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FOREWORD

This work was supported by the United States Air Force
under Grant AFOSR-76-3005 and was undertaken at the
University of Salford during the period 1 June 1976-
31 May 1979. The major technical assistance was pro-

vided by the research associate Dr D Daintith but important

conceptual contributions were made by Dr A Bradshaw and
Professor J J D'Azzo. This final report was expertly
typed and assembled by Mrs D Millward.
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1.

INTRODUCTION

There has long bggn a crucial need for the development of
techniques sufficiently powerful for the routine computer-
aided design of on-board digital controllers for airborne
systems. In order to fulfil this need, however, it was

essential that the controllability, observability, timef

optimality, and eigenstructure-assignability properties of
multivariable discrete-time dynamical systems be clarified
by fundamental system-theoretic research since these pro-
perties cannot be adequately characterised by classical z-

transform techniques.

This report outlines both the fundamental system-theoretic
research and the parallel development of design techniques
which have lead to the production of the comprehensive

software package EIGENFORTRAC(I). The use of EIGENFORTRAC

greatly facilitates the design of high-performance multi-

variable digital control systems for a wide range of flight-

control applications.

SYSTEM-THEORETIC RESEARCH

2.1 State-Feedback Regulators and Observers

The results obtained by Porter(z) (see Appendix 1) completely

characterise the entire range of possible finite settling-

time state-feedback regulators and observers by specifying




the pormissible(3) Smith canonical forms(‘) of the closed-

loop plant matrices of discrete-time multivariable systems.
The design of such state-feedback regulators and observers
can be readily effected by the method of.entire eigenstructure

aslignmont(s)(s)

and, in particular, by the algorithms
developed by Porter and D'Azzo(7)(8)(9) (see Appendices 2,
3, and 4). These algorithms readily yield the vectors which
are required for the simultaneous assignment of Jordan
canonical forms, eigenvectors, and generalised eigenvectors

to the plant matrices of closed-loop multivariable linear

systems.

2.2 Qutput-Feedback Regulators

In most practical cases it is, of course, impossible to
implement state-feedback regulators since the state of

the plant is inaccessible and only the plant output is
available for control purposes. However, the results obtained
by Porter and Bradshaw(IO)(ll) (see Appéndices 5 and 6)
charactarise the closed-loop eigenstructure assignable by
output-feedback regulators in terms of two families of well-
defined subspaces. In the case of self-conjugate distinct
eigenvalue spectra, for example, the eigenvectors and
reciprocal eigenvectors of the closed-loop plant matrix must
lie in two such families of subspaces and simultaneously
satisfy appropriate orthogonality conditions. In contrast,
the closed-loop eigenstructure assignable by state feedback(s)

is constrained only by the requirement that the eigenvectors




e

of the closed-loop plant matrix must lie in just one family

of well-defined subspaces.

2.3 Dynamic Compensators

The severe constraints on the closed-loop eigenstructure
assignable by output feedback imply that it is frequently
impossible to achieve satisfactory closed-loop behaviour
by means of static output-feedback regulators, and that it

is consequently necessary to introduce dynamic compensators(s)(lz).

However, the results obtained by Porter and Bradshaw(l3)(l4)
(see Appendices 7 and 8) indicate that the design of such
dynamic compensators can be effected by applying the method

of entire eigenstructure assignment to appropriately augmented(s)
systems. In this way, the use of observers can be avoided in
the design of error-actuated multivariable tracking systems
even when the special conditions previously established by
Bradshaw and Porter(ls) (see Appendix 9) for the existence

of such error-actuated tracking systems are violated.

Indeed, in view of these fundamental new insights into the
structure of linear multivariable systems, the design of
dynamic compensators is in general reduced to the selection

of pairwise-orthogonal eigenvectors and reciprocal eigenvectors
for two families of well-defined subspaces which are para-
metrised by associated self-conjugate eigenvalue spectra.

This selection can be effected by the use of a powerful new

(16) (17)

algorithm (see Appendices 10 and 1l) which requires




the performance of restricted elementary row and column
operations on matrices formed from the spanning vectors of
these subspaces. The principal computational attraction of
this algorithm is that no operations with polynomial matrices
are involved, so that dynamic compensators for large-scale

systems can be readily designed.

SOFTWARE PACKAGE DEVELOPMENT

3.1 Capability of EIGENFORTRAC Software

The EIGENFORTRAC software package is essentially an up-

dated version of FORTRAC(IB) based solely on the unifying
method of entire eigenstructure assignment and, in particular,
on the powerful algorithm for the design of dynamic com-

pensators(ls)(l7).

Synthesis techniques for state-feedback
regulators, observers, output-feedback regulators, and
dynamic compensators are embodied in EIGENFORTRAC. These
techniques have been applied to the design of controllers

for a variety of aircraft in a number of flight modes. Thus,
for example, digital flight control systems have been
designed by D'Azzo and Porter(lg) for the F-4 fighter air-
craft and by D'Azzo and Kennedy(zo) for the C-141 transport

ailrcraft.

3.2 Configuration of EIGENFORTRAC Software

The EIGENFORTRAC program configuration has been described
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by Porter, Bradshaw, and Daintith(l), together with a
detailed description of all the EIGENFORTRAC subroutines.
Detailed listings of the computer output for a simple
example illustrating the design of discrete-time tracking
systems incorporating error-actuated dynamic compensators

have also been provided(l).

3.3 Operation of EIGENFORTRAC Software

The basic requirements of EIGENFORTRAC are the plant, input,
and output matrices (A,B,C) of the uncontrolled system
described in the continuous-time domain. The class of
controller required is then specified (eg, state-feedback
regulator, output-feedback requlator, error-actuated dynamic
compensator) together with the sampling interval, T. The
plant, input, and output matrices (A(T) ,B(T),C) of the
sampled uncontrolled system are then computed, and appro-
priate augmentation(s) is automatically introduced. The
closed-loop eigenvector and reciprocal eigenvector subspaces
are then computed, and pairwise-orthogonal sets of closed-
loop eigenvectors and reciprocal eigenvectors are then
selected from these subspaces. Finally, these sets of
eigenvectors and reciprocal eigenvectors are used in the
computation of the compensator matrices. The performance of
the resulting controller is checked by performing a discrete-
time simulation which is followed by a continuous-time
simulation using a Kutta-Merson routine in the case of

promising designs.

ooy g ey

R I
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CONCLUSIONS

Fundamental new insights into the structure of linear multi-
variable systems have been obtained by developing a unified
theory of entire eigenstructure assignment. These system-
theoretic results have been implemented in the comprehensive
software package EIGENFORTRAC(I) which is currently available
for the routine computer-aided design of on-board digital

controllers for a wide range of flight-control applications.
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ABSTRACT

It is shown that the synthesis of closed-loop
linear multivariable discrete-time systems can be
directly effected by performing equivalence transfor-
mations on appropriate polynomial matrices. These poly-
nomial matrices are the Smith canonical forms of the
closed-loop characteristic matrices of such systems sub-
ject to the constraints imposed by the fundamental

theorem of linear state-variable feedback.
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1. INTRODUCTION

In this paper it is shown that the synthesis of
closed-loop linear multivariable discrete-time systems

governed by state and feedback equations of the respective

forms
x(k+l) = Ax(k) + Bu(k) (la)
and
u(k) = Gx(k) | (1b)

where x(k)€ w, w(k)E& R™, and (A,B) is a reachable pair
can be directly effected by performing ecquivalence trans-
formations on appropriate polyncmial matrices. This
synthesis procedure consists essentially in the specifica-

tion of the Smith canonical form(l)

S(A) of the closed-
loop characteristic matrix (A{n-é-gg) subject to the
constraints on §(A) imposed by the fundamental theorem of

linear state-variable feedback(z)(3).

2, SYNTHESIS PROCEDURE

Thus, if
§(l) = diag(l.l......wq(k)'wq_l(k)......wz(A).¢l(X))
(2) !

where the wi(A) (i=1,2,....,Q) are any monic polynomials

in R[A] such that




-13 -
.'bi-bl(” l‘i‘i(,\) (1i<g=1<m=1) (3)
and
q
L deg‘bi('\) - n ¢ (4)

i=]

then there exists a matrix 965 R™® so that S(A) is the

; Smith canonical form of (Afn-é-gg) vrovided that

P ®
I degy,(\) > T & (1<p2q) (5)
i=1 i=1

where K12Kp2 «evo2K are the ordered Kronecker invariants(z)

of the pair (A,B). It is accordingly evident that closed-
loop discrete-time systems governed by state and feedback
equations of the form (1) can be synthesised by the

following procedure:

(i) Determine the Kronecker invariants Ki(i-1,2,....,m)

of the pair (A,B);

(ii) Prescribe an admissible matrix §(k) on the

basis of the values of the xi(i-l,z,.....m);

(i11) Transform S()) by elementary row and column
operations into an equivalent polynomial matrix

of the form

L) = AL -A-D

o
i

(6)

(iv) Determine the set of linear simultaneous

equations satisfied by the elements of the




feedback matrix G by inspaction of I()\);

(v) Solve the set of linear simultaneous eguations

for the elements of the feedback matrix G.

3. [LLUSTRATIVE SXAMPLE

This procedure can be conveniently illustrated by
synthesising a closed-locp system governed by the state

and feedback equations

2 ST A 3 2
§(k+1) = ot T B o §(k) + |1 , Ol u(k) (7a)
-2!-100 0'0

and

S11 ¢ 912 ¢ 913
g(k) = §§(k) = §(k) (7b)
S21 ' 922 ¢ 923

so that the eigenvalues of the closed-loop plant matrix
are all equal to zero. In this case it is evident from

equations (7) that
[A-91;7295) ¢ =1-9),-29,, » -2-9; 29,

E(A) - 2'911 ’ A-3"'912 ] —gl3 (8)

£ < , 1 ' A

and that the associated Kronecker invariants are ¥

-2'

2 §
rz-l. The conditions (3), (4), and (5) therefore indicate

that




Sas
$,(0) = atag(l, (9)
and
S,00) = aiag(l,1,)3) (10)

are the only admissible forms of the Smith cancnical form
S(1) of the characteristic matrix of the closed-loop system

governed by cquations (7).

In the case of Sl(k) it is readily found that

O T 0 20 8Y8F 1%
X,‘?.-l O,X,O l.0.0

s QO ¢+ .0 o, 0, Az 0+0,1

= o, ,0 - El(\) (11)

sO that comparison of equations (8) and (ll) indicates

that the corresponding feedback matrix in equation (7b)
is

6, = . (12)

Similarly, in the case of §2(A), it is readily found
that




ST

- 16 =

FsoL a0, .8 X sad 5
=3 5% Xf B, 1, 01139 1,0
a2l W82 2 Y 0,0

- 0P SiFe

so that comparison of equations (8) and (13) indicates

that the corresponding feedback matrix in equation (7b)

is

G, = . (14)
-1 ’ 1l ] ‘5/2

It is clear that, as desired, the characteristic polynomial
of the closed-loop plant matrix is

c(a) = 3 (15)

in both cases but that the minimum polynomials associated

with the feedback matrices §1 and §2 are respectively

2
ml(A) = A (16)

3
mz(k) = A . (17)

4, ConcLusION

This procedure for the synthesis of linear multivariable

discrete~-time fcedback systems constitutes a ceneralised

£, (13) .

o ypu’-’llj
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eigenvalue-assignment procedure in that both the cyeclic
structure and the eigenvalues of the closed-lcop plant
matrices are synthesised. Morecover, the fact that the
synthesis of such systems is directly effected by performing
equivalence transformations on S()) ensures that only those
cyclic structures which are cenformable with the constraints
imposed by the fundamental theorem of linear state-variable
feedback are considered. In particular, ths synthesis
prccedure facilitates the assignment of both closed-loop
characteristic polynoqials and admissible closed-loop
minimum polynomials. This facility is particularly important
in the case of discrete-time systems since it obviously
provides a basis for the design of time-coptiral linear

multivariable control systems(4).

It is evident, however,
that the generalised eigenvalue-assignment procedure is
equally applicable to the synthesis of linear multivariable

continuous-time feedback systems.
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ABSTRACT

The algorithm for the computation of a basis for

ker [g-xogn » B] presented in this paper greatly facilitates

the synthesis of state-feedback regulators by entire eigen-

structure assignment. It is ideally suited for digital
computer implementation and can be readily dualised for use
in the synthesis of full-order observers by entire eigen-

structure assignment.




1. INTRODUCTION

In view of the recent results obtained by Kimura(l)

(2)

and Moore » it is evident that an efficient algorithm for

the corputation of a basis for

ker S(\)) = ker [a-A I , B] (1)

-~

where AOGE ¢ and Eg-kogn ; Bl E cRX(nHm) 4o egsential for

the synthesis by entire eigenstructure assignment of state-
feedback regulators for multivariable linear systems governed
by state, output, and control-law equations of the respective

forms

x(t) Ax(t) + Bu(f)

y (£) cx(t)

u(t) Kx(t)

Indeed, the real state-feedback matrix(l)(z’

iyl T e AR SRR Ty

simultaneously assigns the self-conjugate distinct eigen-~
value spectrum'{xl.kz,...,xn} and the corresponding'eigen-
vector set'{gl,xz,...,gn}_to the closed-loop plant matrix
(A+BK) € R™*T just in case

[(x{ + 0{]'€ ker s(1)) (i=1,2,...,n)




2, ALGORITHM

The following algorithm provides an efficient means

for the computation of a basis for ker [Q-Aozn » Bla

(i) Form the matrix

a A=A I , B
S(,) = [“ i “] (7
§n+m

where A\ & C ;

(11) Perform elementary column operations on §(A°) until

A § ’ 0 ~
8la,) - [:11 -*j = S0\ (8)
=2l ' %2

where éllEE C"*F, rank gll = r = rank [Q-kozn . B],
- (n+m) xx - (n+m) x (n+m=r)

The required basis vectors for ker [é-kosn +» B] are then
given by the (n+m-r) columns of §22. where obviously r = n
in case ko is not an input-decoupling zero of the system.

This follows from the fact that equations (7) and (8) imply
that

SMg) = SOYE « 80\ [E, , By

(9)

[L‘é-kosn + BIEy o [A-AT, 91132]

By e Ey
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where EGE c(n+m)x(n+m) is a product of elementary matrices,

rank E; = r, rank E, =n +m - r, [&-xozn A §]§1 =8,

[a-2o2, + BIE; = ¢/ By = §;). ana By = §,,.

3. ILLUSTRATIVE EXAMPLE

This algorithm can be conveniently illustrated by
synthesising a state-feedback regulator for a multivariable

linear system characterised by the matrices

-1, o, O
é- 0O , =2, 0 ' (10)
I . % =3l

X', ©

B = [o,1 : (11)

and

1, 2 ,0
C = ' (12)
= VN

which is such that

C(A+BK) = ({=1,=2,-3} = au}) (13)

~ o~

but such that the 'slow' mode corresponding to the eigen-
value Al = -1 is eliminated from the output. Hence, in

accordance with the algorithm, it is found that

N




S alplns e SR SN

ARS8 v A,

i s S 90 SR s, NNk e iV

and

§(-1)

§(-2)

§(-3)

1

&

¢

O = O O O o

~

o O

= O W ‘O » 0 O ©

Q © O O »

[

-~ 0O 0 O ©O

o

Qo » O 6O ©

-2‘,-

e, ©
o, O

1, O

1, =2
0., 1
0, O
., ©
0, 1

o, O
o, O
Ao @

0y 4
l, O
O s 3
> SR §
o, O

o, O
1, 0
1, 0

0.,

o,

o
o O » O

o & ©

' (14)

0O O + O N

O O O

' (15)

Q- OF B0

g © o

. (16)

O = O O

2
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In view_of the equivalences (14), (15), and (16) it therefore

follows from the algorithm that

(=21 2] ’
1 o
ker S§(-1) = span {|Of . (1 } ' (17)
o 0
L2 hll
i 1]
@) 5
ker §(-2) = span L1 3] + 131} p (18)
-3 o}
_0_ s_o..
{ ;
and
(107 o] |
1 0
ker $(-3) = span {|O} , |1 } . (19)
o (o}
\ = ol

It is evident from ker §(-l), ker §(-2), and ker §(—3) that
the closed-loop eigenvectors corresponding to the eigenvalue

spectrum {-1,-2,-3} = o(A+BK) can be assigned to the respective

~ o~~~

subspaces
' -2 2
I(-1) = span 1{ . |0 . (20)
o 1




.-

1 0
£(-2) = span Ol &+ 1) 5 (21)
1 1
anad
(o] 0
I(-3) = span Ll 1O (22)
0 1

subject only to the requirement that the resulting set of

eigenvectors be linearly independent. 1In case

[ ,0]* =« [-2,2,0,0,12]" , (23)

[} rw8]" = L,0,12,-1,0" , (24)
and

[35 ¢ 93] = [©,1,0,0,-2]" , (25)

it follows from equation (5) that
-2 ,1, 0"
O'-l'o 0,0,-
K = 1,0,1 -
% 1'0'-1 -l,-lpl
QO 4+ L 4 6

(26)

and therefore from equations (10), (11), and (26) that

(é"'g!j) = ‘l . -3 ’ 1 . (27)
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The eigenvalues have accordingly been unaltered by state
feedback, as required, but the corresponding eigenvectors

have become

-2 | o)
; ! .{X11X20X3} - 1{, |0} , |1 (28)
; u 0 1 0
' i where
X, = [2.,1,0'Ekerc" , (29)

o

as required. This elimination of the 'slow' mode correspond-

E . ing to the eigzsnvalue Al = -1 is possible because -1 is an

invariant zero and xl is a corresponding state zero-direction

of the system(3).

