23
RCSTR 23
READ 21
READBREAK 21
reference break 16
REGISTERS-AND-A(Jx 96

( rellabel(44) 6J
RESET 13, 15
RETURN 63, 88, 89
RF PTR 11, 13
RIGHT 44,51
rlist(6$) 78



Index 112

ROW ‘17, 48, ‘1~RSB 67
RSTAT 7, 9, 13
RUL E 29

S (compiler command) 93
S..?? 19, 60, 62, 67, 70, 84, 85
SAD 46, 47, 48, 49
samounf(18) 44
S/iRP1f..l 56
SAVE 95
SET 32
SFPTR 11 ,13
shamount(31) 50
shamt(102) 87
SI-ID 51, 52, 56, 57
sI,dir{15J 43
SHE ‘16, 52, 56
SFIIFT 87
shift extension register 39
SHIFT.DIJALL 50, 51
St IIF T.EO.L 50, 51
SIflFT.ER.L 50, 51
SHIFT.OE.C - 50, 51
SHIFT.OE.L 50, 51
SIIIFT.RE.C 50, 51
SIUFT.RE.L 50, 51
Sl-IIFT.SINGLE.L 50, 51
SHIN 49, 52, 56
shin(29) 50
shlef 1(16 ) 44
shmask(32) 50
shop(30) 50
SI IOW 32
shreg(101) 87
shright(17)
sign(22} 47
SIN 11,13,14
SINGIEIO 31
SIR 40
SI.ISC..17 56
SOP 46, 52, 56
SOP 46, 47, 48, 49
SOS 46, 52, 56
SOUP 56
SOUl 11, 13,14
SPACE 17,21,22
85W..? 5?
STARINU MBER 27
STARTOPERATOR 

- 27
STARTSYMBOI 21
statem .nt (69) - 78

-



Index 113

S1ATUS 7, 13, 15, 17
STEPFLOP 22, 25
stmtl ist(66) 77
SUBFIELD 29
subid{4) 36
Subroutine Stack 60
substmnt(71) 79
SUNF 56
supervisor slack overflow 60
SUP VCT 56
SUPVF 6, 56
SUPVLB 56, 74
switchblk(1 13) 90
switchlist(1 15) 91
SWITCHON 90, 91
switchtag{114) 90
switchva lue(1 16) 91
switch(1 12) 90
SYMBOL 22, 24, 31

I (compiler command) 93
TABLES 19, 95
target memory 7, 8, 19, 20, 33
1 ARGET-FORK 96
TASK 56
1EMPORARY 78,85
test(13) 43
THEN.BEGIN 89
THRU 91
1HZ 57, 64
1ITLE - 77
IOPOFJUMPQ 24, 25
TR AC 7, 56, 71
TRBY - 46, 56
trfrlabel{56) 65
trfrop(55) 65
TRUE 57, 78, 83
TRY 29, 30
TSI..1 57
T1Y 31

UNARY 27, 28
UOVF 56
user stack ov.rllow 60
UUNF 56

VADR 6,56
VAORC 41
VAR 40, 48, 49
virtual tImer 4, 8, 9, 10, 13, 18, 19, 20

WAR 57



Index 114 - :

-.1

WBP 67
WCU 

- 67
WOP 46, 47, 49~ 71
word(2) 36
working memory 7, 8, 16
WOS 46, 47, 49
WRITE 21
WRITEBREAK 21
WSH 67

XBUS 41,48,53,67
x mis..s 60,84
XI./17’OR..777 38, 48, 53
X I ’ITOR.PC.. ? 48
XOR - 42, 43, 61, 82
XVAL 23

7R1.1 46,56
‘RF.2 46, 56
ZSI..7 57
ZSP 46, 57

( ]  - 43, 45, 50, 69, 84

46,51

4- 42, 43, 45, 53, 55, 61, 62, 68, 69, 81, 83, 84

-1



(. PRIM SYSTEM: USER REFERENCE MANUAL

Contents

Introduction 1
General input conventions 1

PRIM Exec 3

PRIM Debugger 14
Arguments 14

Values 14
Expressions 14 

-
Expression ranges 15
Lists of expressions or ranges 15

Spaces 15
Syntactic units 1$

Literals 16
Symbols 16( 
Punctuation 16

Error detection and editing 17
Commands 17

Debugger control 17
Execution control 20
Display 22
Storage 24

Target Executio n State 25
Target I/O 25
I/O error messages 26

- .---—--—

~

--- —-- --- .- - -- - - —- - ---------



PRIM SYSTEM~ USER REFERENCE MANUAL 
- _ _ _

INTRODUCTION 
_ _ _ _ _

ihis document is the common reference manual for all users of ttir~ PRIM system,
1)0111 those using one of the existing emulation tc.ois and those writing new emulators. I or
lho former, this manual is supplemented by the appropriate tool-specific guide (c.p., PRIM
Systeni. U1050 User Cuid.h for the emulator writer, the supplcment is PRIM Systcn*: 1 cot
(m ilder Manual.

lhc PRIM system is always In one of three states, known ac the cxrc , the debugger,
and the target execution slates. The transition between states is controlled by the user.

of the first two states are PRIM command processors that taI~c comrn~rnds from the
u~er and execute them. ihe exec , whose command prompt ch~iracie , is >~ , i’- u~cd
principally for setting up a target environment; the debugger, whose command prompt is
“S’ i& used for the detailed examination and control of the executing tat-get
machine. Target execution Includes the emulation of not only the CPU, but also clocks and
assorted peripheral tO devices. The three sections following the introduction describe
each of the states in turn.

The PRIM exec and debugger commands are illustrated with examples taken from
adual sess ion transcripts. In all the examples , user input is j in li r ized to distinguish it
from PRIM output. Input control characters appear as their abbreviations superscripted
(e.g., 415t ). -
GENERAL INPUT CONVENTIONS

User input to PRIM, both exec and debugger, is generally free-format and
case-independent. Leading spaces and tabs are ignored , and lower i~ase Is treated as its
upper case equivalent (except In quoted strings, where case is potentially significant).
Lk cr Input to the target machine durIng target execution state is in tI’f- for m at required by
the target system.

Certain characters have been assigned editing and intervention f unctinn~ when input
by the user. ihe editing characters apply only to the PHIM ex t r and ctehtigger, wtuto the
intervention characters apply to the target execution state as well. ihe specific
characters assigned to most of the funct ions may be altered (via the exec Change
command ) to suit one’s needs. ihe editing functions are valid at any time during PRIM
command Input; commands are not executed until after the final character has been
accepted.

Heck-apace (cntl-H) erases a character trom the current word or term of input. 1 he
back-space Is echoed as a backslash (\) followed by the erased character. When
there are no erasable characters, a bell (cntl-G) Is ethoed Instead.

/l Ie*’rssase beck-apace (Initially cntl- A) performs a function identical to bark-a pnra; it is
provided as a convenience.



PluM System: U’.er Reference Manual Page 2

Ilarkiip (initially cnll-W ) erases the current word or term of input. It is echoed as
backslash (\) followed by the first character of the erased word.

Retype (initially cntl-R) ret ypes the current input line; it is useful after a confusing
amount of editing has occurred.

I)eleie (initially DEL or RUBOU1) aborts the current input command or subeommand,
allowing the user to re-enter it. It is echoed as “ XXX...

Qu est ion (?), when entered at the beginning of a command field, elicits a description of
the expected input, followed by a retype of the line. When the expected input is a
selection from a list (or menu), the entire list is shown.

ihe intervention characters are valid at any time, including command input, command
interpretation, and target execution.

/ Thorg (initially entl-X) interrupts the current activit y and r eturns control to the
command level of either exec or debugger. When uced to cancel an exec or debugger
command, control returns to the top level of the same stale; abort is the only means of
canceling a command when the user is in subcommand mode. When used to interrupt
target execution, control returns to the state from which execution was initiated; abort
is the only means of stopping a looping target machine.

