REPORT NO. NADC-78182-60

DEVELOPMENT AND ANALYSIS OF A CVA AND A 1052 CLASS FAST FRIGATE AIR WAKE MODEL

Ronald L. Nave Aircraft and Crew Systems Technology Directorate NAVAL AIR DEVELOPMENT CENTER Warminster, Pennsylvania 18974

30 September 1978

FINAL REPORT AIRTASK NO. WF-41-400-000 P. E. No. 62241N

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, D.C. 20361

7. 23-

AD A 071622

DDC FILE COPY

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteeth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

CODE

OFFICE OR DIRECTORATE

- 00 Commander, Naval Air Development Center
- 01 Technical Director, Naval Air Development Center
- 02 Comptroller
- 10 Directorate Command Projects
- 20 Systems Directorate
- 30 Sensors & Avionics Technology Directorate
- 40 Communication & Navigation Technology Directorate
- 50 Software Computer Directorate
- 60 Aircraft & Crew Systems Technology Directorate
- 70 Planning Assessment Resources
- 80 Engineering Support Group

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY:

Stum By directio

DATE: 26 Man 79

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FOR		
NADC-78182-60	NADC-78182-60		9 RECIPIENT'S CATALOG NUMBER	
TITLE (and Subtitle)			5. TYPE OF REPORT & PERIOD COV	
Development a Class Fast Fr	nd Analysis of a CVA an igate Air Wake Model	nd a 1052	Final Report	
			6. PERFORMING ORG. REPORT NUME	
7. AUTHOR(+)			AIRTASK WF-41-400-000	
Ronald L./Nav	e		P.E. No. 62241N	
. PERFORMING ORG	NIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, T	
Aircraft & Cr Naval Air Dev Warminster, P	ew Systems Technology 1 elopment Center Code 60 A 18974	Directorate D53	26 F41400	
1. CONTROLLING OF	FICE NAME AND ADDRESS	~	12. REPORT DATE	
Naval Air Sys	tems Command	(11	30 September 1978	
Department of	the Navy	L.	13. NUMBER OF PAGES	
14. MONITORING AGE	CY NAME & ADDRESS(II dillerent In	om Controlling Office)	15. SECURITY CLASS. (of this report)	
	(1) 1	02p.1	UNCLASSIFIED	
	C 1	-1-1	15. DECLASSIFICATION/DOWNGRAD	
		/	SCHEDULE	
16. DISTRIBUTION ST App 17. DISTRIBUTION ST	ATEMENT (of this Report) roved for public relea: ATEMENT (of the ebstract entered in h	Se; distributi Block 20, 11 dillerent fro	on unlimited	
16. DISTRIBUTION ST App 17. DISTRIBUTION ST	ATEMENT (of this Report) roved for public relea: ATEMENT (of the ebstract entered in f	se; distributi Block 20, 11 dillerent fro	on unlimited	
16. DISTRIBUTION ST App 17. DISTRIBUTION ST 18. SUPPLEMENTARY	NTEMENT (of this Report) roved for public relea: NTEMENT (of the obstract entered in t	se; distributi	on unlimited	
 DISTRIBUTION STA App DISTRIBUTION ST. DISTRIBUTION ST. SUPPLEMENTARY Ship Aim Words (Continued) 	NTEMENT (of this Report) roved for public relea: NTEMENT (of the abstract entered in i NOTES nue on reverse side if necessary and in Turbulance Model	se; distributi Block 20, 11 dillerent fro	on unlimited	
 DISTRIBUTION ST App 17. DISTRIBUTION ST 18. SUPPLEMENTARY 19. KEY WORDS (Conti Ship Air Wake Digital Simul 	NTEMENT (of this Report) roved for public relea: ATEMENT (of the ebstrect entered in the NOTES nue on reverse elde if necessary and the Turbulence Model ation Model	se; distributi Block 20, Il dillerent fro dentify by block number,	on unlimited	
 DISTRIBUTION ST App 17. DISTRIBUTION ST 18. SUPPLEMENTARY 19. KEY WORDS (Conti Ship Air Wake Digital Simul FF1052 Air Wa 	NTEMENT (of this Report) roved for public relea: ATEMENT (of the obstract entered in A NOTES nue on reverse elde if necessary and in Turbulence Model ation Model ke Simulation	se; distributi Block 20, 11 different fro	on unlimited	
 DISTRIBUTION ST. App 17. DISTRIBUTION ST. 18. SUPPLEMENTARY 19. KEY WORDS (Contil Ship Air Wake Digital Simul FF1052 Air Wake 	NTEMENT (of this Report) roved for public relea: ATEMENT (of the ebstrect entered in the NOTES NOTES NUE on reverse elde if necessary and the Turbulence Model ation Model ke Simulation Simulation	se; distributi Block 20, 11 dillerent fro	on unlimited	
 16. DISTRIBUTION ST App 17. DISTRIBUTION ST 18. SUPPLEMENTARY 19. KEY WORDS (Continent of the second of t	ATEMENT (of this Report) roved for public relea: ATEMENT (of the obstract entered in A NOTES nue on reverse elde if necessary and in Turbulence Model ation Model ke Simulation Simulation	se; distributi Block 20, 11 different fro dentify by block number,	on unlimited	
 16. DISTRIBUTION ST. App 17. DISTRIBUTION ST. 18. SUPPLEMENTARY 19. KEY WORDS (Contil Ship Air Wake Digital Simul FF1052 Air Wake 20. APSTRACT (Contil Two digital continuate the This report do 	ATEMENT (of this Report) roved for public relea: ATEMENT (of the obstract entered in A NOTES NOTES NOTES Mue on reverse elde if necessary and is Turbulence Model ation Model ke Simulation Simulation ue on reverse elde if necessary and is omputer programs have is ship airwake turbulence ocuments and analyzes	se; distributions Block 20, 11 different fro dentify by block number, been developed e around a FF1 these two mode	in subroutine form to 052 Frigate and a CVA. 1s.	
 16. DISTRIBUTION ST. App 17. DISTRIBUTION ST. 18. SUPPLEMENTARY 19. KEY WORDS (Contil Ship Air Wake Digital Simul FF1052 Air Wake 20. APSTRACT (Contil Two digital continuing the simulate the This report do 	ATEMENT (of this Report) roved for public relea: ATEMENT (of the obstract entered in A NOTES NOTES nue on reverse side if necessary and in Turbulence Model ation Model ke Simulation Simulation we on reverse side if necessary and in Simulation we on reverse side if necessary and in Simulation	se; distributions Block 20, 11 different from dentify by block number, been developed e around a FF1 these two mode	in subroutine form to 052 Frigate and a CVA. 1s.	
 16. DISTRIBUTION ST. App 17. DISTRIBUTION ST. 18. SUPPLEMENTARY 19. KEY WORDS (Contil Ship Air Wake Digital Simul FF1052 Air Wake 20. APSTRACT (Contil Two digital c simulate the This report d 	ATEMENT (of this Report) roved for public relea: ATEMENT (of the ebstract entered in A NOTES NOT	se; distributions Block 20, 11 different from dentify by block number, been developed e around a FF1 these two mode	in subroutine form to 052 Frigate and a CVA. 1s.	

SUMMARY

This report documents two ship airwake turbulence models which have been developed to aid in the analysis and simulation of the shipboard launch and recovery dynamics of conventional and VSTOL aircraft. The two computer subroutines represent a large deck carrier and a FF 1052 frigate air wake. The carrier model has been used extensively for automatic carrier landing simulations. The frigate airwake model has been developed more recently and has not been widely tested. The FF 1052 airwake model has been installed as part of the NAVAIRDEVCEN VSTOL Launch and Recovery Program described in reference (a). The model has been analytically validated against wind tunnel data, but it has not been tested in a piloted simulator.

These two models are being documented in the hope that they may form the basis for a standardized method of simulating turbulence for shipboard launch and recovery analysis.

- 1 -

Acces	sion For
NTIS DADC T	GRA&I
Unann Justi	Sication
By	
Distr	ibution/
Arrai	ability Codes
	Avail and/or
5192	Laisequ
0	
TI	

TABLE OF CONTENTS

Page

*

near and all a line and and

	and the second
SUMMARY	1
LIST OF TABLES	3
LIST OF FIGURES	4
INTRODUCTION	6
DESCRIPTION OF THE CARRIER AIRWAKE MODEL	8
DESCRIPTION OF THE FF 1052 TURBULENCE MODEL	12
ANALYSIS OF WIND TUNNEL DATA	18
DYNAMIC NATURE OF THE MEASURED AND SIMULATED AIRWAKE TURBULENCE	20
CORRELATION ANALYSIS	49
SENSITIVITY ANALYSIS OF THE EFFECTS OF THE ASSUMED FORM	
OF THE TURBULENCE SPECTRUM	52
TIME HISTORY COMPARISON	54
RESULTS AND CONCLUSIONS	55
RECOMMENDATIONS	59
LIST OF SYMBOLS	61
REFERENCES	62
APPENDIX A - Listing of CVA Turbulence Model	A-1
APPENDIX B - Definition of Variables Used in CVA Program	B-1
APPENDIX C - Flow Chart for CVA Model	C-1
APPENDIX D - Listing of FF 1052 Turbulence Subroutine	D-1
APPENDIX E - Variable Definitions for FF 1052 Program	E-1
APPENDIX F - FF 1052 Algorithm Flow Chart	F-1

- 2 -

A State Real

1. 1. 1.

LIST OF TABLES

Table No.	Title	Page
I	Selected Wind Tunnel Test Points Used in Spectral Analysis	21
11	Statistics of Frequency Value Corresponding to Maximum of Spectra Grouped by Velocity and Velocity Component	22
III	Statistics of Peak Spectral Velocity Grouped by Velocity Only	22
IV	Turbulence Frequency Versus Airspeed	23
v	Filter Break Frequencies at X = 0	35
VI	Filter Break Frequencies at X = 58 M. (190 Ft.)	40
VII	Test Versus Simulation Equivalent Frequency	48
VIII	Test Versus Simulation Average Frequency	48
IX	Test Versus Adjusted Simulation Frequency	49
x	Correlation Summary	51
XI	RMS Pitch Versus Gust Frequency	54

.

LIST OF FIGURES

Figure	No.	Title	Page
1		Pitch Attitude and Angle of Attack During STO Launch	7
2		CVA Ship Burble Steady Wind Ratios	11
3		U Component Burble Time Constant and Variance	13
4		Sample Burble Components, VO = VS = 18 M./Sec. (60 Ft/Sec.)	14
5		Sample of CVA Simulated Free Air Turbulence	15
6		FF 1052 Ship Airwake Model Geometry	17
7		Nondimensionalized Turbulence Parameters Versus Range	19
8		Measured Gust Spectra, V = 9 M./Sec., X, Y, and Z Components	24
9		Measured Gust Spectra, V = 16 M./Sec., X, Y, Z Components	25
10		<pre>Measured Gust Spectra, V = 23 M./Sec., X, Y, Z Components</pre>	26
11		Peak Spectral Frequency Versus Airspeed	27
12		Simulated Turbulence Spectrum, V = 23 M./Sec. (76 Ft/Sec.), X Velocity Component	29
13		Simulated Turbulence Spectrum, Increased Filter Frequency, Z Velocity Component	30
14		Simulated Turbulence, 0.7 Damping, Z Velocity Component	31
15		Simulated Turbulence Spectrum, 0.1 Damping, Z Velocity Component	32
16		Simulated Turbulence Spectrum, First Order Numerator	34
17		Normalized Spectra for V = 10 M./Sec., X = 0 (Measured), X, Y, Z Components	36
18		Normalized Spectra for V = 10 M./Sec., X = 76 M. (Measured), X, Y, Z Components	37
19		Normalized Spectra for V = 23 M./Sec., X = 0, 11 M. (Measured), X, Y, Z Components	38
20		Normalized Spectra for V = 23 M./Sec., X = 38 M., 76 M. (Measured), X, Y, Z Components	39
21		Comparison of Test and Simulated Turbulence Spectra	41
22		Normalized VZ - Velocity Distribution - Composite of 16 Test Points, $V_{\infty} = 23$ M./Sec., $\psi = 50^{\circ}$, $\phi = 0$, X = 0, 27 M.	42

A .

A SERIE AND

LIST OF FIGURES (Continued)

Figure No.	<u>Title</u>	Page
23	Normalized VY - Velocity Distribution - Composite of 16 Test Points, $V_{\infty} = 23$ M./Sec., $\psi = 50^{\circ}$, $\phi = 0$, X = 0, 27 M	43
24	Normalized VX - Velocity Distribution - Composite Average of 16 Test Points, V = 23 M./Sec., $\psi = 50^{\circ}$, $\phi = 0$, X = 0, 27 M.	44
25	Normalized VX - Distribution - Composite Average - 4 x 1024 Points - Simulated Data, $V_{\infty} = 23$ M./Sec., $\phi = 0, \psi = 50^{\circ}$	45
26	Normalized VY - Distribution - Composite Average - 4 x 1024 Points - Simulated Data, $V_{\infty} = 23$ M./Sec., $\phi = 0, \psi = 50^{\circ}$	46
27	Normalized VZ - Distribution - Composite Average - 4 x 1024 Points - Simulated Data, V_{∞} = 23 M./Sec., ϕ = 0, ψ = 50°	47
28	Simulated Spectra With Adjusted Time Constants, X, Y, Z Components	50
29	Closed Loop Gust Response Transfer Function	53
30	X - Component Simulated and Measured Turbulence	56
31	Y - Component Simulated and Measured Turbulence	57
32	Z - Component Simulated and Measured Turbulence	58

1.7-

is in an in the indexed of the receiver frequencies and the benefits and the receiver

INTRODUCTION

Two turbulence model algorithms have been developed for use in the design and analysis of conventional and vertical take-off aircraft. These are an attack carrier model (CVA) and a FF 1052 frigate model. The CVA model has been used since 1971 in the simulation of manual and automatic landings aboard large deck carriers. This model has been used at the NASA Ames Research Simulation Facility in piloted simulations of the F-14, A-7, and EA-6B aircraft. References (b) and (c) describe the data and equations used to develop the model. Free air turbulence, steady, and unsteady burble components are combined to produce the complete CVA model. To make the algorithm more suitable for VSTOL aircraft, several changes have been made from the form described in reference (c). These are as follows:

1. The ship airwake velocity components are programmed to exponentially decrease in magnitude beyond specified bounds of altitude and lateral position.

2. The vertical component of the steady air wake has been changed to include an upwash near the bow. This was inferred from time histories of AV8A launches aboard the U.S.S. Roosevelt. (See figure 1.)

3. An option to provide discrete gust sinusoids in place of the ship air wake model has been added. These inputs follow the form described in reference (f).

The model is limited to cases where the wind is aligned with the landing deck. Wind velocity is specified by setting the ship speed variable, VS.

The second model has been developed exclusively for VSTOL aircraft and is intended to represent wind conditions near an FF 1052 frigate.

The turbulence algorithm was developed from data derived from the wind tunnel test of a 1/50 scale FF 1052 ship model. These data are contained in reference (d). The structure for the algorithm was based on work performed by the Vought Corporation and described in reference (e). However, the model described herein has been modified from the original format as a result of additional analysis of the data contained in reference (d). The model described herein is a somewhat refined version of the Vought model.

This model was programmed on the NAVAIRDEVCEN CDC 6600 computer. The Fortran listings included in this report represent the present status of the two models.

The subroutines have been tested in batch mode runs and are considered to be reasonably accurate. However, the author takes responsibility for any deficiencies that may still remain in the code.

The FF 1052 air wake model was examined by computing time histories, power spectra, and probability distributions and then comparing these with the wind tunnel velocity time histories.

This report describes all work done to validate and adjust the FF1052 model to agree with wind tunnel data. Both the CVA model and the FF1052 model are offered for inspection, use, and criticism.

DESCRIPTION OF THE CARRIER AIR WAKE MODEL

Appendix A contains the Fortran subroutine listing of the CVA airwake model. Appendices B and C provide a definition of the Fortran variables and a flow chart of the subroutine.

Four distinct disturbances are combined in the CVA model to produce a velocity disturbance in each of the three aircraft axis directions. These sources include the following:

1. Horizontal and vertical velocity deviations which result from vortex shedding as the deck pitches.

2. A steady downwash and a horizontal velocity deficiency which vary with distance aft of the ship.

3. Random horizontal and vertical airwake velocity components which vary in RMS amplitude and frequency with range to touchdown and wind velocity.

4. Three-component free air turbulence which is independent of aircraft position. The model is representative of a large deck attack carrier.

A separate discrete gust option is also provided which generates sinusoidal gusts of the form described in reference (f). This option may be selected in place of the airwake model.

In addition to the wind model, radar position error is included which is appropriate for simulation of the SPN-42 automatic landing radar system. The simulated position error increases linearly with distance from the ship.

Each random component of the model is generated by processing the output of a pseudo-random number generator which produces a sequence of numbers that approximate a zero mean, unit variance Gaussian probability distribution. The sequences of numbers generated are uniquely determined by the integer start up array IRDST(I). This array is, in turn, determined from the array IRDSI (I, Ionce) depending on the value of the integer flag Ionce. Ionce may take values from 0 - 10. This technique makes it possible to repeat any one of 10 turbulence sequences in order to compare different aircraft configurations. If Ionce = 0, the turbulence generators are not reset after each run. This produces a long, non-repeating turbulence sequence to gather more accurate statistics on a fixed aircraft configuration.

The calculation sequence of the subroutine is divided into trim and operate modes depending on the value of parameter I Mode. (I Mode = -1 in trim, and I Mode = +1 in operate.) All parameters are initialized at time = 0 in trim and a new set of turbulence velocities is calculated each time the subroutine is called during the operate mode.

The free air turbulence component of the model is taken from appendix (b) of reference (h). This reference specifies power spectral gust models for the three velocity components as follows:

$$\Phi \frac{\Delta u}{v_0} = \frac{200/v_0^3}{\left(\frac{S}{v_0/100} + 1\right) \left(\frac{-S}{v_0/100} + 1\right)} \frac{(ft/sec)^2}{(rad/sec)}$$

$$\Phi \frac{\Delta v}{v_{0}} = \frac{\left(\frac{5900}{v_{0}^{3}}\right) \left(\frac{S}{v_{0}/400} + 1\right) \left(\frac{-S}{v_{0}/400} + 1\right)}{\left(\frac{S}{v_{0}/1000} + 1\right) \left(\frac{-S}{v_{0}/1000} + 1\right) \left(\frac{S}{3v_{0}/400} + 1\right) \left(\frac{-S}{3v_{0}/400} + 1\right)} \frac{\frac{(ft/sec)^{2}}{(rad/sec)}}{\left(\frac{S}{3v_{0}/400} + 1\right) \left(\frac{-S}{3v_{0}/400} + 1\right)}$$

$$\phi \frac{\Delta w}{V_0} = \frac{71.6/v_0^3}{\left(\frac{S}{v_0/100} + 1\right)\left(\frac{-S}{v_0/100} + 1\right)} \frac{(ft/sec)^2}{(rad/sec)}$$

The corresponding root-mean-square gust amplitudes are:

u_G = .76 M./sec (2.5 ft/sec) w_G = .457 M./sec (1.5 ft/sec) v_G = .728 M./sec (2.39 ft/sec)

The frequency parameters of the free air turbulence filters are determined by the trim airspeed v_0 . Since the algorithm was developed for conventional flight simulation, the equations do not permit the direct substitution of zero airspeed for a hover case. For low trim speeds, the parameter is arbitrarily set to 18.29 M./sec (60 ft/sec). This value was selected as a reasonable estimate of the maximum relative wind over a moving ship.