4, ConcrLusion

This algorithm for the computation of a basis for
ker [g-ko;n » B] greatly facilitates the synthesis of state-
feedback regulators by entiré eigenstructure assignment since
it is ideally suited to digital computer implementation. 1In
addition, it is evident that the same algorithm also greatly

facilitates the synthesis of full-order observers by entire

eigenstructure assignment since it can clearly be used for

the computation of a basis for ker [é'-lbIn ¢ 1.
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ABSTRACT

In this paper, results are presented which facilitate
the complete exploitation of state feedback in the assignment
of the entire closed-loop eigenstructure of multivariable
linear systems. These results include an algorithm for the
direct computation of the state-feedback matrix which assigns
prescribed Jordan canonical forms, eigenvectors, and generalised
eigenvectors to the plant matrices of closed-loop systems.
This algorithm is illustrated by assigning the entire closed-
loop eigenstructure of a third-order two-input discrete-time
system in such a way that the resulting closed-loop system

exhibits finite settling time behaviour.
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1. INTRODUCTION

It is well known that, except in the case of single-
input systems, specification of closed-loop eigenvalues does
not define a unique closed-loop system. This non-uniqueness
has, however, been only partially exploited in only a few
instances by algorithms which permit the specification of a
number of components of the closed-loop eigenvectors (Srinathkumar
and Rhoten'l975. Shah et al 1975) and by algorithms which avoid
large feedback gains (Porter and Crossley 1972, Lee 1975). The
results presented in this paper facilitate the complete exploit-
ation of state feedback in the assignment of the entire closed-
loop eigenstructure of multivariable linear systems. These
results include an algorithm for the direct computation of the
state-feedback matrix which assigns prescribed Jordan canonical
forms, eigenvectors, and generalised eigenvectors to the plant
matrices of closed~loop systems. The expression for this state-
feedback matrix assumes a simple form which is equivalent to
that obtained by Kimura (1975) in the context of eigenvalue
assignment by output feedback and by Modre (1976) in the context
of output regulation for the special case of distinct prescribed

eigenvalues .

2., THEORY

The sequences of equations

vo(Led)

~ i
[&'MI ’ §J i o

(1,3)
\J
~Ai

] (la)

tO




#{

R
'

[ v, (29)
" v (2,9 .
hof |
i
S (m, .=
[A-r, 1, B] = Yxi & Sl ' (my,)
(m;.,3)
w ji
-Ai

(j-lpz,o..'k ; 131'2'.001p)

i
generate ki strings of vectors associated with the eigenvalue

(%,3)

i
length mji associated with the eigenvalue A

Ai, where v\ is the th vector in the jth string of

i The vectors

vx(l'j) (j-1,2,...,ki) are the ki eigenvectors associated
ol
with the eigenvalue ki' whilst the remaining vectors in each

of the ki strings of vectors generated by equations (l) are

generalised eigenvectors associated with the eigenvalue Ai.

The total number of vectors associated with the eigenvalue ki

is evidently

Ky
S jilmji (i=1,2,.¢.,p) (2)

and the entire set of vectors associated with the eigenvalue
spectrum {Al.xz.....kp} will accordingly serve as a basis

for n-dimensional state space only if

n = Im . (3)
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i
chosen so that this entire set of vectors not only satisfies

In case the eigenvalues Ai and the integers mji and k, are

(3) but is also linearly independent and self-conjugate, then
the real state-feedback matrix

1

1.1 'k Py | k)T
E- [YA](. )ooo-pYA;mkpp p)] [YA](. )""le;mkpp p)]

(4)

is such that the Jordan canonical form of the nxn closed-loop
plant matrix (§+§§) contains the eigenvalue xi (1wl 25 D)
with geometric multiplicity ki and algebraic multiplicity m, .
This follows from the fact that if the real state-feedback
matrix K is such that the Jordan canonical form of the closed-
loop plant matrix (§+§§) contains the eigenvalue Ai (i=1,2,....P)
with geometric multiplicity ki' algebraic multiplicity my

and associated eigenvectors vx(l'j) (j=l,2....,ki) then
A |

Yx(l'j)

[A-Aa1, 8] | * = 0 (5a)
= o ) *
~Ai

-~

. (2,9)

~X
[a-r1, 8] | * m gy Vhed) (5b)
I YN e
A

-

® 0 8 9 0 0 8 00 0L L L NSNS

[é-xiz ' §] i = v (mji-l'j) (Sm

~A
Kvx(mji'j) 1
~ .~ i

)
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where the m satisfy (2) and (3).

ji

It is evident that, in the special case when p = n and

Ky = my ji

Each of the sequences of equations (l) accordingly reduces

= 1 ({=1,2,...40), then j = 1 and m,, = 1 (i=1,2,...,n).

to just a single equation, and there are clearly n such

egquations
Yx(l'l)
(-rzx.8] | * = 0 (i=1,2,...,n) (6)
Yxil'l)
(1,1)

for the eigenvectors v (i=1,2,...,n) of the nxn closed-

i
loop plant matrix (A+BK). In this special case, the

expression (4) for the state-feedback matrix assumes the
simple form
-]
K = [,:,A(l.l),h(l.l)“_”w\(l,l)] [Y\(l.l)'v\(l,l)'_”'v (1,1)}
1 2 “*n oo R A
(7)

which is equivalent to that obtained by Kimura (1975) and
Moore (1976). The computation of K in the case of distinct
eigenvalues thus reduces to the determination of the kernels
of each of the n matrices.

§k1 = [é-xis i g] (i=1,2,...,n) . (8)

3. ILLUSTRATIVE EXAMPLE

These results caﬁ be conveniently illustrated by assigning

the entire closed-loop eigenstructure of the discrete-time




i system governed by the state and feedback equations (Porter 1976)

r G 5.3 92 ¢ B2

. x(k+l) = =2, 3 , Ox(kk) + 11,0 g(k) (9a)

] -2 ,=1,0 g, 0

&

? and

3

7 u(k) = Kx(k) (9b)
in such a way that the resulting closed-loop system exhibits
finite settling time behaviour. Such an assignment clearly

requires that p = 1, m = 3, and kl = O but, in consonance
with the fundamental theorem of linear state-variable fee¢back
(Dickinson 1974), it is possible further to require either
cthat k, = 2, myy = 2, and my, = 1 or that kl = 1 and m = 3,

1 11
In the former case, equations (1) indicate that

1 1

g, R BY "xiz'l) ; v)‘il.,z)} s %A P .
A . -4

1 2 )

(10)

constitutes an admissible set of closed-loop eigenvectors and
generalised eigenvectors whilst, in the latter case, equations

(1) indicate that

(o} 1 1
{V\(l'l) ’ V)“Z’l) ’ V)‘(3'l)} - UL v T s 1%
SO i G|

1 2 0

i (1)
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constitutes an admissible set of closed-loop eigenvectors and

generalised eigenvectors since also

O ¥ v @i
S L "‘2 '} 3 ] (0] ’ 1 ’ (0] (12)
"2 ' "l ' 0 ’ (0] ' 0

and therefore

r ro- rl- W
0 -2
Ker §, = span) L) %0 ! . (13)
e *
0 8
L | R L

In the former case,

0 1 8
- i Nalis | Saig B {[ ] ; [‘] ] [ ]}
| oy R -1 -6 -3

(14)
so that in view of equation (4)
R S
O,ll,a 2'-3'0
15. 09-3'-2 =
w]l ¢ =0 , = "101"1
4+ & &+ 0
(15)

and therefore




L.

which has the Jordan canonical form

Q ' l ’ 0
o,0,0 (17)
o, 0, 0

and vx(l'z) and the

together with the eigenvectors v
(2,1)
A

1
as required. In the latter case,

(1,1)
A

1

generalised eigenvector v prescribed in equation (10),

{w (1,1) , W (2,1) , W (3;1)} = | v 2 11 ; 11
~A\y ~A1 ”Al " - 3

(18)
so that in view of equation (4)
o1 AT
O ; LT 4 Lk ik ¢ © ; ©
§ = o, -3, -4 =
_lp-G'- -7,-1,-1
¥ 1 ; 2 5, ©
(19)
and therefore
"3"'100
(§+§§) = g + 3 0 (20)
‘2'-110
which has the Jordan canonical form
Pie R o
s 0 ,; 1 (21)
Q, 0, 0
together with the eigenvector vx(l'l) and the generalised

1

U
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eigenvectors vk(z’l) and vk(3’l) prescribed in equation (1l1),
pik s |

as required.

4, ConcLusiON

These results facilitate the complete exploitation of
state feedback in the assignment of the entire closed-loop
eigenstructure of multivariable linear systems and are clearly
equally applicable to both continuous-time and discrete-time
systems. It is evident that, even in the case of systems for
which the pair (A,B) is uncontrollable, certain prescribed
eigenvectors of (§+§§) can be assigned by state feedback. In
the case of systems with asymptotically stable but uncontrollable
modes, it is therefore frequently possible to achieve significant
improvements in the dynamical behaviour of such systems by the

introduction of appropriate state-feedback controllers.
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ABSTRACT

In this paper, an algorithm is presented which greatly
facilitates the complete exploitation of state feedback in
the assignment of the entire closed-loop eigenstructure of
controllable multi-input systems. This algorithm is a
generalisation of the algorithm of MacLane and Birkhoff (1968)
for the computation of a basis for the null space of a matrix
and is ideally suited to digital computer implementation.

The algorithm readily yields the vectors which are required

(Porter and D'Azzo 1977) for the simultaneous assignment of
Jordan canonical forms, eigenvectors, and generalised eigen-
vectors to the plant matrices of closed-loop controllable
multivariable linear systems. The effectiveness of the

algorithm is illustrated by assigning the entire closed-loop

eigenstructure of a third-order two-input discrete-time system
in such a way that the resulting closed-loop system exhibits

time-optimal behaviour.




1. INTRODUCTION

The algorithm presented in this paper readily yields
the vectors which are required (Porter and D'Azzo 1977)
| for the determination of the state-feedback matrix which

simultaneously assigns Jordan canonical forms, eigenvectors,

pree——

and generalised eigenvectors to the plant matrices of closed-

loop controllable multi-input linear systems. These vectors

satisfy the sequences of equations (Porter and D'Azzo 1977)

(1,3)
v
.Ai

[a-21, + E] e . (1a)
wy (203)
jiig

g, (269)
o,
=i 1. o B -y (103 ; (1b)
Lb i-n ~" ~\
w, (203) M
- !

B 6 0 0 00 0 0 00 0 00 000N 0PN St E eSS

v
A4 (m, =1,3)

[a-),1_, B] - v, ; (Imy,)
~ i=n (mji'j) ~ki ji
w

(j‘lpZ’.o.'ki 31'1,2,.-..9)

which together generate ki strings of eigenvectors and
generalised eigenvectors associated with the eigenvalue xi.
where vx(l'j) is the Lth vector in the jth string of length

Bl ’ e i
[5 mji associated with the eigenvalue \1. In case the eigenvalues

W




Ai (i=1,2,...,pP) and the integers mj1 and ki are chosen so

that this entire set of eigenvectors and generalised eigen-
vectors is linearly independent and self-conjugate, then the

real state-feedback matrix (Porter and D'Azzo 1977)

(mk k)
p'"p
K = [,, o PIPRR ][Yxil’”

( e T
mkpp p] 1

rec e ¥y

~

(2)

is such that the Jordan canonical form of the nxn closed-

loop plant matrix (A+BK) contains the eigenvalue Ai

with geometric multiplicity ki and algebraic multiplicity

(1'1,2,..-,?)

ky
m = jilmji (i=1,2,.¢.,pP) . (3)

It is evident that, in the special case when p = n and

ki = mi L (1-1'2100'pn)¢ then j L l’ = ] (1'1,2,...,n),

mji
and each of the sequences of equations (1) reduces to just
(1,1)

i
closed-loop plant matrix (§+g§) associated with the eigen-

a single equation for the eigenvector Y\ of the nxn

value Ai. In this special case of self-conjugate distinct
eigenvalues {kl,kz....,xn}. the general expression (2) for
the state-feedback matrix K assumes the simple form obtained

by Kimura (1975) and Moore (1976).

2, ALGORITHM

(my vk)
PP
The vectors (v (1,1)

~A1




- 4 =

lkp)

(my
(1,1) } required for the determination of

&x '”"WA
L “1 i
the state-feedback matrix K expressed by equation (2) can

be readily computed by the following algorithm which is a
generalisation of the aigorithm of MacLane and Birkhoff

r——

(1968) for the computation of a basis for the null-space

I 1 of a matrix:

Y-
»

(i) Form the matrix

3 a-\I_, B
o = 3R 1

~n+m

for Ai (1-1'210--0p) H

(ii) Perform elementary column operations on §(Ai) until

§ (10j) § (loj)
. ?11 212 512 .55
s (1,3) § (1,3)
21 =22

where gl{l'j)EE gron élél'j) = 0, and rank Sl{l'j) =
n = rank [g-kizn ' §] since (A,B) is a controllable

pair;

(1ii) Perform successive elementary column operations on

§11:3 ) unena

§ (loj) v (mji-l'j)
LT L W o g myued)
% D (my,,3) E
(1.,3) g "4
21 r S22

(6)
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where
~A
1 ., (mji'j) .
i - . (7)
W
e
(m,..3)
The matrices'{Vx(l'j).vx(z’j):....vA 3 } and
s | ks - pa
w, " MU Wy } thus generated are clearly
o | gL i
such that
Yxil'j)
[§-Ai§n » B] = 0 . (8a)
wx(lpj)
Sy *
Yx(z'j)
T (1,1)
[é-xizn v §J g YX ' (8b)
wX(Z.j) i
o
o (mg . 3)
v, i’
s | (m -llj).
[a-32, .+ 8] b B o (8myy)
v X

(njilj)' (njilj)'
and are therefore such that the vectors [yx v Wy ]'
T g *

(nji-l,z,...,mji) required for use in equation (2) are linear

combinations of corresponding columns of successive members
(njilj)' (njlpj)' ’

of the entire sequence of matrices [vx i yx ]

g i
(nj1-1,2,...,mji) .
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3. ILLUSTRATIVE EXAMPLE

This algorithm can be conveniently illustrated by
assigning the entire closed-loop eigenstructure of the discrete-
time system governed by the state and feedback equations

(Porter 1976a,b)

Qo T e a2
x(k+l) = =2 o 3, 0F ®k) + L , 0] xatk) (9a)
-2,-110 0,0
and
u(k) = Kx(k) (9b)

in such a way that the resulting closed-loop system exhibits
time-optimal behaviour. Such an assignment clearly requires
that p = 1, k; =2, m, =2, my, = 1, and Xl = 0. In order
to compute a suitable state-feedback matrix K it is there-
fore only necessary to perform the following sequence of

elementary column operations in accordance with the algorithm:

- - -

O v Xon @ o34 8 (1,2,1,0,0
=2 + 3 +0,.,1,;0 3 01, 0 , ¢
-2 %=1 ,0,0,0 “23 0720, 0 , 0
i '@ 30 #0439 <19 #0430 0, 1 (10a)
O s b 90, 0,0 1 0,0, 0, -2
vy O i ls0,90 0 +1,0; 1, 0
03 Q@ ;041,90 O 0,1, 0, 8
90 3 0,0,1 _o,o,o,-1,-3
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Y e

and
i f
f e G e D R TN GORT TRENE ;
A e bEE e e R O %
| =% BB, 0,0 =1, 0,08; 1 .0 f
5 e L S VEE 1 SO TGS T S (10b) §
Y .0, 0. 0,98 AT e g
N | R e e S 8 LB, ¥ ,00
| G e N 9 031 .8, =2
0,0,0,-1,-3 |0,0,0,, 0|

It is evident from the equivalences (lO0a) and (1lOb) - that

o 1 1
: v (l'l)'v*iz'l)'v*iIIZ)} w4 tof , f=a . b3 (11)
: ~Ay = =

a 1 2 o]

constitutes an admissible set of closed-loop eigenvectors

and generalised eigenvectors and, correspondingly, that

0 11 8 3
Ty D)y (2010, (1420 [ ] ‘ [ ] ' [ ] « i
~1 ~l “'1 -1 -6 "3

The required state-feedback matrix determined by equation

(2) is therefore

(13)

| R S !

o Illl 8 2 '-3' o :

5 - 0, =3, =2f{ = ;
=% 5™ 5 =3 &L 5 L =4 ¢
1., & 5 9 f

|

;’

'h'\




so that the plant matrix of the closed-loop system governed

by equations (9) and (13) is

Qi O a0
A+BK=10, 0, 0f . (14)
-2"—1’0

T Ry 2

This plant matrix is clearly nilpotent of index two, as,.
required, and furthermore possesses the eigenvectors and Y

generalised eigenvectors prescribed in equation (1l1).

