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FORWARD

The work reported here is taken verbatim from a proposal for the study and de-

sign of a computer aided sonar echo classification system . In the proposal , the
discussion of signal processing and waveform design was felt to be of sufficient

general nature to be useful to others working in related fields. Sid Applebauni,
who has since terminated his services with the Company, is the sole author of this
work.
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TIS R64EMRII
S IGNAL PROCESSING AND WAVEFORM DESIGN

The intent here is to discuss some theoretical aspec ts of the signal process-
ing and waveform design areas. In addition, some recent findings on “noise” wave-

forms shell be presented. Noise or random waveforms are especially attractive for

target classification because they combine the attributes of lcng duration and wide

bandwidth, thus offering the possibility of simultaneous resolution in both range

and doppler. Noise waveforms are attractive, too, because techniques have been de-

veloped for efficiently generating and processing such waveforms.

It is convenient for this discussion to group ref lectors of sound energy into

two classes - point targets and extended targets. A point target is one whose

physical dimensions are smell compared to a wavelength of the transmitted carrier

frequency, while an extended target has large dimensions compared to a wavelength.

If acoustic radiation is incident on an extended target having a complicated shape ,
it is found that the main contribution to the scattered field is due to “specular”

points, or patches, occupying a relatively small part of the illuminated surface of

I the object. An analogous phenomenon of comeon experience occurs in the “spotty”
I reflection of the sun or moon from a wavy water surface.

I The number and location of the specular points observed depends upon the tar-
I get ’s shape and size, and on its orientation with respect to the observer. Objects

I of simple geometric shape will exhibit a smell number of specular points. A sphere,
4. for example, has only one specular point and, therefore, will look like a point tar-

r get even though it may be large compared to a wavelength.

Extended targets may, therefore, be considered to be a group or cluster of

point targets. The distribution of these point targets in range and amplitude will

be characteristic of the target shape, and, henc., may be used to recognize or clas-

sify the target. The function of signal processing in classification is to obtain

this distribution accurately and in as much detail as ths transmitted waveform per-
mits. The waveform should be capable of providing high resolution information,
preferably enough to individually resolve at least a few of the target’s major
specular points. If a sonar system has poor range resolution, all of the target’s
specular points may appear as a single point target, and there will be little infor-
mation on which to base a classification decision.

I
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Target motion can be of considerable help in classification. If a rigid ex-

t,nded target is moving, the signals from all of its specular points wil l  display

the same doppler shift . Doppler shift can thus serve as a tag to identify the

specular pc.int returns from a single extended target . With sufficient doppler

resoluticn, the group of specular points belonging to one moving extended target
can be separated from the group belonging to another stationary target , even though

both ta rgets  n~ay be at the same range . Doppler information can also help recognize
“nonrigid” targets like a school of fish , on the basis of the amount of doppler

spread of the returned echoes.

Since all targets can be considered as groups of point targets, the waveform
design and signal process ing portions of the classif ication problem reduces, in
effec t, to the problem of detecting, resolving, and estimating the parameters of

point targets. A great deal of work has been done in this area. A brief review of

the major theoretical results, and their application to the problem of sonar echo
clasaification is presented in the remainder of this section.

A. OPTIMUM SIGNAL PROCESSING

A discussion of signal processing and waveforms is necessarily mathematical.

To save t ime and space complex signal notation shall be used .* In complex notation,
th. transmitted signal may be represented as

(2 
~T~~

”2 u(t) exp j 2n f t (1)

where u(t), a complex waveform is normalized 80 that

I Iu(t)12 dt — I (2)

— transmitted energy, and

f — the carrier frequency.

(Unless otherwise specif ied, the limits on all integrals are to be taken from -c~ to

If there is a stationary point target present at a round trip range delay
of r seconds , the signal received from the target may be represented by

s(t) exp j 2n f0 (t 
- (3)

*~ee P.M. Woodward , “Probability and Information Theory with Applications to Radar ”,
Pergmmon, London 1953 .
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where

s(t) (2 Es)
~~

2 u(t - r) (4)

E
~ 

is the rece ived signal energy . ES depends upon the transmitted energy,

on the cross section of the target, and on attenuation factors that are functions

of range. It has been assumed that the signal bandwidth is sufficiently narrow so

that dispersion in the medium produces negligible distortion of the signal waveform,

u(t).

