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Introduction

Conventional Fourier series analysis enables one to extract information

from a periodic function of time . In practical situations, however, one
ill often deals with finite time functions , where conventional Fourier series

techniques are inadequate. Finite functions result from a singular or finite

set of disturbances. The transient response ~f a circuit is an example ofL such a disturbance.

Often one deals with network synthesis problems where it is desirable

to describe the output and input functions of the unknown networks . Laplace

transform techniques often fail when the output of the network is a finite

function; this is because the Laplace transform of the finite function results

in a transcendental function in the complex frequency variable. Further, one

cannot express the finite output as a conventional Fourier series to obtain a

rational Laplace transform of the output.

~The theory incorporated in finite Fourier filters enables one to deal

with the type of time fu nc tions mentioned above. This technical note attempts

to suimnarise , in a logical developnent , the basic theory of finite Fourier

L 
- analysis , and the synthesis which incorporates the theory in the finite

Fourier filters.
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Finite Fourier Filters

I. Fourier Analysis of a Periodic Wave

C Given a time dspendent periodic funott or., F(t), it is possible to represent

r this function exactly with the familiar Four~~r series

F(t) A + (A cos t + si~ t ) (1)

The sine and :osine functions of this eerie. c inprise an orthogonal set, i.e.,

(a) .I~~ 
(f 1(t) J~ (r2(t) J~, dt - 0 fo: all int”ger values of n a~ i n ’

(b) 4 (f 1(t) J (r 1(t)) k (a constant) if n — m m is some
a 0 1! n~ ’ m n~i1tiple of n

2T
(c) f  (f

2(tfl 1 [r~,(t ) J , — k’ (a c~netant) tt ~~~~~~~~~ m ’ is some
. — ~ 

multiple of n ’
where :

• (t1
(t) 1n corresponds to cosine terms,

oorreepond~ to sine terms , and

• 2T • period of [f1
(t) ]~ and (f.,(t ) 1~, f or n n t 1.

Using the orthogonal properties of equattcns (2) it t~ a si~p1e rattex- to

determine the coefficients A~ and 8,~ for a par tinular furtotton F(t) .  F~~

— 
example, to determine A~ multiply b~’th sli’- or e~uatlon (1) by

. 

(f 1(t) ]1 — cos )iT 
~~.

and integrate over the period 2T ,

2 
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. 1:
f 2T 2T 2T/ P(t) cos (~~)t dt — A0 ~ cos (.~~.)t dt + A.~ / cos (~~~t c~e (~~)t dt

2T • 2T
+ £2 / cos (~~~ t cos (~~-)t dt + “ + ~~ cos (~Tht cos (~~)t

1 
2? 2T

+ B~ ,~~~ 

sin (~~-)t cos (~~ t dt + ~ sin (~~~t cos (f) t dt +

L. 
2T

+ sin (~y~t coa (~~)t dt.

or
2T 2T

/ F(t) cos (~~.)t dt — 0 + A1 ~ ~~~~ (~~ )t dt + 0 + ~~~~ + 0 + 0 + 0 + •~ ,+O

~ 
[ According to equation (2).

