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PREFACE

The motivation for this research is an on-going in-
terest on the part of the Air Force Weapons Laboratory for
atmospheric propagation of electron beams. Earlier work,
performed by Briggs, at Lawrence Livermore Laboratory, and
Johnston at Science Applications, Inc., focused on propa-
gation of relativistic electron beams through air at sea-
level conditions, and on beam currents of 15 kilo-Amperes
and less. Models for both the air beam intereaction and
the electric and magnetic fields were deemed valid only
under these conditions of interest. An exception to this
was the low-pressure modeling by Briggs for Livermore's
FX-25 experimental data. However, the low pressure model
of the air-beam interaction did not include electronic
attachment or recombination, and is consequently invalid
above a pressure of 50 Torr.

Three high-energy electron beam accelerating machines
at the Air Force Weapons Laboratory are available for
air propagation experiments. A large range in beam cur-
rent and energy is possible with these machines. Electron
beam energy is variable from one MeV to seven MeV, and the
beam currents can be varied from 10 kilo-Amperes to 250

kilo-Amperes. In addition, vacuum chambers attached to
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all three machines allow the pressure to be varied from a
few milli-Torr up to 630 Torr (one Albuquerque atmosphere).
Therefore, in anticipation of and support for the

atmospheric propagation experiments, it was decided to
initiate a long-term study at the Air Force Weapons
Laboratory whose aim was to describe the electric and
magnetic fields of an electron beam pulse from the various
machines as the pulse passes through air. What is reported
here is a part of that study.

To accomplish this required model adaptation and
development to extend the calculational regime over all
pressures and beam currents of interest. In particular,
this study

(1) adapts an air chemistry model from Wittwer that
was originally developed for high-altitude electromagnetic
pulse (EMP) studies. This model is extensively modified
to encompass high pressures (low-altitude) effects and
include improvements in ionization modeling. It is the
only model in existence capable of adequately describing
the state of the plasma over the pressure range of five
Torr to 760 Torr.

(2) extends the calculational regime above 15 kilo-
Amperes up to 1,000 kilo-Amperes. This study establishes
the existence of the current saturation phenomenon and,
for the first time, calculates the value of the saturation

current.




There are two other features that make this study
unique.

(3) A two-dimensional model for the electric and
magnetic fields is developed that is based upon the fields
themselves, rather than upon the potentials. The computa-
tional works of Lee, for example, are based upon EM poten-
tials.

(4) This study extracts the dominant elements of
electromagnetic theory to produce a simple one-dimensional
model of the fields. The excellent agreement with experi-
ment demonstrates the validity of the models in this
study.

There are a large number of people that have aided me
in the pursuit of this work; I cannot thank them all, but
I would like to especially thank the following people:
Edward Lee and Richard Briggs, and the rest of the Lawrence
Livermore Laboratory beam group for their time and ideas;
Keith Brueckner, University of California at San Diego,
and John Jackson, Air Force Acedemy, for initially piquing
my interest on this project; Robert Johnston, Science
Applications, Inc., Palo Alto, for many fruitful discus-
sions and for persuading me to perform the ionization lag
calculations; Leon Wittwer, SAMSO, for his initial support
and critical review; Norman Roderick, Harald Dogliani, and
the rest of the Air Force Weapons Laboratory management

that gave me time for this work; and Phil Nielsen, my

-




dissertation adviser. Most of all, I thank my wife,
Joyce, and my children for supporting me in those crucial

years.
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Abstract

Since propagation characteristics of an electron beam
traversing a neutral gas are determined by the response
of the beam electrons to their self-fields, an accurate
evaluation of the electric and magnetic (EM) fields is
essential to any propagation analysis. We report here on
theoretical models that were developed for the electro-
magnetic fields associated with an electron beam propa-
gating in air. One- and two-dimensional models of the
fields, and a model for the electron avalanche of the air,
were solved on a computer. The major conclusions from
calculational results are:

(1) The ionization model adequately describes the
ionization process over a pressure range of from five Torr
to 760 Torr.

(2) Ionization lag from the high energy secondary
electrons is unimportant.

(3) In many cases the one-dimensional model was
found to be as good as the two-dimensional model.

(4) The net current saturates near 15 kilo-Amperes
at sea-level pressure, and saturates at lower values at

lower air pressures.
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ELECTRIC AND MAGNETIC FIELDS OF AN
INTENSE PULSE OF RELATIVISTIC ELECTRONS

PROPAGATING THROUGH AIR

I. INTRODUCTION

Purpose

Recently, intense interest has surfaced for employing
relativistic electron beams for various scientific and
military purposes. One major application is to heat a
plasma, or pellet, to thermonuclear temperatures (Refs 1,
2). Since the expected thermonuclear reaction is quite
intense the accelerator producing the electron beam must
be separated from the target by a stand-off distance on
the order of 10 meters. In addition, a neutral gas,
probably air, may be placed in the region between the
accelerator nozzle and the target to absorb some of the
thermonuclear energy and minimize damage to the accel-
erator. Thus, for this application to be successful, the
electron beam must stably traverse the stand-off distance
with little or no spreading or energy loss. Some other
applications also require propagation over extended
distances.

Successful propagation through air over extended

distances is by no means assured. A host of parasitic
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phenomena seemingly conspire to severely limit propagation
of intense electron beams. Of the experiments performed
to date no electron beams have been stably propagated
through air at atmospheric pressure (Refs 3, 4, 5, 6).
In all of the experiments the mechanism that prevented
successful propagation was beam breakup caused by the
hose instability (Ref 7). In a series of experiments
performed at the Air Force Weapons Laboratory the hose
instability was minimized to the extent that the beam
propagated a distance of 12 feet without significant hose
distortions (Ref 6). However, the beam was seen to
diverge before breakup due to elastic scatter off of gas
molecules (Ref 8). This divergence, called "Nordsieck
expansion", is expected to be prevalent at atmospheric
pressure whenever the hose instability is not present.
Although the strength of the hose instability is
lessened at lower pressures another instability, the two-
stream instability, can completely stop the beam after
traveling just a few centimeters (Ref 9). Of the three
experiments performed to date on intense electron beam
propagation in reduced pressure air, all report evidence
that the two-stream instability occurs under certain
conditions (Refs 3, 4, 5). Of these experiments, one
showed no stable propagation at any pressure (Ref 3),
another showed a very narrow stable propagation window at
a pressure of two Torr (Ref 4), and the third showed a

narrow stable propagation window at a pressure of 20 Torr




(Ref 5). Apparently, the hose instability causes the beam
to break up at pressures above the window pressure, and
the two-stream instability stops the beam below the window
pressure.

In addition to these phenomena, there are others,
such as beam-head erosion (Ref 4) and return current
heating (Ref 10) that have been observed to degrade beam
propagation.

The behavior of all of these phenomena are critically
dependent upon the environment seen by the beam. In
particular, the beam electrons are acted upon by their own
electric and magnetic (EM) fields, and these fields ulti-
mately become the sources for the parasitic phenomena that
degrade propagation through air. Until quite recently an
adequate description of the EM fields was not available,
primarily because the dominant interactions had not been
extracted from the details of the beam electron-air inter-
action. As an example, in EM field calculations performed
by Johnston in 1975 (Ref 11), he considered over 300
chemical reactions that could be induced in air by an
intense pulse of relativistic electrons passing through
air.

It has been the intent of this work to adapt the
simplified theories of others to the electron beam-air
interaction problem, and devise simplified, yet accurate,
models where necessary in order to extract the dominant

physical mechanisms so that accurate determinations of the




EM fields can be made. Therefore, in this study, these
fields are determined for an intense pulse of relativistic
electrons propagating through cold air that has not been
previously ionized. The coupled air ionization-beam
electric field problem is the most difficult of all
propagation problems.

As the beam electrons pass through air they interact
with the gas molecules to produce a weakly ionized plasma.
This plasma is composed of electrons and an equal number
of singly ionized positive ions. Since the ions are
immobile over the time scales of interest in this study
(less than 10~7 seconds), any current that flows in the
plasma is carried by the plasma electrons. The EM fields
are strongly influenced by the plasma conductivity, so the
EM fields are strongly coupled to the free electron den-
sity. Therefore, this study also treats the ionization
process in some detail. We include beam electron impact
ionization, ionization produced by high energy secondary
electrons (cascade ionization), and ionization produced by
breakdown in the intense EM fields associated with the
beam (avalanche ionization). The same general procedures
used here can be used for propagation of other types of
particles, or through other neutral gases, providing the

appropriate reaction rates and cross sections are employed.

Background

A great deal of information has been amassed in
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recent years describing some facets of direct (impact plus
cascade) ionization of a neutral gas by energetic charged
particles and avalanche ionization by intense EM fields.
Cosmic ray studies, for example, include ionization esti-
mates of the slowing down of solar protons in the upper
atmosphere (Ref 12). The electromagnetic pulse phenomenon
depends, in part, on the secondary electrons generated as
Compton electrons ionize the background gas (Ref 13).
Finally, a large amount of literature is available on
electrical discharges in gases (Refs 14, 15).

A relativistic pulse of charged particles ionizes the
air by both methods; direct ionization by energetic
charged particles, and avalanche ionization produced by
intense EM fields. For example, a one MeV electron pro-
duces about 25 electrons per centimeter of travel through
sea level density air. Some of these electrons are quite
energetic and, consequently, produce more ionization in a
cascade process. This results in an additional 35 elec-
trons per centiméter of travel. These cascade electrons
are produced over a period of about one nanosecond, based
on estimated cross sections found in Appendix E. This
phenomenon is called the "ionization time lag". The total
ionization rate, including both impact and cascade ioniza-

tion, is roughly 2 x 1012

electrons per second per beam
particle.
In addition to this ionization mechanism, electric

fields may reach levels that rapidly accelerate thermal
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electrons to energies above the ionization threshold,
resulting in avalanche ionization. The ionization thresh-
old is near 12.8 eV for oxygen and 15.6 eV for nitrogen.
For a beam in a vacuum with a current of I=10 kilo-Amperes
and a radius a of one centimeter, the radial electric
field at the radial edge of the pulse is

B % e w TN o 2 180 Via (1-1)

r ca
where c is the speed of light. This value is well above
the sea level air breakdown threshold. Longmire (Ref 16
and Appendix B) estimates the e-folding time for the
avalanche produced by this field to be about 2
seconds.

This rapid ionization and concomitant increase in the
electrical conductivity is responsible for a rapid depar-
ture of the electric fields from the fields of a pulse in
a vacuum. Consider a pulse with longitudinal and radial
profiles given in Figures 1 and 2. When passing through
air the pulse fields change from their vacuum values to
resemble the fields illustrated in Figures 3, 4 and 5.
These changes all occur in the rise portion of the pulse,
Az. The radial electric field, Er’ is determined solely
by the net space charge. Hence, the rising conductivity
will reach a value in a short period of time that is high
en. 4 to short out the radial field. The characteristic

time for the field to decay is the charge neutralization
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Figure 1. Longitudinal Density Profile

Figure 2. Radial Density Profile




Figure 3. Radial Electric Field
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time, T defined by
‘.\
o 1
T, ® g (1-2)
c
1
where T = t - z/Bc is the time elapsed since pulse arrival
and I(t) is the background electron conductivity. As the )
radial field decays (Fig 3) the longitudinal field (Fig u) A

is driven to assume a value which is opposite in sign and
normally much stronger than the longitudinal field in a
vacuum. After the radial field has decayed away completely
the longitudinal field has assumed its inductive form
determined from §¥ BO' Since Ez acts in a direction so as
to generate a plasma current which flows counter to the
beam current, Ez must decrease with increasing conductiv-
ity. The result is that the plasma current increases
until the time derivative of the plasma current and beam
current are equal and opposite. At this point the mag-
netic field is "frozen" into the plasma (background
electrons) created by the beam, and Be ceases to increase.

The characteristic time for this to occur is called the

current saturation time and is estimated to be

unazz(TI)
—_— (1-3)




Previous Research

This complex interaction between the beam particles,
the EM fields, and the background electrons was first
modeled by Johnston (Ref 11). He considered a pulse of
relativistic electrons with the same longitudinal profile
as shown Figure 1, but the radial profile was considered
constant out to radius a, and zero for radial distances
greater than a. Instead of solving Maxwell's equations

directly he employed the following circuit equation,

L

I

EZ = - L 3t (1-4)
where
L = inductance, an adjustable parameter, generally
of order 2/c?
1 = total current = Ib + Ip
Ib = beam current
Ip = plasma (counter) current, = naZZEZ (1-5)

This circuit equation (1-4) can be derived by ignoring the
displacement current, performing a retarded time transfor-
mation to the beam frame, assuming no variation of param-
eters in the radial direction, and time invariance in the
retarded frame.

Equation (l1-4) was solved simultaneously with a large
set of rate equations (over 300), describing the reactions

among many different species of particles found in the
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air, in order to calculate the conductivity. Johnston
further assumed a beam particle ionization rate of 100
electrons per centimeter of travel, all produced instan-
taneously and with an energy of 7.5 eV. The radial
electric field was ignored and the magnetic field inferred
from the net current. Obviously, radial information is
lost in his model.

More recently, Lee (Ref 17) has modeled these inter-
actions in his numerical program, EMPULSE. In his model
the fields are coupled to the background electrons through

the conductivity given by

£ e (1-6)

with v, = 6.4 x 109/(Torr), independent of the electron
temperature. The beam electron ionization rate is taken
as 63 electrons produced per centimeter of travel. The
avalanche coefficient he used is an E/p fit from data of
Felsenthal and Proud (Ref 18). Recombination and disso-
ciative attachment are ignored. Pulse profiles considered
by Lee are similar to those shown in Figures 1 and 2, but
they differ in that the top of the rise portion is rounded.
Lee's program does not evaluate the field components
themselves, but rather employs the scalar potential, ¢,

-+
and the longitudinal component of the vector potential, A.

In a fashion similar to Johnston he employs the retarded

1l

P




time transformation to the beam frame and assumes time
invariance in the new set of independent variables. He
retains variations in the radial dimension but does not
include attachment or recombination. Thus, the program is
two-dimensional and time independent. Originally developed
to simulate the hose instability, EMPULSE contains many
other features which are necessary to adequately describe
the instability. The computational times are quite long,
however, requiring the simplified handling of the back-
ground electrons. Lee also presents experimental data
that is compared to the results of EMPULSE. The agreement

is poor at pressures above 50 Torr.

Scope of Present Work

In this work we improve upon the previous efforts in
the following ways:

% We derive a two-dimensional model (r and z
variation) of the EM fields from Maxwell's equations. We
employ the fields directly, rather than the potentials,
and so we eliminate the necessity of numerical differen-
tiation of the potentials to find the electric field
strength. A key assumption in the model is setting the
longitudinal displacement current equal to zero. Although
this is not rigorously correct, it is at least consistent
with the observation that in the limit of zero conductiv-
ity and very high beam electron energy, the longitudinal
field vanishes.

2. Guided by the results of the two-dimensional

12
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model a one-dimensional model (z variation only) is
derived by explicitly modeling the radial variation of the
conductivity. From this assumed variation of the conduc-
tivity, radial variation of other parameters is found
analytically. For most cases the numerically determined
axial variation of the fields closely agree. The one-
dimensional model is computationally simpler than the two-
dimensional model, and the simplicity of the equations
allows deeper physical insight.

3 s We present a bulk ionization model, consisting
of a set of fluid equations for the plasma electrons,
and a lumped restricted set of reaction rates. This model
was originally devised by Wittwer (Ref 19) for studies of
the high-altitude electromagnetic pulse (EMP). It is
modified here to include low-altitude effects and cascade
ionization. Although the model is considerably simpler
than some, it retains all of the important reactions. It
is the only documented model that accurately describes the
state of the background plasma produced by the beam for
air pressures of five Torr to 760 Torr. Its simplicity
allows insight into the role of various reactions, and its
accuracy resolves some key issues.

4. The calculational regime is extended to currents
up to 1,000 kilo-Amperes. Previous calculations focused
on beam currents near 10 kilo-Amperes. Above 10 kilo-
Amperes a pronounced saturation of the net current (beam
current plus plasma current) is predicted, and is in

13
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agreement with available experimental data. Status of

these calculations is summarized in Table I.

TABLE I

SUMMARY OF BEAM CALCULATIONS

These categories are included by the following authors:

Johnston Lee Dreyer
Longitudinal Dimension X X X
Radial Dimension X X

Maxwell's Equations solved via-
Circuit Equation X X
Vector Potential X
Electric and Magnetic Field X

Includes-

Radial Electric Field X
Avalanche Ionization X X

Recombination & Attachment X

X X X X

Electron Ionization Cascade

The range of parameters considered in this study is
given in Table II, and explained below. Of the parameters
listed here only two, air pressure and pulse current, are
limited by assumptions of the models. The rest of the

parameters are limited by practical considerations.

14
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TABLE II

SUMMARY OF PARAMETERS

Beam Electron Kinetic Energy: 1 - 10 MeV

Pulse Current: I<<IA, 1-1,000kA
Bennett Radius: 6.1 cm = 10 cm
Pulse Duration: 1x10™8 - 1x10°7 sec
Air Pressure: 5-760 Torr

Electron kinetic energies are taken to be between one
and 10 MeV becausz energies below about one MeV are not
strongly considered for the fusion application, and vir-
tually no machines exist with high energy densities that
have beam kinetic energies above 10 MeV.

