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Introduction

“ Conventional Fourier series analysis enables one to extract information
from a periodic function of time. In practical situations, however, one
often deals with finite time functions, where conventional Fourier series
techniques are inadequate. Finite functions result from a singular or finite
set of disturbances. The transient response of a circuit is an example of
such a disturbance.

Often one deals with network synthesis problems where it is desirable
to describe the output and input functions of the unknown networks. Laplace
tranaférm techniques often fail when the output of the network is a finite
function; this is because the Laplace transform of the finite function results
in a transcendental function in the complex frequency variable. Further, one
cannot express the finite output as a conventional}Fourier series to obtain a
rational Laplace transform of the output.

>The theory incorporated in finite Fourier filters enables one to deal
with the type of time functions mentioned above. This technical note attempts
to summarize, in a logical development, the basic theory of finite Fourier
analysis, and the synthesis which incorporates the theory in the finite ’

Fourier filters.
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Finite Fourier Filters

I. Fourier Analysis of a Periodic Wave

i

Y e = n SIS

» Given a time dapendent periodic funotion, F(t), it is possible to represent

this function exactly with the familiar Fowrier seriss

o0
F(t) = A+ ;‘ (A, cos %‘lunn sin %‘It) (1)

[ — [ Se— pr——
- -

The sine and cosine functions of thias series comprise an orthogonal set, i.e.,

(2)
2T
(a) .g [fl(t) ]n [!‘z(t) ]n' dt = 0 for all in%eger values of n aad n'

oy

2T
() £ (£ (0] (£5(0) ] = k (a constant) if nem . .

multiple of n

: =0 if ngm
; 2T
L (c) .é [fe(t) ]n' [fe(t) Io = k' (a constant) if ntem' |, 40 —
%0 if o' multiple of n!
where:
[fl(t) ]n corresponds to cosine terms,
\ [fz(t) ]n' corresponds to sine terms, and

2T = period of (fy(t)] and [f,(t)] , for n = n' » 1,

PeseS—
. ’

Using the orthogonal properties of equaticns (2) it is a simpla raiter to

Froe—
. !

determine the coefficients A, and Bn for a particular function F(t). For

l‘ example, to determine A; multiply both sides of equation (1) by

(£,(¥)]; = cos i}hf-t

and integrate over the period 2T,
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2T 2T 2T
4 F(t) cos (¥)t dt = A 4 cos (-P»)t dt + Ay 4 cos (¥:)t cos (F)t dt

2T ; 2T
+ A, /o' cos (%F)t cos (:F-)t dt + **°* + A 4 cos (%’-’)t cos (F‘-)t dt

2T 2T
+ 51 4 sin ()F-)t cos (;F)t dt + Ba 4 sin (‘%Il)t cos (1}'—)1'. at + ..,
o .
+B [ sin (’,i."'-% cos (Pt at.

o1 o7
£ F(t) cos (Pt av=0+a [ cos® (FPtat +0+.0e +0+04+04+,..40

According to equation (2).
2T
" 4 F(t) cos (F)t dt

L) H-Ta
_{; cos(%z)tdt

In general,
faT F(t) h_(t) dt

(a) e ™ 2 L (3)
o7

[ () at

wheres

1
K, represents either % or Bn

h, (t) represents either cos (;F-St or sin (T,?Ijt.
One can normalize the above equation by requiring
2T
Lh (617 at =1
then,

21
() K =/ F(t) h (t) & n=0,1,2,3, .. (3)




where ho(t) = 1 and Ko = A,

The normalized Fourier serios can now be written as

(e) F(t) = Z k, b (t)

Since the integrals, equations (2b) and (2¢), yleld a result differans
from zero only when the two functions under the integrals are the same, one
can say that when the integral of (3b) has a value K, for a particular hn(t),
the normaliszed function F(t) must contain a harmonic which is the same as
hn(t); further the magnitude of K, is equal to the ratio of the magnitude of
this harmonic wave contained in F(t) to the magnitude of hnu).

II. Finite Fourier Analysis

In practical situations, the time function to be analyzed may not bs a
periodic function. More often than not, the function is finite with respact

to time, i.e., the function exists only for a certain duration in time.

