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1
NOTATION

C~, C,, C~ aero-normal coefficient of the force X, Y or Z given by
C~ = XJ (~peV62S), for example
Cm aero-normal coefficient of the moment m

= m/(~p1V12S!o)

C~~, etc. derivatives based on aero-normal force coefficients and aero-normal variables

I ~X 1 ~X
— 

~~ ~pe Vs~S ~E 
— 

~p e VeloS ~&

Cm1, etc. derivatives based on aero-normal moment coefficients and aero-normal
- variables

~Cm I ~m I ~n:
— 

~pe V.2Slo bk 
— 

~Pe V1Sl02 M

I, moment of inertia about a y-axis
j

K a constant , derivatives used as spring rates, K, & K,

lo representative length
m pitching moment about a y-axis
me mass in stability axes
in, = aero-normal mass
n,8 pitching moment incidence derivative
q pitch rate ; equal to é
S representative area
T Tension or Torque; amplitude ic To
V1 datum velocity

incidence angle, usually sine definition as per Figure 1
change
pitch motivator deflection

o pitch angle

cable pitch angle

density parameter, acre-normal mass
A real part of an exponential solution
PG datum air density

frequency in radians /second
natural frequency, cu for undamped system

Superscri pt bar means acre -normal terms
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1. INTRODUCTION

To measure the forces and moments on a manoeuvring aircraft by taking scale model
measurements in a wind-tunnel, it is necessary to know the relationship between the equations
of motion for the free flight aircraft and the wind-tunnel model. The reasons for such measure-
ments were discussed~’~ in the first Note of this Series.

The wind-tunnel model system normally will have additional restraints and constraints on
its flight . This note will investigate the equations o’ motion and resulting forces for several
such restraints starting with a simplified version of the free-fli ght arrangement. It is hoped
that this will shed light on the advantages and disadvantages of the various methods of oscillating
test models which will be studied in the next Note of this Series.

This Note concludes with a bibliography of introductory texts. By no means an exhaustive
list, this covers publications before 1970 which are considered complementary to this series of
Notes. Lists of later publications can be easily obtained from any of the computer abstracting
services.

A single degree of freedom system will be considered throughout and for convenience it
will always be a pitch system. A yaw system would be identical, with the appropriate different
moment, force and inertia terms, apart from the lack of weight. In fact, any system which measures
pitch derivatives can measure yaw derivatives (by, for example, rolling the model ninety degrees).
There may be difficulties with freely suspended and cable towed models if all possible modes
are not stable, but in general a sensible choice of pivot location will solve these problems.

1.1 The Aero-Normal Notation

For convenience and simplicity of equations and relationships between quantities, most
aerodynamic results are expressed in non-dimensional terms. Several chemes for making
quantities “normal” exist and the ones of major interest were consk~red in detail in an earlier
publication in this series.~86~ The system used throughout this publication is called the acre-
normal notation and is identical to the usual “C” notation for a static case. Coefficients are
changed only in that p and V become pe and V. which are the values at some initial condition
where the stability axes are fixed . Lengths are divided by lo, velocities by V,, time derivatives
by V.110 (for each differentiation) and mass by 4peSlo which is the mass of a reference volume.
Aero-Normal mass is called ~ but other quantities are denoted by a superscript bar.

2. CONSTANT VELOCITY UNDAMPED SYSTEM

The equations of motion of a single degree of freedom system may be expressed in terms
of Newton’s equation for a force and a moment :

force mass x acceleration

moment = moment of inertia x angular acceleration.
Ignoring velocity terms, the Z force may be expressed

Z = Z,, c~+Z o  (2.1)
and the moment as

m = m~~ + mo. (2.2)

For a body of mass m, and moment of inertia 4, Newton ’s equations then become :

Z~,~x + Z o m.2 (2.3)

and m 2 + m o = J ,,& (2.4) 



If the initial condition is stable and primed variables are changes from this initial condition,
these equations may be written

(2.5)

and m1 il = 4,0. 
- 

(2.6)

Each term in equations 2.5 and 2.6 can be made non-dimensional by multi plying and/or dividing
by appropriate constants, as follows :

m6 Io
= 

j~~~io ~~~ z (2.7)

which is written (U) C~ o ’ = ~e ~~. (2.8)

Similarly for the moment expression
m1 , I, 1o~O

•V1~S1O ~ 
= 

Ip .Slo~ 
(2.9)

which becomes
C1~ , di’ = !y D. (2.10)

This non-dimensional or nero-normal notation is used throughout this work except where
particular cases note otherwise.