• ~~ F(t) co~ (f) t dt
A1 2f  008 (~~~)t

1..
• 

• In general,
2T

~~~ 
/ F ( t ) h ( t ) dt

(a) K ’ ”  ° (3)• 2T
L. / (h~(tfl 2 dt

L where:

• represents either or B~

h~ (t) represents either cos (~~~ t or 3m (~~~t.

One can normalize the above equation by requiring

~~(h (t) ]2 d t — 1
then,

t. . 2?
(b) K • ~ F(t) h~ (t) dt n • 0, 1, 2 , 3, ... (3)

3

1.
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w h e r e h ( t ) — l a n d K • A .
0 0 0

The normalised Four ier series can now be writt en as

(o) F(t) • k 1,, h~ (t)

Since th. integrals , equations (2h) and (2~), y~.ld a result differ~.’t

from sero only when the two functions under the integrals are the same , one

can say that when the integr al of (3b ) has a value for a particular h~(t) ,

the normalised function F(t) must contain a harn ,nic which is the same as

h~(t)~ fur ther the magnitude of is equal to the r~t.io of the magnit .-.ide of

this harmonic wave contained in F(t) t3 the ~tsg~ittude of h~(t).

II. Finit e Fourier Analysis

In practical situations , the time 1\u~ction to be analysed may not be a

periodic function . More often than not , thea fwct .ion in flnit~ with respact

to time, i.e., the functi on exists only for a ce:~ath diration in tL’ne.

The problem is to devise an electri~a1 ~~~~~~ ~ñLoh can analy~~ fini~.e

functions of time in terms of the cosine and sir .e t’ ticns of a Fe~ri’r seri~s.

Such a network might be in the f orm of a 3 pert network a~ in Figure La. The

output C~ would be proportional to the integral
f

~ F ’(t) h (t) dt

where :

T • half the pe ri od of

• finite function with time duration ~ T.

If 
~
‘(t) exists for t>r, F’(t) is Nt ncat~dN into a function

is

,
~~~~~- - -- .

~~~~~~~~~~---~~~- -  ~~~~~~~.-- -- .-
~~~~~~- --
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I i  Multiplying C~. at ti~~ T by the appropriate constant would yield the Four ier

coefficient ic,, if F’(t) ,  a finite functi on, was a periodic odd function of

time, F(t) (equation 3b). This can be accomp lished by mak ing an odd periodic

( extension of the finite functi on F’ (t) as shown in Figure 2(a).

- One could form the 3—port network into a 2-por t network by making h ,( t)

I an integral generator of the box in Figure 1(b). The 2-port network can be

realised as a network synthe sis problem if C~ is associated with an output

• functi on and F(t) as an inpu t func tion. Taking the ra tio of the Laplace tram ’-

forms of F (t) (the odd periodic extension of F ’ (t)) an d ~~~ the ratio of the
- resulting polynomials in s, Q( s) - cs(s) , will allow the formation of a

• I .  realisable network, provided Q(a) sati sfies the Hur twitz criteria for a

positive—real rational func tion in

Multiplication in the frequency domain, i.e., F(s) Q(s) - C~(e),

corresponds to convolution in the tim~ domain

C~ (x) 0 (x) * F(x) - (F(t) 0~(x-t) dt (~)

where:

x • a particular value of time 0 <x <2T

- 
• o~(t) is the impulse resp onse of the ne twork whose functi on in the variable ~i

• is Q(.).

(x-t) is a period of time for which Q~(x—t) is integrated with F ( t ’ , i.e.,

• % (x-t) exists for 0 ct cx

~ 1.. %(x~t) 0 for t> x

! G 
______________

• (1) Guillemin, Synthesis of Passive Networks , 1957, John Wiley & Sons,
pgs . 10.36.
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The convolution process is illustrated in Figure 2. The w~ct~on

shown as a sine wave, is reflt~: ~.ed about the vertical time reference, Figure

2(b), and advanced x seconds . The crossed hatched area, rhown in Figure 2(d),

is proportional to C~ at t ime t~T”x . F(t) can he thought. o1 a weight .i’~g

functi on of the area under the curio Q~ (x—t .) as (1~ (x ..t) p~sse~ from x . ” to

x-2T . However , we are thterested in the value C~ at ~.L”w~ > . T, Flgu’e 2(d),

since the value of the integral, equati on 5, is pro x~ ttc~oal to the desired

Fourier coefficient at. this instant,

If equation (5) is compared with oquatlin (3 b ) ,

• C ’ (x)  • f  F ( t)  o~(x—t) dt x - r  (!~)‘~ 2T°
• ~ r(t) h~(t) dt (3h)

It becomes apparent, that over the range 0 < t <2T, K~ provided h~(t)