The problem is to devise an electrical network which can aralyzs finite
functions of time in terms of the cosine and sins functicns of a Fourier seriss.
Such a network might be in the form of a 3 port network as in Figure la. The
output Cn wou}rd be proportional to the integral

§ F'(t) h (t) dat (W)
where:
T = half the period of hy(t)
?'(t) = finite function with time duration < T.

] ]
If F'(t) exists for t >, F (t) is “truncated" into a funotion F' (t).
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Multiplying cn, at time T by the appropriate constant would yield the Fouriar
coeffiocient K, if !"(t) » & finite function, was a periodic odd function of
time, F(t) (equation 3b). This can be accomplished by making an odd periodic
extension of the finite function F'(t) as shown in Figure 2(a).

One could form the 3-port network into a 2-port network by making hp(t)
an integral generator of the box in Figure 1(b). The 2-port netwurk can ba
realised as a network synthesis problem if cn is associated with an output
function and F(t) as an input function. Taking the ratio of the Laplace trans.-
forms of F(t) (the odd periodic extension of F'(t))and C,, the ratio of tha
resulting polynomials in s, Q(s) = C.(8) , will allow the formation of a

HEON
realizable network, provided Q(s) satisfies the Hurtwitz criteria for a
positive-real rational function in 3(1).
Multiplication in the frequency domain, i.e., F(s) Q(s) = C,(s),

corresponds to convolution in the tim» domain
[ J
Ch (x) = 0 (x) * F(x) = [ 7(t) a, (x=t) at (5)

wheres
x = a particular value of time 0 <x <2T
9!‘_(1)_ is the impulse response of the network whose function in the variable &
is Q(s).
(x-t) is a period of time for which G,(x=t) is integrated with F(t:, i.e.,
G, (x-t) exists for 0<t<x

G (x=t) = 0 for t>x

(1) Guillemin, Synthesis of Passive Networks, 1957, John Wiley & Sons,
pgs. 10-36.




The coavolution process is illustrated in Figure 2. The function G, (L),
shown as a sine wave, is refle.ted about the vertical time reference, Figure
2(b), and advanced x seconds. The crossed hatched area, chown in Figure 2(d),
is proportional to Cp at time t=T=x. F(t) can ba thought of as a weighting
function of the area under the curve G, (x-t) as Gn(x+t) passes from x-0 to
x=2T. However, we are interested in the value C; at tlme x<T, Figwre 2(d),
since the value of the integral, equation 5, is propcrtional to the desired
Fourier coefficient at this inatant.,

If equation (5) is compared with equation (3b),

c1(x) ;T[' F() 0, (x-t) at x = (%)
Kp = 4 F(t) b (t) dat (3b)

It becomes apparent, that over the range 0<t<2T, C;, ™ K, provided hn(t.) ~

G (T-t). When h (t) is a sine function

sin (_%W)t - alnfl'«(_‘;lm-_)(-t)] 'rl“ _ c‘?_;i_d and (6)

A '
‘o K =Co(T) for odd sins functions.

When h (t) is a cosine function

cos(_%lv_)t - - coabn(_g) (-t)) (M

.« Kn ) -C:‘(T) for odd cosine fuactions.

Taking into account the abova results, ona can substitube On('l‘-t) for
h,(t) in equation (3c) and obtain the Fourier series of F(t) by changing the
sign of the coefficients of the odd cosine functions in the series., It should
be noted we have shown that the convolution integral can be used to obttain the

Fourier coefficients of an odd periodic wave at tims T, where T ia the half

-3
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period of the fundamental sine and cosine funcitiona of the Fourier series.

The problem, now, is to construct a netwerkx with ar impulse response
function Gh(t), which will yield a Fourier coefficient of a given finite
input function, F'(t), as an odd periodic extension F(t), as shown in Figure
2(a), and analyse only the first T seconds of ths wavs. It is casy to show
that . /T . o7

T4 F(t) G (x-t) dt = s 4 F(t) 6 (x-t) at (8)

when F(t) is the odd periodic extension of F(t), i.0., it is necessary to
analyse the finite function F'(t) for only half the period of ita odd
periodic extension to determine the Fowrier coefficients of the «dd pericdic

extension of F'(t).