Status (initially cnt$-S) produces a one-line summary of target machine status, including
program counter, emulated elapsed time, and active 10 devices. ihe command is valid
at any time, but useful primarily in execution state.

The following character is active only during target execution.

( o,urnl-slii fs (initially cntl- t) permits the user to enter (during execution) a control
code that cannot be entered directly because it is intc’rceptcd by either I’RIM or the
operating system~ the PRIM characters inolved are flail ’s , ~ hnri, and rnnurol-al,ifi itself.
The next ASCII character following the congrol-ahiji (other than the d igits 0 thru 9) has
its two leading bits cleared, thus converting it to an ASCII control code (I) or a to
r,ul /l , etc.). Cousral-s!,ifg followed by a digit rc~ults in an input that is outside
the normal target character set and is used for particular tai get-mach ine-dependent
functions. The control-shift character itself is not echoed , and not passed to the
t arget machine. If execution terminates before that next character is input to the
target device, the control-shift is canceled; it is not retained for the next resumption of
execution.



PRIM System: User Reference Manual l’.i~e 3

PRIM EXEC

1he PRIM exec is the initial state of a PRIM session. Exec commands arc concerned
primarily with building target configurations, saving PRIM session results, restoring
previously saved sessions, and accessing or creating files (within the file space of the host

L operating system).

The exec prompt character is “> , indicating that PRIM is in exec state and that the
cxec is awaiting a new command; it is always shown on a new line. Individual input fields
consist of keywords (a word selected from a menu), decimal numbers, and file names.
Uxoc commands are composed of fixed sequences of fields, each terminated by a delimiter
character; a final confirmation consisting of a return is otlcn required.

Keywords are selected by any unambiguous leading substring. Often, a single
character suffices; three characters are always sufficient. Numbers are specified in their
entirety. File names are specified according to the conventions of the operating system.
All commands that will use a file for output require the name of a new file (except the
Mount-Append and Mount-Old commands, which modify existing files); all other file
commands require the name of an existing file. In UNt X, an ex isting file name - .  and a
new file that is a new version of an existing file name -- is recogni?ed (and completed) in
response to an input earape.

1 he normal delimit-’rs that terminate command fields arc retu rn, escape, and s, ace.
Rsenpe and apace functi~n identically cxtept that the former generates feedback to the
ucer while the latter generates none; the feedback produced by escape includes both field
completion and next-field prompting (which is given in parenthes~s). Return is used to
complete a command immediately, bypassing any remaining fields and confirmation; if
fu rthe r input is required, the return is treated as an esra~e. (In the examp les that follow,
escape termination is used to show the prompts.)

Keywords tha t involve either devices or parameters are machine-cirspendent; the
crleclions shown in the examples are meant to be illustrative rather than definitive.
t)cvice specification is further complicated when two (or more) of the same generic device
arc’ installed. lht refore, for device names, two fur ther delimiters are utilized, at (“*.~

“) and
colon (“:“). A fully qualified device name consists of gener ic-unune t~ channel —n umber
u’ui it-ns:u,hcr ’, the numbers are required only to the extent necessary to specify a
particular device. When a device name is terminated by one of the standard terminators ,
‘und when further disambiguation is required, the exec prompts explicitly regardless of the
I -rminator.

T h e remainder of this section consists of the descriptions of the excc commands in
alphabetical order. Each command description begins with a transcript showing one or
more examples of the command and Its various options. iluose commands that require a
second keyword sliow that list via an input qucation. ihe exec commands arc:

(



PRIM System: User Reference Manual Page 4
Exec

~? On. of th. l.lIos.Inq.
CANCEl.
CHANGE
CLOSE
COAIIRNOS

— DIBUG
F ILESTflTUS
Go
INSTALl.
IIOUN T
1(1 US
PER IPIIERAIS
QUIT
REASSIGN
At STORE
REW IND
SAVE
SIT
51(0W
SYMBOl- S
TINE
TRflNSCRIPT
UNINSTALL
ti~mown

comment.
; thia line is a co,n,n.rn,Cr

Any line beginning with a anmienlon is treated as a comment. Comments are recorded In
the transcript if one Is open (see Transcript command).

Cancel abandons all outstanding 10 operations for a designated device.
>COCZCNCFL (10 for d•vlc.) •aOacpF..UNIT or

1 his command is intended for use when, after an 10 error halt (described in the sect ion on
target execution), the user wishes to abandon the device operation rather than mount a
file arid retry the operation. The list of outstanding $0 operations, by device, -is part of
the Peripherals command output.

I, ,.

- - . - . - - ..
.

.

- - ,

~

- - - .

~ 

- - -~‘ . -



F’UIM System: User Reference Manual Page 5
U xcc

Change reassigns the PRIM control functions.
>eli°50Pnci (I nput cod. for ) P On. of th. following s

ABORT
At. T—RACK SPACE

— BflC~UP
D(U1I

RETYPE
SiWIUS
CONTROL -Sh irT

~CHANGE (Input cod. f or) ObCWDRT (iro tX to) P A Control Cod..

~CHANGF (Input cod, for ) ABORT (i,om 1X to) tP or

M &C*OANGE (Input cods I or) descant (from DtL~ to) ~~~ tn.t chang.dI

ibis command allows the user to change the ASCII control code assigned to any of the
listed PRIM control functions from its current assignment to another (currently unassigned )
control character. The function name is the second word of the command; when it Is
terminated with an escape, the current assignment is noled in the noise. ihe entire set of
ASCII control codes (including delete) is available excepting am U, back-apace, linsi—Jtmd,
return, escape, and unig-septzragor (1ENEX end-of-line) which have fixed functions in
PRIM. For abort and status the sot Is limited to entl-A thru cntl-Z.

Close terminates the current transcript file if one Is open.
>cl°500SE (transcr ipt Ill ..) or

A transcript file is opened using the Transcript command; it is automatically closed at the
end of a session.

Commands redirects subsequent Input from a file.
>~fle5q f~fl~fl5 (from I I I.) rommand.file°’° or

This command causes PRIM to read Its subsequent command input from the named file
instead of the user terminal (or current command file). ihe file input is Ereated exactly as
terminal Input except that Intervention functions (abort and stains) are valid only from the
terminal. Should a command in the file cause execution to be ress.mcd, input that normally
would come from the user terminal Is taken instead from the file. Input reverts to the
previous source at the end of the file; an abort terminates all command files and rever t s
input to the user terminal. Command files may be nested. Command files are very useful
f or common session-initialization sequences.

Dcbu~ transfers control to the PRIM debugger.

~lesc~Lp uG
Ir.turn (to IXIC) ~~‘

The PRIM debugger is described In the next section control Is returned to the exec via the
debug Return command.(



~~-c- -~~~
- - -

PRIM System: User Reference Manual Page 6
Uxec

Filestatus returns Information about mounted files for all or designated devices.
~IesriLFSTflTUS (for devlcs) ~~~ ALL
Record F i l e Na.. Oo~(c.
i2 CARD .DECK CARD—READER

12 Us rr Tty PRINTER
825 iIR IIINAI .I$PUT TLRMINAI . (In)

37345 TLRII.OUT TIR IIINAL (Out)

2.6 AACO .EFG TA PE—UNI TuI

~foSc;(rsTfl1~us (for d.vlc.) enea~pD_Rtp0U
Record Tup . Byte/Last File Na..

12 D in)? 960/1280 CARD.OECK

When the device field is empty (return or escape) all mounted files are listed; otherwise
just the file(s) on the named device are listed. The latter case gives more complete status
than does the former. 1 he output fields are:

Record tolls the current position of the device or the number of records which have
been processed. For disks, It Is a sector number; for card readers and punches, a
card count; for communication lines, the total number of bytes transferred; for mag
tape uni ts, the position from beginning of tape expressed as files 4 records.