If the point target is moving with a constant , positive range rate , the re-

ceived signal will  exhibit a corresponding doppler frequency shif t , say 
~~d• The

complex envelope of the received signa l will  then be of the for-tn

5( t)  — (2 Es) ”2 u(t - r) exp -j 2n 
~d 

(t - r) (5)

It is apparent that the signa l from any point target is completely speci-

fied by three parameters - energy, range delay, and doppler frequency shift . All

of the classification information available from a resolved point target echo is
contained in the parameters E5, r, and 

~~~~~~ 
or functions of these three parameters.

The information available from a cluster of unresolved signal echoes is completely

defined by the distribution of received energy in range delay and doppler frequency.

Both types of information can be provided by a signa l processor that estimates the

received energy ES continuously as a function of both r and

The type of signal processing and waveform to use for optimum parameter

estimation depends on the environment in which the system operates. In addition to

the signal from the target of interest, the receiver will pick up signals from other

sources, such as neighboring targets, reverberation, multipath signals , and, of

course , random thermal-type noise. These environmental factors determine the threshold

detectability of a target and the accuracy with which its parameters can be estimated.

The situation in which random noise is the major environmental factor shall

be considered first. The signal processing part of the classification problem then

reduces to the well-known problem of estimating the parameters of a signal in addi-

tive Gaussian noise. The waveform received in this case contains two components,

and, omitting the carrier frequency factors, may be represented as

v(t) — s(t) + n(t) (6)

where n(t) — complex noise modulation .
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It has been shown in the l i te ra ture  that the optimum signal processor for

this situation is one that cross-correlates the received waveform , v(t), with a

stored replica of u(t), the transmitted waveform , The cross-correlation must be

performed for all range and doppler shifts of interest. The optimum signal proc-

essor can be defined more precisely as one that generates a two-dimensional array

of data, X(?, 
~~ 

where

j 2
~~

fd t
X(r, 

~~ 
— f v(t) u~’ (t - r) e dt

The cross-ccrre1atio~ carL be performed “actively” by storing u(t) at the

receiver, multiplying by u(t - ~) (with r varying over the range of interest), and

then integrating the product in some form of spectrum analyzer. The Deltic-VICI

technique is one method for accomplishing this . The cross-correlation can also be

performed “pass ively” in a bank of “matched filters”. In this case the receiver

consists of an array of filters with each one conjugate-matched to a frequency-

shifted equivalent of the transmitted waveform , u(t). The transfer functior of

each f ilter will be of the form

U* ~~~~ - -
where 13(f) is the Fourier transform of u(t), that is

U(f)  a f  u ( t )  e~~ 
2n f t  dt (8)

The number of filters required in a “matched-filter” receiver is approximately equal

to the total doppler surveillance band divided by the system doppler resolution,
which depends on the duration of the waveform, u(t). In the matched-filter receiver

the doppler shift of the signal is determined by noting which filter has the largest

output, range is determined by the time at which the peak output occurs, and energy

is determined by measuring the amplitude of the peak output.

The cross-correlating or matched-filter receiver i8 characterized by the

property that it maximizes the ratio of peak signal output to rins noise output . The

mean square noise output will be the same for all values of r, 
~d 

and is given by

— N f I U ( f ) ! 2 df (9)

a N I Iu(t )1 2 dt

where N0 is the (one-sided) power density of the noise (watts per cycle).
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The “signal” pcrtion of the signal processor cutput will be

j 2n f t
Xs( ,  

~~ 
— f 5( t )  u*(t - ~) a d dt (10)

If s(t) is the signal returned by a point target at a range delay r , moving

so as to produce a dcppler shift of -ed’ Equation (10) becomes

‘ ,‘ 1/2 ~ 
-j 2n t

X5(r, ~~ 
— (2 Es) f u(t - r) u*(t - r) e dt (II)

or

X
s
(?, 

~~ 
— (2 Es) ”2 A~ 

(r - 