The turbulence routine options are determined by selecting integer flag parameters as either 0 or 1. The normal values of these flags are as follows:

Iwind = 1
ILburb = 1
ILturb = 1
IBfrz = 0
Idisct = 0
Iubt = 0

- 9 -

Ivbt = 0

Iwbt = 0

This produces a complete ship airwake model for approach simulation. The complementary values produce these effects:

Iwind = 0 Return all zero turbulence values. ILburb = 0 Select alternate downwash function. ILturb = 0 Set all free air turbulence components to zero. IBfrz = 1 Fix turbulence range variable to xd = xfrz. Iubt = 1 Set u component of airwake burble to zero. Ivbt = 1 Set v component of airwake burble to zero. Iwbt = 1 Set w component of airwake burble to zero. Iwbt = 1 Set w component of airwake burble to zero.

The ship dependent portion of the airwake was developed primarily from water tunnel tests of CVA ship models. The steady components consist of tabulated values of horizontal and vertical velocity functions ($\Delta u/vs$ and $\Delta w/vs$) versus range. These functions are shown in figure 2. The downwash and reduction in relative wind is determined by multiplying the tabulated functions by ship speed vs. The model assumes that all the wind is generated by the ship and that the velocity is aligned with the landing deck.

Periodic wind components with magnitudes proportional to ship pitch are also included. These sinusoidal vertical and horizontal components propagate aft from the ship at 85 percent of the ship speed and decay in amplitude with range.

The apparent frequency at which the velocity varies is determined by the aircraft closing speed according to formula

Magnitude = cosine
$$\left[\omega_p \left(1. + \frac{\Delta v}{0.85 \cdot v_s}\right) \cdot t + \frac{x_d}{0.85 \cdot v_s} + \phi - 1.57\right]$$

where ω_p = ship frequency, Δv = aircraft closing rate, v_s = ship speed, x_d = distance to ship cg, and ϕ = phase.

The magnitude of the sinusoid decreases linearly with distance aft of the ship. The burble is set to zero outside of established limits fore and aft of the ship. Additional limits on magnitude are established by altitude and lateral position of the aircraft. The magnitude is assumed to decrease exponentially at distances greater than 100 feet to the left or right of the ship and at altitudes greater than 50 feet above the deck. Reference (i) indicates that the burble is largely restricted to this region.

Figure 2 - CVA Ship Burble Steady Wind Ratios

The random number sequences used by the turbulence algorithm are generated by calling subroutine Rand once for each element. (See reference (a) for a listing of this routine.) This routine senerates a random sequence by taking advantage of the roundoff which occurs when floating point numbers are represented by finite length computer words. The output of the random number generators are passed through a first-order washout filter to eliminate low-frequency components and are then multiplied by a unit sine wave which shifts the signal spectrum to the desired frequency range.

The random components of the burble are determined by passing the output of the random number generators through filters having the following form:

$$ub2(s) = \frac{\delta(X) \cdot \sqrt{2} \cdot \tau(X)}{\tau(X) \cdot s + 1.0}$$

$$wb2(s) = \frac{0.035 \cdot VS \cdot \sqrt{6.66} \cdot Input}{3.33 \cdot s + 1.0}$$

The variance $\delta(x)$ and the time constant $\tau(x)$ of the u component versus range are shown on figure 3.

The total burble is computed in ship axes and converted first to inertial axes and then to aircraft body axes. Free air turbulence is computed directly in body axes and then summed with the burble component to give the total turbulence velocity components.

When the variable Idisct is set to one, discrete sinusoidal gusts are calculated in inertial axes. Component magnitudes are specified by the variables Vmn, Vme and Vmd, and the frequencies are established by the variables Frth, Frte, and Frtd. Samples of the turbulence components are shown in figures 4 and 5.

DESCRIPTION OF THE FF1052 TURBULENCE MODEL

A small ship airwake model has been constructed using tabulated values of mean velocity and variance in velocity as described in reference (d). A computer listing is included in appendix D, and a definition of program variables and a subroutine flow chart are found in appendices E and F. The model uses linear superposition to combine mean velocities with random velocities to yield the total turbulence disturbance at the aircraft cg. It is assumed that the turbulence may be adequately represented as having a Gaussian velocity distribution.

An earlier version of the FF 1052 turbulence model described in reference (e) used second-order filtering of random inputs and cosine extrapolation functions to represent the gusts. However, recent analysis indicates that some improvement in accuracy and a simultaneous reduction in complexity can be achieved by using first-order random number filters and linear and exponential shaping functions.

Reference (d) summarizes the results of a wind tunnel test performed using a 1/50 scale FF 1052 frigate model. The turbulence representation was developed

- 14 -

A State

*

Figure 5 - Sample of CVA Simulated Free Air Turbulence

1

a contraction of the second se

- 15 -

ASE ON

from statistical summaries of the measured turbulence velocities which define the mean and variance of the three velocity components recorded by an array of hot wire anenometer probes placed downstream of the ship model. The mean and variance were computed from a series of 262 measurements made over a 1.6second period for each probe location, wind speed, and wind direction. The turbulence model is based on the assumption that the full-scale turbulence may be accurately represented as filtered white noise with the proper variance and with an additive mean velocity value where the value of the mean and the varian vary with position relative to the ship touchdown bullseye.

The turbulence model assumes a point mass aerodynamic model in which all aerodynamic forces and moments are calculated from the instantaneous value of airspeed, angle of attack, and sideslip at the aircraft center of gravity. No consideration has been given to either unsteady aerodynamic effects or significant variation in the instantaneous velocities over the span and length of the aircraft.

In addition to the basic turbulence model structure, provision is made for extrapolating the model beyond those regions where data were measured in the wind tunnel. Exponential and linear extrapolation functions are assumed for those regions above, behind, and to either side of the region where data are available. The air is assumed free of turbulence outside of the extrapolation region. Figure 6 illustrates the regions where the turbulence model applies for the FF 1052.

The mean and random turbulence velocity components are scaled by the factor Fl which is formed as the product of Fxl, Fyl, and Fzl. These all have unit value within the data base region and smoothly approach zero outside the region. The lateral limits of the air wake are defined by Ymax and Ymin which locate the bow and stern of the ship. The test data base extends from Y = -5.7 M. (-18.75 ft) to Y = 52 M. (170 ft), X = 0 M. to X = 76 M. (250 ft), and Z = 4.4 M. (14.58 ft) to Z = 13.6 M. (44.58 ft).

All distances are measured relative to the instantaneous location of the touchdown bullseye. For small wind over deck angles, the lateral turbulence limits are defined by the data base limits. For larger heading angles, the tabulated values are held constant and extrapolated to Ymax and Ymin, Beyond these lateral limits, the scale factor Fyl follows an exponential function decreasing from 1.0 to 0.367 (e^{-1}) in one beamwidth. Examination of the tabulat data shows that this function produces a reasonable match in the region to the right of the center line where most data are available. Although insufficient data is available to validate the assumption, the same form of the extrapolating function $\begin{pmatrix} e^{-(H-HO)/Beam} \end{pmatrix}$ is used to extrapolate vertically beyond the upper limi of the test data. This function is consistent with the shape of simple boundary layer flows. In the streamwise direction, the turbulence limits are defined by the bow for zero relative heading angles, and by the upstream side of the ship for non-zero relative heading angles. The extrapolation limit is extended laterally from the bow and stern. All turbulence velocities computed for points in front of this line are diminished by the X extrapolation function Fxl which decays exponentially. A linearly scaled extrapolation function is used for Fxl aft of the data base limit of 76 M. (250 feet).

The amplitude of Fxl decreases linearly from a value of 1.0 at X = 76 M. (250 ft) aft to 0 at X = 305 M. (1000 ft) aft of the touchdown point. In the regions beyond the data base, the nearest tabulated value is used with the multiplicative extrapolation function Fl applied to the value returned from the tables. The slope of Fxl in the aft region was suggested from plots of variance versus downstream range. (See figure 7.)

The random components of the turbulence are produced by filtering the output of these random number generators. The frequency content of the turbulence is regulated by varying the interval at which the random number generators are called. Increasing the calling interval decreases the frequency of the simulated turbulence. For an aircraft simulation interval of 0.05 second, a random number interval of 0.3 to 0.35 second was found to produce a reasonable turbulence simulation. The random number sequence is linearly interpolated for time values between succeeding calls to produce a smoothly varying number sequence. This sequence provides the input to first-order lags which effect additional filtering and eliminate high frequency variations.

The time constants of the filters were selected by examining the power spectra of sample test data points. Significant differences in the frequencies of the three velocity components were uncovered.

The X component was found to have a lower effective frequency content than the Y and Z components. In addition, there is a definite change of turbulence frequency with range. It was determined that the maximum spectral frequency decreased with range downstream from the landing pad.

Thus, the model was constructed to allow the three filter constants to vary linearly from X = 0 to X = 58 M. (190 ft). This appears realistic from physical considerations. As the turbulence propagates downstream, rapid velocity fluctuations tend to be diminished by shear forces whereas more slowly varying velocities tend to persist.

The random velocity components are combined with the steady mean components to yield the total turbulence velocities in wind axes. These velocities are then transformed into inertial axes for use by the main portion of the aircraft simulation.

ANALYSIS OF WIND TUNNEL DATA

The wind tunnel data for the FF 1052 summarized in reference (d) were analyzed to determine if any significant trends or correlations existed among the various test conditions. An attempt was made to reduce the mean and variance values for the three wind speeds tested to nondimensionalized functions. To achieve this end, the mean and variance values were nondimensionalized by the freestream velocity. The resulting functions were

$$\frac{\mathbf{V}\mathbf{x} - \mathbf{V}_{\mathbf{x}}}{\mathbf{V}_{\mathbf{x}}}, \frac{\mathbf{V}\mathbf{y}}{\mathbf{V}_{\mathbf{x}}}, \frac{\mathbf{V}\mathbf{z}}{\mathbf{V}_{\mathbf{x}}}, \frac{\delta\mathbf{x}}{\mathbf{V}_{\mathbf{x}}}, \frac{\delta\mathbf{y}}{\mathbf{V}_{\mathbf{x}}}, \frac{\mathrm{and}}{\mathbf{V}_{\mathbf{x}}} \frac{\delta\mathbf{z}}{\mathbf{V}_{\mathbf{x}}}.$$

These functions were plotted versus range for $V_{\infty} = 10$, 18, and 23 M./sec.

- 18 -

Figure 7 - Nondimensionalized Turbulence Parameters Versus Range

- 19 -

· Action

1

(

Figure 7 illustrates these functions. It can be seen that the nondimensionalized functions for the three velocities agree rather well. This suggests that a generalized model could be used which would be valid for all relative wind velocities. However, the present model is restricted to the three freestream velocities used in the tunnel tests, and a separate set of nonlinear tables is required for each of these three velocities.

Wind tunnel measurements were taken for model roll angles of -30, 0, and +30 degrees. These data were investigated to determine if any significant trends existed among the three roll angles. Mean and variance size at various measurement stations were compared for the three roll angles. However, no definite functional relationships could be established. Although it would be possible to statically interpolate between the three roll angles given the instantaneous ship roll angle, there is no evidence to suggest that this model would be more accurate than simply using the values for zero roll angle. Furthermore, air operations will probably not be attempted with roll angles near ±30 degrees. Thus, the level deck wind velocity data is probably the most applicable of the three roll angles.

A dynamic model test will be required to obtain data needed to develop a turbulence model which accounts for ship motion. It is likely that such a model would be relatively complex in order to account for the periodic variation in the turbulence as well as the propagation of this turbulence downstream.

DYNAMIC NATURE OF THE MEASURED AND SIMULATED AIR WAKE TURBULENCE

The frequency characteristics of the simulated and measured wind tunnel turbulence were analyzed by numerically computing the Fourier integral

$$X(J\omega) = \int_0^T X(t) e^{-J\omega t} dt.$$

The power spectrum was then approximated as

$$S(\omega) \simeq \frac{1}{2T} | X(J\omega) |^2$$

where T is the sample period in seconds.

The derivation of these expressions are described further in reference (g). Selected portions of the FF 1052 wind tunnel turbulence data were analyzed to determine the spectral character of the wind aft of the ship. Fourier transforms were computed using 256 data points spaced at time intervals of 0.0061 second. A fast Fourier transform routine was used to compute the spectra from 0 to 515 rad/sec. model scale. The transform was calculated with

$$\Delta \omega = \frac{2 \cdot PI}{Nsamples}$$
 rad./sec. and

maximum frequency = $\frac{PI}{\Delta T}$ = 515 rad./sec.

Selected Wind Tunnel Test Points Used in Spectral Analysis

Yaw (deg.)	Roll (deg.)	Speed (M/S)	X (Meters)	Y (Meters)	Z (Meters)
30	0	9	0	0	4.2
50	Î	9	Ĩ	0	4.2
50		9		0	7.6
0		16		5.5	4.2
0		16		0	4.2
0		16		0	7.6
30		16		5.5	4.2
30		16		0	4.2
30		16		0	7.6
50		16		0	4.2
50		16		0	7.6
0		22		5.5	4.2
30		22	ů,	0	4.2
30		9	11	Ĩ	4.2
30		9	Î		7.6
50		9		esta detas	4.2
50		9			7.6
30		16	1		7.6
30		23	11		4.2
30		10	27		4.2
30	ŏ	18	27	ŏ	4.2

đ

(

Erren

TABLE II

Freestream Velocity			Frequency - Rad/Sec.			
M./S.	(ft/sec)	Component	Average	Maximum	Minimum	RMS
9.1	30	x	60	110	30	30
9.1	30	Y	76	110	10	34
9.1	30	Z	90	150	30	43
16.46	54	x	95	190	10	52
16.46	54	Y	108	260	10	99
16.46	54	Z	140	290	30	90
21.9	72	х	90	170	30	58
21.9	72	Y	130	170	70	43
21.9	72	Z	290	410	150	107

Statistics of Frequency Value Corresponding to Maximum of Spectra Grouped by Velocity and Velocity Component

TABLE III

Statistics of Peak Spectral Velocity Grouped by Velocity Only

Velocity		Peak Spectral Frequency - Rad/Sec.			
M./S.	(Ft./Sec.)	Average	Maximum	Minimum	RMS
9.1	(30)	75	150	30	45
16.46	(54)	114	290	15	80
21.9	(72)	170	410	30	114

elizer# 3

Because the number of samples was relatively small, the power spectra were generally very erratic. The data were thus smoothed by averaging over groups of six succeeding frequency points. Figures 8 to 10 illustrate samples of the smoothed spectral data. The sample cases shown in table I were examined with regard to spectral content.

These data were analyzed to determine if any significant trends existed with respect to the spectral distributions. The frequency at which the spectrum attained its maximum value was computed for each case and the data were sorted according to freestream velocity and velocity component. The maximum, minimum, average, and RMS value of the frequency at which the peak of the spectrum occurs is tabulated in table II.

Grouping the data by freestream velocity only, the frequency statistics can be summarized as shown in table III.

Figure 11 summarizes the frequency trend as a function of test condition velocity. A least squares fit of the three gross averaged frequencies yields the relation

 $\omega \max_{\text{test}} = 3.837 + 2.2274 \cdot V - rad/sec.$

Strouhal scaling based on model length is used to obtain the equivalent fullscale frequency as

 ω max = 0.07674 + 0.04548 · V - rad/sec.

For the test velocities, this becomes

TABLE IV

Turbulence Frequency Versus Airspeed

ω - Full Scale	V - Ft./Sec.		
1.440	30		
2.76	59		
3.53	76		

This differs from the second-order filter model frequency of 1.9 rad./sec. at V = 18 M./S. (59 ft./sec.) as described in reference (d). If additional wind tunnel data is unavailable, the FF 1052 model may be applied to larger or smaller ships having similar geometry or the same ship at different velocities by applying Strouhal scaling, where

$$SN = \frac{f \cdot h}{V}$$

SN = Strouhal number

f = Turbulence frequency

h = Ship beam

V = Flow velocity

- 23 -

Astin

d

NADC-78182-60

,

4

- 26 -

Serie .

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER

Figure 11 - Peak Spectral Frequency Versus Airspeed

A States

4.15

The turbulence model was next examined to see how the properties of the simulated turbulence compared with the measured turbulence. The algorithm filter parameters were varied to determine if an improved match could be obtained between the simulated and test data turbulence. The basic filter equation proposed by reference (d) is

$$F(S) = \frac{\delta(x, y, z) \cdot \sqrt{4\zeta \omega_n^3}}{S^2 + 2\zeta \omega_n S + \omega_n^2}$$

An alternate filter equation of the form

$$F(S) = \frac{\delta \cdot / \sqrt{\omega}}{S + \omega}$$

was examined in addition to the original formula. Also, a filter of the form

$$F(S) = \frac{K(S + a)}{S^2 + 2\zeta \omega_n S + \omega_n^2}$$

was investigated. The numerator factor as well as the frequency and damping of the denominator were varied. The baseline values suggested in reference (d) were $\omega = 1.9 \times V/59$ and $\zeta = 0.4$.

The power spectra of the simulated turbulence were computed for V = 23 M./S. Figure 12 illustrates the spectrum for the X velocity component. It is apparent that the simulated turbulence spectrum only very roughly approximates the theoretical spectrum which corresponds to the filter parameters. This apparently occurs due to the limitations of the digital algorithm. Further comparison of figures 10 and 12 show that the measured spectra contains more power at high frequencies than does the simulated spectrum. This agreed with the previous analysis indicating that the peak spectral frequency was greater than the natural frequency of the algorithm filter.

The algorithm frequency was increased in an attempt to match the peak frequency derived from the data. Figure 13 shows the effect of increasing the filter frequency to (-)

$$\omega_z = 4.6 \left(\frac{V}{59} \right) = 5.93 \text{ rad./sec.}$$

The spectrum of figure 13 has a maximum at $\omega = 2.36$ rad./sec. This matches the value obtained for the test data with V = 23 M./S. It also displays an increasing amplitude versus frequency at low frequencies, which is characteristic of the measured data. The damping parameter of the filter was next varied to determine its effect on the simulated spectrum. Figures 14 and 15 show spectra with $\omega = 5.9$ and $\zeta = 0.1$ and 0.7.

Compared to the case with $\zeta = .4$, the configuration with $\zeta = 0.7$ had its peak amplitude at a lower frequency and lower amplitude at high frequencies. The $\zeta = 0.1$ case showed a large peak amplitude near the damped natural frequency and a rapid amplitude roll off at lower and higher frequencies. Thus, neither configuration appears to improve the correspondence with test data over that achieved with the original value of $\zeta = 0.4$.

1

đ

d

One additional filter configuration was examined in which a first-order numerator term was introduced with a break point at the denominator natural frequency. The resultant filter had the form

$$F(S) = \frac{K (S + \omega)}{S^2 + 2 (0.4) \omega S + \omega^2}$$

A representative spectrum for this configuration is shown on figure 16. This configuration shows a more pronounced peak and a less rapid dropoff at high frequency than does figure 12. However, it does not appear to match the measured data as well as the configuration shown on figure 13.

Comparison of the various power spectra is found to be a less than conclusive method of establishing the proper form for a turbulence simulation. The measured data was limited to 256 point samples. Because of the extremely random nature of the turbulence, the short data sample appears inadequate to exactly define the power spectra. Even the artificially generated turbulence is found to have rather irregular spectra although the equations used in the algorithm should theoretically produce a smooth spectra. This may be caused by either the finite samples examined or by the approximations of the digital algorithm.

Because of difficulty in defining an exact mathematical relation for the spectra of either the measured turbulence or the simulated turbulence, the modeling effort was limited to matching the mean value, the variance, the frequency at which the power spectra attained its maximum value, and the overall slope of the spectrum above and below the peak frequency. Only the mean and variance can be matched in an exact manner by adjusting the mean functions and the random filter gains. The remaining characteristics must be established on a trial basis.

