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PREFACE

The motivation for this research is an on-going in-

terest on the part of the Air Force Weapons Laboratory for

atmospheric propagation of electron beams . Earlier work ,

performed by Briggs , at Lawrence Livermore Laboratory, and

Johnston at Science Applications , Inc., focused on propa-

gation of relativistic electron beams through air at sea-

level conditions , and on beam currents of 15 kilo—Amperes

and less. Models for both the air beam intereaction and

the electric and magnetic fields were deemed valid only

under these conditions of interest. An exception to this

was the low-pressure modeling by Briggs for Livermore ’s

FX— 25 experimental data. However , the low pressure model

of the air—beam interaction did not include electronic

attachment or recombination , and is consequently invalid

above a pressure of 50 Torr.

Three high—energy electron beam accelerating machines

at the Air Force Weapons Laboratory are available for

air propagation experiments. A large range in beam cur-

rent and energy is possible with these machines . Electron

beani energy is variable from one MeV to seven MeV , and the

beam currents can be varied from 10 kilo-Amperes to 250

kilo—Amperes. In addition, vacuum chambers attached to

iii
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all three machines allow the pressure to be varied from a

few milli—Torr up to 630 Torr (one Albuquerque atmosphere).

Therefore , in anticipation of and support for the

atmospheric propagation experiments , it was decided to

initiate a long—term study at the Air Force Weapons

Laboratory whose aim was to describe the electric and

magnetic fields of an electron beam pulse from the various

machines as the pulse passes through air. What is reported

here is a part of that study.

To accomplish this required model adaptation and

development to extend the calculational regime over all

pressures and beam currents of interest. In particular ,

this study

J 
(1) adapts an air chemistry model from Wittwer that

was originally developed for high—altitude electromagnetic

pulse (EMP) studies. This model is extensively modified

to encompass high pressures (low-altitude) effects and

include improvements in ionization modeling . It is the

only model in existence capable of adequately describing

the state of the plasma over the pressure range of f ive

Torr to 760 Torr.

(2) extends the calculational regime above 15 kilo-

Amperes up to 1,000 kilo—Amperes. This study establishes

the existence of the current saturation phenomenon and ,

for the first time , calculates the value of the saturation

current.

iv
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There are two other features that make this study

unique.

(3) A two—d imensional model for the electric and

magnetic fields is developed that is based upon the fields

themselves , rather than upon the potentials. The computa-

tional works of Lee , for example, are based upon EM poten-

tials.

(Ii ) This study extracts the dominant elements of

electromagnetic theory to produce a simple one-dimensional

model of the fields. The excellent agreement with experi-

ment demonstrates the validity of the models in this

study.

There are a large number of people that have aided me

in the pursuit of this work ; I cannot thank them all , but

I would like to especially thank the following people :

Edward Lee and Richard Briggs , and the rest of the Lawrence

Livermore Laboratory beam group for their time and ideas ;

Keith Brueckner , University of California at San Diego ,

and John Jackson , Air Force Acedemy , for initially piquing

my interest on this project ; Robert Johnston , Science

Applications , Inc., Palo Alto , for many fru itfu l  d iscus-

sions and for persuading me to perform the ionization lag

calculations ; Leon Wittwer , SANSO , for his initial support

and critical review ; Norman Roderick , Harald Dogliani, and

the rest of the Air Force Weapons Laboratory management

that gave me time for this work ; and Phil Nielsen , my
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dissertation adviser. Most of all , I thank my wife ,

Joyce , and my children for supporting me in those crucial

years.
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Abstract

Since propagation characteristics of an electron beam

traversing a neutral gas are determined by the response

of the beam electrons to their self-fields , an accurate

evaluation of the electric and magnetic (EM) fields is

essential to any propagation analysis. We report here on

theoretical models that were developed for the electro-

magnetic fields associated with an electron beam propa-

gating in air. One- and two-dimensional models of the

fields , and a model for the electron avalanche of the air,

were solved on a computer . The major conclusions from

calculational results are:

(1) The ionization model adequately describes the

ionization process over a pressure range of from five Torr

to 760 Torr.

(2) Ionization lag from the high energy secondary

electrons is unimportant.

(3) In many cases the one-dimensional model was

found to be as good as the two-dimensional model.

(4) The net current saturates near 15 kilo—Amperes

at sea—level pressure , and saturates at lower values at

lower air pressures .

I
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4.

ELECTRIC AND MAGNETIC FIELDS OF AN

INTENSE PULSE OF RELATIVISTIC ELECTRONS

PROPAGATING THROUGH AIR

I. INTRODUCTION

Purpose

Recently , intense interest has surfaced for employing

relativistic electron beams for various scientific and

military purposes . One major application is to heat a

plasma , or pellet, to thermonuclear temperatures (Refs 1,

2). Since the expected thermonuclear reaction is quite

intense the accelerator producing the electron beam must

be separated from the target by a stand-off distance on

the order of 10 meters. In addition , a neutral gas,

probably air , may be placed in the region between the

accelerator nozzle and the target to absorb some of the

thermonuclear energy and minimize damage to the accel-

erator. Thus, for this application to be successful , the

electron beam must stably traverse the stand-off distance

with little or no spreading or energy loss. Some other

applications also require propagation over extended

distances .

Successful propagation through air over extended

distances is by no means assured . A host of parasitic1



phenomena seemingly conspire to severely limit propagation

of intense electron beams . Of the experiments performed

to date no electron beams have been stably propagated

through air at atmospheric pressure (Ref s  3 , 14 , 5 , 6 ) .

In all of the experiments the mechanism that prevented

successful propagation was beam breakup caused by the

hose instabil i ty (Ref 7 ) .  In a series of experiments

performed at the Air Force Weapons Laboratory the hose

instability was minimized to the extent that the beam

propagated a distance of 12 feet  withou t s ignif icant  hose

distortions (Ref 6 ) .  However , the beam was seen to

diverge before breakup due to elastic scatter off of gas

molecules (Ref 8) .  This divergence , called “No rdsieck

( expansion” , is expected to be prevalent at atmospheric

pressure whenever the hose instability is not present .

Although the strength of the hose instabi l i ty  is

lessened at lower pressures another instabili ty, the two-

stream instability, can completely stop the beam af ter

traveling jus t  a few centimeters (Ref 9 ) .  Of the three

experiments performed to date on intense electron beam

propagation in reduced pressure air , all report evidence

that the two-stream instability occurs under certain

conditions (Refs  3 , 4 , 5 ) .  Of these experiments , one

showed no stable propagation at any pressure (Ref  3 ) ,

another showed a very narrow stable propagation window at

a pressure of two Torr (Ref 4) , and the third showed a

( narrow stable propagation window at a pressure of 20 Torr 2



(Ref 5). Apparently , the hose instability causes the beam

to break up at pressures above the window pressure , and

the two-stream instability stops the beam below the window

pressure.
L

In addition to these phenomena , there are others ,

such as beam-head erosion (Ref 14) and return cur~ent

heating (Ref 10) that have been observed to degrade beam

propagation .

The behavior of all of these phenomena are cr i t ical ly

dependent upon the environment seen by the beam . In

particular , the beam electrons are acted upon by their own

electric and magnetic (EM) fields , and these fields ulti-

mately become the sources for the parasitic phenomena that

degrade propagation through air. Until quite recently an

adequate Jescription of the EM fields was not available ,

primarily because the dominant interactions had not been

extracted from the details of the beam electron-air inter-

action. As an example , in EM field calculations performed

by Johnston in 1975 (Ref 11), he considered over 300

chemical reactions that could be induced in air by an

intense pulse of relativistic electrons passing through

air.

It has been the intent of this work to adapt the

simplified theories of others to the electron beam—air

interaction problem , and devise simplified , yet accurate ,

models where necessary in order to extract the dominant

physical mechanisms so that accurate determinations of the

3



( EM fields can be made. Therefore , in this study , these

fields are determined for an intense pulse of relativistic

electrons propagating through cold air that has not been

previously ionized. The coupled air ionization-beam

electric field problem is the most difficult of all

propagation problems.

As the beam electrons pass through air they interact

with the gas molecules to produce a weakly ionized plasma.

This plasma is composed of electrons an d an equal number

of singly ionized positive ions. Since the ions are

immobile over the time scales of interest in this study

(less than l0~~ seconds), any current that flows in the

plasma is carried by the plasma electrons . The EM fields

( are strongly influenced by the plasma conductivity , so the

EM fields are strongly coupled to the free electron den-

sity. Therefore , this study also treats the ionization

process in some detail. We include beam electron impact

ionization, ionization produced by high energy secondary

eleotrons (cascade ionizat ion),  and ionization produced by

breakdown in the intense EM f ields associated with the

beam (avalanche ionizat ion) .  The same general procedures

used here can be used for propagation of other types of

particles , or through other neutral gases , providing the

appropriate reaction rates and cross sections are employed.

Background

A great deal of information has been amassed in

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  
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recent years describing some facets of direct (impact plus

cascade) ionization of a neutral gas by energetic charged

particles and avalanche ionization by intense EM fields.

Cosmic ray studies , for example , include ionization esti-

mates of the slowing down of solar protons in the upper

atmosphere (Ref 12). The electromagnetic pulse phenomenon

depends , in part, on the secondary electrons generated as

Compton electrons ionize the background gas (Ref 13).

Finally , a large amount of literature is available on

electrical discharges in gases (Refs 14, 15).

A relativistic pulse of charged particles ionizes the

air by both methods; d irect ionization by energetic

charged particles , and avalanche ionization produced by

intense EM fields . For example , a one MeV electron pro-

duces about 25 electrons per centimeter of travel through

sea level density air. Some of these electrons are quite

energetic and , consequently , produce more ionization in a

cascade process. This results in an additional 35 elec-

trons per centimeter of travel. These cascade electrons

are produced over a period of about one nanosecond , based

on estimated cross sections found in Appendix E. This

phenomenon is called the “ionization time lag”. The total

ionization rate, including both impact and cascade ioniza-

tion, is roughly 2 x io12 electrons per second per beam

particle.

In addition to this ionization mechanism , electric

fields may reach levels that rapidly accelerate thermal

5



electrons to energies above the ionization threshold ,
(

resulting in avalanche ionization. The ionization thresh-

old is near 12.8 eV for oxygen and 15.6 eV for nitrogen.

For a beam in a vacuum with a current of 1l0 kilo-Amperes

and a radius a of one centimeter , the radial electric

field at the radial edge of the pulse is

E “~‘ lO 3sV /cm 3 x l0~ V/rn (1—1)

where c is the speed of light. This value is well above

the sea level air breakdown threshold . Longmire (Ref 16

and Appendix B) estimates the e-folding tim e for the

avalanche produced by this field to be about 10
_li

seconds.

This rapid ionization and concomitant increase in the

electrical conductivity is responsible for a rapid depar-

ture of the electric fields from the fields of a pulse in

a vacuum . Consider a pulse with longitudinal and radial

profiles given in Figures 1 and 2. When passing through

air the pulse fields change from their vacuum values to

resemble the fields illustrated in Figures 3 , 4 and 5.

These changes all occur in the rise portion of the pulse ,

t~z. The radial electric field , E , is determined solely

by the net space charge. Hence , the rising conductivity

will reach a value in a short period of time that is high

er. ~ to short out the radial f ield . The characteristic

time for the field to decay is the charge neutralization

6
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Figure 1. Longitudinal Density Profile

Figure 2. Radial Density Profi
le7



E r

Figure 3. Radial Electric Field
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Figure 4. Longitudinal Electric Field
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Figure 5. Azimuthal Magnetic Field

(
8



time , t
~2

, defined by

I

T L4 1 T Z( T ) 
(1—2)

where T t — z/8c is the time elapsed since pulse arrival

and E(t) is the background electron conductivity . As the

radial field decays (Fig 3) the longitudinal field (Fig 4)