4, CoNcLusION

In this paper, an algorithm has been presented which
greatly facilitates the synthesis of state-feedback regulators

by entire eigenstructure assignment. This algorithm, which

is equally applicable to both continuous-time and discrete-
time systems, has been illustrated by assigniﬂg the entire
closed-loop eigenstructure of a third-order two-input discrete-
time system in such a way that the closed-loop system exhibits
time-optimal behaviour. In view of the simple elementary
column operations involved, it is evident that the algorithm

is ideally suited to digital computer implementation.
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ABSTRACT

In this paper, the method of entire eigenstructure
assignment (Kimura 1975, Moore 1976, Porter and D'Azzo 1977)
is applied to the design of linear multivariable continuous-
time output-feedback regulators. It is shown that, in the
case of self-conjugate distinct eigenvalue spectra, the closed-
loop eigenstructure assignable by output feedback is constrained
by the requirement that the eigenvectors and reciprocal eigen-
vectors lie in well-defined subspaces. The method is illustrated

by designing an output-feedback regulator for a third-order

continuous-time system.
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1. INTRODUCTION

In most practical cases, it is impossible to implement
state-feedback control laws since the state of the plant is
inaccessible and only the plant output is available for
control purposes. Much effort (see, for example, Davison
and Wang (1975)) has accordingly been expended on the investi-
gation of the closed-loop dynamics achievable by the implement-
ation of output-feedback control laws. However, apart from
the partial results obtained by Kimura (1975), this effort
has led to results concerned only with closed-loop eigen-
values and not with closed-loop eigenvectors. In this paper,
the method of entire eigenstructure assignment (Kimura 1975,
Moore 1976, Porter and D'Azzoc 1977) is therefore applied to
the design of output-feedback regulators for multivariable
linear continucus-time systems governed by state and output

equations of the respective forms
x(t) = Ax(t) + Bu(t) (1)

and

yit) = oxiny (2)

where {\ERmm, §€ e, cE RP¥™  rank B = m, and rank

¢ = p.

2. THEORY

Thus, if output feedback is applied to the system

governed by the state equation (1) in accordance with the




e T ————— > T T T

control-law equation
g(t) = §g(t) (3)

and the output-feedback matrix G & R™P is such that the
closed-loop plant matrix (§+§§g) has a self-conjugate

spectrum {xl,kz,...,kn} of distinct eigenvalues and correspond-
ing eigenvector and reciprocal eigenvector sets {31'52""'¥n}

and {91'?2"“'9n}' then obviously

(A=) I1+4BG0 = O (=l,2,0c00m) ()
and
QS(Q‘A £+§§9) - 9 (3=1,2,...,n) (5)
so that
Xy
[’.’.""15 » B] - 0 (i=1,2,...,n) (6)
i
and
. 1123
[‘é'-x E ’ SJ e 9 (j-lrzoﬁocon) (7
3
where
w, = 9951 (i=1,2,...,n) (8)
Sj = 9'9'?3 (j-l,2,..-,n) (9)
and

03% = 8y, (1,3=1,2,...,n0) . (10)

W e ey
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Conversely, if equations (6), (7), and (10) are satisfied by

a self-conjugate set {xl,xz,...,xn} of distinct complex
numbers and corresponding self-conjugate. sets {31'52""'3n}
and {91'22""’Qn} of linearly independent vectors, then
equations (8) and (9) are satisfied by a matrix (_;ERmXP

such that {Xl.kz,....xn} is the eigenvalue spectrum of the
matrix (A+BGC) and {31'32""’3n} and {91'92""'9n} constitute
corresponding eigenvector and reciprocal eigenvector sets.

It accordingly follows from equations (8) and (9), respectively,

that the real output-feedback matrix

9 = [‘i,l ’ (:)2 ¢ esece g (i)p][gzl ’ 952 ¢ eee Cx ]-l

and the real transposed output-feedback matrix
. -]
G = Loy vty e eee h ] (BT84 By v e 4 Big]
(12)

assign the self-conjugate distinct eigenvalue spectrum

{Al,Az,...,An) and the corresponding eigenvector and reciprocal

eigenvector sets {31‘52"°"3n} and {91,92,...,Qn}.to the
closed-loop plant matrix (A+BGC) in case {931,952,...,939}
is a set of p linearly independent vectors and {9'91'9'92'
....§’Qm} is a set of m linearly independent vectors. Such
sets {931'932""'93p} and {g'gl,g'gz,...,g'gm} clearly
exist when rank C = p, rank B = m, and {51'52""'3n) and

{91'22"‘°'Qn} are sets of linearly independent vectors.

It is thus evident that, in the case of self-conjugate

distinct eigenvalue spectra, closed-loop eigenstructure is
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assignable by cutput feedback just in case the eigenvalue
spectrum {Al,xz,...,kn} is such that the corresponding eigen-
vector and reciprocal eigenvector sets {51'32""'5n} and
{91’92""'9n} lie in the subspaces determined (Porter and

D'Azzo 1977) in accordance with equations (6) and (7), respect-

o,

ively, by the kernels of each of the n matrices

L b S(Ay) = [A-AiI . B] 40 I SRR (13)
: - " =5 =
i
% i together with the kernels of each of the n matrices

}’3 i
¥ 0
i Ty = Eb'-ljf « B9 (3=1,2,...,n) . (14)
!

3. ILLUSTRATIVE ExampLE

E | These results can be conveniently illustrated by

designing an output-feedback regulator for the system
governed by the respective state and output equations

(Davison and Wang 1975)

‘0'1,0 1,0
x(¢) = |0, 0, Lx(t) + {1, ofu(t) (15)
o!olo 111
and
1,0,0
(¢} = x(t) (16)
o,1,0

-

such that the eigenvalue spectrum of the closed-loop plant

matrix is

0 (A+BGC) = (Al,xz,x3} = (-1,-2,-5} +« LD

-~~~

Indeed, it is evident from equations (13), (14), (15), and
(16) that
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whk e Qi @ XL 390

'S'(A) = 1 ’ ‘)\ '] o '] 0 I} l . (19)
0,1,‘A0000

It therefore follbws immediately (Porter and D'Azzo 1977)

from equation (18) that

r-l, -OJ
o) 1
ker S(-1) = span {| 1| , (O], (20)
-1 -1
LLO'J 'lJJ
l et padl
(o] 1
ker S(-2) = span {|2]| , [-1]} (21)
-2 -1
L-z‘ “3-4
and
(r11 roq]
o |

ker S(=5) = span {|5 |, |-4 ' (22)




" and similarly (Porter and D'Azzo 1977) from equation (19)

that
rf‘lj Poﬂl
(o) 1
ker T'(-1) = span {|O]| , (-1 } (23)
-1 0
LRl )
rr-lq -011
Q -2
ker T'(-2) = span {|O| , |1 r (24)
-2 (o]
-1 4
S L =
and
'rlq ro'ﬂ‘
(0] -5
ker T'(-5) = span {|O| , | 1|} . (25)
-5 0
(1] 25

It is thus evicdent from equations (20), (21), and (22) that
the closed-loop eigenvectors corresponding to the eigenvalue

spectrum (17) must be assigned to the respective subspaces

1 o
I(-1l) = span o] , |1 (26)
1 0
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1 0
I(-2) = span oF » 1} (27)
2 -1
and
1 o
5 -4

and it is similarly evident from equations (23), (24), and
(25) that the closed-loop reciprocal eigenvectors correspond-
ing to the eigenvalue spectrum (17) must be assigned to the

respective subspaces

( )
1] [0]
r(-1) = span {|o| , |1 } (29)
0 -1
k-J e JJ
1 [o7]
r(-2) = span {(O| , |=2]|} (30)
.0. blaj
and
1 (o]
r(-5) = sgpan ([0 , |-5 . (31)
0 1

Since the vectors
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x, = |-1|€ z(-1) (32)

X, = |2|€ £(-2) (33)

X3 = |1]|€ (-5 (34)

5/2]
¢, = |34 |E (-1 (35)
3/4

¢, = |2/3|[&€ r(-2) (36)
(~1/3]

and

172

5/12 |& I'(-5) (37)
1/12

©
w
L}

are clearly such that {31,32,33} and {91,92,93} constitute
sets of linearly independent vectors with the property that

8% = 83y (1,9=1,2,3) , (38)

it follows from equations (11) and (12) that equation (17)
is satisfied by the output-feedback matrix |




-4 P
; T "10 o -

| The corresponding output-feedback regulator is accordingly

governed by the control-law eguation

-4 , -
u(t) = e o (40)
! . e =10 , =9

4, CoNcLuSION

E | In this paper, the method of entire eigenstructure assign-
| ment has been applied to the design of linear multivariable
L | continuous-time output-feedback regulators. It has been shown
that, in the case of self-conjugate distinct eigenvalue spectra,

the closed-loop eigenstructure assignable by output feedback is

(

l constrained by the requirement that the elements of the sets

' of linearly independent self-conjugate vectors {31'32""’Zn}

l and {91'92""'9n} lie in subspaces determined by the kernels
of §(Ai) (i=1,2,...,n) and ?'(Aj) (j=1,2,...,n), respectively,
and satisfy the orthogonality conditions (10). 1In constrast,

the closed-loop eigenstructure assignable by state feedback is

constrained only by the requirement that the elements of the

set of linearly independent self-conjugate vectors {51'52""'5n}

lie in subspaces determined by the kernels of §(Ai) (i=1,2,...,n).
It is because of the severe constraints on the closed-loop
eigenstructure assignable by output feedbéck that it is frequently
impossible to achieve satisfactory closed-loop behaviour by

means of static continuous-time output-feedback regulators, and

that it is consequently necessary to introduce dynamic compensator:




(Brasch and Pearson 1970). However, the design of such dynamic

continuous~-time output-feedback regulators can be effected by
applying the method of entire eigenstructure assignment in the
manner of Section 2 to appropriately augmented (Brasch and

Pearson 1970, Kimura 1975) continuous-time systems.
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ABSTRACT

In this paper, the method of entire eigenstructure
assignment (Porter and D'Azzo 1978a,b) is applied to the
design of linear multivariable discrete-time output-feedback
regulators. It is shown that, in the case of self-conjugate
eigenvalue spectra, the closed-loop eigenstructure assign-
able by output feedback is constrained by the requirement
that the eigenvactors and generalised eigenvectors and the
reciprocal eigenvectors and generalised reciprocal eigan-
vectors lie in well-defined subspaces. The method is illu-
strated by designing an output-feedback regulator for a third-

order discrete-time system.
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1. InTRODUCTION

In this paper, the method of entire eigenstructure
assignment (Porter and D'Azzo 1978a,b) is applied to the
design of output-feedback regulators for multivariable linear
discrete-time systems governed by state and output equations

of the respective forms
AR x(k+1) = Ax(k) + Bu(k) (1)
and
yk) = Cx(k) ' (2)

where AE ™", B € /"™, ¢ & RF*™, rank B = m, and rank

-~

C = p. The theory is analogous to that developed by Porter
and Bradshaw (1978) for continuous-time regulators but {is

significantly extended in order to allow the assignment of

confluent eigenvalues to the plant matrix of the closed-loop
system. It is therefore possible, for example, to apply this
theory to the design of output-feedback regulators with

finite settling times.

2, THEORY

Thus, if output feedback is applied to the system governed
by the state equation (1) in accordance with the control=-law

equation
HiK) = gy(k) (3)

and the output-feedback matrix ¢ € R™P jg guch that the




closed-loop plant matrix (A+BGC) has a self-conjugate eigen-

~ e~

value spectrum {xl,xz,...,xt}, a corresponding eigenvector
and generalised eigenvector set{xx(h'j):h-l,z,...,mji;

st
j-1,2,...,kl:i-l.Z....,t}, and a corresponding reciprocal

eigenvector and generalised reciprocal eigenvector set

{¢X(c’b) .c.llzl°°'l“\ba’b.llzl-oo,ka?a.lgzg-.1't}' then
\ (A=A, I+BGC) X, (.3) . o (4a)
A A i i
(A=, T+BGO) x, ‘2'3’ o Vel (4b)
b T e S
(m oj) (m -l’j)
i i
(a3 1486005, ] .5 . (4m, )
(jallzpo.o’k’i;i’l'Z'.oo,t) ¢
and
¢, 1P (A=) 1emoC) = 9, 20DV’ (5a)
a a
(mba-l'b) 4 (mba'b) '
® (A=), I+BGC) = ¢ (5m__-1)
~Aa A~ ~me~ ~Xa x“ba
(mba,b)
) (A=) I+BGC) = o' (5 )
h I 7 ¢ "

(b'l,Z,...,ka;a-l.z,...,t) ’

where X (h,3) is the hth vector in the jth string of length
~k1 $

mji associated with the eigenvalue xi, and where @A(c,b) is
e
the cth vector in the bth string of length ™ a associated

with the eigenvalue Aa. The vectors XA(I'j) (j-l,2....,ki)
|




are the k

i eigenvectors associated with the eigenvalue Ai,

whilst the remaining vectors in each of the ki strings of
vectors satisfying equations (4) are generalised eigenvectors
associated with the eigenvalue xi. Similarly, the vectors
gx(mba'b) (b=1,2,...,ka) are the ka reciprocal eigenvectors
associated with the eigenvalue Aa' whilst the remaining

vectors in each of the ka strings of vectors satisfying
equations (5) are reciprocal generalised eigenvectors associated
with the eigenvalue Aa. The total number of vectors associated

with the eigenvalue Af in each set is evidently

ke

= £=),2, oot 6
mf gglgf ( 1&g r) ()

and
n = 3 me 5 (7)

Equations (4) and (5) can be written in the form

(1,3)]
i
5. (el

gl SRR

-

X
Eﬂ'kif

» B]

L}
tO

.(8a)

Kxiz'J)
(1,3)
B = X
r Bl (2,3) Ay
A
i

o 4

(a-1,1 (8b)
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(m oj)
X "
A-A,I , B = X m
e 1~ <3 (mji'j) ~Ai ji
g
S
(3-102l0'01ki’i.1'2'.¢-,t)
and
?A(l'b)
(2,b)
A'=A.I , C! = ¢ ' (9a)
i e (1,b) A
&
a
(mba-l'b)
¢
~A
a (mb +b)
A'-\I, C’ L T (9m,__-1)
372t '] (m, ,~1,b) “Aa “ba
&
a
(mba'b)
L+
a
Af=) X , ¢ : = 0 (9 )
301 ] (m,, +b) . "ba
4
-Aa
(b-l,Z,...,ka;a-1,2,...,t)
where
wx(h'j) b chk(h'j) (10)
s b
Sx(c'b) - 9'§'Qx(c'b) (11)
a




and

(k' R

¢
Aa -Ai

-~

aisbj6ch (12)

(h.l'Z'too,m i;j.llzl"‘lk i'l,2,..-;t)

j 57

(C'l.z...-,mba;b’l,z,...,ka;aﬁl,z,.q.,t) .