The pulse current must be less than the Alfven '‘cur-

rent, I defined by

A,

1 = Bymc?

and is 1.70 x 10u By Amperes for electrons. It is the
maximum current a charge neutralized beam can carry (Refs
20, 21). Requiring I<<IA means that the beam particles in
a charge neutralized beam follow nearly straight line
trajectories. The lower limit of one kA is chosen to
bound the current saturation phenomenon.

The equilibrium radius that a pulse establishes after

15




exiting an accelerator is determined, in large part, by
the scatter produced by the exit foil, if a foil is used
(Ref 22). A realistic minimum of 0.1 cm is established by
consideration of foil thickness and type. Above a 10 cm
radius a 1,000 KA pulse has an energy density too small to

be of importance in the fusion application.

8 7

The pulse duration is taken between 1x10 ~ and 1x10~
seconds. This range in pulse length is chosen since most
accelerators, and some planned accelerators, that produce
intense relativistic electron beams have pulse lengths in
this range.

A fusion reactor, employing electron beams, may
require a partially evacuated path for the beam to tra-
verse. The two-stream instability threshold is near a
pressure of one Torr, with the actual pressure threshold
depending upon the beam temperature. Rapid attenuation of
the beam follows onset of this instability. Thus, we
restrict our attention to pressures at and above five Torr.

Three numerical programs were written in the course
of this study. The first program, named BEAM1, solves
Maxwell's equations in two dimensions while simultaneously
solving the fluid equations of the ionization model. It
is assumed that in a coordinate frame moving with the
velocity of the beam particles the fields are time inde-
pendent, and the equations are solved in such a frame.

The second program, named BEAM2, solves the one-

dimensional EM field equations simultaneously with the
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equations of the ionization model. Since numerical evalua-
tion of the fields is only carried out over the axial
direction, BEAM2 is considerably cheaper to run than

BEAM1. Execution times for BEAM?2 typically run a factor

of 50 less than execution times for BEAM1l. Equations
solved by BEAM2 are solved in the same reference frame as
in BEAM1.

A third numerical program, named MONTY, was written
to investigate the details of the secondary electron
ionization cascade. Results from this program are used as
a source for deriving a simplified model of the cascade
that is included in the ionization model. Program MONTY
employs Monte-Carlo simulation of the interactions between
the plasma electrons and the neutral gas. Both elastic
and inelastic processes are handled explicitly in a one-
dimensional velocity space. An external electric field is
applied requiring one dimensional electron trajectories to
be calculated. Program MONTY is expensive to run so
results are necessarily limited to short pulse times and
pressures substantially below atmospheric pressure.

While introducing a significant reduction in mathe-
matical complexity, we feel that the present calculations
are the most accurate available, and extend over a far

wider range of parameters.

Major Conclusions

1. For what experimental data exist both the one-

dimensional and two-dimensional models, along with the
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ionization model, adequately predict the observed electron
density and net current flow. Differences between experi-
ment and theory may be attributed to the uncertainty in
modeling the pulse shape.

2. In view of the fact that the one-dimensional
model is in close agreement with the two-dimensional
model, and with experiemental data, it is concluded that
the one-dimensional model developed here adequately pre-
dicts the EM fields, conductivity generation, and net
current flow. The substantial savings in computing time
over the two-dimensional model allow parameter studies to
be performed cheaply.

3l At low pressures (less than 100 Torr), conduc-
tivity generation in the pulse rise portion is dominated
by avalanche ionization, rather than by direct ionization.
Consequently, field calculations in this portion of the
pulse and at these pressures are insensitive to the delay
in ionization by the high energy secondary electrons that
are created by beam electron impact. Calculated values of
the net current and EM fields are virtually independent of
the delay time. Thus, the phenomenon of ionization time
lag is unimportant in determining EM fields or net current
flow.

4. Ignoring avalanche ionization, the magnetic dif-
fusion time scales linearly with the beam current. Con-
sequently, the "frozen-in" value of the magnetic field and

the net current flowing in the pulse are virtually inde-
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pendent of the beam current, as long as the beam current
is sufficiently high. Thus, the net current is seen to
saturate. At a pressure of one atmosphere saturation
occurs for beam currents above 15 kilo-Amperes. The
saturation value of the net current decreases with a

decrease in air pressure.

Outline of Remaining Sections

In the next section we derive the two-dimensional EM
model equations. Simplifications and approximations
introduced in their derivation are discussed. Section III
contains the development of the one-dimensional EM model.
The one-dimensional model is derived by handling the
radial variation of parameters in an analytic fashion. In
Section IV the ionization model is introduced. Important
results are given in Section V, and the major conclusions
of this work, along with recommendations for further
research are presented in Section VI. Some additional

details are found in the appendices.
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ITI. TWO-DIMENSIONAL MODEL OF EM FIELDS

Introduction

In this section we derive a set of equations for the
electric and magnetic fields that is two-dimensional (r
and z variation) and time independent. Although some
limiting assumptions are applied to Maxwell's equations,
all important terms are retained. Since both axial and
radial variations of the fields are included, behavior of
the fields in both dimensions can be observed from numer-
ical solutions of the equations. From these equations,
and with additional assumptions, we derive the equations
of the one-dimensional model in Section III.

The remainder of this section is split into several
parts. In the next part we present the principal assump-
tions of the two-dimensional model, and, in the following
part, the basic field equations are derived. After that
we apply the retarded time transformation, and require
time invariance in the transformed system to arrive at the
model equations. Finally, the boundary conditions are

specified, and a short discussion follows.

Principal Assumptions

The principal assumptions employed in the two-

dimensional model are the following:
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i 5 Axial symmetry. By requiring axial symmetry the
only non-zero field components are Er’ the radial electric
field, Ez, the axial electric field, and Be, the azimuthal
magnetic field.

2. Paraxial motion of beam electrons. We do not
require here that the beam electrons move exactly parallel
to the beam axis, but we do require that the beam elec-
trons move almost parallel to the beam axis. That is, we
require |3]<<6c, where Vv is the perpendicular beam elec-
tron velocity, and Bc is the parallel velocity. This
assumption is valid in all parts of the beam.

3 Axial displacement current is ignored. This
assumption is valid as long as a/Az<<1l, where a is the
beam radius and Az is the beam rise length. It is made to
reduce the complexity and execution time of the numerical
program, BEAM1, that solves the two-dimensional model
equations. Retaining the displacement current results in
an advective differential equation, so the associated
difference equation is subject to the Courant condition
(Ref 23). Ignoring the term results in a diffusive dif-
ferential equation with an associated finite difference
equation that is not subject to the Courant condition (Ref
24). Output from BEAM1 shows that, in all of the cases
considered in this study, the axial displacement current
density is at least an order of magnitude less than the

axial conduction current density.
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y, Beam fields translate rigidly in space. Thus,
all parameters are only functions of the retarded time
coordinate (t-z/Bc). This assumption is analogous to the
"high-frequency approximation" of Karzas and Latter (Ref
25) in their analysis of the electromagnetic pulse
generated by a high altitude nuclear burst. This assump-
tion is rigorously correct in the limit B + 1 because,

a. for B = 1 the paraxial approximation 2.
reduces to rigid translation of the beam at the speed of
light.

b. for B = 1 the domain where EM fields can be
determined reduces to the half-space in the direction of
motion of the beam electrons (Ref 26), so the fields can
only be influenced by events occurring in that half space.

(8 the fields vanish at the head of the pulse.
The author has verified this assumption for the case B >
0.9 by computer solution of the exact equations of Maxwell.
It is clear that this assumption will break down if the

paraxial approximation does not hold.

Basic Equations

In vector form, Maxwell's equations are

V.%F-= bmp (2-1)
VxE:-%g_E- (2-2)
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->
V’xﬁ:i—"lﬂ«%g—%— (2-3)

By assuming axial symmetry, the component equations in

cylindrical coordinates are

BEZ
(PEI‘) + KZ— = I-H!'D (2-14)

oFE 9B
Pk O N (2-5)

9z c ot

aBe
e Lnerr - (2-6)
(e =

+ un(Jbz * Jpz) = =5 (rBe) (2-7)

where Jpr is the radial component of the plasma current

density, Jpz

density, and J

rent density.

bz

is the axial component of the plasma current

is the axial component of the beam cur-

Under the paraxial approximation the radial

component of the beam current density is zero.

If we specify the plasma current density, 3, then the

four equations (2-4) through (2-7), in the four variables

Py E_s Ez, and Be, form a closed set. By properly speci-

I

fying boundary conditions a unique solution can be ob-

tained. Notice, too that equations (2-5) through (2-7)
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in the variables Er’ E form a closed set and can be

X
solved without calculating the net charge density. There-
fore, we consider only the curl equations given in compo-
nent form in (2-5) through (2-7). We specify the plasma
current density by a set of fluid equations describing the
state of the plasma, to be presented in Section IV.

We now derive an equation for the radial electric
field by ignoring the displacement current density and the
plasma current density in the axial direction. Although
the plasma current density may approach that of the beam
current density in some parts of the beam, this occurs
only after the radial field has decayed substantially and
is no longer important. The resulting differential equa-
tion is uncoupled from the other fields.

Taking the divergence of both sides of equation (2-3),

we have, in cylindrical coordinates,

3 oE oE

1 r 9 2 =
: % [r'(-a-—t— + lHerP)] s T [z‘;t— + un(JbZ+Jpz)]-0 (2-8)

We have established in Appendix A that, for I=0, and

. T | (2-9)

where a is the Bennett radius of the pulse and Az is the

rise length, and y is the relativistic factor, then
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E << E (2-10)

Guided by this result for fields in a vacuum we ignore the
displacement current density and the plasma current den-

sity in the axial direction by requiring

R 3—[r(a—E—” + ynd_ )1+ [ung ]|>>|a—[3E—Z+J 1] (2-11)
r Jr ot pr 92z bz 9z 3t Pz
Then we have
oE aJ

19 r _ bz

F 3_P [P(é-t_ * '-HTJpr)] = =Y 32 (2-12)
Now

aJ 9p dp
bz _ B . b )
=gt v <iufio Tk ; (2-13)

where Py is the beam charge density. From the divergence

equation, and again ignoring the axial field, we have

-\ o
3pb A oFE

- r
—-5,—t-) (2-14)

19
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where Ero is the radial electric field of the beam propa-

gating in a vacuum. Equation (2-12) becomes
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13 9E,
FIE R il

]

Integrating once and employing the condition,

lim E = Ero
-0
we arrive at
9F ag ®

9
3; (r

oE
r

o

ot

)

(2-15)

(2-16)

(2-17)

Finding an equation for the axial electric field is

considerably simpler. Operating on (2-7) with

c 9

on equation (2-5) with = =— (r ), we have

r or

oFE oE oF
109 Z r dl d 2
7wty - 37 235 selse *

— (J

b

2

— =— and
c

(2-18)

We again ignore the axial displacement current density.

Then equation (2-18) becomes

13

9E oE
z r bmr 9
r ar EP(EF_ ' FE_)J

Finally, the magnetic field is found by integrating
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(2-19)
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in (2-7), and again ignoring the axial displacement cur-

rent density. This yields
T
e ' ' e
B é r (JbZ + Jpz)dr (2-20)

Retarded Time Transformation

We note that the fields described by equations (2-17),
(2-19), and (2-20) are functions of the triplet (r, z, t),
so numerical algorithms that solve these equations must
necessarily be two-dimensional and time-dependent. We
introduce a great simplification to the numerical algo-
rithms by transforming the field equations to the beam
frame (non-relativistic), and observing that the fields
are independent of time in that frame. We reduce the
functional dependence of the fields on the triplet (r, z,
t) to the doublet (r, t). The transformation equations

are:

t - z/Bc (2=21)

-
"

>
1]

z/Bc (2-22)

In the transformation (z,t)+(t,A), A plays the role of
time in the new system, while t plays the role of axial
distance (although it has units of time). Derivatives

transform according to
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%]
Hh
%]
>
Q
Hh

of _ gL s
3t 3t 3t | 3% 3E - It (2-23)
o€ L 9f By . AF 9% L L3 & g
o T o Sl S (2-24)

9f _ 1 aE
e {2-25)
The resulting field equations are
3E,, 3E,°
—_— + = .
3T Nanr AT (2-26)
oE aE

19 Z 1 r _ 4m 3
T [I‘(F + Bc -a-:r—)] o F(Jbzhjpz) (2-27)

The equation for Be, (2-20), remains unchanged. These are

the two-dimensional model field equations.

Boundary Conditions

For a beam propagating in air, far from any boun-
daries, the correct boundary condition is that the fields
vanish infinitely far from the beam. These conditions
appear impossible to implement in a numerical program, so

we choose an approximate set. They are,
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i All fields vanish at the very front of the
pulse. Because the beam electrons are relativistic and
a/Az<<1l, the actual fields at the front of the pulse are
much less than the fields in the remainder of the pulse.
In Figure 27, Appendix A, plots are given for the fields
of a pulse in a vacuum. The curves show that the fields
are quite small at the front of the pulse.

2. At r = 0, E, = By = BEZ/Br = 0. The radial
electric field is essentially an electrostatic field so it
must vanish on the axis. In addition, the magnetic field
which is driven by axial currents, must also vanish on the
axis. Thus, to maintain consistency with the curl equa-
tion (2-5) at r = 0, the radial gradient of the axial
field must vanish there.

3 At r = B Er and EZ take on the values of a
pulse traveling in a vacuum. Plasma electrons are moved
radially outward to some distance, b, which increases
back from the pulse head. At radial distances greater
than b the net charge contained inside that distance is
equal to the original beam charge, and the electric field
is virtually the same as the electric field of a pulse

traveling in a vacuum.

Discussion
Equations (2-25), (2-26), and (2-20), along with the
boundary conditions and conductivity generation equations

to be presented in Section IV, form a complete set, and
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are the equations that the numerical program, BEAM1,
solve. Numerical solution of these equations has two
advantages over numerical solutions to the unaltered form
of Maxwell's equation. Firstly, by transforming to a
system where the fields are independent of time, program
execution time is greatly reduced. Secondly, by ignoring
the axial displacement current density a differential
equation for the axial field is derived whose finite
difference equation can be made linearly stable. We gain
these advantages without a perceptible loss in accuracy,
as evidenced by the good agreement with experimental data.
These field equations, as they stand, are independent
of pulse shape. We can, however, considerably simplify
this set of equations by assuming a particular radial
variation of the pulse particle density, and the con-

ductivity. This leads to the one-dimensional model.
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third part we compare Johnston's original circuit equation
with an analagous equation we derive from the one-
dimensional model equations. The last part of this

section is devoted to a discussion of the model equations.

Principal Assumptions

Listed here are the assumptions that are made to
derive the one-dimensional model equations from the two-
dimensional model equations of the previous section.

I, Since our starting point in this derivation is
the two-dimensional model, all of the assumptions of that
model, which are listed in the previous section, are
encompassed here.

2 We assume that the plasma current density is

given by Ohm's law,

J_= 3t (3-1)
p
where the conductivity is a scalar quantity, rather than a
tensor quantity. In Appendix B we show that Ohm's law
holds as long as the momentum-transfer collision time is
shorter than any other time of interest. At a pressure of

=10 seconds,

five Torr this collision time is less than 10
and is shorter than the charge neutralization time, the
shortest time of interest for the purposes of this work.
Since the collision time varies inversely with pressure,

Ohm's law is valid for pressures of five Torr and above.
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3. The radial variation of both the beam electron
density and the conductivity are assumed to vary in a

Bennett fashion. This variation is given by

£(r) = (1 +pr2/a?)~? (3-2)

This radial dependence for the beam density is chosen
since this dependence is observed as the actual variation
achieved by an electron beam propagating thrcugh a neutral
gas (Ref 27). The conductivity will closely follow the
beam current density whenever direct ionization dominates
over avalanche ionization. At low pressures (less than
100 Torr) and in the pulse rise portion, avalanche ioniza-
tion dominates over direct ionization and the radial
variation of the conductivity can then deviate from a
Bennett profile. We do not take this deviation into

account.

Derivation of Model Equations

From the previous section we have already derived an
equation for the radial field which is independent of r.
Lt 1S
o

BEP aEr

FT— + lHerr = 37T (2-16)

Using Ohm's law,
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= 4 BETE. ® (3~3)
T r

This is the radial electric field equation of the one-

dimensional model. The formal solution is

o

T oE T
E. = [ =+ exp (-4nf IdT")dt' (3-14)
r 9T T!
or, integrating by parts,
o 5 o 5
E. = E - | UnIE _exp (~4n) Idx")dz" (3-5)
r r & r T

Equation (3-5) clearly expresses the decay of the radial
field with increasing conductivity.