These equations of motion (2.8 and 2.10) are connected by the geometric relation

(2.11)

This leaves two independent variables with two separate additive solutions. One way to arrive
at each solution is to choose appropriate initial conditions.

2.1 Heave Mode

If initial conditions
0 = 0  (2.12~

(2. 13)

and *=K  (2.14)

are imposed on the system of equations 2.8, 2.10 and 2.11, a trial solution can be tried :

z = z o +z 1 eS1~* (2.15)

= ~o + ~ e5~”~~ (2.16)

8 = 8~ + 01 eS ( Sd f i) . (2.17)

Equation 2.14 means, in conjunction with 2.15, that

K =jwz i e1
~0’ =j wzj .  (2.18)

Similarly 2.17 and 2.12 yield
0 O o + Os e” (2.19)

and 2.17 and 2.13 give
0 =j w 0ie~ (2.20)

2.19 and 2.20 further imply 8~ = 0~ = 0 (2.21)

so 0 remains at its initial zero value. Then equation 2.11 becomes
a

and hence
~o + ~~ = —(K/V.)d’~ (2.23)

which means, after evaluating this expression for t not zero and I = 0, that

= —xlv. = -
~~~~~

and = _~~j  ~~. (2.24)
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In equation 2.10, the right hand side term ~ is zero but the left hand side contains no zero
terms. The “heave” mode must then assume infinite moment of inertia 4,, and for a constant
velocity system equation 2.8 becomes:

—C~ 
~
, 

eJ~ = O J K I C . ~t (2.25)
Cancelling terms,

jw = (Ve Cz ,)/(JL lo), which is real , = A, say. (2.26)
The heave mode is now seen to be an exponential response with

z = zO + ( K/ A) e~kt (2.27)
= _g~ At = _ (K/ Ve)e At (2.28)

where A = — Ve/ (~c lo) Cz8.

2.2 Pitch Mode

Taking new init ial conditions
z(0)=0

q(0) = K 
~
. (2.29)

and 0(0) = x(0) = 0 j
then equations 2.15 to 2.17 , the same trial solution as before , give

(a) ±(0) = 0 =jwzi e1”0 (2.30)

z = zo + zj  cos cut (2.31)
and = 

~~i sin cut (2.32)
and 9 O~ sin cut. (2.33)

(b) = ~~~ cos Wt

0(0) = w0~ = K (2.34)

= K/cu

9 = (K/cu) sin WI. (2.35)

Substituting back in our equations of motion ,

2. 10 -* Cn~~zj sin cut = _I ’v (K/w) (1o2/ V62) cu2 Sin WI

Cm2 ~ = — 4 , (K/cu) j~2 (2.36)

In equation 2.8, the right ha nd side term ~ is zero but the left hand side contains no zero
terms. The “pitch” mode must then assume infinite aero-normal mass ~~ . This further implies
that

= Oi = K/cu. (2.37)

Substituting for a~ in 2.36 and clearing,

= Cm8/ Iy. (2.38)
The pitch mode is thus a steady sinuosoidal oscillation in both pitch and incidence.

The system of this section is not physicall y reali zable. Real systems have losses (damping)
and in the next section damping terms will be considered.

3. ThE DAMPED CONSTANT VELOCITY SYSTEM

The equations of motion considering velocity terms in the aerodynamic forces become

Cz2~z’ + Cz1~~ + C zq c7 ii f (3.1)

and Cm 2~~’ + C~~ & +  Cm q 7  i11 â~ (3.2)3



w i th 0 = 
~ + - (3.3)

where primed variables are changes from initial conditions and all terms are aero-normal.
The same two sets of initial conditions are considered for this system as for the undamped
system in the previous section.

3.1 Heave Mode

Assume initial conditions
0 = 0  

~1e = 0  (3.4)
z = K .  J