File Name is the name of the file; Itie name i.Jser ily” is displayed when
7’IIIS-7lRhIIN/j l, is the file.

Device is the emulated device on which the file is mounted.

lype describes the type of file, either Ascii or Fiinxx, where xx is the file byte size.
1 he type may have been explicitly specified .t mount time, or it may have been
a!~.sLhmcd by PRIM.

Uytc~Jkast is, for a mounted disk file, the current byte position in the file and the tota l
number of bytes in the file.

The marginal notation “[not opened)” indicates that the named file could not be found (this
occurs only to a restored file) and that the device must be reassigned to another file (or
to the same file via a new path name). -

~~ transfers control to the target execution state.
)gOSCO (f rom 1734) or
— - ~~ MACHINE running at 5670, Used S~SB.4
— - - >  M PCHINE ha l ted at 6543, Used 1*11.1

This command transfers control from the PRIM exec to the emulator or target machine, In
Its current state. Control returns to the exec when the target machine halls or a
breakpoint is encountered (see the debugger Break command) or the user interrupts
execution with an al,org.

e

In the example, the user followed the command with a status request (the status character — -

itself Is not echoed) resulting in the first reply line (MAClINE runnIng at ..J the target
machine Is still running. Eventually the target machine halted, producing the second status
line and returning control to the exec as evidenced by the exec prompt. 



PRIM System: User Reference Manual Page 7
txec

Install adds a designated type of device to the machine configuration.
).iescNslALL (device) P On. of the lolioming s

CPRO-REROCR
PRINTER 

-

iflP( -CONIROLL IR

TERPIINflL
> IN SIRLL (device) pescRiNTEl (CHANNEL) l4’*e

~? sPiro
~~s°50PEtD (characters p.r second ) ?$C301

>i05’~NSTfl LL (device ) ta050Pt-CONTROLLER (CHANNEL) j~j~ cr

How many TA PE -UNIT ’s do you want? 2~r
For the I Iret ifiP(-UN1T, (UNIT) ocac or

For the second TAPE-UNIT , (UNIT) grr

The device type is selected from among those implemented. the user is prompted for
each necessary item of information, typically including an address for the device in the
target 10 address space and the number of units to install. After the required Information
is gathered, sub-command mode (“>>“ prompt) is entered to gather optional parameters;
any optional parameter not supplied takes on Its default value. Subcommands are
terminated by en empty command, return only. An installed device is initially unmounted
-- there is no file associated with the device for purposes of actual $0.

When the device being installed is a multi-unit controller, the dialogue proceeds through
each of the individuat units to gather their parameters. After the command is completed,
the controller Is no longer visible; only the individual units are. An abort aborts the entire
command, not just the current unit.

Installation is permitted only. before any execution has taken place. 1 ypically, a user or
user group installs a standard configuration and then saves it for usc in all subsequent
sessions (see the Save-Configuration and Restore commands). 1 he optional parameters of
an installed device may be changed at any time using the Sot command.

(



PRIM System: User Reference Manual Page 8
Exec

Mount associates a file with an installed device.
)Ul°t0OuNT (R,l,N,OL,OU,T ,?) P On. of the foll owi ng i

APPEND -

INPUT
NEIl
04-I)
OUTPUT
THIS—TERMINAL

~I1OUNT (R,I,N,OL,OU,T,?) t°10H1S-TERMINAL (on d.v Ice) p°50R INTER or

>m°50OUNT (A ,I,N,OL,OU,T ,?) n050EW (In I out i l l .)  1111CDJ1?’G;lc*e (on d.vlc.)
tn 1750P1-UNIT or

~In i050NPUT (from Il l .) rnrd.Jock°~C (on device) 0nO*CRO~READER or

> ?  BINARY or ASC II
>>h°50INARY (with byt. Bu s) 12’ ’

Associating a file with an installed device causes subsequent emulated 10 for that device to
be directed to the file. ihe second keyword following Mount determines the direction of
data flow and the choice of an old (oxtsting) or new file. A file must be mounted on a
device before any actual 10 can take place.

AI’F’END mounts an old file for output only, with th~ subsequent output being appended
to the previous contents of the file.

INPUT mounts an old file for input only.

NEW mounts a new file for both input .nd output (the file is initially empty).

OLD mounts an old file fpr both input and output (subsequent output overwrites any
ex isting file data).

0(11 mounts a new file for output only. For a disk or tape device, O(J1 Is treated as
NEW.

iHIS-1ERMINAL associates the user terminal -- instead of a named file -- with the
named device. 1 he mounting is for both input and output unless a file has already
been mounted for one, in which case the terminal is mounted only for the other. The
terminal is known to be en ASCII “file”. ihe terminal may be mounted only once for
input; it may be mounted for output (Or On an output only device) any number of
times, but the output is not labeled as to source.

Only some of thc forms above are applicable to any given device. For a disk- or tape-like
device, an lNF’Ul, OLD, or NEW file is expected; an 0( 1) file is one that was NEW in a
previous PRIM session, and Is beIng re-used, while an INPUT file is an old read-only file.
For a bidirectional communication device (e.g., a termInal), two files are required: an INPUT
file and either art OUJI-’UT or APPEND file. Alternatively, a real terminal may be used for
both (or either one). For an input-only device, INPUT and OLD are Identical; for an
output-only device, OUT and NEW are Identical.



PRIM System: User Reference Manual Page 9
Ixec

For those devices that deal exclusively with character data, the mounted file is always
taken as an ASCII text file; character translation is performed as part of the 10 process.
(This allows the file to be created and/or processed by any operating system utility that
deals with text files.) For tape and disk devices, the file format is internal to PRIM (and
therefore not requested from the user); the data is recorded directly. For other devices
the user is asked, via subcommand mode (“‘>“ prompt), whe ther the mounted file (NOT the
devIce) is an ASCII text file or a binary file containing a stream of pure data in bytes of
some fixed size. The default is a binary file of a device-dependent byte size.

Once a file has becn mounted on a device, all exec commands that refer to the file require
the device name as the specifier; for communication devices, where two files are normally
mounted, the device name is followed by a direction selector. 1 he tile name itself is not
used as the Internal identifier.

News reads the PRIM on-line news file.

Do you want to so. 4-APR-77 Changes in PRIM ti 05’YFS
I Hors cnm.’s %h. mossag. regarding changes of 4-APR-77 ...

flo you want to so. 24-MAR-77 Pr.Ilminary Docu ..ntat ion ~, dcl xxx

The date of the most recent news message is shown automatically at the s!art of each
session. In response to the command, each message’s dale and subject is shown,
beginning wi t h t he mos t recent message. For each message , the body may be seen (YICS)
or skipped (NO), or the command may be terminated (icloan or abort).

!‘!rPherals returns information about the installed devices.
) ,f 5 0 ( R IPHFRA ( S
than Unit Mounted Movies
1 I No - PRINT E R
2 0 Yo~ 1INIIINAL
3 I Vi 1APE—UW IT
3 1 Yo~ lnrr-UNIT

ac t lvs  diivici~~ 1IRIIINAL

ihis command produces a listing of all the installed devices, together wit h their 10
addresses and a notation concerning whether they have files mounted. It also lists all
devIces which have suspended 10 operations. Ordinarily, suspended operations are limited
to (1) 10 error conditions and (2) input operations where the input file is a real terminal
and no input was available when target execution stopped.

Quit terminates a F~RIM session.

~q°50UIT

Oisl ttinq MACHINE (Confirm ) or
p

Terminating the F’UIM session involves closing all open files and returning control to the
process that initiated (he PRIM session. the session cannot be continued.



PRIM System: User Reference Manual Page 10
Exec

~~ass igt~ specifies a new file for a mounted devIce.

~rnaO*CSSIGN (devic.) gn nscpc .UWIT (to I ll s) Isnw.fil#~$C or

ihis command is used to substitute a new file specification when, after a prior Restore
command, a previously mounted file cannot be found. In particular , a restore done from a
different directory than the one in force at save time has trouble finding any of the
mounted files. Reassign may only be used for devices/files that are marked “[not
opened]” in a file-sta tus display. The new file is assumed to have the same
characteristics as the old one and is positioned at the same file position.