~~~~~ ~d 
- 

~~~~~~~ 

(12)

where

A (’r , i~) f u(t) u*(t + r) e~~ 
2i~ vt dt (13)

A
The peak signal output will occur when r — r, and 

~d 
— 
~d, 

at which point ,

X
~
(r , 

~~ 
— (2 Es) ”2 A~

(o ,o) (14)

—( 2 ES)
1’2

since A
~
(0,0) 1, from Equations (2) and (13).

The ratio of peek signal output to rms noise output from Equaticns (9) and

(14) is therefore

(2 E ) l/2
Peak Signal 

— 
S ( 15)

rms Noise N 112

This is an important fundamental result showing that the output signal-tc-

noise ratio depends only on the energy in the received waveform and not at all on

its shape. Since the peak power that can be transmitted is liwited by cavitation ,

high stgnal-to-ncise ratios can only be obtained by using waveforms of long duration .

Long waveforms, however, have poor range resolution unless some form of cod ing or
modulation is used. For target classification, it ~s desirable to have both high

signal-to-noise ratio and good range resolution . Long coded wav’~forms must there-

fore be considered, that is, waveforms that have a large bandwidth-time product .

5
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The resolution capabilitie8 of a waveform in a matched filter system are determined

by the function A.~(t,v) defined in Equation (13).

The function A.,~ is called the ambiguity function of the waveform u(t); it

gives the distribution of “interference” or “crcss-talk” due to a single point tar-
get. The ambiguity function is a sort of aperture or window with which targets

distributed in range and velocity are viewed. From the definition, Equation (13),

the following important relations may be derived

A (’r,v) — f U(f + v) U*(f) ~~ 
2n ~ -t df (16)

IA~(-t
,v)I 2 < IA~

(O,O)I
2 (17)

— A
~

(r ,v)I2 (18)

and

If  IA~(t,v)I
2 dv dv — A(0,0)J

2 
— 1 (19)

Equation (16) expresses the ambiguity function in terms of U(f), the

Fourier transform of u(t). Equation (17) shows that the ambiguity function attains

its peak value at the “target position” (‘r,v — 0,0), verifying, in part, the opti-

mality of matched filtering. Equation (18) reveals an important reciprocal property

of the ambiguity function; it can be shown from Equation (18) that the cross-talk

power at the point v,v, due to a target at 0,0, equals the cross-talk power at 0,0,
due to an equal size target at the point ‘r,v. Equation (19) is known as the Uncer-
tainty Principle; it says that the total integrated cross-talk power generated by a

point target is a constant independent of the shape of the waveform u(t).

Although the total cross-talk power or ambiguity is invariant with the

choice of waveform, u(t), the manner in which it is distributed in range and doppler

depends very much on the waveform coding. Ideally it would be preferred for A
~

(r ,v)
to consist of a single sharp central spike with the unavoidable excess ambiguity
uniformly distributed as low-level “side lobes”. Such an ambiguity function has
been referred to as a “thumb-tack” function . The dimensions of the central “spike”
of an ambiguity function are approximately 1/B in range (r~, and l/T in doppler (v),

where B and T are the bandwidth and time duration of the waveform, respectively.

6



The response of a matched ~ilter  receiver to an inpu t signa l pulse is

shown in Figure 1. The array of outputs depicted defines the ambiguity function of

th~ pulse waveform. The nature of the ambiguity functions of a number of different

waveforms is indicated in Figure 2, in the form of “ambiguity diagrams”. In these

diagrams, only the regions of high ambiguity are shown. The side lobes of the

ambiguity functions will spread over 2T in range (r) and 2B in doppler (v). The

amb iguity diagrams of a short and long unmodulated pulse are given in Figures 2a

and 2b, respectively. The short pulse spreads its ambiguity in doppler while the

long pulse ambiguity is spread in range. As a result, the short pulse has good
range resolution but poor doppler resolution, whereas the converse is true of the

long pulse. The ambiguity diagrams of a linear frequency modulated pulse are shown

in Figure 2c. The region of high ambiguity in this case has its major axis along a
diagonal extending deep into the first and third quadrants. With the linear FM

waveform, resolution is poor for targets whose range-velocity separations lie along

the diagonal.

B. PERFORMANCE IN REVERBERATION

Up to this point, random noise has been considered as the only environ-

mental factor limiting performance. Usually, however, reverberation is at least as
important as random noise in determining sonar performance. Reverberation may be

regarded as an extended target consisting of a large number of small randomly dis-

tributed point targets or scatterera . Each point scatterer will produce a signal

of the form of Equation (12) at the output of a matched filter receiver. The point

scatterers are assumed to be too densely distributed to be individually resolved.

Because of the random nature of reverberation, the average reverberation
power at the output of a matched filter receiver is obtained by suzaning the indi-

vidual signals, power-wise. If w(r,fd) dr dfd is the energy received from the point
scatterers located in the range interval r,r + dx and producing doppler frequency

shifts between 14 and f4 + dfd, the mean power out of the matched filter recej.ver
due to reverberation will be

Xft (r,fd) — 2 if w(r ,fd)’TAU
(r_

~
, 
~d~~d~ ’ 

dr df
d (20)

In order to proceed further with this expression, the detailed character of

the function w(r,fd) must be known. For most cases of interest a reasonable assump-

tion is that v varies sufficiently slowly with range so that it may be regarded as a

7
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function of f4 only in the integral shown in Equation (20). Formally, this assumes
that, in the vicinity of r —

w(r,fd) W(r) 
~~~~~~ 