As in section 2 .1 , the first two conditions are met by

0(t)  = 0 (3.5)
and a solution of the form

z = 20 + 21 eAt (3.6)
= ~o + ~ t e~ (3.7)

is tried.
Equation 3.3 gives 0 = ~i eA~ + (z1 A e~ ) / V€ (3.8)

= Zj ~~. (3.9)
From 3.4, ±(0) = z~ A ~~ = K

= A

zj = K/ A or ~ = K/ X . (3. 10)

Hence from 3.9 and 3.10,
= —K. (3.11)

Substituting back in equation 3.1 ,

—K C’~ eAt — K~ ~~ eAt = ~c (K \) eAt (3.12)

so = — C~2/(,.~ + C2~). (3.13)

3.2 Pitch Mode
Assuming new initial conditions

z(0)=0
q(0) = K ~

. (3.14)
9(0) = oc’(O) = 0 J

and trial solutions
Z Z e  

5

)

(3.15)
= 0 = ~o eAt e1”t J

then q(0) = K = ~o A,A0 e1”0 + j cu ~o eA0 e1”0 (3.16)
and 0(0) = 0 = ezoeAO eiaá

= ~o Sifl (cuO) (3.17)

as the cosine term must be zero also.
From 3.17

= 0= ooeAt sin (cut) (3.18)
and 3.16 becomes K =  ~o A 0 +  x oe° cu cos (w0)

=w ~~0

= I(Jw (3.19)

4



and the equation of motion becomes 3.2

Cm1 (K/cu) eAt sin ( c u t )  + (Cm 1 + Cm,) {[(KX)/c~iJ eAt sin ( cu t )  + K e~ cos (w t) )  =

4, K {2~k cos ( c u t )  + [(~2 — o 2)/ czIJ sin cut )  eAt. (3.20)

By equating the sine and cosine terms , and clearing,

Cm~, ~ Cm, = 2~ 4, (3.21)

and Cm1 ~ (C m1 Cm,) A J ( ~~2 ~~2) (3.22)

Substituting 3.21 into 3.22 then gives

Cm, — (~~2 .f ~ 2) ‘V (3.23)
= — ~~~~ 4,~ (3.24)

This is of the same form as in the previous section (E qn 2.38) but cu is now the complex
quant i ty  wo. For a dynamically (as well as statically) stable system , the real part of cuo must be
negative. If positive , i.e. A > 0, any disturbance in pitch will grow.

The two modes , heave and pitch , of 3. I and 3.2 , exist concurrently, and a suitable choice
of ini t ia l  conditions shows both. However , as long as the time scales of the two disturbances
are sufficiently different , say one more than forty percent longer than the other , the resultant
remains simply the sum of the two disturbances.

The damped pitch disturbance occurs in aircraft (fixed controls) and can be simulated in
a wind-tunnel with low friction pivots. The heave mode does not however occur in this constant
velocity form. In flight , speed wil l  change as the aircraft climbs or falls modifying the result.
In a wind tunnel it is difficult  to simulate translations; a rotation about a point not at the reference
centre will be considered instead.

4. SPRING RESTRAINED PITCH SYSTEM

Consider a system where , as well as the aerodynamic terms , there are structural stiffness
(K8) and damp ing (Kg)  terms but heaving motions are constrained. For the wind-off or tare case,
but non-dimensionalizing as for the wind-on case to be considered next ,

1y~~=Ko 0 ± K ~~ (4.1)
which has the solution

0 = 00 e~ ’~1’”” (4.2)

with K0 = 2~, 4, (4.3)

and = (~ ,2 1 ~ ,2) 4, (4.4)

where = A, !o/ I ’, and ~ , = w~ I o/ Ve

with V~ referring to the wind-on case.
Since a pitch system with ~ = 0 is being considered , the wind-on case becomes:

1,, ~ = (K 8 ~1- Cm8) 0 + (K 0 + Cm~, + Cm,) ~ (4.5)
which has the solution

0 = 0~ ç
(A CJ OC ) t (4.6)

with Kfi Cm~, + Cm, = 2X 4, (4.7)