is driven to assume a value which is opposite in sign and

normally much stronger than the longitudinal field in a

vacuum . After the radial field has decayed away completely

the longitudinal field has assumed its inductive form

determined from 
~~~~~~ 

B0. Since E acts in a direction so as

to generate a plasma current which flows counter to the

beam current, E
~ 

must decrease with increasing conductiv-

ity. The result is that the plasma current increases

until the time derivative of the plasma current and beam

current are equal and opposite . At this point the mag-

netic f ield is “frozen” into the plasma (background

electrons) created by the beam , and B0 ceases to increase.

• The characteristic time for this to occur is called the

current saturation time and is estimated to be

4lTa2E(t )
T
1 

_I (1—3)

(
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Previous Research

This complex interaction between the beam particles,

the EM fields, and the background electrons was first

modeled by Johnston (Ref 11). He considered a pulse of

relativistic electrons with the same longitudinal profile

as shown Figure 1, but the radial profile was considered

constant out to radius a, and zero for radial distances

greater than a. Instead of solving Maxwell’s equations

directly he employed the following circuit equation ,

E — L  ~~~~~~ (1—4)
z

where

L inductance, an adjustable parameter, generally

of order 2/c2

I total current I~ + I

beam current

plasma (counter) current, ira 2ZE~ (1-5)

This circuit equation (1—14) can be derived by ignoring the

displacement current, performing a retarded time transfor-

mation to the beam frame , assuming no variation of param-

eters in the radial direction , and time invariance in the

retarded frame.

Equation (1—4) was solved simultaneously with a large

set of rate equations (over 300), describing the reactions

among many different species of particles found in the

10



air, in order to calculate the conductivity . Johnston

further assumed a beam particle ionization rate of 100

electrons per centimeter of travel , all produced instan-

taneously and with an energy of 7.5 eV. The radial

electric field was ignored and the magnetic field inferred

from the net current. Obviously , radial information is

lost in his model.

More recently, Lee (Ref 17) has modeled these inter-

actions in his numerical program , EMPULSE. In his model

the fields are coupled to the background electrons through

the conductivity given by

e2n
= (1—6)

with 6.4 x l09/(Torr), independent of the electron

temperature . The beam electron ionization rate is taken

as 63 electrons produced per centimeter of travel. The

avalanche coefficient he used is an E/p fit from data of

Felsenthal and Proud (Ref 18). Recombination and disso-

ciative attachment are ignored . Pulse profiles considered

by Lee are similar to those shown in Figures 1 and 2, but

they differ in that the top of the rise portion is rounded .

Lee’s program does not evaluate the field components

themselves, but rather employs the scalar potential, •,
-p

and the longitudinal component of the vector potential, A.

( In a fashion similar to Johnston he employs the retarded

1].



time transformation to the beam frame and assumes time

invariance in the new set of independent variables. He

retains variations in the radial dimension but does not

• include attachment or recombination. Thus , the program is

two-dimensional and time independent. Originally developed

to simulate the hose instability , EMPULSE contains many

other features which are necessary to adequately describe

the instability . The computational times are quite long,

however , requiring the simplified handling of the back-

ground electrons. Lee also presents experimental data

that is compared to the results of EMPULSE. The agreement

is poor at pressures above 50 Torr.

Scope of Present Work

( In this work we improve upon the previous efforts in

the following ways:

1. We derive a two-dimensional model (r and z

variation) of the EM fields from Maxwell’s equations . We

employ the fields directly , rather than the potentials,

and so we eliminate the necessity of numerical differen-

tiation of the potentials to find the electric field

strength. A key assumption in the model is setting the

longitudinal displacement current equal to zero. Although

this is not rigorously correct, it is at least consistent

with the observation that in the limit of zero conductiv-

ity and very high beam electron energy , the longitudinal

field vanishes .
( 2. Guided by the results of the two-dimensional

12



model a one-dimensional model (z variation only) is

derived by explicitly modeling the radial variation of the

conductiv ity. From this assumed variation of the conduc-

tivity , radial variation of other parameters is found

analytically . For most cases the numerically determined

axial variation of the fields closely agree. The one-

dimensional model is computationally simpler than the two-

dimensional model , and the simplicity of the equations

allows deeper physical insight.

3. We present a bulk ionization model , consisting

of a set of fluid equations for the plasma electrons ,

and a lumped restricted set of reaction rates. This model

was originally devised by Wittwer (Ref 19) for studies of

the high-altitude electromagnetic pulse (EMP). It is

modified here to include low-altitude effects and cascade

ionization. Although the model is considerably simpler

than some, it retains all of the important reactions . It

is the only documented model that accurately describes the

state of the background plasma produced by the beam for

air pressures of five Torr to 760 Torr. Its simplicity

allows insight into the role of various reactions, and its

accuracy resolves some key issues.

4. The calculational regime is extended to currents

up to 1,000 kilo—Amperes . Previous calculations focused

on beam currents near 10 kilo-Amperes. Above 10 kilo-

Amperes a pronounced saturation of the net current (beam

( current plus plasma current) is predicted , and is in

13



agreement with available experimental data. Status of

these calculations is summarized in Table I.

TABLE I
L.

SUMMARY OF BEAN CALCULATIONS

These categories are included by the following authors :

Johnston Lee Dreyer

Longitudinal Dimension X X X

Radial Dimension X X

Maxwell’s Equations solved via-

Circuit Equation X X

Vector Potential X

Electric and Magnetic Field X

Includes—

Radial Electric Field X X

Avalanche Ionization X X X

Recombination S Attachment X X

Electron Ionization Cascade X

The range of parameters considered in this study is

given in Table II, and explained below . Of the parameters

listed here only two, air pressure and pulse current, are

limited by assumptions of the models. The rest of the

parameters are limited by practical considerations .

( 
14
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TABLE II

(-

SUMMARY OF PARAMETERS

Beam Electron Kinetic Energy : 1 — 10 MeV

Pulse Current : ‘<<‘A ’ l—l ,000kA

Bennett Radius: 0.1 cm - 10 cm

Pulse Duration : 1xl0 8 
— 1x10 7 sec

Air Pressure : 5-760 Tori’

Electron kinetic energies are taken to be between one

and 10 MeV because energies below about one MeV are not

strongly considered for the fusion application , and vir-

tually no machines exist with high energy densities that

( 
have beam kinetic energies above 10 MeV .

The pulse current must be less than the Alfven ~cur-

rent , ‘A’ defined by

- ~~mc~
e

14
and is 1.70 x 10 By Amperes for electrons . It is the

maximum current a charge neutralized beam can carry (Ref s

20 , 21). Requiring ‘<<‘A means that the beam particles in

a charge neutralized beam follow nearly straight line

trajectories. The lower limit of one kA is chosen to

bound the current saturation phenomenon .

The equilibrium radius that a pulse establishes after

15



exiting an accelerator is determined , in large part , by

the scatter produced by the exit foil , if a foil  is us ed

(Ref 22). A realistic minimum of 0.1 cm is established by

consideration of foil thickness and type . Above a 10 cm

radius a 1,000 KA pulse has an energy density too small to

be of importance in the fusion application .

—8 —7The pulse duration is taken between lxlO and lxlO

seconds. This range in pulse length is chosen since most

accelerators , and some planned accelerators, that produce

intense relativistic electron beams have pulse lengths in

this range.

A fusion reactor, employing electron beams, may

require a partially evacuated path for the beam to tra-

verse. The two—stream instability threshold is near a

pressure of one Torr, with the actual pressure threshold

depending upon the beam temperature. Rapid attenuation of

the beam follows onset of this instability. Thus, we

restrict our attention to pressures at and above five Torr.

Three numerical programs were written in the course

of this study. The first program , named BEAM1, solves

Maxwell’ s equations in two dimensions while simultaneously

solving the fluid equations of the ionization model. It

is assumed that in a coordinate frame moving with the

velocity of the beam particles the fields are time inde-

pendent, and the equations are solved in such a frame.

The second program , named BEAN 2 , solves the one-

( dimensional EM field equations simultaneously with the

16



p

equations of the ionization model. Since numerical evalua-

tion of the f ie lds is only carried out over the axial

direction , BEAN 2 is considerably cheaper to run than

BEAN1. Execution times for BEAN 2 typically run a factor

of 50 less than execution times for BEAN1 . Equations

solved by BEAN 2 are solved in the same reference frame as

in BEAN1.

A third numerical program , named MONTY , was written

to investigate the details of the secondary electron

ionization cascade. Results from this program are used as

a source for deriving a simplified model of the cascade

that is included in the ionization model . Program MONTY

employs Monte-Carlo simulation of the interactions between

the plasma electrons and the neutral gas . Both elastic

and inelastic processes are handled explicitly in a one-

dimensional velocity space . An external electric field is

applied requiring one dimensional electron trajectories to

be calculated . Program MONTY is expensiv e to run so

results are necessarily limited to short pulse times and

pressures substantially below atmospheric pressure.

While introducing a significant reduction in mathe-

matical complexity , we feel that the present calculations

are the most accurate available, and extend over a far

wider range of parameters.

Major Conclusions

( 1. For what experimental data exist both the one-

dimensional and two-dimensional models , along with the

17
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ionization model, adequately predict the observed electron

density and net current flow. Differences between experi-

ment and theory may be attributed to the uncertainty in

modeling the pulse shape.

2. In view of the fact that the one-dimensional

model is in close agreement with the two-dimensional

model , and with experiemental data, it is concluded that

the one-dimensional model developed here adequately pre-

dicts the EM fields , conductivity generation , and net

current flow. The substantial savings in computing time

over the two-dimensional model allow parameter studies to

be performed cheaply .

3. At low pressures (less than 100 Torr), conduc-

tivity generation in the pulse rise portion is dominated

by avalanche ionization, rather than by direct ionization .

Consequently , f ield calculations in this portion of the

pulse and at these pressures are insensitive to the delay

in ionization by the high energy secondary electrons that

are created by beam electron impact. Calculated values of

the net current and EM fields are virtually independent of

the delay time. Thus , the phenomenon of ionization time

lag is unimportant in determining EM fields or net current

flow.

14. Ignoring avalanche ionization , the magnetic dif-

fusion time scales linearly with the beam current. Con-

sequently, the “frozen—in” value of the magnetic field and

( the net current flowing in the pulse are virtually inde-

18



pendent of the beam current , as long as the beam current

is s u f f i c i e n t l y  h igh .  Thus , the net current is seen to

saturate. At a pressure of one atmosphere satux’ation

occurs for beam currents above 15 kilo-Amperes. The

saturation value of the net current decreases with a

decrease in air pressure.

Outline of Remaining Sections

In the next section we derive the two-dimensional EM

model equations . Simplifications and approximations

introduced in their derivation are discussed . Section III

contains the development of the one-dimensional EM model.

The one-dimensional model is derived by handling the

radial variation of parameter s in an analytic fashion . In

Section IV the ionization model is introduced . Important

results are given in Section V , and the major conclusions

of this work, along with recommendations for further

research are presented in Section VI. Some additional

details are found in the appendices .

(
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II. TWO-DIMENSIONAL MODEL OF EM FIELDS

Introduction

In this section we derive a set of equations for the

electric and magnetic fields that is two—dimensional (r

and z variation) and time independent. Although some

limiting assumptions are applied to Maxwell ’s equations ,

all important terms are retained . Since both axial and

radial variations of the fields are included , behavior of

the fields in both dimensions can be observed from numer-

ical solutions of the equations . From these equations ,

and with additional assumptions , we derive the equations

of the one-dimensional model in Section III.

The remainder of this section is split into several

parts. In the next part we present the principal assump-

tions of the two-dimensional model , and , in the following

part, the basic field equations are derived . After that

we apply the retarded time transformation , and require

time invariance in the transformed system to arrive at the

model equations. Finally , the boundary conditions are

specified , and a short discussion follows.

Principal Assumptions

The principal assumptions employed in the two-

( dimensional model are the following :

- _ _ _ _  _ _ _  _ _ _ _ _ _ _ _



1. Axial symmetry . By requiring axial symmetry the

only non-zero field components are Er~ 
the radial electric

field , E , the axial electric field , and B0, the azimuthal

magnetic field .

2. Paraxial motion of beam electrons . We do not

require here that the beam electrons move exactly parallel

to the beam axis, but we do require that the beam elec-

trons move almost parallel to the beam axis. That is , we

requ ire 1 1<<Bc , where is the perpendicular beam elec-

tron velocity, and Bc is the parallel velocity . This

assumption is valid in all parts of the beam.

3. Axial displacement current is ignored . This

assumption is valid as long as a/Az<<l , where a is the

beam radius and t~z is the beam rise length . It is made to

reduce the complexity and execution time of the numerical

program , BEAN1, that solves the two-dimensional model

equations . Retaining the displacement current results in

an advective differential equation, so the associated

di f f e rence equation is subjec t to the Courant condition

(Ref 23). Ignoring the term results in a diffusive dif-

ferential equation with an associated finite difference

equation that is not subject to the Courant condition (Ref

24). Output from BEAM1 shows that , in all of the cases

considered in this study , the axial displacement current

density is at least an order of magnitude less than the

axial conduction current density .
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4. Beam fields translate rigidly in space. Thus,

all parameters are only functions of the retarded time

coordinate (t-z/Bc). This assumption is analogous to the

“high-frequency approximation ” of Karzas and Latter (Ref

25) in their analysis of the electromagnetic pulse

generated by a high altitude nuclear burst. This assump-

tion is rigorously correct in the limit B -‘ 1 because ,

a. for B = 1 the paraxial approx imation 2.

reduces to rigid translation of the beam at the speed of

light.

b. for B = 1 the domain where EM fields can be

determined reduces to the half—space in the direction of

motion of the beam electrons (Ref 26), so the fields can

only be influenced by events occurring in that half space .

c. the fields vanish at the head of the pulse.

The author has verified this assumption for the case B >

0.9 by computer solution of the exact equations of Maxwell .

It is clear that this assumption will break down if the

paraxial approximation does not hold .

Basic Equations

In vector form , Maxwell’s equations are

• 4rr p (2—1)

~~~ ~ i a ~ ( 2)X - ~~~~~~~~~~~~~~~~~ 2-

I
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(2-3)
c c a t

By assuming axial symmetry, the component equations in

cylindrical coord inates are

~~ (rE ) + 4~ p (2-14) j
- _—E = 1. ~~~ (2-5)

c 3t

+ 14 itJpr —c ~~~~~~~~~ (2—6)

+ 
~~~~~~ 

+ = ~~ (rB 0
) (2-7)

where 
~pr 

is the radial component of the plasma current

density , J~ is the axial component of the plasma current

density , and 
~bz 

is the axial component of the beam cur-

rent density. Under the paraxial approximation the radial

component of the beam current density is zero.

If we specify the plasma current density , ~~ , then the

four equations (2-14) through (2-7), in the four variables

p, Er~ 
E
~~
, and B0, form a closed set . By properly speci-

f ying bou ndary conditions a unique solution can be ob-

( ta m ed . Notice , too that equations (2 - 5 )  through (2 - 7 )
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in the variables Er~ 
E , B0, form a closed set and can be

solved without calculating the net charge density . There-

fore, we consider only the curl equations given in compo-

nent form in (2-5) through (2-7). We specify the plasma

current density by a set of f lu id  equations describing the

state of the plasma , to be presented in Section IV.

We now derive an equation for the radial electric

field by ignoring the displacement current density and the

plasma current density in the axial direction . Although

the plasma current density may approach that of the beam

current density in some parts of the beam , this occurs

only after the radial field has decayed substantially and

is no longer important. The resulting differential equa-

tion is uncoupled from the other fields .

Taking the divergence of both sides of equation (2-3),

we have, in cylindrical coord inates ,

I .~~— tr(~
.
~~ + 4~ J~~ )J + ~~~~~~ + 41T(Jbz

+Jpz)J=O (2—8 )

We have established in Appendix A that, for Z 0, and

<< 1 (2—9)

where a is the Bennett radius of the pulse and Az is the

rise length, and y is the relativistic factor , then
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E << E (2—10 )z r

Guided by this result for fields in a vacuum we ignore the

displacement current density and the plasma current den-

sity in the axial direction by requiring -

j~
. 
~~tr(~-~-~ + ~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2—li )

Then we have

~~~~ [ r (~~-~~i + 4lTJpr)] 
aJbZ (2— 12)

(
Now

—~41t a~~ 
= —I4lTBc 

~j— 
14~r~-~—- (2—13)

where is the beam charge density . From the divergence

equation, and again ignoring the axial field , we have

ap b 1 - a ~ 
aEr°= ~~~~~~ (r ) (2—14)

where Er° is the radial electric field of the beam propa-

gating in a vacuum . Equation (2-12) becomes
(
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aE
~~ Er (~-~E + ~~~~~ ‘

~pr~~ ~~~

. 

~~~~~ 
(r ) (2—15)

Integrating once and employing the condition ,

lim E E ° (2—16)
Z-~0 

r r

we arrive at

+ ~~ ~pr 
= a~ 

(2—17)

Finding an equation for the axial electric field is

considerably simpler. Operating on (2-7) with ~~
- 

~~~~~~ and

on equation (2-5) with ~~
- ~~ (r ) , we have

~~~
. 

~~fr(~~~
. — 

I~)] 1 
~~~~~~~~~~~~~~~~~ + 

~~ 
J
bZ

+J
PZ

J:O (2—18)

We again ignore the axial displacement current density .

Then equation (2—18) becomes

aE1 a 
~~ 

z 
— 

r)] - 4iT a 
~ ~~ (2—19)

r r~ 
r ~~~~~ — ~~~~~ — - 

~~ bz pz

Finally, the magnetic field is found by integrating over r

— -  
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in (2-7), and again ignoring the axial displacement cur-

rent density. This yields

B0 ~~~~~
. I r’ 

~~bz 
+ J

~~
)dr ’ (2—20)

Retarded Time Transformation

We note that the fields described by equations (2-17 ),

(2—19), and (2-20) are functions of the triplet (r, z, t),

so numerical algorithms that solve these equations must

necessarily be two—dimensional and time-dependent. We

introduce a great simplification to the numerical algo—

rithsns by transforming the field equations to the beam

frame (non—relativistic ), and observing that the fields

are independent of time in that frame . We reduce the

functional dependence of the fields on the triplet (r, z,

t) to the doublet (r, r). The transformation equations

are:

T = t — z/Bc (2—21)

A = z/Bc (2—22)

In the transformation (z,t)÷(r,A ), A plays the role of

time in the new system , while t plays the role of axial

distance (although it has units of time). Derivatives

( transform according to
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af af ar~~~af ax af ( 2 23at at at ax at 
— 

at

af a~ at a~ ax — 1 3 a
- 

~~~

_ 

V + 
~~~~~~ ~~

_- - 

~~~~~~~ 

- ~—) (2-24)

Setting the A (time) derivatives equal to zero we have

af — 1 ar ( 2 2 5 )
Bc at

The resulting field equations are

r (2—26)at pr

~~ fr(~—~ + 
~~~~~

- 
r~~ = 

~~ ~~~~~~~~~~ 
(2—27)

The equation for B0, (2-20) , remains unchanged. These are

the two-dimensional model field equations .

Boundary Conditions

For a beam propagating in air, far from any boun-

daries, the correct boundary condition is that the fields

vanish infinitely far from the beam . These conditions

appear impossible to implement in a numerical program , so

we choose an approximate set. They are,



1. All fields vanish at the very front of the

pulse. Because the beam electrons are relativistic and

a/Az<<l , the actual f ields at the front of the pulse are

much less than the fields in the remainder of the pulse.

