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1. INTRODUCTION

There has long been a crucial need for the development of

techniques sufficiently powerful for the routine computer—

aided design of on-board digital controllers for airborne

systems. In order to fulfil this need, however, it was

essential that the controllability, observability, time—

optimality, and eigenstructure—assignability properties of

multivariable discrete—time dynamical systems be clarified

by fundamental system—theoretic research since these pro-

perties cannot be adequately characterised by classical z—

transform techniques.

This report outlines both the fundamental system-theoretic

• • research and the parallel development of design techniques

which have lead to the production of the comprehensive

software package EIGENFORTRAC~
1
~. The use of EIGENFO~FRAC

greatly facilitates the design of high-performance multi-

variable digital control systems for a wide range of f light-

control applications.

2. SYSTEM-THEORETIC RESEAR CH

2.1 State—Feedback Regulators and Observers

The results obtained by Porter~
2
~ (see Appendix 1) completely

characterise the entire range of possible finite settling—

time state—feedback regulators and observers by specifying

_ _ _  _ _ _ _
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the p.rmissib1e~

3
~ Smith canonical for ~(4) of the closed— H

loop plant matrices of discrete—time multivariable systems.

1 
The design of such state-feedback regulators and observers

can be readily effected by the method of entire eigenstructure

assignm.nt~
5
~ 
(6) and, in particular, by the algorithms

d.velop.d by Porter and D”Azz o~
7
~ 

(8) ~~ ( see Appendices 2 ,

• 3, and 4 ) .  These algorithms readily yield the vectors which

are required for the simultaneous assignment of Jordan

- • 
canonical forms , eigenvectors , and generalised eigenvectors

• ) to the plant matrices of closed—loop multivariable linear

systems .

2.2 Output-Feedback Regulators

• • In most practical cases it is , of course , impossible to

implement state—feedback regulators since the state of

the plant is inaccessible and on ly the plant output is

1 
available for control purposes. However, the results obtained

by Porter and Bradshaw~~
0

~ 
(11) (see Appendices 5 and 6)

characterise the closed—loop eigenstructure assignable by

output—feedback regulators in terms of two f amilies of well—
1. defined subspaces . In the case of self—conjugate distinct

1 

sigenvalue spectra , for example , the eigenvectors and

reciprocal eigenvectors of the closed-loop plant matrix must

li. in two such f amilies of subspaces and simultaneously

• satisfy appropriate orthogonality conditions . In contrast,

the closed—loop eigenstructur. assignable by state feedback~
6
~

is constrained only by the requirement that the eigenvectors
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of the closed—loop plant matrix must lie in just one family

of wel l—defined subspaces .

2.3 Dynamic Compensators

F 

The severe constraints on the closed- loop eigenstructure

assignable by output feedback imply that it is frequently

L 
impossible to achieve satisfactory closed-loop behaviour

by mean-•; of static output-feedback regulators, and that it

is consequently necessary to introduce dynamic compensators~
5
~ 
(l2)~

However , the results obtained by Porter and Bradshaw~~
3
~ 
(14)

(see Appendices 7 and 8) indicate that the design of such

dynamic compensators can be effected by applying the method

of entire aigenstructure assignment to appropriately augmented~
5
~

1. systems. In this way, the use of observers can be avoided in

the design of error—actuated multivariable tracking systems

even when the special conditions previously established by

Bradshaw and Porter~~
5
~ (see Appendix 9) for the existence

of such error—actuated tracking systems are violated.

Indeed, in view of these fundamental new insights into the

structure of linear multivariable systems , the design of

dynamic compensators is in general reduced to the selection

of pairwise—orthogonal eigenvectors and reciprocal eigenvectors

for two families of well-defined subspaces which are para—

metrised by associated self—conjugate eigenvalue spectra.

This selection can be effected by the use of a powerful new

algorithzn~~
6
~ 
(17) (see Appendices 10 and 11) which requires
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the performance of restricted elementary row and column

operations on matrices formed from the spanning vectors of

these subspaces . The principal computational attraction of

this algorithm is that no operations with polynomial matrices

j .  are involved, so that dynamic compensators for large—scale

systems can be readi ly designed.

3. SOFTWARE PACKAGE DEVELOPMENT

F 3.1 Capability of EIGENFORTRAC Software

The EIGENFORTRAC software package is essentially an up-

dated version of FORrRAC~
18
~ based solely on the unifying

method of entire eigenstructur e assignment and, in particular,

on the powerful algorithm for the design of dynamic corn-

pensators~~
6
~ 
(17)~ Synthesis techniques for state-feedback

L regulators , observers , output—feedback regulators , and

dynamic compensators are embodied in EIGENFORT RAC . These

techniques have been applied to the design of controllers

for a variety of aircraft in a number of flight modes. Thus,

for example , digital flight control systems have been

designed by D’Azzo and Porter~~
9
~ for the F—4 fighter air-

craft and by D’Azzo and Kennedy~
20
~ for the C-l4l transport

aircraft.

3.2 Configuration of EIGENFOm~’RAC Software

The EIGENFOR~RAC program configuration has been described

I~H 
_ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _____________________ ___

~

__ _ _

~

__±_ _•___•_ ._ _ • • ••_• _____ __
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by Porter, Bradshaw, and Daintith~~~, together with a

detailed description of all the EIGENFORTRAC subroutines.

J Detailed listings of the computer output for a simple

example illustrating the design of discrete-time tracking

1 systems incorporating error-actuated dynamic compensators

have also been provided

3.3 Operation of EIGENFO1~!’RAC Software

The basic requirements of EIGENFO RT RAC are the plant, input,

• and output matrices (A,B,C) of the uncontrolled system

• described in the continuous-time domain. The class of

controller required is then specified (eg, state-feedback

regulator , output-feedback regulator, error-actuated dynamic

compensator) together with the sampling interval, T. The

plant, input, and output matrices (A(T) ,B(T) ,C) of the

sampled uncontrolled system are then computed , and appro-

priate augmentation~
5
~ is automatically introduced. The

closed-loop eigenvector and reciprocal eigenvector subspaces

are then computed, and pairwise—orthogonal sets of closed—

loop eigenvectors and reciprocal eigenvectors are then

selected from these subspaces. Finally, these sets of

eigenvectors and reciprocal eigenvectors are used in the

computation of the compensator matrices. The performance of

the resulting controller is checked by performing a discrete-

time simulation which is followed by a continuous-time

• simulation using a Kutta—Merson routine in the case of

promising designs.

‘ I i

_ _  ~~~~ • •-•--•--••~~••——- . -~~~ 
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- 4. CONCLUSIONS

Fundamental new insights into the structure of linear multi-

variable systems have been obtained by developing a unified

1 .  theory of entire eigenstructure assignment. These system—

theoretic results have been implemented in the comprehensive

sof tware package EIGENFORTRAC~
1
~ which is currently available

I 
for the routine computer-aided design of on-board digital

controllers for a wide range of flight-control applications.
1~I
V

•~ ~:

r
£
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ABSTRACT

It is shown that the synthesis of closed—loop

- linear multivariable discrete—time systems can be

directly effected by performing equivalence transfor—

rnations on appropriate polynomial matrices. These poly-

• nomial matrices are the Smith canonical forms of the

closed—loop characteristic matrices of such systems sub—

ject to the constraints imposed by the fundamental

theorem of linear state-variable feedback.

-~ ii
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1~ INTRODUCT ION

In this paper it is shown that the synthesis of

closed—loop linear multivariable discrete—time systems

governed by state and feedback equations of the respective

• forms

x(k+ 1) ~~:(k ) + B u ( k )  ( la)

and

u(k) = Gx(k) (ib)

where x(k)€ ~~ u(k)€ Rm, and (A,B) is a reachable pair

can be directly effected by performing equivalence trans-

formations on appropriate polynomial matrices. This

synthesis procedure consists essentially in the specifica—

tion of the Smith canonical forrn~~ S~~) of the closed-

loop characteristic matrix (AI~—A-BG) subject to the

constraints on S(A) imposed by the fundamental theorem of

linear state—variable feedback~
2
~ 

~~~~~~.

2. SYNTHESIS PROCEDURE

Thus, if

S C A )  =

(2)

where the ~j(X) (i= 1, 2 , . . . . ,q)  are any monic polynomials

in RCA ) such that

~

• ••• t

~ 
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(1~ i~z~ — 1< m—1~ (3 )

and

q
Z deg~1(X) n , (4 )

i—i

then there exists a matrix CE R~~
1
~ so that S ( A )  is the

Smith canonical form of (AI~-A-BG) provided that

ii
E deg~p~~( \ )  ‘ Z ( 1:p< q) (5)

i—i 
_

i= 1

where K
1

)K
2

> “~~m 
are the ordered Kronecker invariants~

2
~

of the pair (A ,B). It is accordingly evident that closed—

loop discrete—time systems gov3rned by state and feedback

equations of the form (1) can be synthesised by the

following procedure :

(i)  Determine the Kronecker invariants

of the pair (A ,B ) ;

(ii) Prescribe an admissibl, matrix S ( A )  on the

basis of the values of the

(iii) Transform S ( X )  by elementary row and column

operations into an equivalent polynomial matrix

of the form

t ( A ) 
~~~~~~~~~~ 

; (6 )

(iv) Determine the set of linuar simultaneous

equations satisfied by the elements of the
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feedback matrix C by inspection of 1~~~) ;

(v) Solve the set of linear simultaneous equatior.s

for the elements of the feedback matrix G.

3 ILLUSTRATIVE EXAMPLE

This procedure can be conven iently illustrated by

synthesising a closed—loop system governed by the state

and feedback equations

0 , 1 , 2 1 , 2

x(k+1) - -2 , 3 , 0 x(k) + 1 , 0 u(k) (7a)

— 2 , — 1 , o  0 , 0

- - and

g11 ,g 12 ,g 13
u ( k) — Gx (k ) — x(k)  (7b)- -- 

‘ 
g22 ‘ g23 

-

so that the eigenvalues of the closed—loop plant matrix

are all, equal to zero. In this case it is e~iident from

equations (7) that

, — l—g 12—2g 22 , —2 --g13—2 g
2

E ( A )  — 2—g 11 , ~—3—g 12 , — g 1~3 (3)

2 , 1 , A

and that the associated Kronecker invariants are

~
2 1s The conditions (3), (4), and (5) therefore indicate

that

ii
_ _ _ _ _  _ _ _  - - • -~~~~ -~~~~
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— diag (l,\,\2) (9)

and

52(X) diag (1,1,X 3) (10)

are the only admissible forms of the Smith cancni~ a1 form

S(A) of the characteristic matrix of the closed—loop system

governed by equations (7).

In the case of S1(A) it is readily found that

0 , 1 , 0 1 , 0 , 0  2 , l ,\

A , — 2 , — 1 0 , 1 , 0  1 , 0 ,0

1 , 0 ,0  0 , 0 ,12 0 ,0 , 1

A ,0 , 0

— 0 , A , 0 — 

~~~~~ ~~~~

2 ,1 ,1

so that comparison of equations (8) and (11) indicates

that the corresponding feedback matrix in equation (7b)

— 
- 

is

2 , —3 , 0
— . (12)

—l , 1 , — 1

Similarly, in the case of S2(X), it is readily found

that

Ii
1~ 

~~~- - • - - -  ~- - -~~~~ •--•--- ~~~~-- -• ~~- -~~• -—-• -~~~~~
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1 , O , 0  1 , 0 , 0  1

—2 , 1 ,1 0 , 1 , 0 2_12 , 1 ,O

1 , 1 ,0 ~~~~~~~~~~~~~~~~~~~ 1 , O , 0

-~~ 1 , 0 , 1

-
• 

— 0 , A , _2
~ = (13)

2 , 1 , x j

so that comparison of equations (8) and (13) indicates

that the corresponding feedback matrix in equation (7b)

is

2 , — 3 ,  2
— . ( 14)

—1 , l , —5/2

It is clear that, as desired, the characteristic polynomial

of the closed—loop plan t matrix is

c ( A )  = (15)

in both cases but that the minimum polynomials associated

with the feedback matrices C1 and C2 are respectively

m1(A) = 12 (16)

and

m2(A) — . (17)

4, CONCLUSION

This procedure for the synthesis of linear multivariab],e

discrete—time fcedback systems constitutes a generalised
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eigenvalue-assignment procedure ii t~’.aL both the cyclic

structure and the eiganvalucs of the c1osed-1c~ p plant

matrices are synthesised. Moreover, the fact that the

synthesis of such systems is directly effected by performing

equivalence transformations on S(A ) ensures that only those

cyclic structures whIch are conformable ‘~?ith thc~ constraints

imposed by the fundamental theorem of linear state—variable

L 
feedback are considered. In particular, the synthesis

procedure facilitates the assignment of both closed—loop

characteristic polynonials and admissible c1osec~—1oop

minimum polynomials. This facilIty i.s pa~ticu1ar1y important

in the case of discrete—time systems since it obviously

provides a basIs for the design of time—cptiiral l inear

multivariable control systems~
4
~ . It is evident, however,

that the ger.eralised eigonvalue—assignment procedure is

equally applicable to the synthesis of linear multivariable

continuous—time feedback systems.
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ABSTRACT

The algorithm for the computation of a basis for-

ker ~A—X~,i , B] presented in this paper greatly facilitates
— the synthesis of state-feedback regulators by entire eigen-

structure assignment. It is ideally suited for digital

computer implementation and can be readily dualised for use

in the synthesis of full—order observers by entire eigen—

structure assignment.
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1. INTRODUCT ION

In view of the recent results ob tained by Kimura W

and Moore~
2
~ , it is evident that an efficient algorithm for

the computation of a basis for

- 

4 
ker S(10) = ker ~A—A I , B] (1)

where C and [A—A0I~ , ~] E Cn~~T~+m) is essential for
the synthesis by entire eigenstructure assignment of state-

feedback regulators for multivariable linear systems governed

by state, output, and control-law equations of the respective

forms

c(t) = Ax ( t )  + Bu(~) , (2)

~(t) = Cx(t) , (3)

and

u(t) = Kx (t )  . (4)

— 

I - 
Indeed, the real state-feedback matrix~

1
~ 
(2)

= 

~~1 ‘ ~2 ‘ 
~~~~~ 

‘ ¶~] E~1 ‘ ~ 
... , (5)

simultaneously assigns the self—conjugate distinct eigen—

value s~ectrum {A
1~A 21...~ X~ } and the corresponding eigen—

vector set {x1~x2~ .. . 1x~} to the closed—loop plant matrix
(A+EK) E R~ ’~ ’ just in case

[x~ , w~J’E ker S ( X i ) (i 1, 2 , . . ., n) . (6)

Ii
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. ALGOR ITHM

I ~ The fo11owin~ algorithm provides an efficient means
for the computation of a basis for ker f A—X 0I~ ,

(i) Form the matrix

A—A l , B 1
~~~ ) 

— o n  
(7)

I J- n +m

where AOEC ~

(ii) Perform elementary column operations on S ( A 0) un t i l

~~~~ ~~S ( A  ) — 1:1 .. I S(A ) (8)
— 0 i — 0

•

where ~11E C”~~, rank ~ r ~ rank [A-A~,T~ ~
,,(n+m)xr - 

~~~~ (n+m)x(n+m—r)
~ 2l ~ 

, and 
~22 ’~ 

c

The required basis vectors for kar [A~A~I~ , 13] are then

givs~ by the (n+m—r) columns of 
~22’ where obviously r n

in case is not an input—decoupling zero of the system.

This follows from the fact that equations (7) and (8) imply

that

S (A0) ~(A 0)E ~(A 0) ~~ 
‘

1[
A—x 0I~ • 

~3~~l ~ [A— A 0I~ • ~J~~] (9)
L 

~ 2

_ _  _ _ _  - — ~~~~~~—— —  ~~- —
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where CE c (nfm)x (n+m ) is a product of elementary matrices,

rank E~ r, rank n + m - r, [A—X01 , B~E]~ —

— 2’ !l — 
~2l’ 

and 
~2

3. ILLUSTRATIVE EXAMPLE

This algorithm can be conveniently illustrated by

synthesising a state—feedback regulator for a multivariable

linear system characteri$ed by the matrices

—l . 0~~~~O]
A — O , —2 , O I  , (10)

1 ,

1 , 0

B 0 ,1 , (11)
4. .  

0 ,1

I L 
and

11 , 2 , 01
C — I , (12)Li ,  2 , iJ

which is such that

~(A+BX) — (—l ,—2 ,—3) a(A) (13)

but such that the ‘slow mode corresponding to the eigen-

value A 1 — -1 i-s eliminated from the output. Hence, in

accordance with the algorithm, it is found that

Li -

U
_____________________  __
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1, 0 , 0 ,  0 ,

6

0 , 1 , 0, 0 , 0

0, 0 , 1 , 0 , 0

— 0 , —1 , 1 , —2 , 2 , (14)

0, 0 , 0 , 1 , 0

0, 0 , 0 , 0 , 1

1, 0 , 0 , 0 , 0

0 , 1 , 0 , 1 , 0

•1 ,  0 , 0, 0 , 0

0, 1 , 0 , 0 , 0

0 , 1 , 1 , 0 , 0

S(—2) - 0 , 0 , 0 , 1 • 0 , (15)

0, 0 , 1 , 0 , 1

O , 0 , 0 , 1 , 1

1 , 0 , 0 , —1 , 0

0 , 1 , 0, 0 , 0

and -

2 , 1 , 0 , 0 , 0

0 , 0 , 1 , 0 , 0

1 , 0 , 1 , 0 , 0
. • . • S .. . . . . . . . .. . . .

1 • 0 ~ 0 ~ 0 , 0 e (16)

( 1 0 , 0 ,0 , 1 , 0

0 , 0 , 0 , 0 , 1

c 0 , 1 , 0 , 0 , 0

0 , 0 , 1 , —1 , 0

-— -- -- - ---~~~~---- --5--— — - —.—- _—..~~~--—
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In view of the equivalences (14), (15), and (16) it therefore

follows from the algorithm that

—2 2

1 0

ker SC-i) = span 0 , 1 , ( 17)

0 0

1 0

1 0

O 1

ker S(-2) = span I , 1 , (18)

ker S( — 3 )  = span 0 , 1 . (19)

0 0

- 1 0  -

It is evident from ker SC—i) , ker S(-2), and ker S(—3) that

the closed-loop eigenvectors corresponding to the eigenvalue

spectrum {-1,-2,-3} 6(A+BK) can be assigned to the respective

— 

- 
subspaces

—2 2

— span 1 , 0 , (20)

0 1
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I 0

E(—2) = span 0 , 1 • (2].)

•1

and
i

— 0 0
I

S

E ( — 3 )  — span 1 , 0 (22)

0 1

subject only to the requirement that the resulting set of
1 oigenvectors be linearly independent. In case

~ L. [Xj , U)j ] ’ [—2 , 1 , 0 , 0 , 1]’ (2 3)

- t  I
[x~ , w~i ’ — [i , 0 • 1 , —1 , O~ ’ , (24)

~~ 1

and

[x;~~~w~]’ = [o , i , o , o , —iJ ’ , (25)

it follows from equation (5) that

—2 , 1 ,
10 , 1 0 1  10 , 0 , —li

K _ I  I 1 , 0 ,1  ILi , 0 , —lJ L—1 , — l , 1
0 ,1 ,0

• (26)

and therefore from equations (10), (11) , and (26) that

— l , 0 ,

(A+Bx) — —1 , —3 , 1. . (27)

0 , O , —2

I
_ _ _ _ _ _ _ _ _ _ _  -— - S -
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The eigenvalues have accordingly been unaltered by state

1 . feedback, as required, but the corresponding eigenvectors

- 
• have become

CS.

= {[:2] 
~ 

[
~] 

‘ 

E]} 

(28)

where
4 

IS~

.

= , 1 , oJ’ Eker C , (29)

H .

- as required. This elimination of the ‘slow ’ mode correspond— 1:
ing to the eig~nva1ue A1 = —1 is possible because —l is an

invariant zero and is a corresponding state zero—direction

of the system~
3
~ .

4, CoNcLusioN

This algorithm for the computation of a basis for

ker [A— A0I~ , B] greatly facilitates the synthesis of state—

feedback regulators by entire eigenstructure assignment since

4 
it is ideally suited to digital computer implementation. In

addition, it is evident that the same algorithm also greatly

facilitates the synthesis of full—order observers by entire

eigenstructure assignment since it can clearly be used for

the computation of a basis for ker [A’—A oI~ ‘ 2’]
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I ABSTRACT

I In this paper , results are presented which faci l i ta te

the complete exploitation ef state feedback in the assignment
L of the entire closed—loop eigenstructure of multivariable

linear systems. These results include an algorithm for the
t .

direct computation of the state-feedback matrix which assigns

prescribed Jordan canonical forms, eigenvectors , and generalised

aigenvectors to the plant matrices of closed-loop systems.

This algorithm is illustrated by assigning the entire closed—

loop eigenstructure of a third—order two—input discrete-time

system in such a way that the resulting closed-loop system

exhibits finite settling time behaviour.

IL

I’
_ _ _ _ _ _



L 1. INTRODUCT ION

It is well known that, except in the case of single—

input systems, specification of closed-loop eigenvalues does

not define a unique closed-loop system. This non-uniqueness

1’ has, however, been only partially exploited in only a few

instances by algorithms which permit the specification of a

number of components of the closed-loop eigenvectors (Srinathkumar

and Rhoten 1975, Shah et al 1975) and by algorithms which avoid

large feedback gains (Porter and Crossley 1972, Lee 1975). The

results presented in this paper facilitate the complete exploit-

ation of state feedback in the assignment of the entire closed-

loop eigenstructure of multivariable linear systems. These

results include an algorithm for the direct computation of the
t . state—feedback matrix which assigns prescribed Jordan canonical

forms, aigenvectors , and generalised eigenvectors to the plant

matrices of closed-loop systems. The expression for this state-

-
• feedback matrix assumes a simple form which is equivalent to

that obtained by Kimura (1975) in the context of eigenvalue

assignment by output feedback and by Moäre (1976) in the context

of output regulation for the special case ot distinct prescribed

eigenvalues -.