All of the second-order simulation models showed a more pronounced peak and a more rapid high frequency dropoff than did the test data. As a result, it was concluded that a first-order model might be more appropriate. The principal disadvantage of the first-order filter is that the output velocities tend to be more jerky and less smooth than those produced with a second-order filter. The problem was recognized as being caused by the way in which the random number sequences were generated. When a random number sequence is generated at each aircraft integration interval (typically 0.05 second), the bandwidth of the random noise sequence is high. The magnitude of a purely random sequence is essentially uncorrelated from one point to the next. In fact, turbulent velocity variations occur over finite times, and real measured data shows correlation over a very short time duration.

The apparent solution to this problem was to generate the random number sequence less frequently than the aircraft equations of motion were integrated. By interpolating linearly between succeeding random numbers, a smoothed input was generated which had limited bandwidth. By specifying the ratio of aircraft equation update interval to random number update interval, the power spectral content of the simulated turbulence could be more readily adjusted to match the test data.

The smoothed random number sequence can be further processed to yield a reasonable simulation of the measured turbulence data by passing the number sequence through a properly designed first-order filter.

Because of the erratic nature of the measured data, it was decided to examine groups of points at various downstream ranges. Individual power spectra were normalized by dividing by their peak amplitudes. Then, these spectra were averaged on a component by component basis. The data selected included all cases for which $\phi = 0$, $\psi = 50$ deg, V = 23 M./Sec. The same process was performed for all data for which $\phi = 0$, $\psi = 50$ deg., and V = 9 M./Sec.

All points at a given downstream range were lumped together regardless of lateral position or height. Figures 17 to 20 show the effects of downstream station and freestream velocity on the character of the normalized spectra for the X, Y, and Z velocity components.

All four figures show a more pronounced dropoff of spectral amplitude with frequency for the X component than for the Y or Z components. Further, figures 17 and 18 show an overall lower frequency break point than do figures 19 and 20. This illustrates the fact that the turbulence frequency decreases as the distance downstream from the ship increases.

A least square straight line curve fit was first applied to the averaged test spectra. Then the break frequency of the first-order filter was assigned a value corresponding to the point at which the straight line reached a value of 0.5 times its value at zero frequency. This was chosen because the magnitude of

$$\left| \frac{1}{\frac{S}{\omega} + 1} \right|^2$$

reaches 0.5 at S = ω . The curve fit analysis was applied to the cases for V = 23 M./Sec. (76 ft/Sec.).

Based on the assumption that Strouhal scaling could be applied, the filter frequency was made proportional to freestream velocity. The selected frequency was ratioed to the value obtained for the V = 23 M./S case by multiplying by V/76. The selected turbulence algorithm was then run repeatedly to obtain a good estimate of the spectral properties of the model. These spectra were averaged component by component and compared with the test spectra.

The filter break frequencies selected for V = 23 M./S., and X = 0 were as follows:

TABLE V

Filter Break Frequencies at X = 0

Component	Break Frequency	(rad./sec.)
х	8.17	
Y	10.41	
Z	10.0	

- 35 -

These frequencies are varied linearly with range out to X = 58 M. (190 ft.), beyond which the frequencies are held constant at the following values:

TABLE VI

Filter Break Frequencies at X = 58 M. (190 ft.)

Component	Break Frequency	(rad./sec.)
x	1.58	
Y	3.0	
Z	2.88	

The simulation model was run repeatedly to establish a representative power spectra. These averaged spectra were then plotted against the averaged test spectra. Figure 21 shows this comparison for the three velocity components with X = 0 and V = 23 M./Sec.

Figure 21 shows a reasonably good correspondence between the scaled test data spectra and the turbulence simulation spectra. The random nature of the turbulence makes it impossible to achieve an exact spectral match. Therefore, the comparison between the test data and the simulation data is not totally conclusive. To gain additional insight into the nature of the measured turbulence, the shape of the velocity probability distribution was examined.

Sample test data were selected and probability distributions were computed for groups of 256 measured sequential velocity values. The mean was subtracted from all values to produce an unbiased sample. Next, the maximum and minimum value were determined. This interval was divided into 20 equal divisions, and the 256 values were sorted to determine the number falling into each interval. Finally, these individual distributions were averaged over a number of test points on a component by component basis.

The derivative distribution was also computed by determining the change in velocity from one time interval to the next, and by sorting these values according to magnitude.

A similar analysis was performed using the simulated turbulence algorithm to generate sequences of 1024 points, and a comparison was made between the simulated and test data distributions.

Figures 22 to 24 show composite velocity distributions for the three velocity components as measured in the wind tunnel. The plotted distributions appear nearly symmetric and approximately Gaussian. Only the X component appears somewhat non-Gaussian. It shows a uniform distribution close to the mean with symmetric falloff to either side. No statistical testing has been performed to test the hypothesis that the distribution is Gaussian. However, it appears to be a reasonable assumption.

Figures 25 to 27 show the equivalent velocity distributions for the simulated turbulence. These plots also show a good approximation to a Gaussian type distribution. Thus, it may be concluded that the simulated and test data velocity distribution have equivalent forms.

al total

The derivative of the velocity distributions were used primarily to examine the frequency content of the test and simulated data. The variation in the velocity and the variation in the rate of change of velocity were computed. Then, the ratio $\bar{\omega} = \delta \hat{V} / \delta V$. This ratio has units of frequency and was used as a basis for matching the simulation model to the test data.

This ratio of variations was computed for the cases used to calculate the distributions illustrated in figures 22 to 27.

The following table summarizes the comparison between test and simulated data with RNX = RNY = RNZ = 5.0, DTW = .05 sec.

TABLE VII

Test Versus Simulation Equivalent Frequency

	Equivalent F	requency - ū
Component	Test Data	Simulation Model
vx	3.78 rad/sec.	5.38 rad/sec.
VY	4.2 rad/sec.	5.29 rad/sec.
VZ	4.23 rad/sec.	5.52 rad/sec.

This suggests that either the model iteration time constant or the filter time constant should be increased.

A second calculation was performed to compute a mean frequency for the test and simulated data. This was performed using the spectral data in the following equation:

Average =
$$\frac{1}{N} \sum_{\substack{\Sigma \\ i = 1 \\ N \\ \Sigma \\ i = 1}} \Delta \omega * \omega i - rad/sec.$$

This is the cg of the spectral distribution.

The frequency for the test data was scaled by 1/50 for full-scale comparison. This averaged frequency parameter showed the following comparisons:

TABLE VIII

Test Versus Simulation Average Frequency (Averaged Frequency - rad./sec.)

Component	Test Data	Simulated Data
vx	3.76	4.7707
VY	4.44	4.4115
VZ	4.54	4.7282

- 48 -

The fact that the equivalent frequency of all three components of the simulated turbulence is nearly identical in spite of differences in the filter constants suggests that the random number calling interval dominates the spectral distribution of the simulated turbulence. Therefore, the program scale factors RNX, RNY, and RNZ were adjusted from initial values of 5.0 to RNX = 7.12, RNY = 6.3, and RNZ = 6.52 based on the ratios of the equivalent frequency parameter. For these parameters, the equivalent and average frequencies compare as follows:

TABLE IX

	T	est	Sim	lation
Component	_ω	ωΑν	_ω	ωΑν
vx	3.78	3.76	4.51	3.64
VY	4.2	4.44	4.63	3.68
VZ.	4.23	4.54	4.65	3.79

Test Versus Adjusted Simulation Frequency

Given the accuracy of the analysis and the limited sample size examined, this appears to represent a near optimum match. Figure 28 illustrates the resulting spectra for a single simulation run.

CORRELATION ANALYSIS

Certain test data points were selected for correlation analysis. The autocorrelation and cross-correlation functions were computed to determine if the gusts were purely random or if any time or space correlation existed. The equation used was

$$R_{XY}(N) = \sum_{i=N}^{M} \frac{(VX_i - \overline{V}X) \cdot (VY_{i-N} - \overline{V}Y)}{(M - N)}$$

$$\frac{\sqrt{\begin{pmatrix} M \\ \Sigma \\ i=N \end{pmatrix}} \cdot \begin{pmatrix} M \\ \Sigma \\ i=1 \end{pmatrix}} \cdot \begin{pmatrix} M \\ \Sigma \\ i=1 \end{pmatrix}} \begin{pmatrix} (VY - \overline{V}Y) (VY - \overline{V}Y) \\ M \end{pmatrix}}$$

As expected, the autocorrelation functions were found to have unit values for zero time shift, but were close to zero for all non-zero time shift values. This means that no significant periodicity exists in the measured data. Most of the crosscorrelation functions were found to be essentially zero for all time shift values. The condition examined was X = 0, Y = 0, $\psi = 50^{\circ}$, $\phi = 0^{\circ}$, H = 4.2, 7.6 M. There was no space correlation between velocities at H = 4.2 M. and H = 7.6 M. above deck.

The only significant crosscorrelation uncovered was between the X and Y components at H = 4.2 M. (14 ft.) This can be interpreted as a vorticity in the wind velocity about the Z axis at this point. This corresponds to an aircraft

-

TABLE X

Correlation Summary of Test Data $V_{\infty} = 23 \text{ M./S.}, \psi = 50^{\circ}, \phi = 0$ Point 1: X = 0, Y = 0, Z = 4.2 M. Point 2: X = 0, Y = 0, Z = 7.6 M. $\Delta T = 0.0061 \text{ second model scale}$ = 0.31 second full scale

Compo	nents	ΔT-Shift 0	1	2
x ₁	x ₁	1.0	0.288	-0.057
Y ₁	Y ₁	1.0	-0.08	-0.1
z ₁	Z ₁	1.0	0.064	-0.014
x ₁	Y ₁	-0.544	-0.154	0.094
Y ₁	Z ₁	-0.05	-0.05	0.08
x ₁	Z ₁	-0.1	0.04	0.018
x ₂	X ₂	1.0	0.24	-0.01
Y ₂	Y ₂	1.0	-0.08	-0.002
Z ₂	Z ₂	0.998	-0.058	-0.206
x ₂	Y ₂	-0.303	-0.129	0.0409
Y ₂	Z ₂	0.0974	-0.081	-0.095
x1	Z ₂	-0.1	-0.001	0.08
x ₁	x ₂	0.237	0.16	-0.074
¥1	Y ₂	0.284	0.0107	-0.074
z ₁	Z ₂	0.143	0.0446	0.0455
x ₁	¥2	-0.15	-0.076	-0.076
¥1	Z ₂	0.075	-0.174	-0.0216
x ₁	Z ₂	-0.096	0.121	0.171

yaw rate. It is not clear whether this has a significant effect on aircraft motion so that provision for including this effect should be added to the model. The effect does not appear strong enough to justify additional complexity in the model.

SENSITIVITY ANALYSIS OF THE EFFECTS OF THE ASSUMED FORM OF THE TURBULENCE SPECTRUM

Evaluation of the test data and the various model algorithms do not lead to an exact and definite conclusion regarding the values of the model parameters.

A question arises as to whether the exact turbulence spectrum must be duplicated by the model in order to yield a useful analytical tool. In an attempt to answer this question, the closed-loop pitch response to horizontal gusts was computed using the original second-order model format. RMS pitch response was computed for a range of spectral gust frequency model parameters. A closed-loop pitch transfer function was calculated for a representative VSTOL (AV8A) at a 62 M./S. (120 knot) transition condition. The pitch loop was closed with a simple gain pitch SAS and pilot model incorporating pitch attitude and pitch rate feedback through a delay.

The closed-loop pitch to horizontal gust transfer function was calculated and the RMS gust response was then determined using the equation:

$$\delta\theta^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \frac{N \frac{ug}{D}}{D} \right|^{2} \phi_{ugust}^{(jw)} \cdot dw$$

where $\frac{N \text{ ug}}{D}$ is the closed-loop transfer function and ϕ_{ugust} is the gust power spectrum.

The gust power spectrum is developed by squaring the magnitude of the gust transfer function as follows

$$\frac{\text{Gust Velocity}}{\text{Random Input}}(S) = \frac{\delta \cdot 2 \cdot \sqrt{\zeta \omega^3}}{S^2 + 2\zeta \omega + \omega^2}$$

$$^{\phi}gust^{(S)} = \frac{\delta^2 \ 4 \ \zeta \omega^3}{(S^2 + 2\zeta \omega S + \omega^2)(S^2 - 2\zeta \omega S + \omega^2)}$$

The system block diagram is illustrated by figure 29.

The closed-loop gust transfer function then becomes

$$\frac{\theta}{ug}(S) = \frac{(3.28)(S+8)(-0.002832S^2 + 0.0005604S + 0.0003527)}{(S^5 + 7.046S^4 + 17.9199S^3 + 27.827S^2 + 16.692S + 2.8202)}$$

$$\begin{split} & \overset{\theta}{\text{NoS}} = -8.057 \text{ S}^2 - 5.218 \text{ S} - .823 \text{ Rad./rad.} \\ & D = \text{S}^4 + 0.7382 \text{ S}^3 - 0.9896 \text{ S}^2 - 0.2859 \text{ S} + 0.006864 \\ & \text{Nug} = 3.28 \text{ X} \left(-0.002832 \text{ S}^2 + 0.0005604 \text{ S} + 0.0003527 \right) \frac{\text{Rad}}{\text{M./Sec.}} \\ & \text{K}^{\theta} = 0.42 \text{ rad/rad.} \end{split}$$

 $K_0 = -0.49 \text{ rad/rad/sec.}$

Figure 29 - Closed-Loop Gust Response Transfer Function

and the set

RMS gust responses were calculated for the following parameters

 σ_{ug} = 7.1 M./S. (23.3 ft/sec.), ζ = 0.4, ω = 1.4, 2, 3, 5, and 7 rad/sec. The results follow:

TABLE XI

RMS Pitch Versus Gust Frequency

$\sigma\theta$ - deg.	Cust Frequency - rad./sec.
3.16	1.4
2.95	2.0
2.43	3.0
1.76	5.0
1.44	7.0

For the data case analyzed with V = 23 M./S., the original model uses $\omega_x = 1.9 \times V/59 = 2.45 \text{ rad/sec.}$ Examination of the data suggests using $\omega_x = 3 \times V/18 = 3.86 \text{ rad/sec.}$ Interpolating linearly among the results from the sample case, we get

$\sigma\theta$ - deg.	ω - rad./sec.		
2.72	2.45		
2.14	3.86		

This corresponds to a 21-percent difference in sigma values for a 64-percent variation in frequency.

Thus, the frequency of the gust model does significantly affect the aircraft response for constant RMS gusts. However, a gust model which predicts gust response to within 10 percent would probably be a satisfactory tool. Thus, the assumed filter algorithm is not extremely critical. The sensitivity shown by the sample indicate that it would be sufficient to define the frequency parameter to within 25 percent of its true value. In contrast, the aircraft response varies directly with RMS gust amplitude. Thus, it is most important to accurately match the gust RMS amplitude.

TIME HISTORY COMPARISON

One final comparison of the simulated and measured turbulence was made by plotting the velocity time histories of the three velocity components. The case selected was

x	=	0	V _∞	=	23 M./S.
Y		0	ψ	=	50 ⁰
Z	-	4.2 M.	ф	=	0

The experimental data was recorded at a time interval of 0.0061 second. This value was scaled up by a factor of 50 to yield a plot scale interval of 0.31 second. Simulated data points were calculated at a 0.05-second time interval. Because of the measurement interval, the bandwidth of the experimental data was limited to 10.13 rad./sec. Thus, higher frequency oscillations might have been present, but they could not be detected.

The simulated and test velocity sequences were compared on the basis of maximum, minimum, mean, and variance values as well as a qualitative comparison of the shapes of the plotted sequences. Figures 30 to 32 illustrate the relationships for the three velocity components. The mean and variance values compare well for all three components. The maximum and minimum values seem consistent in all cases with the magnitudes of the mean and variances.

A qualitative comparison of the number of local maxima and minima in a 10-second period show that the frequency content of the simulated and measured velocities compare satisfactorily.

RESULTS AND CONCLUSIONS

The CVA turbulence model contained herein remains basically unchanged from the version described in reference (c) as a result of analysis performed for this study. It is suitable for simulation of aft approaches and forward takeoffs of conventional and VSTOL aircraft.

The FF 1052 turbulence model is designed to permit VSTOL takeoff and landings from any angle. Wind conditions are currently limited to relative wind angles of 0, 30, and 50 degrees at total velocities of 10, 18, and 23 M./S. (20, 35, and 45 knots).

After considerable iteration, the FF1052 turbulence model structure was fixed with these features:

1. Exponential and linear extrapolation of tabulated mean and variance velocity values beyond the region of measured data.

2. First-order exponential filtering of random number inputs using inverse time constants that decrease linearly with range downstream.

3. The random number subroutine used to generate the three gust velocities are called less frequently than the basic simulation loop time, and the resultant random number sequences are linearly interpolated.

4. The random number update interval is selected to match test data spectral distributions.

5. The filter time constants vary inversely with freestream steady velocity.

6. The frequency content of the three velocity components display different characteristics with the horizontal component having a lower frequency spectrum than the Y and Z components.

Figure 30 - X - Component Simulated and Measured Turbulence

A A

Figure 32 - Z - Component Simulated and Measured Turbulence

7. Although some cross-correlation between velocity components was observed in the measured data, it does not appear significant enough to include in the simulation model.

8. For 45-knot wind and the aircraft located over the deck, the filter frequency parameters were selected with the following values:

Component	Frequency - rad./sec.
х	8.17
Y	10.41
Z	10.00

9. These frequencies decrease linearly to X = 58 M. (190 ft.) where the filter frequencies become

Component	Frequency - rad./sec.
х	1.58
Y	3.0
Z	2.88

10. The test simulation was set up to update wind velocity intervals at 0.05 second intervals. The random number sequences were updated at the following multiple interval size:

Component	Update	Interval - Sec.
x	0.05	x 7.12 = 0.356
Y	0.05	x 6.3 = 0.315
Z	0.05	x 6.52 = 0.326

11. Examination of the experimental data shows that the turbulence velocities reasonably approximated a Gaussian distribution. However, the distributions show some flattening and less peaking around the mean than do ideal theoretical distributions.

12. Analysis indicates that it is more important to exactly match the mean and variance of the turbulence velocities than to exactly match the spectral shape.

RECOMMENDATIONS

Because of differences in digital computers and particularly in random number generator subroutines, prospective users of these computer subroutines should follow the following precautions: 1. Run the model repeatedly for at least 100 seconds of simulation time at a fixed location in space.

2. Compare the mean and variance of the simulated data with that of the input tables corresponding to the selected point.

3. Compute the Fourier transform of the simulated turbulence and compare these with the spectral plots contained in this report.

4. Adjust the filter gains, time constants, and number update ratios RNX, RNY, RNZ if necessary.

5. The FF 1052 model should be tested on a moving base piloted simulation to get pilot confirmation of its validity.

LIST OF SYMBOLS

CVA	Attack Aircraft Carrier
PSIS	Ship Heading - Rad.
PSIREL	Wind Over Deck Relative Angle - Rad.
Rxy	Cross Correlation Function
S	Laplace Operator - 1/Sec.
Sx, y, z	Power Spectral Density
STO	Short Take Off
u	Longitudinal Wind Velocity - M./Sec.
ug	Longitudinal Gust Velocity - M./Sec.
v	Lateral Wind Velocity - M./Sec.
VG	Lateral Gust Velocity - M./Sec.
vo	Trim Aircraft Velocity - M./Sec.
VEWBIC	East Component of Natural Wind - M./Sec.
VNWBIC	North Component of Natural Wind - M./Sec.
vw	Total Wind Over Deck - M./Sec.
VS	Ship Speed - M./Sec.
vx	X Component of Wind Velocity - M./Sec.
YY	Y Component of Wind Velocity - M./Sec.
VZ	Z Component of Wind Velocity - M./Sec.
V _∞	Free Stream Wind Velocity - M./Sec.
W	Lateral Wind Velocity - M./Sec.
x	Aircraft Position Aft of Ship - M.
Y	Aircraft Position Left or Right of Ship Centerline - M.
Z	Aircraft Altitude Above Touchdown Point - M.
a	Aircraft Angle of Attack - Deg.
<u>Au</u> VS	Normalized Horizontal Velocity Increment
<u>∆w</u> VS	Normalized Down Wash Velocity Increment
θ	Aircraft Pitch Attitude - Deg.
σ	Root - Mean Squared Value
τ	Gust Time Constant - Sec.
¢	Ship Roll Angle - Deg.