01,(T—t). When h,.,( t )  is a sine func tion

sin n W , t — sin fri~ nTr~ (-t)  I n • odd 
~~~~~~~ 6T - ~~T

.
•
. K • C~(T) for odd sine functions .

~1~en h (t ) is a cosine func tion

cos nw t • — cos fw nir (.4)) (7)( r )

. .  K - —C ,( T )  for odd cosine fw ~ctI ~~ s.

Taking into account the above reeuli.s, c’-’~ oan s~b~tttut’, Gn(T_t) f•:)?

- • • h~(t)  in equation (3o ) and obtain the Four ier series of F(t) by chang ing the

sign of the coefficients of the odd cosine func tton~i th the ser~os. It. sh~uld

be noted we have shown that the convolution integral c~n be used to ot t.ain the

Fourier coefficients of an odd periodic wa’~o at time T, where T is the hal f
Sb 

- - • .-~~~~•-••.----•-  ~~~~~- ----- -- •-
~~
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period of the fundamental sine and cosine functions of the Fourier series.

The problem, now, Is to construct a network with ax’ impulse response

function (1~(t), which will yield a Fourier coefficient of a given finite

Input function, F’(t), as an odd periodic ext~nsion F(t), as shown in Figure

2(a), and analyse only the first T secor.ds of t-h~ wave. It is easy to show

that T 2T
‘r-~ 

F’(t) G (x—t) dt “ ~~r 
f  F(t) 0 (x..t) dt (8)

when F(t) is the odd periodic extension of F~t), i .i .,  it is necessary to

analyse the finite function F’(t) for only half the period of its odd

periodic extension to determine the Fourier coefficients of the odd periodic

extension of F’(t).

It should be noted that F’(t) will be analyzed ~~3 an odd periodic wave

of period 2T by the proposed network. regardless of the duration of F’(t),

therefore it is important to insure that all significsnt int’crmation carried

in F’(t) occur within a time interval such that F’(t) exlstr, for 0~~t�T.

However, F’ (t) may exist for an interval greater than T, provided the inf. r-

mation desired lies within the period 0~~t�T, ~~~ a ca~o ie il1~.st~uted i~z

Figures 2(a).
(2)

Consider the two series conr~cted circuits shown in Figur~ 3(a) . Let

us assume the input current wave G
n(t) to be a sine wave of period 2T. mi-s

input current produces a voltage 
~i 

from network 1, iri~I a volt age 04 from

network 2 as shown in ~igure 3(b) and 3(c) . e
1 is a unit impulse voltage and

-
• e2 a differentiated square wave v.~2taga of unit an~plItu~~ . If the notwcrks

and N2 
are linear passive net.wcrks a volt ag~ ~~~~ + -

~~~~ ~an be applte i

~# i 
______________

ça~ The method described here is from G’~i1lomi. -Synt- 1
~~~i.~ of Passive Netw-:i*a ,

19S7, pgs . 717—726. 9 
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across the series combination of N1 
and N2 to produce thu cur rent wave

Now suppose a voltage e( t )  • e0(t)  + e
~ 

(t -T) is applied to the network

L combination, Figures 3(d) and 3(e) .  One noto~ that e(t )  is nsthing more than

a single impulse of two units magnitude and that the o .ltpdt current , (]~(t) i~

merely the positive hail of a sine wave , but this is the w v o  form rr~cd~d t~

determine the fundamental Fourier coifficieii, A1 fur U , ’ f~tn i t~ fun~ t ici

Therefore , if a network can be synthesized with the transfer functions

T - (~~
.) 0 (t)

n n • 1, 2, 3, ... (9)
e1(t) + e2(t)

• the Fourier coefficients of F ’ ( t)  can be obtained fronm tho networks . The

numerator in equation (9) is multiplied by 2 so thqt &~~ wilt impulse 1U ( t )

will produce T~ instead of 2U 0(t) .

One is now faced with synthesizin g equation (9) into a realizable passive

network . This can be accomplished by taking the Lap la’~e transform of T~ to

obtain a ratio of finite polynomials in the var iable • Since the problem

under consideration requires Q
~(t) to be the sine and cosine terms of a

Fovrier series , it is best to express G~(t) as the Laplace transform of the

-• general expression for t.he Fourier ser ies of an odd function , (io)

(A~ 
_
~iTt + 

~ ~~ .4ir t) • ~~~~~~~~~ ~~

n - odd n ” c d d  + (~~)
integers integers

The Laplace tr ansform of e2 ( t ) , for the purpose of syitthesis , can to ~ritt~ n

as the Lap lace tran sform of the Fourier series of a d Lffore ntt at .ed Unit S9 Lfl~~~

wave ,

cZ e2(t) • S 
n~~~dd 

(11)

inte gers

U.

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .— -- —~~
——