(21)

where W and ~ are slowly varying functions of ‘? , and ‘ is assumed to be normalized

80 that

f 
~~~~~~~~ 

dfd — 1 (22)

The function ~ describes the distribution of the reverberation energy in the doppler
dimension. Usually it will be peaked near zero doppler (assuming that any ship s

motion is compensated). Substituting Equation (21) in Equation (20)

x
RG,~

’
d
) — 2 W ()  If  ‘~Udu t

~ 
IA~

(r_
~, 

~d~~d~’ 
dx df4 (23)

— 2 W(~) f z’(f4,’?) Gu(fd
_
~
?d) dfd (24)

where

J G
~

(v) — G (-v) — f IA(T,v)1
2 dt (25)

When the distribution of reverberation energy is highly concentrated
around zero doppler, the function ~ becomes a “delta” function

(26)

In this case Equation (24) reduces to

2XR(r,fd) — 2 W(?) Gad) (27)

These equations, (24) and (27), describe the distrLb~ation of reverberation power at

the output of a matched filter receiver. If there s a point target of interest at
Ar — r, having a doppler shift £4 1d’ and returning a signal with energy B5, the

ratio of reverberation power to peak signal power at the receiver output will be

2
w(~) A A

2 — 
I I •(f4,r) Gu(fd - 14) dId (28)

S

I or th. general case , and

10



...._L • W(r) 
G 

~~~ 
(29)

xS S

when

Since both W and E5 vary identically with both the transmitted energy and

range, their ratio depends only upon the ratio of the cross section density of the

reverberation scatterera to the cross section of the target. The only term in
Equations (28) or (29) that depends on the waveform u(t) is G.~. This function then

determines the ability of a matched filter system to detect and classify targets in

a reverberation-limited environment and, therefore, will be called the reverberation
A

function. It varies with the amount of target doppler shift, 14• If the reverbera-

tion is not at zero doppler, the argument of the reverberation function G.,~ should be
interpreted as the difference between target doppler and reverberation doppler. To

indicate this more general case, the notation G~(v) shall be used in place of
G

~

(f d) . It can be seen from Equation (29) that a low value of G.~ indicates good
performance in reverberation.