We now turn our attention to the more difficult task
of simplifying the equation for the axial electric field

of the previous section,

3E oE
109 Z h r _ 4w 3
-8 [r(—ar ‘e r )] = = & T (Jbz + Jpz) (2-27)

Our method is to integrate over r and use Ohm's law to

obtain an integro-differential equation for J By per-

pz’
forming the integration over r in an approximate manner we

3u




obtain a differential equation in Tt for Jpz‘ Integrating

over r,
r ) 2 r
_ bm 2__ dr’ " n_l_ 3_ ' =
B, & =g = é = é (Jbz+Jpz)r dr 5= 5 gErdr (3-6)

where we have used the conditions,

oE

ﬁi‘ =0 (3-7)
r=0

Ez (r=b) = 0 (3-8)

Er (r=0) =0 (3-9)

The parameter, b, is used as the radial position where Ez
changes sign. We interpret this as the position of the
charge sheath, the sheath being built up by plasma elec-
trons ejected from the beam by the radial electric field.
We will later show how to estimate the sheath position.
Multiplying both sides of equation (3-6) by the con-

ductivity, we have

'

g = bmed Tant Tg 4 ypmapn.X LT pdet  t3a1m)
Pz 2737 é r7 o, bz pz Bc 3T 8 T
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In order to perform the integration over the current

density we assume,

L = ZO f(r) (3-11)
Jbz = Jbzo f(r) (3-12)
Jpz = Jpzo f(r) (3-13)

where the zero subscript denotes the on-axis values of the

variables, and f(r) is given by (3-2). We have, approxi-

mately,
3 =T s(myerda(a, 43 yos0f (pyd= 7 E_art (3-1%)
Pz ¢ o 9T bzo "pzo® Bc 9T b T
where
G(r) = &n ((1+b%/a?)/(1+r?/a?)) (3-15)

So that the integration over Er in (3-10) can be
carried out we make the approximation that the radial
field follows the radial variation of that field for a

pulse traveling in a vacuum. From Appendix A,
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2mp°r/(1+r2/a?) (3-16)

3
N
n

or

3
N
"

2Ero(a)ra/(r2+a2) (3-17)

Thus, we approximate the radial variation of Er by
E (r) = 2E_(a)—gioy (3-18)
r r e*ra

where Ero(a) and Er(a) are the radial fields at the
Bennett radius for a beam in a vacuum, and in air, respec-
tively. This approximate radial dependence is obviously
not exact since the conductivity in (3-4) is a function of
the radial variable; but, since we integrate over the
radial variable the specific radial dependence is of

secondary importance. Thus

r
/S E_(r)dr' = aG(r)E_(a) (3-19)
b T r
and
nazzo N
Jpz=Jpzoh(r)=f(r)G(r)[-—37—— 5?(Jbzo+Jpzo) (3-20)
+Zoa BEP(a)]
Bc ~ ot
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After normalizing to insure that h(0)=1l, we have the

approximate radial variation of the plasma current density,

h(r) = [1-2n(1+r2/a2)/en(1+b2/a2)](1+r2/a2)"2  (3-21)

and the equation for Jpzc in T,
aJpzo + Jpzo 3 _anzo (o BEP(a) (3-22)
9T T 9T mag 9T
m
where
wazzo 2n(1+b?/a?)
T = (3-23)

m c?

The parameter, L is the magnetic diffusion time for a
cylindrical pulse with the Bennett profile, propagating
through air.

Once Er(a) and Jpzo are calculated the rest of the
fields are simply found. The axial field is found from

Ohm's law
j P S 6 (3=-24)

The magnetic field is found by direct integration to be

2I. (r) 2I_(r)
B, = b R

6 oF o (3-25)
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where
mr2J

= bzo
Ib(I’) = m (3-26)

2
(3-27)

oz {1 [l-(az/rz)zn(1+r2/a2)]}
a 2n(1+b?2/a2?)

Ib(r) and Ip(r) are the beam and plasma currents, respec-
tively, contained inside the cylinder of radius r.

We are left with determining the position of the
charge sheath, b. Results from the two-dimensional model
show b to be near the radial position where the radial
field reaches its maximum. We approximate this position

from the charge neutralization time,

yrZ(t,r)t=1 (3-28)

unZO(T)T

Tp77an)2 - 1 (3-29)
and

B = runz (nyn)t/2 13172 (3-30)

Comparison with the Circuit Equation

It is instructive to compare Johnston's circuit
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equation (Ref 11) with an analogous equation that we

derive here. Solving (3-22) for the axial field, we have

. _ Sn€Xsb*/a’) &
4o) c? 9T

[I-%i E, (a)] (3-31)

To arrive at this equation we assume that

Compare this with equation (1-4),

ARty O ik
E, = -L 5% (3-32)

The parameter, L, is the effective inductance, assumed to
be on the order of 2/02. Thus, we improve upon the
original circuit equation in three ways. Firstly, we
include a term for the radial electric field. Secondly,
we obtain a more accurate estimite of the inductance, L
and thirdly, in the course of deriving the one-dimensional
model equations we analytically estimate the radial depen-
dence of the fields. Consequently, we include all per-

tinent phenomena in equation (3-22).

Discussion
In this section we have substantially reduced the

complexity of the field equations of the previous section

4o
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by integrating out the explicit dependence of the radial
variable in the axial field equation. We only do this in
an approximate fashion, so the radial variation of the
fields are less accurately described by the one-dimensional
model. We list here the primary equations of the one-

dimensional model

o o€ °

g7 * WlE, = —= (3-3)
aJp;o & JPZO anZO + _E_%Eﬁiil (3-22)
9T Tm 9T '"aB 9T

These two equations are solved by program BEAM2. The
magnetic field is evaluated algebraically from equation
(3-26).

A qualitative description of the fields is afforded

by observing the formal solutions to the primary equa-

tions,
T azr° T
= : - " ' -
Er = é —— exp( uni'Zdr ddt (3-4)
and
T 9J 9E_(a) T
& bzo _ _¢ P p 9z ' &
Jpzo 2 - é( 5T 7aB 0 ) exp ( {' T )dt (3-33)
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These two solutions are formally similar, but Er and Jpzo
show quite different detail. As conductivity increases it
reaches a value that is so large that the radial electric
fields is actually "shorted out", and decays away. A

close estimate of when that value of conductivity is

reached is given by

T
B T )dE = (3-34)
o

We make the further approximation,

T
b fZet)dr! = Lbpi(rt)z = 1 (3-35)
o

Consequently, we define the charge neutralization time

from (3-35) by solving for T,

ot .
o ® WI(T) (1-2)

On the other hand, as conductivity increases, the
plasma current is seen to increase in the pulse rise por-
tion. Once the conductivity has reached a sufficiently

high value we reach the condition,

3J 3J
—B22 = - 220 (3-36)
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Beyond this point the net current, and the magnetic field,
cease to increase, and they are said to be "frozen" into

the plasma. From (3-34) we estimate that this condition

occurs when

— (3-37)
Solving this, we define the current saturation time,

naZEO(TI)ln(l+b2(TI)/az)

T = Tm(TI) = . (3-38)

Although we clearly see that the current saturation time

depends upon the parameter, b, a useful approximation is

¢n (1+b2%/a?) = 4

sc that we derive an approximate form of the current

saturation time,

4ra?s (t.)
oL (1-3)

Ty =
Again, we have left the conductivity unspecified. It

is apparent from this discussion that the conductivity

plays the critical role in the behavior of the fields. In

the next section we describe a model for ionization and

conductivity generation.
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IV. IONIZATION MODEL

Introduction

Past sections are devoted to developing models for
the electric and magnetic self-fields of a pulse of
relativistic electrons propagating through air. Up to
this point all terms in the field equations have been
specified except for the plasma current and conductivity.
Here, in this section, we specify those remaining param-
eters by presenting a model for the production of plasma
electrons. Due to the large number of air reactions and
their complex nature it is not possible to specify per-
fectly the charge state of the air. Indeed, some of the
reaction cross sections, including cascade ionization, are
not accurately known.

The model we present here was originally developed by
Wittwer (Ref 19) for high altitude EMP studies. It is a
fluid description of the plasma electrons with empirically
determined reaction rates. We have modified the model for
our purposes to include electron-ion recombination,
electron-ion and electron-electron collisicns, the cascade
ionization time lag, and neutral gas heating. It is the
only model in which all important reactions are included.

Consequently we believe it is the most accurate descrip-
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tion available over the pressure range of interest in this
study.

This section is split into several different parts.
In the first part the kinetic terms in the fluid equations
are derived from the Boltzmann-Vlasov equation. 1In the
next part we enumerate the assumptions employed in the
ionization model, and in the following part the resultinjy
equations of the model are listed. The following part ic
devoted to a discussion of the cascade ionization time lecg
and a derivation of the lag term employed in the ioniza-
tion model. In the last part we discuss the importance o:
the model, and, as an example, we analytically estimate

the saturation value of the net current.

Derivation of Fluid Equations

Our starting point for the derivation of the fluid

equations is the equation of transport,

g - (4-1)
dt kinetic 5t collisions
with
af M ,.2.8 *
= UV Ef+a.Vsf (4=2)
dt kinetic it ol i
and

us




d®n

f = (4=-3)
dxdydzduxauyduz

n = total number of plasma electrons

-> e =

a=s(E+2xB (=t)

SOE ) ) A

L Y éy 3y Y e 3z K>

6u g éu 33 * 33 : éu 33 (4=-6)

P X y y Z z

Del operators are expressed in the Cartesian coordinate
system for convenience. All of the plasma electron fluid
equations are derived by multiplying each term in (4-1) by
(E)n, where n = 0,1,2, and integrating over all velocity
space.

For some Q,

S o - _ 3 >
S Q == du = — (n_<Q>) + ¥ -« (n <Qu>)
- at kinetic at 5 < .

->
-n_ <as¥ Q>
e u

(4-7)

"
88
4

Q 3 3

collisions

46




where

[+ <]
->
e o= o fdn (L=-8)
e - 00
and
1@
€ > = e e SN E i (4-9)
n
eco
Let
Q=1
i
>
Vs <y
then
Bn o
g + B e n S wn ok du (4-10)
ot " -® 8t collisions

The subscript, r, in the del operator has been dropped for
convenience. Equation (4-10) is immediately recognized as
the continuity equation.

Now let

o
n
cé

then
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-

_—

-->
a o ->—> e -> v -
3t (nev) + v . (ne<uu>) -ne = (E + = x B)
(-]
=n, SO & da (4-11)
* collisions

To put this equation into a more recognizable form define
T =v+w (4-12)

-+ . -»> o
where w is the departure of u from its average, 3. Then

v . (ne<33>> v . ne(<(3+5)<$+§>>)

Ve n W)+ ¥ . (n <i>) (4=13)
since <w> = 0. Additionally,

VeI = n G Y+ T @en (4-14)
Therefore, equation (4-11) becomes

¥ ,3c¢ 0, Vetnv)l+n (voB) ¥
e 38 " Y ! "t . gt s SR e

+ &f -+
PR e O
collisions
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or, employing (4-10) and dividing by n,»

83 > =k 1 g A+
5t (VeT)V + ing T.37= S (B4 x B)
- © ]
- %— s 6i s e Q% du (%-15)
e -® collisions e -» collisions

‘ -+ -+
Here we have defined 7= mne <WW>,
tensor.

equation.

It is the pressure

Equation (4-15) is the momentum conservation

To arrive at the energy conservation equation let

then

_3_ 1 2 1 2>
3T (ne<7 mu2s>) + V . (ne <5 mu‘u>)

2 6f
8§t

mu

3l

(EedxB) T (,} mu?) = f

N =

Again using (4-12) to arrange terms

we have
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in a familiar fashion,
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mv?)] + 3 [n (3 mu?))
v . (ne <% mu2u>) = ¥ - [ne(% mvv)] + ¥ . [ne(% mw2v) ]

+ V. [ne(% m<w?w>)] + V o [ne(% m<ww> *v)]

-+
e s v 1 1 2 = ..
ng <E (E + = X B) 3u (7 mu¢)> = naef v
Defining
23,8 2
I--2-mV
| 2
W = 5 mw
a z % m<w2w>

we have, finally

9 - :
35 (WD) + VeV(W+I) + %; v . [n,g + . v

@ (-]
= e BV + }1T s g% %muzdﬁ- (w;“ s Gi de (4-17)
S collisions € ~°% collisions

Principal Assumptions

Listed here are the assumptions we apply to the fluid
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equations to arrive at the particular equations of the
ionization model.

X, Ions are assumed to be immobile. Considering
either a collisionless or a collisional plasma the ratio

of the ion current density to the electron current density

: Me Bea. 1/2
scales either as == 0y (5—)
3 7l

mass and mi is the ionic mass. In either case the ratio

, where m_ is the electron

is less than one percent implying that the ionic current
is ignorable. This has no bearing on the fluid equations
of the beam electrons, but it does mean that the plasma
current is carried entirely by the plasma electrons.

2. We malke the cold plasma approximation. Thus, in
equation (4-17), I<<W and 3 is set equal to zero. In
equation (4-16), the pressure tensor, §t is ignored.

3. All spatial gradients in the fluid equations are
ignored. Because the plasma is highly collisional, elec-
tron drift velocities are small, and the migrétion dis-
tance for a plasma electron is a small fraction of the
beam radius, so large gradients of the plasma electron
density, and associated parameters, are not present.
Results from the numerical program, BEAM1l, are consistent
with this assumption.

4. Ionization by Bremstrahlung radiation is not
included. For beam electron energies in the range of one
to 10 MeV, the ratio of energy lost by the beam electrons
via Bremsstrahlung radiation to energy lost via inelastic

collisions, is less than 10%. Even if the Bremsstrahlung
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radiation remained localized in the beam and converted a
substantial fraction of its energy to producing electron-
ion pairs, the ionization from Bremsstrahlung would be less
than 10% of that produced from inelastic collisions.

5. The negative ion density is ignored. This
allows us to use a single species model, consisting only
of the plasma electrons, rather than a three species
model, consisting of the plasma electrons and positive and
negative ions. In Appendix B we show that the negative
ion density is always less than 10% of the plasma electron
density.

6. The attachment rate is assumed to be independent
of the water vapor concentration. This is incorrect, but
at this time the actual dependence of the rate on the
amount of water is unclear (Ref 28), so we restrict our
calculations to dry air. At altitudes higher than
sea level the water vapor pressure is greatly reduced so
its influence on the electron population is diminished.

7. Thermal conduction on beam time scales (<10~
seconds) are ignored since the thermal conduction speed is
quite low. The thermal conduction speed is limited by the
speed of sound, so the characteristic time for heat con-
duction is limited by a/vs, where a is the beam radius and
Ve is the sound speed. Assuming a beam radius of one
centimeter and a sound speed of 5 x 10" cm/sec, the thermal
conduction time is greater than 2 x =’ seconds, con-

siderably longer than the characteristic pulse length.
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8. Radiative energy losses by the plasma electrons
are ignored, so the only plasma electron cooling methods
considered are elastic and inelastic collisions. There
are two major sources for radiation by plasma electrons,
Bremsstrahlung and line radiation. The rate of Bremsstrah-
lung generation from plasma electrons impacting neutral air
molecules is considerably less than that produced by plasma
electrons impacting ions (Ref 29). Thus, the energy loss
rate of plasma electrons by Bremsstrahlung is very much

less than (Ref 30)

1,7
iig <¢ 16 NZ%e® W
dt 3 hmocs
aw :
where a?—is the Bremsstrahlung energy production rate for

fully ionized air molecules, N is the molecular density,
Z is the ionic charge, and w is the plasma electron thermal

speed. For sea level conditions and a plasma electron

dw
thermal energy of one eV, we have 3?2 << 7 x 108 eV/sec.
This rate is much less than the collisional cooling rate

which is 1 x 10%°

eV/sec (Appendix B). The intensity of
line radiation is estimated from experimental measurements
(Ref 31) to be less than 3 x 103 Wat‘cs/cm3 at sea level
conditions for a 10 kA/cm2 beam, and a calculated electron
density of 1 x 102® om=3. This implies a bound on the
electron cooling rate from the line radiation of 2 x 106

eV/sec, again much less than the collisional cooling rate.
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9. We ignore the magnetic force on the plasma

electrons. The conductivity tensor is,

2 2
£ . e‘ng v ( 1 wc/vm)
mv v_Z-w_? w /v 1
m m c &
eB
where L TR and is the cyclotron frequency of plasma

electrons in the azimuthal magnetic field, B Thus, we

x
assume that v, << Vo4 and the conductivity assumes the
scalar form. However, below an air pressure of 50 Torr
the cyclotron frequency can reach a value which is a sig-
nificant fraction of the collision frequency, and will
approach the value of the collision frequency at 5 Torr.
We ignore this effect.

10. We adopt Wittwer's collisional terms (Ref 19).

This requires a weakly ionized plasma, ne<<N, where N is

the molecular gas density.

® 6f ,» =R + an (4-18)
u e

where R is the direct ionization rate and an is the
avalanche (attachment) rate. The parameter, a, is the

avalanche coefficient minus the attachment coefficient.

(4-19)
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where Ve is the momentum transfer collision frequency.

1 2 G -0
J (7 mu<) T du = -vE(w-c) (4=-20)

Here M is the energy trarnsfer collision frequency and ¢
is the neutral gas energy.
12. We modify Wittwer's model in the following ways:

i Electron-ior recombination is added.

[

Recombination plays a crucial role at atmospheric pressur
by causing the plasma density to saturate. The recombina-

tion term to be added 1is

where Br is the electron-ion recombination coefficient.

b. An electron-ion (Spitzer, Ref 32) collision
frequency is added. Normally, this collision frequency ic
less than 10% of the electron-n=utral collision frequeﬁcy
at atmospheric pressure, but car. be greater at low air
pressures.