Restore recovers the state information saved in a file.
)rca°~°TORr Cfro~ SAVE f i l e )  /I lgCaCoNb’:c;Ieae or
restored CONFIGURATION from TUESDAY, MAY 3, 1977 12~3S~B8 POT

The current context is updated with the complete or partial environment previously saved
in the designated file by the Save command. For the addressable rcgions -- machine
memory, registers , etc. - tile saved data replaces the current data only for those cells
that were actually saved; cells not saved are not cleared. (ihus, nonoverlapping memory
images are merged.) For nonaddressable regions -- symbol, configuration, and breakpoint
--  each one is completely replaced if present in the file. ihe date and region(s) saved are
shown, followed by a list of any mounted files that cannot be found.

~cw ind returns a device’s mounted file(s) to the beginning.
,rcwOaCINO (doyle.) IaCaCPr_UNIT Cr

rew (or0161IINAL (B,I,O,?) P One of the following :
R OJIl

INPUT
Oil 1PUT

>111 W TERMINAL 1~’UYNPUT Cr

ihis command is useful for retrying a program without unmounting and remounting files.
(Files are always rewound - when mounted, except for Append files, which cannot be
rewound.) For a terminal-like device that requires separate input and output files, the user
optionally specifics which file is to be rewound; the default is 110711.

Save copies selected slate information Into a file.
>an0M~VF P Ono of the follow Ing :
nit.
CONF IGURAT iON
FORIIATS
Mt IIORY
SVnnOIS

>SAVE oCa~’ONF IGURAT ION (on ill .) o ItCI).CON1’IC~IOr

This command saves on the (new) file an Image of the region(s) selected for savIng. The
contents of the file can later be restored for use in this or another session. The second
word of the command selects one of the save options.



PRIM System: User Reference Manual Page 11
Exec

ALL saves everything -- a complete checkpoint of the target machine and debugging
stste. “Every thing” Includes memory, all addressable registers, installed devices,
mounted files together with their positions, debug breakpoints and their programs,
debug forn~ats and modes, defined symbols, and the internal state of the emulated
machine.

CONFIGURATION saves all the machine configuration data, including installed devices,
mounted files (If any), machine parameters, and debug formats and modes. This
command is allowed only before any execution takes place. Useful for creating a
standard machine configuration (possibly with some standard files mounted) for use in
subsequent sessions.

FORMATS saves all the formats that have been defined (using the debugger Format
command).

MEMORY saves those regions of the machine memory that are not clear. (At the start
of a PRIM session, memory is already cleared.)

SYMEJOLS saves all the user-defined symbols, both those loaded via the exec Symbols
command and those defined directly via the debugger New-symbols command. 1 he file
that results is a SAVEJRESTORE file, not a SYMBOLS file!

t changes the values of user -settable parameters.
>ae°~~T (~empt q> or dovic .) 

or

~~ ? O,io of th e followi ng:

Ct nCt~
MI MORY
SPiED
>o0

~°LOcK (ticks per i.cond) ~C1III er
,,i,t~~ °I MOR Y (8)~ modules) 4C~
>,rr

,aroacT (.cr.IusptQ> or device ) pCU~R IN T L R
>>a°~

’P(Ffl (characters per second ) 1.50°’
> ,rr

Following the command word, the user selects the group of parameters he wishes to alter.
An immediate rosur,. selects the global machine parameters; a device name selects the
parameters of that particular Installed device (the paramc tcrs of multiple installed
Instances of the same device type need not have identical settings).

Any number of parameters from the selected group may be changed. In response to the
siibcommand prompt (“>> ‘), the name of a parameter and its new value are entered; each
change is made immediately and a new subcommand prompt appears. The command is
terminated by an empty input, ref urn only, or by an eIwi (wInch does not undo any
parameters previously changed). 1 he list of possIble parameters is highly machine and
device-dependent; it typically includes the size of memory and the speed of each device.

The value of a parameter is either a (decimal) number or a, keyword fr om a
parameter-specific list; a qunaslon in the value field reveals which is expected. An eaCape
sets the parameter to Its default value.



PRIM System: User Reference Manual Page 12
Exec

show displays the values of all the parameters in a group.
,zI,Cat!OU (~empty > or dovic e) ~~
ctoc~ is 3000 t I c ks  per second -

MEMORY I. 4 8f~ module,
SPEED is 7S0 nanoseconds per memory cycle

,.ahearow (<empty. or device) p°10111NT(R
SPEED ii 200 characters p.r second

S

FollowIng the command word, the user selects either the global machine parameters
(ee urs) or the parameters of an installed device. The names and current values
of all the parameters are displayed.

Symbols reads an ASCII symbol-table file.
>ay°’°flRm S (from f i le )  S V hf lS0I.S.~ X /1*1 pI.Kn*o or
S

This command causes PRIM to build a user-defined symbol table from the data in the
named file, which is a structured ASCII text file. ihe file may define valii~s for both global
symbols and program-local symbols that are organized into programs. In the PRIM
dehugger, the global symbols plus the local symbols of the currently open program are
accessible at any time. Symbol values in the file are octal. ihe form “name ~~~

‘- value”
defines a global symbol; the form “name value” defines a local symbol; the form “name:”
establishes a program name to which subsequent local symbols are assigned. The file is
free-format in that spaces, tabs, commas, and new-lines may occur anywhere -- except In
the middle of names or values. The following is a sample symbols file.

MPFIA- —15
lIE lA ’~=I2345
PRJ: A’-2000,B-2 132 ,C 2241
XV?:
A -3712 AA~3245, AAA~3261,AAAA~7/ 77

Symbol files are intcndcd lo support the moving of symbolic label data f rom an assembler
or linking loader into F’UIM for use in symbolic debugging.

Time displays time of-day and lime-used information.
.fiI’*CIIF ( Is) 1UESOflY , MAY ~ , 1977 12:34*33—POT
Us~,d 0:14.6 PRIM time ; Used 0:02.7 MLP time .

S

This command displays Ihe date , time of day, the amount of PRIM time used and the amount
of MI F’-900 tim ’ used in this PRIM session. (Elapsed target machine time is displayed In
response to aI.flua)

lranscript transcribes the subsequent PRIM session on a new file.
,SrOU’ANSCRIPT (to fIle) flOW.JjICC~~ 01

S

All transactions with the user terminal, in~luding execution-time 10 to 1IIIS-TERMINAL, is
transcribed until either the user terminates the session (with a Quit command) or closes
the transcript. Only one transcript may be open at a time. A header line containing the
date and time is placed .1 the head of the file.



PRIM System: User Reference Manual Page 13
F wec

Uninst all removes an installed device.
.uni°~~N5TAf I (d..vice) P PRINTER or TAPE—UNIT
sUN IN STALI (devi ce ) 1e MOPE~(JNIT (unlt) :geae or
S

This command is the inverse of the Install command; it removes an installed device from the
configuration, first urunounting its files if necessary.

Unmount unmounts the file(s) from a device.
>u,hflh~~ E’O(l~ T (devi ce) ~~~~~~~ Cr

s1’fl,lt 1or0~°fl1NflL (8,1 ,0,?) P One of th. following:
60111
INPUT
0111 PUT
UNM TERMINAL e.W ~~~~ 

or

S

The unmounted I ile(s) are closed. For a terminal-like device that requires separate input
and output files, the user optionally Specifies which file is to be unmounted; the default is
11011-1

(



PRIM System: User Reference Manual Page 14

PRIM DEBUGGER.