It should be noted that F'(t) will be analyzed as an odd periodic wave
of period 2T by the proposed netwerk. regardless of the duration of F'(t),
therefore it is important to insure that all significent information carried
in F'(t) occur within a time interval such that F'(%) exists for 0S4 <T,

However, F'(t) may exist for an interval greater than T, providsd the infor-

mation desiréd lies within the period 0=t<T, such a cass ig illeuatrated i
Figures 2(a).

, (2
L4 Consider the two series connected circuits shown in Figure 3(a) o Let

T us assume the input current wave Gh(t) to be a sine wave of period 2T. This
input current produces a voltage ey from network 1, and a voltage 82 from
network 2 as shown in Figure 3(b) and 3(c¢). 61 is a unit impulse volbage and
8> a differentiated square wave voltage of unit amplitule. If the netwerks
Nl and NZ are linear passive netwerks a voltage %, T 6y * 5 san be applied

(Z) The method described here is from Guillemin-Synthszis of Passive Netw:rka,
1957, pgs. 717-726. 9
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across the series combination of Nl and N2 to produce the current wave Gn(t).
Now suppose a voltage e(t) = eo(t) te, (t-T) is applied to the network
combination, Figures 3(d) and 3(e). One notes that e(t) is nothing more than
a single impulse of two units magnitude and that the output current, on(t) is
merely the positive half of a sine wave, but this is the wave form naeded o
determine the fundamental Fourier coafficient Ay for the finite functica F'(t.).

Therefore, if a network can be synthesized with the transfer functions

@ a (v
Tn h n-l’ 2’ 3’ cee (9)
el(t) + ea(t)

the Fourier coefficients of F'(t) can be obtained from the networks. The

numerator in equation (9) is multiplied by 2 so that a unit impulse IUU(t)
will produce T, instead of U (t).

One is now faced with synthesizing equation (9) into a realizable passive
network. This can be accomplished by taking the Laplace transform of Tn to
obtain a ratio of finite polynomials in the variable s. Since the problem
under consideration requires G (t) to be the sine and cosine terms of a
Fourier series, it is best to express G (t) as the Laplace transform of the

general expressicn for the Fourler series of an odd function, (10)

o0 o
(A ain—%,—Tt-'- B cos -‘-}P’It) - e
‘;1i 11;£;dd . g nzg;dd EE + (233

integers integers
The Laplace transform of ez(t), for the purpose of synthasis, can be writisn

as the Laplace transform of the Fourier seriea of a difforentiated unit syuare

wave, éa
: L
PALLEL n-zédd —y‘[’%_(w )

integers
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The Laplace transform of el(t) is simply

Iflm ol (12) ‘

Equation (9) can now be.expressed as
| Ay + S By
’ o 2 |

n=odd §° + ()

T, (8)= (13)

siiE e
n= odd ?+(g{_'_)2
where the infinite series for the square wave has been truncated to a finite
number of terms, j, to allow synthesis of T (s).
One method of realizing equation (13) is to employ a negative feedback
network. The sine functions in the nemerator of equation (13) can be
generated (see Figure L) as the impulse response of networks with voltage

transfer functions of the form

Lo
T(8) Q%Z%Q%EJE25 u (1h)

This tranafer function has the same form as the Laplace transform of a sine wave

with a frequency of 1/1C .

If a group of networks having transfer function of the form in equation

(14), and time base outputs which are odd multiples of the time base 2T, are

[ ——

connected in parallel, the sine function outputs can be combined in an adder

such that the output voltage will be a square wave (the square wave in equation
(13) is a summation of odd sine wave functions). The output square wave voltage \\:
can then be differentiated and fed back to the input as negative feadback, thus

producing finite sine functions at the output (see Figure 5). Writing the

resultant voltage tranasfer expression for the system in Figure 5,
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3 J
B,y (S) = By (8) nzodd "fn("’) - (X Eut (8 nZodd ht (s) ]
ii: h! (8)
™ (S) = Eout (s) = nsoad "
- E, (8S)
in 1+8({E_, (5) i h! (S) ]
n« odd

Wheret

h;(a) = Laplace transform of network whose impulse responses are odd sine wave

voltages.