In Figure 27, Appendix A , plots are given f or the fields

of a pulse in a vacuum . The curves show that the fields

are quite small at the front of the pulse.

2. At r = 0, E B 3E /3r = 0. The radialr 0 z

electric field is essentially an electrostatic field so it

must vanish on the axis. In addition , the magnetic field

which is driven by axial currents , must also vanish on the

axis. Thus, to maintain consistency with the curl equa-

tion (2-5) at r 0, the radial gradient of the axial

field must vanish there.

3. At r = r , E and E take on the values of amax r z
pulse traveling in a vacuum . Plasma electrons are moved

radially outward to some distance , b , which increases

back from the pulse head. At radial distances greater

than b the net charge contained inside that distance is

equal to the original beam charge, and the electric field

is virtually the same as the electric field of a pulse

traveling in a vacuum .

Discussion

Equations (2-25) , (2—26), and (2-20) , along with the

boundary conditions and conductivity generation equations

to be presented in Section IV , form a complete set, and
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are the equations that the numerical program , BEAN1,

solve. Numerical solution of these equations has two

advantages over numerical solutions to the unaltered form

of Maxwell’s equation . Firstly , by transforming to a

system where the fields are independent of time, program

execution time is greatly reduced . Secondly , by ignoring

the axial displacement current density a differential

equation for the axial field is derived whose finite

difference equation can be made linearly stable. We gain

these advantages without a perceptible loss in accuracy ,

as evidenced by the good agreement with experimental data.

These field equations, as they stand , are independent

of pulse shape. We can, however , considerably simplify

this set of equations by assuming a particular radial

variation of the pulse particle density , and the con-

ductivity . This leads to the one—dimensional model.

(.
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third part we compare Johnston ’s original circuit equation

with an analagous equation we derive from the one-

dimensional model equations . The last part of this

section is devoted to a discussion of the model equations .

Principal Assumptions

Listed here are the assumptions that are made to

derive the one-dimensional model equations from the two-

dimensional model equations of the previous section.

1. Since our starting point in this derivation is

the two-dimensional model , all of the assumptions of that

model , which are listed in the previous section , are

encompassed here.

2. We assume that the plasma current density is

given by Ohm ’s law,

(3—1)

where the conductivity is a scalar quantity, rather than a

tensor quantity . In Appendix B we show that Ohm ’s law

holds as long as the momentum-transfer collision time is

shorter than any other time of interest. At a pressure of

five Torr this collision time is less than 10-10 seconds,

and is shorter than the charge neutralization time, the

shortest time of interest for the purposes of this work.

Since the collision time varies inversely with pressure,

Ohm’s law is valid for pressures of five Torr and above.
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3. The radial variation of both the beam electron

density and the conductivity are assumed to vary in a

Bennett fashion . This variation is given by

f(r) (1 +r 21a 2 )
2 (3—2 )

This radial dependence for the beam density is chosen

since this dependence is observed as the actua l variation

achieved by an electron beam propagating thrc.ugh a neutral

gas (Ref 27). The conductivity will closely follow the

beam current density whenever direct ionization dominates

over avalanche ionization. At low pressures (less than

100 Torr) and in the pulse rise portion , avalanche ioniza-

tion dominates over direct ionization and the radial

variation of the conductivity can then deviate from a

Bennett profile. We do not take this deviation into

account.

Derivation of Model Equations

From the previous section we have already derived an

equation for the radial field which is independent of r.

It is

aE °
+ 4

~~pr 
(2—16)

Using Ohm’s law,

_  _  
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aE °
+ 14ffZE = —.—

~~~
— (3—3)r at

This is the radial electric field equation of the one-

dimensional model. The formal solution is

t
Er = 

~ at~
’ exp (— 4 7 1 ! Zdt”)dt ’ ( 3~~ 14)

or , integrating by parts ,

Er = E
r
° — / 4lrEE

r
°exp (-471! Zdt”)dt ’ (3-5)

Equation (3-5) clearly expresses the decay of the radial

field with increasing conductivity .

We now turn our attention to the more difficult task

of simplifying the equation for the axial electric field

of the previous section ,

1 .~~
._ [r(5_~

. + F •~-~~)i = 
~~~ ~~bz 

+ ~~~~~~ (2—27)

Our method is to integrate over r and use Ohm’s law to

obtain an integro-differentia). equation for ~~~~ By per-

forming the integration over r in an approximate manner we
(
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obtain a d i f f erential equation in t for ~~~~ Integrating

over r ,

E = ~~~~~~ ~~~~~~ ~ ~~~ ~~ 
(J
bZ

+J
PZ

)r ”dr ”_F ~~~~~~ fE dr ’ (3-6)

where we have used the conditions ,

—
~~

-
~ 

= 0 (3—7)
r 0

Ez (r=b) 0 (3—8)

I 

E (r 0) = 0

The parameter , b , is use d as the radial position where Ez
changes sign. We interpret this as the position of the

charge sheath , the sheath being built up by plasma elec-

trons ejected from the beam by the radial electric field.

We will later show how to estimate the sheath position .

Multiplying both sides of equation (3-6) by the con-

ductivity ,  we have

~ 
~~ ~~ 

(JbZ+JPZ
)r”ht

~
’_
~~ 

.
~~

_ f Edr ’ (3-10)

(
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In order to perform the integration over the current

density we assume,

E f(r) (3—11)

~bz 
= 
~bzo 

f(r) (3—12 )

= J f(r) (3-13)

where the zero subscript denotes the on-axis values of the

variables , and f(r) is given by (3-2). We have , approx i-

mately ,

(

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
f  Edr ’ (3-14)

where

G(r) = ~n ((l+b
2/a2 )/(l+r2/a2)) (3—15)

So that the integration over Er in (3-10) can be

carried out we make the approximation that the radial

field follows the radial variation of that field for a

pulse traveling in a vacuum . From Appendix A ,

(
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E °(r) = 2lr pOr/(l+r2/a2) (3—16)

or -

E °(r) 2Er
O(a)ra/(r 2+a 2) (3—17)

Thus , we approximate the radial variation of Er by

E (r) 2E (a)_-~-~~y--- (3 18)

where E °(a) and E (a) are the radial fields at the

Benn ett radius for a beam in a vacuum , and in air , respec-

tively . This approximate radial dependence is obviously

not exact since the conductivity in (3-14) is a function of

the radial variable; but , since we integrate over the

radial variable the specific radial dependence is of

secondary importance. Thus

r
I E (r)dr ’ aG(r)E (a) (3—19)
b r r

and

ira 2 E
J
~~~

J
~~0

h(r)f(r)G(r)E_ c2 ~~~~~~~~~~~~~ 
(3-20)

Z a ~E (a)

~~~
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After normalizing to insure that h(0)=l, we have the

( approximate radial variation of the plasma current density,

h(r) = [l—9.n(1+r2/a2 )fth(l+b 2 Ia2 )] (1+r2/a2Y 2 (3—21 )

and the equation for 
~pzc 

in t ,

+ ____  

~~~~~ 
+ ~ 

aE~ (a) 
(3-22)Tm 3t iraB 3t

where

ira2Z Ln(l+b2/a2)
Tm 

— 

c2 (3—23)

The param eter , Tm ’ is the magnetic di f fusion time for a

cylindrical pulse with the Bennett profile , propagating

through air.

Once Er(a) and J 0 are calculated the rest of the

fields are simply found . The axial field is found from

Ohm ’s law

E
~ 

J
~~

/E (3—24)

The magnetic field is found by direct integration to be

21 (r) 21 (r)

( 

Be ~r 
+ 

~r 
(3—25)
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where

irr2J
= l+r21a 2 (3—26)

I ( - 

irr 2J 
° fl fl- (a

2/r2)~ n(l+r
2/a2 )J } (3-27)r - l+r2/a 2 —- Ln(l+b2fa 2)

Ib
(r) and 1 (r) are the beam and plasma currents , respec-

tively , contained inside the cylinder of radius r.

We are left with determining the position of the

charge sheath , b. Results from the two-dimensional model

show b to be near the radial position where the radial

field reaches its maximum . We approximate this position

from the charge neu tralization time ,

(3 28)

4irE (t)r

t l+b2/a 2 ) Z 1 (3—29)

and

= [(41r E0(T)r)
u/’2 1) 1/2 (3—30)

Comparison with the Circuit Equation

( It is instructive to compare Johnston ’s circuit
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equation (Ref 11) with an analogous equation that we

derive here. Solving (3-22) for the axial field , we have

= — ~~~~~~~ “~—) }._[i_~~ Er(a)] (3—31)

To arrive at this equation we assume that

ira2Jp pzo

Compare this with equation (1-14),

E -L .~~! 

- 
(3-32)

z

The parameter , L, is the effective inductance , assumed to

be on the order of 2/c 2. Thus, we improve upon the

original circuit equation in three ways . Firstly , we

include a term for the radial electric field . Secondly ,

we obtain a more accurate estim’~te of the inductance , L,

and thirdly , in the course of deriving the one-dimensional

model equations we analytically estimate the radial depen-

dence of the fields . Consequently , we include all per-

tinent phenomena in equation (3-22).

Discussion

In this section we have substantially reduced the

( complexity of the field equations of the previous section
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by integrating out the explicit dependence of the radial

variable in the axial field equation. We only do this in

an approximate fashion , so the radial variation of the

fields are less accurately described by the one-dimensional

model. We list here the primary equations of the one-

dimensional model

aE aE °
+ ~41T~~~ a~

J aj ~E (a)pzo 
+ 

pzo 
- 

bzo + 
C - r (3-22)at Tm iraB at

These two equations are solved by program BEAN2. The

magnetic field is evaluated algebraically from equation

(3—26).

A qualitative description of the fields is afforded

by observing the formal solutions to the primary equa-

tions ,

T
E ~ 

r exp ( 4rr f Edt”)dt ’ (3...4)
r

and

T a J b aE (a )  ~ d ”
— 

~~~~~ 

ZO 
— _2~_ ) exp 

~~, 
~1—)dt ’ (3—33)

(
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These two solutions are formally similar , but Er and

show quite different detail. As conductivity increases it

reaches a value that is so large that the radial electric

fields is actually “shorted out” , and decays away . A

close estimate of when that value of conductivity is

reached is given by

t
4iifI(t ’) dt ’ = 1 (3—314)
0

We make the further approximation,

t
14 rrfZ(t ’)dt ’ 4ir~ (t)t 1 (3—35 )
0

Consequently , we define the charge neutralization time

from (3-35) by solving for t ,

T = 4fl.E( )  
- (1—2)

On the other hand , as conductivity increases , the

plasma current is seen to increase in the pulse rise por-

tion. Once the conductivity has reached a sufficiently

high value we reach the condition,

pzo = — 
bzo (3—36)at at
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Beyond this point the net current, and the magnetic field~
cease to increase, and they are said to be “frozen” into
the plasma. From (3-34) we estimate that this condition

occurs when

t (t )
m
T 

= 1 (3—37)

Solving this, we define the current saturation time,

ira2Z (t )9n(1+b2(t )/a2)
= t(t

1
) 0 I 

c2 (3—38)

Although we clearly see that the current saturation time

depends upon the parameter , b, a useful approximation is

Rn (l+b 2/a2) = 14

so that we derive an approximate form of the current

saturation time,

4ira2Z (t )
- 0 1

c2 —

Again, we have left the conductivity unspecified . It

is apparent from this discussion that the conductivity

plays the critical role in the behavior of the fields. In

the next section we describe a model for ionization and

( conductivity generation.
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IV. IONIZATION MODEL

Introdu Ct IOfl

Past sections are devoted to developing models for

the electric and magnetic self—fields of a pulse of

relativistic electrons propagating through air . U; t~

this point all terms in the field equations have been

specified except for the plasma current and conductivity.

Here , in this section , we specify those remaining para~-

et ers by presenting a model for the produc tion of plasm a

electrons . Due to the large number of air reactions and

their complex nature it is not possible to specify per-

fectly the charge state of the air . Indeed , some of the

reaction cross sections , including cascade ionization , are

not accurately known .

The model we present here was originally dev eloped b~’

Wittwer (Ref 19) for high altitude EM? studies. It is a

fluid description of the plasma electrons with empirica11~’

determined reaction rates. We have modified the model for

our purposes to include electron-ion recombination ,

electron—ion and electron—electron collisicns , the cascade

ionization t ime lag , and neu~ra]. gas heating . It is the

only model in which all important reactions are included.

Consequently we believe it is the most accurate descrip-
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tion available over the pressure range of interest in this

study.

This section is split into several different partE .

In the first part the kinetic terms in the fluid equat~ ons

are derived from the Boltzmann-Vlasov equation . In the

next part we enumerate the assumptions employed in the

ionization model , and in the following part the res ultir~
equations of the model are listed . The following part i~

devoted to a discussion of the cascade ionization time lLç

and a derivation of the lag term employe d in the ion iz a-

tion model. In the last part we discuss the importance o

the model , and , as an example , we analytically estimate

the saturation value of the net current .

Derivation of Fluid Equations

Our starting point for the derivation of the fluid

equations is the equation of transport ,

df -

kinetic 
- 

~~~~~~ collisions

with

df 
= af + . 

~ f + • f (~ —2)
kinetic r U

and

(
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f d 6n (‘4 3dxdyd zdu du dux y z

n = total number of plasma electrons

~~~=~~~~(~~~+ a x ~~~) ( L ~_ ’ 4 )

= e + ~ 
a + ~r x a x  y~~~ z 3 z

= ~ _L. + ~ _i.. + ~~ (u  -
u au u au u aux x y y z z

Del operators are expresse d in the Cartesian coordinate

system for convenience. All of the plasma electron fluid

equations are derived by multiplying each term in (4-1) by

Cu) , where n 0,1,2 , and integrating over all velocity

space.

For some Q,

kinetic 
d~ }

~ e
<

~~
>

~ 
+ 
~r e<~~

>
~

.,±
—n <a.v Q>

C U

s f Q ~~~i d~ (~ -7)
-

~~~ collisions
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where

n = f fdu (L— 8)e 
-~~~

and

1 -.

< > 
~~

— I < > f du (L , _ 9)

e~~

Let

Q = ] .

( V~~~~~ U>

then

+ • n~~ = 
collisions 

d~ (4-10)

The subscript , r, in the del operator has been dropped for

convenience. Equation (4-10) is immediately recognized as

the continuity equation.

Now let

.,
Q u

(. then
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4 
4 

.4

f.(n ) + ~~ (n< ~i~>) n ~~(E+ ~~~ x B )e e m  c

.4

n f  U ~~~~~ d~ (4—11)e
—

~~~ collisions

To put this equation into a more recognizable form de fine

.4 + +

u v + w (4—12)

.4 .4 .4where w is the departure of u from its average , v. Then

4-4 4. + 4 -4
• (n <uu>) ~ . n ( < ( v + w ) ( v + w ) > )e e

4-4 ~ .4-4
(n vv) + • (n <ww>) (4—13 )e e

-4
since <w> = 0. Additionally,

.4-4 4.
• (n vv) = n (v•~~) + (~~.n~~ ) (‘4—14)e e

Therefore , equation (4—il) becomes

-4
.4aS! 4 e + • (n ) 

~ + 
~ e ~~~~~~~V ~ e

4.

+ ~~ . ~~~~~~~~ n ~ (f+!~ X ~ ) + d~m e m  c
collisions

(



or , employ ing (4-10) and dividing by 
~e ’(

+ + ...L 
~.r= 2. 