G We include an equation for the neutral gas
energy, €. Considerable heating of the neutral gas by the
beam can take place resulting in 1 lower energy exchange
rate and a higher electron energy, thereby changing the
reaction rates that are functions >f electron energy. The

equation is
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where
NS = 205758 1019 molecules/cma, and is the sea level

molecular air density

g% = energy loss rate of beam electrons

£

fraction of beam deposited energy that goes
directly into heating the gas molecules.
13. We include effects of cascade ionization time

lag. This 1is given by

R =R A R (L=22)

where RI is the beam electron impact ionization rate and
Rc is the cascade ionization rate. Later in this section

we show that the cascade is modeled by

Te RI(T-T')
RC = A /S T A T dt! (4=-23)

T
[}

where Ty is the time of the beginning of the ionization
cascade, T, is the time of the end of the cascade, and A
has the numerical value 0.163. The parameter, Ty is

sometimes called the "lag" time.
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Equations of the Ionization Model

With the previously mentioned assumptions the result-
ing equations of the ionization model are, in the retarded

time coordinate system,

on
e _ _ 2 =
= = RI + RC + ang Brne (4=-24)
3vr eEr
F—T = —m— - (Vm + O.T) VI‘ (4-25)
avz eEZ
P Sess = (vm + uT) v, (4L=-26)
I - o(E v 4E v )-v_(W=e)=0.0+5 (4-27)
9T pep o € A
S . . 8T . M
3T ° £ d—t- w4 N \)E (W=¢) (4=-28)
n
where
RI+R
ap = ng + a-Brne (4-29)

and S is the external heating rate. We estimate the

heating rate as
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= I °C
S = ( = ) Q (4-30)

The parameter, Q, is the energy of an electron as it
enters the thermal swarm. We choose a value of 7.5 eV for
Q to agree with the value used by Johnston (Ref 11).

Reaction rates and collision frequencies are compiled and

discussed in Appendix B.

Boundary Conditions

Since we ignore all of the spatial gradients of the
fluid equations we have only to specify the conditions at

T =1t - 2/Bc = 0. The conditions are

A 0 (4=-31)
¥y TN, =0 (4-32)
W=17.5¢eV (4-33)
€ = 0.026 eV (4=-34)

The first condition (4-31) arises by assuming that the
pPlasma electron density is zero ahead of the pulse. The
second condition (4-32), results from the assertion that
the electric fields vanish at t = 0. The fields generally

are not zero at that point, but are so much smaller there
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than in the remainder of the pulse that the effects of the
fields there are negligible. At 1=0 the low energy elec-
trons just born in the ionization process have had no time
to cool, so we give them an energy of 7.5 eV. This is
the motivation for the third condition (4-33). This
condition, like the external heating rate, has negligible
impact upon the electron energy inside the pulse. Finally,
(4-34) comes from assuming that the ambient air is at a

characteristic temperature of 300°K.

Cascade Ionization

We now turn our attention to deriving the cascade
ionization term in the plasma electron production equation
(4-24). The term is constructed by an analytic fit to a
Monte Carlo simulation of the cascade phenomenon. A dis-
cussion of the numerical program that performs the simula-
tion, program MONTY, is found in Appendix E.

When a high energy electron impacts an air molecule,
and ionization takes place, the electrons produced can
achieve any of a spectrum of possible energies. We illu-
strate this in Figure 6 with a plot of the differential
ionization cross section, ;%i , as a function of secondary
electron energy, Q. This cross section is taken from
Porter, Jackman, and Green (Ref 12 and Appendix E) and is a
theoretical estimate. Other estimates of the differential

ionization cross section for relativistic electrons are

available (Refs 13, 33) but no experimental measurements
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have been made at relativistic energies (Ref 34). These
high energy secondary electrons lose their energy by
ionization and excitation of air molecules, producing a
cascade of more electrons. For beam electrons in the
range of one to 10 MeV, the average energy lost in an
inelastic event (ionization or excitation) is 86 eV. This
number is taken from the classical electron stopping power
formula (Ref 35). It is empirically determined, though,
that, after the cascade process is complete, one ion-pair
is produced for every 34 eV lost by the beam electron (Ref
36). Thus, for every primary event the total number of
electrons produced is %% = 2.5. Consequently, an addi-
tional 1.5 electrons is produced in the ionization cascade.
Obviously, the cascade process takes a finite amount
of time to be completed. This we illustrate in Figure 7.
It is a plot of ionization increase as a function of time
produced by a single one MeV electron. There is no
applied electric field. The solid curves are results
taken from program MONTY with different assumed differ-
ential cross sections. Curve A is produced by using the
cross section of Porter, Jackman, and Green, while curve B
is produced by using the cross section of Longmire and
Longley (Ref 13) and curve C is produced with a cross
section very similar to that described by Lunn (Ref 33).
Curve B' is the original lag calculation performed by

Longmire using his assumed cross section (Ref 13). Curve

C' is from a calculaticn performed by Canavan, Brau, and
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Wittwer (Ref 37) assuming the crosc section of Lunn.
There is little agreement of the calculated ionization
increase between the different cross sections. Resolution
of this discrepancy will probably have to wait until
experimental measurements are available. Noting, though,
that the Longmire cross section results in a rough mean
ionization increase we use that calculation to find the
cascade ionization lag time. Extrapolating out to an
increase of 2.5 (end of the cascade) the lag time is 10-7
seconds. At atmospheric pressure the corresponding lag
time is near 10”% seconds.

With a strong applied D-C electric field the ioniza-
tion rate increases drastically. This is illustrated in
Figure 8. The amount of ionization above the zero field
cascade level we attribute to avalanche ionization. That
is, some of those electrons with energies below the ioniza-
tion threshold (about 16 eV for nitrogen) are accelerated
to energies above the threshold and greatly add to the
zero-field ionization rate. Of course, the zero-field
ionization is produced by the secondary electrons created
with energies above the ionization threshold.

These observations lead us to an approximate way of
including cascade in the ionization model, even for the
case of non-zero electric fields. We split the distribu-
tion of secondary electrons into two parts. One part is
composed of high energy secondary electrons; those elec-

trons still losing energy in the cascade, and the other

63




- Te =1 MeV
1 P=10 Torr
~E=0 sV/cm
E=8 sv/cm
E=5 sv/cm
1079 |-
E=10 sV/cm
—
©
g -
[¥¥]
=
: e
10-10 -
10~ I | | [
1 2 3 4 5
IONIZATION INCREASE
Figure 8. 1Ionization, Non-Zero Field

6u




part is composed of "thermal" electrons. We use the term
"thermal" loosely, but we mean it to include all those
secondary electrons that have completed the cascade, and
all those electrons produced in the cascade. By doing
this the avalanche part of ionization should then be
modeled by the avalanche in the electron production equa-
tion. We must still model the cascade rate for non-zero
fields. We do this simply by assuming that the field does
not alter the zero-field cascade rate. This is, of
course, incorrect, but if the time is short that the field
is on, then the high energy secondary electrons will
absorb only an inconsequential amount of energy from the
electric field. By estimating the energy absorbed from
the electric field we derive a criterion for the validity

of this approximation,

1/2
At<<(’§9) /eE (4-35)

where At is the length of time that the field is on.
Choosing Q = 10 KeV and E = 10 sV/cm we have At<<1l.8 x
10'g seconds. We see that this criterion is not always
satisfied for the parameters of this study.

Now let L(t) be the ionization increase produced by
the high energy secondary electrons. An analytic fit for

the Longmire curve, B' of Figure 7, is

&




0 s <
o

L{t) = Aln(t/ro), ‘ro<t<'t2 (4-36.
1.5 ~ t>r2
where
1, = 1072 (p_/p) seconds
2 Pop

ot -13
T, = 20 (po/p) seconds
A = 0.163

and p and p, are the ambient and sea level atmospheric

pressures, respectively. The cascade ionization rate is

0 ‘ t<To
oL(t) _ A
X = . » ToSt<Ty (4-37)
0 § t>rz

Applying the results for a single relativistic electron to

a beam of relativistic electrons, we have

D s T-t<T°

3Rc ARI(t)

5T %) == tosten, (4- 3)
0 ’ T-t>T2'
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Substituting 1' = 1-t, and integrating, we have

Ty AR (1-1')

RC = [/ ———T'——— dv'! (4=-23)
T
o

Discussion

In this section we have presented an ionization model
that includes all important phenomena, including cascade
ionization. Since this is the only documented model that
includes all important effects we believe it is the most
accurate representation available of the charge state of
the plasma.

Modeling of the plasma is very important because of
the dominant role played by the conductivity in determin-
ing the behavior of the fields. As an example of the role
of conductivity we here make an analytic estimate of the
saturation value of the net current flowing in a pulse
propagating through air at sea level pressure.

In the previous section we showed that the net
current flowing in the rise portion of a pulse tends to
saturate whenever the magnetic diffusion time overtakes
the time after passage of the front of the pulse. We

estimate where this occurs in the pulse rise portion from

i Sonleccorr | e (1-3)




We take the conductivity from Appendix B,

N
X

™
"
3o
?
N4
Al

(4-39)

3

This equation is derived for a linearly rising pulse
current with rise time At. The lag time has been set to
zero and avalanching has been ignored. The ionization

rate, R, is evaluated at the top of the rise portion and

-

is
Ib
R = (;ETEEE) D (4-40)
where

[
(1]

b on-axis beam electron density

2
D 2x101‘ electrons/cma/sec/beam electron,

and is the beam electron ionization rate. Inserting (4-39)

and (4-u40) into (1-3), we have

2
T e A
) el S
s
or
Rl
TE K% =] (4-41)
s
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where

Bmcavm
IS = - (4-42)

Choosing a value of 3x1012 sec.1 for v, s we have

AL L
s

The driving mechanism for the plasma current is the
rise of the beam current. Then, for saturation to occur,
equation (4-41) must be satisfied before the rise of the
pulse is completed. Thus, we estimate the minimum beam
current required for saturation by letting LT At. We

find that

Therefore, Is is an estimate of the saturation level of
the net current of a pulse propagating at a pressure of
one atmosphere. Below atmospheric pressure the saturation
current will decrease because avalanche ionization in-
creases at lower pressure causing the conductivity to rise
faster. We shall see in the next section that this
analytic estimate agrees within a factor of two with the
numerical computation.
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V. COMPUTATIONAL RESULTS

Introduction

All of the previous sections have been devoted to
developing the theory necessary to understand the behavior
of the EM fields of a pulse of electrons propagating in
air. Considerable time was spent deriving the one- and
two-dimensional EM models and the ionization model. The
complexity of the resulting equations prohibit analytic
solution in all but the simplest cases, so numerical
programs were written to solve the equations for more
complex cases.

In this section we report on the computational
results of these numerical programs. The results demon-
strate two major points.

b 2% The one-dimensional and two-dimensional EM
models show basic agreement in the axial variation of the
fields. This justifies the simplifying assumptions used
in deriving the one-dimensional model equations from the
two-dimensional model equations.

24 Results from the computations are in agreement
with experimental measurements of plasma electron density

and net current over a wide range of parameters.

70




§7

These two points imply that all important rcactions are
contained in the ionization model, and that the one-
dimensional description of the EM fields is adequate to
predict experimentally observed parameters.

This section is split into s=veral parts. In the
next part we specify the pulse shiepe employel in the
calculations. Following that we present, in graphical
form, typical behavior of the EM fields, and Je observe
both charge neutralization and current satura:iion. The
next part of this section is devoted to a compirison of
the numerical results from the one- and two-dirensional
models. Then we compare numerical results fron our models
to experimental results, and numerical predictins from
other authors. In the following part of this scction we
show that the phenomenon of cascade ionization has vir-
tually no effect upon the calculated fields or tle observed
net current. In the next part we make a series oI net
current predictions from the numerical models for beam
currents up to 1,000 kilo-Amperes. Finelly, we resiew the

results presented and summarize them.

Pulse Shape

For all calculations performed here we assume - -at

the beam charge density is given by,

plr,z) = p f(rig(z)

i
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where p is the on-axis charge density, and

£(r) = (1l+r2/a?)”?
0 s 2>0

g(z) = -z/b0z , 0<z<-Az
i s -Az<z<-zo
0 o -zo<z

The parameters Az, and z , are the rise length of the
pulse, and the length of the constant density portion,
respectively. Variation in the r direction, f(r), is
called the "Bennett" variation. We choose this since it
is observed experimentally (Ref 27). The axial variation,

g(z), is chosen for its simplicity.

Behavior of Fields

In this part of the section we present results from
program BEAM1l. This program contains the two-dimensional
EM model and the ionization model, so fields in both the
axial and radial directions are evaluated. Cascade ioniza-
tion is not included in BEAM1, but we discuss its effects
in a later part of this section.

Typical results from the program for the axial varia-
tion of the fields is shown in Figure 9. The charge
neutralization time (eq (1-2)) and the current saturation

time (eq (1-3)) are indicated on the figure. We see that

e
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the radial field begins its decay shortly after the charge
neutralization time is reached. With the change in the
radial electric field from its vacuum value shown as Ero,
the axial electric field begins to grow, reaching a maximum
at the end of pulse rise. It rapidly decays in the main
body of the pulse as the field loses its driving force,
the time rate of change of the magnetic field, ﬁe. We
see that the magnetic field ceases its increase near the
pcint where the current saturation time is reached. 1In
this example the net current inferred from the magnetic
field is seven kilo-Amperes at the top of the rise portion,
and increases to eight kilo-Ameres at the end of the
pulse.

Radial variation of the fields is shown in Figures
10, 11, and 12, for three separate distances into the
pulse. In Figure 10 we show the radial variation of the
radial electric field. These curves are to be compared
with th: radial variation of the field of a pulse in a
vacuum, given by (Appendix A) ;7%;7. The most prominent
feature of the radial field plots is the "charge neutrali-
zation wave" that moves outward as z increases. Since the
beam density decreases with increasing r, the ionization
rate decreases and the conductivity decreases with in-
creasing r. Thus, the time required to short out, or
neutralize, the radial field increases with increasing r.

The effect of conductivity change on the axial electric

field is shown in Figure 11. We notice that in the pulse
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rise portion (at z=5 cm and 2z=20cm) the axial field has a
large radial gradient, but the gradient nearly vanishes in
the main body of the pulse (z=40 cm). Effects of conduc-
tivity change on the azimuthal magnetic field are shown in
Figure 12. We compare these radial plots with the radial
variation of the magnetic field for a pulse in a vacuum,
also given by (Appendix A) ;7237. We notice that there is
little change in the shape of the radial profile. However,
the magnitude of the field at r = a and z = 40 cm has been

decreased to 70% of its vacuum value.

Comparison of the One- and Two-Dimensional Models

In general, agreement between the one- and two-
dimensional models is close for an air pressure of one
atmosphere. 1In Figure 13 we have plotted the axial varia-
tion of the fields from program BEAM2, which solves the
one-dimensional model equations. These curves should be
compared with the comparable curves from program BEAM1,
plotted in Figure 9. As in the BEAM1 calculation we here
ignore cascade ionization. Axial profiles of the radial
electric field and the magnetic field calculated by BEAM2
are virtually identical with the profiles calculated by
BEAM1. We do observe some differences in the axial varia-
tion of the axial electric field. The one-dimensional
model predicts that the axial field begins slightly
earlier, peaks earlier, and begins decay earlier, than the

two-dimensional model predicts. These differences are
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attributed to the approximate integration over the radial
electric field performed in deriving the one-dimensional
model equations. Since the axial electric field does not
enter directly into the evaluation of the plasma current,
the small calculated differences are of little consequence.
A comparison of the radial variation of the axial

field as computed by BLAM1, and as analytically estimated
from the one-dimensional model, is shown in Figure 1l4. We
have normalized the one-dimensional model results tn agree
with results from BEAM2 at r=a. We do this to facilitate
comparison of the radial variations. The analytic esti-

mate of the radial variation is found from Ohm's law,

J zo(t)h(r) J

(t)
= - Z0 202 29) 0
Ez(t,r’) = I%W-(ﬁ— = —-g—(ﬂ—[l-ln(lﬂ" /a®)/n(l+b*/a ]

Values of the parameter, b, are taken from BEAM1 results.
The curves for case 220 cm show good agreement. This is
typical in the rise portion of the pulse. In the main
body of the pulse (z=40 cm), though, the analytic approxi-
mation does not predict the pronounced flattening of the
radial profile that results from BEAM1 show. The flatten-
ing indicates that the radial profile of the plasma
current density is nearer to the radial profile of the
conductivity than is indicated by h(r) in equation (3-21).
At lower pressures the agreement between the fields

as computed by the two programs is not as exact, but is
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still close. Figure 15 compares the axial variation of
the fields predicted by the two models at a pressure of 76
Torr. At the top of the pulse rise the one-dimensional
model predicts a magnetic field of 300 Gauss while the
two-dimensional model predicts a field of 400 Gauss. This
corresponds to plasma currents of seven kilo-Amperes and
six kilo-Amperes, respectively, so what apears as a 25%
difference in the predicted magnetic field is really only
a 15% difference in the predicted plasma current. This
difference lessens further into the pulse. We again see
that results from BEAM?2 predict a slightly different
behavior for the axial field early in the pulse than does
BEAM1. Agreement is very close in the main body of the
pulse.

In Figure 16 we compare the predicted radial varia-
tion of the axial field for the two different models.
Again, the one-dimensional model predicts a slope which is
too large, but in this case the two-dimension model pre-
dicts less flattening of the field at 40 centimeters into
the pulse than is predicted at an air pressure of 760
Torr. This change is the radial profile of the field is
caused by a change in the radial profile of the plasma
density from a Bennett profile. The two computed profiles
for the plasma density are shown in Figure 17. Increased
avalanche ionization in the wings of the beam are respon-
sible for the change. This change also results in a small

( overestimate of the on-axis conductivity in the one-
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dimensional model resulting in the slight overestimate of

the plasma current that we observe.