~~~~~~~~-—-~~~~~~
- -
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The Laplace transform of e1(t)  is simply

• 1. (12)

Equation (9) can now be.expressed as
J.. A + Sn
L — — j ~j ~~2n—odd S

T~ (S) : (13)
-

~~~~~~~~~ ì +s~~~ 
Ltr

n - o d d  .2 1nPT 2
• 

~~ 
+v ~r

where the infinite series for the square wave has been truncated to a finite

number of terms, j, to allow synthesis of Tn(s).

4 One method of realizing equation (13) is to employ a negative feedback

network. The sine functions in the nemarator of equation ( 1.3) can be

generated (see Figure Ii) as the impulse response of networks with voltage

• transfer func ti ons of the form

T(S) (1/Lc) (]J~s2 + (1/Lc) .

This transfer function has the sane form as the Laplace transform of a sine wave

with a frequency of 1/W

- • If a group of ne tworks hav ing transfer function of the form in equation

(114), and t ime base outputs which are odd multiples of t.he time base 2T, are

connected in parallel, the sine function outputs can be oombined in an adder

such that the output voltage will ~e a square wave (the square wave in equation
1-I

(13) is a sumeation of odd sine wave functions). The output. square wave voltage

can then be differentiated and fed back to the input as negative feedback, thue

producing finite sine functions at the output ( see Figure ~). *iting the

resultant voltage transfer expression for the system in Figure 5,

12

-- - -
~~~~~-~~~~~~~~~~~~ --—-• — -  - • - -— ----~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- -—~~—--~~—- --- - -
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B (s) • E~ (s) h’ (s) — s($( E0~ (s) h~ (s) IOU n-odd n- odd

Ii ’ (S)

OU 
— 

fl

E~ (s) 1 + s(1( E0~t 
(s) h1~ (s)

n-odd

Wherei

h~(s) Laplace transform of ne twork whose impulse responses are odd sine wave

voltages.

- constant .

This is the form of equation (13), except that we may also require coaine functions

in the numerator. Noting that the current through capacitor has the same wave-

form as the voltage across the capacitor except shifted 90° in phase, it is a

simpler matter to convert the current in the sine function circuits to cosine

voltages. One can also obtain the cosine functions by differentiating the sine

function outputs . If we tap o ft ’ the sine and cosine func tions from box 1 in

Figure 5, they can be fed to var iable gain amplifiers and summed to form a

finite function F’(t) when the input, Ein 
is an impulse voltage ; or the output

func ti ons from box 1 can be used to obtain the Fourier coefficients of the

finite func tion F’(t) when is the function F’(t) .

• 2 
f

_ _ _ _ _  ~~~~~~~~~~~~~~~~~ i



111. Description of the Finite Fourier Filter Unit Proposed by Melpar

Figure 6 sho~is the system diagram of the finite Four ier filter unit

proposed by Me lpar . The principle of operation is the same as the system

in Figure 5, section II; however , the unit proposed by Melpar will employ H
active R— C ne tworks instead of passive R—L-C networks , and the odd cosine

functions will be obtained by differentiating the odd output sine functions .

Description of Operation

Odd sine wave voltages are obtained from fi l ters F1 to F
6 when an im-

pulse is applied to their inputs . Those output sine functions are weighted,

summed, and differentiated in block A3 to form a differentiated square wave .

The output of block A3 is fed back to the parallel inputs of F1 to F
6 as

negative feedback. A square wave generator, block A5, is used in conjunction

t with the differentiator of block A
3 to provide positive and negative impulses.

These impulses activate the rilters when they are used as a function generator .