- (1 -

đ

1

Horizontal Gust Power Spectrum - (ft/sec.)²/(rad/sec.)

Lateral Gust Power Spectrum - $(ft/sec.)^2/(rad/sec.)$

Vertical Gust Power Spectrum - (ft/sec.)²/(rad/sec.)

Ship Heading Angle - Deg.

 $\Phi_{Vo}^{\Delta u}$

¢∆v Vo

¢<u>∆w</u> Vo

REFERENCES

- a. A Computerized VSTOL/Small Platform Landing Dynamics Investigation Model, Ronald L. Nave, Report No. NADC-77024-30, Naval Air Development Center, Sept 1977.
- b. Analysis and Comparison of Carrier Air Wakes, David H. Weir, Report No. TR-NO. 158-1, Systems Technology Inc., April 1966.
- c. A Simulator Comparison of an Integrated, Direct-Lift-Control Automatic Carrier Landing System With a Conventional Carrier Landing System, Robert L. Fortenbaugh, Report No. NADC-72210 - VT, Naval Air Development Center, 3 April 1973.
- d. Investigation to Study the Aerodynamic Ship Wake Turbulence Generated by a FF 1052 Frigate, Theodore S. Garnett, Jr., Contract No. N00019-75-C-0493 Boeing Vertol Company, December 1976.
- e. A Math Model for the Air Wake of a DE-1052 Class Ship, R. L. Fortenbaugh, Report No. 2-53300/7R-3397, Vought Corporation, 13 May 1977.
- f. MIL-F-8785 (ASG), Military Specification, Flying Qualities of Piloted Airplanes.
- g. Introduction to the Statistical Dynamics of Automatic Control Systems,
 V. V. Solodovnikov, Dover Publishing.
- h. MIL SPEC AR-40A, Automatic Carrier Landing System Airborne Subsystem, General Requirements for.
- 1. A Wind Tunnel Air Wake Survey of a 1/144 Scale Model Aircraft Carrier With Deck and Island Modifications, Martin L. Cook, Report No. 1805, Naval Ship Research and Development Center, March 1967.