2. THEORY

The sequences of equations

(l ,j )

BJ 0 , ( la)

1~ — i 

5 -~~~~~~~~~— 
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I
, B] — (lb)

-~~~~ (2 , j)

I
(in ~~i)

C~
—x j~ 

, 
~~~ 

— Yx i
j i  (lm j j )

r w
~~

mji’
~~-

i

~~~~~~~~~~~~~~~~~~~~~~~~~

generate ki strings of vectors associated with the eigenvalue

A , where v ( 9 , j )  is the tth vector in the jth string ofi
length mj j  associated with the eigenvalue A~ . The vectors

v
~~~

’
~~ ~~~~~~~~~~~~ are the k~ eigenvectors associated- i

with the eigenvalue ~~~~~~ , whilst the remaining vectors in each

of the k~ strings of vectors generated by equations (1) are

generalised eigenvectors associated with the eigenvalue X~.

The total number of vectors associated with the eigenvalue X~
is evidently

- k~
= Z m4~ (i1 ,2,...,p) (2)

-I

- and the entire set of vectors associated with the eigenvalue

spectrum {X1PX 2~ .S.~ X~ ) will accordingly serve as a basis
-- 

for n—dimensional state space only if
I-
1~ p

n E m ~ . (3)

I
S -- -- • 5- --5- - ~~~~~~~~~ —. —S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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In case the eigenvalues A~ and the integers mjj and k~ are

chosen so that this entire set of vectors not only satisfies

(3) but is also linearly independent and self-conjugate , then

the real state—feedback matrix

- ,... ,W
A 

~~k~)j !X
(1
~
1)
,...,yX

P
p~
kp~~~~

is such that the Jordan canonical form of the nxn closed-loop

plant matrix (A+BK) contains the eigenvalue Xi (i—1 ,2,...,p)

with geometric multiplicity k~ and algebraic multiplicity m~.

This follows from the fact that if the real state-feedback

matrix K is such that the Jordan canonical form of the closed—

loop plant matrix (A+BK) contains the eigenvalue Xi (i=l ,2,...,p)

with geometric multiplicity ~~ algebraic multiplicity ~~~
and associated eigenvectors 

~~~~~~ 
(j—l ,2,...,k ) then

- i

rv (1.,j )
I-- A

fA— x~i , B] 0 , ( 5a)

i.~v (1 , j )

[A— X~~I , 8] ~~~ 
= v

~~~~
’i

~ , (5b)
- 

I~:
v (2,j)

. s S. .. . . . . . . .. . .. . . . .. . . . .. . , .. . .. .. , . . .

rv (m j i , i )
[A—A ~ I , — V

A
ji , 

(5m~~)
— 

Kv (m jisi) i

- —-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---__
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I
where the mjj satisfy (2) and (3).

It is evident that, in the special case when p — n and

— m~ — 1 (i—l, 2,...,n), then j — 1 and — 1 (i—1 ,2,...,n).

Each of the sequences of equations (1) accordingly reduces

to just a single equation, and there are clearly n such

- 

~ I equations

v U4)

~~~— X ~~I , B] 
— 

— 0 (i= 1, 2 , . . ., n) ( 6 )
(1,1)

~ ‘S

for the eigenvectors (i=l ,2,...,n) of the nxn closed—

loop plant matrix (A+BK). In th.Ls special case, the

expression (4) for the state—feedback matrix assumes the

simple form

K — [wA~~~
1),w (l r l),...,w (1~1)] [v ~~~~~~ 

(1,1) 
~~~~~~~~~~~~~~~~ 

(l,l)~~
1

- l 2 -.1 ‘ 2

( 7 )

which is equivalent to that obtained by Kimura (1975) and

Moore (1976). The computation of K in the case of distinct

eigenvalues thus reduces to the determination of the kernels -

of each of the n matrices.

S [A_ A~I , B] (i—l ,2,...,n) . (8)
5- - -

3. ILLUSTRATIVE EXAMPLE

These results can be conveniently illustrated by assigning

the entire closed-loop eigenstructure of the discrete—timc~
•1 

- 
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system governed by the state and feedback equations (Porter 1976)

0 , 1 , 2 1 1 , 2

x(k+l) — —2 , 3 , 0 x(k) + , 0 u(k) (9a)

j —2 , — l , 0 Lo ,o

and

u ( k )  — K x ( k )  (9b)

in such a way that the resulting closed—loop system exhibits

finite settling time behaviour. Such an assignment clearly

requires that p — 1, in
1 

- 3, and A l 0 but, in consonance

with the fundamental theorem of linear state—variable feedback

(Dickinson 1974), it is possible further to require either

that k1 — 2 , m11 — 2, and in21 — 1 or that k1 — 1 and rn11 — 3.

In the former case, equations (1) indicate that

- {v~~~’~~ 
• ~~(2,l) ~~(1,2) - 1

. 
~
] [-

~
] [-i] 

~(10)
constitutes an admissible set of closed—loop eigenvectors and

generalised eigenvectors whilst , in the latter case, equations

(1) indicate that

{v
~~~~

l) 
~~ t 2 , l)  

~ Yx 1 ’ ~ 
- 

~ 
[
~1 ~ 

[-:~] ~ 
[-i

] }

(11)

I
hA - ~~-~~~~~- - -~~~ _ S ~~~~~~~~~~~~ 5- ----~~~ _ _ _ _ _ _ _ _ _ _ _ _ _
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constitutes an admissible set of closed-loop eigenvectors and

generalised eigenvectors since also

0 , 1 , 2 , 1 , 2

S — — 2 , 3 , 0 , 1 , 0 (12)
- l

—2 , — l , O , 0 , 0

and therefore

~~1~~~~’

0 -2

Ker S — span 1 , 0 . ( 13)

0 8

_~~~1.

In the former case ,

{w ( 1.l) ~~~~~~~ w (1,2) } — 
[[0] ~~~

(14)

so that in view of equation (4)

0 , 1 , 1 —l

ro  , 11 , 81 12 , —3 ,

K — I I O , — 3 , —2 — I
L—l , —6 — 3J L—1 , 1 , — l

1 , 2 , 0

( 15)

and therefore

0 , 0, 0

(k s-BK ) — 0 , 0 , 0 (16)

- _ _  _ _ __ _ _ _ _ _ _  _ _ _
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which has the Jordan canonical form

0 , 1 , 0

O , 0 , 0 (17 )

0 , 0, 0

together with the eigenvectors v~~
1’~~ and V A ’ and the

generalised eigenvector V
A 

‘ prescribed in equation (10),

as required. In the latter case,

- r - (w (l ,l) ~~(2,l) ~~~~~~ - {[
~
] [

~
]

(18)

so that in view of equation (4)

0 , 1 , 1 
— 1

ro ru , o ,
K J I O , —3 , —4 — I- L— i , — 6 , —3 J L—7 , — 1 , —1

1 , 2 , 0

( 19)

and therefore

—3 , — l , 0

(A +BK) — 9 , 3 , 0 (20)

—2 , — 1 , 0

which has the Jordan canonical form

1 , 0

1° 0 , 1 (21)

Lo , o , o

together with the eigenvector v
~~
”1

~ 
and the generalised

- l
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eigenvectors V ‘ and “A 
‘ prescribed i-n equation (11),

1 1
as required.

4. CoNCLusIoN

These results facilitate the complete exploitation of

L state feedback in the assignment of the entire closed—loop

eigenstructure of multivariable linear systems and are clearly

equally applicable to both continuous-time and discrete-time

systems. It is evident that, even in the case of systems for 
-

which the pair (A,B) is uncontrollable , certain prescribed

elgenvectors of (A+BK) can be assigned by state feedback. In

the case of systems with asymptotically stable but uncontrollable

modes, it is therefore frequently possible to achieve significant

improvements in the dynamical behaviour of such systems by the

introduction of appropriate state—feedback controllers.
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ABSTRACT

In this paper, an algorithm is presented which greatly

facilitates the complete exploitation of state feedback in

the assignment of the entire closed-loop eigenstructure of

controllable multi-input systems. This algorithm is a

generalisation of the algorithm of MacLane and Birkhoff (1968)

for the computation of a basis for the null space of a matrix

and is ideally suited to digital computer implementation.

The algorithm readily yields the vectors which are required

(Porter and D ’Azzo 1977) for the simultaneous assignment of

Jordan canonical forms , aiganvectors , and generalised eigen-

vectors to the plant matrices of closed—loop controllable

multivariable linear systems. The effectiveness of the

algorithm is illustrated by assigning the entire closed—loop

eigenstructure of a third—order two-input discrete-time system

in such a way that the resulting closed-loop system exhibits

time—optimal behaviour. 

5~~~-5SS - - - - --5 
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1~ INTRODUCTION

The algorithm presented in this paper readily yields

the vectors which are required (Porter and D’Azzo 1977)

for the determination of the state-feedback matrix which

simultaneously assigns Jordan canonical forms , eigenvectors ,

• 1. and g.n.ralised eigenvectors to the plant matrices of closed—

loop controllable multi-input linear systems. These vectors
S satisfy the sequences of equations (Porter and D’Azzo 1977)

~~5-X~
[A—A I , B] 0 , (la)— i—n . 

( 1 ,j )  
-

— i

(2 ,j )

, B~] — ~~U .i)  
, (lb)— n (2 , j )

(m~~,j)v
(m —1,j)

• [A—x~~~ , s] — 
j i  (lMj j )

(m4~ .j) i
-I

A
i

~~~~~~~~~~~~~ i l , 2 , . . . ,p )

which together generate k~ strings of eigenvectors and

generalised eigenvectors associated with the eig.nvalue X~~,

where V A ‘ is the tth vector in the j th string of length

m
u 

associated with the eigenvaiue \~~~. In case the .igenvalues

~ 

-~~ -- -- - - - -  --- -- -~~~~
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A~ (i—l ,2,...,p) and the integers mjj and k-~ are chosen so

that this entire set of eigenvectors and generalised eigen—

vectors is linearly independent and self-conjugate, then the

real state—feedback matrix ( Porter and D’Azz o 1977)

- [w 
.1 ,...,~~~~~P~

’Y][~~~lul) ,..,vA
pp
,

~~~
]_1

1. 
. 

(2 )

is such that the Jordan canonical form of the nxn closed-

loop plant matrix (A+BK ) contains the eigenvalue X~ ( i—1 , 2 , . . .,p )

with geometric multiplicity k~ and algebraic multiplicity

xiii — E iii
~~~ 

(i—1 ,2,...,p) • (3)
i— i

It is evident that , in the special case when p = n and

— — 1 (i—l, 2,...,n), then j — 1, — 3. (i—1, 2,...,n),

-L and each of the sequences of equations (1) reduces to just

a single equation for the eigenvector v (1,1) of the nxrt

closed—loop plant matrix (A+BK ) associated with the eigen-

value A~ . In this special case of self—conjugate distinct

eigenvalues {A l.A 2,. I, A
fl
}, the general expression (2) for

the state—feedback matrix K assumes the simple form obtained

by Kimura (1975) and Moore (1976).

Li 2. ALGORITHM

, k )
The victors - (v ‘ , . .. , V

A ~ } and
- 

- 
1 

—‘-- -- ~~~~ - -5— 5 Si ---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ -55-S~-- -- -  ~~~~~~~~~ - - ~ - 5— --5-S- -- —-5~ - 5 -  - --5— -
~~~~~~~
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• ( m.~~~,k )
5 

‘ , . , . , w } required for the determination of
• A 1

the state—feedback matrix K expressed by equation (2 )  can

be readily computed by the following algorithm which is a

generalisation of the algorithm of MacLane and Birkhoff

1. (1968) for the computation of a basis for the null-space

of a matrix:
— I.

( i)  Form the matrix

r A — A l  , Bi

— L S ( A ~) [5- 
i-n (4 )  

- -

-n+m —

for A~ (i l,2,.. ,p) ;

(ii) Perform elementary column operations on S(A~ ) until

~ (l , j )  ~ (] . ,j )
11 ‘ 12

S ( A  ) 
— 

— ~~
(l . i) (X ) (5)

- 1. 
— (l , j)  ~ (l , j )

21. ‘ -22

where 
~~~~~~ ~~~~ 

g (1~j) 0, and rank g~~~~ j )  
—

n rank [A— Aim , sJ since (A,B) is a controllable

pair; -

(iii) Perform successive elementary column operations on
~~~ 1, j )  ( A

t
) until

— ~~ 
(xii ~ — l~~i)

— 
~1l 

‘ 

‘ 

—

~ (l , j )  ~~ 
(m~~ .i) 

—

• —21 ‘ —22
1-I
1. (6)

- - - -5- - ---~~ 5 -— ~~—- - - -—---5 - — —5- --- ------- --—-5-*---•-—- S-~~~~5-- - — S - S-*----S— -- - - - -5 - - -  - --5
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• where

(m ~i)
-A

— i 
— 

(m 4~ ,j) -
.1 

. (7)
(in ,j)

— A i

‘1 ~
‘ ‘ ‘2 (in., ,j

The matrices {VA ‘YA ‘• ‘~~‘YA ~ ) and
i i i S

(1 ) 2 ) (m~~.j)- 

~~~ 
~ ‘~~A ~ , . . ., W } thus generated are clearly

i i i

such that

v (l,j)

[A— A~I , B) 0 , (8a)

~~~~~~5
_

i

v (2 ,j )
—X

[A—A I , BJ — V A 
l , j)  

, (8b)
— i— n 

w (2 ,j )  — i
-X i

• . • . S .  S • •  • •  • • S S S S S S S •  S • • ~ • ~ • S •  S~~~ • ~ S~~ S S S

• (m 4~~i)• .1

(m

(In ) ~~i 
~ . (8m~1

)

W
i

r (n ~.i)’ (n ,j)’,
and are therefore such that the vectors lv~ ~ , w,,L~’j

~~~~~~~~~~~~~~~ required for use in equation (2) are linear

combinations of corresponding columns of successive members
r (n44.i)’

of the entire sequence of matrices I V ~ ~~ , W~ ‘

(n jj~ l.2t...~mjj).

A - —  ~~~~~~~~~~~~~~~~~~~ 
5__ ___ . _ . — — —— — — 

_________ __ ________ _____ _ 
—~~~~~ — — ~~~~~~~~
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3. ILLUSTRATIVE EXAMPLE

This algorithm can be conveniently illustrated by

assigning the entire closed—loop eigenstructure of the discrete—

time system governed by the state and feedback equations

(Porter 1976a,b)

0 , 1 , 2 11 , 2
x(k+l) — —2 , 3 , 0 x (k) + , 0 u(k) (9~a)

—2 , — 1 , O [o , o

and

u(k) Kx(k) (9b)

in such a way that the resulting closed-loop system exhibits

time-optimal behaviour. Such an assignment clearly requires

that p = 1, k1 — 2 , in
11. 

= 2 , in21 = 1, and A
~ 0. In order

to compute a suitable state-feedback matrix K it is there—

fore only necessary to perform the following sequence of

elementary column operations in accordance with the algorithm:

O , l , 2 , l , 2 1 , 2 , 1 , 0 , 0

—2 , 3 , 0 , 1 ,0 3 , 0 , 1 , 0 , 0

—2 , —1 , O , O ,O — 1 , 0 , 0 , 0 , 0
• S I S • S • S SS S  . . . S . . . .  • I~~~ • • S S • S • •S  S • S • • • S .

1 , 0 , 0 , 0 , 0 - 0 , 0 , 0 , 0 
‘ 1 (b a)

0 , 1 , 0 , 0 , 0 1 , 0 , 0 , 0  , —2

0 , 0 ,1 , 0 , 0 0 , 1 , 0 , 1 , 0

0 , 0 , 0 , 1 , 0 0 , 0 , 1 , 0 , 8

L 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , —l , —3

I__rn -5 - 5 - _-_ - _ ~~~S -~~~~~ - ---~~~~~~ --~~~~~~~ - - ~~~~~~~~~~ - 5 - - 5 — -  -—- 5 -- --~~~-- -  _ _ _
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and

1 , 2 , 1 , 0 , 0 1 , 2 , 1 , 0 , 1

3 , 0 , 1 , 0 , 0 3 , 0 , 1 , 0 , —2

• —1 , 0 , 0 , 0 , 0 —1 , 0 , 0 , 1 , 0

S • S S• * • • • S •S S • S ~~~~~• • S •  • 5 . SS S S . . .. . . 5 . . ~~~~~S . .

0 , 0 , 0 , 0 , 1 - 0 , 0 , 0 , 1 , 0 ( lOb )

1 , 0 , 0 , 0  , —2 1 , 0 , O , —3 , 0

0 , 1 , 0 , 1 , 0 0 , 1 , 0 , 2 ,3/2

0 , 0 , 1 , 0 , 8 0 , O , l , ll , —2

0 , 0 , 0 , —1 , —3 0 , 0 , 0 , —6 , 0

It is evident from the equivalences (lOa) and (lOb) • that

L. 0 1 1
- 

~~~~~~~~~~~~~~~~~~~~~~~ { [
~
] . [_

~
] [
~
] } (11)

constitutes an admissible set of closed—loop eigenvectors

J and generalised eigenvectors and, correspondingly, that

{ [°
~ 

, [
~
] , [

~
] }. (12)

The required state—feedback matrix determined by equation

(2 )  is therefore

0 1 —l
, 11 , 81 ‘ 12 , —3 , 0

O , —3 , —2 =
— L— l , —6 , —3 J L— l , 1 , —i

1 , 2 , 0

(13)

[
—~~~~~~~ ~~~~~~~sss ~~~ s5~~ s -
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so that the plant matrix of the closed-loop system governed

by equations (9) and (13) is

0 , 0 , 0

• A + BK = 0 , 0 , 0 . (14)

—2 , —1 , O P

This plant matrix is clearly rtilpotent of index two, as~
required, and furthermore possesses the eigenvectors and

generalised eigenvectors prescribed in equation (11).

[ -  • 

-

4. CONCLUSION

In this paper, an algorithm has been presented which

greatly facilitates the synthesis of state—feedback regulators

by entire eigenstructure assignment. This algorithm, which

is equally applicable to both continuous-time and discrete-

time systems, has been illustrated by assigning the entire

closed—loop eigenstructure of a third—order two—input discrete—

time system in such a way that the closed-loop system Axhibits

time—optimal behaviour. In view of the simple elementary

column operations involved, it is evident that the algorithm

is ideally suited to digital computer implementation.
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ABSTRACT

In this paper , the method of entire eigenstructure

assignmen t (Kimura 1975, Moore 1976, Porter and D ’Azzo 1977)

is applied to the design of linear multivariable continuous-

time output-feedback regulators. It is shown that, in the

case of self—conjugate distinct eigenvalue spectra, the closed—

loop eigenstructure assignable by output feedback is constrained

by the requirement that the eigenvectors and reciprocal eigen-

vectors lie in well-defined subspaces. The method is illustrated

by designing an output-feedback regulator for a third-order

continuous-time system.

I i  
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1. INTRODUCTION

In most practical cases , it is impossible to implement

state—feedback control laws since the state of the plant is

inaccessible and only the plant output is available for

control purposes. Much effort (see, for example, Davison

and Wang (1975)) has accordingly been expended on the investi—

gation of the closed-loop dynamics achievable by the implement-

ation of output-feedback control laws. However, apart from

the partial results obtained by Kimura (1975), this effort

has led to results concerned only with closed-loop eigen-

values and not with closed—loop eigenvectors. In this paper,

the method of entire eigenstructure assignment (Kimura 1975,

Moore 1976 , Porter and D ’Azzo 1977) is therefore applied to

the design of output—feedback regulators for Inultivariable

linear continuous-time systems governed by state and output

equations of the respective forms

~~(t )  — Ax (t )  + Bu (t )  (1)

and

~(t) — Cx(t) , (2)

where A E R n3m , BE ~nxm 
CE ~~~~ rank B = in, and rank

s— p .

2. THEORY

Thus , if output feedback is applied to the system

governed by the state equation (1) in accordance with the

- 
--5 -- S 

-5 -55 -5 - -5-  -
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control-law equation

u(t) — Gy(t) (3)

and the output-feedback matrix G E R~~~ is such that the

closed-loop plant matrix (A4B GC) has a self-con j ugate

spectrum {A 11A 2 , . . . ,x  } of distinct eigenvalues and correspond-
ing eigenvector and reciprocal eigenvector sets

and 1’±2’’ ’~n~ ’ 
then obviously

(A— XiI+BGC)~~ — 0 (i1 ,2,...,n) (4)

and

$ (A— A~ I+BGC) — 0 (j—l,2 ,...,n) (5)

so that

rx 1
[A—X~I , B ]L ij  — 0 ( il ,2 , .. . ,n ) ( 6 )

and

[A’_ X~ I , — 0 (j=1,2,...,n) (7)

— where

W
j  

— GCX~ (il ,2,...,n) (8)

- - 
G’B’$~ (jl ,2,...,n) (9)

and

$‘X ~ (i ,j1 ,2,...,n) . (10)

~ 

- - - . -  - 
_
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Conversely , if equations (6) , (7) , and (10) are satisfied by

a self—conjugate set {A i~~X 2~~s~~•~~An } of distinct complex

numbers and corresponding self-conjugate, sets {x 1,x 2 ,... , x~)
and 

~~~~~~~~~~~~~ 
of linearly independent vectors , then

equations (8) and (9) are satisfied by a matrix G E R ~~~
such that l s~~2 h 1~~~~

A n } is the aigenvalue spectrum of the

matrix (A+B GC ) and (x1~x 2~...~ x~} and 
~~~~~~~~~~~~~ 

constitute

corresponding eigenvector and reciprocal eigenvector sets.