( = constant.
This is the form of equation (13), except that we may also require cosine functions
in the numerator. Noting that the current through capacitor has the same wave-
form as the voltage across the capacitor except shifted 90° in phase, it is a
simpler matter to convert the current in the sine function circuits to cosine
voltages. One can also obtain the cosine functions by differentiating the sine
function outputs. If we tap off the sine and cosine functions from box 1 in
Figure 5, they can be fed to variable gain amplifiers and summed to form a

finite function F (t) when the input, E, is an impulse voltage; or the output

in
functions from box 1 can be used to obtain the Fourier coefficients of the

finite function F'(t) when E, is the function F'(t)e

1L

- " — - b
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III. Description of the Finite Fourier Filter Unit Proposed by Melpar

Figure 6 shows the system diagram of the finite Fourier filter unit
proposed by Melpar. The principle of operation is the same as the system
in Figure 5, section II; however, the unit proposed by Melpar will employ
active R-C networks instead of passive R-L-C networks, and the odd cosine
functions will be obtained by differentiating the odd output sine functions.

Description of Operation

0dd sine wave voltages are obtained from filters Fl to F6 when an im-
pulse is applied to their inputs. These output sine functions are weighted,
sumed, and differentiated in block A3 to form a differentiated square wave,
The outpqt of block A3 is fed back to the parallel inputs of Fl to Fb as
negative feedback. A square wave generator, block AS’ is used in conjunction
with the differentiator of block AB to provide positive and negative impulses,
These impulses activate the filters when they are used as a function generator.

With the feedback loop connected, the outputs of the filters become
finite functions with a time duration of T. These finite outputs are tapped
off Fl to F6 and fed to gain switches 1 to 6. Each gain switch contains a
pair of two section wafer switches connected in parallel. The outputs from
one of each pair of switches are summed in the bipolar adder, block Ah, to
form a sum of odd sine wave functions. The other outputs from the gain
switches are differentiated and summed in the bipolar adder to form a sum of
odd cosine functions. The odd sine and cosine functions are combined in block
‘h to form a single output. The unit proposed by Melpar will also include
separate outputs for each sine and cosine function; thus when an input function

is applied to the filters, instead of impulses, the outputs will provide the

15
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individual and combined sum of the Fourier coefficients of the past T seconds
| of the input function at time T.
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IV. APPLICATIONS
From the previous sections it is apparent that finite Fourier filters

| it
> 4

can be applied to a variety of analysis and identification problems. Two
I. particular applications, identification by modeling, and adaptive matched
filters, have been studied by Melpar and will be presented in the following

rosa———
.

paragraphs.
(A) Adaptive Matched Filter

Pe—

It can be ahoun(” that, in the presence of white noise, the maximum
signal to noise ratio at the output of a network occurs when the network
is matched to the input signal. A network is matched to a given signal
£f(t) if its impulse response is f(x-t). From previous considerations it
was found that a set of finite Fourier filters can generate a desired
finite function F'(t) when an impulse is applied to their inputs; thus,
it is possible to match a set of Fourier filters to a given function f(t)
if F'(t) = £(x-t).

Application of matched-filter techniques to communications and radar

are well known. If the signal structure is not well known, in the sense

that the transmitted signal has been distorted in some unpredictable manner,

{ then the filters matched to idealized signals will no longer be perfectly
matched to be actual received signals. Thus, one anticipates a deterioa-
tion from optimum considerations. Furthermore, there is no guarantee that
the noise source will be white.

The technique described herein provides an "adaptive™ filter which tracks
& signal's structure so as to maintain maximum signal-to-noise ratio. This

(3) An Introduction to Matched Filters, G. L. Turin, IRE Transactions on
Information Theory, June 1960, pp. 312.
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is accomplished by what is described as Melpar's Adaptive Matched Filter

Tracking System.