Conversely, if equations (8), (9), and (l1l2) are satisfied

by a self-conjugate set {xl,xz,...,xt) of complex numbers
(h,3)

i
1C=1,2, 000 My

and corresponding self-conjugate <ets {XA th=l,2,...,m

p (c,b)
i a

b=1,2,...,k :a=1,2,...,t} of linearly independent vectors,

jif

j=l,2,...,k 1.1'2'o.o’t} and{¢A

then equations (10) and (ll) are satisfied by an mxn matrix

G such that {Al,xz,...,xt} is the eigenvalue spectrum of the
(h’j) .
1 &
i=1,2,...,t) constitutes a corresponding eigenvector and
{(c,b)

a
b-1,2,...,ka;a-l,Z,...,t} constitutes a corresponding reciprocal

matrix (A+BGC), {XA :k=1,2,...,mji;jal,z,...,k

generalised eigenvector set, and {¢A :c=1,2.....mba;

eigenvector and reciprocal generalised eigenvector set. It
accordingly follows from equations (10) and (11) respectively

that the real output-feedback matrix

-~

G = [‘.‘31' (:)2, .o '&)P]Egzligxz ¢ e e .CX]-

and the real transposed output-feedback matrix
S A PYCARETITI - -1 PP 1 POPRPPPRE 1%

(14)




Indeed, it is evident from equations (13), (14), (15), and

(16) that

assign the self-conjugate eigenvalue spectrum {xl,xz,...,xt),
the corresponding eigenvector and generalised eigenvector set

{Xx(h'j):h-1,2,...,mji;j-l,Z,....ki;iul,z,...,t), and the
kg
corresponding reciprocal eigenvector and reciprocal generalised

(c,b)

a
to the closed-loop plant matrix (§+§§§) in case {cgl,cxz,...,cg }

eigenvector set {gk :c-l,z....,mba;bal,z,...,ka;a-l,z,...,t}

is a subset of p linearly independent members of the set {Cxx(h'j):
s

h-l.z....,mji;j-l,2,...,kiii-l,z,...,t} and {§'91,§'92,...,§'9m}
is a2 subset of m linearly independent members of the set
{g'gxic’b):c-l,2,...,mba;b=1.2,...,ka;a-1,2,...,t}.

It is thus evident that closed-loop eigenstructure is
assignable by output feedback just in case the self-conjugate
eigenvalue spectrum (xl,xz,...,xt} is such that the correspond-
ing eigenvector/generalised eigenvector and reciprocal eigen-

vector/reciprocal generalised eigenvector sets {fxih'j)=
(c,B)

a
b-1,2,...,ka:a-l,Z,...,t} %1e in the subspaces determined

h-1,2,...,mji;j=l,2,...,ki;i-l,z,...,t} and {?x :c-l,2,...,mba:
(Porter and D'Azzo 1978b) in accordance with equations (8) and
(9) , respectively, by the kernels and generalised kernels of

each of the t matrices

s() = [a-A1, B] £ L5 - IR (15)

together with the kernels and generalised kernels of each of

the t matrices

TV = [A-x1 ., '] (a=1,2,...,t) . (16)

3. ILLUSTRATIVE EXAMPLE

These results can be conveniently illustrated by designing




an output-feedback regulator for the system governed by the

respective state and output equations

0, 1,0 0, 0
§(k+1) = 3 , 0 §(k) L L R g(k) (17)
0, 0,1 (o e |
and
i, 0,0
z(k) = x(k) (18)
. SRS - B o

such that x(k) = O after a finite number of discrete-time

intervals. 1Indeed, it is evident from equations (15), (l16),
(17), and (18) that

S(A) = L 3=k » O , 31 ,;%¢C (19)

and

e el e S g

T () = S.x A=y W oy (20)

= O O

0,0,1"),0,

In this case, it is necessary to assign the value zero to

all the eigenvalues of the closed-loop plant matrix. Such

an assignment clearly requires that t = 1, m = 3, and Al = 0
and therefore, in consonance with the results of Rosenbrock
and Hayton (1977), that k = 1 and myy = 3. It therefore
follows immediately (Porter and D'Azzo 1978b) from equation
(19) that

. ——————




ker S(0) = span {[O]| , |1 } (21)

e J
and similarly (Porter and D'Azzo 1978b) from equation (20)
that

(o)
-] ]
ker T'(0) = span{|O| , (1|} . (22)
1 (0]
o] [
\ gl

It is evident from equation (21) that the closed-loop eigen-

vector xél'l) corresponding to the eigenvalue kl = 0 must be

assigned to the subspace

1 o
Z(0) = span {0} , |O (23)
0 1

whilst the associated string of generalised eigenvectors
(2,1) (3,1)
X' and Xg
(8), and it is similarly evident from equation (22) that
the closed-loop reciprocal eigenvector 933'1) corresponding to

the eigenvalue Al = 0 must be assigned to the subspace

must be generated in accordance with equations



whilst the associated string of generalised reciprocal eigen-

(2,1) i ¢élﬁl)

vectors ¢

must be generated in accordance with

equations (9). Since the vectors

-1
AL "
-9 = 1 (25)
o 1
—-l.J
%4
(2,1) 1
P
= o (26)
9(()2,1) -2
L 1]
=
(3,1) 1
%o
_ = |o (27)
o
-od
o
’9é3,1) 1
(3,1)
So -1




r‘l-|
(2,1) 0
%
= |- (29)
(2,1) ¢
So -1
-2-
and
r-o-w
(1,1) (0]
¢
~0 )
= ’,l (30)
C(l'l) ;
~0 1l
—-2-

are clearly such that

(c,1)’,(h,1)
¢ 14 50' = 6

~

ch (c,h=1,2,3) (31)

it follows from equations (13) and (14) that the required
eigenstructure assignment is achieved by the output feedback

matrix

.-2 ' l v
G = . (32)
~ 1 , -

The corresponding output-feedback regulator is accordingly

governed by the control-law equation

o BEA |
u(k) = y (k) . (33)
~ i, «af®

It can be readily verified that the state of the closed-loop

system governed by equations (17), (18), and (33) is reduced

| . ——



from any initial value to zero in at most three discrete-

time intervals, as required.

4, CoNcLusION

In this paper, the method of entire eigenstructuie
assignment has been applied to the design of linear multi-
variable discrete-time output feedback regulators. It has
been shown that the closed-loop eigenstructure assignable by
output feedback is constrained by the requirement that the
elements of the sets of linearly independent self-conjugate

vectors {Ex(h'j):h=l,2,...,mji;j=l,2,...,k i=1,2,...,t) and

{gk(c'b)
a

spaces determined by the kernels and generalised kernels of

i'.
3081,2,...pmba;b‘l,z,-..,ka:asl,z,...,t} lie in sup=-

§(A1) (i=1,2,...,t) and ?’(Aa) (a=1,2,...,t), respectively, and
satisfy the orthogonality conditions (12). 1In contrast, the
closed-loop eigenstructure assignable by state feedback is
constrained only by the requirement that the elements of the
set of linearly independent self-conjugate vectors {xx(h'j):

i

h=1,2,..., i;j=1,2,...,k i=1,2,...,t} lie in subspaces

i
determined iy the kernels and generalised kernels of §(xi)
(i=1,2,...,t). It is because of the severe constraints on
the closed-loop eigenstructure assignable by output feedback
that it is frequently impossible to achieve satisfactory
closed-loop behaviour by means of static discrete-time output-
feedback regulators, and that it is consequently necessary to
introduce dynamic compensators (Brasch and Pearson 1970). How-

ever, the design of such dynamic discrete-time output-feedback

regulators can be effected by applying the method of entire




eigenstructure assignment in the manner of Section 2 to
appropriately augmented (Brasch and Pearson 1970) discrete-

time systems.
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i ABSTRACT

In this paper, the method of entire eigenstructure
| assignment (Porter and Bradshaw 1978) is applied to the
design of linear multivariable continuous-time tracking
systems incorporating error-actuated dynamic controllers.
The method is illustrated by designing an error-actuated
dynamic controller which causes the output of a second-
order continuous-time plant to track a constant command

input in the presence of an unmeasurable constant disturbance

input.
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1. INTRODUCTION

In this paper, the method of entire eigenstructure
assignment (Porter and Bradshaw 1978) is applied to the

design of linear multivariable continuous-time tracking

O S € R AR

systems incorporating error-actuated dynamic controllers.

Sy

Such tracking systems consist of a controllable and observ-

e

able nth-order linear multivariable plant governed by state

and output equations of the respeétive forms

X(t) = Ax(t) + Bu(t) + Dd(t) (1)
and
y(t) = Cx(t) (2) |

where B and C have full rank, together with an error-actuated
dynamic controller which is réquired to cause the pxl output

vector y(t) of the plant to track a pxl command input vector

f(t) in the sense that

lim e(t) = lim{r(t)-y(t)} = 0 (3)

taroo ~ tao ~

for polynomial command and disturbance inputs of the {

respective forms

X
i-1
ei(t) = T @, .t (4)
£ %1
and
S
| 1 S R (5)




It is important to note that tracking systems incorporating
error-actuated dynamic controllers can be designed for a
much larger class of plants than tracking systems incorporat-
ing error-actuated static controllers (Porter and Bradshaw
1976) in view of the fact that eigenstructure assignment by
error-actuated static controllers and by:output-feedback

controllers (Kimura 1975,1977) are essentially eguivalent.

2. THEORY

The first stage in the design of the required error-
actuated dynamic controller for the plant governed by
equations (1) and (2) involves the introduction (Porter and
Bradshaw 1974) of a vector comparator and a series of
q = max(r,s) vector integrators in order to generate the g
vectors defined by the equations

1

By () = eft)

:2_2(1:) = z,(t) |,
P st eers e s e } (6)

® 0 0 00 00ttt e

Eq(t) g .z.q-l(t) X

It is then evident from equations (1), (2), and (5) that
the open-loop tracking system is governed by state and

output equations of the respective forms




o

- 80 -

£ S P& O s nenn 0 4 0] fxted ]
z, (¢ =C 1 0 s eee s O 4 Of |2y(8)
2o (8) O v Qv vee v 0 4 O fzo,(8)
2 (8) | [Q + Qv «ee v I, 0] [2g(8)
H g i
o I 0
~ ~p b
+ ] (ule) + | fr(t) + d(t) (7)
e - s
-9- -QJ b9-
and
rX(t) ;i Fg ’ 9 r eee ¢ 9 ’ 91 -f(t) 7
El(t) 9 ’ -I-P 1 esee 9 ) 9 El(t)
® e 0 0000 ® 9 0 00 00RO OGO OO RSO E SRS TPEDN L L B O .(8)
Eq-l(t) 9 ’ 9 ) eee .I.p' (0] Eq-l(t)
TRORE 0, 0 v e 0, ] [z0)

The open-loop tracking system governed by equations (7)
and (8) is controllable if and only if (Porter and Bradshaw
1974)

B , A
rank |~ i = n+p (9)
0. -C

since (A,B) and (C,d) are respectively controllable and

observable pairs.
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In the case of such controllable and observable open-

loop tracking systems, the second stage in the design of the

error-actuated dynamic controller involves the introduction

of an fth-order dynamic compensator (Brasch and Pearson 1970)

governed by state and output equations of the respective forms

. q

w(t) = Fw(t) + Ge(t) + I Hizi(t) (10)

-~ -~~~ ~ ~ 1-104 ~
and

q

u(t) = Kw(t) + Le(t) + Mizi(t) (11)
where

L = min(vc-l,vo-l) (12)

and Ve and v, are respectively the controllability and
observability indices of the open-loop tracking system
governed by equations (7) and (8). It is then evident from
equations (7), (8), (10), and (1l1l) that the closed-loop

tracking system is governed by state and output equations

of the respective forms

[x(t) ] [A-BLC , BM; , ... , BM_ , BK] [x(t) ]
z,(t) C 4 O 4 eve s O 4 Of [z,(8)
2, (€) O + 0 4.y O 4 O [2(t)
IO N - ARIRTOI i A B IO




[BL] D]
I (0]
~p -~

+ r(t) + : d(t) (13)
o o i
-9- -QJ

and

[y(t) ] [C+v O v vevy 0, O] [x(t) ]

El(t) 9 I ;Ep r see g 9 ’ 9 El(t)
. - L ® 0 % v 00000 PO O PO OO ® 0 0 00 g (14)
t o 0 LN N )

gq( ) °c, 0, ' ;p ¢ O gq(t)

LY(t) J Lg ’ 9 § eeoe 9 ’ IZJ -Y(t) J

In view of equations (4) and (5), it is clear by differentiat-
ing equation (13) (g-l) times that the closed-loop tracking

system will behave so that

lim dq3
s Pl SRR (15)
at? i

and therefore, in view of equations (6), so that equation
(3) will be satisfied if the error-actuated dynamic com-
pensator governed by equations (10) and (1l1) is designed
such that all the eigenvalues of the plant matrix of the
closed-loop tracking system governed by equations (13) and

(14) are assigned to the open left-half of the complex plane.

3., ComPeNsATOR DEsIGN

It is evident from equations (7), (8), (10), and (1ll)
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that such a compensator can be designed by the synthesis of
an appropriate output-feedback control law of the form

() = Gy, (t) (16)

for the augmented open-loop system governed by state and

output equations of the respective forms

X (8) = A;x (£) + Byu(t) (17)
and
where
[u(t)
u,(t) = b (19)
2 [v(t)
[x(t) 7
51(t)
-l e S S (20)
3q(t)
(w(t) J
[y (t) 7
gl(t)
g0 = (21)
(22)
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A,
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-
.
.

0
1o
~
.
-
tO 10

’

o-l
0

A, = (23)

9 v 9 g e 9 ’ 9

9 ’ 9 & Sea P 0 ’ O

- ~ -~

B+ O]
0 0
Ez ¥ CRC RN W ) (24)
o, 9
g ¢ 2g)
and
r'- ’ 9 ’ LU ’ 9 1[4 9-
s 9 ’ .I'p ’ e oo ’ 9 r 9
Sz a LRI NI SR B SR IR NN B ) 3 (25)

(o) ’ 0 7P eee I ’ 9

~

i
Q¢ O v cee s 04 Ty

Thus, if the (m+%)x(p+pg+L) output-feedback matrix Gz is

29 ) has a

} of distinct

such that the closed-loop plant matrix (5 +B,G

self-conjugate spectrum {AI'AZ""'An+pq+£

eigenvalues and corresponding eigenvector and reciprocal
elgenvector sets {X;,Xyr+++rXpipqen) 204 {010050eeerdrinaugts

then obviously

(él-xiz+§lglgl)¥i = 9 (131,2,...,n+pq+l) (26)

and




93 (él-xj5+§ 9!.9 ) - 9 (j'l,2,...,n+pq+!.) (27)

so that

(A,-71 ., B (i=1,2,...,n+pq+R)  (28)

[}
Rt
frs—ry
1E 1
e
[ W————
]

[ Xe]

and
(Ag-24T gi][gj] = 0 (3=1,2,...,n+pq+R)  (29)
Ly
where
Wy T GpCyXy (i=1,2,...,n+pg+L) (30)
85 = SpBpdy : (3J=1,2,...,n+pg+t)  (31)
and
9551 = Gij (1,3=1,2,...,n+pg+L) . (32)

Conversely, if equations (28), (29), and (32) are satisfied

by a self-conjugate set {xl,xz....,x } of distinct

n+pg+L
complex members and corresponding self-conjugate sets

{51'52""'5n+pq+£} and {91'92""'9n+pq+2} of linearly

independent vectors, then equations (30) and (31) are satisfied

by an (m+f) x (n+pg+L) matrix G, such that {xl,xz,...,xn+pq+l}
is the eigenvalue spectrum of the matrix (Ag*BszCz) and

{31'¥2"“’3n+pq+£} and {§y+85¢¢ ¢+ rdnypqey} cOnStitute
corresponding eigenvector and reciprocal eigenvectnr sets. It
accordingly follows from equations (30) and (31) respectively

that the real output-feedback matrix




: 4-1
Gp = Loy v wp v er v wppqundd [S9%) ¢ SXp v e v CXpinqudd]
(33)

and the real transposed output-feedback matrix

1-1
9; - [Cl ¢t 8o 0 cee Sm+g]E§£91 ¥ ?i?z s Al §£¢m+tl

(34)

assign the self-conjugate distinct eigenvalue spectrum

{Al,kz,...,k } and the corresponding eigenvector and

n+pg+L

reciprocal eigenvector sets (Xl'xz""'xn+pq+z} and

{91’92""’9n+pq+£} to the closed-loop plant matr i (3, +B,G,C,)

in case {9251'9232'""925p+pq+2} is a set of (p+pg+l)

linearly independent vectors and {gigl,gigz,...,gig } is

m+2
a set of (m+2) linearly independent vectors, respectively.
In view of equations (28), (29), (33), and (34), the
computation of gz is thus reduced to the determination
(Porter and D'Azzo 1977) of the kernels of each of the n

matrices
S,() = [a,=a1,B)] (1=1,2,...,n+pg+R) (35)
together with the kernels of each of the n matrices

?i(*j’ = [éi'*ji v Cq] (3=1,2,...,n+pa+L) (36)

followed by the selection of sets of linearly independent

self-conjugate vectors {31'32'°"'§n+pq+2} and {91'92""'?n+pq+2}

from subspaces determined by the kernels of sl(xi)(i-l,z,...,n+pq+£;

and Ti(xj)(j-l,z'_,,,n+pq+l), respectively, such that the




=87 -

orthogonality conditions (32) are satisfied. It is finally
evident from equations (10), (11), and (22) that the matrices
in the respective state and output equations of the required