It accordingly follows from equations (8) and (9), respectively,

that the real output-feedback matrix

9 
— 

‘ ~2 ‘ •
~~~

• ‘ ~~~~~~ ‘ ~~ 2 ‘ • •
~~ 

~ cx]~

(11)

and the real transposed output—feedback matrix

9 ~~l 
‘ 
~2 ‘ ‘ ‘ ~~~~2 ‘ ‘

(12)

assign the self-conjugate distinct eigenvalue spectrum

1~
A 2~~~~~~An } and the corresponding eigenvector and reciprocal

eigenvector sets 1’-~ 2 ’ ’ ~ n~ 
and l’~~2 ’ ’~~~’±n ~ 

to the

closed-loop plant matrix (
~~~~+~~~9~~~ ) in case

is a set of p linearly independent vectors and

• •!
‘

~~~~~~ 
is a set of in linearly independent vectors. Such

sets 
~~~~~~~~~~~~~~~ 

and 
~~~~~~~~~~~~~~~~~ 

clearly

exist when rank C — p, rank B — in, and {X
1~~

X2D ...PX~~} and

l’~~2 ’’ ’ ’’~ n~ 
are sets of linearly independent vectors .

It is thus evident that,  in the case of self—con j ugate

— 
distinct eigenvalue spectra , closed—loop eigenstructure is

-— - -S-—-~~~~~~~ - -
~~- -5-5- -5-.——~~~~~~~~~ -~~~~~~- -~~~~~~~~~ - - 5 -
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assignable by output feedback just in case the eigenvalue

spectrum ( A 1~ X2~ ...~~X~ } is such that the corresponding eigen—

vector and reciprocal eigenvector sets 
~~l’~ 2’•• ~~~~ and

l’~ 2 ’ ’ ~ n~ 
lie in the subspaces determined (Porter and

D’Azzo 1977) in accordance with equations (6) and (7), respect—

ively , by the kernels of each of the n matrices

S ( A ~ ) - [A- x 11 , B~ (ial ,2 , .. ., n) ( 13)

together with the kernels of each of the n matrices
4.

T’(A~~) — [A’_ A ~~I , C’] (j1 ,2,...,n) . (14)—• — —

3. ILLUSTRAT IVE EXAMPLE

These results can be conveniently illustrated by

designing an output-feedback regulator for the system

governed by the respective state and output equations

(Davison and Wang 1975)

0 , 1 , o 1 , 0

~~(t )  a 0 , 0 , 1 x ( t)  + 1 , 0 u (t )  ( 15)

0 ,0 , 0 1 , 1

and

11 , 0 , 01
~~(t )  — x(-t ) ( 16)

L0 , 1 , o

such that the eigenvalue spectrum of the closed—loop plant

matrix is

c(A+BGC ) — 1~
)
~2 A 3} {—1 ,—2 ,—5 } . (17)

Indeed, it is evident from equations (13) , (14), (15), and

Ii (16) that

- . . 
- - 

_ _ _

— 69 —
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—A , 1 , 0 , 1 , 0

S(A) — 0 , — X , 1 , 1 , 0 (1.8)

0 , 0 , — A , l , l

and

—A , 0 , 0 , 1 , 0

T’ (A) — 1 , ‘—A , 0 , 0 , 1 . (19)

1: , 1 , —x , 0 , 0

It therefore follows immediately (Porter and D’Azzo 1977)

from equation (18) that

O 1.

ker S(-l)  — span 1 , 0 (20)

—l —l

~1

• 1. 
~01

O 1

ker S ( — 2 )  — span 2 , —l (21)

—2 —1

- 3

and

— r1I . . 10 1.

ker S ( — 5 )  — span 5 , —4 , (22)

I 
_U - 

‘ 
—-5 ‘ ‘ - --—.•~•---5. — •.•——- - -5-(’—-5.-.— S~,.SS_, ~~~~~~~~~~ -~~ ‘~~ 

•~~~~~~~~ ••‘ 5 5 111114
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and similarly (Porter and D’Azzo 1977) from equation (19)

that

0’

O 1

ker T’(-l) — span 0 , -l (23)

-1 0

•—1

1 0

0 -2

ker T ’ ( — 2 )  = span 0 , 1. (24)

-2 0

—l

and

0

0 -5

ker T’ (—5 ) — span 0 , 1 . (25 )

-5 0

-1 25

It is thus evi&ent from equations (20) , (21) , and (22 ) that

the closed-loop eigenvectors corresponding to the eigenvalue

spectrum (17) must be assigned to the respective subspace .

1 0

I C — i )  — span 0 , 1 (26)

1 0

a

-5-55-5 -5~~•~~~~~~_~ -•
—-

~~- , 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1 0

E ( — 2 )  — span 0 , 1 (27)

2 —1

and

1 0

E ( — 5 )  — span 0 , 1 (28)

5 —4

and it is similarly evident from equations (23), (24), and
(25) that the closed—loop reciprucal eigenvectors correspond- 

5

ing to the eigenvalue spectrum (17) must be assigned to the

respective subspaces

1 0

r (— l )  — span 0 , 1 (29)

0 -l

1 0

r (— 2 )  — span 0 , —2 ( 30)

0 1

and

0

t ( — 5 )  — span 0 , ‘—5 . (31)

0 1

Since the vectors

L -

~

--— —~~---~~~- - -—~~-- - 5 - — -  -- --~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—-- - —
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~
1 - -

~~~ E E(-1) (32)

- 1 ~ 1

; 

t .

— 2 E E(—2 ) (33)

( 1  
— 

—8

~ 1. 3

- 

~3 = 1 
~~ 

E ( — 5 )  (34)L 11

5/2

— 3/4 E rc—l) (35)

—3/4

1

~2 = 2/3 E r(—2) (36)

-1/3

and

• 1/2

$3 = 5/12 Er (—5) (37)

1/12

are clearly such that (x 1,x2,x3} and 
~±l’~ 2’±3~ 

constitute

sets of linearly independent vectors with the property that

[J ~;~i 
— (i,j—1,2,3) , (38)

it follows from equations (11) and (12) that equation (17)
is satisfied by the output—feedback matrix

- s

~ 

s~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~‘
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r-4 • -41
c — I  I . (39)

L—lo , —9J

-L
The corresponding output-feedback regulator is accordingly

governed by the control-law equation

r— 4 —41
I.- u(t) = l~ (t) . (40)

- L— 10 , —9J

4. CoNcLusioN

In this paper, the method of entire eigenstructure assign-

ment has been applied to the design of linear multivariable

continuous—time output—feedback regulators. It has been shown

that, in the case of self—conjugate distinct eigenvalue spectra,

the closed—loop elgenstructure assignable by output feedback is

constrained by the requirement that the elements of the sets

of linearly independent self-conjugate vectors 
~~~~~~~~~~~

and 
~~~~~~~~~~~~~ 

lie in subspaces determined by the kernels

of S(A ) (i 1,2,...,n) and T’(A ) (j=l,2,...,n), respectively,
and satisfy the orthogonality conditions (10). In constrast,

the closed—loop eigenstructure assignable by state feedback is

constrained only by the requirement that the elements of the

set of linearly independent self—conjugate vectors

lie in subspaces determined by the kernels of S(A~) (i—1 ,2,...,n).

It is because of the severe constraints on the closed—loop

eigenstructure assignable by output feedback that it is frequently

impossible to achieve satisfactory closed—loop behaviour by

means of static continuous-time output-feedback regulators, and

that it is consequently necessary to introduce dynamic compensatory

- - -—-5—---— .__ .. ~
—_ —. 

~~~~~~~~~~
. .~~~~.- ~~~~~~~~~~
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(Brasch and Pearson 1970) . However , the design of such dynamic

continuous—time output-feedback regulators can be effected by

applying the method of entire eigenstructure assignment in the

manner of Section 2 to appropriately augmented (Brasch and

- 
Pearson 1970 , Kimura 1975) continuous—time systems.
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ABSTRACT

In this papor, the method of entire .igenstructuro

aasignm~nt (t~orter and D ’Azzo 1978a,b) is applied to the

design of linear multivariable discrete-tim. output—feedback

r.gulators. It is shown th at , in th e case of self—conjugate

eig.nvalue spectra , the closed-loop eigenstructure assign-

abl. by output feedback is constrained by the requirement

that the •igenvectors and generalisod eigenvectors and the

reciprocal cigenvectors and j.neraliaed reciprocal eigen-

vectors lie in well-d.tined subapace~i. The method is illu-

strated by designing an output-feedback regulator for a third —

order discrete-time system .

LI L
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1. INTRODUCTION

In this paper , the method of  entire eigenstructure

assignment (Porter and D’Azzo 1978a,b) is applied to the

design of output-feedback regulators for mult ivariable linear

discrete-time systems governed by state and output equations

of the respective forms

s. x (k+ 1)  — Ax(k) + Bu(k) (1)

• and

y (k )  — Cx(k) , (2)

where A E 
~~~~~~~~~ B 

~~ ~~~~ CE ~~~~~ rank B m , and rank

C — p. The theory is analogous to that developed by Porter

and Bradahaw (1978) for continuous—time regulators but is

significantly extended in order to allow the assignment of

confluent eigenvaluea to the plan t ma trix of the closed-loop

system. It is therefore possible, for example , to apply this

theory to the design of output-feedback regulators with

finite settling times.

2. THEORY

Thus , if output feedback is applied to the system governed

by the state equation (1) in accordance with the control—law

equation

u(k) — G~ (k) (3)

and the output-feedback matrix G E R I
~
x
~ is such that  the 

- ---
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closed—loop plan t matrix ( A+BGC ) has a self—conjugate eigen-

value spectrum {A i, A 21..- . ,A t}, a corresponding elgenvector

and generalised eigenvector 
~~~~~~~~~~~~~~~~~~~~~~~~ -

‘

ja.l,2,...,kj;iui
l.,2,....t). and a corresponding reciproca l

eigenvector and generalised reciprocal eigenvector set

then

~~~~~~~~~~~~~~~~ 
= 0 (4a)

3 

— i —

~~~~~~~~~~~~~~~~ 
= (4b )

- t
. S •  ~ ~ . ~ • S~~~ ~~ S~~~ • ~ • ~ •~~ •~~~~~t t t t t %  S t S S S • S . S t

• .S . . . . .. • . . . . . . . .S .  . I .. . . .. . .. .. . . . . .

(xn4~—l.i)(A ’A I+BGC )
~~x 

‘~ = (4m 44 )
- i— -S. - j  

_
i .1—

(jl 1 2,...,k~;il ~2~ ...1 t)

and

— 
~~~~~~~~~~~~~~~~~ •

(2~b)’ (5a)

. . . . . . . .. . . . . . .. . . .. . . . . . . . . . . ..e .. . ..

•~~~~~S S S S %~~~~~* S C . S SS S . S• ~~~~~S S . ~~~~~S •  S • • •. •  

(rob —1,b) 
‘ (rob ,b)’a Aa~~~~~ 

— 
‘a 

a (Smba l)

(rob ,b)a x4 +
~9E) 

— 9

(b—L ,2, . .. ,ka s a= 1t 2 s . .  . ,t)

where x
~~~

’
~~~

is the hth vector in the jth string of length

mj j  associated with the eigenvalue X~~, and where , (c .b) is

the cth vector in the bth string of length robS associated
- ~-‘ - with the eigenvalue 

~a’ 
The vectors 

~~~~~~~~~~~ 
(j = 1. 2 .. .., k i)

i
5~~

-
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are the k~ eigenvectors associated with the eigenvalue A~ ,

whilst the remaining vectors in each of the ki strings of

vectors satisfying equations (4) are generalised eigenvectors
- I associated with the eigenvalue X~~. Similarly, the vectors

(%1b)a ( b 1 ,2 ,. .,k) are the ka reciprocal eigenvectors

associated with the eigenvalue Xa~ 
whilst the remaining

vectors in each of the ka strings of vectors satisfying

equations (5) are reciprocal generalised eigenvectors associated

with the eigenvalue 1
a The total number of vectors associated

with the eigenvalue A f in each set is evidently

kf
m = £ m (f=1,2,...,t) (6)

-~~~ ) 

f 
g=1

gf

and

t
n =  E m f . (7)

f=1

Equations (4) and (5) can be written in the form

(1,j )
xx

1
[A— x I , B] = 0 .(8a)

— i.e — 

~ 
(1,j )

~ Xi

(2 ,j )
i 

= 
~~~~~~ (8b)

(2 ,j )  1
— 

~

- . I ~ ~ • • • • I I • I • • t  I S S • I 5 5 

I L.
- - 5  

- -- 

-
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(m4~ .j)
x_A
i (m ~-l,j)[A—A I ,B] — X (8m )

ii,

(j—l ,2, ... ,k1;i*l,2,... ,t)
and

(l,b)

5 .... 

(9a)

~

[A’_ A
aI , ~~~~ 

_x 

= ,~~ %a ’~~ -1)- - - 

~%a~~ ’~~ a a

~A a

a

a

(b—1. ,2 , . .. 
~ka ;a=i, 2 , ... ,t)

where

— ~~~~~~ (10)

~~(c,b) 
— ~~~~~~~~~~~ (11)

- - -5 -5----- —  - --5- - — - —  -- - ---~~~~~~---
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and

(c,b)’ (h,j) = 6 6 6 (12 )ai bj ch

(h—1 ,2, ... 1m~~;i 1~2~ .. . ,k1;i—l ,2 , ... ,t)
(c=i $ 2.S..~m~~;bal.2,...,k~ ;a=1 ,2,.q.,t)

Conversely , if equations (8), (9), and (12) are satisfied

by a self—conjugate set (Xi, X2,...,A
~
) of complex n umbers

and corresponding self—conjugate eets 
~~~~~~~~~~~~~~~~~~ ~; 

-

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
b=l,2,...,k ;anl,2,. .,t} of linearly independent vectors,

then equations (10) and (11) are satisfied by an mxn matrix

C such that {A i,A2,...,X~
} is the eigenvalue spectrum of the

matrix (A+BGC) ,
S. .— -  j

i—l,2,...,t) constitutes a corresponding eigenvector and

generalised eigenvector set, and 
~~ 

(c,b) : c—i , 2,...

b—l,2, . 5 5  ,ka ;a=l , 2,... ,t) constitutes a corresponding reciprocal

eigenvector and reciprocal generalised eigenvector set. It

accordingly follows from equations (10) and (11) respectively

that the real output-feedback matrix

= 
‘ ~2 ‘ “ ‘ ~ ] C~~1 ‘ 

~~2 
‘ 

~~~~~ 
‘

(13)

and the real transposed output-feedback matrix

9 
— 

~~l 
‘ 

~2 ‘ ‘ ~~~~~~~~~~~~~~~~~~~~ 
‘ 

~~~~ 
‘ ~ ‘ 

~~~m
1

- - (14)



Indeed , it is evident from equations (13) , (14), (15), and

(16) that

_ _ _ _ _ __-

~
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assign the self—conjugate eigenvalue spectrum fX i,A 2s...,X~
}, 

-

the corresponding eigenvector and generalised eigenvector set

{X ~~~ ):h_1,2,...,m4j
;j_ i,2,...,kj;i=l ,2,...,t), and the

corresponding reciprocal eigenvector and reciprocal generalised

eigenvector set ($X~
°’
~~

:c
~

L, 2,...,mba;b=1 ,2,..I,ka;a=1,2,...,t}
to the closed-loop plan t matrix (~+~~~) in case

is a subset of p linearly independent members of the set (CX
~~~

’
~~

h—l,2, .. .
~
mji;3=l~

2
~
. .. ,ki;i~1,2,...,t} and ~~~ i’~~~2 ’ ‘~~ ±m~

is a subset of in linearly independent members of the set

It is thus evident that closed—loop eigenstructure is

assignable by output feedback just in case the self-conjugate

eiganvalue spectrum {Xi,X2,...,Xt) is such that the correspond-

ing eigenvector/generaiised eigenvector and reciprocal aigen—

vector/reciprocal generalised eigenvector sets

and 
~~~~~~~~~~~~~~~~~~~~~ 

:c~ i ,2 ...., mba t
b—i, 2,... ,ka;a=l,2,... ,t} lie in the subspaces determined

(Porter and D’Azzo l978b) in accordance with equations (8) and

(9) , respectively, by the kernels and generalised kernels of

each of the t matrices

S(X~) — CA—x~ I , B] (i—i ,2,...,t) (15)

together with the kernels and generalised kernels of each of

the t matrices

c’j (a—].,2,...,t ) • ( 16)

-
- 

- 
3 ILLUSTRATIVE EXAMPLE

These results can be conveniently illustrated by designing

___________ - 
- ~~~~~~ 5- - -- —~~~- 

5--- — — 5 ~~~~~~~~~~~~~~ 5 -- -— -- -
~~~~~~
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an output—feedback regulator for the system governed by the

respective state and output equations

0 , 1 . 0 0 , 0

x (k+l) — 1 , 1 , 0 x(k) + 1 , 0 u(k)  (17)

0 , 0 , 1 0 , 1

and

1i , o , ol
~(k) = x (k) (18)

L0 , O , 1

such that x (k )  — 0 after a finite number of discrete—time

intervals. Indeed, it is evident from equations (15) , ( 16) ,

( 17) , and (18) that

—A , 1 , 0 , 0 , O

S ( A )  — 1 , 1—A , 0 , 3. , 0 (19)

0 , 0 , i— A , 0 , l

and

—x , 1 , 0 , 1 , 0

T’ (A) — 1 , 1— A , 0 , 0 , 0 . (20)

0 , 0 , 1— A , 0 , 1

In this case, it is necessary to assign the value zero to

all the eigenvalues of the closed-loop plant matrix . Such

an assignment clearly requires that t — 1, m1 — 3, and A 1 — 0

and therefore, in consonance with the results of Rosenbrock

and Hayton ( 1977) , that k — 1 and m11 — 3. It therefore

follows immediately (Porter and D ’AZZO 1978b) from equation

(19) that

~~~~~
__

~~~~~~~~~
-
~~~~~~~~~~~~~~~~~~~~~~~~

k tAr
~ 
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- t_ 
—~

l &

0 0

ker S (O) — span 0 , 1 (21)

-l 0

• 0 •

and similarly (Porter and D ’Azz o 1978b) from equation (20)

that

1 0

-l 0

ker T’(O) span 0 , 1 . (22 )

1 0

0

It is evident from equation (21) that the closed-loop eigen-

vector x~~
’
~ corresponding to the eigenvalue )

~] 0 must be

assigned to the subspace

1 0

Z (0) span 0 , 0 (23 )

0 1

whilst the associated string of generalised eigenvectors

and mus t be generated in accordance with equations
• (8), and it is similarly evident from equation (22) that

the closed-loop reciprocal eigenvector •~
3t1) corresponding to

the eigenvalue A 1 — 0 must be assigned to the subspace

-5— --- -5-- - - -5-,. - -- --a--— - —---5 
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0
r(o) = span —l , 0 ( 2 4 )

0 1

whilst the associated string of generalised reciprocal eigen—
vectors $~ 2~ 1) and 

~~~~~~~~~~~ must be generated- in accordance with
- 

I 
- equations (9) . Since the vectors

• 1~

0
-.0 = 1. (25)
(1,1)

- . ~o -1

—l

- 

~x~
2
~
l)

= 0 (26 )
(2 ,1)

I 

- 

~o -2

, 1,

0

. 

~~~~~~~~~~~ 

— 0 (27)
(3,1)

0

I
- 
(3,1) 1

11 H
U — 1 (28)

(3,1)

II
- 

_ _ _

— — -— ——-~~~ — --——~- - -- -5——
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LI
1

S . 

•
(2~1) 0

— —l (29)
(2,1)

—1

and

(1,1) 0 
- 

-

ft -1 (30)
(1,1)

1

are clearly such that

- 

~~~ • ,(cs l)’~~
(hil) 

— 6ch (c ,h—l ,2 ,3) (31)

it follows from equations (13) and (14) that the required

eigenstructure assignment is achieved by the output feedback

matrix

15
1—2 , 11 -

G I J . (32)
- L1 , —2J

The corresponding output-feedback regulator is accordingly

governed by the control-law equation

r-2 , 11
( u(k) — I ~y (k) . ( 3 3 )

— Li , —2 J

It can be readily verified that the state of the closed—loop

system governed by equations ( 17) . , (18) , and (33) is reduced

_________________  
- ~~~~-- —— ~~~~~~ - -—~~~~~~~~~~ - .-- - —

~~~~~~~~
. -
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from any initial value to zero in at most three discrete-

time intervals, as required.

L$~ CoNcLusIoN

In this paper , the method of entire eigenstructtu.-e

assignment has been applied to the design of linear multi-

variable discrete—time output feedback regulators. It has

been shown that the closed—loop eigenstructure assignable by

output feedback is constrained by the requirement that the

elements of the sets of linearly independent self—conjugate

vectors {x ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ and_x i
lie in

spaces determined by the kernels and generalised kernels of

S(A~) (i—l ,2,...,t) and T’(Aa ) ( a—1 ,2 ,..., t ) ,  respectively, and

satisfy the orthogonality conditions (12). In contrast, the

closed—loop eigenstructure assignable by state feedback is

constrained only by the requirement that the elements of the

set of linearly independent self-conjugate vectors
— i

h l , 2 , ... ~m~~;iml~21 .~~~. ,k~ ;i—l,2, ... ,t} lie in subspaces
determined by the kernels and generalised kernels of S ( X ~ )

(i—l ,2,...,t). It is because of the severe constraints on

the clo~ed-1oop eigenstructure assignable by output feedback

— that it is frequently impossible to achieve satisfactory

- )  closed-loop behaviour by means of static discrete-time output—

feedback regulators, and that it is consequently necessary to

introduce dynamic compensators (Brasch and Pearson 1970) . How—

ever , the design of such dyn amic discrete-time output-feedback

regulators can be effected by applying the method of entire

tI
_ _ _ _ _ _  

— - - -~~~~~~~-~~~~~~
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eigenstructure assignment in the manner of Section 2 to

appropriately augmented (Brasch and Pearson 1970) discrete-

time systems.

ACKNOWLEDGEMENT

This research was supported in part by the Air Force

Wright Mronautical Laboratories, United States Air Force

under Grant AFOSR-76—3005A .

REFERENCES

- - 
- 

BRASCH , F. M. and PEARSON, 3. B.,, 1970, I.E.E.E. Trans. autom.

Control, 15, 34.

P0~~ER , B. and BRADSRAW , A., 1978, tnt. 3. Systems Sci.,
-

- (in the press) .

P0I~1ER, B. and D’AZ ZO, 3. 3. ,  1978a , tnt. J. Control (in the

press); l978b , Ibid. (in the press).

POSENBROCX , H. H. and HAYTON , G. E., 1977 , Report No. 288 ,

Control Systems Centre, University of Manchester Institute

of Science and Technology , Manchester, England.



..,fl 5, --5!5-~~~~ flW rm,w..rw n5- r’-- 55 • .._~nwr ?.~ 
- -

F’—r~fl

— 76 —

A P P E N D I X  7

DESIGN OF LINEAR MULTIVARIABLE
CONTINUOUS—TIME TRACKING SYSTEMS

INCORPORATING ERROR—ACTUATED DYNAMIC CONTROLLERS

PROFESSOR B PORTER AND DR A BRADSHAW

DEPA RTMENT OF AERONAUTICAL AND MECHAN ICAL ENGINEERING

UN IVERSITY OF SALFORD

SALFORD M5 4WT
ENGLAND

(INTERNAT IONAL JOURNAL OF SYSTEMS SCIENC E, VOL 9., ~ 627-637, 1978)

-5- —~~—55---- —~~~~~~~-—— ---- -- - - - - - - - - —-5



_________ - —~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ .~~~~~~~~~ •

— 7 7 —

I

- 

ABSTRACT 
-

•

In this paper, the method of entire elgenstructure

assignment (Porter and Bradshaw 1978) is applied to the

design of linear multivariable continuous-time tracking

systems incorporating error-actuated dyn amic controllers.