~~~~ xrnn€ m c

-4
v of -~ 1 -~~6f ’ 

-#

— — I du + — I u ~~
-
~~

- du (4-15)
-

~~~ collisions ne —~~~ collisions

Here we have defined ~~~: mn e ~~~~~~~~~~~~~ It is the pressire

tensor. Equation (‘4-15) is the momentum conservation

equation .

To arrive at the energy conservation equaticr~ let

1 2Q mu
(

then

a i -. i 2
~~~ the

<
~~ m u > )  + V . (n <~~~ mu u>)

-n 2. (~~+~~x~~) •~~ 4 mu 2) = I ~ mu 2 d~ (4-16)e m C U 
—~~~ t coflisions

Again using (4-12) to arrange terms in a familiar fashion ,

we have

( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~e 4 mu 2>) ~~ [n4 my
2)) + En (~ mw 2 )]e 2

• (ne 4mu
2
~ >) = . [ne4mv

2
~~)1 + • [ne4mw 2

~~)J

1 - #+  +
+ 

~~
‘e4 m<w

2
~~>)] + • fn~(~ m<ww > •v)]

+

~ <2. (~ + ~~
. x ~ ) • ~ 

(~ mu 2 )> = r e ~ ’e in c u 2

Defining

mv~

W mw 2

+ 1q ~ m<w ’w>

we have , finally

a ,
~W +I )  + .

~~(W+I) + L ~ • rn~q +  V

e + 
~~

— I ~~~~~ ~mu 2d~
_ (W+I)

f du (4-17)

collisions collisions

Principal Assumptions

Listed here are the assumptions we apply to t e  fluid

(
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equations to arrive at the particular equat ions of the

ionization model.

1. Ions are assumed to be immobile. Considering

either a coilisionless or a collisional plasma the ratio

of the ion current density to the electron current density

scales either as ~-2. or (...2.)
1/2 , where me is the electron

mass and m. is the ionic mass. In either case the ratio

is less than one percent implying that the ionic current

is ignorable. This has no bearing on the fluid equations

of the beam electrons , but it does mean that the plasma

current is carried entirely by the plasma electrons.

2. We mane the cold plasma approximation . Thus , in

equation (4—17) , I<<W and ~ is set equ al to zero . In

equation (4-16), the pressure tensor , ~~ is ignored .

3. All spatial gradients in the fluid equations are

ignored . Becaus e the plasm a is highl y collisional , elec-

tron drif t velocities are small , and the migration dis-

tance for a plasma electron is a small fraction of the

beam radius , so large gradients of the plasma electron

density , and associated param eters , are not present.

Results from the numerical program , BEAM1, are consistent

with this assumption .

4. Ionization by Bremstrahlurig radiation is not

included . For beam electron energies in the range of one

to 10 MeV , the ratio of energy lost by the beam electrons

via Bremsstrahlung radiation to energy lost via inelastic

( 
collisions , is less than 10%. Even if the Bremsstrah lun g

5]. 
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rad iation remained localized in the beam and conver ted a

substantial fraction of its energy to producing electron-

ion pairs , the ionization from Bremss trahlung would be less

than 10% of that produced from inelastic collisions.

5. The negative ion density is ignored . This

allows us to use a single species model , consisting onl y

of the plasma electrons , rather than a three species

model , consisting of the plasma electrons and positive and

negative ions. In Appendix B we show that the negative

ion density is always less than 10% of the plasma electron

density .

6. The attachment rate is assumed to be independent

of the water vapor concentration . This is incorrect , but

at this time the actual dependence of the rate on the

amount of water is unclear (Ref 28), so we restrict our

calculations to dry air . At altitudes higher than

sea level the water vapor pressure is greatly reduced so

its influence on the electron population is diminished .

7. Thermal conduction on beam time scales (<i0~~

seconds ) are ignored since the thermal conduction speed is

quite low. The thermal conduction speed is limited by the

speed of sound , so the characteristic time for heat con-

duction is limited by a/v5, where a is the beam radius and

v6 is the sound speed . Assuming a beam radius of one

centimeter and a sound speed of 5 x ~O
’4 cm/sec , the thermal

conduction time is greater than 2 x 10~~ seconds, con-

siderably longer than the characteristic pulse length .
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8. Radiative energy losses by the plasma electrons

are ignored , so the only plasma electron cooling method s

considered are elastic and inelastic collisions. There

are two ma jor sourc es for ra d iation by pl asma electrons ,

Bremsstrahlung and line radiation . The rate of Bremsstrah-

lung generation from plasma electrons impacting neutral air

molecules is considerably less than that produced by plasma

electrons impacting ions (Ref 29). Thus, the energy loss

rate of plasma electrons by Bremsstrahlung is very much

less than (Ref 30)

dW B 16 NZ2e6<< 
~~

— w

dW -

where a-~
-
~
is the Bremsstrahlung energy production rate for

fully ionized air molecules, N is the molecular density ,

Z is the ionic char ge , and w is the plasma electron thermal

speed. For sea level conditions and a plasma electron
dW 8thermal energy of one eV , we have << 7 x 10 eV/sec .

This rate is much less than the collisional cooling rate

which is 1 x 1010 eV /sec (Appendix B). The intensity of

line radiation is estimated from experimental measurements

(Ref 31) to be less than 3 x l0~ Watts/cm
3 at sea level

conditions for a 10 kA/cm 2 beam , and a calculated electron

density of 1 x io16 cm 3. This implies a bound on the

electron cooling rate from the line radiation of 2 x io6

eV/sec , again much less than the collisional cooling rate.



9. We ignore the magnetic force on the plasma

electrons . The conductivity tensor is ,

e2n v 2 w / ve m , l c m
- my ~~~~~ 

2 ‘
~ w /v 1

in m C c in

eB9where w~ — , and is the cyclotron f r equ ency of plasma

electrons in the azimuthal magnetic field , Be~ 
Thu s, we

assum e tha t w~ << v
~~
, and the conductivity assumes the

sc alar form . However , below an air pressure of 50 Torr

the cyc lotron f r equency can reach a va lue wh ich is a sig-

nificant fraction of the collision fr equency , and will

approach the value of the collision frequency at 5 Torr .

We ignore this effect .

10. We adopt Wittwer ’s collisional terms (Ref 19).

This requires a weakly ionized plasma , ne
<(N

~ 
where N is

the molecular gas density .

~~6f -# R + ~~n (4—18)a. f~~~~du e

where R is the direct ionization rate and 
~~e 

is the

avalanche (attachment ) rate. The parameter , a, is the

avalanche coefficient minus the attachment coefficient.

b. ~~
— I ~ d~ = -V (4-19)

54

i 
_______________________



where y is the momentum transfer- collision frequen:y.

c. / 4 mu 2) ~~~~~ d~ = —v (W—c) (‘4—2 1)

Here v
~ 

is the energy transfer collision frequency and c

is the neutral gas energy.

12. We modify Wittwer ’s model in the following way::

a. Electron-ion recombination is addei .