The PRIM debugger is a table-driven, target-machine-independent, interactive
program for debugging a PRIM emulator or a target program running on such an emulator.
It is t ailored to a specif ic target machine by tables prepared as part of an emulation tool.
Ilasically, it permits a user to set and clear breakpoints and to examine, modify, and
monitor target system locations. Target system assembly language and symbolic names
are recogn ized, and arit hmet ic is performed according to the conventions of the target
machine. 1 he debugger command prompt character is “a”; each level of subcommand adds
another ‘a” to the prompt.

ARGUMENTS 
-

Most debugger commands take arguments in the form of values, expressions,
expression-ranges, lists of express ions, or lists of expression-ranges as defined below.

Values

A value is an assembly-language instruction, a form, text , or an expression- list.
Assembly language instructions are parsed by a table-driven assembler/disassembler that
a cepts the same syntax as the assembler for the target machine. User symbols will be
recognized it they have been supplied in user symbol-table files (see the exec Symbols
command) or have been declared individually (see the debugger New-symbol command).

A form requires that the user previously define a corresponding format (see the
th bugger Format command). A form Is represented by the format name followed by an
expression-list, as in the following example.

Fl 0, 7, 3

lcxt is represented as a double-quote (“), followed by an arbitrary delimiter
c haracter , followed by a sequence of other (non-delimiter) characters , followed by another
occurrence of the delimiter character, as in the following example. 

-
“/This is text./

Express ions

An expression is any well-formed sequence of constants and symbols that are
defined for the target machine; the symbols (which are machine-specific) may represent
either locations or operators whose rules of combination determine what is a well-formed
expression. A location symbol may represent a named hardware clement or a globally or
loca lly defined user location. An operator may either be unary (preceding its operand) or
binary (coming between its operands in Infix notation). i lle precedence of operators is a
function of the target machine, except that all unary operators are acc(lmCd to have the
sam e precedence value, w hich Is higher (more strongly binding) th.rn that for any binary
operator. If brackets are permi tted (e.g., parentheses), their precedence value is higher
than that of unary operators. For example, A-B and -U+A will evaluate the same, bu t will
d i ff er f rom -(Fl-iA), which will evaluate the same as -U-A. A bracketed suhcxprcssion may
itself attaIn the full complexity of an expressIon. The behavior of operators is
mac hine-specific.



PRIM System: User Reference Manual Page 15
Debugger

Expression ranges

An expression-range consists of the triple: axpt-cssion (lower bound), colon,
expression (upper bound). It rcpresents a sequence of locations starting at the lower
bound and continuing through successive locations to include the upper bound. ihe upper
bound may not be less than the lower bound. Wherever an expression-range is allowed, a
single expression is ncccpted and treated as II it had been entered as both the tower and
upper bounds of a range. If the two bounds in a range address di ff erent spaces (see the
discussion of Spaces below) within the target machine, the sequence of locations is
res tricted to that space addressed by the lower bound. iwo special forms of expression
ranges are recogflized. It the second expression in a range is “- I”, it is 1~reated as being
It-to largest address in the space referenced by the I scsi oxprcssiofl. If the second
expression In a range is of the form ‘. erpvnaaion”, it is treated as if it wore “(lower
brnsnd) •

lists of expressions or ranges
A list of expressions consists of at least one expression, followed, optionally, by any

number of occurrences of a comma followed by an expression. A list of
expression-ranges has the corresponding structure of at least one range, followed,
op’ionally, by any number of occurrences of a comma followed by a range. An example of
a list of ranges is

- 0:10,20,30:50
Nelo that the second element of the list (20) is an example of a range with a defautted
ur~~r-r bound.

SPACES

Addressable locations in a target system are organized into constructs called spaces.
A space consists of a set of addressable locations that is closed LInder a successor
function and its inverse (a predecessor function). For example, main memory constitutes a
space, typically star ting at location zero and continuing through an arbitrary number of
locations. ihe successor lo the last element of a space is the first element in that space;
and the predecessor of the first element is the last one. In some cases , machine locations
are grouped ~nlo a space for convenience, even when the concept of a successor function
for elements of that space has no correspondence in the actuat target system. Such a
space might consist of testable Indicators. The machine symbols are identified in the
tool- specific user guide.

for purposes of the debugger, every addressable location in a target system Is
represented by a pair: (apace, element) . When a range is spcci(icd, two such pairs
(o,h)(r,d) arc implied. To avoid ambiguities where a and e differ , the
debugger ignores r and treats such a range as a sequence of locations, all in space a,
starling with element Si and continuing through element d.

SYNTACTIC UNITS
( The basic syntactic units the debugger deals with are

1. L iterals
2. symbols
3. Punctuation



P1~lM System: User Reference Manual Page 16
t)cbuggcr

Litera ls

Llterals are character constants, numer ic const an ts, or single haractcrs that have
some encoded meaning (which may be context-dependent). A character constant is
supplied to the debugger as a machine-specific character-constant prefix string followed
by a string of data characters of arbitrary length, followed by a machine-specific
character-cons tant suffix string of the general form:

gin? ! f r -a iring clmnrecior-d nsa-airing suffix-a ir ing.

If the first character of the suffix string is to be Included in the data string, ii must appear
doubled. Character constants are converted to binary (right justified) and are truncated
to fit the element in question. As the form of a character constant is machine-specific , it
is described in the tool-specific user guide.

A numeric constant is supplied to the debugger as a machine-specific (and optional)
radix-pref ix string followed by a string of digit characters followed by a machine-specific
(.,nd optional) radix-suffix sIring of the general form:

g rnjia - airing dig it-airing a, iff ir-si r ing
Ihie prefix and suffix strings establish the radix within which the digit characters are
evaluated. 1 he digit characters for any radix r are the first r characters of the set

Coded characters have independent meaning only within certain contexts: at
appropriate points in the dialogue they designate a particular debugger command, a mode,
a breakpoint type, etc.

Symbols
There are five types of symbols: machine symbols that are assigned to hardware

elements in the target machine, predefined opcodes f or symbolic instructions,
uscr-supplied names of formats , operators for expressions, and user symbols that can be
a~.signed to arbitrary memory locations. Machine symbols arc given In the tool-specific
user guide; other symbols arc assumed to be familiar to the u ser.

User symbols arc either loaded from a file using the exec Symbols command or
individually defined using the debugger new-symbol command. The symbols Include both
global symbols and program-local symbols that belong to specific named programs. 1 he
global symbols are available .1 att times; the program-local ones only when theirs is the
open local symbol tablo.

Punctuat ion

Punctuation marks are characters with a predefined syntactic (and usually semantic)
rotc. The punctuation characters are the separators (ro,nmn and, in format definitions,
aguu,n), the terminators (return, ean,pe, and, in replacement operators, b.’u k-a lnsh and
sip- arrow), and a semantics -free delimiter (apace). 1~srnpe is ut.cd as a terminator
instead of return lo invoke a subcommand or an additional feature of a command (e.g., in
Mode or Ilrcakpoint commands described below).



H

PItIM System: User Reference Manual Page 17
Debugger

EEROR DETECTION AND EDITINC

Debugger commands are examined for errors as they are entered, character by
character. As soon as an error has been detected, a bell (beep) is echoed and further

L. input is rejected, except for the generic editing characters back-apace, retype, backup.
ilr ’lnge, or abort.

COMMANDS

Debugger commands are all single characters; they can be organized into several
r.roups: debugger control, execution control, display, and storage. Each is listed below.
Ihuless olherwlse indicated, the command charac ter is the first character of the command
name.

Debugger control

Debugger Control commands provide for user control over several aspects of the
lu huavior of the debugger. T hey permit the user to execute commands indirectly or
conditionally, to return from the debugger to the PRIM exec , and to control the debugger’s
representation of data. lhc Debugger Control commands arc:

t I -~c. Calls a designated break-time program as if some breakpoint associated with that
program had just occurred. A program number must be designated that corresponds to an
exis ting break-time program. Program numbers are shown when the breakpoint data base
is displayed (see the break command)~, the program itself can be seen using the
program-edit command.

u /so program ?(nuah.r of an •sIstIng br.ak program)
ilkn-program 2~’

If the use command is itself in a break-time program, then a go command executed in the
called program causes termination of the calling program as well as of the called program.