- 62 -

APPENDIX A

đ

1

Listing of CVA Turbulence Model

A Station

1

Summer Support	20	DQZ	
5 COMMONATIVALISTORY (FILEDALACOO) 1 ComMONATIVALISTORY (FILEDALACO) 1 COLVETALACON (FILEDALACON (FILEDALACON) 1 COLVETALACON)		SURROUTINE WINDC	
5 Composer AF AF(0) (FEF/14180) 10 FULL AF(1) (FEF/14180) 11 FULL AF(1) (FEF/14180) 12 FULL AF(1) (FEF/14180) 13 FULL AF(1) (FEF/14180) 14 FULL AF(1) (FEF/14180) 15 FULL AF(1) (FEF/14180) 16 FULL AF(1) (FEF/14180) 17 FULL AF(1) (FEF/14180) 18 FULL AF(1) (FEF/14180) 19 FULL AF(1) (FEF/14180) 110 FULL AF(1) (FEF/14180) 111 FULL AF		COMMON/XFLUAT/A (500)/IFIXED/IA(200)	
1 0.		COMMON/CHF/9 (200)/IC5F/IA(50) COMMON/GATU/26A/1001	
1 - (11/24/12)1/17/24/42)1/1/12/42/11/1/12/42/11/1/12/42/11/1/1/12/42/11/1/1/12/42/11/1/1/12/42/11/1/1/12/42/11/1/1/12/42/11/1/1/12/42/11/1/1/12/42/11/1/1/12/42/11/1/1/12/42/11/1/1/1/		FOUTVALENCE (T11-4 (16)) • (T21-4 (17)) • (T31-4 (18))	
10 = 001VLENC (NAMALAN)) (VETURBAA(20)) (VETURBAA(20)) 11 = 001VLENC (NAMALAN)) (VETURBAA(20)) 12 = 001VLENC (NAMALAN)) (VETURBAA(20)) 13 = 001VLENC (NAMALAN)) (VETURBAA(20)) 14 = 001VLENC (NAMALAN)) 15 = 001VLENC (NAMALAN)) 16 = 001VLENC (NAMALAN)) 17 = 001VLENC (NAMALAN)) 18 = 001VLENC (NAMALAN)) 19 = 001VLENC (NAMALAN)) 10 = 001VLENC (NAMALAN)) 11 = 001VLENC (NAMALAN)) 11 = 001VLENC (NAMALAN)) 11 = 001VLENC (NAMALAN) 12 = 001VLENC (NAMALAN) 13 = 001VLENC (NAMALAN) 14 = 001VLENC (NAMALAN) 15 = 001VLENC (NAMALAN) 15 = 001VLENC (NAMALAN) 15 = 001VLENC (NAMALAN) 16		1 • (T12+A(19)) • (T22+A(20)) • (T32+A(21))	
10 EQUIVALENCE (NARUMA ALALY)), VAETURA ALA201), VADTUMBA ALA211) 11 EQUIVALENCE (ALA2), VUMA) 12 EQUIVALENCE (ALA2), VUMA) 13 EQUIVALENCE (ALA2), VUMA) 14 EQUIVALENCE (ALA2), VUMA) 15 EQUIVALENCE (ALA1), 111, 111, 112, 112, 112, 112, 112, 1		2 • [T]3•A(22)]•(T23•A(23))•(T33•A(24))	
10 EQUIVALENCE (ALOLI VULUE) 15 EQUIVALENCE (ALOLI VULUE) 16 EQUIVALENCE (ALOLI VULUE) 17 EQUIVALENCE (ALOLI VULUE) 18 EQUIVALENCE (ALOLI VULUE) 19 EQUIVALENCE (ALOLI VULUE) 10 EQUIVALENCE (ALOLI VULUE) 11 ALLINI 12 EQUIVALENCE (ALOLI VULUE) 13 EQUIVALENCE (ALOLI VULUE) 14 ALLINI 14 ALLINI 15 EQUIVALENCE (ALOLI VULUE) 16 EQUIVALENCE (ALOLI VLUE) 17 ALLINI 18 EQUIVALENCE (ALOLI VLUE) 19 EQUIVALENCE (ALOLI VLUE) 10 EQUIVALENCE (ALOLI VLUE) 11 EQUIVALENCE (ALOLI VLUE) 12 EQUIVALENCE (ALOLI VLUE) 13 EQUIVALENCE (ALOLI VLUE) 14 EQUIVALENCE (ALOLI VLUE) 15 EQUIVALENCE (ALOLI VLUE) 16 EQUIVALENCE (ALOLI VLUE) 17 EQUIVALENCE (ALOLI VLUE) 16 EQUIVALENCE (ALOLI VLUE)		E OU IV # LENCF (VNTUH6+A(419)) + (VETUR8+A(420)) + (VDTUR8+A(421))	
15 FOUNTALENCE (ALCA) VIONE) FOUNTALENCE (ALCA) VIONE) FOUNTALENCE (ALCA) VIECEA 1 FOUNTALENCE (ALCA) VIECEA 1 FOUNTALENCE (ALCA) VIECEA 1 FOUNTALENCE (ALCA) VIECEA 2 FOUNTALENCE (ALCA) V	10	EQUIVALENCE (A (D1) .UTU)H4)	
15 FOULYALENGE (ALCOLUME) 16 FOULYALENGE (ALCOLUME) 17 FOULYALENGE (ALCOLUME) 18 FOULYALENGE (ALCOLUME) 19 FOULYALENGE (ALCOLUME) 10 FOULYALENGE (ALCOLUME) 11 FOULYALENGE (ALCOLUME) 11 FOULYALENGE (ALCOLUME) 11 FOULYALENGE (ALCOLUME) 12 FOULYALENGE (ALCOLUME) 13 FOULYALENGE (ALCOLUME) 14 FOULYALENGE (ALCOLUME) 15 FOULYALENGE (ALCOLUME) 16 FOULYALENGE (ALCOLUME) 17 FOULYALENGE (ALCOLUME) 18 FOULYALENGE (ALCOLUME) 19 FOULYALENGE (ALCOLUME) 10 FOULYALENGE (ALCOLUME) 11 FOULYALENGE (ALCOLUME) 12 FOULYALENGE (ALCOLUME) 13 FOULYALENGE (ALCOLUME) 14 FOULYALENGE (ALCOLUME) 15 FOULYALENGE (ALCOLUME) 14 FOULYALENGE (ALCOLUME) 14 FOULYALENGE (ALCOLUME) 15 FOULYALENGE (ALCOLUME) 16 FOULYALENGE (ALCOLUME)		E OUIVALENCE (A (62) • V TURb)	
15 FOULYMATING (ration) 1 0.011VALING (ration) 2 FOULYMATING (ration) <t< td=""><td></td><td>EQUIVALENCE (A (63) + # TURS)</td><td></td></t<>		EQUIVALENCE (A (63) + # TURS)	
15 FOULVAENCE (ration) (0)		EQUIVALENCE (A (70) + VKW)	
15 FeDUVALENCE (AL201) - NOCIO 0011VALENCE (ALA (ALA (AL201) - NOCIO 011VALENCE (ALA (ALA (AL201) - NOCIO 011VALENCE (ALA (ALA (ALA (ALA (ALA (ALA (ALA (AL		FOULVALENCE (A (16d) + DT)	
Contraction Contraction	15	FOULTVALENCE A 2 141 - VEOLC	
20 FOUNTERCE (LITATE) 21 FOUNTERCE (LITATE) 22 FOUNTERCE (LITATE) 23 FOUNTERCE (LITATE) 24 FOUNTERCE (LITATE) 25 FOUNTERCE (LITATE) 26 FOUNTERCE (LITATE) 27 FOUNTERCE (LITATE) 28 FOUNTERCE (LITATE) 29 FOUNTERCE (LITATE) 21 FOUNTERCE (LITATE) 23 FOUNTERCE (LITATE) 24 FOUNTERCE (LITATE) 25 FOUNTERCE (LITATE) 26 FOUNTERCE (LITATE) 21 FOUNTERCE (LITATE) 23 FOUNTERCE (LITATE) 24 FOUNTERCE (LITATE) 25 FOUNTERCE (LITATE) 26 FOUNTERCE (LITATE) 26 FOUNTERCE (LITATE) 20 FOUNTERCE			
20 FOULVALENCE (LATIALE) FOULVALENCE (LATI			
C0 FOUNTERCE(TA(10))			 -
<pre>c0 fourwateric (rati)::root:</pre>		EQUIVALENCE (ALT+A(83))	
40 FGUTVALFACT (TALL).1400E1 FGUTVALFACT (1984).1130 FGUTVALFACT (1984).1140 5 FGUTVALFACT (1984).1111 6017VALFACT (1984).1130 FGUTVALFACT (1984).1130 6017VALFACT (1984).1130 FGUTVALFACT (1984).1130 6017VALFACT (1984).1130 FGUTVALFACT (1984).1130 6017VALFACT (1984).1130 FGUTVALFACT (11100).1130 6017VALFACT (1985).1130 FGUTVALFACT (11100).1130 6017VALFACT (1985).1130 FGUTVALFACT (11100).1130 6017VALFACT (1985).11100 FGUTVALFACT (11100).1110 6017VALFACT (1980).11100 FGUTVALFACT (11100).1110 6017VALFACT (1980).1110 FGUTVALFACT (1980).1110 6117VALFACT (1980).1110 FGUTVALFACT (1980).1110		EOUTVALENCE (A (303) • TIME)	
25 FOUTVALENCE (NOVES 1010) FOUTVALENCE 1010) FOUTVALENCE 1010) FOUTVALENCE FOUTVALENCE FOUTVALENCE 1010) FOUTVALENCE 1010) FOUTVALENCE 1010) FOUTVALENCE 1010) FOUTVALENCE 1010) FOUTVALENCE FOUTVALENCE 1010) FOUTVALENCE 1010)	10	FOUTVALENCE (TATI) . [wODE]	
<pre>25 FOURTERCENTSON FOURTERCENTSO</pre>			
<pre>25 FUTULENCE(FMF) *0112) FUTULENCE(FMF) *0112) FUTULENCE(FMF)</pre>			
<pre>25 FOUTVALENCE (FARTAN (1153)) (165518 (1551)) 20 FOUTVALENCE (FARTAN (1123)) 20 FOUTVALENCE (FARTAN (</pre>			
<pre>25 FOUTVALENCE (FIGST # H113)) (10657 ± 1154)) (10657 ± 1155)) 20 FOUTVALENCE (FIGST # H1130) (10657 ± 1154)) (10657 ± 1155)) FOUTVALENCE (FIGST # H1130) (10657 ± 1150) FOUTVALENCE (FIGST # H1130) (10657 ± 1150) FOUTVALENCE (FIGST # H122)) (1070 ± 11610 ± 1150) (1010 ± 11610) FOUTVALENCE (FIGST # H122)) (1070 ± 11610) (11510) (11510) FOUTVALENCE (FIGST # H122)) (1070 ± 1162) (11510) (1150) (11510) (11510) (11510) (1150) (11510) (11510) (11510) (11510) (11510) (11510) (11510) (1150) (11510) (1150) (11510) (1150) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (11500) (1100) (1100) (11500) (1100)</pre>		- EQUIVELENCE (PHIP + B(1121)	
<pre>25</pre>		EQUIVALENCE (OMEGU-N(111))	
30 FOUTVALENCE (FICFW 1560). (SWBSW-B(1571)). (SUBSW-B(1571)). (SUBSW-B(1571)) 31 FOUTVALENCE (FICFW-B11020) 50 FOUTVALENCE (FICFW-B11020) 50 FOUTVALENCE (FICFW-B11020) 50 FOUTVALENCE (FICFW-B11020) 51 FOUTVALENCE (FICFW-B11020) 52 FOUTVALENCE (FICFW-B11020) 50 FOUTVALENCE (FICFW-B111020) 50 FOUTVALENCE (FICFW-B111020) 50 FOUTVALENCE (FICFW-B111020) 51 FOUTVALENCE (FICFW-B111020) 52 FOUTVALENCE (FICFW-B111020) 53 FOUTVALENCE (FICFW-B111020) 54 FOUTVALENCE (FICFW-B111020) 55 FOUTVALENCE (FICFW-B111020) 56 FOUTVALENCE (FICFW-B111020) 57 FOUTVALENCE (FICFW-B111020)	25	EQUIVALENCE (19651+8 (153)) + (V651+8 (154)) + (W651+6 (155))	
30 FOULVALENCE (FITCH-101) FOULVALENCE (FITCH-101) FOULVALENCE (FITCH-101) FOULVALENCE (FITCH-104) (112) 31 FOULVALENCE (FITCH-104) (124 NO.18 (201) (11 TURA.14 (21)) FOULVALENCE (FITCH-104) (124 NO.18 (201) (11 TURA.14 (21)) FOULVALENCE (FITCH-104) (124 NO.18 (201) (11 TURA.14 (21)) FOULVALENCE (FITCH-104) (124 NO.18 (201) (11 TURA.14 (200)) 32 FOULVALENCE (FITCH-104) (124 NO.18 (201) (11 TURA.14 (21)) FOULVALENCE (FITCH-104) (124 NO.18 (201) (10 TURA.14 (200)) 33 FOULVALENCE (FITCH-104) (124 NO.18 (201) (10 TURA.14 (200)) 4001VALENCE (FITCH-104) (124 NO.18 (17) (10 TURA.14 (200)) 6001VALENCE (FITCH-104) (124 NO.18 (17) (10 TURA.14 (200)) 6001VALENCE (FITCH-104) (124 NO.18 (17) (10 TURA.14 (200)) 6001VALENCE (FITCH-104) (124 NO.18 (17) (10 TURA.12 (200)) 6001VALENCE (FITCH-104 NO.18 (17) (10 TURA.12 (10)) 6101VALENCE (FITCH-104 NO.18 (17) (120 NO.18 (17) (10 TURA.12 (10)) 6101VALENCE (FITCH-104 NO.18 (17) (120 NO.18 (17) (10 TURA.12 (10)) 6101VALENCE (FITCH-104 NO.18 (17) (10 TURA.12 (10)) 611A SENSA/1// SUESA/1// SUES		FOUIVALEACF(XFRZ+B(156)) + (SWASW+B(157)) + (SUBSW+B(154))	
J0 FULYLENCE (TCM*1010) FULYLENCE (TAT (10)) FULYLENCE (TAT (10)) FULYLENCE (TAT (10)) FULYLENCE (10) FULYLENCE (TAT (10)) FULYLENCE (TAT (10)) FULYLENCE (TAT (10)) F		EQUIVALENCE (14 (14) . 1PT TCH)	
<pre>J0 FGUIVALENCE INCHACTULATION (H122)1 FGUIVALENCE (H1999)X510 (H100).1812011 (H1748.1812)1 FGUIVALENCE (H1999)X1510 (H170.1812011) (H1748.1812)1 FGUIVALENCE (H1990) (H170.181201) (H1748.18120)1 FGUIVALENCE (H1501100) FGUIVALENCE (FFRINCH1941) (H170.181201) (H1748.18120)1 FGUIVALENCE (FFRINCH1941) (H170.181201) FGUIVALENCE (FFRINCH1941) (H170.181201) FGUIVALENCE (FFRINCH1941) (H170.181201) FGUIVALENCE (FFRINCH1941) (H170.181201) FGUIVALENCE (FFRINCH1941) (H170.181201) FGUIVALENCE (FFRINCH1941) (H170.181201) (H1748.481200)1 FGUIVALENCE (FFRINCH1941) (H170.1812011) (H1748.481200)1 FGUIVALENCE (FFRINCH1941) (H170.1812011) (H170.481200)1 FGUIVALENCE (H171.1812011) (H170.1812011) (H170.181201) (H170.1812001) (H170.181201) (H170.1</pre>		FOULVALENCE (PIICHM.8(110))	
30 Failvieweiker(fi(95), x25), (e(90), x15) 35 FourvateNee(fi(95), x25), (fi(wN0.18(20)), (fi(100.18(20))) 36 FourvateNee(fi(95), (2010) 97 FourvateNee(fi(95), (2010) 98 FourvateNee(fi(95), (2010) 99 FourvateNee(fi(95), (2010) 99 FourvateNee(fi(95), (2010) 90 FourvateNee(fi(95), (1010) 91 FourvateNee(fi(95), (1010) 92 FourvateNee(fi(95), (1010) 91 FourvateNee(fi(95), (1010) 92 FourvateNee(fi(95), (1010) 93 FourvateNee(fi(95), (1010) 94 FourvateNee(fi(95), (1010) 95 FourvateNee(fi(1010) 96 FourvateNee(fi(1010) 97 FourvateNee(fi(1010) 98 FourvateNee(fi(1010) 99 FourvateNee(fi(1010) 90 FourvateNee(fi(1010) 91 FourvateNee(fi(1010) 91 FourvateNee(fi(10		FOULVELENCE (NCHK.TH(221)	
35 FOUIVALENCE (IHSNE) (KUND.18(201) (ILTURA.14(21)) FOUIVALENCE (IHSNE) (KUND.18(201) (ILTURA.14(21)) FOUIVALENCE (IHSNE) (KOND.18(201) (KNN.8(197)) FOUIVALENCE (INSCT 1450)) 36 FOUIVALENCE (INSCT 1450)) 50 FOUIVALENCE (INSCT 1450)) 60 FOUIVALENCE (INSCT 1450)) 60 FOUIVALENCE (INSCT 1450)) 60 FOUIVALENCE (INSCT 1450)) 60 FOUIVALENCE (FOUNCE (FOUNCE)) 60 FOUIVALENCE (FOUNCE) 61 FOUIVALENCE (FOUNCE) 61 FOUIVALENCE (FOUNCE) 61 FOUNCE 61 FOUNCE 61 FOUNCE 61 FOUNCE 62 FOUNCE 63 FOUNCE 64 FOUNCE 64 FOUNCE 64 FOUNCE 64 FOUNCE 65 FOUNCE 64 FOUNCE 64 FOUNCE 64 FOUNCE	10	F0UTUAL FNCF (4 (95) x 2(3) (4 (94) (3)	
<pre>35 EQUIVALENCE (14FR7.1F1<-0.1) (1LUND.18(201).(1LUNB.18(21))</pre>			
<pre>35</pre>			
<pre>35 FOUTVALENCE (HIS-HIDO) FOUTVALENCE (HIS-HIDO) FOUTVALENCE (FUESCI-18/50) FOUTVALENCE (FUESCI-18/50) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTA S465X/1.5)/FOUTVAL25.125.25.3.3.3.4 FOUTVALENCE (FUESCI-18/50)).(TOTUMBA.R(200)) FOUTA FLAZ FOUTA FLAZ FOUT</pre>		EQUIVALENCE (181 x2+1)+(18 N0+18 (201)+(1 L 108+18 (21))	
35 FQUIYALENCE (HETN.H(194)).(FRIE.W(195)).(FRIE.W(196)).(VWN.B(197)) 6QUIYALENCE (FRTN.H(194)).(FRIE.W(195)).(FOURA.E(200)) 0.0000 FRTN.H(194)).(FRIE.W(194)).(FRIE.W(197)) 6QUIYALENCE (FRTN.H(194)).(FRIE.W(195)).(FOURA.E(200)) 0.0000 FRTN.H(194)).(FRIE.W(194)).(FRIE.W(197)) 0.000 FROM FROM FROM FROM FROM FROM FROM FROM		EQUIVALENCE (GA (30) + GR (1))	
<pre>35</pre>		FOUTVALENCE (HIS + B (100))	
<pre>40 40 40 40 40 40 40 40 40 41 41 42 43 44 45 45 45 45 45 45 45 45 45 45 45 45</pre>	35	EQUIVALENCE (IDISCT+IA (50))	
<pre>+0 EquivalEnce(vwe.aditya))(TOTURA.R(200)) DIMENSION POY(7).667(1).1R051(7).10) DIMENSION POY(7).667(1).1R051(7).10) DIMENSION POY(7).607(1).1R051(7).10) DIMENSION POY(7) DATA SW65x/1./5UESw/1./ DATA R1W3/0.' DATA R1W3/0.'</pre>		FOULVALENCE (FATN+H(1941) + (FATF+H(1951) + (FKTD+H(1961) + (VMN-A(197))	
<pre>40 DIMENSION FO(7)(66(7) DIMENSION FO(7)(66(7) DIMENSION FO(7)(66(7)) DIMENSION FO(7)(1) (FROST(7)) (FROST(7)10) DATA SUBSA/1/SUBSA/1/ DATA (FROST(1) (FE17)/661251252533.' DATA FROST(1) (FE17)/661251252533.' DATA FROST(1) (FE17)/66125125253.') DATA FROST(1) (FE17)/1.3.5.7.9.11.13' DATA FROST(1) (FE17)/1.3.5.7.9.11.13' DATA TROST(1) (FE17)/1.3.5.7.9.11.13.13.1.3.5.7.9.11. DATA FROST(1) (FE17)/1.5.17.19.21.23.65.27.27.15.17.19.21. DATA (FROST(1) (FE17)/1.5.17.19.21.23.65.27.27.15.17.19.21. TF1113C177.730</pre>			
 45 45 61 MENSION RDY(/).6071(7).1R0ST(7).1R0S1(7)10) 61 MENSION RDY(/).5005x/1.' 62 MATA THM3/0.' 64 DATA THM3/0.' 64 DATA THM3/0.' 64 DATA RIM/1.' 75 DATA RIM/1.' 76 DATA RIM/1.' 77 PSI/1.' 77 PSI/			
<pre>40 UNMENSION PDX(1).HOYT(1).HUST(1).HUST(110) DTA SWSION PDX(1) DATA TH3/0./ DATA SWSION.PDX(1) DATA SWSION.PDX(1) DATA SWSION.PDX(1) DATA SWSION.125.125.125.25.3.3.3.7.7 DATA F(2/3.141592/ DATA F(2/3.141592/ DATA F(2/3.141592/ DATA F(2/3.141592/ DATA F(2/3.141592/ DATA F(2/3.141592/ DATA F(2/3.141592/ DATA TH2/001/222/15/741/.001/7442/1.5/ DATA TH2/001/222/15/741/.001/742/1.5/ DATA TH2/001/222/15/741/.001/742/1.5/ DATA TH2/101/222/15/741/.001/742/1.5/ DATA TH2/101/222/15/741/.001/742/1.5/ DATA F(1/1.1311.3.5.7799.111.131.13.1.3.5.7790.11. DATA TH2/1500/ DATA F(1/1.1311.3.5.7799.11.131.13.1.3.5.7790.11.131.13. DATA F(1/1.1311.3.5.7799.11.1311.13.5.7790.11.131.13.5.57790.11. DATA F(1/1.1311.3.5.7790.11.1311.3.5.7790.11.131.13.5.57790.11.131.3. DATA F(1/1.1311.3.5.7790.11.1311.3.5.77790.11.131.13.5.57790.11.131.3. DATA F(1/1.1311.3.5.7790.11.1311.3.5.77790.11.131.13.5.57790.11.131.3. DATA F(1/1.1311.3.5.7790.11.1311.135.77790.11.131.13.5.57790.11.131.3. DATA F(1/1.1311.3.5.7790.11.1311.15.577790.11.131.13.5.57770.11.131.3. DATA F(1/1.17730.15.7190.11.1311.15.577790.11.131.13.5.57770.11.15.17.19.21.5 DATA F(1/1.17730.15.177190.12.23/ DATA F(1/1.17730.15.177190.12.23/ DATA F(1/1.1311.131.15.577790.11.131.15.57727.15.177190.21.5 DATA F(1/1.17730.15.177190.12.23/ DATA F(1/1.17730.15.177190.12.23/ DATA F(1/1.17730.15.177190.12.23/ DATA F(1/1.17710.15.1771970.12.23/ DATA F(1/1.17710.15.1771970.12.23/ DATA F(1/1.17710.15.1771970.12.23/ DATA F(1/1.17710.15.1771970.12.23/ DATA F(1/1.17710.15.1771970.12.23/ DATA F(1/1.17710.15.1771970.12.23/ DATA F(1/1.17710.15710.11710.1510.23/ DATA F(1/1.17710.11710.112.23/ DATA F(1/1.17710.11710.12.23/ DATA F(1/1.17710.11710.12.227115.1771970.11710.12.17710.12.17510.23/ DATA F(1/1.17710.11710.1112.112.23/ DATA F(1/1.17710.12.27710.11710.112.23/ DATA F(1/1.17710.112710.112710.1270007 DATA F(1/1.17710.112710.112700007 DATA F(1/1.17710.112700007 DATA F(1/1.17710.112700007 DATA F(1/1.17710.112700007 DATA F(1/1.17710.11270000000000000000000000000000</pre>			
 DIMENSION DIX[1] DIMENSION DIX[1] DIATA TH03/0.' DATA TH03/0.' DATA TH03/0.' DATA (64(1).T=1.7)/66.1251252533.' DATA (64(1).T=1.7)/66.1251252533.' DATA (64(1).T=1.7)/66.1251252533.' DATA P[/3.141592/ DATA P[/3.141592/ DATA (1805711) 1=1.7)/1.3.5.7.9.11.13/ DATA TP1/.001/.282/1.55.781/.001/.782/1.5/ DATA (1805711) 1=1.71.0.1=1.001/.782/1.5/ DATA (1805711) 1=1.71.0.1=1.001/.782/1.53.752/15.171.19.21. DATA (1805711) 1=1.11.0.1=1.001/.782/1.23.527.271.15.171.19.21. DATA (1805711) 1=1.11.10.11.15.171.19.21.23.527.271.15.171.19.21. DATA (1805711) 1=000 		UIMENSION ROY(D.+HUYI(D.+IRUST(T)+IRUSI(T)+IRUSI(T+10)	
04T4 \$\xi65\$\left(\right)\$\left(\rigt)\$\left(\right)\$\left(\right)\$\left(\right)\$\l	0.1	DIMENSION DOX(7)	
0ara TIM3/0./ 0ara (Gw(1).T=1.7)/661251252533./ 0ara wux.1/ 0ara FC/5./ 0ara FC/5./ 0ara TUBT/0.1VHT/0/1WHT/0 0ara TUBT/0.1VHT/0/11MHT/0 0ara TUBT/0.1VHT/0/11MHT/0 0ara TUBT/0.1VHT/0/11MHT/0 0ara TUBT/0.1VHT/0/11MHT/0 0ara TUBT/0.1VHT/0/11MHT/0 0ara TUBT/0.1VHT/0/11MHT/0 11.1.1.1.1.557779101/1 11.1.1.1.1.255771501/1 11.1.1.1.1.255771501/1 11.1.1.1.1.25771501/1 11.1.1.1.1.1.25771501/1 11.1.1.1.1.25771501/1 11.1.1.1.1.1.1.1.1.21.1.23/55771501/1 11.1.1.1.1.1.1.1.1.1.1.21.1.23/557717/1501/1 11.1.1.1.1.1.1.2001/1 11.1.1.1.1.1.2001/1 11.1.1.1.1.1.2001/1 11.1.1.1.1.1.2001/1 11.1.1.1.1.2001/1 11.1.1.1.1.2001/1 11.1.1.1.1.2001/1 11.1.1.1.1.2001/1		DATA SWBSK/1./.SUBSW/1./	
45 Data (64(1).1=1.7)/661251252533./ 0ata R(A/1) Data F(/5./ 0ata F(/5./ Data F(/5./ 0ata F(/5./ Data F(/5./ 0ata F(/5./ Data (18057(1).1=1.7)/1.3.5.7.9.11.13/ 0ata T(10.01/.14170/148170/ Data (18027(1).11.5.7.9.11.13/ 0ata T(10.01/.282/1.5/.781/.001/.742/1.5/ Data 271.001/.282/1.5/.781/.001/.742/1.5/ 0ata XFR2/1500./ Data XFR2/1500./ 0ata (18057(1.0).151.13.1.35.779.11.13.13.1.3.55.779.11. Data(170550.7.101.11.13.1.35.779.11.13.1.3.55.779.11. 1 11.13.1.33.55779.11.11.13.1.15.17.19.21.23.455.27.27.15.17.19.21. De5.77.15.17.19.21. 3 23.255.22771.20.17.19.21.23/ D5.77.27.15.17.19.21. 45 F(10155177.7.30) F(10155177.19.21.23/		DATA TIM3/0./	
<pre>45 DaTa RLAVIN 0ATA P[V3.141592/ 0ATA F[C/5.*] 0ATA (ROST(1) 1=1.71/1.3.5.7.9.11.13/ 0ATA 2H1.0017.2R2/1.5/*PH1/001/*PR2/1.5/ 0ATA ZF1/0017.2R2/1.5/*PH1/001/*PR2/1.5/ 0ATA ZFR2/1500.*] 1 11.13.1.3.5.7799911.13.1.3.5.779911.13.1.3.55.779.11. 1 11.13.1.3.5.7799911.13.1.15.17719.11.13.1.3.55.77911.13.1.3.55.77911. 1 11.13.1.3.3 55.79911.13.1.15.17719.21.23.455.27.27.15.17719.21. 1 23.255.257715.17719.21.237</pre>		DATA(GR(I).T=1.7)/66125125252533	
<pre>45 DATA P1/3.141592/ DATA F1/3.141592/ DATA FC/5./ DATA [UBT/0/.1VHT/0/.1WBT/0/ DATA 1UBT/0/.1VHT/0/.1WBT/0/ DATA ZP1/.001/.2R2/1.5/.VR1/.001/.YR2/1.5/ DATA XFR2/1500./ DATA XFR2/1500./ DATA (TRUST(1.J).1=1.71.J=1.10:/1.3.5.7.9.11.13.13.1.3.5.7.9.11. 1 11.13.1.3.5.7.79.9911.13.1.13.5.77.9.11.13.13.1.3.5.77.9.11. 1 11.13.1.3.3 5.77.9.11.13.1.15.17.19.21.23.45.27.27.15.17.19.21. 3 23.255.52.77.15.17.19.21.23/ 1 F1.10152177.730</pre>		DATA DLAV.) /	
50 0ata f(/5./ 0ata luBT/0/.IVHT/0/.IWBT/0/ 0ata zH1/.001/.ZR2/1.5/.YR1/.001/.YR2/1.5/ 0ata xFR2/1500./ 1=1.71.J=1.71.J=1.101/1.3.5.7.9.11.13.13.1.3.5.7.9.11. 50 0ata xFR2/1500./ 0ata (TRUST(1.J).T=1.71.J=1.101/1.3.5.77.9.11.13.13.1.3.5.77.9.11. 51 1=1.1.1.1.3.5.77.9.9.11.13.1.1.3.5.77.9.11.13.1.3.5.77.9.11. 52 0ata xFR2/1500./ 0ata (TRUST(1.J).T=1.71.J=1.101/1.3.5.77.9.11.13.1.3.5.77.9.11. 53 1=1.1.3.1.3.5.77.9.9.9.11.13.1.13.1.23.455.27.27.15.17.19.21. 54 1=1.1.3.1.3.5.77.9.11.13.1.15.17.19.21.23.455.27.27.15.17.19.21. 55 23.255.227.13.17.19.21.237			
Data FC/5. Data (IROST(I). I=1.7)/1.3.5.7.9.11.13/ Data (IROST(I). I=1.7)/1.3.5.7.9.11.13/ Data ZP1/.001/.2R2/1.5/.7R1/.001/.7R2/1.5/ Data ZF1/.001/.2R2/1.5/.7R1/.001/.7R2/1.5/ Data ZF1/.001/.1E1.71.001/.7R2/1.5/ Data ZF2/550771.001/.19.21.23/ Data ZF2/557771.001/.19.21.23/ Data ZF2/557771.001/.19.21.23/ Data ZF2/557771.001/.19.21.23/ Data ZF2/557771.001/.19.21.23/	C *		
50 Data (IR05r(1) · I=1.7)/1.3.5.7.9.11.13/ 51 Data ZH1/.001/.TWHT/0/.TWHT/0/ 52 Data ZH1/.001/.ZR2/1.5/.YR1/.001/.YR2/1.5/ 53 Data ZH1/.001/.ZR2/1.5/.YR1/.001/.YR2/1.5/ 54 Data ZH1/.001/.ZR2/1.5/.YR1/.001/.YR2/1.5/ 55 Data XFR2/1500./ 56 Data (IFR2/1500./ 57 Data (IFR2/1500./ 58 Data (IFR2/1500./ 59 Data (IFR2/1500./ 50 Data (IFR2/1500./ 51 11.13.1.3.5.779.011.13.1.3.5.779.011.13.1.3.1.3.5.779.011. 59 23.25.25.271.13.1.19.21.23.455.27.27.15.17.19.21. 50 51.01.23.5.27.27.15.17.19.21.		DATA FC/5./	
DATA 1UBT/0/.IVHT/0/.IWBT/0/ DATA ZH1/.001/.ZRZ/1.5/.YR1/.001/.YRZ/1.5/ DATA XFRZ/1500./ DATA (TRUST(1.J).T=1.7).J=1.10:/1.3.5.7.9.11.13.13.1.3.5.7.9.11. 1 11.13.1.3.5.7.79.911.13.1.13.5.7.7.9.11.13.13.1.3.5.7.9.11. 1 13.1.3.3 5.7.9.911.13.1.15.17.19.21.23.45.27.27.15.17.19.21. 3 23.25.25.27.15.17.19.21.23/ 1 11.115.17.7.30		DATA (IRDST(I) · I=1.71/1.3.5.7.9.11.13/	
50 DATA ZHI/.001/.ZRZ/1.5/.YRI/.001/.YRZ/1.5/ DATA XFRZ/1500./ DATA(ITRUST(1.J).T=1.71.J=1.10:/1.3.55.7.9.11.13.13.1.3.55.7.9.11. 1 11.1.4.1.3.5577999911.1.3.1.1.3.5577799.11.13.11.3. 1 13.1.3.3 5.7799911.1.1.1.1.1.55.77771.21.23.455.27.27.15.17.19.21. 3 23.25425727710017719421.237		DATA IUBT/0/.IVHT/0/.IWBT/0/	
50 DATA XFRZ/1500./ DATA((TRUST(1.J))1=1.7).J=1.10;/1.3.5.7.9.11,13.13.1.3.5.7.9.11. 1 11.13.1.3.5.7.9.9.11.13.1.3.5.7.7.9.11.13.1.3. 5.5.7.9.11. 1 13.1.3.3. 5.7.9.11.13.1.15.17.19.21.23.45.27.27.15.17.19.21. 3 23.25.25.27.15.17.19.21.23/ 4. FFIDDEST77.73		DATA ZH1/.001/.2R2/1.5/.YR1/.001/.YH2/1.5/	
DATA(((TRUST(T.J)), T=1,7), J=1,10;/1,3.5,7,9,11,13,13,13,13,5,7,9,11, 1 11,13,1,3.5,7,9,9,11,13,1,3,5,77,7,9,11,13,1,3, 5,5,7,9,11, 1 13,1,3,3, 5,7,9,11,13,1,15,17,19,21,23,45,27,27,15,17,19,21, 3 23,25,25,27,15,17,19,21,23/ 15(11)15CT77,7,30	50	DATA XFRZ/1500./	
1 11.11.13.1.3.5.7.9.9.11.13.1.3.5.7.7.9.11.13.1.3. 5.5.7.7.9.11.13.1.3.5.7.9.11.13.1.13.1.13.1.3. 1 13.1.3.3.5.5.7.11.13.1.15.17.19.21.23.45.27.27.15.17.19.21. 3 23.25.25.27.15.17.19.21.23.45.27.23.45.27.27.15.17.19.21. 5 11.1.15.17.17.30		0.0.1.5.5.1.51.51.1.1.3.5.7.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
I 13.1.3.3.5.7.7.9.11.13.11.5.17.19.21.23.45.27.27.15.17.19.21. 3 23.25.62.27.13.11.421.23. 5 F(10)5577.13.17.19.21.23.			
1 13-11-31-31 51(19-11-11-11-11-11-11-11-11-11-12-1-63-27-27-15-17-19-21- 3 23-25-25-27-15-17-19-21-23/ 54 15(10)5C177-7-30		(T1 + 4 + 2 + 2 + 2 + 2 + 1 + 2 + 1 + 2 + 2 + 2	
3 23.25.25.27.15.17.19.21.23/		1 13.11.3.3. 5.1.79.11.13.1.15.17.19.21.23.45.27.27.15.17.19.21.	
55 15(1015CT17.7.30		3 23.25.25.27.15.17.19.21.23/	

i

1

	MODE) 2.3.4 1:UE 5=0. =0.	S=0. 5=0. hul=PITCHM/57.3 =ut Eqic@1.689 V(0.LT.60)VO=60.	=50RT (3.1415495500.)•003 1=50RT (5900.•3.14154)•3.•V0/400000. =-V0/1000. =-3.•V0/400. =-3.•V0/400. Exp (5110•0T) Exp (5210•0T)	1./(5116-5210)*PK10*(1202) -1./(5210-5110)*PK11*(1201)/5110 1./(5210-5110)*PK11*(1202)/5210 1. f57P(-V0/100*072) 1 =50P(-V0/100*072)	Z=SURT(200.•3.14159)/100.•(1Z0112) =20.24-3 0 1=1.7 1)=0. 1)=0. 10NCE.6T.0) 1KDST(1)=1KDS1(1.10NCE)	INUE .0445SQRT(PI) .445SQRT(PI) .45C*PI EGIC.M4.VEOICP) IZX=1 CP=VEOIC INUE =0.			A=0. TA=0. 5=4.
--	------------------------------------	--	---	--	--	--	--	--	-----------------------

CDC 6600 FIN V3.0-P380 0PT=1 78/04/11. 16.03.42.