Comparison With Experiment and Previous Calculations

The most detailed description of the conductivity
generation yet devised for electron beam propagation in
air is the model employed by Johnston in his first beam
calculations (Ref 11). He considered 45 molecular species
and 325 possible reactions that could affect conductivity.
We here present a conductivity calculation of his and
compare it to results from program BEAM1 in Figure 18.
Both curves show the saturation of conductivity by electron-
ion recombination and attachment. Since the calculation
is performed for a pressure of one atmosphere virtually
all plasma electrons are produced by direct ionization.
Thus, avalanche ionization rates are not important here.

We also compare Johnston's predicted electron and
neutral gas energies with results from program BEAM1 in
Figure 19. The calculated neutral gas energies compare
well, but the electron energy curves show considerable
disagreement toward the end of the pulse. We attribute
this difference to an effective energy transfer rate of
Johnston's model that is too low. Johnston does not use a
bulk energy transfer rate but a rate is specified for each
of the 45 molecular species, so it is not possible to make
a direct comparison of the electron cooling rates. It is

apparent, though, that the high electron energy predicted
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by the Johnston model could lead to an overestimate of the
avalanche rate and conductivity, if applied to air pres-
sures much lower than atmospheric. 1
Recently, Johnston has produced a simplified version
of his original ionization model, named BMCOND (Refs 38,
39 and 40). Johnston has optimized the model for electron 1
beam propagation at a pressure of one atmosphere and
chosen reaction rates so that parameters agree with his

original model. 1In addition to Johnston, Lee (Ref 17) has

developed a fully coupled electromagnetic and ionization

model, called EMPULSE. The EM model employs the vector

"potential only, rather than the fields. His ionization

rate is taken from air breakdown data taken by Felsenthal
and Proud (Ref 18). He does not inciude recombination or
attachment in his calculation of the plasma charge state.
We compare the results from these models to net
current and plasma electron density measurements by Briggs
et al (Ref u4) on an FX-25 electron beam machine, and we
compare with results from program BEAM1 and BEAM2. This
comparison is shown in Figures 20, 21, and 22. From
Figure 20 ;e see that the experimental data shows a
lower net current flow at low pressures than at a pressure
of one atmosphere. This decrease in net current is attrib-
uted ts the increased avalanche ionization rate and the
corresponding increase in the conductivity. Lee's model

is adequate in the range of five to 20 Torr, but agreement

is poor above 50 Torr where electron attachment begins to
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significantly change the conductivity. We have replaced
our ionization model in program BEAM2 with Johnston's
model, BMCOND. Results are also shown on Figure 20. At
all pressures below one atmosphere the computed net cur-
rent is much too low. In Figure 21 we compare net current
predictions from BEAM1 and BEAM2 (with our ionization
model) with the experimental measurements. Agreement
between results from BEAM1 and BEAM?2 are within 25% every-
where, and agreement between the numerical resulte and the
experimental values is within 20% everywhere. Considering
the uncertainties in the experimental measurement and in
modéling the pulse shape, the agreement is remarkable.

In Figure 22 we compare predicted on-axis plasma
electron density results from all of the calculational
models with the experimental data. We see that predicted
densities from BEAM1 and BEAM2 lie about the same distance
above the experimental curve as do predicted densities
from EMPULSE. Predicted values from BMCOND are several
times those values observed experimentally. As in
Johnston's detailed ionization model, BMCOND predicts
values for the electron energy that are much higher than
predicted by the model of this study. The higher electron
energy results in much higher avalanche rate and a much
higher plasma electron density.

We make one final comparison between calculated and
experimental results. In Table III we present a com-

parison of the observed net current from the FX-100
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electron beam machine to results from BEAM1 and BEAM?2.
Only two experimental points are available (Ref 41), but

the agreement is again quite close.

TABLE III

COMPARISON UF THEORY AND FX-100 DATA

Beam Current Ib = 60 kA
Electron Energy Te = 4 MeV
Rise Length Az = 300 cm
Constant Density 2, © 1500 cm
Pressure Measured Calculated Net Current
Net Current BEAM1 BEAM?
760 Torr 31 kA 35 kA 34 kA
5 Torr 9 kA 13 kA 6 kA

Again, the cascade ionization time lag has been set

equal to zero in these calculations that are compared to
experimental data. Since the measurement of the plasma
electron density occurred at a time of 1075 seconds after
the pulse had passed (Ref 4), the cascade was completed by
the time the measurement was taken. Calculated values
that were compared to experimental data were taken at the
rear of the pulse. Thus we have agreement between the
calculated plasma density and the observed density.

Effects of the ionization cascade are discussed in the

9u




next part of this section.

Effects of Cascade Ionization Time Lag

All of the computationei results from BEAM2 that were
compared to experimental data were run again with cascade
ionization included. There were virtually no differences
in the computed values of magnetic field. At atmospheric
pressure computed values of the electron density were
virtually identical with computed values assuming a zero
lag time. At low pressures (less than 100 Torr) differ-
ences in the electron density were observed in the con-
stant density portion of the pulse, but the plasma electron
density in the rise portion of the pulse showed virtually
no change. Thus, the fields are essentially unaltered
when including the cascade ionization time lag.

There are two causes for this insensitivity of the
fields to the cascade process. At a pressure near one
atmosphere a substantial fraction of the cascade is com-
pleted in a very short time. Although the time required
to complete the cascade, and produce an additional 1.5
electrons per primary event, is 10'9 seconds at 760 Torr,
half of the additional electrons (0.75) are produced
within .‘I.O"11 seconds (see Figure 7 of the previous sec-
tion). Therefore, 70% of all ionization produced per

e seconds, at

primary ionization is produced within 10~
atmospheric pressure. Considering that the radial electric

field does not begin its decay until a few tenths of a
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nanosecond, the cascade approaches completion long before
the radial field begins decay. Consequently, the lag
phenomenon has little effect on the fields for a pulse
traveling through air at a pressure of one atmosphere.
The second cause is that at low pressures (lecs than
100 Torr) avalanche ionization dominates over direct
ionization in the rise portion of a pulse. For exarple,
in the test case of a 10 kilo-Ampere beam propagatirg in
76 Torr air the predicted value of the electric fiell is
near 50 sV/cm over most of the pulse rise. This fie. ]
strength heats up the electrons to an energy near 5 eV.
The avalanche coefficient at this electron energy is 7.5 x

10° geo™t (Appendix B). Thus, an estimate for the e-

folding time for electron prodcution is 1.3 x L
seconds.

The dominance of avalanche ionization over direct
ionization is illustrated in Figure 23. Here we compar=
the plasma electron density calculated with lag to the
plasma electron density calculated without lag (zero 1lag
time). Values are taken from program BEAM2. When the
elapsed time is too short and the fields not strong enouzh
to induce significant avalanche, the electron density
predicted by the calculation without lag is 2.5 times
larger than that predicted by the calculation with lag.
But at 10 centimeters into the pulse, or about 3 x 3=0

seconds, avalanching dominates in both cases, and the

predictions merge. After the axial field decays suffi-
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ciently so that the avalanche ionization rate is less than
the impact ionization rate, the two sets of calculated
values diverge once again. This occurs shortly after the
end of the pulse rise portion. For this case it occurs
after about 50 centimeters into the pulse. Since the
major changes of the fields from their vacuum values occur
in the rise portion of the pulse, the fields calculated
with and without the cascade ionization time lag are

9
virtually identical.

Saturation of Net Current

As we have seen, calculations of beam fields prior to
this study have generally been restricted to beam currents
of 10 to 15 kilo-Amperes, or less. At these currents
little current saturation is seen at a pressure of one
atmosphere. It is only when the air pressure is dropped
to 100 Torr, or below, that current saturation is quite
evident. In this work we extend the range of beam currents
up to 1,000 kilo-Amperes. In doing this we demonstrate
the strength of the saturation effect for different beam
currents and air pressures, and we determine, for the
first time, the magnitude of the net current that flows
through a pulse for beam currents larger than 15 kilo-
Amperes. Values of net current are inferred from computed
values of the magnetic field computed by program BEAM2.

The calculations are summarized in Figures 24 and 25.

We have chosen to maintain a constant current density of
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10 kA/cm2 in this calculation so the radius varies from
0.31 centimeters for the one kilo-Amjere pulse to a maximum
of 10 centimeters for the 1,000 kilo-Ampere pulse. In
Figure 24, we have plotted the net cu-rent at the top of
the rise portion of the pulse. The ma:imum current shown
in the Figure is 25 kilo-Amperes, prodiced by a beam with
a current of 1,000 kilo-Amperes, propagating through
atmospheric pressure air. Thus, the p.asma current ic 975
kilo-Amperes, or 97.5% of the beam current. The net
current is not constant within the pulse, but continues a
slow increase. In Figure 25 we have plotted the net
current at the rear of the pulse. We sez that the maximum
current observed is 70 kilo-Amperes for a 1,000 kilo-
Ampere beam current. This is an increase over the 25
kilo-Amperes computed at the top of the rise portion. We
note, too, that the net current decreasec substantially
with air pressure. For the 1,000 kilo~Ampere beam the net
current at the top of the rise portion at a pressure of
7.6 Torr is three kilo-~Amperes, while at a pressure of 760

Torr the net current is 25 kilo-Amperes.

Discussion

From the results presented in this section we have
established four major points.

1. The general agreement between prec ctions of the
models and experimental measurements demonst i1tes the

validity of the models.
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2 Considering the good agreement between the one-
dimensional and the two-dimensional models we conclude
that the one~-dimensional model provides an adequate descrip-
tion of the fields, over the range of parameters considered
in this study.

3 Since avalanche ionization dominates at low
pressures, the cascade ionization time lag is of no con-
sequence in determining the behavior of the fields.

u, For the first time we calculate current satura-
tion at atmospheric pressure, and predict net current flow

in a pulse for beam currents up to 1,000 kilo-Amperes.
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VI. MAJOR CONCLUSIONS AND RECOMMENDATIONS

Major Conclusions

Considering the theory developed in earlier sections,
and results presented in the last section, we draw four
major conclusions from this study.

y 38 The theoretical models developed in the course
of this work accurately portray the electrodynamics of a
propagating electron beam. In particular, our ionization
model is the only one that is valid over a wide range of
air pressures and beam parameters. Agreement between
available experimental data and the predictions of the
model are generally within 15% and no worse than 30%.

P4 Considering the good agreement between the one-
dimensional and the two-dimensional EM models, and the
excellent agreement between the.predictions of the one-
dimensional model and experimental data, we conclude that
the one-dimensional model provides an adequate description
of conductivity generation, net current flow, and the
axial variation of the EM fields over the pressure range
of five to 760 Torr. The analytically predicted radial
variation of the axial electric field closely resembles
the numerically predicted radial variation in the pulse

rise portion, but does not predict the pronounced




flattening that the numerical model predicts in the con-
stant portion of the pulse. We observe a factor of 50
reduction in computing time when solving the one-
dimensional model equations over the two-dimensional model
equations.

3. At low pressures (less than 100 Torr) avalanche
ionization dominates over direct ionization, so the cascade
ionization time lag has virtually no effect upon the
behavior of the fields. 1In essence, the avalanche compen-
sates for any changes introduced into direct ionization,
so it is not necessary to include a non-zero cascade
ionization lag time in field calculations. One would
expect a similar result for other gases with ionization
cross sections similar to nitrogen.

L, As beam current is increased, and all other
parameters are held constant, the magnetic diffusion time
also increases. This causes the net current flowing in
the beam to saturate. At atmospheric pressure this satura-
tion is most evident above beam currents of 15 kilo-
Amperes. At lower air pressures current saturation occurs
at lower beam currents. Above a beam current of 15 kilo-
Amperes large increases in beam current produce only small

increases in the net current.

Recommendations

The ionization and EM models derived here were

developed to study atmospheric propagation of an intense
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pulse of relativistic electrons. However, the EM models
are applicable to any kind of charged particle beams,
including proton beams or heavy ion beams. Much of the
ionization model could also be used for propigation
studies of other kinds of charged particles. The plasma
electron-air molecule reactions (avalanche, attachment,
recombination), and the collision frequencies are ob-
viously independent of the type of charge particle beam.
Only the direct ionization rates need to be changed. It
would be very useful to apply the models of this study,
with the appropriate changes in direct ionizaticn, to
other types of charged particle beams currently of inter-
est.

No matter what type of beam the researcher is inter-
ested in the primary consideration in propagatior. studies
must be the response of beam particles to their self-
fields. While this study does not allow the beam rar-
ticles to move with the fields, results from this study
provide an estimate of the response. However, to accu-
rately assess the beam evolution, both the fields and the
beam particle motions must be calculated simultaneously to
allow their interaction. Preliminary investigations n

this area are underway.
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APPENDIX A

EM FIELDS OF A BEAM IN A VACUUM

In sections II and III the EM models that are employed
in this study were developed. In both the one- and two-
dimensional models the EM fields of a beam propagating
through a vacuum arise in a natural way. In this Appendix
we calculate the fields of a beam in a vacuum.

To simplify calculations we assume that all beam
particles move in the longitudinal direction at the same
speed, and that the fields as seen in the beam frame are
time independent. These two assumptions allow the vacuum
fields to be determined from a scalar potential, ¢.

The method employed here is to find the fields of a
pulse of relativistic charged particles as seen in the
pulse frame of reference, them perform a Lorentz trans-
formation of the fields back to the laboratory frame of
reference. Letting the star denote the value of the param-
eters in the pulse system, and the unstarred parameters be
measured in the laboratory system, the transformation equa-

tions are (Ref 30)

Lld




% =

Ja aaBJB

e €x, ¥ 24 dct)

I, 2 (Jx, Jy, J,» icp)

aaB = /1 0 0

0 ik 0
0 0 Y
0 0 -iBy

Thus, we have,

r¥ = (x*2+y*2)1/2 = r (A-1)

z*% = yz+iBy(ict)=y(z-Bct) (A-2)
icp* = iy(cp-BJ,)

p# = Y(D-g J,) = Y(D-g pBc)

p* = yp(1l-B2) = p/y (A-3)

The inverse transformation of

four-tensor,

the fields is found from the

FaB = 0 Bz -By -1Ex
-Bz 0 Bx -1Ey
-By Bx 0 -1Ez

1Ex iE 1Ez 0
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which transforms according to (Ref 30)

FaB = b

E3
ayPBsTYs

where

baY

Performing the indicated tensor multiplication results in

Ey = Y (Eg* + BB #)
Eg = v (Eg* - BB,*)
EZ v EZ*

B. =

x T Y (By* - BE %)

LéIJ

Y (By# + BE #)

Realizing that the magnetic field is zero in the starred
system the transformation equations reduce to

113




/2

A 2 z l —~ F3

Er (EX + Ey ) = yEP (A-4)
= * L

Ez Ez (A-5)
X 2 a2 o

By = (B, *+B %)™ = gyE * = BE (A-6)

Here we have used

P = pulse charge density
B = v/e
y = (1-82)"1/2

In the main body of the pulse the fields are assumed
to take on the values of a beam with infinite longitudinal

extent. That is,

EZ =0 (A-7)
b g
E. = 2% f r'o(r')dr’ (A-8)
(o]
r
By = BE, = 228 ¢ y1p(rt)ar: (A-9)
S (o]
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It is in the rise portion of the pulse that our main
interest lies, so the remainder of this Appendix deals
with a close look at the fields in this region.

Two different approaches are employed here to find
the fields. The first is to make various approximations
in order to find analytic forms that nearly reproduce the
actual field values. The second approach is to perform a
more exact numerical calculation. Comparison between the

two approaches shows close agreement.

Analytic Approximation

In order to find approximate forms for the fields our
method is to make an ordering argument to show that the
axial electric field is usually much weaker than the
radial electric field. This allows the equations to be
decoupled, and the fields found. The ordering of the
fields is, of course, valid in the laboratory frame of
reference as well. However, we make the ordering argument
in the beam frame, and demonstrate its validity there,
because the argument is much simpler in the beam frame.

Employing a Cartesian coordinate system for simpli-
city, the wave equation for the fields in the beam frame

is

¥ X (VxB*) = v2B#_ynVp*=0 (A-10)
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The formal solution is

oo

]
B = _yy 5 'DR(TR)dre
- |pE-pE|

(A-11)

If the charge density, p*, is a reasonably smooth function
of r* (or x* and y*) and most of the charge is contained

inside a radial distance a, then

&
~ B (A-12)

where "A" means "on the order of". Likewise, if p* varies

smoothly in the longitudinal direction, then

QL
O

»*
O

%

(A-13)

%
g
4
g
ks

where Az* is the length of the rise portion in the pulse

frame. For this study we restrict ourselves to

Az#%>>a% (A-14)
Then
% %
o)
g* >> =% (A-15)
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and

ap* % ap* - apﬁ't
X y® " 3z%

Therefore,
E*r\,E*>>E*
X N z
or

E ®# >> E #
r V4

(A-16)

(A-17)

(A-18)

The ordering argument (A-18) allows the fields to be

derived. The divergence equation is

Making another ordering argument,

1 9 Er*
LTI *p *
r* 3p* (r Er ’ a®
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by

we have
3E ]
1.9 e Z
'I':* 5’;* (1’" Er‘) >> 32." (A-22)
Thus
.]; _3__ 3 % = L]
a e (PRER) = hwp (A-23)
and
Y ¥
ER = =g pEtpR(pht od)drs’ (A-214)
o)

Transforming now to the laboratory frame,

r
Er = %E I r'p(r',t-z/Bc)dr’ (A-25)
o

- _ umB
- W i

o * r'p(r',t-z/Bc)dr' (A-26)

(9 B W

Notice that the forms for Er and BO in the rise portion of
the pulse are the same as that in the main body of the
pulse. This is a direct consequence of the smallness of

E, in the rise portion which results from
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*®
B B ol 1 (A-27)

Therefore, as long as (A-27) holds the above approximate
solutions for E_ and BO are valid.