Lth-order dynamic compensator are determined by the sub-matrices

of the output-feedback matrix Gy -




4, [LLUSTRATIVE EXAMPLE

The results presented in Sections 2 and 3 can be
conveniently illustrated by designing an error-actuated
dynamic controller which will cause the output of the

controllable and observable linear plant governed by the

respective state and output eguations

:'cl(t) - x, () 0 [1}]
; = + u(t) + dit) (37}
xz(t) ) | xz(t) 1 -

x, (t)
y(¢) = [1, 0] [1 J (38)
xz(t)

to track any constant command input r(t) in the presence
of any unmeasurable constant disturbance input d(t). 1In
thic case it is clear that r = s = q = 1, so that the
open-loop tracking system is governed by the respective

state and output equations

-~

X, (t) 0,1, 0] [x(t) )
X, (t) |1 e 1, of |x (8| + [1]u(t)
z(t) -1 , 0, 0] [z(t) o

[0 1

O|r(t) + [-ld(t)

1 o

~




xl(t)

y(t) i,0,;0
z(t) Q ;9 ¢l

z(t)

This system is clearly controllable and observable with

W 3 and Vg, ™ 2 so that (Brasch and Pearson 1970) equation
(12) indicates that & = 1. Furthermore, in the notation of
equations (23), (24), and (25), it follows from equaticns
(39) and (40) that

[ @ ¢ % ¢ O 0
Yool 0 00
Al = (41)
= -11010'0
Lo : 0, 00
o , O
d O
~1 &, 8
0, 1]
and
1,0,0,0
91 = Q ;. Q@ y Ly O % (43)
0 Oy @5 L

It is thus evident from equations (35), (36), (41), (42),

and (43) that

(44)
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and
’.A '] l I} -1 ’ (0] ’ l ’ (0] ’ 0‘
1 ’ l-k ’ (0] ’ (0] I3 (0] ' (0] ’ (0]
T'(A) = . (45)
™ O . O ’ "A ’ O ] 0 ’ l ’ 0
.O ’ 0 v 0 ’ -X I} 0 ’ O ’ lJ

In order to design an error-actuated dynamic compensator
for th~2 open-loop tracking system governed by equations
(39) and (40) such that the eigenvalues of the plant matrix

of the closed-loop tracking system are
{AI'AZ'A3'A4} — {-11-21'30"4} (46)

the design method described in Section 3 can be readily

used to compute an output-feedback matrix Gl such that
c(§l+§l§lgl) = ({-1,-2,-3,-4} . (47)

Indeed, it follows immediately (Porter and D'Azzo 1977)

from equation (44) that

1 Pt 0] )
3 (o]
=L (0]
ker S,(-1) = span 1 5 ' 5 } (48)
=1 (0]
[l
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ker §1(-2) = span 1

ker Sl(-3) = span f{

and

ker §l(-4) = span l

\

0O = O O O

L 0 |

(o)
-4

o

[~2]

-3.

o

4

(49)

(50)

(51)

and similarly (Porter and D'Azzo 1977) from equation (45)

that
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[ [« 5] [ 0] ’o] ‘
1 (o} o
0o 1 0
ker T{(-4) = span{ |O| , O], |1 b . 189
s 19 1 o
Q -4 (o]
Z|E N | O S B
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It is evident from equations (48), (49), (50), and (51) that
the closed-loop eigenvectors corresponding -to the eigenvalue

spectrum (47) must be assigned to the respective subspaces

r 3

1] o
1 (o]
L,(-1) = span ’ } (56)
-1 0
| -OJ LlJ J
[ [-2] o] |
4 (o)
£,(=2) = span f ' . (57
-1 0
| Lol 1)
, r-31 (o 3
9 0
£,(=3) = span | ’ 1 (58)
-1 (o}
L LOJ 1] J

and
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g 0]
16 0
I,(=4) = span ; ¢ . ’ (59)
-1 0
0
el W

and it is similarly evident from equations (52), (53), (54),
and (55) that the closed-loop reciprocal eigenvectors
corresponding to the eigenvalue spectrum (47) must be

assigned to the respective subspaces

( [=2] 0] 0] ‘

1 0 o
ry(-1) = span { ' ' . (60)
o} 1 (o]
L - od -OJ S J

1 o )
Fy(=2) = span | ’ ' . (61)
o 1 o
L nOJ LOJ - o 3
r"-41 0] 0] W
o o
ry(=3) = span ; " ' r (62) ,
o 1 o
. J sou - {

and

0o
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Since the vectors

L1

X2

X4

2

€ £, (-1)

€ 1,(-2)

€ 1,(-3)

(64)

(65)

(66)

(67)

(68)

(69)
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1
b1
0

E
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[«16]

f5 = 18 e (70)

and

-

[ 35/6
-7/6
“ * € ry(=4) (711)
-14/3

- -5/31

are clearly such that

- ) (1."1'2030‘) (72)

L]
Xy 13
it follows from equations (33) and (34) that eguation (47)

is satisfied by the output-feedback matrix

-47 , 3¢ , 10
G1 - . (73)
A 9 , =38 4 =1

In view of equations (10), (1l1), (22), (73), the correspond-
ing dynamic compensator for the open-loop tracking system
governed by equations (39) and (40) is governed by the

respective state and output equations

wit) = =llw(t) = 49e(t) = 3S=(t) (74)
and

u(t) = 10w(t) + d7e(t) + 3dz(t) ' (78)

80 that the required error-actuated dynamic controller is

characterised by the transfer function

VORP P r—— ititaing i il i adace




T(s) = u(s)/a(s) = (478°+61s+24)/8(s+11) .  (76)

It can be raadily verified that the poles of the closed-
loop tracking system governed by equations (37), (38),(74),
and (75) are {-1,-2,-3,-4} and that
lim e(t) = 1lim{r(t)=-y(t)} = O {77)
te+x L+

for any constant command input r(t) and any constant un-

measurable disturbance input d(t).

5. ConcLuston

In this paper, the method of entire eigenstructure
assignment has been applied to the design of linear multi-
variable continuous-time tracking systems incorporating
error-actuated dynamic controllers. It has been indicated
that such tracking systems can be designed for a much
larger class of plants than tracking systems incorporating
error-actuated static controllers (Porter and Bradshaw 1976)

in view of the fact that eigenstructure assignment by error-

actuated static controllers and by output-feedback controllers

(Rimura 1975,1977) are essentially equivalent.
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ABSTRACT

In this paper, the method of entire eigenstructure
assignment (3radshaw and Porter 1978a) is applied to the
design of linear multivariable discrete-time tracking
systems incorporating error-actuated dynamic controllers.
The method is illustrated by designing an error-actuated
dynamic controller which causes the output of a second-
order discrete-time plant to track a cconstant command input

in the presence of an unmeasurable constant disturbance input.
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1. INTRODUCTION

In this paper, the method of entire eigenstructure
assignment (Bradshaw and Porter 1978a) is applied to the
design of linear multivariable discrete-time tracking systems
incorporating error-actuated dynamic controllers. Such
tracking systems consist of a controllable and observable
nth-order linear multivariable plant governed by state and

output equations of the respective forms

f(k+l) = éf(k) + Eu(k) + DA (k) (1)
and
y(k) = Cx(k) (2)

where § and g have full rank, together with an error-actuated
dynamic controller which is required to cause the pxl output

vector g(k) of the plant to track a pxl command input vector

r(k) in the sense that

lim e(k) = lim{f(k)-g(k)} = b (3)

k+o ~ k+

for polynomial command and disturbance inputs of the respective

forms

BR) = 3 TP (4)

N (5) L
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The theory developed in this paper is analogous to that
developed by Porter and Bradshaw (1978) for continuous-time
tracking systems but is significantly extended in order to
allow the assignment of confluent eigenvalues to the plant
matrix of the closed-loop tracking system. It is therefore
possible to apply this theory to the design of an error-
actuated dynamic controller which causes the output vector
of a plant governed by equations (1) and (2) to track a

command input vector in the sense that
g(k) - f(k) < g(k) = 0 (k=v, v1,...) (6)

for command and disturbance inputs defined by equations (4)
and (5), where v is the index of nilpotency of.the closed-
loop plant matrix of the tracking system. It is important to
note that tracking systems incorporating error-actuated
dynamic controllers can be designed for a much larger class
of plants than tracking systems 1ncorpofating error-actuated
static controllers (Bradshaw and Porter 1978b) in view of

the fact that eigenstructure assignment by error-actuated
static controllers.and by output-feedback controllers (Kimura

1975,1977) are essentially equivalent.

2. THEORY

The first stage in the design of the required error-

actuated dynamic controller for the plant governed by equations

(1) and (2) involves the introduction (Bradshaw and Porter
1975) of a vector comparator and a series of g = max(r,s)

discrete~-time vector integratcrs in order to generate the g

P
T e e b e T T wm‘



.vectors defined by the equations

z)(ktl) = 2z (k) + e(k)

2y (k) =z, (k) + 2z, (k)

gq(k+1) - gq(k) + gq_l(k)

Fi2;

~

g

[x (k+1)

’ L)

51(k+1) p

0 ¢ eoe ,
-~

’

] (7)

/

It is then evident from equations (1), (2), and (7) that
the open-loop tracking system is governed by state and

output equations of the respective forms

-

’

[x (k)
z, (k)

’

O 10
I 10

and

Eq-l(k+l)

[y (%)

lzg ) |

_gq(k)

gl(k)

Zg-1 (k)

J

9 ’ 9 & enete iy Ep ’
L9+ Q@ 4 eee s Lo
[B] (0]

I

< I
(0} 0
0] [ O]

rC, 9 ’ LR ’ 9 ’ 7]

ese g

10 10

e 2

~

H

2

ax)

1O

{0

rg_c(k)
gl(k)

Qv Qv e v Iy 0 2o 0

0 (0] see (o) I k

Ly ¢ Y '~'~PJ-§q()
e

o) 5q-l(k)
I gq(k) J

-

(8)

. (9)
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The open-loop tracking system governed by equations (8) and
(9) is controllable if and only if (Bradshaw and Porter 1975)

B, A-I
rank = n+p (10)
] ‘9.

since (A,B) and (C,A) are respectively controllable and
observable pairs.

In the case of such controllable and observable open-
loop tracking systems, the second stage in the design of the
error-actuated dynamic controller involves the introduction
of an fth-order dynamic compensator (Brasch and Pearson 1970)

governed by state and output equations of the respective

forms
q
w(k+l) = Fw(k) + Ge(k) + I Hizi(k) (11)
and
q
u(k) = Kw(k) + Le(k) + ¢ Mizi(k) (12)
% s ek i=1"""
where
L = min(vc-l,vo-l) (13)

and Vo and v_ are respectively the controll;bility and

o
observability indices of the open-loop tracking system
governed by equations (8) and (9). It is then evident from
equations (8), (9), (11), and (12) that the closed-loop
tracking system is governed by state and output equations

of the respective forms
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[x(k+1) ] [A-BLC , BM) 4 ... , BN, , BK] [x(k) ]
!1(k*1) ‘9 ] Ep t ses 9 ) 9 !l(k)
!q(k+1) 9 ) 9 ¢ e g Ep . 9 gq(k)
CZLI VI B NP P IR 3 I (T
B H
I 0
~p ~
s e+ | e (14)
: 0
LG L,
and
FX(k) 4 .‘S [} 9 s 9 v 91 D‘(k) ]
!1(k) 9 ) Sp v ses 9 ' 9 El(k)
AR L e SR R SR
Eq(k) 04 O 4 ¢ov s Ep ¢ O gq(k)
_y(k) | ._9 ' 9 ¢ ses g 9 ' SIJ _g(k) :

In view of equations (4) and (5), it is clear by differencing
equation (14) (qgq-1) times that the closed-loop tracking system
will behave so that

um o ¥z (x) = o (16)

K+ ~q =
and therefore, in view of equations (7), so that equation (3)
will be satisfied if the error-actuated dynamic compensator
governed by equations (ll) and (12) is designed such that all

the eigenvalues of the plant matrix of the closed-loop tracking

3

S
e
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system governed by equations (1l4) and (15) are assigned to

locations within the unit circle of the complex plane.

3. ComPeNsATOR DESIGN

It is evident from equations (8), (9), (1ll), and (12)
that such a compensator can be designed by the synthesis of

an appropriate output-feedback control law of the form
u, (k) = §l!£(k) (17)

for the augmented open-loop system governed by state and

output equations of the respective forms

§!(k+1) = §2§£(k) + 5292(k) (18)
and
Y = Coxptk) (19)
where
[u (k)
u, (k) = (20)
3 Lv (k)
rg_c(k) 5
fl(k)
Xy (k) = ::::: (21)
fq(k)
Lw(k)




e

—

i
i
i'
i

x,.(k_) -

and

- 107 =

[y (k) ]
z, (k)

L B R

z_ (k)
v (k) |

O 10
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O

Ep ¢ cee g
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(24)
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Thus, if the (m+)x(p+pqgq+l) output-feedback matrix 92 is

such that the closed-loop plant matrix (A£+§EG£C1) has a

self-conjugate eigenvalue spectrum {Al,kz,....xt), a correspond-
ing eigenvector and generalised eigenvector set {x{h'j):

e |
h-l,z....,mji:j-l,z,...,k1;1-1.2,....t}. and a corresponding

reciprocal eigenvector and reciprocal generalised eigenvector

set {‘{c’b) 3c-1'2'o-o'%a;b-IIZ'o..'ka:a-lpzpooo't}' then

5 (L3
(A, *15*9:9191’Xx1 0 (27a)
3 (2,9 _ (1,9
(A, *if*gzgzgz’Xxl X, (27b)
(m :j) (m -lvj)
= ji % ji
(A, *15*929191’3;1 X, (27my,)

(j-lpz'o..'ki:1-1'2'o..'t)

and

0P gy = g f2R) (282)

a . a

(m _=1,b)’ ( b)’

0, > (B0 I98,6,C) = 8, P (28m, =1)
a a

( b)’

62 (g ImGc) = o (28m )
a

(b.1,2....,ka;aﬂl,z....,t) .
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where K{h'j) is the hth vector in the jth string of length
myy assotiatod with the eigenvalue A,, and where Q§:'b) is
the cth vector in the bth string of length ™a associated
with the eigenvalue Aot The vectors Z{i'j) (3-1,2,...,;1)

are the k, eigenvectors associated with the eigenvalue A

i i
whilst the remaining vectors in each of the ki strings of
vectors satisfying equations (27) are generalised eigenvectors
associated with the eigenvalue Ai. Similarly, the vectors
Q:mba'b) (b-l,z,...,k‘) are the ka reciprocal eigenvectors
associated with the eigenvalue Aa’ whilst the remaining

vectors in each of the ka strings of vectors satisfying

equations (28) are reciprocal generalised eigenvectors associated
with the eigenvalue ka. The total number of vectors associated

with the eigenvalue kf in each set 1s evidently

k

&
m = Inm (£=1,2,...,t) (29)
£ g=1 gf
and
t
n+pg+it = Ime . (30)
f=1 '

Equations (27) and (28) can be written in the form

X{i—:j)

[§z°x1§ ' Ez] 1

(1,9)
w
ke S

tO

(31la)

| , — iﬁﬂﬂ‘m.-l.ﬁlil-.-..i-....-...‘....‘



p—

and

2,
i

BhZ o 3] | o [ = ythed
i W(2e3) ! i
-Ai

...'.O..'.."......'.....‘.......O....'

X\
i (B, _103)
[A,-2,I , B,] -« y, 33
~2 LA
(mji'j) i
w
~A
i

(j-l,Z,-..,ki}i-l,z,.‘.,t)

O(l'b)
~A
a
AI_A I cl - ¢(2 b)
[~z e ~z] z(l,b) 2
..)‘a

l.‘.....'.'.............l..............

.......QI....I........‘.."...I.‘......

¢ (mba"lyb)
~A

(mba.b)

[A'-x I ’ C'] . ¢
wl o £ (mba‘l'b) 'Aa
13

(my 4 /D)
2
a
Al=\_I , C!] =
[-l a~ ' (mba'b)
3

10

(b-lpzpooo'kl;a-].'z'.oo't)

(31b)

(3lmji)

(32a)

(32mba-l)

(32mba)
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where
,{: . J“lx(: 3) (33)
E{c.b) = ~l~zo(c,b) (34)
a
and
0! (.'b)~kih'j) P Gaisbjach (35)

(h-1'2'0..'mji,j.I'Z'...'ki;i.l'zponu't)
(c-1'2'--.'n\ba;b-1'2'.c-pka;a-I'Z'---'t) .