If. Tests Iho supplied expression and, If il ls true, executes the following subcommand. A
true expression is one whose value is odd; relational operators yield a value of one when
true and zero when false. ihe tpsted expression must be terminated by an escape.

iii ?(oxpr e~~Ion
If JCSC 

~th~n~ ~~~~~ ~cr
eo~~eo u

ii. 2C~ < thon sa 
~~
. ocr

I

!~~h!r.!l~ Returns conlrol to lhe PRIM exec; confirmation is required.
Iftoturn Ito IXLC) rr

(



PRIM System: User Reference Manual Page 18
Debugger

~4ode. Interrogates default and currant modes and changes modes. It question after the
command character hi will elicit the default and current mode setting; another question wilt
list all mode settings and associated mode-code-characters. -

Ihfod. P
Curr.nt and (Default) mod. ..ttlngsi

Foodback Vorb3ss IV.rbos.)

Output Bits (Bit.)
iddrsss.s Symbolic (Symbo l ic)
L imo-format Dons. (Dans•)
Nad ix 8 (8)

Typ. 7 f or mors

IHod• P
F ondback s
C Cond o.

V Verbose

Dutputi

B Bits
F Formatt.d (format-nan .)

I Instruction
N Nume ric

I lsxt

Iddr.ss.s,

A 1Ibsoi~ t.
S S.gmboiic -

L in .-formalt

o Den,..

I . Ixpandod
R .,dlx ,

Ru Radix-bass n (1 ~ n c 37 decimal)a,
A list of mode sett ings is expected following the Mode command; if none is supplied, the
default settings are reestablished. If the list is terminated by a return, t he current modes
are  changed. If the list Is terminated by an escape, a temporary change is made that
applies only to the following subcommand, as in the following example.

sMod a In~ iruc t ion ~~~ ,ay,s Ol234C~
01234 , JUl11’ •~67
I

Modes are establIshed for feedback (verbose or concise); output (bits, formatted,
instruction, numeric, or text); addresses (absolute or symbolic); output tine format (dense
or expanded) and output radix (any base from 2 through 36).

The feedback modes control how debugger commands are reflected to the user:
ro,ueiac suppresses all “noise” feedback (such as command completion); ,,erbose enables
it. lhe output modes conlrol the general representation of data: bias treats a datum as an
unsigned magnitude; formatted Ireats it as a pattern of bits partitioned into contiguous
fields according to a designated format (see Format command); Instruction treats It as a
mac hine Instruction and disassembles It; numeric treats it as a signed value, if that Is
appropriate for the machine; and text treats It as a representation of a string of
characters. The address modes control whether numeric-mode values are to be converted
to symbols (if possible): absolut, suppresses the symbol look-up; symbolic enables It. 1 he
line-format modes control the densIty of displays: dense suppresses most

- . 
— - - r _  - - -• —



PRIM System: User Reference Manual Page 19
Debugger

debugger-generated line-feeds so as to show more information per tine, expanded enables
them.

WI-ten formatted output is selected, the name of the output format must be specified,
as in:

SUed. I’ormalt.d ~~, 
er~

Output radix sets the number base for the representation of numeric data (note that
numeric Input data self-Identify the number base). For example,

SAlodo RadIx 16 cr

causes current output radix to become hexadecimal.

Format. Permits the user to name and define a format as a list of fields, each of which is
a designated number of bits wide. The field widths are supplied as a list of numeric
constants (separated by commas or spaces).

Il”ormaj ,.‘gczc 2 4 6 ge.
S

•Mod. For matted ~~ 
ese ~~~~~ ocr

00, 10,00,80,00 I
If the format command is terminated without having defined a format, all defined formats
are displayed, as in

SI’ormat c.

11 2,4 , 0 , 8 I

~.Qmmcnt. lollowing an initial semicolon, Ignores all subsequent inputs up to and Including
a line terminator.

I; ill IS IS fl Gohi hi EN?’-- IT DOES NOT GET INTERI ’RE7’ED.er
S

New -symbol. Adds a list of new user symbols to the (possibly empty) global symbol
table. Each new symbol in the list is supplied as a name followed by a apace or an escape
followed by an expression giYing Its location.

INc w—o qma oi ii PU now—sqmboi) <(SC~ (.xpi ession ))— IIsl)
Sikw-sqml,o Is l ’ff, Ciir ~ at ~ 07000O~S? qp. I ’/JT (:Ii ,P/l’I’ CiI - l,PIJTCII • DCI

PATCH, 00 067777 , 00 PATCII4II, II I

Kill-symbol. Removes a list of user symbols from the open local or global symbol table.
iI¼’iil— sqmb ois ?( iist —o I—ias .r-sy.bois )
SI iil .sqmhois l’/)’ICii~ril ’yp. tW, 7777:42rr
067777, lii $70000, SO $70011, $0 S

Qpen-symbol-t able. Opens a local (program-specifIc) symbol table if one is specified; the( currently open local symbol table, if any, Is closed in any case. After this command is
executed, the available symbols Include the global symbols plus the local symbols of the
specified program; if no program Is specified, only the global symbols are available.

IOpoii-proqrauiu- it uuboi e P(pr .grau,-iua.s ) or mat (Ciø.. the spun iauai symbo l tabi.~
SOp.n-proqram-symbo is cr
I



l’l4IM System: User Reference Manual Page 20
1)ebugger

Execution Control
Ixecution control commands provide for user control over execution of the target

program. They permit the user to continue execution, transfer to a designated location,
ccl and clear breakpoints or edit break-time programs, and single-step the target program.
1 he execution control commands are

(
~o. Passes control to the target machine In its current state. If an argument is supplied,

its value is first stored Into the program counter. ihe argument can be an arbitrary
expression, so long as it evaluates to a legal memory address.

iCe (to) ?(oxpr.siilon) or .mpty
S6~ (to) 0l0OO~

!~re~~. Displays or sets breakpoints in the target machine. The two classes of
breakpoints are known as event breakpoints and reference breakpoints. There is a fixed
set of event breakpoints defined for any given target machine; each describes a type of
(‘vent whose occurrence causes the emulator to break if the corresponding event
breakpoint is set. lhe sot of event breakpoints always includes (1) every
iir lruction-cxecution (single step), (2) every branch of control, arid (3) every memory
write; other events arc defined for each machine as appropriate. Reference breakpoints
c.’use the emulator to break when a specific type (read, write , and/or execute) of
reference to a spccif it location occurs. Reference brcakpoin~s m a y  always be set on
nu mory locations; other spaces in which reference breakpoints may be set are detailed in
t h e  tool-specific user guide. Any number of reference breakpoints may be set at any
lime.

The break command followed immediately by a return causes all existing breakpoints
(i.e., those in the breakpoint data base) to be displayed; if a break-time program is
w socialed with a breakpoint , its number is also displayed. Otherwise , a list of either
events or ranges (reference locations) for the setting of breakpoints is supplied. If a list
of ranges has been entered and terminated with an e. rnpe , then a list of read, write , or
execute reference—break conditions is specified next (as permittcd at tho~,e locations); the
default is all three types. Whenever a breakpoint is set for an event or a location, any
earlier breakpoint for that same event or location is superseded.

If the list of events or break types is terminatccl by an csengu’, as in Ihe second
example below, a break-time “program” may be supplied to be executed by the debugger
when the break is encountered. ihe following commands are permitted within such a
brcak program: Clear, Comment, Debreak , Evaluate, Go, If , Jump-history, Loca te, Mode,
Open, Set , Type, and Use. Replacement within a locate or type command is not permitted
in a break-time program. Any number of commands can be included in a break program;
the program is terminated by an empty command (terminator only).