and K, -f Cm8 = — (~ 2 ~2) 4,. (4.8)

From equations 4.3 and 4.7

Cm,, f Cm, = 2(~ — ~t) 4, (4.9)

and from equations 4.4 and 4.8

Cm1 = — (A2 ~~ ~ — &jt 2) i~ (4.10)

= (m0 2 — n o 2) I,, (4.11)
using the results of Section 

3 . 5



The terms on the left in 4.9 and 4 . 10 1 1  are the same as those responsible for the behaviour
of the pitch system in Section 3 and the equations are the difference between two sets of results
of the form of that  Section. This con~enient relationship means that this system is often used
in wind-tunnel testing.

5. SPRING RESTRAINED PITCHING AND PLUNGIN G SYSTEM
If the centre of rotation is moved from the ori gin as in Section 4 to (—x o , O, O) in the body

co-ordinates , t h en
0 = * ( S i )

= ~ +
and (1 = :/x0. (5.2)

The equation of motion is far more complicated

- 1~~= ~~, 04  R,~ê Cm,,~~~ Cm3~~ + Cmq~~+~~ z,,1o~~ + C2,, 1o~~+ C~,,io& (5.3)

Equations 5.1 and 5.2 give
(5.4)

The moment of inertia about the new i’~ axis

‘1/, = ‘1/ + ~tc 1o2 . (5.5)
Substituting 5.4 and 5.5 in equation 5.3 ~ “es

= (K, ~ Cm,, + 1o C,,,~ 0 f - (K~ — 10 Cm,, * Cm3 + Cm,, — ~o2 Ce,, + 1o Ce,, + 1o C,,,) ~ —

— 10 (Cm3 + .~~~ C,,,,) ~ (5.6)
Tare values give

K0 = 2~, 1~,, (5.7)

and K, = — ~~~ + ~ 2) 4, = — ~ o,2 J ~, . (5.8)
For the wind-on case, try a solution

0 = 0oe ’’~f ”. (5.9 )

Then R~ç + Cm,, + Cm, 1o (C ., + C~, — -  Cm,,) — ~~~ C,,,, = 2A (Iv , + 1o Cm 3 + Xo2 C,,1) (5. 10)

and K,+  Cm,, + b C,,,, = - (~~Z + ~~~2 ) (4  +b o Cm 3 +Io 2Ct ,,) ’

= — wo2( f~ , + 10 Cm,, + 102 C,,,,). (5. 11)
Substituting 5.8 into 5. 11 ,

Cm,, + o Ce,, = — (~~~ 2 — ~ o,2) 4,, — a 0 2 1~ (Cm3 + 1o C,,,,). (5.12)

Similarl y 5.7 into 5.10 gives

(C m:, + b C ,,1) (Cm , + x o C ,,,) — 1o(Cm,, -f- b C,:,,) = 2 (X — 
~~
t )Iy,  + 2~ 1o(Cm ,, + b C,,1).

(5.13)
Using 5.12 , equation 5. 13 becomes :

(C m,, + bo C,,,,) ( I  4 bo~ 6 o~ — 2~ bo) + (Cm, + b~ C,,,) = [2( V — \,) — 1o (~.‘~2 — ~ o,2)] I~, . (5. l 4)

This is comp licated. However if values for Vo = 0 are k n own it allows measurement of
C,,,, and est imation of the split between Cm3 and Cm, which have appeared together up to now.

6. FORCED SPR I NG-R ESTRAINED PITCH SYSTEM

To the system of Section 4 a torque T0 ei~ is added. The tare case becomes :

1,, ~ R,, 0 -
~
- K ,, ê T0 e5~

t. (6.1)

The homogeneous o lu t io n  ( T,, 0) was given in Section 4

0 ~,( A , . J . , i t (4.2)

6



where K,, = 2~, 4, (4.3)
and K,, = — (e’t2 + ~,2) 4 (4.4~

= — Wog 2 4. (6.2)
The complete solution in the tare case is thus

0 = Oo eiA,+ 1og) t + 01 eJ UI e~ )  (6.3)
where it may be shown that

= tan ’ [(—K6 a)/(1~ 02 + K,,)] , which using 4.3 and 4.4,
= tan ’ [(—2~, ~))/(02 — ~ o,2)J (6.4)

_____ 

To
and also 01 = — 

J [4X ,2 1, + (02 ~~~~2)2]4~ 
1~6.5)

Note that for zero tare damping, i.e. A, = 0, then (=  0 so that the oscillation is in phase with
‘he applied torque, and

0, = To/[Iy (Z~o,2 — 02)] (6.7)
‘. In ch is infinite at resonance .

The wind-on equation of motion is

4 ~ = K,, 0 + K0 U + Cm,, 0 + Cm1 U + C’mq U + T0 ~~~ (6.8)

The solutiont is of the form