Recombination plays a crucial role at atmospheric ~r-e~ s~ rE

by causing the plasma densi-t y to saturate. The reconLfra-

tion term to be added is

—
~~~ n 2

( r e

where 8 is the electron—ion ~ecornbination coefficient .

b. An electron—ion (Spitzer , Ref 32) co1lisicr~

frequency is added. Normally , this collision frequency is

less than 10% of the electron-n~utral collision fr equency

at atmospheric pressur e, but car. be greater at low air

pressures .

c. We include an equ ation for the neutral gas

energy , ~~~ . Considerable heating of the neutral gas by the

beam can take place resulting in ~ lower energy exchange

rate and a higher electron energy , thereby changing the

reaction rates that are functions Df electron energy. The

( equation is



‘
I

f + v (W—c ) ( ‘ 4 — 2 1 )

where

19 3N 2.7 x 10 molecules/cm , and is the sea level

molecular air density

energy loss rate of beam electrons

f fraction of beam deposited energy that goes

directly into heating the gas molecules.

13. We include effects of cascade ionization time

la:. This is given by

R R1 + R0 
(L~_ 2 )

where R 1 is the beam electron impact ionization rate and

Rc is the cascade ionization rate. Later in this section

we show that the cascade is modeled by

TL R ( i— i ’ )

RC A / di ’ (4—23 )

where is the time of the beginning of the ionization

cascade , r~ is the time of the end of the cascade , and A

has the numerical value 0.163. The parameter , r~ , is

sometimes called the “lag ” time.
(
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~quations of the Ionization Model

With the previously mentioned assumptions the result-

ing equations of the ionization model are , in the retarded

time coordinate system ,

ane R1 + Rc + 
~~e 

8 2 (4— 24)r e

av eEr - ~~~ — 

~~ + a ) V (‘4—25)m m T r

eE
Z 

— (
~ + a ) v (4—26)in m T z

3W e(E v +E v )—v (W_c)_a
TW+S - (4—27)r r  z z  c

n
- ç dT + ~~~~~ v (W—c) (4—28)t~~~~~~~~E Nn

where

R14R~aT 
~ e 

+ c t—8 n (4-29)r e

and S is the external heating rate. We estimate the

heating rate as
(
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R + R
s ~ 

I C) Q (4—30)

The parameter , Q, is the energy of an electron as it

enters the thermal swarm . We choose a value of 7.5 eV for

Q to agree with the value used by Johnston (Ref 11).

Reaction rates and collision frequencies are compiled and

discussed in Appendix B.

Boundary Conditions

Since we ignore all of the spatial gradients of the

fluid equations we have only to specify the conditions at

I t — z/8c = 0. The conditions are

= 0 (4—31)

V = V 0 (4—32 )

W 7.5 eV (‘4—33)

c = 0.026 eV (4—34)

The first condition (4-31) arises by assuming that the

plasma electron density is zero ahead of the pulse. The

second condition (4—32) , results from the assertion that

the electric fields vanish at ~ = 0. The fields generally

are not zero at that point , but rare so much smaller there
(
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than in the remainder of the pulse that the effects of the

f ie lds there are negligible. At T=0 the low energy elec-

tro~s just born in the ionization process have had no time

to cool , so we give them an energy of 7.5 eV. This is

the motivation for the third condition (4-33). This

condition, like the external heating rate , has negligible

impact upon the electron energy inside the pulse. Finally,

(4-34) comes from assuming that the ambient air is at a

characteristic temperature of 300°K.

Casca de Ionization

We now turn our attention to deriving the cascade

ionization term in the plasma electron production equation

(4-24). The term is constructed by an analytic fit to a

Monte Carlo simulation of the cascad e phenomenon. A dis-

cussion of the numerical program that performs the simula-

tion , program MONTY , is found in Appendix E.

When a high energy electron impacts an air molecule ,

and ionization takes place , the electrons produced can

achieve any of a spectrum of possible energies. We illu-

strate this in Figure 6 with a plot of the d ifferential
do.

ionization cross section , , as a function of secondary

electron energy , Q. This cross section is taken from

Porter , Jackman, and Green (Ref 12 and Appendix E) and is a

theoretical estimate. Other estimates of the differential

ionization cross section for relativistic electrons are

available (Refs 13 , 33) but no experimental measurements
(
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have been made at relativistic energies (Ref 34). These

high energy secondary electrons lose their energy by

ionization and excitation of air molecules , producing a

cascade of more electrons . For beam electrons in the

range of one to 10 MeV , the average energy lost in an

inelastic event (ionization or excitation) is 86 eV. This

number is taken from the classical elec tron stopping power

formula (Ref 35). It is empirically determined , though ,

that, af ter the cascade process is complete , one ion-pair

is produced for every 34 eV lost by the beam electron (Ref

36). Thus, for every primary event the total number of

electrons produced is 2.5. Consequently, an add i-

tional 1.5 electrons is produced in the ionization cascade.

Obviously, the cascade process takes a finite amount

of time to be completed . This we illustrate in Figure 7.

It is a plot of ionization increas e as a function of time

produced by a single one MeV electron . There is no

applied electric field . The solid curves are results

taken from program MONTY with different assumed differ-

ential cross sections. Curve A is produced by using the

cross section of Porter , JacJcnan , and Green , while curv e B

is produced by using the cross section of Longmire and

Longley (Ref 13) and curve C is produced with a cross

section very similar to that described by Lunn (Ref 33).

Curve B’ is the original lag calculation performed by

Longmire using his ass.i’ned cross section (Ref 13). Curve

( C’ is front a calculaticn performed by Canavan , Brau , and
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Wittwer (Ref 37) assuming the cross section of Lunn .

There is little agreement of the calculated ionization

increase between the different cross sections. Resolution

of this d iscrepancy will probably have to wait until

experimental measurements are available . Noting , though ,

that the Longmire cross section results in a rough mean

ionization increase we use that calculation to f i nd  the

cascade ionization lag time. Extrapolating out to an

increase of 2.5 (end of the cascade) the lag tim e is 10 ’

seconds. At atmospheric pressure the corresponding lag

time is near l0~~ seconds.

With a strong applied D-C electric field the ioniza-

tion rate increases drastically . This is illustrated in

Figure 8. The amount of ionization above the zero field

cascade level we attribute to avalanche ionization. That

is , some of those electrons with energies below the ioni:a-

tion threshold (about 16 eV for nitrogen) are accelerated

to energies above the threshold and greatly add to the

zero—field ionization rate. Of course , the zero-field

ionization is produced by the secondary electrons created

with energies above the ionization threshold .

These observations lead us to an approximate way of

including cascade in the ionization model , even for the

case of non—zero electric fields. We split the distribu-

tion of secondary electrons into two parts. One part is

composed of high energy secondary electrons ; those e].ec-

trons still losing energy in the cascade , and the other
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part is composed of “thermal” electrons. We use the tern

“thermal” loosely , but we mean it to include all those

secondary electrons that have completed the cascade , and

all those electrons produced in the cascade. By doing

this the avalanche part of ionization should then be

modeled by the avalanche in the electron production equa-

tion. We must still model the cascade rate for non—zero

fields. We do this simply by assuming that the field does

not alter the zero—field cascade rate. This is , of

course , incorrect , but if the time is short that the field

is on , then the high energy secondary electrons will

absorb only an inconsequential amount of energy from the

electric field. By estimating the energy absorbed from

the electric field we derive a criterion for the validity

of this approx imation ,

1/2
/eE (4—35)

where ~t is the length of time that the field is on.

Choosing Q 10 XeV and E 10 sV/cm we have t~t<<l .8 x

10~~ seconds. We see that this criterion is not always

satisfied for the parameters of this study.

Now let L(t) be the ionization increase produced by

the high energy secondary electrons . An analytic fit for

the Longmire curve , B’ of Figure 7, is
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0 , t<t
0

L(t) = ALn(t/t0
), r0

<t<r
~ 

(4—36

1.5 , t > r ~

where

l0~~ (p0
/p) seconds

to = l0~~~ (p0
/p) seconds

A = 0.163

and p and p are the ambient and sea level atmo sph eric

pressures , respectively . The cascade ionization rat€’ is

0 , t<t
0

3L(t) 
= , ~r~,<t<~r~ (4—37)

0

Applying the results for a single relativistic electron to

a beam of relativistic electrons , we have

0 , T — t < 1
0

AR (t)
= I , r,~<t<r~ ( ‘4

( 0 , t—t>t~
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Substituting ~~‘ t-.t, and integrating , we have

AR ( t — t ’ )
Rc f dt ’ (4—23)

0

Discussion

In this section we have presented an ionization model

that includes all important phenomena , including cascade

ionization . Since this is the only documented model that

includes all important effects we believe it is the most

accurate representation available of the charge state of

the plasma.

Modeling of the plasma is very important because of

the dominant role played by the conductivity in determin-

ing the behavior of the fields. As an example of the role

of conductivity we here make an analytic estimate of the

saturation value of the net current flowing in a pulse

propagating through air at sea level pressure .

In the previous section we showed that the net

current flowing in the rise portion of a pulse tends to

saturate whenever the magnetic diffusion time overtakes

the time after passage of the front of the pulse. We

estimate where this occurs in the pulse rise portion from

‘4wZ (i )a2
= I — (1—3)

( I C 2

67



We take the conductivity from Appendix B ,

Z = . .
~~

___ (L4 39)

This equation is derived for a linearly rising pulse

current with rise time ~t. The lag time has been set to

zero and avalanching has been ignored . The ionization

rate , R , is evaluated at the top of the rise p o r t i on  and

is

I
R ( b ) D (L,_ L4 0 )ira e~c

where

= on-axis beam electron density

D 2xl01’ electrons/cm 3/sec/beam electron ,

and is the beam electron ionization rate. Inserting (4-39)

and (4—40) into (1—3), we have

1 2

- bTI 
-

or

= 1 (4—41)

C
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where

Bmc 3 V
- m ( 4 L ~2 )

s 2eD

Choosing a va lue of 3x l012 sec~~ for V
m~ 

we have

I 12.8 KA
S

The driving mechanism for the plasma current is the

rise of the beam current . Then , for saturation to occur ,

equation (4—41) must be satisfied before the rise of the

pulse is completed . Thus, we estimate the minimum beam

( current required for saturation by letting r~ ~ t .  We

find that

I :1
b s

Therefore , I is an es timate of the saturation level of
S

the net current of a pulse propagating at a pressur e of

one atmosphere . Below atmospheric pressure the saturation

current will decreas e because avalanche ionization in-

creases at lower pressure causing the conductivity to rise

faster. We shall see in the next section that this

analytic estimate agrees within a factor of two with the

numerical computation.

( .
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V. COMPUTATIONAL RESULTS

Introduction

All of the previous sections have been devoted to

developing the theory necessary to understand the behavior

of the EM fields of a pulse of electrons propagating in

air. Considerable time was spent deriving the one- and

two-dimensional EM models and the ionization model. The

complexity of the resulting equations prohibit analytic

solution in all but the simplest cases , so numerical

programs were written to solve the equations for more

complex cas es .

In this section we report on the computational

results of these numerical programs. The results demon-

strate two major points.

1. The one-dimensional and two-dimensional EM

models show basic agreement in the axial variation of the

fields. This justifies the simplifying assumptions used

in deriving the one-dimensional model equations from the

two-dimensional model equations .

2. Results from the computations are in agreement

with experimental measurements of plasma electron density

and net current over a wide range of parameters.

(
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These two points imply that all important reactior.s are

contained in the ionization model , and tha t the one-

dimensional description of the EM fields is adequate to

predict experimentally observed parameters.

This section is split into several parts. In the

next part we specify the pulse shape employe I in the

calculations . Following that we rresent , in graphical

form , typical behavior of the EM fields , and ~e observe

both charge neutralization and current satura~ ion . The

next part of this section is devot€~ to a comp irison of

the numerical results from the one- and two-dLrensional

models . Then we compare numerical results fron our models

to experimental results , and numerical predicti ‘ns from

other authors . In the following par t of this s ction we

show that the phenomenon of cascade ionization h~’s vir-

tually no effect upon the calculated f .elds or t~e observed

net current . In the next part we make a series o? net

current predictions from the numerical models for beam

currents up to 1,000 kilo—Amperes. Fin~lly , we r€. iiew the

results presented and summarize them .

Pulse Shape

For all calculations performed here we assume - .~at

the beam charge density is given by,

p(r,z) p0f(r)g(z)

- 
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Where p is the on-axis charge density , and

f(r) (l+r 2/a 2Y~
2

(0 , z>ü

g(z) ) —zit~z , 0<z<—~z

1 , —~ z<z<—z0

— z0<z

The parameters t~z, and z0, are the rise length of the

pulse , and the length of the constant density portion ,

respectively . Variation in the r direction , f(r), is

called the “Bennett” variation . We choose this since it

is observed experimentally (Ref 27). The axial variation ,

g(z), is chosen for its simplicity .

Behavior of Fields

In this part of the section we present results from

program BEAM1 . This program contains the two-dimensional

EM model and the ionization model , so fields in both the

axial and radial directions are evaluated . Cascade ioniza-

tion is not included in BEAN1, but we discuss its effects

in a later part of this section .

Typical results from the program for the axial varia-

tion of the fields is shown in Figure 9. The charge

neutralization time (eq (1—2)) and the current saturation

( 
time (eq (1—3)) are indicated on the figure . We se~ that
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the radial field begins its decay shortly af ter the charge

neutralization time is reached . With the change in the

radial electric field from its vacuum value shown as

the axial electric field begins to grow , reaching a max irnur

at the end of pulse rise. It rapidly decays in the main

body of the pu lse as the field loses its driving force ,

the time rate of change of the magnetic field , 
~~ 

We

see that the magnetic field ceases its increase near the

point where the current saturation time is reached. In

this example the net current inferred from the magnetic

field is seven kilo—Amperes at the top of the rise portion ,

and increases to eight kilo-Aineres at the end of the

pulse.

Radial variation of the fields is shown in Figures

10, 11, and 12, for three separate distances into the

pulse. In Figure 10 we show the radial variation of the

iddial electric field. These curves are to be compared

with th~ rad ial variation of the field of a pulse in a

vacuum , given by (Appendix A) 
r~~~a 2 The most prominent

feature of the radial field plots is the “charge neutrali-

zation wave ” that moves outward as z increases . Since the

beam density decreases with increasing r, the ionization

rate decreases and the conductivity decreases with in-

creasing r. Thus, the time required to short out , or

neutralize , the radial field increases with increasing r.

The effect of conductivity change on the axial electric

( field is shown in Figure 11. We notice that in the pulse
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rise portion (at z~ 5 cm and z:2Ocm ) the axial field has a

large ra d ial grad ient , but the grad ient nearly vanishes in

the main body of the pulse (z:40 cm). Effects of conduc-

tivity change on the azimuthal magnetic field are shown in

Figure 12. We compare these radial plots with the radial

variation of the magnetic field for a pulse in a vacuum ,

al so given by (Append ix P~) r2~ a2~ 
We noti ce that there is

little change in the shape of the radial profile . However ,

the magnitude of the field at r a and z 40 cm has been

decreased to 70% of its vacuum value.

Comparison of the One- and Two-Dimensional Models

In genera l, agreement between the one- and two-

dimensional models is close for an air pressure of one

atmosphere. In Figure 13 we have plotted the axial varia-

tion of the f i elds from program BEAN 2, which solves the

one-dimensional model equations . These curves should be

compared with the comparable curves from program BEAN1,

plotted in Figure 9. As in the BEMI1 calculation we here

ignore cascade ionization . Axial profiles of the radial

electric field and the magnetic field calculated by BEAN 2

are virtually identical with the profiles calculated by

BEAM1. We do observe some differences in the axial varia-

tion of the axial electric field . The one-dimensional

model predicts that the axial field begins slightly

earlier , peaks earlier , and begins decay earlier, than the

two—dimensional model predicts . These differences are
(
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attributed to the approximate integration over the radial

electric field performed in deriving the one-dimensional

model equations. Since the axial electric field does not

enter d irectly into the evalua tion of the plasma current,

the small calculated di f ferences are of little consequ ence .

A comparison of the radial variation of the axial

field as computed by BEAN1, and as analytically estimated

from the one—dimensional model , is shown in Figure 14. We

have normalized the one-dimensional model results t~ agree

with results from BEAN2 at r:a. We do this to facilitate

comparison of the radial variations. The analytic esti-

mate of th e radial variation is found from Ohm t s law ,

J (t)h(r) J (t)
E
~
(t ,r) - I~t)f(~ J ~~~~~ 

t1— 9~n(l+r
2 /a2 )/9~.n(1+b 2/a

2]

Values of the parameter , b , are taken from BE/till results.

The curves for case z:20 cm show good agreement . This is

typical in the rise portion of the pulse. In the main

body of the pulse (z=40 cm), though , the analytic approx i-

mation does not predict the pronounced flattening of the

radial profile that results from BE/till show. The flatten-

ing indicates that the radial profile of the plasma

current density is nearer to the radial profile of the

conductivity than is indicated by h (r) in equation (3-21).

At lower pressures the agreement between the fields

as computed by the two programs is not as exact , bu t is
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s.ill close. Figure 15 compares the axial variation of

the fields predicted by the two models at a pressure of 76

Torr. At the top of the pulse rise the one-dimensional

model predicts a magnetic field of 300 Gauss while the

two—dimensional model predicts a field of 400 Gauss. This

corresponds to plasma currents of seven kilo-Amperes and

six kilo-Amperes , respectively, so what apears as a 25%

difference in the predicted magnetic field is really onlya 15% difference in the predicted plasma current. This

difference lessens further into the pulse. We again see

that results from BEAII2 predict a slightly different

behavior for the axial field early in the pulse than does

BEAM1 . Agreement is very close in the main body of the

pulse.

In Figure 16 we compare the predicted radial varia-

tion of the axial field for the two different models.

Again , the one-dimensional model predicts a slope which is

too large, but in this case the two—dimension model pre-

dicts less flattening of the field at 40 centimeters into

the pulse than is predicted at an air pressure of 760

Torr. This change is the radial profile of the field is

caused by a change in the radial profile of the plasma

density from a Bennett profile. The two computed profiles

for the plasma density are shown in Figure 17. Increased

avalanche ionization in the wings of the beam are respon-

sible for the change. This change also results in a small

( overestimate of the on-axis conductivity in the one-
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dimensional model resulting in the slight overestimate of

the plasma current that we observe .

Comparison With Experiment and Previous Calculations

The mo3t detailed description of the eonductivity

generation yet devised for electron beam propagation in

air is the model employed by Johnston in his first beam

calculations (Ref 11). He considered 45 molecular species

and 325 possible reactions that could affect conductivity .

We here present a conductivity calculation of his and

compare it to results from program BEAN1 in Figure 18.

Both curves show the saturation of conductivity by electron-

ion recombination and attachment . Since the calculation

is perform ed for a pressure of one atmos phere virtua lly

( all plasma electrons are produced by direct ionization.

Thus , avalanche ionization rates are not important here.

We also compar e Johnston ’s predicted electron and

neutral gas energies with results from program BEAN1 in

Figure 19. The calculated neutral gas energies compare

well, but the electron energy curves show considerable

disagreement toward the end of the pulse. We attribute

this difference to an effective energy transfer rate of

Johnston ’s model that is too low. Johnston does not use a

bulk energy transfer rate but a rate is specified for each

of the 45 molecular species, so it is not possible to make

a direct comparison of the electron cooling rates. It is

apparent, though , that the high electron energy predicted
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by the Johnston model could lead to an overestimate of the

avalanche rate and conductivity , if applied to air pres-

sures much lower than atmospheric.

Recently , Johnston has produced a simplified version

of his original ionization model , named BMCOND (Refs 38 ,

39 and 40). Johnston has optimized the model for electron
I

beam propagation at a pressure of one atmosphere and

chosen reaction rates so that parameters agree with his

original model. In addition to Johnston , Lee (Ref 17) has

developed a fully coupled electromagnetic and ionization

model , called EMPULSE. The EM model employs the vector

potential only , rather than the fields. His ionization

rate is taken from air breakdown data taken by Felsenthal

and Proud (Ref 18). He does not inc~.ude recombination or

attachment in his calculation of the plasma charge state.

We compare the results from these models to net

current and plasma electron density measurements by Briggs

et al (Ref &~) on an FX-25 electron beam machine , and we

compare with results from program BEAN1 and BEAN2. This

comparison is shown in Figures 20, 21, and 22. From

Figure 20 we see that the experimental data shows a

lower net current flow at low pressures than at a pressure

of one atmosphere . This decrease in net current is attrib-

uted to the increased avalanche ionization rate and the

corresponding increase in the conductivity . Lee ’s model

is adequate in the range of five to 20 Torr, but agreement

is poor above 50 Torr where electron attachment begins to
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significantly change the conductivity . We have replaced

our ionization model in program BEAM 2 with Johnston ’s

model, BMCOND . Results are also shown on Figure 20. At

all pressures be low one atmosphere the computed net cur-

rent is much too low. In Figure 21 we compare net current

predictions from BEAN1 and BEAM 2 (with our ionization

model) with the experimental measurements . Agreement

between results from BEAM1 and BEAN 2 are within 25% e;ery-

where , and agreement between the numerical results and the

experimental values is within 20% everywhere . Considering

the uncertainties in t-~e experimental measurement and in

modeling the pulse shape , the agreement is remarkable.

In Figure 22 we compare predicted on-axis plasma

electron density results from all of the calculational

models with the experimental data. We see that predicted

densities from BEAN1 and BEAN 2 lie about the same distance

above the experimental curve as do predicted densities

from EMPIJLSE. Predicted values from BMCOND are several

times those values observed experimentally . As in

Johnston’s detailed ionization model , BMCOND pred icts

values f or the electron energy that are much higher than

predicted by the model of this study . The higher electron

energy results in much higher avalanche rate and a much

higher plasma electron density.

We make one final comparison between calculated and

experimental results. In Table III we present a coin-

( parison of the observed net current from the FX-].00
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electron beam machine to results from BEAN 1 and BE AN 2.

Only two experimental points are available (Ref 4 1) , but

the agreement is again quite close.

TABLE III

COMPARISON ~F THEORY AND FX-l OQ DATA

Beam Current 1b 60 kA

Electron Energy Te 4 MeV

Rise Length ~z 300 cm

Constant Densi ty  z0 1500 cm

Pressure Measured Calculated Net Current
Net Current BEMI1 BEAN 2

76 O Torr 3l kA 35 kA 34 kA

5 Torr 9 k A  l3 kA 6 k A

Again, the cascade ionization time lag has been set

equal to zero in these calculations that are compared to

experimental data. Since the measurement of the plasma

electron density occurred at a time of io 6 seconds after

the pulse had passe d (Ref 4), the cascade was completed by

the time the measurement was taken. Calculated values

that were compared to experimental data were taken at the

rear of the pulse. Thus we have agreement between the

calculated plasma density and the observed density.

( Effects of the ionization cascade are discussed in the

914



next part of this section .

Effects of Cascade Ionization Time Lag

All of the computation~~ results from BEAM2 that wer e

compared to experimental data were run again with cascade

ionization included . There were virtually no differences

in the computed values of magnetic field . At atmospheric

pressure computed values of the electron density wer e

virtually identical with computed values assuming a zero

lag time. At low pressures (less than 100 Torr) differ-

ence s in the electron density were observed in the con-

stant density portion of the pulse , but the plasma electron

density in the rise portion of the pulse showed virtually

no change. Thus, the fields are essentially unaltered

when including the cascade ionization time lag.

There are two causes for this insensitivity of the

fields to the cascade process. At a pressure near one

atmosphere a substantial fraction of the cascade is com-

pleted in a very short time. Although the time required

to complete the cascade , and produce an additional 1.5

electrons per primary event, is 10~~ seconds at 760 Torr,

half of the additional electrons (0.75) are produced

within io~~ seconds (see Figure 7 of the previous sec-

tion). Therefore , 70% of all ionization produced per

primary ionization is produced within seconds , at

abnospheric pressure. Considering that the radial electr~c

field does not begin its decay until a few tenths of a
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nanosecond , the cascade approaches completion long befor e

the radial field begins decay . Consequently , the lag

phenomenon has little effect on the fields for a pulse

traveling through air at a pressure of one atmosphere.

The second cause is that at low pressures (l€~ s than

100 Torr) avalanche ionization dominates over direct

ionization in the rise portion of a pulse. For exar•ple ,

in the test case of a 10 kilo-Ampere beam propagatir .g in

76 Torr air the predicted value of the electric fiel is

near 50 sV/cm over most of the pulse rise. This fie d

strength heats up the electrons to an energy near 5 t~V .

The avalanche coefficient at this electron energy is 7.5 x

l0~ sec~~ (Append ix B). Thus , an estimate for the e-

folding time for electron prodcution is 1.3 x

seconds.

The dominance of avalanche ionization over direct

ionization is illustrated in Figure 23. Here we compare

the plasma electron density calculated with lag to the

plasma electron density calculated without lag (zero la~

time). Values are taken from program BEAM2. When the

elapsed time is too short and the fields not strong enough

to induce significant avalanche, the electron density

predicted by the calculation without lag is 2.5 times

larger than that predicted by the calculation with lag.

But at 10 centimeters into the pulse , or about 3 x l0~~~

second s, avalanching dominates in both cases , and the

( 
• 

predictions merge. After the axial field decays suffi—
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ciently so that the avalanche ionization rate is less than

the impact ionization rate , the two sets of calculated

values diverge once again. This occurs shortly after the

end of the pulse rise portion . For this case it occurs

after about 50 centimeters into the pulse. Since the

major changes of the fields from their vacuum values occur

in the rise portion of the pulse , the fields calculated

with and without the cascade ionization time lag are

virtually identical.

Saturation of Net Current

As we have seen , calculations of beam f i e lds prior to

this study have generally been restricted to beam currents

of 10 to 15 kilo-Amperes , or less. At these currents

( little current saturation is seen at a pressure of one

atmosphere. It is only when the air pressure is dropped

to 100 Torr , or be low , that current saturation is quite

evident. In this work we extend the range of beam currents

up to 1,000 kilo—Amperes. In doing this we demonstrate

the strength of the saturation effect for different beam

currents and air pressures, and we determine, for the

first time, the magnitude of the net current that flows

through a pulse for beam currents larger than 15 kilo-

Amperes. Values of net current are inferred from computed

values of the magnetic field computed by program BEAN2.

The calculations are summarized in Figures 24 and 25.

We have chosen to maintain a constant current density of
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( iü ici~icm
2 in this calculation so the radius varies from

0.31 centimeters for the one kilo-Ampere pulse to a maximum

of 10 centimeters for the 1,000 kilo-Ampere pulse. In

Figure 24, we have plotted the net cu.’rent at the top of

the rise portion of the pulse. The ma:~imum current shown

in the Figure is 25 kilo-Amperes , prod lced by a beam with

a current of 1,000 kilo—Amperes , propagating through

atmospheric pressure air. Thus , the plasma current is 975

kilo—Amperes , or 97.5% of the beam current . The net

current is not constant within the pulse, but continues a

slow increase. In Figure 25 we have plotted the net

current at the rear of the pulse. We see that the maximum

current observed is 70 kilo-Amperes for d 1,000 kilo-

Ampere beam current . This is an increasE over the 25

kilo-Amperes computed at the top of the rise portion . We

note, too, that the net current decreases substantially

with air pressure. For the 1,000 kilo-Ampere beam the net

current at the top of the rise portion at ~a pressure of

7.6 Torr is three kilo-Amperes , while at a pressure of 760

Torr the net current is 25 kilo-Amperes .

Discussion

From the results presented in this section we have

established four major points.

1. The general agreement between pre: ctions of the

models and experimental measurements demonst ites the

( validity of the models.



2. Considering the good agreement between the one-

dimensional and the two-dimensional models we conclude

that the one-dimensional model provides an adequate descri7-

tion of the fields , over the range of parameters considered

in this study.

3. Since avalanche ionization dominates at low

pressures, the cascade ionization time lag is of no con-

sequence in determining the behavior of the fields.

4. For the first time we calculate current satura-

tion at atmospheric pressure , and predict net current flow

in a pulse for beam currents up to 1,000 kilo-Amperes.

(
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VI . MAJOR CONCLUSIONS AND RECOMMENDATIONS

Major Conclusions

Considering the theory developed in earlier sections ,

and results presented in the last section , we draw four

major conclusions from this study.

1. The theoretical models developed in the course

of this work accurately portray the electrodynamics of a

propagating electron beam . In particular , our ionization

model is the only one that is valid over a wide range of

( air pressures and beam parameters. Agreement between

available experimental data and the predictions of the

model are generally within 15% and no worse than 30%.

2. Considering the good agreement between the one-

dimensional and the two-dimensional EM models , and the

excellent agreement between the predictions of the one-

dimensional model and experimental data, we conclude that

the one-dimensional model provides an adequate description

of conductivity generation, net current flow , and the

axial variation of the EM fields over the pressure range

of five to 760 Torr. The analytically predicted radial

variation of the axial electric field closely resembles

the numerically predicted radial variation in the pulse

rise portion, but does not predict the pronounced

-t I-



flattening that the numerical model predicts in the con-

stant portion of the pulse. We observe a factor of 50

reduction in computing time when solving the one-

dimensional model equations over the two-dimensional model

equations .

3. At low pressures (less than 100 Torr) avalanche

ionization dominates over direct ionization , so the cascade

ionization time lag has virtually no effect upon the

behavior of the fields. In essence , the avalanche compen-

sates for any changes introduced into direct ionization ,

so it is not necessary to include a non—zero cascade

ionization lag time in field calculations. One would

expect a similar result for other gases with ionization

cross sections similar to nitrogen.

4. As beam current is increased , and all other

parameters are held constant, the magnetic diffusion time

also increases. This causes the net current flowing in

the beam to saturate. At atmospheric pressure this satura-

tion is most evident above beam currents of 15 kilo-

Amperes. At lower air pressures current saturation occurs

at lower beam currents. Above a beam current of 15 kilo-

Amperes large increases in beam current produce only small

increases in the net current.

Recommendations

The ionization and EM models derived here were

( developed to study atmospheric propagation of an intense
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pulse of relativistic electrons. However , the EM models

are applicable to any kind of charged parti:le beams ,

including proton beams or heavy ion beams. Much of the

ionization model could also be used for propagation

studies of other kinds of charged particles. The plasma

electron-air molecule reactions (avalanche , a ttachment,

recombination), and the collision frequencies are ob-

viously independent of the type of charge particle beam .

Only the direct ionization rates need to be ch~inged. It

would be very useful to apply the models of this study ,

with the appropriate changes in direct ionization , to

other types of charged particle beams currently ~ inter-

est.

No matter what type of beam the researcher is inter-

ested in the primary consideration in propagation studies

must be the response of beam particles to their self-

fields. While this study does not allow the beam rar-

tid es to move with the fields , results from this s tudy

provide an estimate of the response. However , to accu-

rately assess the beam evolution , both the fields and the

beam particle motions must be calculated simultaneously to

allow their interaction. Preliminary investigations ~‘

this area are underway .

(
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APPENDIX A

EM FIELDS OF A BEAN IN A VACUUM

In sections II and III the EM models that are employed

in this study were developed. In both the one- and two-

dimensional models the EM fields of a beam propagating

through a vacuum arise in a natural way . In this Appendix

we calculate the fields of a beam in a vacuum .

To simplify calculations we assume that all beam

particles move in the longitudinal direction at the same

speed , and that the fields as seen in the beam frame are

time independent . These two assumptions allow the vacuum

fields to be determined from a scalar potential , q .

The method employed here is to find the fields of a

pulse of relativistic charged particles as seen in the

pul se frame of ref erence , them perform a Lorentz trans-

formation of the fields back to the laboratory f rame of

reference . Letting the star denote the value of the param-

eters in the pulse system , and the unstarred parameters be

measured in the laboratory system , the transformation equa-

tions are (Ref 30)

X * ~~~a Xa B

(
ill



J *~~~ a Ja

X
a 

(x , y, z, ict)

~cz (Jx , Jy, 
~~~~~ 