Conversely, if equations (31), (32), and (35) are satisfied
by a self-conjugate set (Al.k2....,xt} of complex numbers

and corresponding self-conjugate sets {x{h'j): h-l,z,....mji;
G

3=1,2,..0,k,14%1,2,...,t) and (o‘c'b) 10=1,2, 000 My 1b=1, 2,000 0k,

a=1,2,...,t} of linearly 1ndependent vectors, then equations
(33) and (34) are satisfied by an (m+2)x(n+pg+) matrix G,
such that {xl,xz,...,x } is the eigenvalue spectrum of the

matrix (A +B G C ). {X(h j):k-1,2,....mji;j-l,z,...,k

¢
A
i=1,2,...,t} constitutes a corresponding eigenvector and
generalised eigenvector set, and (¢(°'b)xc-1.2,...,mb‘;

b-l.z,....ka;anl,z,...,t} constitutos a corresponding reciprocal
eigenvector and reciprocal generalised eigenvector set. It
accordingly follows from equations (33) and (34) respectively

that the real output-feedback matrix

Gy = [wy v wp v eevs ‘:'p+pq+ﬂ [CeXy v SaXp v ove Slﬁ*m*!]

(36)

e




and the real transposed output-feedback matrix

' -1
Gp = [&y » 82 v vov v Tnegl[BR®) # Bty v oon o BiON L]
(37)

assign the self-conjugate eigenvalue spectrum {xl,xz,...,xt},
the corresponding eigenvector and generalised eigenvector set

(h'3) .pha : .
{Exil oh 1'2000-'mj1' 10

corresponding reciprocal eigenvector and reciprocal generalised

eigenvector set {¢§c'b):c-l,2....,mba;b-l,z,...,ka;a-l,2,...,t}
a

j’l,z,...,k i'l,2,...,t}, and the

to the closed-loop plant matrix (A ,+B ,G,C,) in case

~L <~~R<2
{9251'9232'""925p+pq+2} is a subset of (p+pg+%) linearly
independent members of the set {(C X(h'j);hal,z,...,m

oW i

3=1,2,.0urky34=1,2, ... ,t} and (B¢, /Bidysree. Bio )} is a

subset of (m+%) linearly independent members of the set
(8;0:°P) rem1,2, .00y ib=1,2,..0 ,k sam1,2, ..., t]).

?n view of equations (31), (32), (36), and (37), the
computation of G, is thus reduced to the determination (Porter
and D'Azzo 1978) of the kernels and generalised kernels of

each of the t matrices
S, (\) = [A,-\1, B,] (1=1,2,...,t) (38)

together with the kernels and generalised kernels of each of

the t matrices
Ty = (A=A I, ¢l (a=1,2,...,t) (39)

followed by the selection of sets of linearly independent self-
conjugate vectors {xih'j):h-1,2,...,mji;j-l,2,....kixi-l,z,....t}
i
and (91 1e=1,2, ... ,m ,1b=1,2,. 00,k sa%1,2,. .. ,t) from sub-
a

spaces determined by the kernels and generalised kernels of
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Sp(Ay)(i=1,2,...,t) and T/ (A ) (a=1,2,...,t), respectively,
such that the orthogonality conditions (35) are satisfied.
It is finally evident from equations (11), (12), and (23)
E | that the matrices in the respective state and output equations
| of the required fth-order dynamic compensator are determined

by the sub-matrices of the output-feedback matrix Gl.




| 4, ILLUSTRATIVE EXAMPLE

The results presented in Sections 2 and 3 can be con-
veniently illustrated by designing an error-actuated dynamic
controller which will cause the output of the controllable

and observable linear plant governed by the respective state

+ u(k) + d(k)
xz(k), 1 -3

and output equations

xl(k+l) R
Xy (k+1) v =143

(40)

7 x, (k)
yk) = Ll ' 6] (41)
xz(k)

to track any constant command input r(k) in the presence of

any unmeasurable constant disturbance input d(k) in such a

way that e(k) = O after a finite number of discrete-time
intervals. 1In this case it is clear that r = s = q = 1, so

that the open-loop tracking system is governed by the respective

state and output equations

%, (k+1) Ke 1, 0] [%(k) o)
Xy(k+#1) | = [ 1, =1/2 , O] [x,(k)| + |1]u(k)
z(k+l) -1, o , 1] |z(k) 0

0 1] |

+ |10jr(k) + |=1l]jd(k) (42)

1 o

and
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xl(k)]
y (k) ) SE o N o
[ ] = [ ] xz(k), " (43)
z (k) 0+ Q ,; ) ’
z (k) J

This system is clearly controllable and observable with

c

:_ (13) indicates that & = 1. Furthermore, in the notation of

equations (24), (25), and (26), it follows from equaticns
‘ (42) and (43) that

- PR, S SN
I , =x/2 , 0, 0
Al = (44)
o -1 ’ 0 ? l ? (0}
0, (o] ¢+ 0, O
o , O
1l 40
B, = (45)
o, 0
Lo ’ 1_‘
and
L @y O 5 O
C_!l o ,0,1,0 . (46)

00,0, 1

It is thus evident from equations (38), {(39), (44), (45),
and (46) that

v_ = 3 and v, = 2 so that (Brasch and Pearson 1970) equation
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=) , - TR T R
l ’ -X-l/z ’ o ’ 0 ' 1 ’ 0
SI(X) = (47)
= -1 ' o ’ l‘k ’ 0 ' 0 ’ o
Lo ' 0 ’ o ¢ =A v Q0 l_
and
.‘X ’ 1 - L s B gk g By oﬂ
1 , =A=1/2 , Q , O ;, & 6 0O
Ti(A) = . (48)
o ’ 0 ’ l-x ’ o ? (0) ' l ] (o}
L0 , 0 ’ G = 0 Ty 1_‘

In order to design an error-actuated dynamic compensator for

the open-loop tracking system governed by equations (42) and
(43) such that the error is eliminated after a finite number

of discrete-time intervals, it is necessary to assign the

value zero to all the eigenvalues of the closed-loop plant
matrix. Such an assignment clearly requires that t = 1,

m1 = 4, and Al = 0 and therefore, in consonance with the results
of Rosenbrock and Hayton (1977), that kl= 1l and m = 4. It

11
follows (Porter and D'Azzo 1978) from equation (47) that

[ )

1 0]

o o

; 1 0
5 ker S,(0) = span { ' L (49)

i 0 1

-1 (o)

LLOd O]

and similarly (Porter and D'Azzo 1978) from equation (48) that
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1 (0] 0
(@) 1 o)
ker 21(0) = span {| O 1O 4 |1} . (50)
-1 1 (0]
| 0 -1 0
é | o lel i

It is evident from equation (49) that the closed-loop eigen-

X(l'l)

=
vector 2o

corresponding to the eigenvalue Al = O must be

assigned to the subspace

r =) ¥ 3

1 [0
o] (0]
£,(0) = span ' . (51)
1 (o)
{SU LLJ

whilst the associated string of generalised eigenvectors

Ké2,l)' xé3,lz nd Xé4’l)

must be generated in accordance with
equations (31), and it is similarly evident from equation (50)

that the closed-loop reciprocal eigenvector 9é4,1) correspond-

ing to the eigenvalue Al = 0 must be assigned to the subspace

(71/27 0] o1 |
1 o) 0 1
r,0) = span i v ’ } (52)
o 1 o)
kL 0 j O] U;J

whilst the associated string of generalised reciprocal eigen-

(3,1) (2,1) (1,1)
o) ¥ Qo fe)

vectors ¢ must be generated in

, and Q
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accordance with equations (32).

%
0
xc(,l.l) 1
(1,1) (0]
Yo
-1
| O
r o
(2,1)
Yo & 1
9;2'1) -1
1/2
- o —
—0-1
0
3,1y
o o . ]°
9éS.l) &
1l
(=1
F"Q"
0
4
Ké ' 1)
‘fc()"l’ -3
(0]
L 1]

Since the vectors

(53)

(54)

(55)

(56)




[=1/4]
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(57)

(58)

(59)

(60)
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are clearly such that

’
Qécll) Kéh'l) = Gch (c,h=1,2,3,4) (61)

it follows from equations (36) and (37) that the required
eigenstructure assignment is achieved by the output feed-

back matrix

-1/4 , 3/4, 1/4
G1 = - (62)
5 1/2 , -1/2 , -1/2

In view of equations (1l1), (12), (23), and (62), the correspond-
ing dynamic compensator for the open-loop tracking system
governed by equations-(42) and (43) is governed by the

respective state and output equations

w(k+l) = =-1/2 w(k) - 1/2 e(k) - 1/2 z(k) (63)
and
u(k) = 173 w(k) + 7/4 e(k) + 3/4 z(k) (64)

so that the required error-actuated dynamic controller is

characterised by the transfer function

T(z) = ulz)/e(z) = (7z2%-2-2)/(4z+2) (z-1) . (65)

It can be readily verified that the closed-loop tracking
system governed by equations (42), (43), (63), and (64)
tracks any constant command input r(k) in the presence of
any constant unmeasurable disturbance input d(k) in such a

way that




————
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e(k) = r(k) -ylk) = 0O (k=4,5,...) . (66)

4, CoNcLUSION

] In this paper, the method of entire eigenstructure

assignment has been applied to the design of linear multi-~

variable discrete-time tracking systems incorporating error-
actuated dynamic controllers. The theory developed in this
paper is analogous to that developed by Porter and Bradshaw
(1978) for continuous-time tracking systems. However, in
this paper the theory has been extended in order to allow the
assignment of confluent eigenvalues to the plant matrix of
the closed-loop tracking system. It is therefore possible to
apply the theory to the design of error-actuated dynamic
controllers which eliminate completely the error between the
command input vector and the output vector after a finite

number of discrete-time intervals.
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ABSTRACT

In this paper, the controllability results of Bradshaw
and Porter (1975) are applied to the design of linear mutli-
variable discrete~time tracking systems incorporating plants
with inaccessible states for which appropriate error-actuated
controllers exist. The design method is illustrated by the

presentation of the results of simulation studies.
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1. INTRODUCTION

It is the purpose of this paper to develop a basis

for the design of linear multivariable discrete-time tracking

systems incorporating error-actuated controllers which is

directly analogous to that developed for continuous-time

tracking systems by Porter and Bradshaw (1976). The control-
lability results of Bradshaw and Porter (1975) are accordingly
applied to the design of linear multivariable discrete-

time tracking systems incorporating plants with inaccessible
states for which appropriate error-actuated controllers exist
and for which it is therefore possible to achieve satisfactory
tracking behaviour without the need to incorporate observers
in the manner of Bradshaw and Porter (1976). Such discrete-

time tracking systems consist of a controllable nth-order

linear multivariable plant governed by state and output

equations of the respective forms

§(k+1) = §§(k) + gg(k) (1)

and

y(k) = Cx(k) (2)

together with a controller which is required to cause the
pxl output vector y(k) of the plant to track a pxl command

input vector v(k) in the sense that

lim e(k) = lim{y(k) - g(k)} -9 (3)

~

K+ K+

for polynomial command inputs, i.e., for command inputs with

the property that

—»—-.--—-Lui
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2 v = 0 (4)
where
: A(l)g(k) = v(k+l) = v(k) ' :
8Py = aWyken) - aMy) '
IR I LI | o

® 9 098 09 00 00 00O RO Re e OeNORe RO ETEYEOSETOEDN ’

It is important to note that, although these discrete-time
tracking systems reduce to the error-actuated sampled-data
servomechanisms of classical control theory (Bergen and
Ragazzini 1954) in the special case p = 1, the design of
error-actuated multivariable servomechanisms in the general
case p > 1 is always non-trivial - and sometimes impossible -
in view of the fact that the assignment of prescribed eigen-
value spectra by error-actuated controllers and by output-

feedback controllers (Kimura 1975) are essentially equivalent.

2. THEORY

The first stage in the design of the required error-
actuated controller for the plant governed by equations (1)
and (2) involves the introduction (Bradshaw and Porter 1975)
of a vector comparator and a series of r discrete-time vector

integrators in order to generate the r vectors defined by

the equations




z, (k+l) = 51“" + e(k) '

2,(k+l) = =z (k) + z,(k) '
:?....Q.Q..l:?......:.O...' ’ b (6)
® 9 9 90 00 00 000 RSP OROREOPOOPRTDS ’
® 9 00 0 0000000 O TP OO OO OO OEOGEO SO ’

3 (k+l) = z (k) +32 (k) .

It is then evident from equations (1), (2), and (6) that the
open-loop tracking system is governed by a state equation

of the form

[x(k+1) 7 A ,0,0, «ev 0, 07 fk(k) 7]
) (D) "Cedel v s 80 MM
7, (kD) P Bl oo 090 8F a0
2 keD) S0 8 4 T s il 0l it
Ltk | 10 00000 e s T, 0f fr
_gr(k+1) 3 _9 ¢+ 0,0, «ee s I, ;u Lfr(k) 3

e« 10 10 10 zm:
« 10 10 1H rq

+ u(k) + vi(k) « (7)

o o
(0] 0

T
]
L
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The second stage in the design of the error-actuated controller
involves the introduction of (r+l) vector feedback loops in
order to generate the mxl input vector u(k) according to the

error control-law equation

ta

b P L AR Y L s

i=1
where the §i(1-0,1,2,...,r) are mxp feedback matrices. It
is then evident from equations (7) and (8) that the closed-

loop tracking system is governed by a state equation of the

form

~ - e b

X(k+1) ] [ABK,C o BE) . BKy 4 wee s BK. , BKJR(K)
2, (k+1) ST A R A Y
Ez(k"’l) 9 ’ .I. ’ .I. ¢ cee g 9 v 9 Ez(k)
53()("‘1) 9 ) 9 ’ E ¢ eee 9 ’ 9 33“‘)
z__; (k+l) g+ v 8§ e 9 v @ HEym
Lgr(k"‘l) i 9 ) 9 ’ 9 P oees ¢ E ) .I.- Lfr(k) :

. (9)
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In the case of pxl vector polynomial command inputs of the

form

¥
vik) = I a, _

xi-1 3 (10)

it is clear by differencing equation (8) (r-l) times that
the closed-loop tracking system will behave so that

um 4Pz (1) = 0 (11)
K+

and therefore, in view of equations (6), so that equation
(3) will be satisfied if the error control law (8) can be
synthesised in such a way that all the eigenvalues of the
plant matrix of the closed-loop tracking system governed by
equation (9) are assigned to any desired locations within
the unit circle.

However, in view of the presence of the sub-matrix
(Q-ggog) in the plant matrix of the closed-loop tracking
system, an error control law of this class will not always
exist (Kimura 1975) even if the open-loop tracking system
governed by equation (7) is controllable in the sense that

(Bradshaw and Porter 1975)

B '] A-1
rank |~ i = n+p . (12)
0., =€

It is nevertheless evident that such a control law will

certainly exist if, for example, a stabilising state-feedback

control law of the form
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L
u(k) = Kx(k) + £ Kiz (k) (13)
- — j=1~1i~
can be synthesised such that there exists a matrix Ko with

the special property that

K = X : (14

-~

However, the existence of a stabilising error control law
of the form (8) can in general only be investigated
systematically by using decision methods in the manner of

Anderson, Bose, and Jury (1975).

3. ILLUSTRATIVE EXAMPLE

The theory presented in Section 2 can be conveniently
illustrated by designing an error-actuated controller which
will cause the output of the controllable second-order linear

plant governed by the respective state and output equaticns
(Bradshaw and Porter 1975)
X, (k+1) o 1| [x, (k) v S | u, (k)
[1 - [ Nl ‘ (15)
Lxy (k41) -6 , 5] [x,(x) lo 2] Luytx

and
¥y, (k) 1 Sl x, (k)
2(k) =L 7l xz(k)

to track the command input vector

-

vl(k) 2k
= (O<k<=) . (17)
v, (k) k
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E In this case it is clear that the command input is of the
form (10) with r = 2, so that the state equation (7) of the

open-loop tracking system assumes the form

(%, (k+1) ] ©, 1,0,0,0,0] [x(k/
Xy (k+1) -6 , 58 ,0,0,0,0 X, (k)
z), (k+l) % =} + O 3 100,98 ;90 2,4 (k)
221(k+1) g =L ;0 9 ) s 04 0 zzl(k)
2,4 (k+1) ©, 0,1,0,1,0 (z,(k)
[2,, (k+1) | [0, 0 ,0,1,0, 1] [z,,(k)]
3. X 0 , O]
o, 2 o, 0
0,0 [ul(k)] 1, © [mc]
+ + (18)
0,0 uz(k) + P § k
o, 0 o, 0
[0, 0 0 , 0]
where zij(k) is the ith element of the vector Ej(k)' Since
(Bradshaw and Porter 1975)
§ R R P
oO,2, -6, ¢4
rank = 4 (19)
0,0, =1, 0

o
-
-
~l
4

the controllability condition (12) is satisfied in this

case: it is therefore certainly possible to synthesise a
state-feedback control law of the form (13) and a correspond-
ing error control law of the form (8) such that the eigenvalues

of the plant matrix of the resulting closed-loop tracking

—— R — -_._M




system assume arbitrary values since also the output matrix
in equation (14) is invertible. 1In the particular case
when these eigenvalues are all assigned the value zero by

the implementation of the error control law

[, (k) ]
oz(k)

[ul(k):l ¥ [2.5 ¢ 2.5 , 1.5 , =1.5 , 0.5, -o.s] 2y, (k)
u, (k) 0.5, 3.5, 1.5, 1.5, 0.5, 0.5 |z,,(k)
)2k
25 (k).