SUBROUTINE WINDC

-

d

e

PAGE

	VG2=0.		
	V63=0.		1
	V64=U.		
	. 05 50.		
112	NGS=0.		
	UGSS=U.		
	V655=0.		
	VGSS=0.	the second	1
	2R5=0.		
120	14580.		
	.UECCA)		1
	FACY=FYPI-ABCIVCG)/100.1		
	ALTI=HIS+50XC6*1		1
125	FACZ=1.		
	IF (ALT. GT. ALTI) FACZ=EXP((ALTI-ALT)/50.)	
	FACW=FACY+FACZ		•
	X0=XCG		
	UTURH=-VS+SURSW +FACW+TAB1	(XD*068*1)	
130	WTURH=-VS SH95W SFACW STAUL	(XU.00069.1)	
	VIURB=6.		
	T1M3=0.		
	7A=0.		
	YH=0.		
135	RETURN		
A	• CONTINUE		
	IF (IMIND. ED. O)RETURN		
	IF (NCHK, 61.0) HE TURN		
1+0	ALIJEH15+50XC6*.1		
	FAC/21.		
•	5 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4		
	XD=XC6		
1+5	IF (IHFRZ.E0.1) XD=-XFRZ		
	UHSSI=-VS+TABI (XD.00.	68.1)	
	UBSS=UBSS1 +SUHSW+FAC+		
	IF (ILAUR6) 21.21.20		
	00021 MHSS1=-VS+TABI (XU.00	69.1)	
041			
	00000 UBCC1VC81AB1(XD.0.		
	WBSSERBSSI SARSKEFACK		
	00022 CONTINUE		
155	VSD=1./(.H5+VS)		
	CTERM=COSIOMEGP+II1.+IVR	W-VS) *VSD) *T IME+XD*VSD+PHIP-1,57)) * IPITCH	
	UH1K=2.22+.0309*XD		
	IF (UH1 < .LT. 0.0) UB1K=0.0		
	URI=PITCHMI *VS*UHIK *CTERM	*FAC#	
100	IF (xCG.LT2236.) U61=0.		
	IF (XCG-61-X25) UH1=0.		
145	15 12 12 12 12 12 12 12 12 12 12 12 12 12		
201			

.

SUr	ROUTINE WINDC	CUC 6600 FTN V3.0-P340 0PT=1 74/04/11. 16.03.42. PAGE	•
		F(XCG.GT.X2S) WB1=0. INWCT=SIN:WC*TIME) D0 1 1=1.7 Call Pand(IRDST(1).1X.1.1.U)	
- 110 -	1 4 4	RDX([)=U DY([)=HDX([)-PDY]([) DY](])=HDY](])+HDA@+DY([)+DT	1 1
175	1	D(I)=4DY(I)•SINWCT DNTINUE SUB2=TAB1(xD•0••0•.71+1)	1
		1062=1841159.00.00.00.00.00.00.00.00.00.00.00.00.00	
140		TOTwent2 10Twent23.33 H2=WH2P011_DTOTW)035°VS°2.58°DTOTW°RD(2)°GH(2) H2:WH2P011_DTOTW)035°VS°2.58°DTOTW°RD(2)°GH(2)	
	- 2	F(X0.6T.XIS) WBZ=0.	
CPI		VTBH=#85 VDFH=#655+481+482 VDFH=#655+481+482	i 1
190		VNHK=VX4M*CTHEIM-VTBM*STHEIM- EBR=VYBM*CTHETM*VXbR*STHETR UHT=T11*VNB#T12*VEBR*T13*VDBR UHT=T21*VNB#T12*VEBR+T13*VDBR	
561		F(1U5T-EC-1) U6T=0. F(1V9T-EC-1) V0T=0. F(1A8T-EC.1) W0T=0. WG=Z0111*W6.Z1111*KD3	î Î K
200	æ æ	03=RU(3)*GR(3) UG=Z0112*UG+Z1112*RD4 D4=RD(4)*GR(4) VG1=Z01*VG1+Z11*RD5P.	
205	>	GZ=ZU2*V6Z+7I2*VD5P VG3=ZU1*VG3+ZI3*HD5P VG4=ZC2*VG4*ZI4*RD5P RD5P=2Q(5)*GA(5)*GA(5) RG5P=2Q(5)*GA(5)	:
	2>3	IF (ILTURB.EG.1) GO TO.5. 6=0.0 6=0.	
210	5	0NTINUE TURB=URT+UG TURB=vBT+VG	
215	3 23	TURB=#BT+MG ZP=#NJ*RD(6)*GR(6)*(ZR1*APS(XD)+ZR2) K=RNJ*HD(7)*GR(7)*(YR1*ABS(XD)+YR2) H1S=(H1S+UR1	
000		HIS=#HIS+BBI #25=UR25+UH2 825=#H225+BR2 825=#H225+BR2	
022	2		

g

1

1

1

1

NADC-78182-60

A - 5

ALL AND

.

			•		•				
1									1
								3	
								E-TDTURB E-TDTURB E-TDTURB	
								RTNº (TIM RTEº (TIM RTDº (TIM	
H1+2 182+22 H2++2	~~~~	••2					33 HTE .FRT TDTUHB)	-COS (F	
255-01- 255-01- 255-01- 16	46 5 • 6 T • UG 5 • 0 T • VG	2H FF 5 • 61 T • 2R 5 • 61 T • 7R 30 • 30	101 5/44V 5/44V	SPAN SPAN SPAN SSPAN	255/RAV 255/TIME 255/TIME 251/IME	STIME STIME SSTIME SSTIME	137.37.	DT()98)	
44155=WB UR255=UB HR255=WB U65=U65+U	655=V65	ZRS=ZRS+2 (RS=YHS+) 7PSS=ZFSS 7PSS=ZFSS 7PSS=YRSS	CONTINUE PAVETIME PAVETIME PAVETIME PAVETA	ZRSA=ZR9 UGSA=U69 VCSS4=V69 WCSA=V69 UHZTA=U69	WA2TA=W JB2ST=UB3 JB2ST=UB3 MR2ST=W055 J6ST=U655	651=W659 2451=2459 2451=2459 2451=2459 24151=041	CONTINUE CONTINUE CONTINUE RT=AMAXI HASE=FHI	1 - 14 - 1 1 - 14 - 14 - 1 1 - 14 - 14 - 14 - 14 1 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	50 T0 37 NTUR8=0 ETUR8=0 01UR8=0 0NTINUE
			00025				00000 EE	35	36 16
						i			

A - 6

1.5

-

1	:	m	1	80		0	2			1	IAN	C-	-78	81	82	-6	0				12								•		1					
		-	1		-	16	2				-	-	4	:				00			3.1								:							
		12				171	229			150			1+1	1				199			3•171		3•32						-							
			140	3°25	1	172	226			153		- 139 -	1 20					197			170		31							HA						
		01	124	- 54	156	12	267		:	150		- 123	C	-				161			159		59							14						
		3•9	2.142 UEFINED	3•37	DEFINED	10	223	177	180	- UCT 147		DEFINED	UEFINED	258	264	263	202	178	· • • •	140	168	35	27	356					DECTNED	DEFINED	*8	48	8*	P.P.	2	
		9.6	20126	4.36	164	69	222	DEFINED	DEFINED	130	641	641	DEFINED	DEFINED	250	258		38	DEFINED	124	83 18	20	21	145	148	206	56	2.84	961	169	-DEFINED	DEFINED	DEFINED	DEFINED		
	270	n u	2.126	34	159	410	236	2.178	2.181	621	127	- 121	121	259	36	36	90	e e e	215	36	DEFINED	e	4	32	5	32	20	21				144	195	32	88	
	138	REFS	REFS	2+30	REFS	REFS	233	REFS	REFS	HEFS	DEFINED	HEFS		REFS	REFS	REFS	NETS	REFS	214	REFS	2+173	HEFS	REFS	REFS	REFS	REFS	REFS	REFS	BFFS	REFS	REFS	REFS	REFS	REFS	DEFINED	
	NCES 137	OCATION XFLOAT	XFLOAT	- CBF	XFLOAT	XFLOAT									CBF	CaF	COT NI	GAINI		CHF		IFIXED	ICHF	TCBF	ICHE	-I CHF	IF1XED	ICHF	- I CAF					ICAF		
A P	REFERE 135	REL		ARAT													VDDAV	ARRAY				APPAY	APRAY						ADDAV	ARRAY						
PEFERENCE H	DEF LINE	TYPE REAL	PEAL REAL	REAL	REAL	REAL		REAL	REAL	REAL		HEAL	REAL	REAL	REAL	REAL	REAL	REAL		PEAL	INTEGER	INTEGER	INTEGEH	INTEGER	INTEGER	INTEGER -	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER -	INTEGER	INTEGER	INTEGER	INTEGER	
OLIC	50	NS				-		-				;		-			1							~	- 40	80		w	I.					0	•	
SYMB	TAIND	LES	ALTI	P	CTEO	01		9101	0101	012		FACY	FACZ	181	FHTO	FHTE	L'ALN	10		HIS	-	IA	18	IHER		1110	1+00	ICNC	1 P1 T	IRDS	1061	IVHT	1481	21.1	14×	
	1	AHIAN	122	0	115.	2+7		11.55	1170	1025		11-2	***	1010	303	302	105	200		1+3	1016	•	•	21	-	*2	•	11	12:01	5+21	122	163	104	23	1112	

A State

d

							:					,			•		t	N	AD	C-7	81	82.	-6	0		:					:		!			1						
.;				243	214							+02											247	259							1						141	101				
				242	204	•				172		+6										264	246	524		· · · · · · · · · · · · ·							-				140					
-				1+2	199			170	171	83		DEFINED					- 1.		DEFINED		2.15	263	236	253													154		158	216	620	
-	34	:	62	042	197			82	DEFINED	UEFINED -	199	203	99	67	99		DEFINED		153		14	262	234	242		176 -									147	103	DEFINED		151	58	10	
259	DEFINED		DEFINED	234	141		- ++	DEFINED	173	110	95	202	DEFINED	DEFINED	ULFINED	041	147	175	150	2	13	261	167	152		DEFINED									26	190	220		DEFINED	DEFINED	ULT INE U	
DEFINED	156		164	055 050	178	173	DEFINED	171	172	DEFINED	DEFINED	201	13	52	612	DET INCID	149	DEFINED	130	2	12	259	156	263	132	178	1 40	190	161	161	141	192	192	170	DEFINED	DEFINED	216		159	237	603	
260-	23	- 59	159	246	38	DEFINED	- 172 -	••	65	196	198	002	12	42	412	141	50	178	56	29	12	37	19	242	3		••	• •	••	••		• •		169	186	211	186	237 -	158	216	022	
REFS	REFS	REFS	REFS	REFS	KEFS	215	REFS	HEFS	REFS	DEFC	REFS	REFS	REFS	PEFS	PEES -	RFFS	REFS	REFS	REFS	DEFINED	REFS	REFS	REFS	261	DEFINED	REFS	REFS	RFFS	REFS	REFS	BFFC	REFS	REFS	REFS	REFS	REFS	REFS	DEFINED	REFS	REFS		
OCATION	CHF	CBF														YEI DAT	CBF		CBF			CAF	XFLOAT				XFLOAT	XFLUAT XFLOAT	XFLOAT	XFLOAT	VEL DAT	XFLOAT	XFLGAT									
REI					ARRAY			APPAY	AHRAY	AHHAT																																
REAL	REAL	-BEAL	REAL	REAL	DEAL	-	REAL	PEAL	REAL	-REAL	REAL	REAL	REAL	REAL	REAL	DEAL	BFAL	REAL	REAL	REAL	REAL	REAL	REAL	1	REAL	REAL	REAL	DEAL	HEAL	REAL	DEAL	REAL	REAL	REAL	REAL	REAL	REAL	PEAL	REAL	REAL	NCAL	
15	1.	NH	THH		-					1				-			-				•	188				~										15			~	~		
BHA	Ind	11d-	PITG	RAV	Ua	2	RDA	AUX	ADY	AON	-08	ROSA	PKIC	RKI	INN	STR	HIS	SUBS	SHBAS	2110	5210	1010	TIME		TIME	TUBS	111	211	121	122	121	132	133	2	CREAT	- 065	UBI	URLA	UBIN	180	110	
ARIAE	151	125	1054	120+	0001	-	151	362	247	530	101	106	150	090	110	101	510	163	\$55	100	200	307	9:4		0.1	10+	1	24	10	5	02 -		21	152	10	1000	136	502	1:5	0:0		

A LALAS

.

4

																				N	AD	C-	.78	81	82	-6	0																						
1					198																						1					-			cel								166-						
					16														208															16.2			• • • •						165						
	218	222			EFINED		224		- 227				187		189				205	225	1	228		200 .	201	202			1	188		- 16 -		140						153	152		- 164		201	122	1	223	
-	. 66	100			227 0		1 09		116		211	194	DEFINED	208	DEFINED	68		- 267	DEFINED	114		117		110	111	211			•	DEFINED	266	69		146	181		212	186	1 85	150	149	195	DEFINED	671	100	09	:	219	
179 -	DEFINED	DEFINED			224		DEFINED		DEFINED	243	129	141	192	264	192	88	84	263	228	DEFINED		DEFINED	549	DEFINED	DEFINED	DEFINED				192	262			130	178	155	131	DEFINED	DEFINED	16	DEFINED	192			DELINED	DEFINED		167	
DEFINED	244	246		544	211		142	142	548	DEFINED	DEFINED	DEFINED	161	DEFINED	191	64	DEFINED	- DEFINED -	225	245		549	DEFINED	205	202	202	264	263	262	141	DEFINED	01	100	641	164	DEFINED	DEFINED	169	169	DEFINED	F51	DEFINED		144	HEC	254		165	
178	216	222	246	106	198		\$22	103	227	25	10	212	190	6	140	15	89	6	212	225	242	224	25	200	201	202	37	37		190	0		0+		159	20150	- 11	188	188	187	150	213	191	6.30		221	254	164	101
REFS	RFFS	REFS	DEFINED_	DEFINED	REFS	207	REFS	DEFINED	REFS	REFS	HEFS	REFS	HEFS	REFS	REFS	REFS	REFS	REFS	REFS	HEFS	DEFINED	REFS	REFS	REFS	REFS	HEFS	REFS	REFS	REFS	REFS	REFS	REFS	DEFINED	DFFS	156	REFS	HEFS_	DETINED	0550	REFS	DEFINED	REFS							
PELOCATION										CBF	XFLOAT			XFLOAT		XFLOAT		xFLOAT					CAF				CHF	CBF	CBF		XFLUAT		*61 0AT	AND AND			XFLOAT											the same of the same in the second se	
TYPE	0641	REAL	REAL	REAL	REAL		REAL	DEAL	DEAL	DEAL	DEAL	DEAL	REAL	DEAL	DEAL	REAL	REAL	REAL	REAL	REAL	OF AL	REAL	REAL	REAL	REAL	REAL		NEAL		REAL	DFAL	REAL	REAL																
S 54		1255	1255	BZTA	9	-	65	GSA	655	651	FURH	14	DAP	Tion	01010		0103	10113				655	159	- 19	62	63			2	NPA	NTUPB	0			1	20	TUR8	XBR	YBR	HSS	1558	81	19		XIS		· 1519	29	
ARIABLE			1210 - 0	1121 0	1111 U		1124 U	1117 U	U EELI	230 U	74 0	A IUC	175 V			364 1	101		N 100		1 1 1 1	134 V	231 V	1125 1	126 V	127 V	V - 051	17 516	IN ACE	116 VI	N 2.0	1 9CO		A 601		153 V	1- SL	174 V.	173 V	103 W	152 W	202 M	160 . 4	206 W	151	100	215 4	171 #	

-A - AT

1

d

A

																				N	AD	C-	78	18	2-	-60)																	
			1	1	196						191	101	151																	: : :					-					-		-		
					84						160		156	- 215						-										70	2		11											
219	223	1			DETINED	226		524			144		152	214						512	C3I	. 533								DFFINED			DEFINED	412	630	232					130	401		
66	108				600	115				513	140		149	183		50	•••			134	1 <0	122								202	16	. 76	502	551		121					124			
DEFINED	DEFINED			19	022	DEFINED	243	DEFINED -	250	130	128		146	162	145	DEFINED		166	139	DEFINED	DETINED	DEFINED		54		22	- 61	73	11	200	DEFINED	DEFINED	201	DEFINED	- net INCO	DEFINED		49	49		561			
- 545	247		545	DEFINED	613	243	105	250	DEFINED	DEFINED	124		130	176	144	145	183	161	123		955	- 252		DEFINED	DELINED	DEFINED	DEFINED	DEFINED	DEFINED	74	196	198 -	52	252	240	251		DEFINED	DEFINED		402	2		
- 519 -	523	241	101	167	140	226	104	229	2	2	16	166	129	- 175 -	128	56	30	30	16	162	101	- 233 -	252	215	- C12	196	961	201	202	12	11	61	51	062	102	232	251	214	214		263			
REFS	DEFC	DEFINED	DEFINED	REFS	PLEFS	REFS	DEFINED	RFFS	RFFC	AFFS	RFFS	165	REFS	162	DEFINED	REFS	HEFS	REFS	REFS	REFS	ACF INCO	REFS	DEFINED	REFS	HEFS	KEFS	REFS	REFS	REFS	REFS	REFS	REFS	REFS	HEFS	DFFINED	REFS	DEFINED	REFS	REFS		262			
CATION									CRE	VEL DAT	XFI DAT					CBF	CBF	CBF	XFLOAT																					REFERENCES	156	169	167	
RELC																											the second													ARGS	I LIHRARY	5	1 I TRRADY	
TYPE		REAL	REAL	REAL	REAL	DEAL		HEAL	HEAL	HCAL	HEAL	HCAL -	REAL			REAL	REAL	PEAL	REAL	REAL	REAL	DEAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DEAL	REAL	REAL	REAL	REAL	HCAL	BEAL	REAL	REAL	REAL	TYPE	REAL	HCAL .	05 41	
NS SN		• 152	- 412					40	50	15	RHA					24		5	9			AC SS	• 15	-		111	112	2			111	112 -	2				- 15	-	2		v a	5		
RIABLES		AN 115	122 18	100 40	112 46					212 11	1 61	JA CC3	145 X0			23J XF	135 X1	130 X2	255 YC	150 YH	HA LET	41 C11	213 YR	767 YP	17.0 YR	12 200	11+ 21	12 090	12 190	17 010	171 20	173 20	10- 20	47 28	47 411	AC 071	214 28	765 28	765 ZR	LERNAL S	0.0		15	

• .

APPENDIX B

Definition of Variables Used in CVA Program

A	Common Array
alt	Aircraft Altitude Above Sea Level - Ft.
alt ₁	Altitude Boundary on Turbulence - Ft.
В	Common Storage Array
CTERM	Periodic Amplitude of Sinusoidal Airwake Terms
DT	Time Increment - Sec.
DTOT	Nondimensionalized Time Increment of u Burble Component
DTOTW	Nondimensionalized Time Constant of W Burble Component
DT2	Time Increment - Second
FacW	Extrapolation Factor of Airwake Velocity
FacY	Extrapolation Function in Y Direction
FacZ	Extrapolation Function in Z Direction
FC	Shift Frequency - Cycle/Sec.
FRT	Maximum Gust Frequency - Rad./Sec.
FRTD	Frequency of Vertical Discrete Gust - Rad./Sec.
FRTE	Frequency of East Discrete Gust - Rad./Sec.
FRTN	Frequency of North Discrete Gust - Rad./Sec.
GA	Common Storage Array
GR	Array Containing Turbulence Gains
HIS	Steady Deck Height Above Sea Level - Ft.
I	Integer Counter
Ia	Integer Common Array
IB	Integer Common Array
IBFRZ	Constant Range Flag
IDISCT	Discrete Turbulence Flag
ILBURB	Downwash Selection Switch
ILTURB	Free Air Turbulence Switch
IMode	Operating Mode Switch
Ionce	Turbulence Initialization Option Switch
IPitch	Ship Pitch Flag
IRDSI	Start Up Array

The second of the second se

-

đ

A STATE

A Section .