—-------- — -- - a — - ‘ - - - - -



PRIM System: User Reference Manual Page 21
Debugger

SUreak (at) P (ov ont—I is t ) or ((.xpr.ssIsn-ranga)—I it )  or cRL 1URN~
c? for list of •venli).

SBr.sk (at ) 0123:0456, 0712’~-’~ (after do ing) cr

cR ,W,X .  S

IIfr.air (at) 0 l000~’~ (øft s r do ing ) Xecsii. eac
SvI~,. ocr
liCe ~~

~Program numi *r Is tJh . S

IIIr.ak (at )  7 ’ICI (~- ’
I
Sllrsaic (at ) cr

1123-0456 .cR ,$I,X 0712 <R,W,K> 5101$ X>113 TICK svsnt I

During program execution, if an event break is detected, or if a refe rence break
(read, write, or execute) is detected at a location for which the correspond ing break type
has been specif ied, then execution is terminated before beginning the next target machine
cycle and control passes to the debugger to process the break. It a break-time program
has been supplied for that break event or location, the program’s commands are executed
in order by the debugger until either a go command or the end of the program is
encountered. If several breaks occur on the same cycle, the program arsociated with each
of them is executed; the order of break-program execution corresponds to the order in
which the breaks are reported by the emulator. If every break causes execution of a Go
command, then the target program is automatically resumed, provided there is no
ambiguity as to where execution is to resume. Otherwise (i.e., if any break had no
program or failed to execute a Go command), a message descr ibing each of the breaks is
displayed and the normal command level of the debugger is entered.

Debreak. Clears event breakpoints or reference breakpoints at locations in the target
machine. The, default is to clear all breakpoints. Examples of debreak commands are

Il)ebrsal (from) 02.14:4 4~r
IIIr.~P (at ) er

0J73- 0233 ~R,U,X 0241-0456 ~R,$I,X~ 0712 R,M,X~ $1000 (X). W

TICK <event~ S

tI)obr aak (from ) ese all 1ronlirm) 1~
IIIr.air (at ) rr

S

Program-edit. Displays a designated break-time program or permits it to be edited. A -

program number must be dcsi~natcd that corresponds to an existing break-time program.
Program numbers are shown when the breakpoint data base is displayed (see the break
command). If the command is terminated by a return , (he entire program is displayed; It
by an earapø, the program is displayed line by line for editing.

(



PRIM System: User Referenc e Manual Page 22
Debugger

SIf, oaic (a t) S’I’bPflW
Ill ijee ~oI f l C(;~r
liCe (to ) rr

55er
<Program number is (2), Sllreak (at) er

0173. 0733 cR ,U ,X> 074 1-0456 c R U X ,  0712 cR,U,X 01000 <X.l1)
lICK <ev.nt, SUP <ivent ,12)

SProgram-o d f t P(program-numb.r (‘LSC>—to-.dlt or RLIURN ,-to-vieu)
Sl’rogram- od it ~rr

T ype cOLIJCC
Go (to)

I

When editing a line of a break-time program, the user can specify that the next (\) or
prior (0 line he displayed or that a replacement (R) of the current tine or an insertion (I)
in front of the current line be made. Editing is terminated by an empty editing
specification. Replacement or insertion is identical to the specification of a break-time
program within the break command in that a subcommand mode is entered where
successive break-time commands can be entered until an empty command is supplied; then
editing continues with the next line of the program. An extra (dummy) last line is added
when editing a program so that new commands can be inserted at the end; the dummy line
is discarded when the command is terminated.

Il’rocjr am.-odit 2~ae

lqpa rOIDCC s?(t pr ior,) or (~ cnsit ) or ((I<nsort ) or (R<epiac .~)
(co mmands ))

T ype m m c c  t I~epIac.
S#A lod . Instr uc t ion C*(~ SIIly~,s tr,OI,I)CCcr

~~ ~ ,rr

SI’roqram -odi ~ 2~r
linde Instru ction lSSTyp. eOLOCC -

Go (to) ’

S

~inglc-step. lransfers control to the target program through the program counter for
execution of one instruction. ihe single coded character line feed eff ects this command.

Display
ihe display commands permit the user to search or examine the contents of

designated locations (and, in two cases, opt iona lly perm it their rep lacement) or to evaluate
expressions. 1 he commands are:

lype. Displays location and contents of a list of expression-ranges , permitting the
contents of each location to be replaced If the list Is terminated by an ewnpe, as In the
following examp le.

Siq po ? ((ov pr esr eon.rang. .-ii s l o pt to na I-~ es cap .,-t o-modif u
SI yp . 0:2~~’ lOt so icr
ai~ • 2rr
0?, 00 • 3cr
S

ihe replacement value can actually be a list of expressions, the values of the expression