The single-input, multiple-output linear network, described in Section

III, has each of its outputs connected to a summing amplifier through variable
gain input networks. The response of this network can be made to approximate
an arbitrary waveform F'(t) within a time interval (0,T). Changes in the
network's response characteristics are accomplished by changing the input
gaina on the summing amplifier.
E . The value of the specific adaptive matched filter described above stems
from a theorem showing that each of the inputs to the summing amplifier can
be independently adjusted for maximum signal-to-noise ratio, so as to arrive
at a match for a given input signal. That is, the process of matching the
filter to a given signal can be accomplished by adjusting each input gain
once, tc achieve maximum signal-to-noise ratio.

Application of the adaptive matched-filter system for tracking low-level
signals is illustrated in Figure 7. Signal inputs are continuously processed
by the "real-time analyzer" network, providing M output components. These
outputs are fed to three parallel circuits, each of which consists of a set
of input networks (controllable) and a summing amplifier. Channel 1 is the
matched-filter system. Channels 2 and 3 are representative oxperimental
matoched-filter systems, where one of the input gains has been perturbed so
as to obtain a small increase in one and a small decrease in the other. The
outputs of channels 2 and 3 are compared (from a timing signal generated from
the output of channel 1) to establish the appropriate change in that input

gain. This is transferred to all three channels, and the process sequenced

to the next input.
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The time required for the system to sequence through each of the M input

gains is the same as the time required to receive M inputs. This ~an be

viewed as the tracking system's time constant. By increasing the number of
experimental channels, it is possible to propcrtionately decrease this time
constant,  This type of system should provide improved communications when-
ever signal properties change in a relatively continuoys fashion, and where
the signal distortions are not accurately predictable.

(B) Model

Modeling is the technique which attempts to duplicate a specific

system for the purpose of analysis. Important applications of modeling exist
where it is impossible or undesirable to disturb a system which is in operation.
These applications are found in such areas as system identification and experi-
mentation for modification of input variables.

Figure 8 shows a block diagram for modeling a linear system. The problem
is to construct a model whose impulse response, f'(t), is the same as the un-

known linear system. Once this is determined, it is a simple matter to write

down the transfer function of the unknown system. The model consiste of a set
of m Fourier filters whose outputs, Zm, are fed to a summing amplifier with
variable gain inputs. When the output of the summing amplifier exactly matches
the output of linear system the impulse response of the unknown linear system
and the model will be the same. Practically, one can only hope to obtain a

good approximation of the unknown system; however, the greater number of filters,
m, the better the approximation. It can be readily shown(h) that the best

approximation for a given set of filters will be obtained when the root mean

(i) Melpar Second Triannual Report, W3112.01, Machine Intelligence and Adaptive
Systems, pp. 52-59.
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square difference in outputs, e, is minimized, i.e.,

Ty

Further, since the impulse response is determined only by the gain settings

= 0 where e = y-y!',

of the input amplifiers of the summing amplifier, e can be used as a feed-
back voltage to converge the impulse response of the model to f t). This
{ implies that the variable gain elements in the model can be independently
E adjusted with respect to one another. If the variable gain elements remain
independent over a specific range, the modeling system will be able to track
a nonstationary linear system in that range; providing, of course, that the
tracking time constant of the model is negligible compared to the rate of

change in the linear system.
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APPENDIX
Demonstration of an Adaptive Matched Filter Breadboard

Equipment was built to demonstrate the following:

a. The ability to approximate any desired finite duration waveform

from impulse response from linear networks.

h. The application of this concept to form an adaptive matched filter.

ce The use of the active R-C synthesis technique, recently developed

at Melpar,

The breadboard consists of two basic networks which are essentially
identical in nature. One of these functions is to accomplish the approxi-
mation described in (a) above. The second of these networks corresponds to
ihe adaptive matched filter as in (b) above.

The approximation and adaptive matched-filter concepts have been
previously reviewed.: It corresponds, essentially, to the odd harmonic
Fourier approximation. The approximating terms (impulse responses of sub-
networks) were each of finite duration T4 In the breadboard, this time-
duration was selected as 6.25 milliseconds. This long duration was selected
to illustrate the application of the new, active R-C synthesis technique to
circuits whose L-R-C realization would require large inductors.