0 = Oo e(A +Jw)t + 0, eI U~t+i) (6.9)

where Cm,, = — Quo2 — Wo~2) I,, (6.10)

Cm,, + Cm, = 2(~ — 
~t) I~ (6.11)

and e = tan-1 [(2~ 0)/(~~~ 2 — 02)] (6.12)

remembering Tho2 = ~~2 + ~ 2 (6.13)

and where 0, = ?o/{4 [4~~2 02 + (02 — WO~)2J4). (6.14)

For zero damping (A = 0) equation 6.14 reduces to
0, ?o/[Iy Q uo~~— 02)] (6.15)

which again gives infinite amplitude for the resonance condition we = 0.
For non-zero damping, the resonance condition gives ~ = tan-’ ~ = 90 degrees for both

tare and wind-on cases. In the tare case,

lYe = Tho, (6.16)

then 0, = To/(24 IX, 0). (6.17)
For wind-on

(6.18)

then 0,= To/(21y ’IX lY). (6.19)
Combining these equations

Cm,, + Cm, = ?o/(0 0,) — ?o,/(0i 0,~) . (6.20)

If tare and wind-on tests have the same amplitude, and stiffness can be varied to obtain the same
frequency, then, providing K,, is the same,

Cm,, + Cm,, = (T0 — To~) / (0 0,). (6.21)

This is similar to the results obtained for free oscillation with the decay rate replaced by
a torque input. It has an advantage in that the output is steady and measurements can be averaged
over long time periods for high accuracy. As with the free system an estimation of the split of
Cm,, and C~, requires multiple axis locations.

t S. Timoshenko, Vibration Problems in Engineering. Van Nostrand 1928.
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7. CABLE TOWED MODELS

7.1 Pitch/Incidence System

Consider a wind tunnel model on a long, flexible cable. The constraint conditions are taken
to be:

(I) The cable is inextensible (length I) ,  massless and dragless;
(i i) No moment about the point of attachment is provided by the cable which is attached

distance x ahead of the model centre of gravity;
(iii) No disturbance in roll or yaw exists imp lying that the roll-yaw system must be statically

and dynamically stable and have natural frequencies sufficientl y different from those of
the pitch/incidence system to minimize cross-excitation of one system on the other.

Condition (i) means that the force on the cable must equal the tension T in the cable.
Resol ution of all the forces acting leads (Fig. 2a) to the expression

T= —Xcos (0 + 0,,) — Z s i n (0 + 0,,) + mx sin (0 + 0, , ) —  Wsin 0,, (7. 1)

for the tension in the cable, and

—t~L = Z cos 0 + W — 1 sin 0 + T sin 0,, (7.2)

for the force unbalance in the vertical direction. This will equal zero for a static equilibrium.
Si m ilar resolution yields

E s m = m + T xs i n(0 + 0 c) (7.3)

for the resulting pitching moment. In each of these three equations, the terms have not been
made non-dimensional as yet , in order to show the precise nature of some approximations made.

For 0 and 0,, both small , from Fig. 2,
Tsin 0,, ~ [ — X  —z (0 + 0,,) + mx (0 + 0,,) — WI),,] 0,,

~ —10,, (7.4)

being first order in 0,,, and similarly

Tx sin (9 + 9,,) ~ —Xx (0 + 0,,). (7.5)

The nett vertical force is then

—~~L ~ z + w — 1(0 +0 ,,) (7.6)

and the nett moment about the y-axis is

~ m — Xx (O + 0,,). (7.7)

Now 0, 0,,, z and a are related (Fig. 2b) by