icp)

aaB
_ 1 0 0 0

0 1 0 0

0 0 -r iBy

0 0 —iBy y

Thus , we have ,

r* (x* 2+ye2 )l/’2 r (A—i )

yz+iBy (ict) y (z—Bct) (A—2 )

icp’~ iy(cp—BJ~ )

pBc)

= y p( l— 8 2 ) p/y (A—3 )

The inverse transformation of the fields is found from the

four-tensor ,

= 0 B
~ 

_B
~ _iE

~

_B
z 0 Bx 

_
~Ey

_B
~ B

~ 
0 _iE

~

iE iE iE 0x y z

C
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which transforms according to (Ref 30)
(

I

FaB bayb86F~~

where

bay (i 0 0 0

(0 i 0 0

0 0 y —iBy

0 0 iBy y

Performing the indicated tensor multiplication results in

E
~ ‘v (E~~ 

+ BBy*)

E~ y (E~* - BBx*)

= 
~~~

B~ = y (Bx* - BE~*)

y (B~,* +

Bz Bz*

Realizing that the magnetic field is zero in the starred

( system the transformation equations reduce to
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Er (E
~
2+ E~

2)l/’2 YE (A 4)

= E *  (A—5)

I.-

B0 (Bx
2+By

2)l/2 8’
~~r~ 

= BEr (A-6)

Here we have used

p = pulse charge density

B v/c

y ( l_ $ 2 )~~~/’2

In the main body of the pulse the fields are assumed
to take on the values of a beam with infinite longitudinal
extent. That is,

E
~ 

= 0 (A—7)

E = f r’p(r’)dr ’ (A-B)

Be = BE 

~ ::‘

~~~~

‘ (A-9)



It is in the rise portion of the pulse that our main

interest lies, so the remainder of this Appendix deals

with a close look at the fields in this region .

Two different approaches are employed here to find

the fields. The first is to make various approximations

in order to find analytic forms that nearly reproduce the

actual field values. The second approach is to perform a

more exact numerical calculation . Comparison between the

two approaches shows close agreement.

Analytic Approximation

In order to find approximate forms for the fields our

method is to make an ordering argument to show that the

axial electric field is usually much weaker than the
( radial electric field . This allows the equations to be

decoupled , and the fields found . The ordering of the

fields is, of course, valid in the laboratory frame of

reference as well. However , we make the ordering argument

in the beam frame , and demonstrate its validity there,

because the argument is much simpler in the beam frame.

Employing a Cartesian coordinate system for simpli-

city, the wave equation for the fields in the beam fram e

is

X (~ x~ *) V 2
~~*_ I+ iT~ p *=0 (A—b )

(
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I—

The formal solution is

= ...14 fl ~~‘ p *(~~*’) d~~* (A — l i )
—

~~~ Ir*_r*~ I

If the charge density, ~~~ Is a reasonably smooth function

of r* (or x* and y*) and most of the charge is contained

inside a radial distance a, then

~J 
p* A -12)

where “.“ means “on the order of” . Likewise , if p~ varies

smoothly in the longitudinal direction , then

(A-l3)

where t~z* is the length of the rise portion in the pulse

frame. For this study we restrict ourselves to

(A—J.4)

Then

(A—l5)

(
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and

3p * ~p* 3p * (AI” > ~~~~~~~ -16)

Therefore ,

(A—i7)x y z

or

E * >> E * (A—l8)r z

The ordering argument (A-18) allows the fields to be

derived . The divergence equation is

*

~~* j~ 
(r*E~*) + 4~yp * (A—19)

Making another ordering argument,

E *

~~* ~j~* 
(r*Er*) ~ 

(A-20)

3E* E *
(A-2l)

c
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we have

(
*

~ }~* (r*E *) >> (A—22)

Thus

~~~ ~~~~ (r *E * )  4ir p * ( A — 2 3 )

and

Er* ~~ fr *’p*(r*’ ,z*)dr** (A—24)

Transforming now to the laboratory frame ,

Er = I~L r ’p (r’,t—z/Bc)dr ’ (A—25)

B0 = BEr ~~ / r ’p(r ’,t—z/Bc)dr ’ (A—26)

Notice that the forms for Er and B0 in the rise portion of

the pulse are the same as that in the main body of the

pulse. This is a direct consequence of the smallness of

E
~ 

in the rise portion which results from
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1 (A—27)

Therefore, as long as (A-27) holds the above approximate

solutions for Er and B0 are valid.

With both the radial electric field and the azimuthal

magnetic field specified , the longitudinal electric f ield

can be determined within an integration constant. From

Faraday’s Law ,

(A-28)

we have, in cylindrical coordinates ,
(

aE1 0~~. z r (A 29)
c a t ar

Since

z — Bct Constant (A-30)

then,

- (A-3l)

[ and
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z 1 0 1 r 
(A—32)

~~~
- .=  •

~
_ _

~~~~~
-:E_-

aEz _ l
~~~~~~~~~~~~~~~~~~~~~~~ 

(A-33)

3Ez - L. __
~~:. (1_B a) - 1 r ( A — 3 4 )- — 

Be 3t Bcy 2 
~T

Finally ,

r
E~ (r ,z,t) = E(0 ,z,t) — 8cy~ 

~~
-.- I E dr ( A — 3 5 )t r

0

An order of magnitude estimate for E
~~, and a rough

scaling law , can also be derived. Recalling the formal

solution to the pulse fields in (A-ll) , by invoking a

volume oriented mean value theorem one can write

E * = I 
~~~~ 

(r*p*) I +r r r*=r! 
(A—37)

and

a p*E * 1
~~~~~~~~~ I (A—37)

(.
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where

~~ +th~*’I —1+r r I_
~o I~* -

and and are the points where the equality expressed

in (A—36) and (A—37) hold , respectively . Estimating the

mean value derivatives by

I ~~ 
~~~~~~ .,. (r*p*) I ~~~~~~~ 

2.~ (A—38)

and

(

I I (A 39)

we have

E *  p*/a * - 1~Z * (A 1+ 0 )
~
“ p*/~ z* 

- —

Thus

E
~ 

E *  ~~~ “ y~~ z 
Er 

(A-’+l)

(
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If 

Er = ~~~ sV/cm

a = 1 cm

= 100 cm

y 10

then

E “ 0.1 sV/cm

Notice that (A—41) predicts inverse scaling with L~.z and

inverse square scaling with gamma. In the next section

this scaling will be shown to be approximately , although

not rigorously , valid .

In summary , for the radial and longitudinal profiles

of this study, the pulse f ields in the rise portion of the

( pulse are estimated to be

- t—z/Bc r
- 2Tr p0 ~~ i+r2/a 2 A—1+ 2

B0 = BEr (A—43)

ira 2 p
E E (r 0) — 

2y 2~ z 
Ln (1+r 2/a2) (A—’44)

Numerical Calculation

A numerical method that accurately calculates the

( fields in the pulse rise portion is developed here. By
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employing a three-dimensional exponential Fourier trans-

form pair, five of the six integrations can be exactly

evaluated analytically leaving only one numerical inte-

gration.

The exponential Fourier transform pair is defined by

F{4,(~ *’)} = / f f •* (~~~* t ) .

exp {_i{x *~ Kx
+y*~ Ky

+z*~ Kz
J} dx*t dy*’dz*~ (A—45)

= ~~~~~~~ / / 4~*(~ ).

exp ~+i{x *K~+y*Ky
+z*K~ J} dK~

dK
~
dK
~ 

(A-’46)

where ~~* is the scalar potential and again the starred

variables are measured in the pulse frame of reference .