The reverberation function may be calculated from Equation (25), or from
one of the following equivalent expressions

G (v) — f ~U(f)f~ IU(f + v) 1 2 df (30)

— I A~(T,O)J~ ~-i 2~ VT dt (31)

If the waveform u(t) is not normalized according to Equation (2), then the

right-hand sides of Equations (25), (30), and (31) mast be divided by IA ~~~
(0 ,0 )l2  or,

equivalently, by either

2 2
dt or f I U ( f ) 1 2 dl (32)

As a ccnsequence of the Uncertainty Principle, Equation (19), the reverber-

ation function G.4(V) must also satisfy a waveform - invariant relation,

( f G
~
(v) d~ • 1 (33)

11
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for all normalized waveforms, u(t). From Equation (30) it is noted that G,~(v) de-

pends only upon the spectral distribution of the transmitted energy, U ( f ) 12 . To
get a feeling Icr the effect of the signal bandwidth on the function G~(V), con-

sider a class of signals whose spectral energy distribution is given by,

2
sin

IU(f) 1 2 
— 
~~~ 

B (34)

This has the same form as the spectral energy distribution of a rectangu lar

pulse of duration 1/B. It -is assumed that the waveform duration is T seconds, and

the dependence upon T shall be indicated by wr iting Equation (34) as

icfT
2 T sin jIU D(f) I — D I ~~ I (35)

D

where D — ET (bandwidth-time product).

When D a 1, the waveform will be a simple pulse , T seconds long. P’or

larger values of D, the waveform is modulated or coded with D degrees of freedom .

The reverberation functions corresponding to Equation (35) are easily shown to be

r
6’) — ...&L. . I 

~, 
- 

p___ I 36)GD D ( 2* PT~~~~ID L D

These functions are plotted in Figure 3, against the abscissa, VT, which
is the doppler shift of the target with respect to the reverberation, expressed in
units of l/T, the doppler resolution of the waveform. For low values of doppler
shift, the reverberation functions decrease directly with the di.ensionality, D, of
the waveform. This is to be expected since, if the target is not resolvable from
the reverberation in .doppler , the signal-to-reverberation ratio can only be improved
by increasing the range resolution and, therefore, the bandwidth of the waveform . On

the other hand, for large doppler shifts, Gi,(v) at first increases with increasing D
and then decreases. The bandwidth-time product , D, required to equal the performance

I 
- 

of the simple pulse f:r a large value of vT is given approximately by

D 
2g 

(vT)2 (37)

12
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If this value of BT can be achieved for the largest doppler shift of in-

terest, then it is clear that a large BT waveform is the best choice for combatting

reverberation. This is fortunate, since a large ET waveform is also desirable for

obtaining detailed range information.

C. RANDOM WAVEFORMS

In the preceding di8cussions it has been seen that waveforms having high

dimensionality (bandwidth-time) products are very desirable for target classifica-

tion. Wide bandwidth alone, however, does not insure that a waveform will have a

desirable form of ambiguity function. The linear-sweep FM waveform has a wide band-

width and yet its ambiguity function indicates poor resolution of targets separated

in both range and doppler simultaneously. One approach to obtaining a “thumb-tack”

ambiguity function is to use a random waveform, that is, a waveform produced by a
random or pseudo-random process.

In order to discuss and describe the properties of such waveforms in gen-

eral, statistical language must be used. The exact ambiguity function of an unknown
random waveform cannot be determined, but, if the statistics of the process that de-

termined the waveform are known, the average or expected value of the ambiguity
function can be found.

1. Gaussian Noise Waveforms

Consider first the class of waveforms that are formed by gating the

output of a random Gaussian noise generator as shown in Figure 4.

The noise at the input to the gate (see Figure 4) has a complex enve-

lope, n(t), whose power spectrum, shaped by the band-pass filter, will be N010(f)12.
The autocorrelation function of n(t) can be found using the Wtener-Khintchin theorem

which gives

— B n(t) n*(t_r) (38)

a N f H(f)~
2 
~i 

2n fT

It is assumed that the amplitude of H(f) is adjusted so that R(o) • 1.

g This requires that

N0 J I~1(f)I
2 df ~ 1 (39)

I
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Figure 4. Random Waveform Generator
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The waveform at the gate output is the transmitted waveform, u(t),

which may be described as

, for It I < T/2

u(t) — I (40)
L 0 , for It i > T/2

The ambiguity function of u(t) is defined to be

T/2-T

A~(r ,-v) —f u(t) u*(t + t)  e~~ 
2n vt dt (41)

-T/2

and therefore, the expectation or statistical average of A(r,v) will be

E{A (i,ii )} J ’ E{u(t) u*(t + ~)} e~~ 
2z Vt dt (42)

Using Equations (38) and (40)

‘l 
I—
~+~ 

R*(Ø, for h I  and t + tI  < T/2

E~(u(t) u*(t + t )~ (43)
I- ~ L o , otherwise

which enables evaluation of Equation (42); the result is

r T - kI sin v(T - N)
— R*(r) e~ T (~1~)L .~ v (T - kI)
— R*(T) AT(T,v)

where AT(t,v) is the ambiguity function of a simple pulse, T seconds long.

Assume now that the bandwidth of the filter 14(f) is much broader than
LIT , so that u(t) has a high bandwidth-time product. In this case, the width of the

correlation function R(r), will be very small compared to T. As a result, the range

dependence and range resolution of the expected ambiguity function, E A~ , will be
determined essentially by the shape and width of R(r). The doppler dependence of
E [AIJ] is determined entirely by the doppler dependence of Aj~(r ,v), which has a

doppler resolution of l/T.

16



Although the expected or average ambiguity function calculated above

gives some indications of the resolution performance of a randomly selected wave-

form, it is an incomplete description and in some respects misleading. It is known
that the ambiguity function of any particular waveform, u(t), must satisfy the
Uncertainty Principle. The average ambiguity function given by Equation (44), how-

ever, does not satisfy the Uncertainty Principle, since

ff jR(r)1
2 IAT(T,v)1

2 
dr dv < If  AT(r,v)I

2 dt dv — 1 (45)

A statistical measure of the resolution performance of a randomly se-

lected waveform, u(t), that does satisfy the Uncertainty Principle can be obtained
by finding the expected value or statistical average of IA u(T,~

)I2 . This makes more

sense physically since the signals that are usually of concern are those that add

power-wise rather than voltage-wise .

The expectation of IA~ I2 can be der ived as follows

E{ IA u(~t,V ) ( 2} a ff E{u(t) u*(t + IT!) u*(s) u(e + )T I ) }  e_j 2
~~~