z = x O — I O ,, (7.8)

and a = 0 — i/ V. (7.9)

From equations 7.8 and 7.9 it is clear that there are still only two independent variables as
in Sections 2 and 3. So comparisons can be made with the equations derived in those sections, 

-

the equations of motion are considered in non-dimensional form.
If the initial conditions represent equilibrium , then

C,,, + 0’ = 0 (“lift” = weight) (7.10)

and Cm, + Cm, . ’j = 0 (zero moments) (7.11)

and the equations of motion become

C’,,, a + C,,, & + C,, ~7 — ( 0  + 0,,) (C,,,, + C1,, a + C1, * + C1,e7) = 2 (7.12)

and Ce,, a + Cm5 & + Cm ,, 4 — x(0 + 0,,) (C1,, + C1,, a + C’~,& + C1, 4) = #1 (7.13)

It is assumed that the solution of these equations can be divided into two additive modes
as in Sections 2 and 3. It is further assumed that one way of representing these modes is by
separating Equation 7.9 by zeroing one, then the other, of the right hand terms. These modes
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are then the “pitch” and “heave” modes of Sections 2 and 3, and the equations of motion
become :

— C,,,~ — C,,,,~ — (~/ 1)(— C10 + C~,,f + C12 !) = (7.l4)

for the mode with = —a (7. 15)

and Cm,, 0 + (Cm,, + Cm,)~ — xO [C1, + C1,, 0 -F (C1, + C1,)U] = 1,, ~ (7.16)

for the mode with 0 = a. (7. 1 7)

Both 7.14 and 7.16 are non-linear d~d~erent ial equations. The effect of the tow cable is to
introduce a non-linea r additional stiffness to each mode. If terms of more than first order can be

— i gnored , these equations become:
(7.18)

and (Cm,, — X C10) 0 + (Cm, + Cm,) ~ = 1, ~ (7.19)
Equation 7.19 is identical in form to the spring restrained pitch system of Section 4 with

spring constant
K,, = —x C1• (7.20)

and spring damping
K8 = O. (7.2 1)

8. FORCES AND MOMENTS ON A RIGIDLY-DRIVEN MODEL

If a model of mass m, and of moment of inertia about its centre of mass I,, is driven ri gidl y,
then a force and moment balance between the model and the driving mechanism measures
inertial as well as aerodynamic terms. The balance axis system is a body-axis set, and not the
fixed “stability axes” used for other methods of driving oscillatory models. Two positions of
the axis of rotation are considered as well as a simple translation. The balance is considered
to be rigid in comparison with the movement applied.

8.1 Centre of Rotation at Reference Centre (0, 0, 0)

For a ri gid sinusoidal pitch oscillation about the y-axis,
a = ~o + 0, sin wI (8.1)
0 = Oo + 0~ sin wt (8.2)

& = U = ~~ 0, cos wt (8.3)

= = — ~~2 0, sin cut. (8.4)
The z force coefficient has the form , where g is the acceleration due to gravity and ~ is the
non-dimensional model mass

C2 = I cos (ao + 0, sin cut) + C,~ + C,,, 0, sin cut + (C,, + C,,) ID 0, cos cut. (8.5)

For a small amplitude Oi this may be approximated by

C, = (j~ j  cos ao + C~,) + (C,,, — j  sin xe) 01 sin cut + (C,,, + C,,) ~a 0~ cos cut (8.6)

where the three terms are the static, in-phase and quadrature components of the force with
respect to the mot ion, respectively.

The pitching moment coefficient is given by