The method is illustrated by designing an error-actuated

dynamic controller which causes the output of a second-

order continuous-time plant to track a constant command

input in the presence of an unmeasurable constant disturbance

input.

S

_ _ _ _ _ _ _  _ _ _ _ _ _-

~~~~~~ 

— - — —  ~~~~~• ~~~~-- _ _ - —~~~~~~~~~~ — —~~~ 
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1, INTRODUCT ION

In this paper, the method of entire eigenstructure

assignment (Porter and Bradshaw 1978) is applied to the 
r

design of linear multivariable continuous-time tracking

systems incorporating error—actuated dynamic controllers.

Such tracking systems consist of a controllable and observ~

able nth-order linear multivariable plant governed by state

and output equations of the respective forms

c(t )  = Ax (t )  + Bu (t) + Dd(t ) (1)

and

y (t) = Cx(t) (2)

where B and C have full  rank, together with an error—actuated

dynamic controller which is required to cause the pxl output

vector y (t ) of the plant to track a pxl command input vector

r(t) in the sense that

u r n  e(t) lim{r(t)—y (t)} = 0 (3)
t+~~~

_ 
t-~~~~

_ -

for polynomial command and disturbance inputs of the

respective forms

r
r(t) = L csi i t~~

4 (4)
i—l

and

S
d(t )  — z . (5)
- i—i-

I 
• • ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~•~~~~~~~~~~~~~~~~~ • - _  
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It is important to note that tracking systems incorporating

error-actuated 4ynarnic controllers can be designed for a

much larger class of plants than tracking systems incorporat-

ing error-actuated static controllers (Porter and Bradshaw

1976) in view of the fact that eigenstructure assignment by

error-actuated static controllers and by - output-feedback

controllers (Kiznura 1975,1977) are essentially equivalent.

2. THEORY

The f irst  stage in the design of the required error—

actuated dynamic controller for the plant governed by

equations (1) and (2) involves the introduction (Porter and

Bradshaw 1974) of a vector comparator and a series of

q ~ max(r,s) vector integrators in order to generate the q

vectors defined by the equations

— e ( t)

— z1(t) ,

- ( 6 )
• 1 •• • s • •  .. . .. . . . .

~q(t) ~ ~q_i
(t)

It is then evident from equations (1), (2), and (5) that

the open-loop tracking system is governed by state and

output equations of the respective forms

Ii
— --5

~

.---- -- -

~

-- - - 5 - - - - - - - --. - --5-- - ---- - --5-5 55 _ _ _  ~~~~~~-
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c (t )  A , 0 , ... , 0 , 0 x(t)

~1
(t~ —C , 0 , ... , 0 , 0 z1(t)

• . I S S s S  ~~~~~~ ~~ S S S .~~ ~~ • S~~ S •  ~ S • .  ~~ S S • ~~ I S S U

• . • S~~ ~~S S~~ S S S S f l S S S  • • • • • . . • . •

9 9 ... -9 9 !q—i~~
~ q(t) 9 • 9 • ... 

~ ~ 9 ~q
(t )

+ u(t) + r(t) + d ( t) (7)

9 9 -  0

9 9 9

and

y (t )  C , 0 , ... , 0 , 0 x(t)

z1
( t )  0 , , ... , 0 , 0 z1(t)

S .  S~~ ~ •~~ . • . . .  . ...  .~~~~.. .• .  . ....  S S S ~~ ••~~

•. .. . . . . .•.. . .. ..... .  
. ( 8 )

~q_i
(t) 9 • 9 •.. • 

~~~~
• 9 ~

q_i
~~

.~q(t) 9 9 ..• 9 
~~~~~~ 

~q(t)

The open—loop tracking system governed by equations (7 )

and (8) is controllable if and only if (Porter and Bradshaw

1974)

rB , A l
rank 1 • n + p  (9)

19 ‘

since ~~~~~~ and (Q,~) are respectively controllable and
observable pairs.

~ 

_ _  - _
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In the case of such controllable and observable open-

loop tracking systems , the second stage in the design of the

error-actuated dynamic controller involves the introduction

of an Lth-order dynamic compensator (Brasch and Pearson 1970)

governed by state and output equations of the respective forms

• q
w (t )  — Fw(t) + Ge(t)  + E Hjzi(t) (10)— — _ — — i—i — —

and

q
u(t) — Kw(t) + Le(t)  + E M1~z~ (t) (11)
— 5--  —- i—l —

where

£ — min (v
~
—l ,v0—l) (12)

and ‘~c and are respectively the controllability and

observability indices of the open-loop tracking system

governed by equations (7) and (8). It is then evident from

equations (7), (8), (10), and (11) that the closed—loop

tracking system is governed by state and output equations

of the respective forms

c(t )  A-BLC BM1 ... BMq BR x(t)

i1 ( t)  —c , 0 , ... , 0 , 0
5 S ~~~~~S S 5 S S • ~~~~~. 5 S S I . .. , 5 5 . . 5 S 5 . .  • S S S S

ft

5 5 5 0 5  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • S . . .

~q
(t )  9 • 9 • ... ~ 9 ~ 9 !q(t)

~v (t) —9c~ ~ 
• •

~~~
• 

~ ~ ~ ~(t)

k u 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _

- ~~~~~~~~~~~~

—--

~~~

--

~~~

— - -  
- — -• —•——-5- -~~~~~~~~~~~~ - -~~~ - - ~~~~~ — 55 - -~~~~~~~~-— -—..- - - 5 - - - - - - 5 5 ---
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I 0-p -

+ :: ~~~~~~~ + 
: ~~(t)  (13)

9 2
9

and

y(t) C , 0 ~~~~~ 0 , 0 x(t)

z1(t) 0 , I~ , ... , 0 , 0 z1(t)
S • ~~~~~5 • S S  S •  ~ • S S S • 5 • S S S S •  ~~~~~~~~~~~~~

= . (14)
5 5 S ~~~~~S S S  • • S S . . 5 . 5 .S 5 .  5 . 5. . ,.  5~~~~~5 5 •

~q(t) 9 9 •. .  
9 ~q(t)

w ( t )  0 , 0 , ... , 0 , 12. w(t)

In view of equations (4) and (5), it is clear by differentiat—

ing equation (13) (q—l) times that the closed-loop tracking

system will behave so that

zu r n  q 
= 0 (15)t+co -

and therefore, in view of equations (6), so that equation

(3) will be satisfied if the error-actuated dynamic com-

pensator governed by equations (10) and (11) is designed

such that all the eigenvalueg of the plant matrix of the

closed-loop tracking system governed by equations (13) and

(14) are assigned to the open left-half of the complex plane.

3. COMPENSATOR DESIGN

It is evident from equations (7), (8), (10), and (11)
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that such a compensator can be designed by the synthesis of
an appropriate Output—feec3j~ack control law of the form

u2(t) — G2y2(t) (16)

for the augmented open-loop system governed by state and
— output equations of the respective forms

= A2x2(t) + B2u2(t) (17)

and

— C2x2 ( t)  , (18)

where

ru(t)1u2(t) — I ”  I (19)- 

1~
(t)J

x(t)

z1 ( t)
• S.  S~~~

xL (t) (20)

~q(t)

w(t )  J
y (t )

— ::::: (21)

~q(t)

[w(t)  J

r—L , M1 , ... , M , K
—q — 

(2 2 )19  ‘ ‘~~~ s 

~q

- - - -

~ 

- -
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‘ 2 9 • 9

—
~~ , 9 I ~~~~~~ I 0 0

~~~•~~~~~5 S 5 S S •~~~~~S 5 5 S  • S S S S •

(23 )
• . . S SS .S . S . . . . •S . SS S

O , 0 , ... , 0 , 0

0 , 0 , ... , 0 , 0

!‘ 2
9 , 9

= :::::: (24)

0 , 0

9 ‘

and

I 0 , ... , 0 , 0

9 
, , -~~~~. , 9 9

5 •~~~~~~ S • • S S S S 5 S • S S S S S  S S S

C0 = . (25)
—~~~

O , 0 , ... , I
~ 

, 0

0 , 0 , ... , 0 , I~

Thus, if the (m+L)x (p+pq+L ) output-feedback matrix C2 is

such that the closed—loop plant matrix (A 2+B 2G2C2 ) has a

self—conjugate spectrum {A 11A 2, ‘~~ +~~+2~ 
of distinct

eigenvalues and corresponding eigenvector and reciprocal

eigenvector sets l~~ 2 I 5 5 h I ~ n+pq+L ) and

then obviously

— 0 ( i 1 ,2 , . .., n +pq+L) (26 )

and

_ _ _ _  ~~- . —~~~~~~~~-
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0 (j — 1,2 , . . . ,n+pq+t )  (27 )

so that

‘ 
— 0 (i.1,2,...,n+pq+L) (28)

and

, 0 (j—l ,2,-...,n+pq+L) (29)

where

— ( i—l ,2 ,..., n+pq+L) (30)

— - (j—l ,2,...,n+pq+L) (31)

and

~~i 
(i , j 1, 2 , .. ., n+pq+&) . (32)

Conversely , if equations (28 ) , ( 2 9 ) ,  and (32) are satisfied

by a self—conjugate set {X 1~~
X 2~~

s . . l X fl+N+L } of distinct

complex members and corresponding self-conjugate sets

and l’~~2’ ’±n +pq+ 2.1 of linearly

independent vectors, then equations (30) and (31) are satisfied

by an (m+L) x (n+pq+t) matrix C2 such that

is the eigenvalue spectrum of the matrix (A 2 +B 2C2C2 ) and

• ~n+pq+i) and ~~1’~ 2’• ~~~~~~~~~~~~~~ 
constitute

corresponding eigenvector and reciprocal eigenvect’ r sets. It

accordingly follows from equations (30) and (31) respectively

that the real output—feedback matrix

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- r-~~-.-~ -.-~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ - - - - - - . - -  - - -
~~~~~~ 

-- - -_I_~ 
-5

— 86 —

92 ‘ ~2 ‘ ‘ ‘ ~p+pq+tJ 1~~t~ i ‘ 

~t~2 
‘ ‘ 

~2~p+pq+t~

(33)

and the real transposed output-feedback matrix

‘ ~2 ‘ 
~~~~~~~ 

‘ 
~m+tl[~~±i 

1 
~~±2 ‘ “ ‘

(34)

assign the self—conjugate distinct eigenvalue spectrum

and the corresponding eigenvector and

reciprocal eigenvector sets 
~~~~~~~~~~ 

and

to the closed—loop plant mat~ ’ - ~ (AL+BLGLCL
)

in case 
~~~~~~~~~~~~~~~~~~~~~ 

is a set of (p+pq+L)

linearly independent vectors and ~~~~~~~~~~~~~~~~~~~~~~~~~~~ is

a set of (m+L) linearly independent vectors, respectively.

In view of equations (28), (29) , (33), and (34), the

computation of is thus reduced to the determination

(Porter and D’Azzo 1977) of the kernels of each of the n

matrices

SL (Aj) = [A 2—A jI , B~j (i=l ,2,...,n+pql-2.) (35)

together with the kernels of each of the n matrices F
T~,(x~) iA~~X~I , CJ (j1 ,2,...,n+pq+2.) (36)

followed by the selection of sets of linearly independent

self—conjugate vectors 
~~~~~~~~~~~~~~~~~ 

and 
~~l’±2’•~~’ ‘~ n+pq+t~

from subspaces determined by the kernels of

and ~~ ( X j)(i~~l,2....in+pg+t), respectively, such that the

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —55-- - -—— &
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orthogonality conditions (32) are satisfied. it is finally

evident from equations (10), (11), and (22) that the matrices

- 
in the respective state and output equations of the required
£th-order dynamic compensator are determined by the sub-matrices

- - of the output-feedback matrix G~.

I .  
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LI, I LLUSTRATIVE EXAMPLE

The results presented in Sections 2 and 3 can be F
conveniently illustrated by designing an error-actuated

dynamic controller which will cause the output of the

controllable and observable linear plant governed by the

respective state and output equations

r~ (t ) 10 , 11 Ix (t)l 0 1
~1 = I I ~ I + u(t) + !d(t) (37)

Lx 2 (t) Ll , lJ Lx2(t)J 1 —]J

and

rx (t)1
y ( t )  = [1 , ~ 

~ . f (38)
Lx2(t)i

to track any constant command input r ( t )  in the presence

of any unmeasurable constant disturbance input d(t). In

this case it is clear that r = $ = q — 1, so that the

open-loop tracking system is governed by the respective

state and output equations

c1(t )  0 , 1 , 0 x1(t) 0

c2 ( t)  — 1 , 1 , 0 x2(t) + 1 u(t)

~(t) —l , 0 , 0 z(t) 0

0 1

+ 0 r(t) + — d(t) (39)

1 0

and

_ _ _  
5 5 - --— --- - - -— -—- -— - - - -~~~~~- . --—
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x (t)
Iy(t)1 Ii , 0 , 01 1

I I — I I x2 (t ) . (40)Lz (t )J Lo , 0 , 1J 
z(t )

This system is clearly controllable and observable with
3 and = 2 so that (Brasch and Pearson 1970) equation

(12) indicates that 2 = 1. Furthermore, in the notation of

equations (23), (24), and (25), it follows from equations

(39) and (40) that

•0 ,l , O , O

1 , 1 , 0 , 0

A = (41)
— I

• 0 , 0 , 0 , 0

0 , 0

1 , 0
B

1 
= (42)

0 , 0

0 , 1

and

1 , 0 , 0 , 0

= 0 , 0 , 1 , 0 . (43)

0 , 0 , 0 , 1

It is thus evident from equations (35) ,  ( 3 6 ) ,  (41) , ( 4 2 ) ,

and (43)  that

I 1 , 0 , 0 , 0 , 0

1 ~~1 A ~~ 0 , 0 , 1 , 0
S
1

( X )  — (44)
— —1 , 0 , — A ,  0 , 0 , 0

I I  0 , 0 , O , —A , O ,l

__________________________________________________________- —--— ———-— -~~ -.--—--. 
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and

—A , 1 , —1 , 0 , l , 0 ,O

1 , 1—A , 0 , 0 , 0 , 0 , 0
T~ (A) — S (45)
- 0 , 0 , — A ,  0 , 0 ,1 , 0

, 0 , 0 , —A , 0 , 0 , 1

In order to design an error-actuated dynamic compensator

for tk”~ open-loop tracking system governed by equations
(39) and (40) such that the eigenvalues of the plant matrix

of the closed—loop tracking system are

{A 1,A 2,A 3,A 4J — {—l ,—2 ,-—3 ,—4 } (46)

‘IL the design method described in Section 3 can be readily

used to compute an output-feedback matrix C1 such that

a(A1+B1G1C1) = {—l ,—2 ,—3,—4} • (47)

Indeed, it follows immediately (Porter and D’Azzo 1977)

from equation (44) that

~
-l 0

1 0

-1 0
ker S1 (—1) — span , (48)

- 0 1

:1 

-

- —---- -5---— --- - -— -
~~~-- —-~~- - - - - -.---.—55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——
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-2 0

4 0

—1 0
ker S (—2) span ‘ (49)

- 0 1
H 

-10 0

0 —2

H ‘ -3 0

9 0

-1 0
ker S1(-3) span (SO)

- 0 1

—33 0

-3

and

‘ —4 ‘ 0

16 0

-1 0
ker S (—4) = span (51)-.1 0 1

—76 0

0 -4

and similarly (Porter and D’Azzo 1977) from equation (45)

that



W — ~~~~~~

1
— 9 2 —

-2 0 0

1

0 1 0

ker !j(—1) — sPan 0 ~ 0 ~ 1 (52)

H —l 1 0

O —1 0

ker T~ (—2) — span 0 , 0 , 1 (53)

5 1 0

0 -2 0

O 0 —2

—4 0 0

1 0 0

0 1 0

ker T~ (—3) span 0 , 0 , 1 (54)

Li 1 0

0 -3 0

0 0 -3

and

Li
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ker T~ (—4) — span 0 , 0 , 1 . (55)

19 1 0

O —4 0

O 0 -4

It is evident from equations (48), (49), (50), and (51) that

the closed-loop eigenvectors corresponding -to the eigenvalue

spectrum (47) must be assigned to the respective subsp~ces

(
-1 0

1 0
— span , (56)

-1 0

0 1

-2 0

4 0
— span , (57)

-1 0

0 1

-3 0

9 0
E1(—3) 

a span , (58)
-1 0

0 1

and
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-4 0

16 0
— span , , (59)

-1 0

0~ 1,

and it is similarly •vident from equations (52), (53), (54),

and (55) that th. closed—loop reciprocal sigenvectors

corresponding to the aigenvalue spectrum (47) must be

assigned to th. respective subipaces

-2 0 0

1 0 0
r1(—1) — span , , (60)

0 1 0

0 0 1

-3 0 0

1. 0 0
r 1(— 2)  — span , , (61)

0 1. 0

0 0 1

‘ -4 0 0

1 0 0
r 1(— 3 ) — span , , (62)

0 1 0

0 0 1

and

H 
-5 0 0

H 1 0 0
r 1(— 4) — span , , (63)

1’ 
0 1 0

0 0 1

~~



Since the vectors

— € E ( 1 )  (64)

— f_ ] . € E 1 (— 2 ) (65)

L—7
I

9
— 

—l 
€ E1(—3) (66)

-14

—4
,

16
— 

—1 
€ ~~~ (67)

—23

—2/3

1/3
~~ r 1(— 1) (68)

1/3

— 
~~~~~ 

r 1(— 2) 
‘ 

(69)

— 5 ,



‘r~~ 
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13 
€ t1(—3) (70)

5

and

35/6 ’

—7/6
• • ~~ r , (— 4)  (71)

— 14/ 3

—5/3 1
ar. clearly such that

•;x~~ • (i,j—1,2,3,4) (72)

it follow s f rou~ equations (33) and (34) that equation (47)

is satisfied by the output— feedback matrix

r—47 , 34 • 10
Cl I (73)
- 

• —35 • —11

In view of equations (10), Ui), (22) , (73), th• corr.sp~nd—

ing dynam ic compensator for the open—loop tracking system

governed by equations (39 ) and (40) ii governed by the

respecti ve state and output equations

• —llw (t) — 49e (t )  — 35s(t) (74)

and

u(t) • lOw(t) + 47.(t) + 34a(t) , (75)

so that the required error—actuated dynamic controller is

characterts.d by the transfer function
- ~~~~~ — - “— “-- - ‘~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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T(s) — ~ ( s)/ •(s)  — (4752÷61$424)/$(s4il) . (76)

It can be readily verified that the poles of the closed-

Loop tracking system governed by equations (37) , (38),(74) ,

and (75) are (—l ,—2 ,—3 ,-4 } and tha t

u r n  e(t) — lim(r (t)—y(t)} • 0 (77)
t+—

for any constan t co~n~tand input r(t) and any constant tin—

measurabl. disturbance input d(t).

5. CoNcLusioN

In this paper, the method of entire eig.rtstructurs

assignment has been applied to th. design of linear multi-

variable continuous -time tracking systems incorporating

error-actuated dynamic controllers. It has been indicated

that such tracking systems can be designed for a much

larqer class of plants than tracking systems incorporatin’j

error-actuated static controllers (Porter and Bradshaw 1976)

in view of the fact that eigenstructure assignment by error—

actuated static controllers and by output—feedback controllers

(Kimura 1975,1977) are essentially equivalent.
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I

ABSTRACT

In this paper , the method of entire eigenstr ucture IT

assignment (3radshaw and Porter 1978a ) is applied to the

design of linear multivariabie discrete—time tracking

systems incorporating error—actuated dynamic controllers.

The method is illustrated by designing an error-actuated

dynamic controller which causes the output of a second-

order discrete—time plant to track a constant command input

in the presence of an unmeasurable constant disturbance input .
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1. INTRODUCTION

In this paper, the method of entire eigenstructure

assignment (I3radshaw and Porter 1978a) is applied to the

design of linear multivariable discrete—time tracking systems

• incorporating error-actuated dynamic controllers. Such

tracking systems consist of a controllable and observable

nth-ordsr linear multivariable plant governed by state and

output equations of the respective forms

x(k+l) — Ax (k )  + Bu(k) + Dd (k) (1)

and

y(k) — Cx(k) (2)

where B and C have full rank, together with an error—actuated

dynamic controller which is required to cause the pxl output

vector y(k) of the plant to track a pxl command input vector

• r(k) in the sense that

- lim e(k) — l i zn (r (k ) — y ( k ) } — 0 (3)
• k... k..~

for polynomial command and disturbance inputs of the respective

forms

r
r(k) — E ct~ _ 1k~~~ (4)
-

- • 
and

• II S
Li d(k) — £ ~ _ 1k~~

1 
. (5)

- i_i_i

El
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The theory developed in this paper is analogo~as to that

developed by Porter and Bradshaw (1978) for continuous-time

tracking systems but is significantly extended in order to

allow the assignmem~t of confluent eigenvalues to the plant

matrix of the closed-loop tracking system. It is therefore

possible to apply this theory to the design of an error-

actuated dynamic controller which causes the output vector

of a plant governed by equations (1) and (2) to track a

command input vector in the sense that

e(k) = r(k) — y(k) = 0 (k—v 9 ~*l,...) (6)

for command and disturbance inputs defined by equations (4)

and (5), where v is the index of nilpotency of the closed-

loop plant matrix of the tracking system. It is important to

note that tracking systems incorporating error-actuated

F dynamic controllers can be designed for a much larger class

of plants than tracking systems incorporating error-actuated

static controllers (Bradshaw and Porter 1978b) in view of

the fact that eigenstructure assignment by error—actuated

static controllers and by output-feedback controllers (Kimura

1975,1977) are essentially equivalent.