With the feedback loop connected, the outputs of the filters become

finite functions with a time duration of T. These finite outputs are tapped

off F
1 to F

6 
and fed to gain switches 1 to 6. Each gain switch contains a

pair of two section wafer switches connected in parallel. The outputs from

one of each pair of switches are summed in the bipolar adder , block A14, to

form a sum of odd sine wave functions. The o~.her outputs from the gain

switches are differentiated and summed in the bIpolar adder to form a sum of
• odd cosine func tions. The odd sine and cosine functions are combined in block

A14 to f orm a single output. The unit proposed by Melpar will also include

separ ate outputs for each sine and cosine function; thus when an input function

ii applied to the filters, instead of impulses, the outputs will provide the
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III. Description of the Finite Fourier Filter Unit Proposed by Melpar

Figure 6 shows the system diagram of the finite Fourier f i l t e r  unit

proposed by Melp&r. The principle of operation is the same as the system

in Figure 5, section II;  however , t .he unit. proposed by Melpar will employ

active R—C networks instead of passive R— L— C networks , and the odd cosine

functions will be obtained by d i f fe rent iat ing  the odd output sine functions.

Description of Operation

Odd sine wave voltage s are oht .ained t’rom f i l ters  F1 to F~ when an u-
t .

pulse is applied to the ir inputs . Those output sine functi ons are weighted ,

summed , and dif ferentiated in block A 3 to form a difforent.iated square wave .

The output of block A3 is fed back to the parallel inputs of F1 to F6 as

• negative feedback. A square wave generator , block A5, is used in conjunction

with the differentiator of block A, to provide positive and negative impulses.

These Imp ulses activate the filters when they are used as a function generator .

With the feedback loop connected , the outputs of the filters become

finite func tions with a time duration of T. These finite outputs are tapped

off Fi to and fed to gain switches 1 to 6. Each gain switch contains a

pair of two section wafer switches connected in parallel. The outputs from

one of each pair of switches arc summed in the bipolar adder, block A14, to

form a stun of odd sine wave functions. The o ther outputs from the gain

switche s are differentiated and suninod in the bipolar adde r to form a sum of
• odd cosine functions. The odd sine and cosine functi ons are combined In block

• A14 to form a single output. The unit proposed by Melpar Will also include

separate outputs for each sine and cosine t’unr~tion ; thus when an input function

is applied to the f ilters, instead of impulses , the out puts will provide the

15
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IV. A)PLICATICNS

From the previous seotions it is apparent that finite Fourier filter.

can be applied to a var iety of analysts and identification problem.. Two

particular appli cation s, identification by modeling, and adaptive matched

filter., ha~e been studied by Melpar and will be presented in the fol lowing

paragraphs.

(A)  Adap tive Matched Filter

It can be shoiim~~
) that , in the presence of white noise, the maximum

signal to noise ratio at the output of a network occurs when the network

is matche d to the input signal. A network is ma tched to a given signal

f ( t )  ir its impulse response is f(x—t) .  From previous considerations it

was found that a set of finite Fourier filters can generate a desired

finite function F ’ (t)  when n impulse is applied to their input. ; thu s,

it is possible to match a set of Fourier filters to a given function f ( t )

if p’(t) • f(x—t).

Application of matched-filter techniques to communications and radar

are well Imown . If the signal structure is not well known, in the sense
that the transmitted signal has been distorted in so~ne unpredictable manne r ,

the n the filters matched to idealised signals will no longer be perfectly

matched to be actua l received signals. Thus , one antioipates a deterioa-
• tion from optimum consideration s. Furthermore, there is no guarantee that

the noise source will be white.