(t 8 )  dt ds (46)

-T/2

— —s-— I R(T) F 2 
+ I&(t-s) 2 c

_
~
2 (t-s) dt ds (47)

- IR(T)1
2 A,~~ r ,v) I 2 + -

~~~~

-- ff R(t-s)~
2 d j2

~~~
t5) dt da (48)

• 
-

— l R(t)1
2 

lAT(~
r,v)l

2 +~—~—f R(x)I
2 

(T-(rI-fxl) e j2~~~C ~~
- 

T 
- (T-(r~)

For waveforms having large ET products, IR(x)1
2 will have a small

spread in “x” compared to T-f 
~l (for most values of T) ,  and hence the following ap-

proximation to Equation (49) may be obtained for use of Equations (38) and (39).

E{IAu(r ,v)12}.u 1 R(T) 1 2 IA T(1,v) 1 2 
+ 

T - I r h 
F(v) (50)

1 7 1



where

I 14(f)~2 I~
(f
~’)I

2 df
2 2 (51)

I IEf) l df

Assuming further that I~
(f)I 2 is approximately rectangular in shape

with a bandwidth of B cps, Equation (50) can be simplified to

B {(A T~v 1 ~~
.
~ l R(i)1

2 I A,~(T ,v) I 2 + j4- 1 - 1 - (52)

The first term in Equation (52) is the square of the value obtained

previously for the average value of A,~. It represents the central spike in the

ambiguity function. Its range resolution corresponds to the bandwidth of u(t) and

its doppler resolution to the dime duration of u(t). The second term is the unde-

sirable part of the ambiguity function, that is, the side lobes or self-noise of

the waveform. In the T ,v plane it extends over iT in t and iB in v with a peak

height of l/BT and a total volume of unity.