By defining

x* r* cos0*

y* = r* sin0*

= Kr cosOK

K = K sinG *y r K

we have
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X *Kx +Y *K y +Z *K z r *Krcos(0* _0~~) + z *K~ ( A — 4 7 )

in cylindrical coordinates. The Fourier transform pair

then becomes

~ 2ff ~
= f f f q~*(~*’).

-
~~~ -o —o

exp 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (A—1+8)

~ 2rr ~
= 

—
~~~ ~~ 

_

~~~ 4~*(~
).

( exp fi[r*Krcos(0*
_®
~ ) + z*K ]} X d K dOkdK (A—49)

In the pulse frame , Poisson ’s equation for the poten-

tial is

v 2 q~ _I+ ir p
0

*f( r *) g ( z *) (A—50)

Operating on (A-50) with the transform yields

F ~V
24*(~ *~ )} = ~(K

2 +K 2
z
) ~*(~~

~~ 2 IT ~~
= 4,rp * I I I f(r*’)g(z*’)

exp {_i[r*~Krcos(0*’_0k)+:*~Kz]} r*~dr*?d0*~dz*t (A_ 51)
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Solv ing for ~~ and operating with the inverse transform

gives

p ~ 2rr
= ~~

-
~~

-
~
- .1 1 1 exp [i(r *Krcos(0*

_®
k
)+ztK )]

—~~ 0 0 
z

~ 2rr ~{ I I I f(r*t)g(z*t)exp[_i(r *?K~cos(o*~ _o~~)+z*?K~)]}*
-

~~~ 0 0

K dK dO dK
(r~ ’dr*?d® ~~tdz *’) 

r r k  Z (A—52)

Some of the integrations in (A-52) can be performed if the

order of integration is changed. This is possible since

f (r )  and g ( z )  are piece-wise cont inuous .  The following

integrals can be evaluated (Ref 14 2)

I exp{_ifr*tK
rcos(®*

t _O
k)]}dO*? =

2irJ (r*’K ) (A—53 )o r

2ir
f exp

~
i{r *Krcos (G*

_O
k
)]}dOk

2ir J (r*K ) (A_5t1 )0 r 

- - - 
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—

exp HK [z*_z*’J}Z dK =1 K 2 + K 2  z
—

~~~ r z

j~— expf_kr jz*_ze t I }  (A—55 )
r

where J0(r*K 
) in the zeroth order Bessel function with

real argument , and Iz *_z*~I means “magnitude of z~ _z*’” .

The potential function now is

I .1. 1 f (r * ’) g ( z * ’)
0 -

~~~ 0

I exp{_K
r{z*

_z*?I }J (r*’K )J (r*I< )r*’dr*’dz*’dK (A—56)o r o r r

To proceed further requires explicit expressions

for f(r) and g(z). Using the Bennett profile for f(r),

r*’J (r*?K )dr*’
1 f(r~ ’)J (r*tl ( )r*’dr*’ = a~ 1 

o r
0 r tr *’2 + a *2 ) 2

0 0

a3 K

2 
r K1(a*K) (A—57)

‘where K1 is the modified Bessel function of the second kind ,

of order one. Thus,
(

126



(~ * )  = 7rp0a
*3 / / g(z*’) exp (_K r Iz *_z*~I)• 

-

J (r*K )J (a*K )K dk dz*~ (A—58)
0 r 1 r r r

At this point let us def ine

h(zC
~ Kr
) = f g(z*~~)exp(_K~ Iz *_z*~~I )dz*~ (A—59)

When considering the longitudinal  densi ty prof i le  for this

study (A-59) becomes complicated , but is directly inte-

grable . Recognizing that

(
E — 

~~~~~~ (A—SO)r

and

= — (A—6l)

we arrive at

Er*(r*,z*) ~p *a*3 I h(z*,Kr)Ji(r*Kr
)K1(a *Kr)Kr

2dKr
(A_62)

and

I
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= 3h(z’,K )

( 
Ez*(r*,z*

)=_Tt po*a
*3 

~ ~~~ * 
r J0(r*K )K

1(a*K )K dK (A-63)

Finally, employing the Lorentz transformation relations

back to the pulse frame, we have

Er(r ,z)=lT Poa
3 I h(z,Kr)Ji(rK )K

1
(aK )K 2dK (A-64)

np a3 ah (z,K )
E
~
(r ,z) az 

r Jo(rKr
)K
i
(aK )K dK (A—65)

These forms for the fields are found by numerically inte-

grating over Kr~ 
Comparisons between the analytic and

( numerically calculated fields are illustrated in Figures

26 and 27.

In equation (A-65) the dependence of E
~ 

upon tiz occurs

from both the l/t~z slope of g(z) in the rise portion of the

pulse and the integrating of g(z) e~~1~I~~~
Z I over the

longitudinal extent of the pulse. Although the scaling of

Ez is only approximate, computer integrations of (A-65)

verify the approximate scaling of t~z. Consequently , E
~

scales approximately inversely with & and inversely with

the square of gamma.

(
128



(W ~~,’nS ) Z3

Q (0
I I ~— u 0

\:

~~~~~~~~~~~~~~~~~~~~~~~~~~~

0
a). ,-4

—J
F ’(_) ~~ I

0

(4~.0
In I 0

E Lu - (.0
U I S

I -~o-o E~~E —

C)

Q E E h
- C’J II U~~~~~~~~N-

— — SI — -.4N ~
0 ~-

0

N
Lu

- c\J

..-l

(W3 ,’As ) ~3

129



/

(

(W 3 / A S ) Z3

0 (0 C’J 0
I I I LU

In
E I ~~~0U
2 rj~

0 <
a)
.
~~~

U 0
2 Q / Z p ~Wc~J II — 

~ / (.1)
IS P.1 SI IS / — L&_ 0

~~~ 0 C N  
/ 0 >1, -N )I’ D// 
~~~ 0</ 1 \R/ Q - J/ Q <

/ — 2 U Q

- c ’ J
I—I/

1.) //
L u ”  / / 2 

<
22 —

~ / C..) / Z W
/ N

(~~~~~‘ 
Lu W

10
\ ~ I -

~~~~~~~~~

~~~I bO

I I I I 0
0 0 0 0 0 0 0C%J Q (0 csJ

(w 3/AS )~ 3

C
130



APPENDIX B

REACTION RATES

As a pulse of electrons enters the atmosphere it

interacts strongly with air molecules to produce free

electrons. These electrons can then be accelerated by

existing electric f i elds to energ ies which may be suff i-

cient for the electrons to produce additional free elec-

trons by electron-atom impact ionization . We present here

a discussion of the ionization , recombination , and attach-

ment processes used in this work .

(
Rate Equations

The equations of the ionization model are, from

Section IV ,

an T AR (t—t )
= a(W)ne + R1 

+ dt (B-l)

= ~~r — (Vm (W) + aT) 
y
r 

(B-2)

3v eE
— 

~~~~~ 
+ UT

) v~ (B-3)

- 

e 
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= e(E v +E v ) — (v (W)+a )W+v c+S (B—14)at r r  z z  e T

= f (~~~) + v~ ~
! (W—~) (B—5)

where -

ne = plasma electron density

a = net avalanche (recombination) coefficient

UT = U + (]./n )R

R1 = impact ionization rate

= radial plasma electron velocity

v~ = longitudinal plasma electron velocity

( Er radial electric field

= longitudinal electric f ie ld

e electronic charge

m electron rest mass

= momentum transfer collision frequency

energy transfer collision frequency

W = characteristic plasma electron energy

S = external heating rate of plasma electrons

c = background neutral gas characteristic energy

= energy loss rate of beam particles per unit
length per neutral particle

(
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f = fraction of beam energy loss that goes directly
to neutral particles

N = neutral particle density

The empirical parameters are given by ’S

Electron—neutral momentum transfer collision frequency

1.25 x lO~~ W
0 935 (1 + 0.093 wL 5 0~~

05i

(1 + 1.26 W~
”67 )0~

373 (B—6)

Electron—ion momentum transfer collision frequency

l.’+6 x lO
_6 

(ne/W
3”2 ) £n [l.55x1Ol~ (W

3/ne
)½J (B_7)

Electron-neutral energy transfer collision frequency

= 1.3 x lO ui (1 + 4.4 x l04W5)0~
32 /

(1 + 1.93 x bO 3W10)0~~
38 + 4.13 x b0 10W5 2 2  /

(1 + 0.06W7)0~
456 (1 + 1.68 x l0 3W4)0~

097 (8—8)

Avalanche coefficient

C 

-— 
- :



a.
- 3.76 x io

_15 
W8~

7/(i+2.92 x lO 14
W

5
)~~

” 1 4 1 2  
( B -9 )

Three body dissociative attachment

c*3A - 2.78 ~ 10
31/u+l2.5W (B—lu)

Two body dissociative (electron-ion ) recomhination

ar — —7 0.026 )0.63 (B—il )2 . l x l O  ~
0

2

Two body dissociative attachment

€
cz 2A - 4.85 x l0 2/(i+3.145W 14

~
8)~

”29 (B-12)-fl--

v = v + v . (B—13)
m mn mi

U U~ - U3A 
- U2A ~

Ur 
(B-l14)

Impact ionization rate

m 8 2c2T 2
4~ne ”ZN __________R1 

: ELfl(e 
2 

e )B 2) (B—iS)

(l.6xl0
~

12 )
~ e

meBc 
e

(
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electrons/cm3 /sec

In these equations

Te = beam electron energy

Z = 7.2 , effective atomic number for air

m = electronic rest mass

c speed of light

B v/c

.y ( i_ 8 2 Y ~~

empirical factor and is 86 eV

This form for the impact ionization rate is found from the

classical stopping power formula for relativistic electrons

(Ref 35), and by assuming that , for every 86 eV of energy

lost , one ion—pair is immediately formed . This assumption

is consistent with the observation that , after cascade

ionization is completed , one ion-pair is produced for every

34 eV lost by the beam electron (Ref 36). The parameters

Vmn~ 
v~~, a1, a3A, and °2A are the same as those originally

developed by Wittwer (Ref 19), but the parameters Vmi and

were added to include the effects of higher electron

densities. The electron—ion collision frequency , Vmi~ 
is

adopted from Spitzer (Ref 32) and Lee (Ref 8), while the

dissociative recombination rate, Ur~ 
is taken from the DNA

Reaction Rate Handbook (Ref 43). Figures 28 and 29 plot

the parameters for sea level density air.
(
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In a series of papers Phelps and others (Refs 44—148)

developed a method for calculating these empirical param-

eters for various mixtures of gases. His goal was to deter-

mine the unknown cross-sections . His method was to employ

a Boltzmann code , solve for the equilibrium distribution

function and , from this , calculate the experimentally

observed parameters. The unknown cross sections were

varied until the calculations agreed with experimental

data. From these calculated values of empirical parameter-s

Wittwer has developed the fits for air.

Other sources indicate a fair agreement with the

parameters of the fluid model as given by Wittwer. For

example , the DNA Reaction Rate Handbook (Ref 143) gives a

( value for the momentum transfer collision frequency at a

one electron volt energy of l.7x1012 sec~~ . The fluid

model value of the collision frequency given here is

2.7x1012 sec~~ . As a further example of how the collision

frequencies vary between models , Figure 30 compares the

energy dependence of the collision frequencies of the DNA

Reaction Rate Handbook value to those values of the ~f1uid

model.

Recently , Radasky (Ref 28) has published Longmire ’s

fit to experimental data for the avalanche (ionization )

rate as a function of the electric field for sea level

conditions. The fit is

( a~ = (s.7 x l08y5)/(l + 0.3y 2 5 ) 8-l6
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where

- ~~ (sV/cm)- 100

Employing the equilibrium relationship between the electric

field and characteristic energy for air, from Wittwer (Ref

19) ,

W(ev) = 2.5 x io
_2 

(1 + O . l l ( E N
0

/ N )
3

~~
6

)
0

~~
658

/

(1 + 5.65 x lO~~ (EN0
/N)5)0~

37 (B—l7)

( allows a direct comparison between the two ionization

coefficients. Figure 31 is a plot of the two rates.

Notice that below S eV the Longmire model predicts an

ionization coefficient almost twice that of Wittwer’s.

Above 10 eV the two fits rapidly diverge.

The dominant three body dissociative attachment

reactions have been delineated by Radasky (Ref 28). They

are

02 
+ e + 02 

+ 02 + 02 
(B—18)

02 
+ e + N2 02 

+ N,. (B—19)



(

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
0

I I I 1 0

w

S..

~~0— Cl)

C)
5~~ 0

_ -C— 0

z —.. r-lo__J ~%,....._ — >> <
~ o a

-
~~ I4~4—

~~~(
Cl).-~

0C.)
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( 02 + e + H20 0
2 

+ H
2
0 (B—20)

with respective reaction rates (DNA Reaction Rate Hand-

book),

(N0
)2 1.85 x lO

_30 
cm6/sec (B-2l)

a,..
N N = 1.0 x lO~~

1 cm6/sec (B-22)
N2 02

a3 20 61.L~ x 10 cm /sec (B—23)

2 2

f or a neutral particle temperature of 300°K. These rates

were determined by experiments in which the electrons and

neutrals were in thermal equilibrium , so the dependence on

electron energy is not given . Assuming a mixture of 80% N2

and 20% 02 the first two attachment rates combine to

a1 2 6.4 x 1O 7 sec~~ (B—24)

at sea level density. The maximum fraction of the air that

is water vapor (100% relative humidity) is 0.07. With this
(

fraction the attachment rate for the third reaction is
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a3 1.14 x 108 sec~~ (8—25)

Wittwer ’s three body attachment rate for thermal electrons

at 300°K gas temperature is

a3A 2 x 108 sec~~ (B—26)

For most cases of interest in this study , however , the two

body attachment rate and the recombination rate dominate.

The two body dissociative recombination reaction that

is employed in the fluid model is

e + °2 + 0 + 0 (B—27)

(

with the reaction rate

2.1 x l0~~ (
0.026)0.63 (8-28)

Since the positive ion charge transfer reaction

+ 02 
+ N2 + °2 (B—29)

occurs at a very rapid rate (~ 1O
10 sec~~ at sea level

density) virtually the only positive ions are O2~ 
ions.
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The density of O2~ 
ions is equal to the density of elec-

trons by charge balance if the density of negative ions

produced by the attachment is small. For the cases con-

sidered in this study it can be proven that this is the

case. Writing a rate equation for negative ions,

3n
= aAne — ~n~n (B-3D)

where

n = negative ion density

= positive ion density

total attachment rate

= total ion-ion recombination rate

the asymptotic solution is

n ~~A 4a ½
~ {(l+~—~) —1) (8—31)

where is the asymptotic solution .

Using sea level values of aA and ~

‘
~‘ 2x108 sec 1

( ~- 2x10 6 cm3/sec
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16 —3n ‘~~l0 cme

we have

n
< .1 < 1 (B—32)

e

Thu s

n = N + = n (B—33)+ 02 e

At densities lower than sea level densities the

three—body dissociative attachment rate falls off very

rapidly leaving only two body dissociative attachment to

produce negative ions. However , even that attachment rate

falls below l0~ sec~~ at a factor of twenty reduction below

sea level density. Since pulse lengths are typically

considered to be on the order of l0~~ seconds in length, or

less , the attachment process is negligible within the pulse

for densities one—twentieth , or lower, of sea level density .

The reaction

02 + e 0~ + 0 (B—34)

is the primary reaction considered by Wittwer in finding

( the net two body dissociative attachment rate. Johnston
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(Ref 11) employs a reaction rate which is vanishingly

small , while Radasky (Ref 28) does not even include the

reaction for EMP calculations. Experimental measurements

by Fite and Brachman (Ref 49) and theoretical calculations

by O’Malley (Ref 50) of the reaction cross section as a

function of electron temperature are consistent with

Wittwer ’s reaction rate.

Analytic Approximation

The set of five fluid equations , plu s the auxiliary

equations for the empirical parameters form a set that must

be solved numerically , if all effects are to be considered.

Yet , f or many cases of interest in this work , cer tain

approximations yield analytic results which permit an

( adequate description of the system .

Written in vector form , equations (B-2) and (B-3) are

= — 
~~m 

(W) + aT) (B—35)

For sea level conditions most of the pulse parameters con-

sidered in this work produce electron energies on the order

of one eV. This value of energy yields a collision fre—

quency of 2.7 x 1012 sec~~ . For large values of ne 
(>10 13

UT is much smaller than ~~ 
Assuming a constant

value of for time scales much longer than l/Vm the

solution to (B—35) is
(
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+ 
____v = ~~~~

—
~~~
—- (B—36)

e m

Under these assumptions the electron drift velocity is

parallel to the electric field and given by (B-36).