2. THEORY

The first stage in the design of the required error—

actuated dynamic controller for the plant governed by equations

(1) and (2) involves the introduction (Bradshaw and Porter

1975) of a vector comparator and a series of q = m ax( r , s)

discrete—time vector integrators in order to generate the q

I L  
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vectors defined by the equations

z
1
(k+1) z

1
(k) + e(k )

z2 (k +l) = 

~~~~ 
+ z

1
(k )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (7)
. . . . . .. .. S. .. . . . . .. . . . . . . ..  

I

= 
~q(k) + ~q_1 (k) .

It is then evident from equations (1), (2), and (7) that
the open-loop tracking system is governed by state and
output equations of the respective forms

x(k+l) A , 0 , ... , 0 , 0 x(k)
• z1(k+ 1) —C , , ... , 0 , 0 z1(k):::: :::: = : :.::: :::: :.:::.: :.:::::

~q—l +’) 9 9 ... 9 ~q_1(k)

~q(k) 9 9 ... ~q (k)

9
9 

~
p 9

+ u(k )  + r (k) + •

• 
d .(k ) (8)

9 9 9
0 9 9

and

C , 0 , ... , 0 , 0 x(k)

~~~~~~~ 
~~~~~~~~

• •...... • • • ••.• •.. . . ....,. . . ..  •• • ., .~~ 
• (9)

~q_1(k) 9 ~ 9 ~ 
... 

~ 
9 ~q_1(k)

9 9 ... 9 Zq(k) 

-“- •- -• ~~- -‘-,-~~~~~~~~~~~ -.-- •-- —-- -
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The open-loop tracking system governed by equations (8) and

(9) is controllable if and only if (Bradshaw and Porter 1975)

1B ,A — ~1rank — f l +~~~ (10)
‘.9 •

since ~~~~~~~ and (c,~) are respectively controllable and
observable pairs.

In the case of such controllable and observable open—

loop tracking systems , the second stage in the design of the

error—actuated dynamic controller involves the introduction

of an £th—order dyn amic compensator (Brasch and Pearson 1970)

governed by state and output equations of the respective

forms

q
w(k+l) — Fw(k) + Ge(k) + I H z  (k) (11)— —— ——

and

q
u(k) — Kw(k) + Le(k) + E M~z1(k) (12)— a —— i..u~ 

—

where

£ — min(v
~
—l,v0—l) (13)

and and are respectively the controllability and

observability indices of the open-loop tracking system

governed by equations (8) and (9). It is then evident from

equations (8), (9), (11), and (12) that the closed—loop

tracking system is governed by state and output equation.

of the respective form s

- - _ _ _ _ _
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~i(k+ 1) 
- 

~~1 
• 

~~~~~ ~~q ~~ ~ (k)

z1(k+1) —C , ~~ , .., , 0 , 0
.•...•... ................... .....

.. .... . .. . . •.. . s  • 1~~~ • • s • .. . .. ... .. . . .. . . .
9 9 • ... • 9 ~q(k)

~i( k+l) !~Lq !- ~ (k) -

+ r ( k )  + d (k )  ( 14)

9 9
C 0

and

I. ~(k) C , 0 , ... , 0 , 0 x (k )

z 1(k ) 0 , I~ , ... , 0 , 0 z1(k)
S . . . .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 5 5 5 5

— . (15)..... . . •. .. . . .• . . .. . .• . e .. .  . .• ..

9 9 ... 9 f q (k )

w (k )  0 , 0 , ... , 0 , I~ w(k)

In view of equations (4) and (5), it is clear by differencing

equation (14) (q—1) times that the closed—loop tracking system

will behave so that

• u r n  A~~~z (k) — 0 (16)
k-s.. -

and therefore , in view of •quations (7), so that equation (3)

will be satisfied if the error—actuated dynamic compensator

governed by equations (11) and (12) is designed such that all

the eigenvalues of the plant matrix of the closed-loop tracking 

- - - :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •--~~~~~~~~~~~~~~~~~~ -- .-- -~~-~~~~~~~~~~~~~~~~~~
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system governed by equations (14) and (15) are assigned to

locations within the unit circle of the complex plan..

3. COMPENSATOR DESIGN

It is evident from equations (8), (9), (11), and (12)

that such a compensator can be designed by the synthesis of

an appropriate output-f~edback control law of the form

u
~
(k) — (17)

for the augmented open—loop system governed by state and

output equations of the respective forms

• xt(k+l) — Atx& (k) + B&ui(k) (18)

and

i•. ~~t
( k )  Ctx&(k) , (19)

where

Iu(k)1
uL (k) — V I (20)

Ly(k)J

• x(k)

z1(k)

x
~

(k) — 

• 

(2 1)

~q(k)

~ (k)

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1
y(k)

z 1(k)
5 5 • 5 5

~ (k) — (22 )
£

w(k )

• r — L , M  , ... , M ~~G — I ~~ 
— .q -

~~ 
* (23)

t i — Li , • ‘•  ‘ ~q ‘

I 9 I ~ 9 ‘ 2
—c , , ... , 0 , 0

• S • S S S S S • S S S • .  •~~~~S 5 S~~ • 5

A — (24)
... . ... •..... ..... ....

O , 0 , ... , , 0

I 9 I ~~~~~ 2 9

B ,  0

9 , 9
B — (25)

S . . . . .

0 , 0

II

and

, 0 , . . . , 0 , 0~
— — —
0 , 1 S ... , 0 , 0_ 

_p — —
C~ — . (26)
— L  •~~~~S • 5 S • S • S S S S S • S • S S S ~~~~•

9 ‘ 9 ‘ S . .  0

0 , 0 , . . . , 0 , I,~,
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Thus, if the (m + t ) x (p + p q + L)  output-feedback matrix is

such that th. closed-loop plant matrix (A z+BtGtct) has a

self—conjugate aigenvalue spectrum (A 2 ,  A21... ,A
~

) , a correspond-
ing eigenvector and generalised eigenvector set
h—l ,2, . ..~m~~:i—l .25...5k~;i—112 5. .. ,t}, and a corresponding
reciprocal eigenvector and reciprocal generalised eigenv.ctor

set {•~
CPb) :c— 1~25...~% ;b—1,2,...,k;a~l,2,... t}, then

~~~~~~~~~~~~~~~~~~~ — 0 (27a)

~~~~~~~~~~~~~~~~~~~ 
- x~~’~ ( 27b)

•~~~~~S I S  S S~~~ S • • ~~~~~5 S S ~~~~~S 5 5 5 5  S S S • 5 S . .. . S .  5~~~~~5 •  S

• S 5 5 5 S 5~~~~~5 5 5  . . . .  5 5 5 5 5 5 5 5 5  • S. S ..  • 5 5 S 5 • . 5

Cm ~5 i )  Cm

~A i 
(27mji)

(i l12 ....~ k~ ;i—l .2 ....,t)

and

•
(11b) 

L a ~~~L~ L~L~ •
(2
~
b)’ (28a)

• 5 5 5 5 5 5 5  S S • S ~~~~~S S S S S S  . S. . . • SS . S .  ~~~S 5 S

• • • • •S S • • •  • . 5~~~~~5 S S S  S S S  5 e 5~~~~~~~ 5 5 5 5 ~~~~~5 S

(mb —1,b)’ (mb ,b)’a 
— a

9’

~~~~~~~~~~~~~~~~~~~~~~~
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where ~~~~~ is the hth vector in the jth string of length
I. — i I k~

m4j associated with the .igenvalu. A~~, and where 
•,

~~CILJI iS

the cth vector in the bth string of length mba associated

I with the eigsnvalue X
a

s The vectors 
~~~~~~ 

(j ..l.2 9 . . ., k~~)

A are the k~ eigenvectore associated with the eigenvalue ~~
whilst the remaining vectors in each of the ki strings of

vectors satisfying equations (27) are generalised elgenvectors

associated with the eigenvalue X~ . Similarly , the vectors
(% .b)

( 
a ( b l I29•S •~~

k
a
) are the ka reciprocal eigenvectors

associated with the aigenvalue Xat whilst the remaining

vectors in each of the ka strings of vectors satisfying

equations (28 ) are reciprocal generalised eigenvectors associated

• with the eigenvalue 1a • The total number of vectors associated

with the eigenvalue A f in each set is evidently

k f
• mf — £ m C f 1 , 2 , . .. , t) (2 9)

-

- 
• 

and

t
n + p q + t  — £ m f 5 (30)

f— I

Equations (27) and (28) can be written in the form

(1,j)

~
xi

aLl — 0 (3la)
(1,j)

S

~

-rn—- • -

~

- -

~



-- -S S
~~ -~~~~ — — -, ~~~~~~~ 

—5-., -~~

r~~~i 
T•-’ —~~~ -

— 110 —
L

(2 , j )
L .

~ 
~~(2 ,j )  

— 
~~~~~~ C3lb)

L

S S •  . S  S • 5 5 SS 5  • S 5 5 5 S SS S 5 ~~~~~~~~s 5 S 5 5 5 S S S5 ~~~~~,~~~~~,~~~

S .  S~~~~~S S S 5 . 5 5 , .  • S 5 5 5 5 5  ‘ 5 5 5 5~~~~~. S • ~~~~~~~~~ S . . . . . .

(m 4~~,j )
J

Cm ,j)1.. ‘ ~~ Cm j) 
— x jil 

(31xn~~)ii,

I t

and

(1,b)

a
[A :— x I , c J  — ‘ (32a)a-. — (l ,b) — a

~A a

• . .. S . S . . .  ~~~. .. .. .. . . . ..  S S S S S S S S S S s •

s • ~~ • . S S 5 . S S S~~~~~~ 5 5 5 5* 5 * 5 5 5 5 5 5 5 5 5. 5 . . . . . . .

iA~
_A

aI 

~~~ 
[;~~ a

_u .b ]  

- ~~~~~~

-

• 

~%a’~~ 

—

(b.1,2 ,. ,ka ;a
~ l ,2,  . 5 5  , t)

U 
L 

_ _ _
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where

— 
~~~~~~~~~ (33)• i • • — i

~(c,b) — G’B’~~~~~’~~~ (34-A — t— t-Xa a

and

— 6ai6bj~ ch

(C 112 , . ..,% b h l ,2 , . . . ,k 5151,2 , .. .,t )

Conversely, if equations (31), (32), and (35) are satisfied

by a self-conjugate set 01.A 29...,A t} of complex numbers

and corresponding self—conjugate sets (X~~ ’~~~: h—l.21....m~~;

j l,2,...,ki$i~
1,2,...,t) and ~~~~~~~~ :c:l~

2,S.S,%a;b~
l,2,5..,ka;

a—i, 2,..., t} of linearly independent vectors, then equations

(33) and (34) are satisfied by an (m+t)x(n+pq+t) matrix

- 

A 

such that (Xi, A 2 1. . . , A~~
} is the eigenvalue spectrum of the

matrix 
~~~~~~~~~~~~~ ~~~~~~~~~~~ ~k—1,2,-,.. ~~~~~~~~~~ ...

i~1,2,...,t} constitutes a corresponding eigenvector and

generalised eigenvector set, and ~~~~~~~~~ :c 1,2,... ‘mba
b l ,2,... ,k5;al ,2,... ,t} constitutes a corresponding reciprocal

.igenv.ctor and reciprocal generalised eigenvector set. It

accordingly follows from equations (33) and (34) respectively

that the real output-feedback matrix

‘ 
~2 ‘ 

~~~~ ‘ ¶~?p+pq+tlCE&~1 ‘ ~t~2 ‘ ~~~~ ‘ ~ L~p+pq+LJ

( 36)

_________ 
_ _ _ _  - - - - - S • ~~~~~~~~~~~ • - — -——~~~~~~~ -- —  
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and the real transposed output-feedback matrix

— 
‘ 
~2 ‘ ‘ ~m+t1~~ L~ l ‘ 

~t±2 ‘ ‘

C 37)

assign the self—conjugate eigenvalue spectrum {Xi,A2i...,A~
},

the corresponding eigenvector and generalised eigenvector set

and the
—

corresponding reciprocal eigenvector and reciprocal generalised

-

• 

eigenvector set

to the closed-loop plant matrix (A
t

+B
t

G
t

C
t

) in case

is a subset of (p+pq+~.) linearly

independent members of the set
-I

and {B
~4~lv

Bj4I21S~~•f Bj$m+&
} is a

subset of (m+L) linearly independent members of the set

In view of equations (31), (32), (36), and (37), the

computation of is thus reduced to the determination (Porter

H ~~ • and D’Azzo 1978) of the kernels and generalised kernels of

each of the t matrices

— [A t—A iX B,) (i—l ,2,...,t) (38)

together with the kernels and generalised kernels of each of

the t matrices

TjCA a) — 
~~~~~~ 

‘ (a1 ,2,...,t) (39)

followed by the selection of sets of linearly independent self-

conjugate vectors (X ,~
h9)):h.1,2,...,m ~~~~~~~~~~~~~~~~~~~~~~~~~H iIi and ($

~
‘
~
‘
~~
:c1u 1P 2,.S..%a;ba],2,...,ka

;a_ 1,2,...,t} from sub—

spaces determined by the kernels and generalised kernels of
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and T)Aa)Ca~
1,2,...,t), respectively,

such that the orthogonality conditions (35) are satisfied .

It is finally evident from equations (11), (12) , and (23)

- that the matrices in the respective state and output equations

of the required £th-order dynamic compensator are determined

- 
by the sub—matrices of the output-feedback matrix C1.

F
r I :
V

f ~!
4 .

-

- S

E~ 
S 1

ii S .

11 :  
_____

_ _ _- _H55~55 5_5~-~5~ .~~~~~~~ ——-- -
~~~~~~~~~~~~~~ •~~~~~~~~~~ - - - 

-
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4, ILLUSTRATIVE EXAMPLE

• The results presented in Sections 2 and 3 can be con-

veniently illustrated by designing an error-actuated dynamic

controller which Wi].]. cause the output of the controllable

and observable linear plant governed by the respective state

and output equations

Tx1(k+1)1 ro , 1 1 Tx (k) 1 rol ru— I I = I I I + I Ju (k) + Id(k)
Lx2 (k+1)J L’ ~ -l/2J Lx2 (k) . L1J :1J

(40)

and

r x (kn
• y (k ) = [l , 0~~~( 1 I (41)

Lx2 (1
~)J

to track any constant command input r (k ) in the presence of

any unmeasurable constant disturbance input d(k) in such a

way that eCk) = 0 after a finite number of discrete—time

intervals. In this case it is clear that r = s = q = 1, so

that the open—loop tracking system is governed by the respective

state and output equations

x1(k+l ) 0 1 , 0 x1(k) 0

x2(k+i) = 1 , —1/2 , 0 x2(k) + 1 u (k )

z(k+l) —l , 0 , 3. z(k) 0

0

+ 0 r ( k )  + -11 d (k )  (42 )

L 1 0

and

ii - 



--5 •— --Sr fl -~~- -~~

— 1 1 5 —

x (k) —

— c: : : ; ] [x~~
k J  

. (43)

z ( k)

This system is clearly controllable and observable with

— 3 and — 2 so that (Brasch and Pearson 1970) equation

(13) indicates that £ — 1. Furthermore, in the notation of

equations (24) , (25) , and (26), it follows from equations

(42)  and (43) that

0 , 1 , 0 ,0

1 , —i/2 , 0 , 0
A1 — (44)
— —1 , 0 ,l , 0

0 , 0 , 0 , 0

H
(S 

-

1 , 0
• 

~~~~~ 

—
— 0 , 0

0 , 1

and

1 , 0 , 0 ,0

C1 — 0 , 0 , 1 ,0 . (46)

0 , 0 , 0 ,1

It is thus evident from equations (38), (39), (44), (45),

and (46) that

3

ii
-

- -5—- 5— - - — — - - -5  ~~SS -•~ —5--” 5— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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-A , 0 , 0 ,  0 , 0 , 0

1 , —X — 1/2 , 0 , 0 , 1 , 0
S1(A) — (47)
- —1 , 0 , 1—X , 0 , 0 , 0

0 , 0 , 0 , — A , 0 , ] .

and

1 , — i , o , i , o , c ~
H 1 , —A— 1 /2 , 0 , 0 , 0 , o , 0

T~ ( A )  — . (48 )
— 0 , 0 , 1—A , 0 , 0 , 1 , 0

. 0 , 0 , 0 , —A , 0 , 0 , 2.

In order to design an error-actuated dynamic compensator for

the open—loop tracking system governed by equations (42) and

(43) such that the error is eliminated after a finite number

of discrete—time intervals, it is necessary to assign the

value zero to all the eigenvalues of the closed-loop plant

H matrix. Such an assignment clearly requires that t = 1,

: 1  m1 — 4 , and A1 — 0 and therefore, in consonance with the results

of Rosenbrock and Hayton (1977), that k1= 1 and rn11 = 4. It

follows (Porter and D’Azzo 1978) from equation (47 )  that

• 
• l~
0 0

1 0
ker S1 (0) span , (49)

- .1. 0 1

-1 0

p

and similarly (Porter and D’Azzo 1978) from equation (48) that
(•J

— - -— - - - - — -• - —~~~ • • - — — — • •- - - -——• - • - -~~~~~~~~~ - — — ~~~~~~-~~~~~ 
— 5 — — —  -5 -—--” -— 5 - ~~~~~~~~ —~~~~- — •
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3

1/i 0 0

1 0 0

0 1 0

ker T~ (0) = span 0 , 0 , 1 . (50)

-1 1 0

0 -1.

0 0 -  Lo
It is evident from equation (49 )  that the closed—loop eigen-

vector X~~’~~ corresponding to the eigenvalue A 1 0 must be

assigned to the subspace

1 0~
0 0

E i (0) = span , (51)
1 0 5 -

0 1

whilst the associated string of generalised eigenvectors

~~
2’1

~ ~~~~~~ and ~““~ must be generated in accordance with

equations (31), and it is similarly evident from equation (50)

that the closed-loop reciprocal eigenvector &~~“~ 
correspond-

ing to the elgenvalue A 1 = 0 must be assigned to the subspace

1/2 0 0

1 0 0r 1(o) = span , , (52)
0 1 0

0 0 1

whilst the associated string of generalised reciprocal elgen—

vectors •
(3~1) ,(2~l) and •~~~

1) must be generated in

- - - - S.  ~~~~~~-- • S— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5 --
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- accordance with equations (32). Since the vectors

1

0

- ‘ — — (53)
(1,1) 0

—2.

~(2~1) 3.
• t~o — (54)

(2,1) —1

1/2

~
— (55)

l~~
(3

~
l) 1

L-° 1

—2.

— 

(4 ,1) 1
— — (56)

‘1 
~~~~~~~~~—o

0
.1

L 
1 

--~• --. - •-  
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I - .

—1/4

— 1/2

1/4
•
(4.l)

[j~
4i1)] 

— 

:

1/4 

(5 7)

3/4

-1/2

3/4
1,(3~l)1
1~ 0 j _ 1/4

-

• L~311~ 
(58)

—0 J
— 1/2

-1/4

0

1

H 0
1,(2~l)-o 

— 0

—7/4 
(59)

3/4

1/4
and

0

0
r u,x
1±0 0

I c (2. , 1) — 

0 
(60)

1.~5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
- -S 

~~~~~~~~~~~~~ 
- - - -— -- 

- — _____________________
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are clearly such that

= 6ch (c,h—1 ,2,3,4) (61)

it follows from equations (36) and (37) that the required

eigenstructure assignment is achieved by the output feed-

back matrix

1—7/4 , 3/4 , 1/41
= I I . (62)

- L 1/2 , —1/2 , —l /2j

In view of equations (11), (12), (23), and (62), the correspond-

ing dynamic compensator for the open-loop tracking system

governed by equations (42) and (43) is governed by the

respective state and output equations

w (k+1) —1/2 w(k) — 1/2 e(k) — 1/2 z(k) (63)

and

- 

I 
u(k) = 1/3 w(k) + 7/4 e(k)  + 3/4 z(k) (64)

so that the required error—actuated dynamic controller is
- 

• 
characterised by the transfer function

• T(z) = i~(z)/ (z) = (7z2—z—2)/(4z+2) (z—].) . (65)

It can be readily verified that the closed-loop tracking

system governed by equations (42), (43), (63), and (64)

tracks any constant command input r(k) in the presence of

any constant unmeasurable disturbance input d(k) in such a

way that

• Li
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eCk) r(k) — y(k) 0 (k4,5,...) . (66)

4. CoNcLusioN

In this paper, the method of entire eigenstructure

assignment has been applied to the design of linear multi—

variable discrete-time tracking systems incorporating error-

actuated dynamic controllers. The theory developed in this

paper is analogous to that developed by Porter and Bradshaw

(1978) for continuous-time tracking systems. However , in

this paper the theory has been extended in order to allow the

assignment of confluent eigenvalues to the plant matrix of

the closed—loop tracking --system. It is therefore possible to

apply the theory to the design of error-actuated dynamic

• controllers which eliminate completely the error between the

command input vector and the output vector after a finite

number of discrete-time intervals.

ACKNOWLEDGEMENT

This research was supported in part by the Air Force

Wright Aeronautical Laboratories, United States Air Force

under Grant AFOSR-76-3005A.

REFERENCES

BRADSHAW , A. and PORTER , B. ,  1975 , m t .  1. Systems Sci., 6 ,

117; l978a , Ibid . (in the press) ; l978b , Ibid. (in the press). 

~~~~~~~~~~~~~ • - 5 • • — -~~~ -5-S-



-- —s——-- -S -—-- - -  
~~~~~~~~~~~~~~

•-
~~~~~~~~~~

- ‘
~~
-‘-—-

~~

- - —

~~~~~

- - 5

- S 
—

— 122 —

BRAScH , F. M. and PEARSON, J. B , 1970, I.E.E.E. Trans. autom

Control , 15, 34.

KIMURA , H., 1975, I.E.E.E. Trans. autom. Control, 20, 509;

1977 , Ibid., 22 , 458.

-
~~~ PORTER, B. and BRADSHAW, A., 1978, m t. J. Systems Sci.,

(in the press).

H PORrER , B. and D’AZZO , J. J., 1978, m t .  J. Control,

(in the press).

• ROSEMBROCK , H • H. and HAYTON , G. E . ,  1977 , Control Systems

• Centre Report No. 288, University of Manchester, Institute

of Science and Technology .