Cm (Cm, + Cs,,’) + (Cm,, — ID2 1,) 0, Sin cut + (C.,, + Ce,) ID 0, cos cut (8.7)

where the same comment about the three terms applies and where i~’ is a fixed control deflection.

8.2 Centre of Rotation Shifted Along the x-s ds (x0, 0,0)

If the model is rotated about an axis X0 ahead of the y-axis, a and 0 are no longer co-incident
quantities. As always, from the definitions of the angles of pitch and incidence,

0 = a+ i , i.e. = x + zIVe. (8.8)
In this case

0 = z/Xo, also. (8.9)
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Thus 0 = + ~~ 4 (8.10)

which is the same as equation 5.4 for the spring-restrained system.
The model now has moment of inertia

= 4 + XO2 m,

i.e. 6, = !~, + ~ o2 gi. (8.11)
The oscillating model now has a linear acceleration term in its force equation. The equations

of motion are now
O O o + O i sin wt (8.12)

-and a = Oo + 0, sin cut — x0 ~ 0~ cos cut (8.13)
with derivatives

~~ ‘ 4 6 j m cos cut (8.14)
= O, ID CO5 cu1 +~~0 0 iI D 2 5if l wf (8.15)

2 = — ~o ID2 0, sin cut (8.16)
and = 4 = — 0~ ta2 sin cut. (8.17)
Then the z force coefficient has the form

C~ = C,,, + gi~~cos 0 + ~.1 + C,,,,ec + C,,, ~ + C, q. (8.18)
If the oscillation amplitude 0~ is small

cos 0 ~ cos 0~ — sin (Oo) 0~ sin cut. (8.19)
Including all the constant terms in C,,, to make C, ’ and substituting for the angles in 8.18,
C, = C,,,’ + [C,,,, + ~ (~o ID2 —

~~ sin 8~) + C,,, ~o ID2~ 8~ sin cut +

+ (C,,, + C,, — 
~o C,,,) ar 0i cos cut. (8.20)

The pitching moment is even more complicated. The moment about the new axis is given by

m’ = m+xoZ  (8.21)
i.e. Cm’ = C, + ~o C,,. (8.22)

The balance however measures moments about the reference axis, i.e. C,,,,. The expression ~or
this is exactly as before :

C, = (C,, + C,, ‘i’) + (C,,, — ID2 4)0 1 sin cut + (Cm, + C,,) ID O~. cos cut. (8.7)

Moments about the new axis can be obtained using Equations 8.7, 8.20 and 8.22.

8.3 RIgid Translation Along the z-axls
If the motion inexorably impressed on the model is a z translation and not a rotation,

pitch angle 0 remains a constant , say zero. Then from equation 8.8
a = —

~~ (8.23)
and for a motion z = z0 + Zj sin cut (8.24)

a = —!~ ID COS wt (8.25)
and = ID2 Sifl cut. (8.26)

• The z-f or ce and pitching moment coefficients are given by, ignoring static valves,
C , C g,,a+C,5~~± g i 2  (8.27)

and Cm — Cr,,,, a + Cm,, & (8.28)
and using 8.25, 8.26 these become

C, = — C , ,,,f i I D cos wt + (Cg~ — g i)!,ID2 sin wt (8.29)
and C, — Cm,, Ej ID COS cut + C,5 fi ID2 sin cut. (8.30)

- - _________________ 
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9. CONCLUSION
The equations of motion have been developed for a simplified free flight pitch-yaw system

and for spring-mounted and rigidly-driven wind tunnel systems. For the spring-mounted system
both initial displacement and forced-oscillation conditions have been examineó. A simplified
cable towed system has also been derived. These equations will be used in later Notes of this
Series.
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