The technique described herein provides an “adaptiv e” filter which tr acks

a signal ’. structure so s to mainta in maximum signa l-to—noise rat io. This

(3) An Int roduction to Matched Filters, 0. L. Tur in , IRE Transactions on
Information Theory, June 1960, pp. 312.

- ~~~~-



i. accomplished by what is described as Melpar ’s Adaptive Matche d Filter

Tracking System.

The single—input , multiple-output linear network, described in Section

L III , has each of its outputs connected to a summing amplifier through variable

gain input networks. The response of this network can be made to approximate

an arbitrary waveform F ’(t) within a time interval (O ,T).  Chan ges in the

network’s response characteristics are accortp]ished by changing the input

gains on the suiesing amplifier.

* The value of the specific adaptive matched filter described above stems

from a theorem showing that each of the inputs t~ the summing amplifier ~an

be independently adjusted for maximum signal-to—noise ratio, so as to arrive

at a match for a given input signal. That is, the process of matching the

filter to a given signal can be accomplished by adjusting each input gain

once , tc’ achieve maximum signal-to—noise ratio.

Application of the adapt ive matched-filter system for tracking low-level

signals is illustrated in Figure 7. Signal inputs are continuously processed

by the “real-time analyzer” network, providing M output components • These

outputs are fed to three parallel circuits, each of which consists of a set

• of input networks (controllable ) and a summing amplifier. Channel 1 is the

matched-filter system. Channels 2 and 3 are representative experimental

matched-filter systems, where one of the input gains has been perturbed so

as to obtain a small increase in one and a small decrease in the other . The

• outputs of channels 2 and 3 are compared (from a timing signal generated from

the output of channe l 1) to establish the appropriate change in that input

gain . This is transferred to all three channel s , and the process seque nced

to the next input.

19
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The tim. required for the system to sequence through each of the N input

gains is the same as the tim. required to receive N inputs. This r.a~ be

viewed as the tracking system’s time constant. By increasing the number of

• experimental channels, it is possible to proportionately- decrease this time

constant. This type of sys tem should provide improved communications when—

ever signal properties change in a relatively continuoys fashion, and where

the signal distortions are not accurately predictable.

(B) Modeling

L Modeling is the technique which attempts to duplicate a specific

system for the purpose of analysis. Important applications of ritodeling exist

where it is impossible or undesirable to disturb a system which is in operati on .

Theee app lication s are found in such areas as system identification and experi-

mentat ion for modification of input variables .

Figure 8 shows a block diagram for modeling a linear system. The problem

is to construct a model whose impulse response , f ’ ( t ) ,  is the same as the un-

known linear system. Once this is determined, it is a simple matter to write

down the transfer function of the unknown system. The model consists of a set

of ut Fourier filters whose outputs, Zm, are fed to a summing amplifier with

variable gain inputs • When the output of the summing amplifier exactly matche s

the output of linear system the impulse response of the unknown linear system

and the model will be the same . Practical ly, one can only hope to obtain a

good approximation of the unknown system; however , the greater number of filters,

m, the better the approximation. It can be readily shown~~ that the best

4 approximation for a given set of filters will be obtained when the root mean

(1~J Melpar Second Triannual Report, W3112 .01, Machine Intelligence and Adaptive
Systems , pp. ~2—~9.
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square difference in outputs , e , is minimised, i.e.,

de2 • 0 where e • y—.y ’ .

• Further , since the impulse response is de termined only by the gain settings

of the input amplifiers of the summing amplif ier, e can be used as a feed-

back voltage to converg e the impulse response of the model to f~t) . This

implies that the variable gain elements in the mode l can be indep endently

adjusted with resp ect to one another • If the variable gain elements remain

independent over a specific range , the modeling sys t.em will be able to tr ack

a nonstat iona ry linear system in that range; pr oviding, of course , th~ the

tracking t ime constant of the model is negligible compared to the rate of

change in the linear system.

1~
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I
Demonstration of an Adaptive Matched Filter Breadboard

~quipusent was built to demonstrate the following:

a. The ability to approximate any desired finite duration wave f orm

from impulse response from linear networks.

F 

b. The applicati on of this concept to form an adaptive matched filter.

L. o. The use of the active R—C synthesis technique , recently developed

at !4elpar.
I.

The breadboard consists of two basic networks which are essentially

identical in nature. One of these functions Is to accomplish the approxi-
I

mation described in (a) above. The second of these ne tworks corresp onds to

the adaptive matched filter as in (b) above .

The approximation and adaptive matched—filter concepts have been

previously reviewed, It corresponds, essentially-, to the odd harmonIc

Fourier approximation. The approximating terms ( impulse responses of sub—

networks) were each of finite duration T, In the breadboard, this time-

duration was selected as 6.2~ milliseconds . This long duration was selected

to illustrate the application of the news active R—C synthesis technique to

circuits whose L-R-C realization would require large inductors .

A simplified block diagram of the breadboard is provide d in Figure A—]..

It illustrates the design concept rathe r than the design itself. Positive

and negative impulses (obtained from the differentiation of a square wave

are fed to filter bank A. The resulting outputs of filter bank A are the

first, third , fifth, seventh , ninth , and eleventh sine and cosine waveforms

shown in Figures A -2A through A—2L. It is noted that the higher order

21j
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harmonics begin to deviate from the ideal, due to the absence of higher order

* terms • The cosine terms appear to be somewhat more noisy, but are superior

to what could be reasonably expected. Lirear combinati ons of these response

func tioni were used to generate various waveforms.

The second function of the equipment is to provide a filter which is

matched to the signals being generated. Althou gh the matched filter was

adjusted by hand, the application of appropriate circuitry for an adaptive

matched filter is obvious • An example of an adaptive matched filter system

was given in Figure 5, section IV. In Figure A-3, the ninth sine harmonic

was generated (upper trace) and fed into a filter match ed to it. The output

(lower trace) is seen to be a close approximation of the anticipated auto-

correlation of the compactly carried ninth harmonic. In F igure k-I~, a

square wave was generated (upper trace) and fed into a filter matched to it

(lower trace) with the anticipated results.

The behavior of the matche d filter in the presence of noise ’ is quite

dramatic. This ii illustrated in Figures A—5A through A-SD . The upper

traces correspond to the signal. input to the matche d filter. For Figures

A—SC and A— SD (upper trace), the scope sensitivi ty is 2 volts/cm. In each

of these , the sensitivity of the lower trace was set at 0.5 volt/cm. Noise

was obtained from a “sounvister” white noise diode and added to the generated

signals. Its characteristics are essentially Gaussian from 2 ops to 100 mc.

As shown, the matched—filter output can readily detect the presence of the

signal.

The above experiment was rep eated with an asymmetric waveform fed to a

filter matched to it (triangular waveform). The results are illustrated in

Figures A-6A through £-6C. This was as ant icipated.
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A First Harmonic (Sine)

B Third Harmonic (Sine)

—

C Fifth Harmonic (Sine)

L

I — 

—*-—— —.-—

ii
- 

D Seventh Harmonic (Sine)

Figure A-2
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It:
E Ninth Harmonic (Sine)

1:

i.
F Eleventh Harmonic (Sine)

G Fir st Harmonic (Cosine)

—

H Third Harmonic (Cosine)

Figure 1-2 
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FIFTH HARMONIC (COSINE)

SEVENTH HARMON IC (COSINE )

NINTH H&R~~N (C ~ 0SINE