With both the radial electric field and the azimuthal
magnetic field specified, the longitudinal electric field
can be determined within an integration constant. From

Faraday's Law,

R

ﬁxi--gﬁ (A-28)
we have, in cylindrical coordinates,

1 aBe . BEZ : BEr ik

c at ar 9z
Since

z - Bet = Constant (A-30)
then,

SEP 1 azp

Tyt & o8 . =31/
and
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2E, 1385 1 9E, e
or c ot Be a3t b
oE
WS _1
== % = (BEr z Er) (A-33)
oFE 9FE oFE
g, PO W oo s SRR Bty o
gt = 8o .- (1-8%) = Boy? 3t (A-34)
Finally,
E(p,z,8) = E (0,2,t) = 2 L ? E dr (A-35)
e T U Bcy?Z 3t NORE

An order of magnitude estimate for Ez, and a rough
scaling law, can also be derived. Recalling the formal
solution to the pulse fields in (A-11), by invoking a

volume oriented mean value theorem one can write

1 9

% = A %o > o~
E, i a 3pa (P¥o®) I ;*zri (A-37)
and
ap*
% = =
e 6, EET'l ;*=;3 b
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where

© >
%!
I = -u4m [ e

-»> >
_wlrﬂ': - r-*'

and 7#% and r% are the points where the equality expressed

1 2

in (A-36) and (A-37) hold, respectively.

mean value derivatives by

and
we have

Er* ~ P2/n* . B3%

E;* p®/Az* ~ a%
Thus

E = E %% 8 w2 E

z z z Y28z r
(
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Estimating the

(A-38)

(A-39)

(A-40)

(A-u41)




If

Er = 103 sV/cm
a.= 1 ecm

Az = 100 cm

¥ = 10

then

Ez v 0.1 sV/em

Notice that (A-41) predicts inverse scaling with Az and
inverse square scaling with gamma. In tﬁe next section
this scaling will be shown to be approximately, although
not rigorously, valid.

In summary, for the radial and longitudinal profiles
of this study, the pulse fields in the rise portion of the

pulse are estimated to be

t-z/Bc T

Ep = 2" it T#ri/al s
BO = BEP (A-43)
-rrazpo
. P W ot 2.2 4
BN Ez(r-o) 377k tn (1+r*/a®) (A-uy)

Numerical Calculation

A numerical method that accurately calculates the

fields in the pulse rise portion is developed here. By

122

T —




employing a three-dimensional exponential Fourier trans-
form pair, five of the six integrations can be exactly
evaluated analytically leaving only one numerical inte-
gration.

The exponential Fourier transform pair is defined by

© o o

0%(K) = F{o(D%")} = S [ [ ¢%(DE').

=00 =00 =00

exp {-i[x*'Kx+y*'Ky+z*'Kz]} dx*'dy*'dz*"' (A-45)

p*(P%) = FTH{o* ()} = (3)° £ 1 f ex(R)-

I[x*K +y# % i)
exp {+i[x Kx y Ky+z Kz]} dededKz (A-46)

where ¢* is the scalar potential and again the starred
variables are measured in the pulse frame of reference.
By defining

x* = r% cosO%

y* = p* sino*

K = K cosOK*
K = K sin0o *

we have
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v

= % * = H3 ~ % — & -
X Kx+y Ky+z Kz r KPLOS(G OK) +i z Kz (A-47)

in cylindrical coordinates. The Fourier transform pair

then becomes

o 2m (-]

0%(K) = f f [ ¢E(FEr).

exp {~i[r*'Krcos(e*'-OK)+z*'Kz]}r*'dr*'d@*'dz*' (A-48)

© 27T ()
57T eR(K).

-© -0 -0

o*(ph) = (3=)

1 % ® o -
exp {ilr K, cos(0%-0,) + z*KZ]} K dK de dK, (A-49)

k

In the pulse frame, Poisson's equation for the poten-

tial is
V2% = -unpo*f(r*)g(z*) (A-50)

Operating on (A-50) with the transform yields

F {V2¢%(p*')} -(K?_+K? ) o* (%)

® 27 o™
® hwp N & 1T £l jgiat)
- 00 (o) (o]

exp {-ilr*'Kpcos(0*'-0x)+2*'K,1} r*'dr*'do*'dz#*'(A-51)
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Solving for ¢* and operating with the inverse transform

gives
e Pt e 2% «
tl = 1 % L. tH .
¢ (r*') T -i é g exp [1(r=Krcos(O 0, )+z KZ)]
© 27 o
{ S S [ f(r*')g(z*")exp[-i(r*'K cos(@*'-@k)+z*'K )1}
K_dK d@deZ
(r:':'dr.:':'dez':ldz:':') PK §+K - (A—52)
¥ g

Some of the integrations in (A-52) can be performed if the
order of integration is changed. This is possible since
f(r) and g(z) are piece-wise continuous. The following

integrals can be evaluated (Ref 42)

2T
I exp{-i[r*'Krcos(O*'-@k)]}de*' =
o
2mJ_(r#*'K ) (A-53)
o r

2m
g exp{l[r*Krcos(G*—Ok)]}dok e

2md_(r*K ) (A-5Y4)

o r
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g —————p——————

® exp {iKz[z*-z*']}
K 2+K 2
PR

dK_ =
z

- 00

1_T_ - P | -

7 expl krlz zR'| ]} (A-55)
T

where JO(P*KP) in the zeroth order Bessel function with

real argument, and |z*-z*'| means "magnitude of z¥-z#%'",

The potential function now is

¢($*)=2npo S I f(rEt)g(zEt) .
O = O

exp{-K _{z#*-z%'|}J (r*'K )J_(r*K )r*'dr*'dz*'dK_ (A-56)
4 (o} r O 1% e

To proceed further requires explicit expressions

for f(r) and g(z). Using the Bennett profile for f(r),

o © r*'Jo(r*'Kr)dr*'
J f(r*')Jo(r*'Kr)r*'dr*' = a' é CF'2+a%2)2

o

a’Kr
- % =
5 Kl(a Kr) (A-57)

‘where K1 is the modified Bessel function of the second kind,

of order one. Thus,
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¢ (P%) = zpatt f [ glz%*) exp (K |zA-z%*])-
-00 =00
3 3 et =
J (0K )T, (a#K K dk_dz? (A-58)

At this point let us define

-]

h(z*,Kr) S | g(z*')exp(-Krlz*-z*'])dz*' (A-59)

-00

When considering the longitudinal density profile for this
study (A-59) becomes complicated, but is directly inte-

grable. Recognizing that

E# = - 39 (A-60)
r or
and
i 9= ¥
E ¢ = - b (A-61)

we arrive at

Lo ]
mp *a*® [ h(z*,K )J, (r*K )K, (a*K DK *dK (A-62)
o

Er*(r*,z*)

and
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-

: @ Bh(z*,KP)
f(pk % )=o %% ——gtJ * * -
Ez (r*,z%) mp *a é P o(r Kr)Kl(a Kr)KrdKr (A-63)

Finally, employing the Lorentz transformation relations

back to the pulse frame, we have

e 3 2
Er(r,z)—npoa é h(z,KP)Jl(rKr)Kl(aKP)Kr dKr (A-64)

mp_a® » 3h(z,K )

- (©]

O

Jo(rKr)Kl(aKr)KrdKr (A-65)

These forms for the fields are found by numerically inte-
grating over Kr' Comparisons between the analytic and
numerically calculated fields are illustrated in Figures
26 and 27.

In equation (A-65) the dependence of Ez upon Az occurs
from both the 1/Az slope of g(z) in the rise portion of the

. o -KPIZ-Z'I
pulse and the integrating of g(z) e

over the
longitudinal extent of the pulse. Although the scaling of
Ez is only approximate, computer integrations of (A-65)
verify the approximate scaling of Az. Consequently, Ez

scales approximately inversely with Az and inversely with

the square of gamma.
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APPENDIX B

REACTION RATES

As a pulse of electrons enters the atmosphere it
interacts strongly with air molecules to produce free
electrons. These electrons can then be accelerated by
existing electric fields to energies which may be suffi-
cient for the electrons to produce additional free elec-
trons by electron-atom impact ionization. We present here
a discussion of the ionization, recombination, and attach-

ment processes used in this work.

Rate Equations

The equations of the ionization model are, from

Section 1V,

ane T, ARI(T-t)

s = alWn_ + Ry + J . dt (B-1)
T
o

avr eEr

5T s El;_ - (\)m(W) * QT) VI‘ (B-2)

avz eEz

3% = E;_ - (\)m(w) + GT) Ve (B-3)
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where

oW _

5T e(Ervr+Esz) - (ve(w)+aT)W+v€e+S (B-4)
rae e g GER pe

- ® It Ve R -€ (B-5)

plasma electron density

net avalanche (recombination) coefficient

a + (l/ne)R

impact ionization rate

radial plasma electron velocity
longitudinal plasma electron velocity
radial electric field

longitudinal electric field )

electronic charge

electron rest mass
momentum transfer collision frequency
energy transfer collision frequency

characteristic plasma electron energy
external heating rate of plasma electrons

background neutral gas characteristic energy

energy loss rate of beam particles per unit
length per neutral particle
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f = fraction of beam energy loss that goes directly
to neutral particles
N = neutral particle density

The empirical parameters are given by

Electron-neutral momentum transfer collision frequency

Lob . 405

L (1 + 0.093 W) /

=== =125 ¥ 150

7 0,935
N W

(1 % 1.26 whro1y9.373 (B-6)

Electron-ion momentum transfer collision frequency

6 /

- 1
%o, = 1,46 w 1b 2y 2n[l.55x1010(w3/ne)2](8-7)

3
i (ne/w

Electron-neutral energy transfer collision frequency

1.3 x 107311 + 4.4 x 10"w*)%:32

Jen

b=

-10,,5.22

3 10)0.138 + §.13 % 10 W /

(1 +# 1.93 x 10°W
7,0.456 -3,,4,0.097

(1 + 0.06W") (1 + 1.68 x 10 "W') (B-8)

Avalanche coefficient
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a .

7= 3.76 x 10735 w7 0342.02 x 1072412 (B-g)
Three body dissociative attachment

%3A =83

gz = 2.78 x 10777/ (1+12.5W) (B-10)

Two body dissociative (electron-ion) recombination

Q

prib =7 00260563
- N_—‘F = 2.1 %2 10 (——w—'—) (B-11)
o}
2
Two body dissociative attachment
%24 =12 -4.8,1.29
T = 4,85 x 10 /(l+3.l#5w e (B-12)
v = v $ONE (B-13)
m mn mi
O = 0 =0y, = Oy =G (B-1u4)
Impact ionization rate
. m B2c?T _vy?
RI s Yme ZN [ln(-—e‘—¢—!—e—)-82] (B-15)
(1.6x1071%)¢ m_c i
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electrons/cm3/sec

In these equations

Te = beam electron energy
Z = 7.2, effective atomic number for air
W, = electronic rest mass

¢ = speed of 1light
B = v/e

v B (1-82)7%

¢ = empirical factor and is 86 eV

This form for the impact ionization rate is found from the
classical stopping power formula for relativistic electrons
(Ref 35), and by assuming that, for every 86 eV of energy
lost, one ion-pair is immediately formed. This assumption
is consistent with the observation that, after cascade
ionization is completed, one ion-pair is produced for every
34 eV lost by the beam electron (Ref 36). The parameters

Vi g VL &y Ugps and a,p are the same as those originally

mn € 1

developed by Wittwer (Ref 19), but the parameters Vni and

a, were addedlto include the effects of higher electron
densities. The electron-ion collision frequency, Voo is
adopted from Spitzer (Ref 32) and Lee (Ref 8), while the
dissociative recombination rate, oL is taken from the DNA
Reaction Rate Handbook (Ref 43). Figures 28 and 29 plot

the parameters for sea level density air.

135

e—t e e e —




SIUSTOT ) jo0) UOTIRPUTQUWOOSY

001 0l

pue
(A3)M

0!

¢ juswyorily

‘ayourpTPAY *8Z 9Jan3Tg

10°

Amusu

AMlEo

010!
(0!
N—O—

g 0!

(,-038) D

136




m..._":.u_.:no_:__=\~

soTOouanbaa UOTISTITTO) *6¢ °2J4NBT4
(Ad)M
001 ol (| s 10
T T T
wS

v

g0!

Q-Q—

§ g

N—O—

¢10!

10!

(I-SBS)A

137




r—

In a series of papers Phelps and others (Refs uL-48)
developed a method for calculating these empirical param-
eters for various mixtures of gases. His goal was to deter-
mine the unknown cross-sections. His method was to employ
a Boltzmann code, solve for the equilibrium distribution
function and, from this, calculate the experimentally
observed parameters. The unknown cross sections were
varied until the calculations agreed with experimental
data. From these calculated values of empirical parameters
Wittwer has developed the fits for air.

Other sources indicate a fair agreement with the
parameters of the fluid model as given by Wittwer. For
example, the DNA Reaction Rate Handbook (Ref u43) gives a
value for the momentum transfer collision frequency at a
one electron volt energy of 1.7x1012 sec-l. The fluid
model value of the collision frequency given here is
2.7x1012 sec_l. As a further example of how the collision
frequencies vary between models, Figure 30 compares the
energy dependence of the collision frequencies of the DNA
Reaction Rate Handbook value to those values of the fluid
model.

Recently, Radasky (Ref 28) has published Longmire's
fit to experimental data for the avalanche (ionization)

rate as a function of the electric field for sea level

conditions. The fit is

5

(5.7 x 108y°)/7@1 + 0.3y%° %) (B-16)

a
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where

- |E] (sV/cm)

100

Employing the equilibrium relationship between the electric

field and characteristic energy for air, from Wittwer (Ref

197,

Wiev) = 2.5 x 10°°

(1 + 5.65 % 1077

(1 + 0.11(ENO,N)3.6 0.658

(EN_/N)7)
o

(B-17)

allows a direct comparison between the two ionization

coefficients. Figure 31 is a plot of the two rates.

Notice that below 5 eV the Longmire model predicts an

ionization coefficient almost twice that of Wittwer's.

Above 10 eV the two fits rapidly diverge.

The dominant three body dissociative attachment

reactions have been delineated by Radasky (Ref 28).

are

0O, +e +0,+0,” +0

0. ¢ 4« N.+0 + N
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0, +e +H

) 0 -+ 02 + H. 0 (B-20)

2 2

with respective reaction rates (DNA Reaction Rate Hand-

book),

30

1.85 % 20720 & fewe (B-21)

?..

%4 31

1.0 % 107 cms/sec (B-22)

29

£ 1.4 % 2022 on®/sec (B-23)

for a neutral particle temperature of 300°K. These rates
were determined by experiments in which the electrons and
neutrals were in thermal equilibrium, so the dependence on
electron energy is not given. Assuming a mixture of 80% N2

and 20% 02 the first two attachment rates combine to

= 6.4 x 10’ sec™> (B-24)

at sea level density. The maximum fraction of the air that
is water vapor (100% relative humidity) is 0.07. With this
fraction the attachment rate for the third reaction is
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St TR 108 sec (B-25)

Wittwer's three body attachment rate for thermal electrons

at 300°K gas temperature is

= 2 x 10° sec (B-26)

For most cases of interest in this study, however, the two
body attachment rate and the recombination rate dominate.
The two body dissociative recombination reaction that

is employed in the fluid model is

Ml B TR T (B-27)

with the reaction rate

B = 2,3 x 1077 (Haf28,0:89 (B-28)
N, * W
¢}
2
Since the positive ion charge transfer reaction
+ +
N, + O2 > N2 + 0, (B-29)
10 -1

occurs at a very rapid rate (+10 sec at sea level

density) virtually the only pdsitive ions are 02+ ions.
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5 +* . s 2
The density of O2 ions is equal tc the density of elec-

trons by charge balance if the density of negative ions

produced by the attachment is small. For the cases con-

sidered in this study it can be proven that this is the

case. Writing

where

a rate equation for negative ions,

n. = An_ n_ (B-30)

negative ion density
positive ion density
total attachment rate

total ion-ion recombination rate

solution is

4o i
. {(1+-—AA—) -1} (B-31)
ne

n e

where n_A is the asymptotic solution.

Using sea level values of ap and A

GA'\'

A A

2x108 sec™

2%10 "8 cms/sec

1k




n_ ~ 1016 on3
e
we have
n
i SRR (B-32)
Ne
Thus
n, = NO; BB (B~33)

At densities lower than sea level densities the
three-body dissociative attachment rate falls off very
rapidly leaving only two body dissociative attachment to
produce negative ions. However, even that attachment rate

-1 2t a factor of twenty reduction below

falls below 107 sec
sea level density. Since pulse lengths are typically

considered to be on the order of 10-7 seconds in length, or
less, the attachment process is negligible within the pulse

for densities one-twentieth, or lower, of sea level density.