The performance of the randomly selected waveform against reverbera-

tion is considered next. It has been seen that for an explicitly defined waveform

this is determined by the reverberation function

G
~

(v) -
~: 

IA~
(T ,v) 1

2 
dT

For a randomly selected waveform, the average performance in reverber-

ation is determined by the expected value of G.~

B 
~~6’)} —

~: 
B .

~~~~
A

~~~
(T , v ) I

~~
J 

dr (54)

Using Equation (49), this becomes

( I  
I ~~6’)} -

~: 
L(t)12 AT(t,v)1

2 dt

T T - I r l+ —~
_.f J I R(x)I

2 ( T i h l i )  e
_j2

~
(
~
X dx dr

-T -CT-IT !) (55)

8 L



T 2
~ 2 sin ,~v(T-r )

E .I~G (v)~. — 
/ IR (r)I 2 dru 

~ ~-T 
(nvT)

T+ —
~

-f ~R( r)~
2 (T-f.r~)

2 e j2
~
fl
~
T dT (56)

Assuming, as before, that u(t) is a large BT product waveform so that

5 ( r ) ! 2  is a delta-like function compared to the other terms in Equation (56), the

following approximation is obtained -

E{G (V)} — 
sin ~yT 

2 
Ia(v)1

2 dt + J R ( t) ~~
2 
e 32

~~~
T d~ (57)

Both integrals in Equation (57) can be expressed in terms of the func-

tion r(v) defined by Equation (51), so that

B {c~(v)} 
øin ,EVT 2 

r(o) + r(v) (58)

If the power spectrum of the noise process is approximately rectangular

in shape with a bandwidth of B cps, the expected value of G.,~ becomes

B {G 6?
} ~ j~ {‘ - + [ 8 ~~~

vT_l2 } (59)

It is interesting to compare this result with the reverberation func-

tion of a “definite” waveform that is T seconds long and has a rectangular spectral
distribution of energy of the form

Il/B for I f ! < B/2
!U(f)t

2 
— I (60)
L 0 for I f !  > 3/2

Substituting Equation (60) in Equation (27)

G’6’) — -j r [1 - 
_.

~~~~~

_] (61)

Comparing this with Equation (59), it is seen that the random waveform

has approximately 3 db poorer performance against reverberation for values of vT <
for larger values of vT the random waveform does as well as the “definite ” waveform .
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2. Random Binary-Phase Modulation

The random waveforms considered in the foregoing discussion were pro-

duced by gating T seconds of band-pass Gaussian noise. As a result , these waveforms

were modulated in both amplitude and phase within the T-second gate period. It is

very desirable, however, to use waveforma that have a constant amplitude during the
gate period and are coded or modulated in phase only. Transmitter efficiency is

usually higher with constant amplitude wavef orms and, more important, maximum energy
is obtained for a given pulse length since cavitation limits the peak power delivered

to the water.

A simple example of a randomly, phase-modulated waveform is a carrier

whose phase is changed by either 0° or 1800 at periodic intervals. Such a waveform

could be generated by multiplying a sinusoid carrier by a random square wave, such

as .shown in Figure 5. If the waveform of Figure 5 is called u(t), the complex rep-
resentation of the complete signal would be u(t) exp j2Icf

~t. To get a mathematically

tractable formulation of u(t), note that u(t) may be considered to be the sum of a

sequence of identical pulses, each of duration X, with randomly chosen algebraic
signs, that is

u(t) — p Ct - kA) (62)

where

[~ 1i2 for ft~~ <-f.
p(t) a (63)

L 0 for Itt >-f
and

+ with probability 1/2
~1i2

— (64)
- 

1/2 with probability 1/2
N

It shall be assumed that the random variables , xk, are independent ,
so that

1° fork#2 1
E{xk x} [. for-k— I ] 

(65)
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As before the expected values of the ambiguity function, A.~(r ,v) shall

be calculated, and the expected value of the reverberation function,, G.4(v).