A simplified block diagram of the breadboard is provided in Figure A-l.
It illustrates the design concept rather than the design itself. Positive
and negative impulses (obtained from the differentiation of a square wave
are fed to filter bank A. The resulting outputs of filter bank A are the
first, third, fifth, seventh, ninth, and eleventh sine and cosine waveforms

shown in Figures A-2A through A-2L. It is noted that the higher order
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harmonics begin to deviate from the ideal, due to the absence of higher order

terms, The cosine terms appear to be somewhat more noisy, but are superior
to what could be reasonably expected. Linear combinations of these response
functions were used to generate various waveforms,

The second function of the equipment is to provide a filter which is
matched to the signals being generated. Although the matched filter was
adjusted by hand, the application of appropriate circuitry for an adaptive
matched filter is obvious. An example of an adaptive matched filter system
was given in Figure 5, section IV, In Figure A-3, the ninth sine harmonic
was generated (upper trace) and fed into a filter matched to it. The output
(lower trace) is seen to be a close appro:gimation of the anticipated auto-
correlation of the compactly carried ninth harmonic. In Figure A-L, a
square wave was generated (upper trace) and fed into a filter matched to it
(lower trace) with the anticipated results.

The behavior of the matched filter in the presence of noise’ is quite
dramatic, This is illustrated in Figures A-5A through A-5D. The upper
traces correspond to the signal input to the matched filter. For Figures
A-5C and A-SD (upper trace), the scope sensitivity is 2 volts/cm. In each
of these, the sensitivity of the lower trace was set at 0.5 volt/cm. Noise
was obtained from a “sounvister" white noise diode and added to the generated
signals, Its characteristics are essentially Gaussian from 2 cps to 100 mc.
As shown, the matched-filter output can readily detect the presence of the
signal.

The above experiment was repeated with an asymmetric waveform fed to a
filter matohed to it (triangular waveform). The results are illustrated in
Figures A-6A through A-6C, This was as anticipated.
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A First Harmonic (Sine)

B Third Harmonic (Sine)

C Fifth Harmonic (Sine)

D Seventh Harmonic (Sine)

Figure A-2
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B

E Ninth Harmonic (Sine)

F Eleventh Harmonic (Sine)

G First Harmonic (Cosine)

H Third Harmonic (Cosine)

Figure A-2
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I

FIFTH HARMONIC (COSINE) !

J

SEVENTH HARMONIC (COSINE)

K 4

NINTH HARMONIC (COSINE)

L

ELEVENTH HAr AONIC (COSINE)

Figure A=2
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Figure A-3. Ninth Harmonic (Sine) - Top
Output of Filter Matched to the Ninth Harmonic - Bottom

Figure A-4. Fourier Approximation of a Square Wave - Top
Output of Filter Matched to Square Wave - Bottom
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A
SQUARE WAVE, 1 VOLT/CM

MATCHED FILTER OUTPUT, 0.5 VOLT/CM

B
SQUARE WAVE WITH WHITE NOISE, 1 VOLT/CM

MATCHED FILTER OUTPUT, 0.5 VOLT/CM

C
SQUARE WAVE WITH INCREASED NOISE, 2 VOLTS CM

MATCHED FILTER OUTPUT, 0.5 VOLT 'CM

D
SQUARE WAVE WITH INCREASED NOISE, 2 VOLTS CM

MATCHED FILTER OUTPUT, 0.5 VOLT /CM

Figure A-5
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A

B

C

ASYMMETRIC WAVEFORM, 1 VOLT CM

MATCHED FILTER OUTPUT, 0.5 VOLT CM

ASYMMETRIC WAVEFORM WITH NOISE, 1 VOLT CM

MATCHED FILTER OUTPUT, 0.5 VOLT CM

ASYMMETRIC WAVEFORM WITH INCREASED NOISE, 1 VOLT CM

MATCHEDC FILTER OUTPUT, 0.5 VOLT CM

Figure A-6
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