The reaction

0O, +e +0 +0 (B-34)

is the primary reaction considered by Wittwer in finding

the net two body dissociative attachment rate. Johnston
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(Ref 11) employs a reaction rate which is vanishingly
small, while Radasky (Ref 28) does not even include the
reaction for EMP calculations. Experimental measurements
by Fite and Brachman (Ref 49) and theoretical calculations
by O0'Malley (Ref 50) of the reaction cross section as a
function of electron temperature are consistent with

Wittwer's reaction rate.

Analytic Approximation

The set of five fluid equations, plus the auxiliary
equations for the empirical parameters form a set that must
be solved numerically, if all effects are to be considered.
Yet, for many cases of interest in this work, certain
approximations yield analytic results which permit an
adequate description of the system.

Written in vector form, equations (B-2) and (B-3) are
o ->
3T i (Vm (W) + OtT) v (B-35)

For sea level conditions most of the pulse parameters con-
sidered in this work produce electron energies on the order
of one eV. This value of energy yields a collision fre-

1 -1

quency of 2.7 x 10 sec ~. For large values of ng (>1013

cm-a), ar is much smaller than v Assuming a constant
value of Vo for time scales much longer than l/vm the

solution to (B-35) is

146

b S




v = (B-36)

Under these assumptions the electron drift velocity is
parallel to the electric field and given by (B-36).

Additionally, since

J =env = £ (B-37)

a plasma conductivity can be defined

| e?n

i
£ & secke ¥ £ (B-38)

|E| MeVm

Consequently, for these situations, the plasma current
density in Maxwell's equations can be replaced by LE.

The electron density can also be estimated analytically
for many cases of interest. Assuming a linearly rising
beam density in the pulse head, zero lag time, and attach-
ment and recombination times that are much longer than the
pulse rise time, then (B-1) becomes, in the pulse rise

portion,

on
F_Te=R%-t— s T €'4 ¢ (B-39)
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where

T = t=-z/8c¢
At = pulse rise time
One gets
SR 2
B, S EEF T sEEE
and
5 = U
mevm 20t

for a constant Vm'

(B-40)

(B-41)

In the main body of the pulse attachment and recom-

bination processes cannot be ignored. Again assuming a

zero ionization lag time,

= R-a,n_-B n * sTAt

where

(B-42)

(B-43)

This is just the Ricatti equation (Ref 51). The solution

1u8




is
i-
exp (D,-D.)(t-At) + AD,/D, D
n (1) = 2 3 S 3 (B-44)
e exp (Dz-Dl)T?-At) + A B
where
n (t=A1)B_-D
R T B S e S (B-45)
ne(T-Ar)Br-Dl
o 48 R
" A r % “
Dl B £l ¢ @1 + EZT_) ] (B-46)
aA 4B R
D, = = == [1 = (1 + —3-) %] (B-47)
2 2 aA

for aA and Br constant.

The conclusion is drawn immediately that the electron

density is bounded by

L, o 4B R
2 A r %
n < == =——{[1+ — J %=1} (B-48)
e — Br 2Br o

Employing Wittwer's values of a, at one eV and the author's

value of Br at one eV, for sea level densities

149

=

e




3.4 x 107 sec” !

%

8

B 2.1 % 307

r

and assuming an ionization rate of
25

RES=0 electrons/sec

we have, for a one MeV electron beam,

n. = 2.1 % 1016 cm-3

This occurs on a time scale of roughly

48 R -k
3 3 r
TSN = — [ 1+ —1
Dosily - By SR

or

T-At = 3.3 x 10”2 sec

For this case, the maximum conductivity is

. 12 -1
zmax e S sec
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APPENDIX C

PROGRAM BEAM1

In this Appendix we discuss the actual numerical
method that is used in program BEAM1 to solve the two-
dimensional EM equations of Section II, and the ionization
model equations of Section IV. We present the finite dif-
ference equations and the algorithms employed for their

solution.

Finite Difference Equations

From Section II, the differential equations of the EM

model are

3E,, oE ©
Fz= *+ WnIE = = {C<1)
T r 9T
3F 3E
19 z 1 r _ 4m 3 x
g [P(s“‘p - )] = = F‘(Jbz + }:Ez) (C-2)
1 3 _ km 3 g
3w W 5w Vae * I e

Since the electric field is completely decoupled from the

magnetic field, we only solve for the magnetic field after
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the electric field is determined. The finite difference

equations employed for the first two differential equations

are
n+l n )91 Ll o i n n
Eri - B P (Zi Eri > zi Eri )
AT 2
on+l on
Eri r Eri
= = (C-4)
n+l n+l n+l n+l nEl
Eliva zi=1 = %E;; & i (Ezl+lr_ zi-1
(Ar):2 T 2Ar
51
1 o 3E + n+1/3 3 oE i1 n+l/2)
Ber. Sig A0 9T i-1 9T
n+l n n+l nel n n
& BE Jbzi = Jpai % s E,s - &3 Ezi ) (Cc-5)
(e AT AT
B, is found by Simpson's rule integration (Ref 2u) over r

6
of equation (C-3). Here the i subscript denotes the ith

grid point in the radial direction and the subscript, n,
denotes the nth grid in the 1 direction.
The finite difference equations for the ionization

model equations are constructed by noting that the form of
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each of the differential equations is

af(r,T1)

3T st ple, 1) E(r.1) +* hir;t) (C-86)

Integrating over one time step,

o (1-ePAT) (c-7)
{
where |
e =l
B o= (p(ri,rn+1) + p(ri,rn)) (C-8)
= 1
h = 5 (h(ri,1n+l) + h(ri,rn)) (C-9)

The subscript i denotes the ith radial position, and the
subscript n denotes the nth grid point in the 1 direction,
as before.

These finite difference equations have certain char-
acteristics that we point out here. The first point to

notice is that all parameters are evaluated at the same

grid points. Since the electric field and the conductivity
are related through the plasma electron energy, the equa-
tions are iterated for consistency. Secondly, we notice

n+l/2 n
that, to evaluate (ZEP)i we take the mean of (ZEr)i
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n+l
and (ZEP) i . This results in second order accuracy in

the difference equation for Er' The third important point
is that an implicit differencing scheme is used in the
axial field difference equation. We do this to alleviate
the obvious linear instability of an explicit scheme (Ref
24). However, since the axial field is coupled to the
conductivity in a non-linear fashion numerical instability

is still possible, and has been observed for some sets of

beam parameters not included in this study. The instability

results in catastrophic disruption of the calculation. Due

to the complex nature of the differential equations we have

not been able to perform a stability analysis, or otherwise

determine stability criteria.

Solution Algorithm

The finite difference equations for the EM fields are
solved in a straightforward manner. In equation (C-4) the

conductivity, vacuum values of the field, and values of

¢ + .
Er? are known, so we directly solve for Er? 1. With the

radial electric field just determined, and the conductivity

and beam current density known, equation (C-5) becomes a
tri-diagonal equation for Ez in r when written in matrix
form. This we solve by a method of back substitution (Ref
24).

As previously mentioned, in order to maintain con-
sistency between the electric field and the conductivity,

solutions are iterated. The iteration procedure is to
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guess a value of the current density, 3, from which we find
the conductivity by Ohm's law, then calculate new values of
% and J. Iterations continue until no appreciable change
between iterates is observed. Normally, only four to six
iterations are necessary to achieve convergence. We illus-
trate this procedure in Figure 32.

To achieve the rapidity of convergence that we see,
and to minimize computing time, we use a scheme to accel-
erate convergence. This procedure, sometimes called

"Aitken's A2-Method" (Ref 52), is given by

2
X - XX
x = -2l _nniz (C-10)
N
where
Xn+1 = f(Xn) (C-11)

and ?ﬁ is the new estimate for X . This method is applied
to the radial and axial components of the fields sepa-
rately, and at each radial position. One could have used a
variation of this method that is applied to all radial

positions simultaneously, but this would have greatly

inereased computing time.
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Figure 32. Flow Chart for Program BEAMI
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Iterations are also applied to the ionization model
equations. A look at the equations (Section IV) shows that
they are all coupled through the plasma electron energy, so
iterating through the equations provides a consistent

solution. This procedure is illustrated in Figure 33.
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APPENDIX D
PROGRAM BEAM2

In this Appendix we present the numerical method used
in program BEAM2 for solving the one-dimensional EM model
equations of Section III. Since the one-dimensional model
is considerably simpler than the two-dimensional model, the
numerical method in program BEAM2 is considerably simpler
than the numerical program in BEAM1l. The interested reader
is directed to Appendix C for a discussion of the numerical
method for solving the ionization model equations.

From Section III, the pertinent equations are

3E 9 °
KT—I’ + YmiE = a? (D-1)
30s0 . Foge v Mo | o M) L
9T Tao 9T maf 9T
E (r) = B20[) - in(ier fad ) (D-3)
z - DI n(l+ a
21, (r) 2I_(r)
Bg(r) = 2 + —£ (D-4)

cr cr
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with
nazzozn(l+b2/a2)
TS oz (D-5)
I (r) = ;;;i%g% (D-6)
and
mr?Jg

:o 11 [1-(a2/r2)£n(1+r2/a2)]}

Tn(1+b2/a%) (D-7)

Ip(r) 177
The zero subscripts denote that the values of the parameter
are taken at r=0.

Because there are only two differential equations, we

have only two finite difference equations

n+l n on+l on

Er = [Er(l-De) + Er -Er ]/(1+De) (D-8)
n+l n n+l n n+l n

J =

C
pzo = [9550 (1D )0y, =3y, I+gEg(E, (a)-E (a))]1/(14D))

where
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n+
De = 21 AT (D-10)
c?At
D = o (D-11)

2ﬂa220 ¢n(1+b2?/a?)

Here the superscript n denotes the nth grid point in the 1
direction, and the zero subscripts again denote the on-axis
values of the parameters.

We solve equation (D-8) at r=a since the radial elec-
tric field must be known at that point to find the on-axis
plasma current density in (D-9). Conductivity is also
evaluated at r=a for use in finding the radial field in (D-
8), but the on-axis value in (D-9) is inferred from the
assumed Bennett variation of conductivity. Since conduc-
tivity depends upon field strength we also evaluate the
axial electric field at r=a.

As in program BEAM1, program BEAM2 iterates to main-
tain consistency between the electric field and the conduc-
tivity. The same accelerated converge technique that is
used in BEAM1, and described in Appendix C is applied here
to the radial electric field and the plasma current density.
Normally six iterations are sufficient for convergence of
all parameters to less than 1% difference between iterates.
The numerical technique described here appears quite stable.

No evidence of numerical instability has been observed.
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APPENDIX E

PROGRAM MONTY

In this Appendix we examine the numerical program that
simulates the interaction of the plasma electrons with air
molecules, and an externally applied electric field. The
program, named Monty, simulates the collisions of the
plasma electrons against the air molecules by randomly
sampling over the interaction cross sections. Hence,
it employs Monte Carlo techniques. We also present a
catalogue of the experimental and theoretical cross sec-

tions used in the simulation.

Simulation Method

The most difficult aspect of the simulation is the
extraordinarily large number of possible interactions
between the plasma electrons and air molecules; so many
that a great deal of simplification is necessary to make a
mathematically tractable problem. Since N2 comprises
almost 80% of the air molecules the assumption is made that
the air consists wholly of N2 molecules. This appears to
be a reasonable assumption since 02, comprising about 20%
of the air molecules, has excitation and ionization cross

sections that are similar in many respects to N,. Program

MONTY, which uses these cross sections, is limited by
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available computing time to short time scales (10~" second
or less) and low pressures (76 Torr or less) so the only

interactions considered are

1. Molecular vibrational excitation
2. Electronic excitation

Sle Ionization

4. Elastic Scatter

In this study the energies of interest lie above one elec-
tron Volt so rotational interactions are not included.
Other possible interactions, such as attachment and recom-
bination, occur on much longer time scales and are of no
consequence for the parameters considered in program MONTY.
We achieve more simplifications by restricting the

problem to be zero-dimensional in real space (homogeneous),
time dependent, and one-dimensional in velocity space. All
spatial variations are ignored. Thus, the trajectories of
the plasma electrons are computed in velocity space from

the force equation,

eE
- o il (E-1)

The electric filed is externally applied, and is assumed to
always act parallel to the velocity vector. Obviously, by
reducing the dimensionality of the simulations some informa-
tion is lost. But our goal is to generate the history of

the ionization cascade. This history is relatively insen-

sitive to the spatial distribution of particles.
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To sample over the cross sections we employ the
"Golden Rule" of Monte Carlo to generate interaction
probabilities in a continuous manner. Let P be the prob-

ability of interaction at time t. P and t are related by

—NoTvt
P =e (E-2)

where N is the molecular number density of air, v is the
plasma electron speed, and Op is the total interaction
cross-section, and is a sum of the total vibrational excita-
tion, electronic excitation, ionization, and elastic scat-
ter cross sections. The probability of an interaction
occurring between the initial time and t is found by inte-
grating (E-2) over time and normalizing. This is often

called the "cumulative" probability, and is

G &l =8 (E-3)

Here we assume that O and v are constants. We also note
that the function, CN’ is normalized so that it lies on the
interval (0,1). We determine the time of interaction by
generating a random number,g, setting that number equal to

the cumulative probability, and inverting to find t,

= en(1-§)
t= - AR (E-4)
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After an interaction is determined to occur the type
of interaction, and the velocity and direction of the
interacting particles must also be determined. The type of
interaction is chosen by randomly sampling over the dis-
crete probability distribution composed of the relative
probabilities of each of the four possible interactions.
These probabilities are a function of the electron energy,
and are updated by the program after each time step. Once
the type of interaction is chosen the energy lost in the
interaction is determined by randomly sampling over the
partial cross sections for that interaction. From the
energy lost, and knowing the type of interaction, a new
velocity is calculated for the plasma electron. If an
ionization occurs, both the speed of the parent and daugh-
ter electron are specified. For all interactions direction
is not specified by random sampling, but by predetermined
rules. For example, for elastic scatter of plasma elec-
trons with a kinetic energy of 100 eV, or less, off a
nitrogen molecule, half the interactions result in forward
scattered electrons. By specifying that every other elec-
tron be scattered in the forward direction, and every other
electron be scattered in the backward direction we maintain

the directional partition.

Solution Algorithm

In program MONTY velocity space is split into a number

of bins of variable length. Normally, 90 to 100 bins are
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L
employed, depending upon the beam electron energy being
considered. The high energy electrons produced by impact
ionization necessitate a bin structure of variable length.

- The minimum width of the bin is 0.5 electron Volts at an

energy of one electron Volt, and increases up to a maximum
bin width of 300 keV for a one MeV beam electron. The
variable bin structure gives the necessary resolution for
energies below 100 eV where many different interactions
occur, yet it spans the range of electron energies.

The time domain is also discretized. Electron his-
tories are followed through a given time step, and at the
end of that time step the accumulated weight of every
electron in each bin is scored. Thus, scoring occurs at
the end of every time step, and a new distribution function
is calculated at the end of each time step.

We here summarize the algorithm used in program MONTY.

i The electron distribution produced by beam elec-
This is the

tron impact ionization is scored at time t=0.

source for the ionization cascade.

Z A sample of electroas is taken from each bin.
The same number is sampled from each bin and scoring
weights are adjusted for the relative density of electrons
in each bin.

35 The electrons are accelerated by the electric

field, and interactions
Depending upon the size

( ability of interaction,

are determined by random sampling.
of the time interval and the prob-

an electron may encounter several
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interactions within a time step, or, possibly, it may
encounter no interactions at all. For each interaction new
state variables are determined for the interacting elec-
tron. If an ionization event occurs the state variables
Plus the birth time of the newly born electrons are stored.
After all initially sampled electron histories are com-
pleted, the histories of the newly born electrons are
completed for that time step.

4. At the end of the time step the accumulated
scoring weight of each electron is scored in the bin that
is in at the end of the time step. This generates a new
electron distribution.

5ie We then repeat the procedure, beginning with step

2, the desired number of times.

Experimental Cross Section Data

A large amount of experimental cross-section measure-
ments are available for low energy electrons (< 1 KeV) onto
N2. The data employed in program MONTY are listed in
Tables IV through VII. The vibrational, excitation, ioniza-
tion, and momentum transfer cross-section are taken from
Englehardt, Phelps and Risk (Ref 46), and the electronic
excitation cross sections are taken from Rees and Jones
(Ref 53). All cross sections are in units of 10°1® cm2,
and all energies are in units of electron volts. Figure 34

+ plot of the total cross-sections, and Figure 35 is a

their respective reduced reaction rates (ov).
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There appears to be significant disagreement in the
momentum transfer cross sections as measured by Phelps (Ref
46) and as measured by Shyn (Ref 54). It does appear,
however, that above energies about 50 eV the angular dis-
tributions of the scattered electrons becomes decidedly
non~isotropic, with forward scatter preaominating. For
electron energies below 50 eV the momentum transfer cross
section and the elastic scatter are virtually the same. In
order to simplify the numerical program, the equality of
the cross sections is assumed to extend up to 100 eV.
Considering the disagreement in the data between Phelps and
Shyn it is felt that the error introduced by extending the
region of equality up to 100 eV is less than the uncer-

tainty in the cross sections.