1’

-—-.4



-5---- 
-S 5-—-—- —5----- -_,4~~

-- —‘5-— - —-5- — ---5 -,----w- - 5-

5--- 
- 

- -

--I
— 1 2 3 —

-1
A P P E N D I X  9

I ~
DESIGN OF LINEAR MULTIVARIA BLE
DI SCRETE-TIME TRACKING SYSTEMS

INCORPORATING ERROR-ACTUATED CONTROLLERS

DR A BRADSHAW AND PROFESSOR B PORTER

DEPARTMENT OF AERONAUTICAL AND MECHAN ICAL ENGINEERING

UNIVERSITY OF SALFORD

SALFORD M5 LIWT
ENGLAND

- 

(INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, VOL 9, pp].85—191, 1978)

• U



- 
—~~~~~~~ —-—---- —‘-- —------ ---

r — — . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________ ,. — 
~~~~~~~~~~~~~

— 124 —

ABSTRACT

In this paper, the controllability results of Bradahaw

and Porter (1975) are applied to the design of linear mutli—

variable discrete—time tracking systems incorporating plants
- 

with inaccessible states for which appropriate error-actuated

- 
• controllers exist. The design method is illustrated by the

presentation of the results of simulation studies.

f - j 
-—-5- - -- 1
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1. INTRODUCTION

It is the purpose of this paper to develop a basis

for the design of linear multivariable discrete—time tracking

systems incorporating error-actuated controllers which is

directly analogous to that developed for continuous-time

tracking systems by Porter and Bradshaw (1976). The control-

lability results of Bradshaw and Porter (1975) are accordingly

applied to the design of linear multivariable discrete-

time tracking systems incorporating plants with inaccessible

states for which appropriate error—actuated controllers exist

and for which it is therefore possible to achieve satisfactory

tracking behaviour without the need to incorporate observers

in the manner of Bradshaw and Porter (1976). Such discrete—

time tracking systems consist of a controllable nth—order

linear multivariable plant governed by state and output

equations of the respective forms

— x(k+l) — Ax (k) + Bu (k) (1)

and

y(k) — Cx (k ) (2)

together with a controller which is required to cause the
px]. output vector y(k) of the plant to track a pxl command

input vector v(k) in the sense that

lint e(k) — lim(v(k) — y ( k ) } — 0 (3)
k-.o — k..o~ 

—

[J for polynomial command inputs, i.e., for command inputs with

the property that

— 

L
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— 0 (4)

where

• 
A W v(k) — v(k+l) — v (k)

— ~~
1
~v(k+1) 

— ~W v(k)

• ..... •..•..•.... . .• •  ...•....••... S .  •~~
(5)

.•.•..... S .  ~~~~~~~~~~~~~~~~~~~ . . . .. . .S .  • .  •~~~~S • ~~~~•~~~~S ~

• . .. S • • ~ • • S S ~~~~ S~~~ • ~~~ • S~~~ ~~~~ ~~~S S • ~ • S • ~ ~ S • • S

A (m)V(k) — A (m—l) V (k+l) — A (m—l)V(k) . 
-

It is important to note that, although these liscrete—time

tracking systems reduce to the error-actuated sampled—data

servomechanisms of classical control theory (Bergen and

Ragazzini 1954) in the special case p — 1, the des ign of

error—actuated ntultivariable servomechanisms in the general

case p > 1 is always non—trivial - and sometimes impossible —
in view of the fact that the assignment of prescribed eigen-

value spectra by error-actuated controllers and by output—

feedback controllers (Kimura 1975) are essentially equivalent.

2. THEORY

The first stage in the design of the required error—

actuated controller for the plan t governed by equations (1)

and (2) involves the introduction (Bradshaw and Porter 1975)

of a vector comparator and a series of r discrete—time vector

integrators in order to generate the r vectors defined by

the equations

Ii
— - — —~~~~~~ - - - -5 --5 -- —— —— --~~~~~~~~~~~~ ——~~~— - - - - —- — -- --5--—~~~~~~~ —— - - - - -~~~~~~~ --  - — ~~~~~~ ~~5- -5 — - —--  -5
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z1(k+1) — z 1( k )  + e (k)

— z2(k) + z 1(k) ,

z ,(k+l ) — z (k) + z (k) ,
-. 3 -.2 (6)

S S S S S ~~~~~S S S S S ~~~~~S S S S ~~~~~. 5 5 5 5 5 5 5 5 5  ~

• S S S . S . . . . . S .. .S .. S S .. . .. . S  ,

S S • • S S S • S S • • • • • • • • • • • • • • S • •  5

— 
~~~~ 

+ !r—l~~

It is then evident from equations (1), (2), and (6) that the

open-loop tracking system is governed by a state equation

of the form

x(k+l) , 0 , 0 , ... , 0 , 0 x (k )

z1(k+l) —C , I , 0 , ... , 0 , 0 z1(k)

~2~~~
1) 0 , I , I , . .,  , 0 , 0 z2(k)

z3 (k+1) 0 , 0 , I , ... , 0 , 0 z 3 (k)
~ • S S S S S S S  • • • •S •• • •  • S S S S • S S SS S •~~~~~• •  S • .S • • •

S S S S S S S S S  S S S S S S S S • S S S S S S . S S S S S S S S

• . . .. S . S S  • S S S S •S 5 S •  • S • S S S S S S S  S S S S  S S S S S S S

2 ‘ 9 ‘ 2 ‘ ‘ ‘ 2 ~r—l~~~

- 
9 ‘ 9 ‘ 2 ‘ ‘

~~~~~
‘ ‘ ‘ ~~ ~~~~ -

9

9 2
9 2

+ + . (7 )

S S

9 0

9. 9.

L
-- -- — ~~~~~~~~~~~~~~~~~~~~~~ •~~~~ --  -—- -~~~~~~~ -
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The second stage in the design of the error-actuated controller

involves the introduction of (r+1) vector feedback loops in

order to generate the mxl input vector u (k) according to the

error control-law equation

r
u(k) — K e(k) + ~ K~ z~~(k) , (8)
— —0— i—l —

where the X~ (iO~l.2~ ...~r) are mxp feedback matrices. It

is then evident from equations (7) and (8) that the closed—

loop tracking system is governed by a state equation of the

form

x(k +l) - 

A—BE0C , BK1 ‘ 
S S S  

~~r—l ‘ ~~r ~~~~~

z1(k+l) —C , I , 0 , • . .  , 0 , 0 z1(k)

0 , I , I , ... , 0 , 0 z2(k)

z3(k+l) 0 , 0 , I , ... , 0 , 0 z3(k)
S S S S S S . • S  S S S S S S • S S S S  S S S S S S S S  S S S • S S S SS S S S S S S SS S 5  S S . S. . I

S S S S • S S S •  S S S • ~~~~~S S S ~~~ 5 5 5 5 S 5 5~~~~~~~~~ S S S S S S S S S •  5 5 .. S. . S S  • S S S S • •

S . . . . . . . .  • • S S SS S S S S  e S  ~ • S S S S S S S S  S S S S S  S S S S~~~ S S S S S S  5 5 5 5 5 5 .

2 ‘ 2 ‘ 2 ‘ 9 ‘ 9 
~r—l~~

2 ‘ 9 ‘ 2 ‘ ‘ ‘ ~

I

0

0

+ v(k) . (9)
. S.  •

. 5 .

1~ 9

L
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In the case of pxl vector polynomial command inputs of the

form

r
v(k) — I a~~ 1k , (10)
— i—i—

it is clear by differencing equation (8) (r—l) times that

the closed-loop tracking system will behave so that

lint ~
(r)Z (k) = 0 (11)

-

and therefore, in view of equations (6), so that equation

(3) will be satisfied if the error control law (8) ca~ be

synthesised in such a way that all the eigenvalues of the

plant matrix of the closed-loop tracking system governed by

equation (9) are assigned t- any desired locations within

the unit circle.

However, in view of the presence of the sub-matrix

(A-EK0C) in the plant matrix of the closed—loop tracking

system, an error control law of this class will not always

exist (Kimura 1975) even if the open-loop tracking system

governed by equation (7) is controllable in the sense that

(Bradshaw and Porter 1975)

rB , A—x 1
rank l  - — I  — n + p  . (12)

L 9 ’  -~J

It is nevertheless evident that such a control law will

certainly exist if, for example, a stabilising state—feedback

control law of the form

J
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r
— 

- u (k )  = Kx (k ) + I K~ z~~(k ) (13)- -.- 1.=1~ 
-

can be synthesised such that there exists a matrix with

the special property that

= K . (14)

However, the existence of a stabilising error control law
1. of the form (8) can in general only be investigated

systematically by using decision methods in the n~anner of

Anderson , Bose , arid Jury (1975) .

3. ILLUSTRATIVE EXAMPLE

The theory presented itt Section 2 can be conveniently

illustrated by designing an error—actuated controller which

will cause the output of the controllable second-order linear

plant governed by the respective state and output equations

(Bradshaw and Porter 1975)

= [0 
, 1] [xi (k)1 + 

[1. , 1
~ [ui

(k)1 
(15)

• 
Lx2(k+l)J L 6 , 5J Lx2 (k)J Lo ‘ 2J Lu2 (k)J

and

~y1(kfl r’ oi [x1(kflI I = I I I I (16)
[y2 (k)J L— 1 , 1J Lx2 (k)J

to track the command input vector

Iv1(k)1 r2kl
I I — I I (O<kc~ ) . (17)
Lv2 (k)J L k J

.~I___ A - --~----
--- --— ----—-— -- -—-—-- ---— —- - - - - - - - -- - ——-
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In this case it is clear that the command input is of the

form (10) with r 2, so that the state equation (7) of the

open-loop tracking system assumes the form

~c1(k+1) O , 1 , 0 , 0 , 0 , O x1(k)

x2 (k+l) —6 , 5 , 0 , 0 , 0 , 0  x2 (k)

z11(k+l) — 
—1 , 0 , 1 , 0 , 0 , 0 z 11 ( k )

z21(k+l) 1 , — 1. , 0 , 1 , 0 , 0 z21 (k)

z12 (k+l) 0 , 0 , 1 , 0 , 1 , 0 z 12 (k)

(k+l) 0 , 0 , 0 , 1 , 0 , 1. (k )

L I  

l , 1  b , d
0 , 2 0 , 0

0 , 0 ru (kfl 1 , 0  r2kl
+ ( ( (18)

0 , 0 Lu2 (k)J 0 , 1 LkJ
0 , 0 0 , 0

9 , 9  9~~~~0

where z~~ (k) is the ith element of the vector z~ (k). Since

(Bradshaw and Porter 1975)

- - I. l , 1 , —l , 1

0 , 2 , —6 , 4
rank • 4 , (1.9)

0 , 0 , -1 , 0

0 , 0 , 1 , —i

the controllability condition (1.2) is satisfied in this

case: it is therefore certainly possible to synthesis. a

state—feedback control law of the form (13) and a correspond-

ing error control law of the form (8) such that the eigenvalues

of the plan t matrix of the resulting closed—loop tracking

_ _ _  _ _ _ _  ---~~~~
—-5 — — — - - - -—— -S
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system assume arbitrary values since also the output matrix

in equation (14) is invertible. In the particular case

when these eigenvalues are all assigned th. value zero by

the implementation of the error control law

ru1(kfl 12.5 , —2.5 , 1.5 , —1.5 , 0.5 , —0.51 z11(k)

Lu2 (k)i — 
[0.5 , 3.5 , 1.5 , 1.5 , 0.5 , 0.5] z21(k)

z 12 (k)

(2 0)

the behaviour of the initially quiescent tracking system is

as shown by the full lines in Figs 1 and 2: it is evident

from Fig 1 that

lint e1(k) — lim{v1(k) 
— y1(k)} — lim(v1(k) 

— x1(k)} — 0
k+ao

(2la)

and from Fig 2 that

lint e3(k) — lim(v2(k) 
— y2 (k) } — lim{v 2 (k) + x1(k) 

— x2 (k) } — 0
k+cs k+cs

(2 ib)

as required .

The corresponding behaviour of the initially quiescent

tracking rystem in case a state—feedback control law is

implemented (Bradehaw and Porter 1975) is as shown by the

j Li
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dotted lines in Figs 1 and 2 : it is again evident from Figs 1

and 2 that equations (21a) and (21b ) are satisfied, but that

the transient behaviour of the tracking system incorporating

a state—feedback controller (Bradshaw and Porter 1975) is

slower and less oscillatory than the corresponding behaviour

of the tracking system incorporating an error-actuated controller .

q, CoNcLusioNs

In this paper , the simple matricial methods developed

by Bradshaw and Porter (1975) for the design of linear

multivariable discrete—time tracking systems for plants with

accessible states have been applied to the design of linear

multivariable discrete-time tracking systems incorporating

plants with inaccessible states for which appropriate error—

actuated controllers exist. The results of simulation studies

have been presented which indicate that the transient behaviour

of tracking systems of the latter class is faster but more

oscillatory than the corresponding behaviour of tracking

systems incorporating state-feedback controllers.
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ABSTRACT

It is known (Porter and Bradshaw ].978a) that, in the

case of self—con j ugate distinct eigenvalue spectra , the

closed—loop eigenstructure assignable by output feedback is

constrained by the requirement that the eigenvectors and

reciprocal eigenvectors lie in well—defined subspaces. In

this paper , a technique is presented which can be used to

select the eigenvectors and reciprocal eigenvectors from

these subspaces in the case of appropriately augmented

(Kimura 1975) controllable and observable continuous-time

systems. This technique is ideally suited to digital—

computer implementation and therefore greatly facilitates

the synthesis of both static (Porter and Bradshaw 1978a)

and dynamic (Porter and Bradshaw l978b) output—feedback

controllers.

- - - — -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1. INTRODUCT ION

It has been shown (Porter and Bradshaw 1978a,b) that the

method of entire eigenstructure assignment can be applied to

the design of output-feedback controllers for multivariable

linear continuous—time systems governed by state and output

equations of the respective forms

L c(t) — Ax (t) + Bu(t) (1)

and

~ (t ) — Cx(t) , (2 )

where A E R~~It, ~ E R’1’~”, cE ~~~~ rank B - m, and rank
C — p. Thus , if output feedback is applied to the system

governed by the state equation (1) in accordance with the

control-law equation

— G~ (t) (3)

and the output-feedback matrix oE is such that the
closed-loop plant matrix (A+BGC) has the self-conjugate

distinct •igenvalue spectrum {A
1~~A

2~~ . . . S A ~~}I then the corre-

eponding eigenvector and reciprocal eigenvector sets{u1~u2~ ....u~}

and l’!2’’’’’~n~ 
must be such that

U

C ker[A_ A~I , BJ (jl ,2,...,n) , (4)a_ i • _ .

fYi C ker[A ’_X iI , C ’) ( i — l , 2 , . . . ,n)

L

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ---— -— ——-——  -- —I
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yi~j — (i,j 1,2,...,n) . ( 6 )

The output—feedback matrix is then given by the formulae

— 
‘~ l ‘ ‘f 2 ‘ ~ ~ ~

‘p
~ ~~~ 

‘ ~~2 ~ 

•

~~~~~

• ~ Cu~1 — l

(7)

and

— 

~~l ‘ ~2 
‘ 

~~~~~~~ 
‘ 
~~~~~~~ 

‘ ~~
‘Y~ ‘ 

, B’v~] 1 
,

(8)

where, in this paper, the state and output equations (1) and

(2) represent appropriately augmented (Kimur a 1975) con-

trollable and observable continuous-time systems.

Thus, the synthesis of the output-feedback control law

(3) requires the selection of linearly independent sets of

vectors {u1,u2, ‘~ n~ 
and {v1,v2, . . . ,v~ } from the respec-

tive subspaces defined by relations (4) and (5) which satisfy

the orthogonality condition (6). It is shown that this

selection can be effected by performing restricted elementary

row and column operations on matrices formed from the spanning

vectors of these subepaces, and that the resulting synthesis

procedure is therefore ideally suited to digital computer

implementation.

2. THEORY

The first stage in the synthesis of the control law is

clearly the determination (Porter and D’Azzo 1977) of the

- ;  n kernels

I~ _ _
5- - - --~~~~~~~~~~ - — —- -~~~~~~~~ — - ~~~~~ —~~~~~~~~~ —-  _ _ _



- ~~~~~~~~~~~~~~~~~~~~~~~~~~ __ - - - _5-
~~~~~~~~~~~

_ - - - - —_ - --— --
~~~~~~~~~~~~~~~~~~~~~~~~~~~

_
~~ 

--  -

— 139 —

.5(A
1
) — ker [A—A

1
1 , B] span— — - 

t~k~~j~
J

(j 1,2,...,n) (9)

and the n kernels

1$ (A )1
T ’( A j ) — ker(~’—AI , c’] — span i

(ial ,2,...,n) (10)

It follows from relation (4) and equation (9) that

~1E U(A
1

) - span {
~k

(Aj):k~
l,...,m} 

-

(j1 ,2,...,n) (11)

- 
I and from relation (5) and equation (10) that

y~E V(Xi) — span

(i l,2,...,n) , (12)

that is

— X(A
1
)n

1 
(j1 ,2,...,n) (13)

and

— L~~ ’(A~) (il ,2,.,.,n) , (14)

where

X(A
1
) — [~1c A 1) , X2(A 1

) , . . .  , ~~~A~~~] 

(jal ,2,.,.,n) (15) 

- - - ---—--~~~~~~~~ --~~~~~~~~~~~ 5-- — - - - -
-- - ‘ —-- -~~~~~~— - -~~~~—-  —~~~~~~~~~~ --- —-~~~~~~~~~~~~ -
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and

‘ ±2~~~ i~ ‘ 
~~~~ 

‘

(i—l ,2 ...,n) (16)

where n~ is an xnxl vector and is an lxp vector. Equations 4

(13) and (14) can be more conveniently expressed in the form

— X(A
1
)N

1 
(j—l ,2,...,n) (17)

and

— L~$’(X~) (i—l,2,...,n) , (18)

where U
1 

and it
1 
are the first columns of the n~un matrix U1

and the mxm matrix N
1 
respectively, and and are the

first rows of the p~a~ matrix and the pxp matrix Li 
—

respectively. The orthogonality condition (7) then requires

that the element m~1 in the first row and the 
first column

I 

of each of the p’an matrices

~ii 
- - 

~i~
’ i~~~~i~ !i 

- 

~i~t~~ j
(i,j—1 ,2,...,n) (19)

be such that

mj 1 — (i,j—l ,2,...,n) , (20)

where

(i,j—1 ,2,...,n) . (2 1 )

It is evident that the condition (20) can be satisfied by

performing restricted elementary row and column operations
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on the npxnm matrix

— (i ,j~’l,2,...,n) (22)

according to the equation

— , (23)

where the np~ tm matrix

N — (i,j—l,2,...,n), (24)

the np~aip matrix

L — diag[L~] (i—l ,2,...,n) , (25)

and the nmxnm matrix

N — diag[N
1J (i—l ,2,...,n) . ( 26)

— These computations can be conveniently organized in
— the following steps in view of the results of Kimura (1975):

(1) Set z4~°~ [t’~~] 
‘ 

~~~~~~ — , and ~~~~~~ — 
~nm

(2) By restricted elementary column operations on and

N~
o) (i1 ,2,...,n~j—l,2,...,n—m) determine u~E U (X 1)

(j1 ,2,...,n—m) such that (Ulpu2~~ ••~%m
} is a linearly

independent set, t4~°~ ~~~ , ~~~~~~ 
~~~~ and

— M~°~N~
1
~ (27)

— 
(3) By restricted elementary row operations on and

i4o) (i n—m+l,n—m+2,...,n;j—1,2,...,n) determine

y~Ev’~x~ (i—n—m+1,n—m+2,...,n) such that —

— 0 (i—n—m+l,n—m+2,,..,n;jn],2,...,n—m), PI~’~ • M~
2
~ ,

- -- --  

~~~

-- — - - - --- --— --_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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-
~~ L
W , and

M~
2
~ — L(i)M(o)N(~~ ; (28)

(4) By restricted elementary column operations on

and N~
1
~ (i—i , 2,.. . ,n; j—n—m+l,n—m+2,. . . ,n) determine

~1E U ( A
1

) (j n—m+l,n—m+2 ,...,n) such that —

— 0  (i—n—m+1,n—m+2 ,...,n;j n-m+1,n-m+2,...,n;i~J),

M~
2
~ M~

3
~ , N~

1
~ 

-
~~ N ’

~
2
~ and

— ~~~~~~~~~~~ ; (29)

(5) By restricted elementary row operations on and

i41) (i—1 ,2,...,n—m;j—l,2,...,n) determine v~~€ V ’ ( X ~
)

(i=l ,2,...,n—m) such that v~u1 
= ~~~~ = 0 (i—l,2,...,n—m;

j—n—m+ l,n—m+2 ,...,n), -
~~ , , and

M~
4
~ — L(2)M(o)N(2) ; (30)

(6) By restricted elementary row or column operations on

z4~ (ial ,2,...,n;j l,2,...,n) normalize or

such that — ~~~ — 1 (i—1,2,...,n), .

L~
2
~ ~ ~

(3) N~
2
~ ~~~ , and

— L(3)M(o)N(3) — N — (31)

(7) Compute the u
1 

(j—l ,2,...,n) using equation (17) and

compute the y~ 
(i— 1,2 , ..  . ,n) using equation (18). 

-- -- - —
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In certain pathological cases (Kimura 1975), special

spectra exist for which no corresponding output feedback

matrix exists and for which this computational procedure —

therefore fails: in such cases, however, it is only necessary

slightly to perturb the spectra in order to obtain solutions.

It is also possible for this computational procedure to

fail for certain pathological choices of C (1(A 1)
(j=1 ,2,...,n—m) in step (2): in such cases, however, it

is only necessary slightly to perturb the u
1E 

(1(A
1
)

(j =l , 2 , . . . ,n—m) .

3. ILLUSTRAT IVE EXAMPLE

The procedure can be conveniently illustrated by the

synthesis of an output-feedback control law for the continuous-

time system governed by the respective state and output

equations (Porter and Bradshaw 1978b)

0 , 1 , 0 , 6 b , o

1 , 1 , 0 , 0 1 , 0
x(t) = x(t) + u ( t )  (32 )
- —l , 0 , 0 ,0 o , o

_0 ,0 , O , O 0 , 1

and



-J

1 , 0, 0 ,0

— 0 , 0 , 1 , 0 x(t) (33)

0 , 0 , 0 , 1

such that the eigenvalue spectrum of the closed-loop plant

matrix is

a(A+BGC) = {A 1,A 21 A 3,A 4} = {-l,-2 ,-3 ,-4} . ( 3 4 )

Indeed, it is evident from equations (9), (10), (32), (33) ,

and (34) that

S(—1) = span , , (35)
0 1

-l 0

-l

0

4 0

-l 0
.S(—2) = span , , (36)

0 1

- -10 0

0 -2

i - i
_ _ _ _ _ _ _  —5-~~s —~— — - 5--— — -•-