+

IRDST	Start Up Array
IuBT	Switch for u Burble Component
IVBT	Switch for V Burble Component
IWBT	Switch for W Burble Component
Iwind	Turbulence Selection Switch
IX	Random Number Startup Parameter
OMEGP	Ship Pitch Frequency - Rad/Sec.
Phase	Discrete Turbulence Phase - Rad.
PHIP	Ship Pitch Phase - Rad.
PI	3.14159
PITCHM	Ship Pitch Magnitude - Deg.
PITCHMI	Ship Pitch Magnitude - Rad.
RAV	Averaging Parameter
RD	Filtered Output of Random Number Generator
RDA	Time Constant of Random Number Filter - 1/Sec.
RDX	Raw Output of Random Number Generator
RDY	Intermediate Random Number Value
RDYI	Intermediate Random Number Value
RD3	Intermediate Turbulence Variable
RD4	Intermediate Turbulence Variable
RD5P	Intermediate Turbulence Variable
RK10	Turbulence Filter Gain
RN1	Radar Noise Gain
SIN WCT	Frequency Shifting Function
STHETR	Sine of Ship Heading Angle
SuBSW	Steady u Burble Scale Factor
SuB2	Random u Burble RMS Magnitude
SwBSW	Steady w Burble Scale Factor
S110	Filter Parameter
S210	Filter Parameter
TDTURB	Discrete Turbulence Switch Time - Sec.
TIME	Simulation Running Time - Sec.
TuB2	Random u Burble Time Constant - Sec.
T11 - T33	Euler Angle Conversion Matrix Relating Aircraft Body Axes and Inertial Axes
u	Output of Random Number Generator

a the

B - 2

a state

.

۰.

uBSS	Steady u Component of Burble - Ft./Sec.
UBSS1	Intermediate Turbulence Variable
UBT	u-Body Axis Burble Component - Ft./Sec.
uBl	X-Ship Axis Periodic Burble - Ft./Sec.
uBlA	Intermediate Variable
uB1K	Intermediate Variable
uB1S	Statistical Summary Variable
uB1SS	Statistical Summary Variable
uB1ST	Statistical Summary Variable
uB2	Ship X Axis Random Burble Component - Ft./Sec.
uB2P	Intermediate Variable
uB2S	Statistical Summary Variable
uB2SS	Statistical Summary Variable
uB2ST	Statistical Summary Variable
uB2TA	Statistical Summary Variable
uG	Aircraft X-Axis Free Air Turbulence Component - Ft./Sec.
uGS	Statistical Summary Variable
uGSA	Statistical Summary Variable
uGSS	Statistical Summary Variable
uGST	Statistical Summary Variable
uTURB	Total Aircraft X-Axis Turbulence - Ft./Sec.
VBT	Lateral Burble Velocity - Ft./Sec.
VDBR	Vertical Burble Component - Ft./Sec.
VDTURB	Vertical Turbulence Velocity - Ft./Sec.
VEBR	East Component of Burble - Ft./Sec.
VEQIC	Aircraft Trim Velocity - Knots
VEQICP	Previous Trim Velocity - Knots
VETURB	East Component of Turbulence - Ft./Sec.
VG	Aircraft Y-Axis Component of Free Air Turbulence - Ft./Sec.
VGS	Statistical Summary Variable
VGSA	Statistical Summary Variable
VGSS	Statistical Summary Variable
VGST	Statistical Summary Variable
VG1	Intermediate Variable
VG2	Intermediate Variable
VG3	Intermediate Variable

1

d

1

B - 3

and the second second

A Start

VG4	Intermediate Variable
VMD	Vertical Discrete Gust Magnitude - Ft./Sec.
VME	East Discrete Gust Magnitude - Ft./Sec.
VMN	North Discrete Gust Magnitude - Ft./Sec.
VNBR	North Burble Component - Ft./Sec.
VNTURB	North Turbulence Component - Ft./Sec.
vo	Trim Velocity - Ft./Sec.
VRW	Aircraft Airspeed - Ft./Sec.
VS	Relative Wind Over Deck Speed - Ft./Sec.
VSD	Burble Propagation Speed - Ft./Sec.
VTURB	Aircraft Y Axis Component of Total Turbulence - Ft./Sec.
VXBR	Ship X Axis Component of Burble - Ft./Sec.
VYBR	Ship Y Axis Component of Burble - Ft./Sec.
WBSS	Steady Downwash Velocity - Ft./Sec.
WBSS1	Intermediate Variable
WBT	Aircraft Z Axis Component of Burble - Ft./Sec.
WB1	Periodic Component of Ship Downwash - Ft./Sec.
WB1A	Statistical Summary Variable - Ft./Sec.
WB1K	Intermediate Variable
WB1S	Statistical Summary Variable
WB1SS	Statistical Summary Variable
WB1ST	Statistical Summary Variable
WB2	Vertical Random Burble Component - Ft./Sec.
WB2P	Intermediate Variable
WB2S	Statistical Summary Variable
WB2SS	Statistical Summary Variable
WB2ST	Statistical Summary Variable
WB2TA	Statistical Summary Variable
WC	Frequency Shift Parameter - Rad./Sec.
WG	Aircraft Z-Axis Free Air Turbulence
WGS	Statistical Summary Variable
WGSA	Statistical Summary Variable
WGSS	Statistical Summary Variable
WGST	Statistical Summary Variable
WTURB	Aircraft Z-Axis Turbulence Velocity - Ft./Sec.
XCG	Aircraft X Position Relative to Ship cg - Ft.

1

-

d

A

*

B - 4

A Deren -

- Settion

XD ·	X-Position Variable Used in Table Look Up - Ft.
XFRZ	Fixed Position Used in Table Look Up - Ft.
XIS	Forward Turbulence Limit - Ft.
X2S	Forward Turbulence Limit - Ft.
YCG	Aircraft Lateral Position Relative to Ship - Ft
YR	Lateral Radar Error - Ft.
YRS	Statistical Summary Variable
YRSA	Statistical Summary Variable
YRSS	Statistical Summary Variable
YRST	Statistical Summary Variable
YR1	Scale Factor on Radar Noise Function
YR2	Scale Factor on Radar Noise Function
Z I 1	Turbulence Filter Parameters
ZI111	Turbulence Filter Parameters
ZI112	Turbulence Filter Parameters
Z12	Turbulence Filter Parameters
ZI3	Turbulence Filter Parameters
ZI4	Turbulence Filter Parameters
Z01	Turbulence Filter Parameters
Z0111	Turbulence Filter Parameters
Z0112	Turbulence Filter Parameters
Z02	Turbulence Filter Parameters
ZR	Vertical Radar Noise - Ft.
ZRS	Statistical Summary Parameter
ZRSA	Statistical Summary Parameter
ZRSS	Statistical Summary Parameter
ZRST	Statistical Summary Parameter
ZR1	Radar Noise Parameter
ZR2	Radar Noise Parameter

1

đ

A

A take

APPENDIX C

Flow Chart for CVA Model

1

C - 1

APPENDIX D

Listing of FF 1052 Turbulence Subroutine

tot. :

S. Start St.

and the second second second

NADC-78182-60

NADC 78182-60 • PAGF THIS PAGE IS BEST QUALITY PRACTICUES 79/01/15- 08-01-01 TEY DEPUTION OF DANDOW NUMBER CALL TO REGULATE FREQUENCY OF PANDON TUBFULENCE SIMULATION . INCREASE DIX.DIY.DIZ TO REDUCE FTN LIVEALY INTERPOLATE DAINON NUMBER INFUT DETWEEN CALLS. 4107(71)*== April 70. (24 u)/71-8 AUDV0) * (T1.F.O.OTY-TCOUNTY)/0TY 2101(21+2ND70+(HA 4D2M-024)070) * (T1ME+D17-TCUUNIT)/012 TULHULF FREUDENCY VARIES AITH MONNSTREAN FLUGE Sigx+Sigy+Sig7 and Vallance ValueS Sigx=Itel(XT14+,YI4+,7T64+45+3) CALL HANDILPOSTAL IX. I.I. PANDAN CALL HAND (JORSTYI, IX. 1. 1. PANDYN) CaLL 221011005721.1X.1.1X.1.000201 VYAS . VYWS . V745 ALE MEAL VALUES (WINY-ONTEX) + 134012+541WX=NIWY VXV5=T++1 (XTAP.YTA4.7TA4.76.3) (E.07.4277.4277.427X) 1.447234V V245=7+41 (xT34.YT44.ZTA3.A2.3) IF (YT44.LT.-14.75) YT44=-18.75 15 (T1%+-1(0++Tx) < 0< - 200 - 200 1= (T1 ** - TCUINTY) 342 . 300 . 300 JF 17 [24 -7 COUPT7) 462 . 400 . 400 F4+ "UEACY OF TUBOULF 10F 1= (*TH-.61.170.) YTA-=170. 15 (xTA-.LT.0.) XT4450. 15 (xTA-.61.250.) XTA3=250. (VEBH/ (VIXA-HULX)) HXB=1X4 XE40180(.055-041X)-.1=1X3 15 (11--1--1--1500-501 1 ((T+ - - 2 + (.) 17 + 17 + 1 + 1- (xT2--x~14) 14.16.16 TF(FX1.LT.0.) FX1=0. CONTINE COUTX=TCOUNTX+UTX TC9U1TY=TC0001TY+0TY TC00/117=TCC01172+012 1 20 (8/1-2 12/1) -= 77 22/ 1=1-0 SPECIFY SPECIFY 1) /2 PEEVEL0. 4104 1] D. FRASH. 174441 Fl=+ xlupyloF71 144 J 19 3 2 0 2 0 - 7 0 1 30 SALAZOVAN 1440.01=72740 1305421=07=24 1 == x == 1 == 1 == 1 == 1 == 1 == 1 1 so kel saxingis 1202015=20015 74/74 = [= + 5] = + () = FOVENTE1. 11 11 BITHLINGS SCHTTPUSS 31111100 0.5 DUTINE SVITUCOS 200 300 305 603 205 005 202 Nm 1 4 14 51 17 U 0000 U U 130 133 140 143 150 135 150 155 170 100 115 125 D - 4

and white

۰.

State and the second state of the second

-

d

States?

																							NA	D	c-	78	318	32	-6	0						011	AL	IT	Y	PF	AC	T	LO	B	L							
'n				141						GHI									124			213					T	HIR	S	PA	GE	1	S P	E	SH	HE C	T	0 0	D	C		-	-									
PAGE			0.1					90	195	C01								178	123			144													181	182	183						*0									
10.10.80			11	1	11			DEFINED	144	101							177	175	115	104		143					613							25	166	167	168		213		63	000	DELINED	36	2		37			34		
19/01/15.	11		5 1	0.1	70			200		10	20			76			174	171	2.5	101	47	142					502		40		41		4	DEFINED	DFFINED	DEFINED	DEFINED		100			UET INED	30	DEFINED			DEFINED			DEFINED		
* 5 *			102	51	r.		5	1.6.1	0.0	20	DEFTACO	DEF TAED	DEFINED	IXA ING		111	170	DEFINED	DEFINED	43	4 5	141				11	041140	14	15	14	15	41.	c1	~~!	111	119	140	1	74		6.7	20	1.1	154	151	154	150	155	164	154	101	
FI4 4.04	9.44	1	t o t	DFFINED	19		DEFINE)	500	C+ 1 1	10	20146	04100	24154	CHATER O	DEFINED	DEFINED	[EFINED	163	136	DEFINED	DEFINED	140		4	t :	10	* U	DEFLACO	DEFINED	0.3~1330	DEFINED	DEFINED	0201130	157	194	100	185	GEFINED	1		ע זע		DEFINED	241	DEFICES	L' FILEU	151	DEFINED	(+ 1 1 1 0 0)	241	GEFINEN	
	α.	•	۳ I	110		ۍ ر	52	U :	t t		UEFINED		163	HELOC	AT LAC	01101	141	162	1.4	130	130	1 34	130	7 :	2 *	•	t :		152	41	151	2	101	151	111	146	143	;	5.4	24	t t	; ;	L T T	151	2+154	114	151	¥61\$\$	[4:)	141	10102	
	5 J J J	REFS		301	54JA	DFFIMED	PEPS				LOVE L						u u u	2770	Su Ja	P.F.S.	DEFS	Sura	DEFILED				7. 0 1 '1 1 11 1 11	DFFG	0443	Sul u	KEFS	0 L L L	7. U 1. L 1. L 1. L		nrrs.	U.F.F.S	2555	FFF C	5442	DFFIMED	2 1 1 1 1 1 1 1 1 1 1 1 1 1	0110	2 4 4 A	5440	v 4 4 1	PFFS	PEFS	5.0	U 10	5440	54.42	
0041101	XFLCAT	XFLOAT	5110					VEL DAT	XLLCEL															CHF.	IFIXED	1001	10141						34.11	1001							145	VELOAT										
74/74	L- DAY		YAGET																							1																										
Joir 1	PEAL	1930		11-11	PEAL		EF4L	DE AL	1.10	.J.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	05.61	1010	110	1020	1440	1020	1001	25 41	DE 30	DEAL	DEAL	סבטן		2541	TATEGED		11110101	1×1FAC	LIFAED	Tatecer	d do a la	UNTERED UNTERED	THEFE	1115.051	OFAL	CFAL	OFAL	79.00	REAL		1940	10.50	DEAL	1920	PEAL	DEAL	PEAL	Pt AL	19.9		10.2	
1111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		b1.T	1		CPSTAEL		151510	.1540	-10		111	***	017	Firt	×1×-	5747	70	Y.P. 5 4.1 7	FAL	571	17 -				4 1	THONE	20101	X1SUM1	IXISCI	1-0514	INCSTYL	1-1 512	1 1 1 1	1 *	x90	100	10000	1.	Jarisa			.150	ALPON	NAC 124	31.1.20	11 144	441.74	340	20.00			
V4216-1	6	142	2		115		110	211			7.1.7	101	202	222	111	loon	. 11 .	715	1-1	142	143	C+1		140	n		11 4	555	114		515	146		250	111	212	1 3	015	-11		521	10.1	+42	570	7-3	100	114	CC1	011	1.12	101	

																							NA	DO	c-	78	18	32.	-6	0													11	Y	R.	80	T		HI.	2	
																					160											T	HI	s T	00	JE FY	19	B	SS AL	T SH	10	L H	01	0	3	-					
		51												64		61	61	153	1 c d	101	159																76														
		DEFINED	[*1										75	DEFINED		DEFINED	44	33	4.0		155		201			000	200		55		199		:	16		54	11		166				140	101				190			
	51	11	UEL INCH						136	137	134		26	11		200	DEFINED	DEFINED	0511250	DEFINED	154		DEFINED	502	616	Dectado	ULT INT U	112	DEFINED		DEFINED	50.	210	111111		DEFINED	DEFINED		27	141	C71	130	I	231	141	133		62	143		144
	DEFINED	61	0.1		16	142	143	144	DEFINED	DEFINED	DEFINED	17	DEFIMED	10	54	561	202	174	144	212	150		612	34	22	112	112	10			210	er.	ž.	*	57	139	IAH	134	UEFINED	05	DEFINED	UCT 141	DEFILLED	31	DEFINED	DEFIVED	141	DEFINED	32	141	11 4 1 4 4 1
;	11	20	LOT LOT	DEF THEO	DEFINED	DFFINED	UEF INEL	CFFINED	213	213	113	DFFINED	613	99	CEFINED	40	16	501	100	110	00		402	CEFINED	DEFINED	205	COS	C.F.F.L.	200	50	504	DEFINED	(FFINE)	200	56	10	141 ,	LEF [NED	C 5 1	DEFINED	002	C12		DEFINED	602	613	DEFINED	141	CEFTNED	CET INE	
	č	00		15	25	145	140	140	142	143	144	123	115	66	55	45	04	150	1 cc 1	012	11	204	44	20210	4 .	4 A	11000			*	54	24210	4	t t		11	154	1	1,1	++1		451	~~		142	140	141	143	1.41	102	
	S + + H	5122	2530	5430	CEFS	PEFS	PEFS	PFFS	PEFS	FEFS	SIER	rt FS	PEFS	REFS	REFS	EFS.	5.38	5			S	104	DFF S	2.11		5 4 L A		REFS	SEFS	REFS	REFS	0110		5334	RFFS	REFS	SJJO	H+FS	4FFS	5110			5330	RFFS.	PE E S	SHER	DEFS	5113	50053		
FELOCATION																					XFLOAT				XFLOAT	X-LUAI		XFLOAT	XFLOAT	C T F			XFL041		C+F																
1 TYPE	16 30	10.00		OFAL	OFAL	PF. AL	PF 4L	FFAL	DE34	1.30	PF 3L	LEAL	2541	35.41	DEAL	14:0	הי זר הי זר	1	1414	0FAL	17 20		PF.4L	77.42	DEAL	DF 21		CEAL	70-01	1430	1430	REAL	1910	DEAL	Jeal	17.30	17 30	14 10	17.0	14.50		1020	19.90	1750	DEAL	CFAL	1420	14.5	15 10	102.01	12 14
HLES S	512	0.000		440	210	SIGVE	11.115	21:22	SIEX	1915	2915	X30075	SLOPEI	7301545	451545	*15a5	1-0-01		TCC-W17	TEAC	11.45		1916A		Laillin .	VE T -	VE TO	HC.11 3A		71-136	WT-W	CLAN	A states	DIHENA	VS.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	147	VXEAP	LXA.	201171	5-17	CALYV	TYY	CTTV	VYT:JUG	2.74	12140	127		27.6	
VANI A	205	000	123	:1:	515	7.57	70.7	141	1-1	120	100	5115	4.0	11	101	511	10		114	iuus	454		133	130	500 D	141	124	5+0	114	÷ 3	151	130	* 11		35	111	125	15.		1001	745	125	549	119	1002	1+1		100	10-14	1.4	

たなど、

	15			132	114							;	53			34	66																											
,													-																															
	113			127	1/3					115			128			133	45																	CABLE										
	110	10	11	126	101			104		112			134		46	132	14				1 44	001												110100	TOWN LLI	000								
	107	DEFINED	DEFINED	163	125			101		104			137		DEFINED	5.5	DEFINED				145	641			138										IS BEST QUAL	TANKSHED TO								
	DEFINED	110	115	121	101	r x	t i	100	67	103		60	135	129	115	1.5	613				144	-01			137										THIS PAGE	YTOO MUSA								
	411	101	113	114	DEFINED	DEFINEN	2 tr	51	DESTAND	12	72	[EFIMED]	134	163	104	95	136				114			190	135																			
	117	15	75	117	\$13 \$13	**		101	15	64	Ţ,	5001	133	0.+	05	50	151			5.4	104	162	1 4 0	103	134		11					20103							114					
	REF.S	DEFS	SIIC	REFS	c71	REFS	SEFS.	241400	RFFS	5413	DEFINED	2000	132	DEFINED	RFS	PEFS	135	515		04	101	157	19	148	133	PEFERENCES	10	5				102							111			12102		
	ATION						٦F											ATT FO	 EFEHENCES	ז. כ ער ח	1.5	152	54	a J	132	DEF LINE		HEFFDENC	2024	32.	100	100	Eul	20106	106	160	2112	20112	105	117	1102	119	121	
	RELOC						U												a Searchart a		I LIHEADY		I LIFFACY	I LIGEAUY	r	Se	MIOTAL - 1	DEF LIME	ŝ	54	161	105	104	1 1 5	167	110	113	115	11+	116	120	125	162	
	TYPE DEAL	REAL	DEAL	JEAL		1530	LEAL	JAC	EAL	PEAL					15 FL	EAL		ADDE VIDE	TYPE AN	191	EAL		יב שך	EAL	L'AL	TYPE ANI	- TT		INACTIVE		INALTIVE		INALTIVE		INACTIVE	10.007705	INACTIVE			IN PUTTONI	DATION		INDCTIVE	
	Sv					4			J	u	C				a	u		L L	a	ru	r		a.	a .	a	SNOI	a	4FLS																
	winx .	11.I.X	NL NX	X T L H		ChI+X	45		IX JAA	NIWA		AT64			UNI NA	5143		DUTPH	ALS ATAWA	500	- * +	C.14.4	~1S	1115	1 1	FUNCT	S-P.	ENT LA	1	vr	t c	2	•	2	De	16	11	12	13	4 1	1	17	1+	
	141	723	124	461		134	512		720	121	C.C.L	137			735	6+1		FILE W	EXTEN							IVLIVE		STATEVE	0		0	173	c	170	6	0		605	212		217	402	0	

14:20

٠.

d

1

ħ,

FT4 4 79/01/15. 04.01.01 PAGE 	Joiel France France Transion Date 114 Presentics 1000000000000000000000000000000000000	Ter of the first of the set of t
FTW *	0.151 FTv	Ter of the control Termine Termine <thtermine< th=""> Termine <thtermine< th=""> Termine <thtermine< th=""></thtermine<></thtermine<></thtermine<>
FT4 4.5.463 FT4 4.5.463 76 VE4 (1) 167 DT (1) 419 VETUAH (1) 34 VMMHIC (1) 142 HT0 (1) 14 I.4.140 (1) 14 I.4.140 (1)	0.17-1 FTW ************************************	The file A/TL 0.1=1 Fraction 13 Te 14 15 14 14 Te 14 15 14 14 Te 1 14 14 14 Te 1 12 14 14 Te 1 201 13 14 Te 1 201 13 14 Te 201 203 203 14 Te 201 201 201 14 Te 201 201 201 14 Te 201 201 201 200 Te 201 17 201 200 Te 17 201 17 200
	 0.131 0.131 1.45 8455 8455 8455 8455 84154 8414 8414<	The state the state of the stat

D - 9

1 REXT.

4.3 12.75 4.2 -400. -600. -300.