By definition

— f u(t) u*(t + ~~) e~~ 
2~ Vt dt (66)

Substituting from Equation (62)

x~ x1 J p(t - kA) p(t + t -lx ) e - ~ 
2i~ Vt dt (67)

This can be written very conveniently in terms of the ambiguity func-

tion of the basic pulse p(t). Thus, letting

2 sin i~v ( x - I r t )
A~(r~v) — f p(t) p(t + T)  e~~ 

it Vt dt — e’ it VA (68)
i w (A - l - r l)

Equation (67) can be written as

A
~

(r ,V) X
k x~ e~~ 

2x k ~~~ A~ [(k-~t) A + ¶ ,V] (69)

k

The expected value of A.~~r,v) is easily found using Equation (65)

E[A u
(1

~ V)] 

~~ 
E{xk x~}e~~ 

2ic k VA A~[(k-L) A + t ,vJ (70)
k , LaO

— e~~ 
2it k vA 

A~~(r ~ V)

~~~~~~~~~ 
sin NitVA A ( )N sjn ityX ~~~~

Th. expected value of !Au1 2 is somewhat more difficult to obtain. Starting with

E{JAU(T,v)!2}a~~ 

~~1~~~~

{ Xj X  xg}e~~
2
~~~~~~~ (71)

k,L,r,su’O

x A~ [(k_t) A + T ,v] A~*[(r_s) A + T ,V]

22
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and noting that E-
~xk x Xr x9}is either zero or l/N2

~ It will equa l 1/N 2 if , and
only if (a) k—i anä r s , or (bi~ k•r and ~‘.s, or (c) k s  and t”r. These three con-

ditions are not mutually exclusive since they contain the comon condition

I (d) ka~ aras .

E{!Au1 2}can be obtained by adding thc contributions to the quadruple

sum on the right-hand side of Equation (71) under conditions (a), (b), and (c), and
then subtracting twice the contribution to the quadruple sum under condition (d).

The contributions for each of the four cases are

(a) ~ -j2itvx(k-r) 
I A~ (T~ v) I

2 IA~(t~v)I
2 [] (72)

k, r~~

(b) 
~~~~~ 

A~, [(k-t) A + ~,v]I
2 

— 
N-k! 

IA ~~~ kA+T ,v 1
2 (73)

k, 9-0 k—- (N-l)

I (c) ~~~~~~~~~~~~ ..
~A~[(k_L) X+ T,V]}l

1
A~* [(i_k) A + t~ V] j ~(l4 )

I and N-i

(d) -~~~ ~ tA~(T~V) I 2 “4 IA~(t~v)I
2 

(75)

I k-0

The sunination for case (c) reduces to 1/N lAp (t ,v) I 2 since
I - A ( t ,v)  — 0 for I T !  > A (76)

I Assembling the above results

I E {lA~(r ,V)J 2 J_ [  ~~~~~~~ IA~(t v) I2 -4 IA (r ,v)12 (77)

- - ~~~~~ N-tIc ! 2
I + L ,~ A~(kA +

I
- k’.-TN-l)

The first term on the vight_hand side represents the “central spike” of
the ambiguity function. Its width in doppler, determined by the first factor, is
l/T where I — NA, is the total duration of the waveform . The width in the range

_ _ _  
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dimension is determined by the second factor I~~I2 and, therefore , is approximately
A or TIN. Note that N is a measure of the diinensionality or bandwidth-time product
of the waveform. The remaining two terms in Equation (77) represent the ambiguity
side lobes or self-noise of the waveform . The side lobes have a maximum value 0F

approximately 1/N at T,V • ± A ,0 and decrease linearly with increasing IT !.

The expected reverberation function, E{G~}~ 
is now evaluated. Apply-

ing the expectation operator to Equation (25)

E{G~(v)} 
— f B{IAu(T,V)12}d.r (78)

and then using the expression for the integrand given in Equation (77), it is found
that

E {G (v) }a G~(v){ 
14-1 + 

~~~~~~~ 
1
2

}

where

G~(v) — f (A~(r~v)I
2 dr — 

2~vA) 2 {‘ - ~~~~~~~ } (80)

Substituting this expression in Equation (79), and setting I — NA

_  2
E{G (v)} - -~?~ [M~1 [1 

- 

[
~~~~~ X] ][ !~+ i~~~~

’
~~~I 
]

(81)

Except for the last factor, this result is identical to the result ob-
tained in Equation (36) for the reverberation function of a “definite’1 waveform
having the energy spectral distribution of a rectangular pulse and a dimensionality
of N. The second factor, however, indicates that the average reverberation function
for the random waveform is approximately 3 db larger for values of vT < 1/2. This
is similar to the result obtained for Gaussian random waveforms.
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