~~~~~~~ — - —
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-3 0

9 0

-l 0
S(—3) — span , , (37)

O 1

‘ a —33 0

O -3,

and

- )_ 
16 0

-1 0
.S(—4) — span , (38)

0 1

-76 0

0 ,~ -4

and that

-2 0

1 0 0

0 1 0

• T’ (—1 ) = span 0 , 0 , 1 - , (39)

1 1 0

0 -l 0

0_ • 0, -1

-
~~~~~~~~~~~~~~~~~~~~

- -
~~~~~~~~~~~~~~

-- - -- - -
~~~~~~~~~

- - - - —-- - - - ---
--

~~~~~~~~~- - - 5- - - -
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-3 0 0

1 0 0

0 1 0

T’ (—2 ) — span 0 , 0 , 1 , ‘ ( 40)

-~~~ 5 1 0

O -2 0

0 0 , -2

-4 0 0

1 0 0

0 1. 0

T’(-3) — span 0 , 0 , 1 - , (41)

11 1 0

O -3 0

O 0 —3

and

-5 0 0

T’(—4) — span 0 , 0 , 1 . (42 )

19 1 0

0 -4 0

0 0 -4

It is evident from equations (11) , (35 ) , (36 ) , (37) , and (38)

that the closed-loop eigenvectors corresponding to the eigen-

value spectrum (34) must be assigned to the respective subapaces 

-~~~~~~~ —— - - -5- - - - - —-—5- -- -
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-l 0

1 0
( t ( — l )  — span , , (43)

-1 0

O 1

-2 0

4 0
U(—2) — span , , (44)

-1 0

0 1

—3 0

9 0
U ( — 3 )  — span , , (4 5)

-l 0

0 1

and

-4 0

16 0
U (—4)  — span , , (46)

-l 0

0 1

and it is similarly evident from equations ( 12) ,  (39) , (40) ,

(41), and (42) that the closed-loop reciprocal eigenvectors

— 
- 

corresponding to the eigenvalue spectrum (34)  must be assigned

to the respective subspaces

-2 0 0

1 0 0
i/ ( —l )  — span , , , (47)

- L

L 
-
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-3 0 0

1 0 0
V (— 2 )  — span , , , (48)

0 1 0

0~ 0 1

-4 0 0

1 0 0
V ( — 3 )  — span , , , (49)

0 1 0

0 0 1

and

-5 0 0

1 0 0
V ( — 4 ) — span , , . (50)

o 1 0

0 0 1

It therefore follows from equations (11) , ( 1 2) ,  (15) , (16) ,

(21), and (22) that

3 , 0~~~~8 , 0 15 , 0 1 2 4 , 0
I I

—1 , 0 1 — 1 , 0 —1 , 0 1 — 1 , 0
I I

0 , 1 1 0 , 1 ’  0 , 1 0 ,1  p. 
4 , 0 10 , 0 18 , 0 28 , 0

—1 , 0 —1 , 0 —1 , 0 —1 , 0

0 , 1  0 , 1 0 , 1 0 , 1
M~
0) 

— . ( 5 1)
5 ,0 12 , 0 21 , 0 32 , 0

—1 , 0 1 , 0 1 , 0~~~~ 1 , o

1

6 , 0 14 , 0 24 , 0 36 , 0

—1 , 0 —1 , 0 —1 , 0 —1 , 0

0 , 1 0 , 1 0 , 0 ,
- , L _ _  - ~~~~~~~~~~~~~~~ - -~~~~~~
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Then, by performing the restricted elementary column operations

corresponding to setting

-

~~~~~~ 5
it
1

— (52)
~~~~ 

— —7

- 
and

11
I I , (53)

— — v .1

it follows from equation (27) that

‘15 , 0 8 , O~~~l5 , 0 2 4 , 0

—5 , 0 —1 , 0 1 — 1 , 0 1 — 1 , 0

—7 , 1 —7 , 1 1 0 , 1 0 , 1

—5 , 0 , —1 , 0 —1 , 0 — 1 , 0

J — 1 , 1 1 — 7 , 1 0 , 1 0 , 1
- M~

1
~ 

- - , (54)
2 5 , 0 1 1 2 , 0 21 , 0 ’  32 , 0

—5 , 0 1 — 1 , 0 —1 , 0 , —1 , 0

—7 , 1 — 7 ,l 0 , 1 0 , 1

30 , 0~~~14 , 0 24 , 0 36 , 0

— 5 , 0 1 — 1 , 0 —1 , 0 —1 , 0

— 7 , 1 1 — 7 ,1 0 , 1 0 ,1

from equation (28) that

I
5- -- - - —  - -~~~~~~~~—- -~~~~~-~~~~~~~~~~~~~ 5-- - - -  -~~~~~ -—- - - - — ---- — -~~~~~~~ —~~~~~~~~~~~~~ - - - - -~~~~~ -- - -
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15 , 0 8 , 0 15 , O t  24 , 0
I I

-. —5 , 0 -1 , 0 — 1 , 0 — 1 , 0
I I

—7 , 1 —7 . 1 1  0 , i 0 , 1
-u

20 , 0 1 1 0  , 0 ’ 18 , 0 28 , 0
I I I

—5 , 0 1 — 1 , 0 ‘ — 1 , 0 ‘ — l , 0

—7 , 1 1 — 7  , 1 0 , 1 0 , 1
M
~
2
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ .L
a 0 , 5/4 1 0 , 5/4 71/4 , 5/4 115/4 , 5/4

—5 , 0 1 — 1 , 0 —1 , 0 — 1 , 0

0 , 1 1 —28/5 , 1 7/5 , 1 7/5 , 1 
L I.. .L 

- 1 0 10/7 0 10/7 20 10/7 , 32 10/7

— 5 
‘ ~~ —l , ~ —1 , 0 — l , 0

0 , 1 —28/5 , 1 , 7/5 , 1 i 7/5 , 1

( 55)

from equation (29) that

15 , 0 8 , 0 15 , 0 ,  24 , 0 ’

—
~~~~~, 0 —l , 0 —l , ~ —1 , 0

—7 , 1 —7 , 1 —14 , 1 —23 , 1

20 , 0 10 , 0 18 , 0 1  28 . 0

—5 , 0 — 1 , 0 — 1 , 0 1  —l , 0

—7 , 1 —7 , , 1 —14 , 1 1 —23 , 1
M L I— 
— 0 , 5/4 .0 , 5/4 • 1/4 , 5/4 0 , 5/4

—5 , 0 ’ —l , 0 —1 , O f  — l , 0

0 , 1 —28 / 5 , 1 —63/5 , 1 — 108/5 , 1 
II. I- I.. 

0 , 10/7- 0 , 10/4 0 , 10/7 -6/7 , 10/7

—5 , 0 1  — 1 , 0 —1 , 0 —1 , 0

O , 1 — 2 8/ 5  , 1 — 6 3/ 5  , 1 — 108/5 , 1

(56)

~

— - - -

~

- — - - - ---- ~~~~-— -~~~~~~~~ --- ~~~~~~~~~~~~~~~~~~
------- -- - k - - - -~~~~~
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from equation (30) that

3 , 1 0 , 1 1  0 , 1 0 , 1

— 5 ,  0 —l , 0 —1 , 0 — l , 0

6 3 ,  1 7 , 1  0 , 1 —9 , 1 
I- I- 

O , 10/9 —2/9 , 10/9 I 0 , 10/9 0 , 10/9

— 5 ,  0 1 —l , 0 —1 , o —1 , 0

63, 7 , 1 0 , 1 —9 , 1
M I- 
- 0 , 5/4 1 0 , 5/4 1/4 , 5/4 1 0 , 5/4

U — s , 0 —1 , o — 1 , ~ 1 — l ,

O , 1 —28 / 5 1 —63/ 5 , 1 —108/5 , 1 

L .  0 , 10/7 0 , 10/7 I 0 , 10/ 7 —6 / 7 , 10/7

—5 , 0 —1 , 0 1  — 1 , 0 — 1 , 0

O , 1 —28/5 , 1 1 — 63/ 5 , 1 ‘ —108/5 , 1

(57)

and from equation (31) that

1 , 1/3 1 o , 1/3 1 0 , 1/3 0 , 1/3

~~~~ o I ‘ 
0 —1 , 0 —1 , 0

63 ,  1 7 , 1 1  0 , 1 — 9 , 1 

0 , —5 1 , — 5 ’  0 , —5 0 , —5

— 5 ,  0 — 1 ,  0 —l , 0 —l ,

63, 1 7 , 1 0 , I
I 

~9 , 1
M —
— 0 , 

~ 
0 , 5 1 , 5 0 , 5

—5 , 0 1 1 0 —l 0 i — 1 , 0 

~~~0 , —5/3 0 , —5/3 1 0 , —5 / 3 1 , —5/3

—5 , 0 — 1 , 0  1 — 1 , 0 —l , 0

0 , 1 —28 / 5 , 1 —63/5 , 1 I 
—108/5 • 1

5- 
U— ~~~~~~~~~~~ ____ ___ __ A l  t~~~~~_, ~~~~~~~~~~~~~
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l/3,l/3,1/3 —9/2,—ll,— 5 4 , 13 ,5 —7/6,—l4/3,-5/3
I I I

L— diag 0 . 1 , 0 1  0 , 1 ,010, 1 ,o o , 1 , 0

0 ,-l4, 1 1 o -14, 110 ,-7/5,1 1 0 , -7/5 , 1

(59)

and

5 , 0 1 1 , 0 1 1  0 1 1 , 0
N — d i ag I I I . (60)
a —7 , 1 1 — 7 , 1 1 — 1 4 , 1 1 — 2 3 , 1

It therefore follows from equation (17) that

— 5 —2 —3 —4

l’~ 2’~ 3’~ 4~ 
— 

—5 — l 
(6 1)

—7 —7 —14 —23

and from equation (18) that

—2/3 27/2 —16 35/6

1/3 —9 /2 4 —7/6
{v1,v2,v3,v4) = , , ,

1/3 — 11 13 —14/3

1/3 —5 5 —5/3

(62)

In view of equations (4 )  and (9) the results (61) imply

that

1’~ 2’~ 3’~f4~ 
— {[_

7
5] 

~ 
[~:] ~ 

• 
[:21}, 

(63)

and in view of equations (5) and (10) the resul ts (62)  imply

Li that



— 1 5 3 —

. 1
2/3 —6 7/2  57 —161/

1’~ 2’~ 3’~ 4~ 
— — 1/ 3 , 22 , —39 , 56/3

—1/3 10 —15 20/3

(64)

It finally follows from either equation (7) or equation (8)

that the output-feedback control law (Porter and Bradshaw

1978b)

1—47 , 34 , 101 -

u(t) — I Ix(t) (65)
— L49 ~ —3 5 ~ —llJ

assigns the spectrum (34), the eigenvectors (61), and the

reciprocal eigenvectors (62) to the closed—loop plant matrix

of the system governed by equations (32) and (33) .

4. CONCLUSION

It is known (Porter and Bradshaw l978a) that, in the

case of self—conjugate distinct eigenvalue spectra, the

closed—loop eigenstructure assignable by output feedback is

constrained by the requirement that the eigenvectors and

reciprocal eigenvectors lie in well—defined subspaces. In

this paper, a technique has been presented which can be used

to select the eigenvectors and reciprocal eigenvectors from

these subspaces in the case of appropriately augmented

(Kimura 1975) controllable and observable continuous-time

systems by performing restricted elementary row and column

operations on matrices formed from the spanning vectors of

these subspaces. This technique is ideally suited to digital—

computer implementation and therefore greatly facilitates the- 

~~~~~ —~~~~~ --5- - 5-- — — - - - —- -—~~~~~~~~~ —
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synthesis of both static (Porter and Bradshaw 1978a) and

dynamic (Porter and Bradshaw 1978b ) output-feedback controllers.
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ABSTRACT

~- 

In view of the fundamental new insights into the

structure of linear multivariable continuous—time systems

provided by the method of entire eigenstructur e assignment ,

- 
the design of dynami c compensators is equivalent to the

- selection of pairwise—orthogonal eigenvectors and reciprocal

eigenvectors from two families of well-defined subspaces

which are parametrised by associated self-conjugate eigenvalue

spectra. This selection is effected by the use of a powerful

new algorithm which requires the performance of restricted

elementary row and column operations on matrices formed from

the spanning vectors of these subspaces. The digital computer

implementation of the resulting procedure incorporating this

algorithm is described and is illustrated by the design of an

error—actuated dynamic compensator for a linear multivariable

plant.

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - - - - - - - - -- - - -
~~~~-
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1. INTRODUCTION

In most practical cases, it is of course impossible to

implement state—feedback control laws since the state of the

plant is inaccessible and only the plant output is available

for control purposes. The method of entire eigenstructure

assignment (Porter and D’Azzo, 1977) has accordingly been

applied to the design ~of linear multivariable continuous-

time output—feedback regulators by Porter and Bradshaw (1978a) .

It has been shown that, in the case of self—con jugate distinct

eigenvalue spectra, the closed—loop eigenstructure assign-

able by output feedback is constrained by the requirement

that the eigenvectors and reciprocal eigenvectors of the

closed-loop plan t matrix lie in two families of well-defined

subspaces and satisfy appropriate orthogonality conditions.

In contrast, the closed—loop eigenstructure assignable by

state feedback (Moore, 1976) is constrained only by the

requirement that the eigenvectors of the closed-loop plant

matrix lie in just one family of well-defined subspaces. It

is because of the severe constraints on the closed—loop

eigenstructure assignable by output feedback that it is

frequently impossible to achieve satisfactory closed—loop

behaviour by means of static continuous-time output-feedback

regulators, and that it is consequently necessary to introduce

dynamic compensators (Brash and Pearson, 1970; Kimura , 1975).

However, it has been shown by Porter and Bradshaw (1978b)

that the design of such dynamic compensators can be effected

by applying the method of entire eigenstructure assignment to

- --5--- —
~~~
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appropriately augmented (Kixnura , 1975) continuous-time

systems .

In view of these fundamental new insights into the

structure of linear multivariable systems, the design of

dynamic compensators is equivalent to the selection of

pairwise—orthogonal eigenvectors and reciprocal eigenvectors

from two families of well-defined subspaces which are

parametrised by associated self—conjugate eigenvalue spectra.

This selection can be effected by the use of a powerful new

algorithm (Bradshaw, Fletcher, and Porter, 1978) which

requires the performance of restricted elementary row and

column operations on matrices formed from the spanning vectors

of these subspaces. The digital computer implementation of

a procedure incorporating this algorithm is described and

is illustrated by the design of an error-actuated dynamic

compensator for a linear multivariable plant. The principal

computational attraction of the procedure is that no operations

with polynomial matrices are involved, so that error—actuated

dynamic coznpensators for large-scale systems cart be readily

designed.

2. COMPENSATOR STRUCTURE

The linear multivariable continuous-time tracking

systems considered by Porter and Bradshaw (1978b) consist
— 

of a controllable and observable nth-order plant governed

by state and output equations of the respective forms

c(t) = Ax(t) + Bu(t) + Dd( t )  (1)

- - -- -- - - 5--- - ----5-- - — -



and

y(t) — Cx(t) , (2)

where x(t) 
~~ 

R~, u(t) E Rm, y(t)~~ R1’, d(t) E Rh, A E ~~~~~~

B ~~ R
n
~
c
~
n, 

~ E gP3Q~t , D E Rn3th, rank B — m, and rank C — p.
together with an error-actuated dynamic compensator which

is required to cause the output vector, y(t), to track a

command input vector , r(t), in the sense that

u r n  e(t) — lim{r(t)—y (t)) — 0 (3)
t+~ t-~

for unmeasurable command and disturbance inputs of the respective

forms

r
r(t) — E ~ 1 t~ ( 4 )

i_l i.’

and

S
d(t) — E 

~~ _ 1t . (5)
i—l

Such an error-actuated dynamic compensator is governed by
- - 

state and output equations of the respective forms

q
w(t) — Fw(t) + Ge(t) + £ Hizj(t) (6)

i—i

and

q
u(t) — Kw(t) + La(t) + £ Mizi(t) , (7)

i—i

where

- -- -~~~~~~~~~~~ -_- -- - — ~~~
_

~~~~~~~~~~ -~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~~~~ --5- - -~~~~~~ —— --



— ~ ( t )

~2(t) — z1(t)

. . s .s . . . . s . . .• s •  ( 8)

~q(t) — Zq_l (t)

q — max (r,s) , (9)

w(t) E Rt , e(t) E R~ , z~ (t) E R~ (i—l ,2,...,q), u(t) E Rm,
F E R LX& , G~~~ RLXP , Hi~~ 

RLXP (i—1 ,2,...,q),

L ~~~~~~ M1 GR
”
~~ (i—l ,2,...,q), and (Kimura , 1975)

. 2. — max (0,n—m—p+1) . (10)

It is then evident from equations (1), (2), (6), (7), and

(8) that the closed-loop system is governed by state and

output equations of the respective forms

A-BLC BM1 . • • ~~~ BMq BK x(t)

—C , 0 , ... , 0 , 0 z1(t)

• .. s . . .. . . .. s . . .. .. . . .. . .. . .  • •. • •

. . . . . .. . . s . . . . . . . . s . . .. . . . . .  . . .. .

~q(t) 0 ~ 0 ~ ... . 0 ~ 0 Zq (t )

—GC . H 1 . ... Hg F w(t)

BL D

‘p 0

+ r(t) + d(t) (11)
•

c:

G 0

and

—— 5- - - - -5- - 

• 
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y(t) C , 0 , ... , 0 , 0 x ( t )

z1(t) 0 , ~~ , ... , 0 , 0 z 1(t )  ... S . . . .

— . (12)..... • . .. . . .. . S. .. . .. . . . . ..  .....
Zq

(t )  0 0 ... I~~ 0 Zq
(t )

w(t) 0 , 0 , ... o , i~ w (t)j

In view of equations (4) and (5), it is clear by differentiating

equation (11) (q—l) times that the closed—loop system will

behave so that

lim g _ 0  (13)t~~ qdt

and therefore, in view of equations (8), so that equation

(3) will be satisfied if the error-actuated dynamic

compensator governed by equations (6) and (7) is designed

such that all the eigenvalues of the plant matrix of the

closed—loop system governed by equations (11) and (12) are

assigned to the open left—half of the complex plane.

It is evident from equations (11) and (12) that such

a compensator can be designed by the synthesis of an appro-

priate output-feedback control law of the form

u t (t ) — G2.y~
(t) (14)

for the augmented open-loop system governed by state and

output equations of the respective forms

~
c
~
(t) — A 2.x~ (t) + B

tut(t) (15)

and
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y 2. (t )  — Ctxt(t) (16)

where

fu t l
UL(t) — I I , ( 17)

Lv C t) J

x(t)

z1(t)

x
~
(t) a ::::: , (18)

Z
q

( t )

w(t)

y(t)

z1(t )

y2.(t) — ::::: , (19)

Zq(t)

w(t)

r—L , M1 , ... , M , idq 
, (20)

L~G I H 1 D • • • ~~~Hq~~~FJ

— A .0 , ... , 0 , 0

—c , 0 , ... , 0 , 0

(21 )
0 , 0 , . . .  , 0 , 0

0 , 0 , ... . 0 , 0

H
I!
ii 

—

~~~~~~~~ - --- - 5 - — - —
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B ,  0

0 , 0

— :::::: , (22)

0 , 0

_O , I

and

, 0 , . . . , 0 , 0 -

0 , 0

C~~ — •• (23)

0 , 0 , ... , I
~ 

, 0

0 , 0 , ... , 0 .It

Thus, if the (m+t)x(p+pq+L) output-feedback matrix is

such that the closed-loop plant matrix (At+BtGLCL) has the

self—conjugate distinct eigenvalue spectrum A =

An+pq+L)~ 
then the corresponding eigenvector and reciprocal

eigenvector sets {Ul~
U2f•••~

Un+pq+2.
) and

must be such that

ker[A t
_X
jIn+pq+t , 

~~ 
(j l,2,...,n+pq+t)(24)

ker{A
~
_A
jIfl+pq+L , c~) (i1 ,2,...,n+pq+t) (25)

and

vluj —

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The output-feedback matrix is then given by the equivalent

formulas

G2. 
a [w1 w2 ... Wp+pq+2.][C2.U1 C2.u2 • • •  C2.up~pq~ 2.]~~

(27)

and

— , , ... , Z +2.)Es~
vl , B~v2 , ... , ~~~~~~~~~~~~

(28)
I

In view of equations (24) , (25) , (27) , and (28), the

computation of is reduced to the determination of the

kernels of each of the n+pq+t matrices

S~ (X~) — [A 2.
_ X

j I , (jl ,2,...,n+pq+9.) (29)

together with the kernels of each of the n+pq+~. matrices

T .(Xi) — CA~ — A ~ 1 , C~] (i 1,2 , . . . ,n+pq+L) (30)

followed by the selection of sets of linearly independent

• self-conjugate vectors {ul~
u2~

....ufl+pq+L} and {v11v2,...,

Vn+pq+&} from subspaces determined by the kernels of St(Aj)

(j — l ,2 , . . . ,n+pq+t) and T2.(A ~) (il ,2,...,n+pq+t), respectively,
— 

such that the orthogonality conditions (26) are satisfied.

It is finally evident from equations (6), (7), and (20) that

the matrices in the respective state and output equations

of the required tth-order error-actuated dynamic compensator

are determined by the sub-matrices of the output-feedback

matrix G~.

ci
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3. COMPENSATOR DESIGN PROCEDURE

3.3. System Augmentation Procedure

The first stage in the compensator design procedure involves

the formation of the augmented plant, input, and output
matrices by the following steps which constitute the routine

AUGMENT :

(i) Set q — max(r,s);

(ii) Set 2. — max (0,n—m—p+l)

(iii) Form the augmented open-loop plant, input, and

output matrices A 2., B2., and C2..