Theoretical Cross Sections

Data giving secondary electron distributions produced
in the ionization process is conspicuously absent from the
following tables. Only recently have a few measurements
been made. Toburen (Ref 55) has measured the energy and
angular distributions of secondary electrons produced from

ionization of N, gas by proton impact up to 1.7 MeV in

2
energy. Opal, Beatty, and Peterson (Ref 56) performed
similar measurements, but with electrons as the projec-
tiles. Energy and angular distributions were found for 50
to 2000 eV electrons onto various gases, including N2.
Later, Green and Sawada (Ref 57) published analytic fits to

the secondary distributions of Opal.
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The data that exists, though, is limited to projectile
energies quite a bit lower than the energy of relativistic
particles. Very recently, Porter, Jackman, and Green (Ref
12) published analytic forms of the secondary electron
distributions produced by either electrons or protons,
valid from the region of experimental data up to one GeV
kinetic energy. Beyond the region of experimental data
(2000 eV for electrons and 1.7 Mev for protons onto N2)
analytic forms were made to fit the theoretical calcula-
tions for the secondary electron distribution.

The electron distribution is,

do F.(T) 5 Yzmeszczc. s
d—'Q— = i: W2) (KI‘e(T) {Qn[”(—-—-——-lz:[j )]-B%}=
{ 1 B(T) }

S0 L T % (Q—Q1)2+r12

"

N mwe
+ e { i1 + i
p2 T—Q-Ij e ZT+mecz)!
2 242
2Tmec +(mec ) : 1 y B8
(T+m c2)? (Q7X. )(T-Q-1.)+T,2
e 3 i 2

with

gy ® ionization cross section
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Q = secondary electron energy

do.

Eﬁi = secondary electron distribution
T = pulse particle kinetic energy
m, = electron rest mass
B = v/e
¥ 2 1 + T/me?

Ne = Z number for N2 = 14
P2 1.6 % 36 eV/erg

The rest of the parameters are given in Table VIII.
This form can be integrated to give the total ioniza-

tion cross section
wac dQ (E-6)

where Qm = T/2, and is the maximum secondary electron
energy.

Thus,

¥, (T) X Y?m_B%c?C, g
O‘i = Z TTH;JBTE’m (Kl‘e (T) {21’1[‘4(—-2-1-:_'—‘1)]-8 }

i

1 -1, -Q -1 Q
*{f; [tan (__EF_QE) + tan 1 (Tgﬂ)]
e
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B(T) ~1 e ‘ie i 1k
-—— [tan ~( ) + tan (=)1}
1“1 3 TI
N_me' 5 31 o T -I
+ —=5— {7 tan""(——) + tan (—3 1)
P r I‘2 1‘2
2 242
i Qme 4 2 Tmec +(mec )
(T+m_c7)? (T+m_c7)? a

T-21I. T=31[.
="[tar‘.h-l(————l-- tanh—l (_?f“l)]})
Jq 2 Yq

where

= § : -1, 2 -.2
q [I5 (T-I,) + T,%] + (T-21,)

(E-7)

Figure 36 is a comparison of the experimental electron

ionization cross section with the theoretical ionization

cross sections for electrons.

Another useful bit of information that can be derived

from the analytic forms of the secondary electron distribu-

tion function is the energy distribution function.

ing
Q
£,(Q,T) = / Q'
(o]
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we have,

. (T) : v2m 8202Ci i
£,(Q,T) = ? TE;%1cf7?7 (KT_%(T) {zntu(————fz————)l-e }
(Q-Q__)%+Tr %2 Q Q-Q Q

srl oe e oe -1 oe -1, 0
{5en [ REII J+p— [tan “(g—)+tan " (55 )]
oe e e
€G-0. ¥24F. 2~ B(T)0 _q 2=Q 1 Q
- BET) n 9 %+P 22 1- T 1 [tan 1(—F—l)+tan l(T—l)]}
1 1 1 i il
N, e 1 (Q+T- I )2r £ T-1I. Q+T-1I.

i

- (D Flan — feaad)
2 2

2 p2 iy o [ {T- I )2+I‘2 ]

T=1. 2
-1
-tan (—T_l)] + ?TT§;ETT?

2

2Tm c2+(m _c?)? 1 F22+I (T= I )
- = < ] [= &n ( )
(T+meczy7 2 -Q2+Q(T- 21 )+r 2+I (T- I )

T«21, -y, T=21,-2Q oy T-21,
- (——_?b (tanh™" (———)-tanh (_:Elm) (E-9)

with

2« [T.2 # I,.(1=3, w {(T=2T,)*
q (r, j( ]) ( j)]
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Finally, the energy loss rate of a beam particle is

given by

1 4T el

SC il L S - + . + —

N a2 fl(Qmax’ T) olI O € (E-10)
where

I = average ionization potential = 16 ev

g, = excitation cross section

€, = average electronic excitation energy loss

At high energies (> 1 Kev) 7 and v, are nearly equivalent
for electrons since both cross sections vary approximately

as (Refs 12, 58)

Ds 90, v === (E-11)
€
Additionally, at high energies, the energy loss per
electronic interaction is
€ = 14.4 ev (E-12)

e

Calculations performed by Porter (Ref 12) indicate that the
foregoing is true. Thus, restricting ourselves to high
energies, and realizing the approximate nature of the

argument, one arrives at
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sitive to the spatial distribution of particles.

163

2|~
Sk
1
]

= fi(Q T) + o€

max ’

where

(Rl]
"
H
+
™
"
w
o
=
2

(E-13)

(E-14)

The beam particle energy loss rate given by (E-13)

can be compared with the semi-empirical stopping power

formulas (Ref 29). For electrons

¢ v2m_B2c?
1.4l _ 2me’Z [ &n( e ) -g2]
= 3 _—) -
N dz meﬁic ¢e
where
¢e = empirical parameter = 86 ev

(E-15)

Table VIII is a comparison between results of (E-13) and

the stopping power formula for electrons.

177




164

Level 1

Number

10
11
12
13
14
15
16
17

N2 VIBRATIONAL EXCITATION CROSS SECTIONS

Energy

Energy

<290
.300
«330
.400
<150
.900
1.000
1.100
1.165
1.200
Ee218
1.400
1.500
1.600
1.6500
1.700

TABLE IV

Loss = .290 Threshold
Cross Number
Section
0.0000 18
0.0000 19
.0010 20
.0020 21
.0030 22
.0050 23
.0065 24
.0080 25
.0100 26
02,0 27
(ke 28
.0150 29
.0675 30
.0950 il
.1220 32
.1390 33
.1600 34
35

178

Energy

1.

It

2

218

800

.900
.000
.100
<200
. 300
.400
.500
.600
.700
. 800
.900
.000
.100
.200
.300
.600

.000

Cross
Section

.3300

L4600
1.6300
1.2300

.4600

.8600
1.0400

.2700

4200

L4270

. 4300

.5800

.3800

.2900

.2900

0.0000
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G e

( of bins of variable length. Normally, 90 to 100 bins are
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TABLE IV (CONT)

Level 2 Energy Loss =..590 Threshold = 1.692

Number Energy Cross Number Energy Cross
Section Section

i 1.700 0.0000 10 2.600 + 3100
2 1.800 .0900 134 2.700 . 43900
3 1.900 .4000 12 2.800 -5100
Yy 2.000 1. 5200 13 2.900 .1800
5 2.100 1.4800 14 3.000 . 2400
6 2.200 .6200 15 3.100 <1500
U 2.300 .6000 16 3.200 -110D
8 2.400 1.3900 11 3.300 <0780
9 2500 1.1400 18 3.400 0.0000

Level 3 Energy Loss = .880 Threshold = 1.692

Number Energy Cross Number Energy Cross

Section Section
1 1.800 0.0000 10 2., 700 .6400
2 1.900 .1800 1) 2.800 .2600
3 2.000 «7500 12 2.900 .4000
[ 2.100 1.4100 13 3.000 . 4000
5 2.200 1.6900 1y 3.100 .1600
6 2.300 .38500 15 3.200 .1600
7 2.400 .2900 16 3.300 .1600
8 2.500 .7700 17 3.400 0.0000
9 2.600 1.1700
179




bepending upon the size oI the time 1nterval and tnhe prob-

( ability of interaction, an electron may encounter several
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TABLE IV (CONT)

Level 4 Energy Loss = 1.170 Threshold = 1.89k4

Number Energy Cross Number Energy Cross
Section Section

X L, 0.0000 9 255000 .6000

2 2.0 .1600 10 2.800 .4900

3 2.1 . 4600 11 2.900 wk8ae

4 2.2 1. 1600 12 3000 .1600

5 2<3 1.3000 13 3.100 .1600

6 2.4 .7100 14 3.200 .1100

7 2.5 .2000 S 3. 300 .0700

8 2ab 3100 16 3.400 0.0000

Level 5 Energy Loss = 1.470 Threshold = 1.99%4

Number Energy Cross Number Energy Cross
Section Section
1 2.000 0.0000 9 2.800 .3700
2 2.100 .2000 10 2,800 .6200
3 2. 200 L4600 Tl 3.000 .4200
L 24300 .7700 3 3.100 .2700
5 2.400 1.0400 13 3.200 .3500
6 2.500 1.0100 1y 3.300 .3100
7 2.600 .5100 L5 3.400 0.0000
8 2.700 .2700
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Level 6

Number

Level 7

Number

TABLE IV (CONT)

Energy Loss = 1.760

Energy

2.200
2.300
2.400
2.500
2.600
2.700

2.800

Energy

Energy

2.300
2.400
2.500
2.600
2.700

2.800

Loss = 2.060

Cross Number
Section
N0.0000 7
.0700 8
.1800 9
.2900 10
4400 11
.3300 12

181

Cross Number

Section

0.0000 8
.1100 9
.3700 10
.6000 L
.6000 12
.3700 13
.1500

Threshold = 2.196

Energy

2.900
3.000
3.100
3.200
3.300

3.400

Threshold = 2.297

Energy

2.900
3.000
3.100
3.200
3.300
3.400

Cross
Section

.0900
.1600
.1800
.0700
.0500

0.06000

Cross
Section

.1800
.0500
.0700
.1600
.0700
0.0000
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Level 8

Number

Energy Loss = 2.350

Energy

2.500
2.600
2.700

2.800

TABLE IV (CONT)

Cross
Section

0.0000
.0700
<1100
.1800

Number

182

Threshold = 2.499

Energy

2.900
3.000
3.100

3.200

Cross
Section

.2400
.1500
.0700

0.0000




Level 1

Number

Level 2

Number

N2 ELECTRONIC EXCITATION CROSS SECTIONS

Energy Loss = 6.2

Energy

6.
8.
e
10.

3

12

13.

200
000
000
000

000

.000

000

Cross
Section

0.0000
.1600
.2500
.2800
.2800
.1800
.1500

Energy Loss = 7.2

Energy

7.

200

8.000

9.

10.

000

000

11.000

12.

13.

000
000

14.000

15.000

Cross
Section

0.0000
.00u4y
.0132
.0220
.0310
.0400
.0u80
.0570
.0660

TABLE V

00

Number

00

Number

183

Threshold = 6.211

10
il
12
13

1y

Energy

14.00
20.00
25.00
35.000
50.000
70.000
100.000

Threshold = 7.195

13
1y
15
16
17
18
19
20
21

Energy

25.000
30.000
35.000
40.000
45.000
50.000
55.000
60.000
65.000

Cross
Section

.1800
.0900
.0800
.0500
.0170
.0060

0.0000

Cross
Section

.0800
.0700
.0570
0440
.0403
.0367
.0330
.0290

.0260
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TABLE V (CONT)

Number Energy Cross Number Energy Cross
Section Section

10 16.000 .0690 22 70.000 .0220
11 18.000 .0756 23 75.000 .0180
12 20.000 0.820 24 100.000 0.0000

Level 3 Energy Loss = 7.400 Threshold = 7.397

Number Energy Cross Number Energy Cross
Section Section

1 7.400 0.0000 8 14.000 .1500

2 8.000 .1800 9 20.000 .1100

3 9.000 .4100 10 25.000 .0900

Yy 10.000 .6000 11 35.000 .0600

5 11.000 .6000 12 50.000 .0240

6 12.000 .2200 13 70.000 .0090

; 13.000 .1800 1y 100.000 0.0000

Level U4 Energy Loss = 8.400 Threshold = 8.407

Number Energy Cross Number Energy Cross
Section Section
1 8.400 0.0000 10 35.000 .2500
2 9.000 .0300 11 50.000 .1700
3 10.000 .0900 12 70.000 .1200
i 11.000 .1800 13 100.000 .0800
184




Number

Level 5

Number

Level 6

Number

Energy

12.000
13.000
16.000
20.000
25.000

Energy

Energy

11.200
12000
13.000
14.000
15.000
16.000
18.000

Energy

Energy

12.u400
15.000

TABLE V (CONT)

Cross Number Energy Cross
Section Section
.3000 1y 200.000 .0400
.3500 15 300.000 .0270
.4100 . 16 1000.000 .0080
.4100 17 2000.000 0.0000

.3600
Loss = 11.200 Threshold = 11.210
Cross Number Energy Cross
Section Section
0.0000 8 20.000 «1.300
.05090 S 25.000 .1000
.2200 10 35.000 .0700
.4200 11 50.000 .0280
.3u400 12 70.000 .0100
.2700 13 100.000 0.0000
.1900
Loss = 12.400 Threshold = 12.396
* Cross Number Energy Cross
Section Section
0.0000 7 100.000 1.4500
.0650 8 200.000 1.2000
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Number

Level 7

Number

]

Energy

20.000
30.000
50.000
70.000

TABLE V (CONT)

Cross Number
Section

.2700 ]
.6700 10
1.2500 11
1.4500

Energy

300.000
1000.000
2000.000

Cross
Section

.9200
.4100

0.0000

Energy Loss = 14.400 Threshold = 14.391

Energy

14.400
20.000
22.000
30.000
50.000
70.000

Cross Number
Section
0.0000 7
.0800 8
.3400 9
.7700 10
1.5500
1.8000
186

Energy

100.000
200.000
300.000

1000.000

Cross
Section

1.8000
1.5000
1.1500

.5100

e a——————




Number

10
11
12
13
1y

TABLE VI

N, TOTAL IONIZATION CROSS SECTIONS

2

Energy Loss = 15.500

Energy

0.000
15.500
16.590
16.760
17.110
18.680
20.000
23.000
25.000
28.000
30.000
34.000
37.000

40.000

Cross
Section

0.0000
0.0000
.0346
.0408
.0513
.1161
.2010
4400
.6160
.8800
1.0490
1.3600
1.5730
1.7720

Number

187

Threshold = 15

15
16
17
18
19
20
21
22
23
24
25
26
27
28

Energy

43.000
46.000
48.000
50.000
54.000
60.000
65.000
70.000
75.000
80.000
85.000
90.000
95.000

100.000

.502

Cross
Section

1.9440
2.0880
2.1660
2.2270
2.3700
2.5300
2.6200
2.7000
2.7600
2.8100
2.8500
2.8700
2.8900

2.900




Number

10
i
12
13
14
15
16
17
18

TABLE VII

N2 MOMENTUM TRANSFER CROSS SECTIONS

Energy

6.0000
014y
.0651
.2260
4450

1.0000

1.1000

1.2000

1.3000

1.4000

1.5000

1.6000

1.7000

1.8000

1.9000

2.0000

2.2000

2.6000

Cross
Section

1.

2.

9.
10.
10.
11.
11.
11.
12.
13.
16.
19.
24,
28.
29.

0000
4900

.9000
.2200
.9500

8800
1400
5100
0000
4500
9600
3000
4300
9500
8300
0100
7600
8800

Number

188

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
3y
35

Energy

2.8000
3.0000
3.3000
3.6000
4.0000
4.5000
6.0000
10.0000
15.0000
20.0000
25.0000
35.0000
40.0000
42.0000
50.0000
56.0000
100.000

Cross
Section

28.0100
21.6300
17.1900
14.6600
12.6200
11.5200
10.3000

9.5100
11.10060
12.0000
11.7000
10.5000
10.1000

9.39000

9.3500

8.8500

6.5600

e —
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TABLE VIII

PARAMETERS FOR ELECTRON IMPACT*

£.D,
i

Fj(T) =

- R
O

A3
Dj—exp[-(T-Ij)/an]

o B
1“e(T) o rs @ (T-ET)2+P

&
Qoe(T) = FS - T

2
B

B(T) = B, {zn[(y-l)mecz/EoJ2 + Bl}

Value

0.029

1.035
8239.
53.3
115,
5000.
2.3
7.58 x 10~

*Adapted from Porter, Jackman and Green.
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TABLE VIII (CONT)

Parameter Value
Ps(ev) 1Lk

r 0.029
o

FB(ev) 51.3
Er(ev) 61.5
TS 4.0
TA 2450.

TB 63.8

z f D.

g i 3l C]
15.58 0.456 4,23 2.u48
16.73 0.2 2.3 2.66
18.75 0.104 3.35 2.99
22 0.07 200 3.50
23.6 0.07 200 3.76
40. 0.1 200 6.37
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TABLE IX
COMPARISON OF STOPPING POWER FORMULAS

FOR ELECTRONS

Energy (eV) from (E-13) from (E-15)
eV/cm/molecule eV/cm/molecule
108 5.12x10°1° 5.45%10 10
10" 9.55x10" 18 9.31x10° 16
10° 1.73x10°16 1.60x10" 10
10° 7.7ux10" 17 7. 15%306" %7
107 9.09x10" L7 8.uux10"17
10° 1.15x10716 1.02x10"16
10° 1.39x10716 1.12%10" 16
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