~~~~~~~~~~~~~~~~~~~~~ ELEVENTH HA~ AON IC (COSINE)

Ftgurt~ A— .~
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1 Figure A—S. Ninth Harmonic (Sine) - Top
Output of Filte r Matched to the Ninth Harmonic - Bottom

ii
1~L.

H.

Figure A-4. Fourier Approximation of a Square Wave - Top
Output of Filter Matched to Square Wave - Bottom
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MATCHED F LTER OUTPUT, 0.5 VOLT CM

SQUARE WAVE WITH WHIT E NOISE , 1 VOLT CM

MATCHED FILTER OUTPUT , 0.5 VOL T CM

1.

- SQUARE WAVE WITH INCREASED NOISE , 2 VOLTS -’CM

MATCHED FILTER OUTPUT , 0.5 VOL T CM

~~~~~~~~~~~~~~~~~~~~~ SQUARE WAVE WITH INCREASED NOISE , 2 VOLTS CM

_____________________ MATCHED FILTER OUTPUT , 0.5 VOLT CM

flgure A-S
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A

ASYMMETRIC WAVEFORM , 1 VOLT CM

MATCHED FILTER OUTPUT . 0.5 VOLT CM

L
* B

ASYMMETRIC WAVEFORM WITH NO I SE , 1 VOL T CM

t MATCHED FILTER OUTPUT , O5V OL T CM

~~~~~~~~~~~~~~~ 
E :::R~~~:E::;:;:~:L

~A : 
NOISE , I VOLT CM

Fig~Ue~~_6
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