3.2 Kernel Computation Procedure

The second stage in the compensator design procedure involves

the computation of the closed-loop eigenvector and reciprocal

eigenvector subspaces by the following steps which constitute

the routine KERNELS :

(i) Select the closed—loop eigenvalue spectrum A —

sX n+pq+t}~

(ii) Form S2.(A ~) — [A 2.
— A ~~I , B 2.] (jl ,2,...,n+pq+L);

(iii) Form T
~
(Xi) 

a- [A~
—x i1 , C~] (i—l ,2,...,rt+pq+t);

(iv) Compute

rxk (x )1
ker S (A

d
) — span J ~ I :k—1,2,...,m+tLWk j J

(j—1 ,2,. .. ,n+pq+L) 
-~~~—--- ---- -— - - p-5-——~~~~~— -5-~~~~~~ - -- —~~~~~ ~~~ — - -~~~~~~~ -— --~~~~~~~~~~~~~~~~~~~~~ 
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Cv) Compute

ker T’(A ) — span

i

(i—l ,2, ... ,n+pq+t);

(vi) Form X (A~) a [X 1
( X ~~) X2

( )
~j

) ‘ ‘
... ,n+pq+t) ;

(vii) Form ~2 ( A ~~) — [w1(A j) W2(Aj) ... 
~ 
W~.~~( X

j)]

(j—1 ,2....,n+pq+t)

(viii) Form •( x~~) — [$1
( A ~~) 

‘ 2~~i~ ‘ ~~~
‘‘ ‘ p+pq+2.~~i~

]

(i—l ,2,...,n+pq+t);

(ix) Form Z(X~) — 
‘ ~~~~~ ‘ ~ ‘

(i—l ,2,. .. ,n +pq+t)

3.3 Eigenvector Selection Procedure

The third stage in the compensator design procedure involves

the selection of the pairwise-orthogonal closed—loop

eigenvectors and reciprocal eigenvectors from the respective

subspaces im X(A~) (j—1 ,2,...,n+pq+L) and im

(i—1 ,2,...,n+pq+L) by the following steps which constitute

the routine SELECr:

- 
~~~• (i) Select ~~~~ im X (X~) (j—1 ,2,...,n+pq—m) such that

{U1IU2 I SSS
~~
Un+pq_m} is a linearly independent set;

5- - 
5- --

~~~ - 5- -- ~~~~~~~~~~~~~~~~~ - —~~
~-
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(ii) Compute v~~Eim ~(A ~) (i n+pq-m+1,n+pq-m+2,...,n+pq+2.)

such that v~u~ = 0 (i=n+pq-m+1,n+pq-m+2,...,n+pq+t;

jal,2,...,n+pq—m) ;

(iii) Compute Uj Eim X ( A ~ ) (j = n+pg-m+l ,n+pq-iu+2 , . . . ,n+pq+&)

such that Vj~Uj = 0 (i=l,2,...,n+pq-m;j=n+pq-m+l,

n+pq-m+2,...,n+pq+2i ;

— (iv) Compute v~, E im $ ( A j ) (i=l ,2 ,... ,n+pq—m) such that

VLUj 
= 0 ( i 1  ,2 , . . . ,n+pq—m ; j =n+pq—m+1,n+pq-m+2 , . . .,

n+pq+L);

(v) Normalise v~ or u~ such that V~ Uj  = 1 (i=l ,2 , ..,n+pq+L) .

3.4 Compensator Matrix Computation Procedure

The final stage in the compensator design procedure involves

the computation of the compensator matrices by the following

steps which constitute the routine COMPENSATE:

(i) Select a set {C 2.u1 ~ C2.u2 ~ ... C2.Up~pq~ 2.
} of

linearly independent vectors and a set {B~v1 , B~v~ ,

B;~Vm+t } of linearly independent vectors ;

(ii) Compute the output- feedback matrix

G
2. 

= [w11w2 , . . .  ~Wp+pq+t] [C2.U11C 2.u2,... ~C2.Up+pq+2.F
1

and the transposed output—feedback matrix

= £Z it Z 2 1~~~~~~
Zm+t1[9 is Bj V 2~~

s 5 1 3
~~’ +2.]

’ 
~

(iii) Form the compensator matrices K SLIMj?M2?•••~ Mg and

F,G ,H1,H2, • • • ‘1
~
q5

j
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4. ILLUSTRATIVE EXAMPLE

This procedure can be conveniently illustrated by

designing an error—actuated dynamic compensator which will

cause the output of the controllable and observable linear

plant governed by the respective state and output equations

~c1(t) 0 1 0 0 X1(t)

~2 ( t) 0 , —l , —1 , 0 x2 (t)

~3 (t )  
= 

1 , 0 , 0 , 0 x3 (t)

c4(t) —l , 0 , 1 , 2 x4(t)

1 , 0 0

O , 0 lu Ct)] 0
+ i 3. I + d(t )  (31)

O , 0 Lu2 (t) J 1 
-

0 , 1 —1 .

and

1y1C t 1  r’ , — l , 2 , 0 x2(t)I 1 1  (32)
Ly 2 ( t ) J  Lo , 0 , 1 , 1 x3 (t )

x4(t)

to track any constant command input r (t )  = [r 1(t) , r2(t)]’ ER
2

in the presence of any unmeasurable constant disturbance input

d( t) ~~ R.

In this case , the outputs of the rout ines AUGMENT ,

KERNELS , SELECT, and COMPENSATE when A = {-l .0 , -l.5 ,-2.0 ,

—2.5,-3.O —3.5,—4.O} are listed in the Appendix. These

listings indicate that the required error-actuated dynamic

Hu
—- -------—--5--— L.~~~~~~~~~~~~~~~~—- --~--- ----~-—-----
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I

compensator is governed by the respective state and output

equations

le Ct)
— —1.989 w(t) + [—0.5431 , —2.258] I ~

L Le2( t )

fz (t)
+ [—1.260 , 5 .227]  I 1

Lz 2 (t)

and

1u1(t) 1 1—19 .40 1 110.26 , — 51.98 1e1(t )
I I — I  Iw ( t ) + l  ILu2 (t)J L 1.823J L 0.6437 , 4.961 Le2 (t )

1—9. 521 , 0.23161 [z 1(t) 1
+ 1  I 1 (34)

L 2.645 , —3.509 J Lz2 tj

where [e1 t) , e2(t)]’ — [r1 t )— y 1(t) , r2(t)—y2(t)]’ER
2

and [i1(t) , i2(t)]’ 
a [e~ (t) , e2(t)J’ER

2.

5. CoNcLusioN

The method of entire eigenstructure assignment has

• yielded fundamental new insights into the structure of linear

multivariable systems and, in particular, into the closed—

Loop eigenstructure assignable by output feedback (Porter

and Bradshaw, l978a b). The design of dynamic compensators

has accordingly been reduced to the selection (Bradshaw ,

Fletcher, and Porter, 1978) of pairwise-orthogonal eigenvectors

- - and reciprocal eigenvectors from two families of well-defined

V subapaces which are parametrised by associated self-conjugate

eig.nvalue spectra. The resulting procedure for the design

V
- — 5-— - - - - - - - - -‘--— - - - - -  - - - - I - - - -~~~~~~
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of dynamic compensators is computationally attractive since

its constituent routines AUGMENT, KERNELS, SELECT, and

COMPENSATE involve only numerically stable operations.

Indeed, the entire procedure has been coded in FORTRAN for

the routine computer-aided design of error—actuated dynamic

compensators, and forms part of a comprehensive suite of

design procedures for various classes of controllers for both

continuous-time and discrete—time linear multivariable

systems.
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APPENDIX

AUOM€P41

A&J0IUNTED PA1~~1X *

0. 00001 00 I. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 -1. 00001 00 -1. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
1. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00

-1. 00001 00 0. ~~~Ct 00 1. 00001 00 2~ 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
-1- 00001 00 1. 00001 00 -2. 00001 00 0 0000€ 00 0. 0000€ 00 0. 00001 00 0. 00001 00
0. 00001 00 0. 00001 00 —1. 00001 00 -2. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00

AUUa*NTE D MATRIX B

1. (‘0001 00 0. 00001 00 0. 00001 00
0. 0000€ 00 0. 00001 00 0. 00001 00
0. 00001 00 1. 00001 00 0. 00001 00
0. 000(* 00 0. 00001 00 0. 00001 00o. 00001 00 0. oooo€ 00 0.00001 00
0. 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0. 00001 00 1.00001 00 

-

(IUOPENTEII MATRIX C

1. (*001 00 -1. 00001 00 2. 0000€ 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0.00001 00 0. 00001 00 1.00001 00 1. 00001 00 0.00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0.00001 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0. 0000 1 00 1. 00001 00 0. 00001 0 - 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0. 00001 00 1. 0000 1 C) 0. 0000 1 00 0. 00001 00 0. 0000 1 00 0. 0000 1 00

KERNEl S

1~ P)4c SPANN INO VECI(mS
C:H1 (LAMNI)A )

1. (‘0001 00 0. 004’0€ 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00
0. 00001 00 1. 00001 00 0. 0000€ 00 0. 0000 1 00 1. 00001 00 0. 00001 00 0. 0000 1 00
0. (‘0001 00 0. 0000€ 00 0. 00001 00 0. 00001 00 5. 00001-01 0. 00001 00 0. 00001 00
0. 00001 00 0. 00001 00 0. 00001 00 3. 85701-01 -1. 42901-01 0. 00001 00 2. 50001-01
1. 0000E 00 -1. 00001 00 0- 00001 00 6 66701-0 1 -3. 63801-12 0. 0000€ 00 5. 00001-01
0. 0000E 00 0. 00001 00 0. 0(1001 00 2 90501-01 2. 38201-0* 0. 00001 00 1. 25001-01
0. 00001 00 0. 00001 00 1. 00001 00 0. 0000 1 00 0. 00001 00 1. 00001 00 0. 00001 00

0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00
1. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0 00001 00 0. 00001 00 2. 00001 00
1. 0000F 00 0. 00001 00 -i. 63901-12 1. 00001 00 0. 00001 00 0. 0000E 00 2. 00001 00

-2. !-‘OOOE-Ol 0 00001 00 2. 2flQE-0l 0. 00001 00 0. 00001 00 2. 00001—01 -4. 00001-01
5. 00001-01 0. 00001 00 4. 00001-01 0. 00001 00 0 00001 00 3. 33301-01 I. 0000E 00
3 75001-01 0. 00001 00 0. 88~ 0E-02 0. 00001 00 0. 00001 00 6. 66701-02 5. 33301-02
0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00

0. 0000€ 00 1. 0000€ 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 0000€ 00 0. 00001 00
0. 00001 00 0. 00001 00 I - 00001 00 0. 00001 00 0 00001 00 1. 00001 00 0. 00001 00
0. 0000E 00 0. 00001 00 2. 50001 00 0. 00001 00 3. 63801-22 3. 00001 00 0. 00001 00
0. (‘0001 00 1. 81801-01 -4. 54501-01 0. 00001 00 1. 66701-01 -5. 00001-01 0. 00001 00
0. 00001 00 2. 85701-0 1 1. 14301 00 0. 00001 00 2. 50001-01 1. 25001 00 0. 00001 00
0. 00001 00 5. 19501-02 5. 84401-01 0. 00001 00 4. 16701-02 6. 25001-02 0. 00001 00
I. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00

I (1W~ R S~’(INNIN0 VI Cl ORS
Oti!- GA C LAPU4.IA I
-, 00001 00 -1. 00001 00 0. 00001 00 —I. 50001 00 -2. 00001 00 0. 00001 00 —2. 00001 00
- I. 00001 00 0. 0000€ 00 0. 00001 00 -1. 00001 00 -7. 50001-01 0. 00001 00 -1. 00001 00
0. 00001- 00 0. 00001 00 -1. 00001 00 0, 00001 00 0. 00001 00 -2. 50001 00 0. 0000 1 00

-I. 0000E 00 0. 00001 00 -2. 50001 00 -I. 00001 00 0. 00001 00 -3. 00001 00 -1. 00001 00
-2 00001 00 0 00001 00 -I . 00001 00 -3. 75001 00 0. 00001 00 -1 00001 00 —4 00001 00
0. (1000€ 00 -2. 00001 00 0. 00001 00 0. 00001 00 -2. 50001 00 0. 00001 00 0. 00001 00

0. 00001 00 --3 50001 00 -1. 0000€ 00 0. 00001 00 -4 00001 00 -1. 00001 00 -0 . 00001 00
- - 

~I 
0. 00001 00 - I - 00001 00 -B. 70001 00 0. 00001 00 -1. 00001 00 -1 20001 0* 0. 00001 00

-3.00001 00 0 00001 00 0.00001 -3.50001 00 0. 00001 00 0. 00001 00 0. 00001 00
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(.* I’ER REC!I’NOCAL. WANNINO VE.CT0I~S —
P-~Hi( L0Mt-I0A )
I. 00001 00 0. 00001 00 0. 00001 00 0. 0000E 00 0 (‘(IOOE 00 1. 0000E 00 0 00001 00
0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 0 000’)E 0’) 0 00001 00 I - 0000€ 00~-

-2. 00001 00 - I - 0000€ 00 0. 00001 00 0. 00001 00 0. 00001 00 -4. 25001 00 -1. 25001 0~~0 00001 00 -I. 00001 00 0. 00001 00 0. 00001 00 0 00001 00 -I. 75001 00 —7. 50001-01
0 0000€ 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00

0. 00001 00 0. 0000 1 00 0. 00001 00 ~1. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 I. 00001 00 0. 00001 00 0 00001 00
0. 00001 00 0. 00001 00 0. 00001 00 -7. 0000€ 00 -2- 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0. 00001 00 0. 00001 00 —4. 00001 00 -1. 00001 00 0. 00001 00 0. 00001 00
1. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00
0. 00001 00 I. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0 00001 00 1. 00001 00
0. 00001 00 0. 00001 00 I - 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00

0. 00001 00 I. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 0*) I. 00001 00
0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00 0. 00001 00 0. 0000€ 00 0. 00001 00 - - -

0. 00001 00 -2. 02501 0* -3. 25001 00 0,00001 00 0 00001 00 0. 00001 00 -1. 40001 0*
0 00001 00 -6. 75001 00 -I. 7500€ 00 0. 00001 00 0 00001 00 0. 00001 00 -1. 00001 01
0. 00001 00 0. 00001 00 0. 0000 1 00 I. 00001 00 0. 00001 00 0 00001 00 0. 00001 00 —

O 0000€ 00 0. 0000 1 00 0. 00001 00 0. 0000 1 00 2. 00001 00 0. 00001 0*) 0. 00001 00
I. 00001 00 0. 00001 04) 0. 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00

0. 0000 1 00 0. 0000€ 00 0. 00001 00 0. 00001 00 2. 00001 00 0. 00001 00 0. 00001 00
1. 00001 00 0. 00001 00 0 00001 00 0. 00001 00 0. 00001 00 1. 00001 00 0. 00001 00

-5. 00001 00 0. 0000E 00 0. 00001 00 0. 00001 00 - I - 62501 01 -7. 25001 00 0. 00001 00
-3. 00001 00 0. 00001 00 0. 00001 00 0. 0000€ 00 -1. 37501 01 -4. ?500E 00 0. 0000E 00
0. 0004* 00 1. 00001 00 0 00001 00 0 00001 00 0. 00001 00 0. 00001 00 1. 00001 00
0. 00001 00 0. 00001 00 I - 00001 00 0. 00001 00 0. 00001 00 0. 000uE 00 0. 00001 00
0. 00001 00 0. 00001 00 0. 00001 00 I. 00001 00 0- 00001 00 0. 00001 00 0. 00001 00

0. 00001 00 0. 00001 00 1. 0000€ 00 0. 0000 1 00 0. 00001 00 0. 0000 1 04) 0. 00001 00
0. 00001 00 0. 00001 00 0. 00001 00 * 00001 00 0. 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0. 0000€ 00 -2. 30001 01 - I - 00001 02 0. 00001 00 0. 00001 00 0. 00001 00
0. (‘000€ 00 0. 0000€ 00 1. 80001 01 -7. 00001 00 0 00001 00 0. 00001 0*) 0. 00001 00
0. 0000€ 00 0. 00001 00 0. 00001 00 0. 00001 00 1. 0000€ 00 0. 00001 00 0. 00001 00
I. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 0. 00001 00 I. 00001 00 0. 00001 00
0. 00001 00 I. 0000€ 00 0. 00001 00 0 00001 00 0. 0000€ 00 0. 00001 00 1. 00001 00

I. * *WIR RECWNOCA . 2’PANNINO VEC)ORS
ZETA(IAMBOAI

* 00001 00 -5 45701-22 I - 00001 00 -a 63901-12 0. 00001 00 1. 00001 00 5. 00001-01
0 00001 00 3. 00001 00 0 00001 00 I. 0000 1 00 0. 00001 00 6. 2 2501 00 2. 62501 00
0 00001 00 0. 00001 00 -2 .  00001 00 0. 0000E 00 0. 00001 00 -Z 34201-U -0 86801-22
0 00001 00 0. 00001 00 0. 00001 00 -1. 00001 00 0 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0. 00001 00 0. 00001 00 0 0000€ 00 -1. 0000E 00 0. 00001 00 0. 00001 00

1. 00001 00 -1. 09101-Il 0. 00001 00 1. 00001 00 1.00001 00 1.00001 00 — 1. 09101-U
0. 00001 00 * 00001 00 0. 00001 00 I - 6000€ 01 4. 00001 00 0. 00001 00 * - 00001 00

-I t~000E 00 0. 00001 00 0. 00001 00 ‘. 00001 00 0. 00001 00 -2 00001 00 0. 00001 00
0.0000100-I b000E 00 0. 00001 00 0 00001 00 0. 00001 00 0 00001 00 -2. 00001 00
0. 00001 00 0. 00001 00 -1. 50001 00 0 00001 00 0. 00001 00 0 00001 00 0. 00001 00

0. (‘0001 00 * - 00001 00 1. 50001 00 I 00001 00 0. 00001 00 0 00001 00 1. 0000€ 00
0. 00001 00 3. 03701 01 7. 67501 00 0. 00001 (10 1. 00001 00 0. 00001 00 5. 00001 01
0. 00001 00 0. 0000€ 00 0. 00001 00 -2 50001 00 0. 00001 00 0. 00001 00 0. 00001 00
0. 00001 00 0 00001 00 0. 00001 1)0 0. 00001 00 -2 50001 00 0. 00001 00 0. 00001 00

-2. 00001 00 0 00001 00 0. 00001 00 0. 00001 *1*) 0. 00001 00 -2 50001 00 0. 00001 00

2 00001 00 * 00001 00 0 00001 00 0. 00001 01) I - 00001 00 2. 80001 00 1. 0000€ 00
1. 50001 01 0 00001 00 I. 0000 1 0*) 0 00I)01 00 7 56301 0* 2 4*301 0* 0. 00001 00
0. (*0001 00 -3 00001 00 0 00001 0*) 0 000*’*E 00 0. 00001 00 0. 00001 00 —3. 5000 1 00
0 00001 00 0 00001 0*) -3. 0000E 00 0 00001 00 0. 00001 00 0. 00001 0*) 0 00001 00
0 00001 00 0. 00001 00 0. 00001 00 -3. .)00*)E 00 0 00001 00 0. 00001 00 0 00001 00

-7 95801-13 0 00001 00 1 00001 04) 3 00001 00 1. 00001 00 0 00001 00 0 00001 00
1. 00001 00 0 00001 00 I. 06001 02 4 20001 0* 0 00001 00 1 00001 00 0 00001 00
0. 00001 00 0. 000&’E 0*) 0. 00001 00 0 00001 00 -4. 00001 00 0. 00001 00 0. 00001 00

-3. 50001 00 0 00001 0*) 0. 00001 00 0. 00001 00 0. 00001 00 -4. 00001 00 0 00001 00
0. 00001 00 -3 50001 00 0. 00001 00 0. 00001 00 0 00001 00 0. 00001 00 -4 00001 00
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~ELEC’I
- CLI$’6 li—LOOP I 1O1NV1C10~S
- 1)1.12

- 00001 00 2. 00001 00 1. 00001 00 I. 00001 00 -I. 09401 (*2 -2. 90701 01 1. 00001 00
I - 00001 00 1. 00001 00 0. 00001 00 0 00001 04) 1 00001 00 3. 38901-01 -1. 22301-02

- 0 00000 0*) 5. 00001-01 0. 00001 00 -3 63801-12 2. 00001 00 6. 47001-01 -3. 66801-02
- .3 3~*301—01 1. 42901—02 2. 50001—01 2. 27201—01 -2 22701 01 —5. 43900 00 1. 72801—01
= 0. (*0004 0*) 4. 66701-01 5 00001-0* 4. 00001-1)1 -3. 54501 01 -7. 91801 00 2. 34701-01

.3 ~-i~*30€—0t 4. 82600-02 2. 25001-01 8. 88900-02 -6. 75701 00 —1. 32201 00 3. 40201—02
I 00001 00 I. 00001 (*0 0. 00001 00 0. 00001 00 2. 41001 00 1. 00001 00 -4. *2401-02

II (ISED-L0(*’- k0C 1P!~0CAL OIOEP4VICTOR$
H V (J)

- 2. 7*1400-01 -4. 64501-01 -7 43501 04) 6. 16301 01 I. 25401 00 -3. 70901 00 -2. 36101 0*
- 

- -2 * 2200 00 5. 2~ 401 00 6. 55701 01 -4. 22204 02 -7. 40401 00 2. 08601 01 1. 50100 02
- I 76501 00 —4. 64401 00 — 7.  9110€ 0* 7. 40401 02 1. 94601 02 -9. 3 301 01 —9. 57801 02

2. I 2201 00 —3. 15801 00 —3. 59404 0* 3. 22801 02 9. 67301 00 -4. 80701 02 —4. 25601 02
- -3. 78300 00 6. *7701 00 6. 81601 01 -7. 00901 02 -1. 78201 01 7. 21801 0* 7. 79* 01 02

7. 45901 00 — 2 .  46801 01 — I. 33500 02 1. 66501 03 4. 19101 01 -1. 62901 02 —1. 67601 03
-2 50201-01 I. 21501 00 -1. 6960E 00 -3. 02001 02 —1. 1050€ 01 5. 31800 01 6. 40801 02

C0P1PEN2~A II

0 tIT—FEI~UI~ACX MATRIX 0

-I (‘2601 01 5. 29801 01 -9 52100 00 2. 32601-01 -I. 94001 0*
I 

-6 43701—0 2 -4. 96101 00 2. 44501 00 -3. 50901 00 1. 82300 00
5 41.sO€-0t -2. ZSE*OE 00 -2. 26001 0*) 5. 27701 00 -I. 98900 00

I 
-

~ I 

~ 

____________

~

~-