.
~~~ ‘— --— - —- -‘

~~
- - -— — — - - -—— .——--- —

PRIM System: User Reference Manual Page 23
Debugger

In the list going into successive locations starting with the one last displayed. If no new
value is supplied before the terminator, the existing value is not modified.

STyi,. 0:2r1t 00: 01 • ~eae 01* 02 • ~~ 02: 03 • gear
~

-

In Display-with-replacement only, the coded characters b~rk-abuI ’ and up-arrow can
also serve as terminators and perform special functions: hnek-alnah causes the next
location to be displayed for replacement and up-arrow causes the prior location to be
displayed for replacement; both of these terminator characters permit the user to step
beyond the limits of the ranges entered as arguments to the Type command.

II ype osorac eie, so • it si, so • 2\ stat 01 • 3\ sii~ so • I
010, 03 • 41 t Ilt 02 • .51 06, 00 . \ 07, 05. \ 010: 04
oi ls so • 6\ 012, 00 • ~~
I

ihe last location displayed by a type command becomes the “open” location, and the
location following the last one displayed or replaced becomes the “next” location (see the
next four commands).

Same. Redisplays the “open” location (5cc the lype command). ihe single coded
characte r “:“ effects this command. ihe commands Same, Prior, and Next are all shown in
the following example.

I: 02: 01 iT Ii , 02 i\ 0?, 01 I”, 53, $0 I

Prior. Displays the location at one less than the “open” location (see the 1 ype command).
The single coded character up-arro ws effects this command. See the examp les under 1 ype,
Same, and Equals.

Next. Displays the “next” location (See the Type command; the mode in which the open
location was last displayed determined how far It was advanced to the “next” locations.)
The single coded character bock-slosh effects this command. See the examples under
lype, Same, and Lquals.

Equals. Displays the “open” location (see the lype command) as bits or as a number if
the current output mode Is already bits. The single coded character “

~~
“ effects this

command. In the following example format b2 has been declared consisting of four
half-word fields.

i1lo~f. Forma t ted b2~’~
I: 010* 00 , 01,02 ,03 I- 010* 01 i\ 011, 02,03 ,04 ,05 s\ O Ils 06,07,00,01
51 012* 04 ,05 ,06 ,07

Locate. Finds cells in a list of expression-ranges that contain (or do not contain) a
specified value, examining only those bits designated by an optional mask, and displays
their locations and contents, permitting each displayed value to be replaced if the list is
terminated by an earopo. ihe comparison value and mask arc expressions terminated by
an d rape; the comparison value defaults to “NON 0” and the mask defaults to all l’s. ihe
scorch is performed over a list of ranges, as for the Type command.

SI.ncate ?((rt~prtr~sion) or NON (oxpr.*slon)) cmatch vfil ue d~’*ai.l tt’ to NON S.

(Sl ncal. N()N0r5E~ (s4lth m isk) ?(optional—sxpress m on) <mask vCiuO.
SLocate NON 0 (with mask) •ae<,. t z•ro (in) P((.icpr.t.sion.ranqe)—lmsI)
optional - .I SC. to-modif y
It oc~ t. NON S (with mask) <ne t zero. (In) 0:020”

00* II 01, 02 02* 03 - 07. IS 510. 04 011, 06 012* 07

- -

- _ _ __ _ _ —- - --- - - t - - - -- ----- -:

PRIM System: Lisor Reference Manual Page 24
Debugger

It is important that the comparIson value, the mask, arid the data be properly aligned. For
example,

II.ocate O7OflSC (with mask) 070~ C (in) 0:SICf
displays all cello from 0 through 31 whose second octal digit from the right contains all l’s.

Whon the command Is terminated by an escape the debugger stops after each
d isplay to permit replacement, as for the Type command.

II.ocat. ~~~~~~~~~~~~~~~~ (with mask) 07°’~ (in) ~~~~~~ •o~ 01 •

Si?, •7~~~~~
I

Jiirnp-history~. Displays the most recent target-program jumps in ti-se order they occurred.
1 he number of such lumps to display (taken modulo the default value) may be supplied.

h ump -history ?((express lon) or (empty .~i.))
IJuiup-hi~ tory ~~
Oi 005—-0200(2 (Ieee) 0300——Sill I

Ivaluatc. Prints the value of a single expression. It has no effect on the open location
and does not permit replacement.

INow-symi,ois P1ITCII~”’ <at . 070000 ”
Il vaiuat . P/I’lClId~ • 570001 S

Storage

Storage commands change the contents of designated locations without displaying
tI-tern and without changing the “open” location. ike storage commands are

çle~~. Clears the contents of a list of expression-ranges to all zero bits. Clearing an
event for which a breakpoint has been established causes the event to be deactivated; it
may be reactivated with a Set command. This may be of benefit when a break-time
program has been associated with the event as the breakpoint data-base enfry for that
event is not affected.

$Ctoar o.var i

set. Sc ts the contents of a list of expression-ranges to the value of an expression or (on
default) to all one-bits. If the list is terminated by an cacope, a single replacement
-xprcssion Is accepted; If it Is terminated by a return, the default value of all l’s is used.

him rcplaccmont expression is lruncated to fit into the designated loc ations, if necessary.
Setling an event for which a breakpoint has not been established (i.e., for which there is
ito entry in the breakpoint data base) causes the event to be activated for a single
occurrence of that event (with no break program associated), after which the event is
automatically cleared.

SS.t ?((e.tpr .ssmsn—ranq.)—iis l
,s.t 0.t~

r

IS.t OldIe •
S

PRIM System: User Reference Manual Page 25

TARGET EXECUTION STATE

1 arget execution is initiated, or resumed, through explicit commands (exec Go,
debugger Go or Single-step). Execution proceeds until a terminating event occurs, causing
control to return to the appropriate PRIM command level. When execution terminates, the
entire emulated context -- Including clocks and outstanding 10 operations -. is cleanly
froien until the next time execution Is resumed. Except for explicit modifications to the
context made by the user at the command level, the termination and subsequent
resumption of execution Is transparent to the target machine. ike terminating events are

ike target machine halts normally or Is interrupted (by the emulator) due to the
occurrence of some anomaly condition. A message to that effect is generated. 1 he
anomalies being monitored are listed ih the tool-specific user guide.

ike user enters an abort. ihe abor t character is echoed and, alter execution is
stopped, a status message is output indicating the point of interruption.

ike emulator detects the occurrence of a break condition established by the user via
the debugger breakpoint command. The establishment of breakpoints and the
subsequent interruption of execution at the time of their occurrence is the primary
program debugging tool in PRIM.

An 10 error occurs. A message detailing the particular device involved and the nature
of the error is output. 10 errors always return control to the exec state; the error
messages and their meanings are listed at the end of this section.

When one of these conditions occurs, it Is logged and execution continues until the end of
the current cycle of the target emujator. It Is therefore possible for multiple conditions to
rccult in a single stop. When this ~s the c~so, the action and message appropriate to each
of the conditions is produced.

When a breakpoint is detected, the debug program, if any, associated with eac h
l’rc~ikpoint Is executed by the debugger before control returns to the command level.
Should some break program terminate without a Go -- or should there be some break with
no break program -- a message describing the break is output and the command level is
entered. Otherwise, execution is automatically resumed; the user receives no indication
thit a breakpoint occurred unless the break program itself produced output.

TARGET I/O

ihe target machine that runs in PRIM consists of a processor (CPU) in some
particular configuration built by the user to rcsemblc the actual configuration required by
his programs. A configuration Is built - - before execution Is begun - - by Installing
peripheral devices and establishing values for various machine options (see the oxec Install
and Set commands). After an emulated device has been instalk,d, and before 10 operations
can proceed on t hat device, a (1LNEX) file or assignable device must be associated with
t i-tat emulated device (see the exec Mount command). Subsequent K) operations addressed
to that device arc then performed on the mounted file.

A mounted file may contain either direct device data (binary) or ASCII text; in the
lalter case, charac ters are translated between ASCII and the actual device character set as

F’UIM System: User Reference Manual Page 26
1 arget Execution

they are processed. (If the device charpcter set does not include lower case, input lower
case letters are converted to upper case before translation.) When the target device is a
record-oriented device (e.g., card reader or punch) and the file is ASCII, then each record
operation is performed on a line of the ASCII text file, including truncation and/or blank
padding on input.

The mount option 711 IS-7XRhIIN~1l. associates the user terminal (the one being
used to communicate with PRIM) with a given devIce. When the terminal has been
mounted on some device, then Input from the terminal is switched between PRIM and the
target machine every time execution Is resumed and terminated. ike intervention
charac ters, however, retain their intervention meanings. lo allow the I LIII ASCII character
se t to bo input to the target device from the terminal, there is a roiitrol-sI.ij i escape
character defined during target execution. 1~ help distinguish PRIM output from target
output directed to 7IIIS- TbRUINIJL, all PRIM-generated output is prefixed with the
herald “--> “ at the beginning of a new line. ihis applies in particular to both stopping
messages and typeout resulting from break-time debug~-’er programs.

I/O ERROR MESSAGES

Various I/O errors may occur. When any one occurs, execution - - - including the
error-generating operation -- is suspended, and control returns to the F’UIM cxec. When
execution Is next resumed, the suspended operation is retried unless it has been explicitly
canceled by the user using the exec Cancel command.

“F ile not mounted.”
ihe indicated device has no file mounted. If a file is mounted before execution is next
resumed, the operation will be performed then. (An installed device to which no tO is
directed nccd not have a mounted file in order to run.) lhc operation may instead be
cance led.

ihis message is also produced when an output operation occurs on a device which has
been mounted for Input only, and vice versa. Again, a second fi le must be mounted on
the appropriate side of the device In order to proceed normally with the program.

“F ile not Open.”
ike indicated device has an inaccessible file mounted on it. ihe device must either be
reassigned or unmounted and then mounted. lhe situation is similar to the case
above, excep t for the possibility of reassigning.

“Improper tape format detected.”
u NIX filcs which are mounted on target magnelic tape devices are encoded in a
unique internal format that requires such files to be used only (or PRIM magnetic tape
devices. lix’ mounted file is inconsistent with that formal. ilie device must be
unmounted and replaced with a proper tape file.

“Device not installed.”
A device that is referenced by the program is not Installed. Should the missing c$~vice
be required, there is no way to continue this session, since device Installation is no
longer allowed. Should the reference be a mistake, execution may be continued down
a different path (the operation will be automatically canceled when execution resumes).

(‘RIM System: U~cr Reference Manual (‘age 27
larget Execution

(
“ASCII input character not recogniied - - ignored.”

llie last character read from the ASCII input file on the designated device was not
translatable intO the characte r set of the device. ihe character ha~ been skipped
over; resuming execution causes the read operation to continue with the next
character in the file. ihe position of the offending character in the file may be
delermined via the exec Filesta tus command, specif ying the incIi~atecI device.

Any other error indicates a bug either in the emulator or in PRIM. Such errors should be
reported.

-“ - - ~~~ - - - —~~~~~~-—-- -- - — — - I -~~~- - - —~~~