 -2700.
 -2250.
 -2000.
 -100.
 -100.
 -000.
 -300.

 0.
 .07
 .07
 .055
 .033
 5.
 -.0175
 0.

 4.01.
 4.34.
 510.
 550.
 .033
 5.
 -.0175
 0.

 0.
 .055
 .07
 .055
 .033
 5.
 -.0175
 0.

 0.
 .056
 .033
 0.
 -.005
 -.0175
 0.

 0.
 .2550
 .550.
 .033
 5.
 -.0175
 0.

 0.
 .2550
 .550.
 .033
 5.
 -.0175
 0.

 0.
 .2550
 .2600.
 -1500.
 -1000.
 -500.
 -500

 0.
 .07
 .025
 .035
 0.
 -.005
 -.0175
 0.

 · · · .11 :: - 644--440.
 AFIZUIII
 STERDY URUPHLE VERSUS PANSE

 -1534.
 -1500.
 -1700.
 -1000.
 -660.

 U.
 -.04
 -.05
 -.03
 -640.

 -.06
 -.056
 -.03
 -.047
 -.12.

 -300.
 0.
 100.
 -.03
 -.02
 -.027
 - 440. . 25 0.1.2 2.1.2 2.1.2 KWOT-PSIS=50 DEG Z=14.58 48-14 -5 4003 1-0151H -.1355 -.16A -.05 -.154 -.134 -.05 -.175 -.167 -.14 -.174 -.167 -.14 -.174 -.167 -.14 VS T145 F.4#3A -2540. -1500. -1200. -1100. -1500. -800. -600. 0. 024 6.35 0.55 0.35 0.33 0.21 -76 4 111 Tau Ray DON ANNLE -2540. -1500 -1200. -1100. -1000. -500. 1.02 1.02 1.00 -1200. -1100. -500. -500. 1.02 1.02 1.02 1.00 - 120. -325 1.02 1.02 1.00 -1200. -325 1.02 1.02 1.00 -1200. -325 1.02 1.02 1.00 -1200. -325 1.02 1.02 1.00 -1200. -325 1.02 1.02 1.00 -1200. -325 1.02 1.02 1.00 -1200. -325 1.02 1.02 1.00 -325 1.02 1.02 1.00 -325 1.02 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 1.00 -325 1.02 -3 2.25 7.75 5.55 7.75 5.55 7.75 7.5 7.11 7.75 125 14.25 20 · - 2=2 · • 05=515- • 10: + -1.7 STICK VS STRATLIZEN GFAPIVG 50.2-5. 5 . L . S 15.31 31.- 51.41 67.68 57.71 24.11 57.74 -07 -025 -035 SIGUD RANTON HUDLE 62.45 60.55 61.55 51.25 65.27 - 3.1 .050 .052 .1..1 3..7. 411. 114 · ·
 5.
 12.

 372501111
 577501111

 5.
 1.75

 5.
 1.75

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 5.
 5.

 7.
 10.5

 1.
 10.

 1.
 10.
 -4.35 67=55A. HA-XA 80=55A 14.21 シコ・ノン 60.1 44.44 11.1. 10.02 12. 10.4.5 -5.55 1 70050111 8 10.75 75.52 71.69 30. 10.75 94.53 11.8 13.4 10.75 10.11.75 10.110.4 10.11.171 10.110.4 743441111 7.05 7.05 10.05 10.05 10.05 10.05 11.0 7.10 10.0 7.10 10.0 7.10 10.0 7.10 10.0 7.05 10.0 7.05 10.0 7.05 10.05 0. .045 71 4 1111 17.04 1.465 42.64 10.44 2 ... 7.4. C 2.1.5 • BLS PAGE IS BEST OWN TO ENAUTION TEM Oori

đ

NADC-78182-60
=14.5 =14.5 = 14.5 0 05 = 2=25 = 14.5 = 7=14.5 =
5.5 5.5 5.5 5.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
· · · · · · · · · · · · · · · · · · ·
1 1
THIS PAGE IS BEST QUALITY PRACTICABLE

*

d

A

FROM COPY FURNISHED TO DDC

۰.

1 for a start

																						1	IAN	DC-	-78	818	32-	-60)																		
			6 4	r	<i>c</i>	-	1	2	0	4 1	rc	2		- 0		t	s.	• •	-	1	~ (₹) 3	۰.	•	7	1	N	en ,	1 I.	£	2	1	N	ا ت رو	J.		,	1	ŝ	۶,	4 1	n 4	1		- 0		,
-2=7 00=513-						1.1.1					1		7=14.58						2=23							1-44.12					7=14.95							()='						-44.35			
ST		67.54	51.11	14.75	13.11	-1 03-5150	1	14.4	111	14.13	12.23	5112	05=sise a	(.). 	15.73	14.4	17.14	15.77	6415154	¿=1.	14.33	14.57	14.44	17.48	7.05	00=5150	17.54	14.31	14.51	15.37	3.744 5.744	· · · · · · · · · · · · · · · · · · ·	15.47	16.11	20. vi	14.43	7.236	250.	17	14.12	14.11	22.21	7.114	F414=20 Z		15.54	14.24
551 24	12	13.00	1 4 . 4 7	17.57	56.41	50.00	1.4.	11.41	17.11	14.67	11.90	14.05	153=4	125.	10.01	17.45	17.73	11.11	V55=45	125.	1:02	20.11	12.01	17.16	17.56	1.5.	17.14	55.02	20.32	C 1	11.13	127.	17.4	15.74	10.47	4.11	13.53	125.	14.44	15.4	14.04	50.01	15.37	5+= 554	1	1	21.66
s:	•••	12.27		44.4	15.12	13.44L		12.02	19.33	23.52	55.61	41.51	1913		14.02	50.21	15.46	10.50	2164		62.13	14.21	13.50	14.47	12.242	1015	26.01	21.24	10.12	52.31	14.52	-u6	17.5.4	16.35	52.01	11.15	14.67	2010	16.43	17.42	17.43	11.02	1172	2.015		21	6 35
	37.	11.79	18.74	10.42	14.25	13.64%		3.72 .	13.73	20.34	4.75	10.41	11140	37.	11.12	10.44	12.44	11.61	11.50	37.	17.77	1.53	17.05	13.95	14.29	111-11	4.24	14.32	5.42	19.74	16.32	37.	17.01	14.33	14.34	13.52	14.37	11100	12.43	10.50	17.39	11.01	14.54	1:1:0	37.	16.67	20.17
		5.40	14.01	17.5	19.41	10.04		1.05	44.0	*	2.00 1	14.24	2028		1.4	11.43	10.04	14.55	10.100		4.7	14.02	17.0	10.01	42.54	1005	1.19	5.63	0.5	12.77	15.35	C	11.6	44.02	12.01	14.05	14.062	-1.75 . 0	5.05	17.45	14.5	14.74	11.010	SUEN		1.1	51.0
		.15	-1-		;	•	*	52		. 15				FS		.75		::			c1.0	,	c1.		.0.	15	.1.		c1.	:	.0.	15	. 75		c .		10.		.1.1		. 15		.2		FC.		e1.

-

d

1

THIS PAGE IS BEST QUALITY FRACTICABLE FROM OUFY FARMISHED TO DDC

States .

APPENDIX E

Variable Definitions for FF 1052 Program

-

d

A	Common Array
ALT	Altitude of Aircraft cg Above Sea Level - Ft.
B	Common Array
Beam	Ship Beam - Ft.
CPSIREL	Cosine of Relative Wind Angle
CPSISR	Cosine of Ship Heading Angle
CPSIW	Cosine of Absolute Wind Direction
DT	Integration Frame Time - Sec.
DTW	Integration Frame Time of Turbulence Subroutine - Sec.
DTX	Update Time Increment of X-Random Number Generator - Sec.
DTY	Update Time Increment of Y Component Random Number Generator
DTZ	Update Increment of Z Component Random Number Generator
EXPX	X Component Difference Equation Parameter
EXPY	Y Component Difference Equation Parameter
EXPZ	Z Component Difference Equation Parameter
FOMEGX	X Frequency Extrapolation Function
FOMEGY	Y Frequency Extrapolation Function
FX1	X Direction Extrapolation Function
FY1	Y Direction Extrapolation Function
FZ1	Z Direction Extrapolation Function
Fl	Total Extrapolation Function
HTD	Height of Touchdown Point Above Sea Level - Ft.
IA	Integer Common Array
IB	Integer Common Array
IMODE	Simulation Mode Switch
IONCE	Random Number Startup Option Switch
IRDSTX	Initial Value of X - Random Number Sequence
IRDSTXI	Current Value of X - Random Number Sequence
IRDSTY	Initial Value of Y - Random Number Sequence
IRDSTYI	Current Value of Y - Random Number Sequence
IRDSTZ	Initial Value of Z - Random Number Sequence

E - 1

A BERNARD

IRDSTZI	Current Value of Z - Random Number Sequence
IWIND	Turbulence on/off Flag
IX	Machine Dependent Random Number Generator Parameter
OMEGX	X - Component Filter Constant
OMEGY	Y - Component Filter Constant
OMEGZ	Z - Component Filter Constant
PI	3.14159
PSIREL	Angle of Relative Wind With Respect to Ship - Rad.
PSIS	Ship Heading - Deg.
PSISR	Ship Heading - Rad.
PSIW	Absolute Wind Direction - Rad.
RANDX	Interpolated Value of X - Component Random Number Generator
RANDXN	Current Output of X - Random Number Generator
RANDXO	Previous Output of Y - Component Random Number Generator
RANDY	Interpolated Value of Y Component Random Number Generator
RANDYN	Current Output of Y Random Number Generator
RANDYO	Previous Output of Y Random Number Generator
RANDZ	Interpolated Value of Z Component Random Number Generator
RANDZN	Current Output of Z Random Number Generator
RANDZO	Previous Output of Z Random Number Generator
RLS	Ship Length - Ft.
RLTD	Distance From Bow to Touchdown Point - Ft.
RMODE	Mode Parameter
RNX	X Component Time Increment Ratio
RNY	Y Component Time Increment Ratio
RNZ	Z Component Time Increment Ratio
SIGVX	X Velocity Variance - Ft./Sec.
SIGVY	Y Velocity Variance - Ft./Sec.
SIGVZ	Z Velocity Variance - Ft./Sec.
SIGX	Tabulated X Component Variance - Ft./Sec.
SIGY	Tabulated Y Component Variance - Ft./Sec.
SIGZ	Tabulated Z Component Variance - Ft./Sec.
SLOPEX	X Extrapolation Parameter
SLOPE1	X Boundary Definition Parameter
SPSIREL	Sine of Relative Heading Angle
SPSISR	Sine of Ship Heading

1

E - 2

SPSIW	Sine of Wind Heading
TCOUNT	Update Time Counter - Sec.
TCOUNTX	X Update Time - Sec.
TCOUNTY	Y Update Time - Sec.
TCOUNTZ	Z Update Time - Sec.
TFAC	Turbulence Update Paramater
TIME	Simulation Time - Sec.
VDTN	Current Value of Vertical Turbulence Component - Ft./Sec.
VDTO	Previous Value of Vertical Turbulence Component - Ft./Sec.
VDTURB	Interpolated Value of Vertical Turbulence - Ft./Sec.
VDW	Total Vertical Wind Including Free Air Wind - Ft./Sec.
VETN	Current Value of Computed East Turbulence Component - Ft./Sec.
VETO	Previous Value of Vertical Turbulence Component - Ft./Sec.
VETURB	Interpolated Value of East Turbulence - Ft./Sec.
VEW	Total East Wind - Ft./Sec.
VEWBIC	Initial East Wind Component - Ft./Sec.
VNTN	Current North Turbulence Update - Ft./Sec.
VNTO	Previous North Turbulence Update - Ft./Sec.
VNTURB	Interpolated North Turbulence Component - Ft./Sec.
VNW	North Wind Component - Ft./Sec.
VNWBIC	Initial North Wind Component - Ft./Sec.
VS	Ship Speed - Ft./Sec.
VW	Total Steady Wind - Ft./Sec.
VW1	Velocity Ratio
VXBar	Mean X Turbulence Velocity - Ft./Sec.
VXT	Random X Component of Turbulence - Ft./Sec.
VXTP	Previous Value of VXT - Ft./Sec.
VXTURB	Total X Component of Turbulence - Ft./Sec.
VXWS	Tabulated Mean X Velocity Component - Ft./Sec.
VYBar	Mean Y Turbulence Velocity - Ft./Sec.
VYT	Random Y Component of Turbulence - Ft./Sec.
VYTP	Previous Value of VYT - Ft./Sec.
VYTURB	Total Y Component of Turbulence - Ft./Sec.
VYWS	Tabulated Mean Y Velocity Component - Ft./Sec.
VZBar	Z Component Mean Turbulence Velocity - Ft./Sec.
VZT	Z Component of Random Turbulence - Ft./Sec.
VZTP	Previous Value of VZT - Ft./Sec.

E - 3

Sting

VZTURB	Total Z Component of Turbulence - Ft./Sec.
VZWS	Tabulated Mean Z Turbulence Velocity - Ft./Sec.
XE	North - South Distance From Aircraft cg to Touchdown Pt Ft.
XMIN	Forward Limit on Turbulence Region - Ft.
XMIN1	Intermediate Value of XMIN - Ft.
XMIN2	Intermediate Value of XMIN - Ft.
XTaB	X Table Lookup Parameter - Ft.
XWIND	Aircraft Position Measured Parallel to Relative Wind - Ft.
YE	Aircraft East - West Position Relative to Touchdown Point - Ft.
YMAX	Right Limit on Turbulence - Ft.
YMAX1	Intermediate Value of YMAX - Ft.
YMIN	Left Limit on Turbulence - Ft.
YMIN1	Intermediate Value of YMIN - Ft.
YTaB	Y Table Lookup Parameter
YWIND	Aircraft Position Relative to Touchdown Point Measured Transverse to Wind Direction - Ft.
ZTaB	Z Table Lookup Parameter - Ft.

.

APPENDIX F

FF 1052 Algorithm Flow Chart

Cart

S. Alexandra

F - 2

A CARLES AND A CARLES

F - 3

Set al

DISTRIBUTION LIST (Continued)

No. of Copies

Boeing AeroSpace Corp., Mail Stop 41-11, P.O. Box 98124,	
Seattle, Wash 98124	1
(1 for Mr. Donald West)	
Naval Ship Research & Development Center, Bethesda, MD 20084,	
Code 1613	1
(1 for Mr. Charles Bernitt)	
Naval Air Engineering Ctr., Lakehurst, NJ 08733, Code 91315	1
(1 for Mr. Robert Black)	
Delft University of Technology, Dept. of Aeronautical	
Engineering, Delft - The Netherlands	1
(1 for G.A.J. vande Moesdijk)	
Superintendent, Naval Postgraduate School, Monterey, CA 93940	1
(Attn: Dr. L. Schmidt)	

DISTRIBUTION LIST

REPORT NO. NADC-78182-60

AIRTASK NO. WF-41-400-000

P.E. No. 62241N

|--|

NAVAIR (AIR-950D	8
(3 for AIR-320D)	
(3 for AIR-530112)	
DDC	12
NAVAIRTESTCEN Detuyent River Md 20070	12
(1 for Wr. Anthony Decetti)	-
NASA Amon December Conter Moffet Field CA 0/025	
(1 for We Walter Velotil)	+
(1 for Mr. Walter McNelli) Regins Ventel Company D.O. Boy 16059 Didle DA 101/2	
boeing vertoi company, P.O. Box 10000, Phila., PA 19142	1
(I for Mr. Ineodore Garnett, Jr.)	
McDonnell Aircraft Company, St. Louis, MO 63166	T
(1 for Mr. Douglas Miller, Harrier Project)	1
Vought Corporation, P.O. Box 5907, Dallas, TX 75222	2
(1 for Mr. Robert Fortenbaugh)	
(1 for Dr. Julian Wolkowitch)	
Systems Control Incorporated, 1801 Page Mill Road,	
Palo Alto, CA 94304	1
(1 for Mr. Jeffrey Bohn)	
Rockwell International, Columbus, OH 43216	1
General Dynamics Corporation, Ft. Worth, TX 76101,	
P. O. Box 748	1
Northrup Corporation, Hawthorne, CA 90250	1
Grumman Aerospace Corp., Beth Page, L.I., NY 11714	2
(1 for Mr. S. Kalemaris)	
(1 for Mr. P. Martorella)	
Royal Aeronautical Establishment, Bedford, England	2
(1 for Mr. A. Woodfield)	
(1 for Mr. B. N. Tomlinson)	
Systems Technology, Inc., 13766 Hawthorne Blvd., Hawthorne,	
CA 90250	1
Bell Helicopter Company, Fort Worth, TX 76101	1
(1 for Mr. Peter O'Reilly)	
NAVEDTRA SUPP CENLANT, Bldg 286, Naval Station,	
Norfolk VA 23511	1
(1 for Mr. Brian Sonberg)	-
Lockheed California, Company 75-84/63/A-1, Burbank	
CA 91520	1
(1 for Mr Arthur Schustz)	-
National Research Council Canada Ottawa Canada	1
(1 for Dr. Maywell Sinclair)	•

CONTINUED ON INSIDE OF COVER