(20)

the behaviour of the initially quiescent tracking system is
as shown by the full lines in Figs 1 and 2: it is evident
from Fig 1 that

lim e, (k) = lim{vl(k) - yl(k)} = iif{vl(k) - xl(k)} = 0

k+® k+o

(2la)

and from Fig 2 that

lim cz(k) = iiﬂ{vz(k) - yz(k)} = lim{vz(k) + xl(k) - xz(k)} =0

k+o

(21b)

as required.
The corresponding behaviour of the initially quiescent
tracking rystem in case a state-feedback control law is

implemented (Bradshaw and Porter 1975) is as shown by the
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dotted lines in Figs 1 and 2: it is again evident from Figs 1

and 2 that equatiocns (2la) and (21b) are satisfied, but that |

the transient behaviour of the tracking system incorporating
a state-feedback controller (Bradshaw and Porter 1975) is
slower and less oscillatory than the corresponding behaviour

of the tracking system incorporating an error-actuated controller.

4, CoNCLUSIONS

In this paper, the simple matricial methods developed
by Bradshaw and Porter (1975) for the design of linear
multivariable discrete-time tracking systems for plants with
accessible states have been applied to the design of linear
multivariable discrete-time tracking systems incorporating
plants with inaccessible states for which appropriate error-
actuated controllers exist. The results of simulation studies
have been presented which indicate that the transient behaviour
of tracking systems of the latter class is faster but more
oscillatory than the corresponding behaviour of tracking

systems incorporating state-feedback controllors.
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ABSTRACT

It is known (Porter and Bradshaw 1978a) that, in the
case of self-conjugate distinct eigenvalue spectra, the
closed-loop eigenstructure assignable by output feedback is
constrained by the requirement that the eigenvectors and
reciprocal eigenvectors lie in well-defined subspaces. 1In
this paper, a technique is presented which can be used to
select the eigenvectors and reciprocal eigenvectors from
these subspaces in the case of appropriately augmented
(Kimura 1975) controllable and observable continuous-time
systems. This technique is ideally suited to digital-
computer implementation and therefore greatly facilitates
the synthesis of both static (Porter and Bradshaw 1978a)
and dynamic (Porter and Bradshaw 1978b) output-feedback

controllers.




- 137 -

1. INTRODUCTION

It has been shown (Porter and Bradshaw l1978a,b) that the

method of entire eigenstructure assignment can be applied to

the design of output-feedback controllers for multivariable
linear continuous-time systems governed by state and output

equations of the respective forms

x(t) = Ax(t) + Bu(t) (1)
and
y(t) = Cx(t) ' (2)

where QE g §€ - SE RPXR - rank B = m, and rank
C = p. Thus, if output feedback is applied to the system
governed by the state equation (1) in accordance with the

control-law equation
u(t) = Gy(t) (3)

and the output-feedback matrix gEE:Rme is such that the
closed-loop plant matrix (§+§§§) has the self-conjugate

distinct eigenvalue spectrum {Al,xz,...,xn}, then the corre-

| sponding eigenvector and reciprocal eigenvector sets{gl,gz,...,gn}

and (gl.yz....,yn) must be such that

", Pu -

i ~J
ijE ker[A=\;1 , B] (3=1,2,.c00) (4)
(v, ]
i E ker[{\'-)\i.l. ' g'] (1‘1,29-.-,“) ¢ (5)
z
-~1J

ii and




-5y (1,3=1,2,...,n) . (6)

’
vi%y

The output-feedback matrix is then given by the formulae

9-[!1,212,...,‘»?][ 4, + Cu, RS

~ o~

9'-[51'52, ce ,zm][ l,gvzp cese 'B'Vn‘]-l ’

where, in this paper, the state and output equations (1) and

(2) represent appropriately augmented (Kimura 1975) con-

trollable and observable continuous-time systems.

Thus, the synthesis of the output-feedback control law

(3) requires the selection of linearly independent sets of

vectors {gl,gz,...,gn} and {yl,gz,...,gn} from the respec-

tive subspaces defined by relations (4) and (5) which satisfy

the orthogonality condition (6). It is shcown that this

selection can be effected by performing restricted elementary

row and column operations on matrices formed from the spanning

vectors of these subspaces, and that the resulting synthesis

procedure is therefore ideally suited to digital computer

implementation.

2. THEORY

The first stage in the synthesis of the control law is
clearly the determination (Porter and D'Azzo 1977) of the

n kernels
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Xie (24

Sy = ker[A-XjI » B] = span [
L Al gk(kj)

]:k-l,....n

(1=1,2,¢.,0) (9)
and the n kernels

¢ (X))
T') = kerQ\'-u.: » C'] = span [“k :

}:k-lpooocp

(i=1,2,...,n) (10)
It follows from relation (4) and equation (9) that
Eje U(iy) = span {l(k(kj)zk-l,....m}
(3=1,2,...,n) (11)
and from relation (5) and equation (10) that
“e V(X{) = span {¢, (1)) :k=1,...,p}

(1-102100"n) ' (12)

that is
Bj - E(xj)gj (3-1'200000n) (13)
and
i !i o &ig'(xi) (1-1'200009n) I (1‘)
where

§(kj) - EEI(Aj) ’ 52(Xj) ’ cee Em(lj)]

(J=1,2,...,n) (15)




i ————————— A ——
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and
A = [8, (1) » $(0) 4 ey gp(xi)] '
(1=1,2,...,n) (16)

where Ej is an mxl vector and &) is an lxp vector. Egquations

(13) and (14) can be more conveniently expressed in the form

gj = §(xj)§ (j=1,2,...,n) (17)
and
Y' = Eig'(xi) (i=1,2,...,n) » (18)

where u and ny are the first columns of the nxm matrix U
and the mxm matrix gj respectively, and Yi and 51 are the
first rows of the pxn matrix Y‘ and the pxp matrix L,
respectively. The orthogonality condition (7) then requires
that the element mij in the first row and the first column

of each of the pxm matrices
M,. = VU, = L&' (\)X(A N, = L, M{ON
w15 " Sigg T s WMoVl T Ay ')
(i,j-l,2,...,n) (19)

be such that

i3 (1,3=1,2,...,n) , (20)

yig) - 2'(xi)¥(kj) (i,j‘l,z,-oocn) . (21)

It is evident that the condition (20) can be satisfied by

per forming restricted elementary row and column operations
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on the npxnm matrix

' . [M‘°)] (1,3%1,2,...,n)  (22)
according to the equation

M= Oy . (23)
where the npxnm matrix

M= [M,] (1,3=1,2,...,n), (24)
the npxnp matrix

L = diag[L,] (i=1,2,...,0) , (29)
and the nmxnm matrix

g-diag[lgj] (3=1,2,...,n) . (26)

These computations can be conveniently organized in

the following steps in view of the results of Kimura (1975):

(o) (o) (o)
(1) Set M = [_n ] ,L -;np, and N =1 .

(2) By restricted elementary column operations on M(O) and

~1ij
g;O) (1-1,2....,nsj-l.Z,....n-m) determine \31€ u(xj)

(j=1,2,...,n=-m) such that (g '92""'3n-m) is a linearly

u© L gD g ()

independent set, . and

(D) o (o)D)

~

(27)

~e

(3) By restricted elementary row operations on n{;’ and

L(o) (i=n-m+l,n-m+2,...,n;3j=1,2,...,n) determine

GE.V'(Ai) (i=n-m+l,n-m+2,...,n) such that v = m{i)

viYy
= Q (1.n-m+1.n-ln+2,...,n:j-l,2,....n-m), 5(1) . M(Z)




(4)

(5)

(6)

(7)
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E(O) & E(l) . and

By restricted elementary column operations on M(Z)

i]
and g;l) (i=1,2,...,n;j=n-m+l,n-m+2,...,n) determine
ngE U(Xj) (j=n-m+1,n-m+2,...,n) such that viu, = mig)

= 0 (i=n-m+l,n-m+2,...,n;j=n-m+l,n-m+2,...,n;1i#3),
M(2) G §(3) 2 N(1) 2 g(Z)

~

, and

w3 o LD yle)y(2)

: (29)

By restricted elementary row operations on Mig) and

Eil) (1=1,2,...,0-m;3=1,2,...,n) determine v{ & V' (1)

(i=1,2,...,n-m) such that v’u, = mi?) =0 (11,2, 00}

L@ T @

->

j=n-m+l,n-m+2,...,n), , and

M) o [ (2)y(0)y(2)

H (30)

By restricted elementary row or column operations on

lf.ij(.;) (1=1,2,...,n;J=1,2,...,n) normalize Y:'L - |

such that viu, = m(3) =1 (1=1,2,...,n), u'4 » w5,

L@ L () @ L) g

§(5) & I:(3),:,(o)§(3) =N = 53(0>§ ; (31)

Compute the Ej (3j=1,2,...,n) using equation (17) and

compute the yi (i=1,2,...,n) using equation (18).

-—
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In certain pathological cases (Kimura 1975), special

spectra exist for which no corresponding output feedback
matrix exists and for which this computational procedure
therefore fails: in such cases, however, it is only necessary
slightly to perturb the spectra in order to obtain solutions.
It is also possible for this computational procedure to

fail for certain pathological choices of u EZLHAj)
(j=1,2,...,n-m) in step (2): in such cases, however, it
is only necessary slightly to perturb the ngE U(Aj)

(j"l,z, ...,n‘Rl) .

3. ILLUSTRATIVE EXAMPLE

The procedure can be conveniently illustrated by the
synthesis of an output-feedback control law for the continuous-
time system governed by the respective state and output

equations (Porter and Bradshaw 1978b)

i P SR B [0 , O]
. l1,1,0,0 I ;@
x(t) = x(t) + u(t) (32)
i -1 ’ 0 ' (0] I} (0] B 0 ’ 0 3

(0 ,0,0, 0 0, 1

and
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s O 0,0
X(t) = |0, O, 1l ¢ O l‘(t) (33)
O ’ (0] ’ O ’ l

such that the eigenvalue spectrum of the closed-loop plant

matrix is

0(§+BGC) = {X11A2,A3'A4} = {-1'-2'-3'-4} . (34)

~ o

Indeed, it is evident from equations (9), (10), (32), (33),
and (34) that

r!'_l'\ ’01
1 o
-1 (o]
S(=1) = span |{ ’ . ' (35)
o 1
=1 (0]
(o] =1
lb . L =
f- ¥ ..‘
-2 [0
4 (o]
= (o]
S$(=2) = span ¢ ' ) ' (36)
(0] B!
=10 (o)
(o] -2
(" # )




T’ (-1) = span -
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-3 0 (o}
1 o o
0 1 o]
T’(-2) = span {|O( , (O , |1 L ’ ' (40)
' 3 1 0
o -3 o
“0 L O L'zj‘
r'-ﬂ 0] 07
1 o 0
\ 0 1 o
T’(=3) =span {|O| , |O}f , |1 ' (41)
11 1 0
0o -3 0
Lo 0 -3
and
(21 To .01*
1 0 0
(o] 1 0o
T'(~4) = span {|O| » O] +» | 1]} . (42)
19 1 o
6] -4 o)
(190 k8] by

It is evident from equations (11l), (35), (36), (37), and (38)
that the closed-loop eigenvectors corresponding to the eigen-

value spectrum (34) must be assigned to the respective subspaces
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rr-lq r01‘
1 (o}
U(-1) = span | w11} A (43)
-] o}
Lol ]
(o o))
4 0
U(-2) = span f{ ’ r . (44)
-1 (o]
L LL‘
h’-3' [0
9 0
U(-3) = span 1 ' & ' (45)
-1 (0]
0 1
Lo,
and
|
e n
16 (0]
U(-4) = span |{ ' ) ' (46)
-1 (o]
o} 1
Lol 1]

and it is similarly evident from equations (12), (39), (40),
(41), and (42) that the closed-loop reciprocal eigenvectors
corresponding to the eigenvalue spectrum (34) must be assigned

to the respective subspaces

(¢ " i)

-2] 0] 0]
1 (o) o}
V(=1) = span ¢{ ’ ’ + ' (47)
(o] 1 (o)
L o] o] [al ‘




© )
- -
o © o D O 0 ~
' o o o o O e
@
4 - -
—4
- r v B
T = o T o 0 ©
Q 2
2] L)
" I
~ )
1 1
> >

and

(50)

.

V(-4) = span {

(15), (16),

(12),

It therefore follows from equations (1l1),

(21), and (22) that

=
0
0O O ~ lo o ~10 o ~10 O ~
-~ - '-' S '- -~ = B - - -
! ! !
<« o~ ® o~ o o~ © ~
o & » lee 0“ m 1 © ie o
......... TS T ST
(o] O 1“0 (o] 1“0 (@] 1"0 O ~
- -~ N - -~ 1 - - .l - -
“ “ "
n o~ ® o~ - o~ < o~
o ) © R O“ o 1 © R o
llllllll wl|||lll|lwllltlllllﬂlllllll||
o O 1;“ O O =~ “nu o 1;“ 0O O
- - -1 - - P | -~ - - | - - -~
“ “ :
~ - o - < o~
- [} O” m 1 O“ — ] o “l 1 o
......... R [ RS T
(@] o] 1“0 (©] 1“0 o 1“0 o —
i 1 i
wogolw 3 olm 9 ojw 8
]
°
=1
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Then, by performing the restricted elementary column operations

corresponding to setting

1 5
n, = (52)
1 “1 1.9
;i and
1l
- Tl , (53)

it follows from equation (27) that

3,018 ,0(08,0( 2,0
[} | ]
-5'0:-1'0'-1'03-1'0
| \
. “F ., 337 *T a2 1@ .11 06,1
....... f----- CREEL] RERSERERR, [ ———
L i
-5,0'-1'0 -1'° -1'0
] ]
| (1) o AT 16 I R W I e O A S
i M o [mssrin it bommeeeee oo ,  (54)
25 , O 12 , O : 2l ; O 32 , O
\
-5'0 -].,O:-l,ol'l,o
| |
4 '7011‘701§-0'1i.0,l
‘ 30,0!14,01}24,0} 3,0
] ]
-S'O ‘1,0"1,0="1,0
| ]
.‘7,1l-7,1:0,1:0,1_

from equation (28) that
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from equation (29) that
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from equation (30) that

Ehyei
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and from equation (31) that
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1/3,1/3,1/3}-9/2,-11,-5)4, 13 ,51-7/6,-14/3,-5/3
| |

0 ;1,010 1 1% , 1 ;@
[} 1

L = diag( 0, 1, O |
= |
|
!

O .,~14¢, 11 O ~-14,110,-7/5,014{ O ,~-7/5, 1
(59)
and
S BN ek e
5 -7, 1 -7,1,-14,1 ] =-23,1
It therefore follows from equation (17) that
[t i (=3 ] r ‘
«§] -2] -3 -4
; : 5 4 ] 16 |
U, ,u,,u,,u L ’ ’ ’ (61)
«1'32°33°34 -5 i -1 -
LS I S/ I S B £ 21
and from equation (18) that
r'—z/s‘ (27/2' [~16] [ 35/6 ]
: } 1/3 -9/2 4 -7/6 }
v v VarV = ’ ’ '
=17ad"~3"=4 1/3 -11 13 -14/3
{Ll/aﬁ h-s.u LS- \-_5/3-‘
(62)

In view of equations (4) and (9) the results (61) imply

{ : (-5 -10 -33 -76
Wo oW, Wa,W e ) ' ’ . (63)
i b t 7 14 42 92

and in view of equations (5) and (10) the results (62) imply

that

that

| O—
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2/3 ~67/2 57 -161/6
{51032033034} - -1/3 ’ 22 ’ "39 ’ 56/3 .

=-1/3 10 -15 20/3

(64)

It finally follows from either equation (7) or equation (8)
that the output-feedback control law (Porter and Bradshaw
1978b)

-47 ’ 34 ’ lo .
u(t) = x(t) (65)
49 ’ -35 ’ -11

assigns the spectrum (34), the eigenvectors (61l), and the
reciprocal eigenvectors (62) to the closed-loop plant matrix

of the system governed by equations (32) and (33).

4, CoNcLUSION

It is known (Porter and Bradshaw 1978a) that, in the
case of self-conjugate distinct eigenvalue spectra, the
closed-loop eigenstructure assignable by output feedback is
constrained b} the requirement that the eigenvectors and
reciprocal eigenvectors lie in well-defined subspaces. In
this paéer, a technique has been presented which can be used
to select the eigenvectors and reciprocal eigenvectors from
these subspaces in the case of appropriately augmented
(Kimura 1975) controllable and observable continuous-time
systems by performing restricted elementary row and column
operations on matrices formed from the spanning vectors of
these subspaces. This technique is ideally suited to digital-

computer implementation and therefore greatly facilitates the
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synthesis of both static (Porter and Bradshaw 1978a) and

g

dynamic (Porter and Bradshaw 1978b) output-feedback controllers.
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ABSTRACT

In view of the fundamental new insights into the
structure of linear multivariable continuous-time systems
provided by the method of entire eigenstructure assignment,
the design of dynamic compensators is equivalent to the
selection of pairwise-orthogonal eigenvectors and reciprocal
eigenvectors from two families of well-defined subspaces
which are parametrised by associated self-conjugate eigenvalue
spectra. This selection is effected by the use of a powerful
new algorithm which requires the performance of restricted
elementary row and column operations on matrices formed from
the spanning vectors of these subspaces. The digital computer
implementation of the resulting procedure incorporating this
algorithm is described and is illustrated by the design of an

error-actuated dynamic compensator for a linear multivariable

plant.
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1. InTRODUCTION

In most practical cases, it is of course impossible cto
implement state-feedback control laws since the state of the
plant is inaccessible and only the plant output is available
for control purposes. The method of entire eigenstructure
assignment (Porter and D'Azzo, 1977) has accordingly been
applied to the design of linear multivariable continuous-
time output-feedback regulators by Porter and Bradshaw (1978a).
It has been shown that, in the case of self-conjugate distinct
eigenvalue spectra, the closed-loop eigenstructure assign-
able by output feedback is constrained by the requirement
that the eigenvectors and reciprocal eigenvectors of the
closed-loop plant matrix lie in two families of well-defined
subspaces and satisfy appropriate orthogonality conditions.

In contrast, the closed-loop eigenstructure assignable by
state feedback (Moore, 1976) is constrained only by the
requirement that the eigenvectors of the closed-loop plant
matrix lie in just one family of well-defined subspaces. It
is because of the severe constraints on the closed-loop
eigenstructure assignable by output feedback that it is
frequently impossible to achieve satisfactory closed-loocp
behaviour by means of static continuocus-time output-feedback
regulators, and that it is consequently necessary to introduce
dynamic compensators (Brash and Pearson, 1970; Kimura, 1975).
However, it has been shown by Porter and Bradshaw (1978b)
that the design of such dynamic compensators can be effected

by applying the method of entire eigenstructure assignment to

i
¢
b
i
£
t

e R 7 A Y ) W8 g o T ) 1
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appropriately augmented (Kimura, 1975) continuous-time
systems.

In view of these fundamental new insights into the
structufe of linear multivariable systems, the design of
dynamic compensators is equivalent to the selection of
pairwise-ortheogonal eigenvectors and reciprocal eigenvectors
from two families of well-defined subspaces which are
parametrised by associated self-conjugate eigénvalue spectra.
This selection can be effected by the use of a powerful new
algorithm (Bradshaw, Fletcher, and Porter, 1978) which
requires the performance of restricted elementary row and
column operations on matrices formed from the spanning vectors
of these subspaces. The digital computer implementation of
a procedure incorporating this algorithm is described and
is illustrated by the design of an error-actuated dynamic
compensator for a linear multivariable plant. The principal
computational attraction of the procedure is that no operations
with polynomial matrices are involved, so that error-actuated
dynamic compensators for large-scale systems can be readily

designed.

2, COMPENSATOR STRUCTURE

The linear multivariable continuous-time tracking
systems considered by Porter and Bradshaw (12978b) consist
of a controllable and observable nth-order plant governed

by state and output equations of the respective forms

x(t) = Ax(t) + Bu(t) + DA(t) (1)
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and
y(t) = Cx(t) ' (2)

where x(t) € R®, u(t) € R, y(t).€ P, a(t) € B, A €, {
B E RN, o € RP®, p ERnXh. rank B = m, and rank C = p,
together with an error-actuated dynamic compensator which
is required to cause the output vector, y(t), to track a

command input vector, r(t), in the sense that

lim e(t) = lim{r(t)-y(t)} =0 (3)

L+ t+o

for unmeasurable command and disturbance inputs of the respective

forms

r -
rit) = I a,_,ti7 (4)
i=1
and
S
-1
d(t) = I B, ,t ; (5)

Such an error=-actuated dynamic compensator is governed by

state and output equations of the respective forms

% q
w(t) = Fw(t) + Ge(t) + ¢ Hizi(t) (6)
i=1
and
q
u(t) = Kw(t) + Le(t) + % Mizi(t) ' (7)
i=1

where




il(t-.) = a(t)

2 (8) = 2,060
tes s et e }.

LI I I B G B B (8)

zq(t) - zq_l(t) ’

/

q = max(r,s) ' (9)

wit) ERY, e(t) ERP, z () € RP (4=1,2,...,@), u(t) E R",
FER™, ¢ €rM™P, y, € R¥P (1a1,2,...,9), k€ ™,

L & R™P, M, € R™P (1=1,2,...,q9), and (Kimura, 1975)
L = max(0,n-m-p+1) - (10)

It is then evident from equations (1), (2), (6), (7), and
(8) that the closed-loop system is governed by state and

output equations of the respective forms

x(t) ] [A-BLC , L BMq , BK] [x(t)’
il(t) C , 0 , .ec, O, Offz(t)
iq(t) - SRR T TR W B zq(t)
Lwee) ] [ -ec , H 4 .o, Hy » Fllw(t)

'BL] D]

4

o 0

+ [ fr(t) + [*]a(t) (11)
o) 0
LG | 0]




(y(&)] e, 0oy 0, O)fx(e)]
Zl(t) o, IP POk 1 SR s © O zl(t)
Sae] T R G | g R
zq(t) Qi 0y evw Ip ¢ O zq(t)
CTUTH M U e R s £

In view of equations (4) and (5), it is clear by differentiating
equation (1ll1) (g-1l) times that the closed-loop system will

behave so that

lim Effg =0 ' (13)
atd
and therefore, in view of equations (8), so that equation
(3) will be satisfied if the error-actuated dynamic
compensator governed by equations (6) and (7) is designed 1
such that all the eigenvalues of the plant matrix of the
closed-loop system governed by equations (ll) and (12) are
assigned to the open left-half of the complex plane.

It is evident from equations (ll) and (12) that such

a compensator can be designed by the synthesis of an appro-

priate output-feedback control law of the form
ul(t) = Gzyz(t) (14)

for the augmented open-loop system governed by state and

output equations of the respective forms
xz(t) = Alxl(t) + Blul(t) (15)

and




where

yz(t)

ul(t)

xz(t)

yz(t)
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[—L,Mll---quo

"G,Hl' LY 'Hq'

(A R R

-CQO".tpo'o

.'.....‘....'.......

0,0,...,0'0

o,oo-OOOOOO.

]

(16)

(17)

(18)

(19)

(20)

(21)

SN SN




(CI 0 ’ e e e ’ 0 ’ 0

O,Ip,...,Opo

c!‘ = " (23)

o ’ 0 ’ K ’ I ’ o

P
Lo, O ) ecee 0 'Ig"

Thus, if the (m+%)x(p+pg+2) output-feedback matrix Gg is
such that the closed-loop plant matrix (Al+B£GICz) has the

self-conjugate distinct eigenvalue spectrum A = {Al,kz....,

An+pq+2}’ then the corresponding eigenvector and reciprocal

eigenvector sets {“1'u2""'“

n+pq+£} and {vl,vz,....v }

n+pg+%
must be such that

c ker[Al-XjIn+pq+z ' Bz] (3=1,2,...,n+pg+2) (24)

= ker[Ai-Ailn+pq+1 » €51 (1=1,2,...,n4pq+L) (25)

and

viuj = Gij (L,3=1,2,...,n+pqg+L) . (26)
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The output-feedback matrix is then given by the equivalent

formulas

Gy = [w, . Wy b 556 @ wp+pq+z][clul B B C2u9+9q+2]-1
(27)

and

6pn oy o 00 o Fm e s BEe. . e T

(28)

In view of equations (24), (25), (27), and (28), the

computation of G, is reduced to the determination of the

L
kernels of each of the n+pg+% matrices

S,(Ay) = Lal-xjx ‘ Bn] (3=1,2,...,n+pq+e) (29)
together with the kernels of each of the n+pg+{ matrices

Ty = [Ag-AT o, ] (1=1,2,...,n+pg+e) (30)

followed by the selection of sets of linearly independent

self-conjugate vectors {“1'u2"”'un+pq+£

} from subspaces determined by the kernels of Sz(Aj)

} and (vievgreee,
vn+pq+£
(j=1,2,...,n+pg+L) and Tz(ki) (i=1,2,...,n+pg+L), respectively,
such that the orthogonality conditions (26) are satisfied.

It is finally evident from equations (6), (7), and (20) that
the matrices in the respective state and output equations

of the required fth-order error-actuated dynamic compensator
are cdetermined by the sub-matrices of the output-feedback

matrix Gl.
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3. CompensATOR DesiGN PROCEDURE

3.1 System Augmentation Procedure

The first stage in the compensator design procedure involves
the formation of the augmented plant, input, and output

matrices by the following steps which constitute the routine

AUGMENT :
(i) Set g = max(r,s);
(ii) Set & = max(0,n-m-p+l)

(1ii) Form the augmented open-loop plant, input, and

output matrices Ag, By, and C,.

3.2 Kernel Computation Procedure

The second stage in the compensator design procedure involves
the computation of the closed-loop eigenvector and reciprocal
eigenvector subspaces by the following steps which constitute

the routine KERNELS:

(1) Select the closed-loop eigenvalue spectrum A =

Lagrigrsis el b

n+pg+L

(11) Form S, (\y) = [Az-kjl ¢ Byl (3=1,2,...,n+pq+2);

(111) Form T/ (A,) = [AJ=\,T , C] (i=1,2,...,n+pq+L);

(iv) Compute

xk(kj)
ker Sl(kj) = span tk=1,2,...,m+L

Nk(xj)

(3'1.2....,n+pq+l):

o




- 166 -
(v) Compute

¢y (X))
ker Ti(xi) = span [ k'

]3k-1'2,.oo'p*pq+1

(1-1,2,...,n+pq+2)7

"
-

| (vi) Form X(Ay) = [xp Q)+ X3 v e v Xy O]

(3=1,2,...,n+pg+R);

(vii) Form Q(Aj) = [wl(xj)

-

03 (Ag) ¢ eee (9]

(3=1,2,...,n+pg+R);

(viid) Form o(A) = [9)(A)) &+ ;A1) v vov v bpnoy ()]
(1‘1'2.. .o 'n+pq+") ,
(1x) Form 2(Ag) = (B3 (A0 + T30+ ov v Bopnagg ()]

(1-1,2,...,n+pq+l).

3.3 Eigenvector Selection Procedure

The third stage in the compensator design procedure involves
the selection of the pairwise-orthogonal closed-loop
eigenvectors and reciprocal eigenvectors from the respective

subspaces im X(Aj) (3=1,2,...,n+pg+L) and im o(xi)

(i=1,2,...,n+pg+2) by the following steps which constitute
the routine SELECT:

i) Select ujGZ im X(Aj) (3=1,2,...,n+pg-m) such that

(“1'“2""' } is a linearly independent set;

Yn+pg-m
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(ii) Compute viEE:im ¢(2;) (i=n+pg-m+l,n+pq-m+2,...,n+pg+L)
such that viuj = 0 (i=n+pg-m+l,n+pg-m+2,...,n+pg+L;

j“l,z g oo ’n+pq"m) ’

(iii) Compute uy € im x(Aj) (j=n+pg-m+l,n+pg-m+2,...,n+pg+L)
such that viuj =0 (i=1,2,...,n+pg-m;j=n+pg-m+l,

n+pqg-m+2,...,n+pg+l) ;

(iv) Compute viGEfim ®(X;) (i=1,2,...,n+pq-m) such that
viuj = 0 (i=1,2,...,n+pg-m;j=n+pg-m+l,n+pg-m+2, ...,

n+pg+L) ;

(v) Normalise vy or uy such that v!

vy = 1 (i=1,2,...,n+pg+s).

3.4 Compensator Matrix Computation Procedure

The final stage in the compensator design procedure involves
the computation of the compensator matrices by the following

steps which constitute the routine COMPENSATE:

(1) Select a set {czu1 v Clu2 e TN } of

Clup+pq+£
linearly independent vectors and a set {Bivl i Biv2 b e R

14 .
Blvm+z} of linearly independent vectors;

(ii) Compute the output-feedback matrix

¥ =1
Gg’ = [wl'w2' g 'wp+pq+2] [cg'ullczuzl LY 'Clup+Pq+2']

and the transposed output-feedback matrix
-1
! = ’ ’ ’ q
Gy [21’22""'zm+2][Blvl'Bzvz""'Bzvm+z] ;
(1ii) Form the compensator matrices K.L,Ml,Mz,...,Mq and

F,G,Hlpﬂzlu- . 'qu
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4, ILLUSTRATIVE EXAMPLE

' This procedure can be conveniently illustrated by
designing an error-actuated dynamic compensator which will
cause the output of the controllable and observable linear

plant governed by the respective state and output equations

Fcl(t)' & WS SN AR rxl(t)‘
:’cz(t) G =1 ,=1,0[xit)
2,8 1, o ¢ 3 f2]lxw]
F1 . @ [0 ]
g , 0 ul(t)'l o)
+ + d(t) (31)
o, 0 uz(t) 1
o ¢ 1 -1]
and
xl(t)-
¥, (t) 1, =1, 2, 0]lx(t)
Y, (t) 0, 0 , 1, 1f|x,(t)
[_x4(t)_

to track any constant command input r(t) = [_'rl(t) ' rz(t)]' €R2
in the presence of any unmeasurable constant disturbance input
d(t) & Rr.

In this case, the outputs of the routines AUGMENT,
KERNELS, SELECT, and COMPENSATE when A = {-1.0,-1.5,-2.0,
-2.5,-3.0,-3.5,-4.0} are listed in the Appendix. These

l_ listings indicate that the required error-actuated dynamic

S e —— i e ﬁud
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compensator is governed by the respective state and output

equations
s Pel(t)-
w(t) = =1,989 w(t) + [-0.5431 , -2.258]
e, (t) )
'zl(t)'
+ [-1.260 , 5.227] (33)
|25 (%)

and
u, (t) [-19.40 10.26 , =51.98 e, (t)
= w(t) +
u, (t) [ 1.823 0.6437 ,  4.961] e, (t)

[-9.521 , 0.2316][zl(t)}

(34)
| 2.645 , -3.509 ||z, (t)

where [e, (t) , e, (t)]’ = [rl(t)-yl(t) ' rz(t)-yz(tﬂl'ezzkz
and [3)(6) , 3,(0)]" = [e;(8) , e, (0)]" E R2.

5. ConcLusiON

The method of entire eigenstructure assignment has
yielded fundamental new insights into the structure of linear
multivariable systems and, in particular, into the closed-
loop eigenstructure assignable by output feedback (Porter
and Bradshaw, 1978a,b). The design of dynamic compensators
has accordingly been reduced to the selection (Bradshaw,
Fletcher, and Porter, 1978) of pairwise-orthogonal eigenvectors
and reciprocal eigenvectors from two families of well-defined
subspaces which are parametrised by associated self-conjugate

eigenvalue spectra. The resulting procedure for the design

-
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of dynamic compensators is computationally attractive since
its constituent routines AUGMENT, KERNELS, SELECT, and
COMPENSATE involve only numerically stable operations.
Indeed, the entire procedure has been coded in FORTRAN for
the routine ccmputer-aided design of error-actuated dynamic
compensators, and forms part of a comprehensive suite of
design procedures for various classes of controllers for both
continuous-time and discrete-time linear multivariable

systems,
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