Additionally , since

e2n
en~~ = mevrn 

(B-37)

a plasma conductivity can be defined

I~~I e2ne (B—38)
I~ I

(
Consequently , for these situations , the plasma current

density in Maxwell’s equations can be replaced by ZE.

The electron density can also be estimated analytically

for many cases of interest. Assuming a linearly rising

beam density in the pulse head , zero lag t ime , and attach-

men t and recombination times that are much longer than the

pulse rij e tim e , then (B-l) becomes, in the pulse rise

portion ,

ane
- R , r ~ t (B-39)

(
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where

T = t— z/Bc

= pulse rise time

One gets

ne = T~ ,T<~~t (8—140)

and

= 

~e
’
~rn 

(B—4l)

for a constant v
( m

In the main body of the pulse attachment and recom-

bination processes cannot be ignored. Again assuming a

zero ionization lag time ,

an
R_czAne

_B
rne

2 ,r>tit (8—142)

where

a
B —~~~ (B—43)r ne

( This is just the Ricatti equation (Ref 51). The solution



is

exp (D —D )(T-~~t) + AD1/D2 D2
= exp (D2-D1

)(r-~t)  + A (B-1414)

where

n (T=tT)8 —D
A — 

~n T T )8~ —D~~ 
(B—145)

a 48R ~.
D — —~~~ El + (1 + ~ ) ~] (B~t+6)

a 4B R

— [1 — (1 + 
a ½) (B—47)( A

for  UA and Br constant .

The conclusion is drawn immediately that the electron

density is bounded by

= { [1 + 
~~

-

~~

- ] ½—l) (B—48)

Employing Wittwer ’s values of UA at one eV and the author ’s C

value of 8r at one eV , for sea level densit ies
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( aA = 3.4 x 1O 7 sec~~

2.1 x io 8

and assuming an ionization rate of

R 1025 electrons/sec

we have , for a one MeV electron beam ,

= 2.1 ~ io
16 cm 3 (B—49)

This occurs on a time scale of roughly

3 14B R —½
T — ~ t = 

D —D 
= s— [ 1 + (8—50)

( 2 1  A A

or

= 3.3 x lO~~ sec (B—5l)

For this case, the maximum conductivity is

= 2.7 x 1012 sec~~ (B—52)

(
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APPENDIX C

PROGRAM BEAM 1

In this Appendix we discuss the actual numerical

method that is used in program BEAM 1 to solve the two-

dimensional EM equations of Section II , and the ionization

model equations of Section IV. We present the finite dif-

ference equations and the algorithms employed for their

solution .

Finite Difference Equations

From Section II, the differential equations of the EM

model are

+ ~~~~~ (C—i)

aEi a 
~ 

Z 
~ L ~~~~~ 

- a 
~~ + ZE ) (C—2)

r ~~ r 
~~~~~~

— 

Bc 3 T - 
~~~ b z z

~~ (r88
) = 

~~~ 
+ ~ E~

) (C-3 )

Since the electric field is completely decoupled from the

magnetic field , we only solve for the magnetic field after

151 



the electric field is determined. The finite difference

equations employed for the first two differential equations

are

n+l n ri+1 n+l n n
E .  - E . E. E .  + Z . E .ri rl + 14TT (a ri 1

2

on +l on
E .  - E .

- ri ri 0 1 4

n+l n+l n+1 n+l n+1
E .  + E .  -2 E . (E. - E .  )
zi+1 zi—1 Zi + 1 zl+l zi—l

(~~r ) 2  r. 2~.r1

1 3E .~~1 
n+l/2 3E~~~~~1 n+l/2+ 

Bcr1 
a r  — a t

n+l n n+l n+1 n n

~ 
‘
~bzi 

— 
~bzi + 

E~ ~~~ 
— Z~ E 1 5)

M

B0 is fou nd by Simpson ’s rule integration (Ref 24) over r

of equation (C—3). Here the i subscript denotes the ith

grid point in the radial direction and the subscript, n ,

denotes the nth grid in the t direction .

The finite difference equations for the ionization

( model equations are constructed by noting that the form of
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each of the differential equations is

3 f ( r ,t) = p(r,t ) f(r ,t) + h (r ,t) (C-6)

Integrating over one time step,

n+l n - -
f. = f .  er~~ + ~ (l_e~~~

T) (0-7 )
.1. 1

where

~ 
(p (r. ,~ +1~ 

+ p (r.,t)) (0-8)

(
= 

~ 
(h (r

~~
,T
~~+i

) + h ( r . , t )) (0-9)

The subscript i denotes the ith radial position , and the

subscript n denotes the nth grid point in the T direction ,

as before .

These finite difference equations have certain char-

acteristics that we point out here. The first point to

notice is that all parameters are evaluated at the same

grid points. Since the electric field and the conductivity

are related through the plasma electron energy , the equ a-

tions are iterated for consistency . Secondly , we notice
n+l/2 n

/ tha;, to evaluate (ZE )i we take the mean of (ZE )ir r
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n+ 1
and (ZEr

) i . This results in second order accuracy in

the difference equation for E
r-
. The third important point

is that an implicit differencing scheme is used in the

axial field difference equation . We do this to alleviate

the obviou s linear instability of an explicit scheme (Ref

214). However , since the axial field is coupled to the

conductivity in a non-linear- fashion numerical instability

is still possible , and has been observed for some sets of

beam parameters not included in this study. The instability

results in catastrophic disruption of the calculation . Due

to the complex nature of the differential equations we have

not been able to perform a stabi l i ty analy sis , or otherwis e

determine stability criteria.

(
Solut ion Algorithm

The f i n i te di f f erence equations for the EM f i elds are

solved in a straightforward manner. In equation (C-14) the

conductivity, vacuum values of the f ie ld , and values of
n . n+1En are known , so we directly solve for Er-i . With the

radial electric field just determined , and the conductivity

and beam current density known , equation (C—5) becomes a

tn —diagonal equation for E
~ 

in r when written in matrix

form . This we solve by a method of back substitution (Ref

24).

As previously mentioned , in order to maintain con-

sistency between the electric field and the conductivity,

( solutions are iterated . The iteration procedure is to
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guess a value of the current density , ~~, from which we find

the conductivity by Ohm ’s law , then calculate new values of

and ~ . Iterations continue until no appreciable change

between iterates is observed . Normally , only four to six

iterations are necessary to achieve convergence. We illus-

trate this procedure in Figure 32.

To achieve the rapidity of convergence that we see ,

and to minimize computing time , we use a scheme to accel-

erate convergence. This procedure , sometimes called

“Aitken ’s ~
2—Method” (Ref 52), is given by

x2 - x x
= n+l ri n+2 (C—lU)

,)v V V

where

X = f(X ) (C—il)
n+1 n

and 
~n 

is the new estimate for X~ . This method is applied

to the radial arid axial components of the fields sepa-

rately , and at each radial position . One could have used a

variation of this method that is applied to all radial

positions simultaneously , but this would have greatly

inereased computing time .

(. 155



COMPUTE
STARI —i n +‘

is
IN I T IA L IZE i

FI E LD S
YES

L~ 1+1

C MPUTE
T~~~AT BOn +1

GUESS OUTPUT

( m n + I  i.T B
~

I S
I—I T.T1, STOP

NO

COMPUT E
I T’T+1~T

Figure 32. Flow Chart for Program BEAM1
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Iterations are also applied to the ionization model

equations. A look at the equations (Section IV) shows that

they are all coupled through the plasma electron energy , so

iterating through the equations provides a consistent

solution . This procedure is illustrated in Figure 33.

(-

(
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APPENDIX D

PROGRAM BEAM 2

In this Appendix we present the numerical method used

in program BEAN 2 for solving the one-dimensional EM model

equations of Section III. Since the one—dimensional model

is considerably simpler than the two-dimensional model , the

numerical method in program BEAM 2 is considerably simpler

than the numerical program in BEAM . The interested reader

is directed to Appendix C for a discussion of the numerical

method for solving the ionization model equations .

( From Section III, the pertinent equations are

aE °r - r
‘ - -

aJ~~~ + ____  - ~~bzo + 
aE (a) 

CD 2)at tmo 
— — WaB at

E
~

Cr) = 
pZO [1 — ___________

21 (r) 21 Cr)B Cr ) b 
~
. 

p (D—4 )0 or or

(
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with

4:
ira 2 E Ln (].+b 2 /a 2)

tmo 
0 

c 2 CD-5 )

11r2J
= l+r2~~~

’ (D-6 )

and

I (r) - 

itr2J~10 
~ 

[l— (a 2/r2 )Ln(l+r 2/a2)] D— 7p - l+r2/a 2 — Ln (l+b /a )

The zero subscripts denote that the values of the parameter

are taken at r 0 .

Because there are only two differential equations , we

have only two finite difference equations

n+l n on+l on
Er = EEr

(l_D
e
) + Er 

_E
r 
]/(l+D ) (D—8)

n+]. n n+l n n+1 n

~pzo 
UJpzo

_D
m ) J bzo Jbzo~~fi*~~

Er 
(a)_E

r
(a)))/(l+Dm

)

where

(
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n~½D = 2rt Z (D l0)

D = CD—li )

2ir a 2 Z0 Ln(l+b 2/a 2)

Here the superscript n denotes the nth grid point in the t

direction , and the zero subscripts again denote the on-axis

values of the parameters.

We solve equation (D—8) at r a  since the radial elec-

tric field must be known at that point to find the on-axis

plasma current density in (D-9). Conductivity is also

evaluated at r:a for use in finding the radial field in (D—

8), but the on—axis value in (D—9) is inferred from the

assumed Bennett variation of conductivity . Since conduc-

tivity depends upon field strength we also evaluate the

axial electric field at ra.

As in program BEAN1, program BEAN2 iterates to main-

tain consistency between the electric field and the conduc-

tivity . The same accelerated converge technique that is

used in BEAM , and described in Appendix C is applied here

to the radial electric field arid the plasma current density .

Normally six iterations are sufficient for convergence of

all parameters to less than 1% difference between iterates.

The numerical technique described here appears quite stable.

No evidence of numerical instability has been observed .

(
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APPENDIX E

PROGRAM MONTY

In this Appendix we examine the numerical program that

simulates  the interaction of the plasma electrons with air

molecules , and an externally applied electric field . The

program , named Monty, simulates the collisions of the

plasma electrons against the air molecules by random ly

sampling over the interact ion cross sect ions.  Hence ,

it employs Monte Carlo techniques. We also present a

catalogue of the experimental and theoretical cross sec-

tions used in the simulation .

Simulation Method

The most difficult aspect of the simulation is the

extraordinar i ly  large number of possible interactions

between the plasma electrons and air molecules; so many

that a great deal of simplification is necessary to make a

mathematically tractable problem . Since N2 comprises

almost 80% of the air molecules the assumption is made that

the air consists wholly of N2 molecules. This appears to

be a reasonable assumption since 02, comprising about 20%

of the air molecules , has excitation and ionization cross

sections that are similar in many respects to N2. Program

( MONTY , which uses these cross sections, is limited by
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available computing time to short time scales (lO
_8 

second

( or less) and low pressures (76 Torr or less ) so the only

interactions considered are

1. Molecular vibrational excitation

2. Electronic excitation

3. Ioni zation

14 .  Elastic Scatter

In this study the energies of interest lie above one elec-

tron Volt so rotational interactions are not included.

Other possible interaction s , such as attachment and recom-

bination , occur on much longer- time scales and are of no

consequence for the parameters considered in program ~ONTY.

We achieve more simplifications by restricting the

problem to be zero—dimensional in real space (homogeneous) ,

time dependent, and one-dimensional in velocity space. All

spatial variations are ignored. Thus , the trajectories of

the plasma el ectrons are compu ted in velocity space f rom

the force equation ,

dv eE ( E — l )dt y ( v ) m

The electric filed is externally applied , and is assumed to

always act parallel to the velocity vector . Obviously, by

reducing the diinensioriality of the simulations some informa-

tion is lost. But our goal is to generate the history of

the ionization cascade . This history is relatively irisen-

( sitive to the spatial distribution of particles.
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To sample over the cross sections we employ the

“Golden Rule ” of Monte Carlo to generate interaction

probabilities in a continuous manner . Let P be the prob-

ability of interaction at time t. P and t are related by

-Nc vt
P e  T (E—2)

)
where N is the molecular number density of air , v is the

plasma electron speed , and 0T is the total interaction

cross—section , and is a sum of the total vibrational excita-

tion , electronic excitat ion , ionization , and elastic scat-

ter cross sections. The probability of an interaction

occurring between the initial time and t is found by inte-

grating (E—2) over time and normalizing . This is often

called the “cumulative ” probabil i ty,  an d is

—NcTvt
CN

1 _ e  (E—3)

Here we assume that a
T 

and v are constants. We also note

that the function , CN ,  is normalized so that it lies on the

interval (0 ,1). We determine the time of interaction by

generating a random number ,c, setting that number equal to

the cumulative probability, and inverting to find t,

- P.n(1—5~) (E 4)
~Nov 

-
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4: After an interaction is determined to occur the type

of interaction , and the velocity and direction of the

in teracting par ticles must also be determined. The type of

interaction is chosen by randomly sampling over the dis-

crete probability distribution composed of the relative

probabilities of each of the four possible interactions.

These probabilities are a funct ion of the electron energy ,

and are updated by the program after  each time step. Once

the type of interaction is chosen the energy lost in the

interaction is determined by randomly sampling over the

partial cross sections for that interaction . From the

energy lost , and knowing the type of interaction , a new

velocity is calculated for the plasma electron . If an

( ionization occurs , both the speed of the parent and daugh-

ter electron are specified. For all interactions direction

is not specified by random sampling , but by predetermined

rules. For example , for elastic scatter of plasma elec-

trons with a kinetic energy of 100 eV , or less , off a

nitrogen molecule , half the interactions result in forward

scattered electrons . By specifying that every other elec-

tron be scattered in the forward direction , and every other

electron be scattered in the backward direction we maintain

the directional partition .

Solution Algorithm

In program MONTY velocity space is split into a number

( of bins of variable length . Normally , 90 to 100 bins are

- 
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employed , depending upon the beam electron energy being

considered . The high energy electrons produced by impac t

ionization necessi tate  a bin structure of variable length .

The minimum width of the bin is 0.5 electron Volts at an

energy of one electron Volt , and increases up to a maximum

bin width of 300 keV for a one MeV beam electron . The

variable bin structure g ives the necessary resolution for

energ ies below 100 eV where many different in terac t ions

occur , yet it spans the range of electron energies.

The time domain is also discretized. Electron his-

tories are followed through a given time step, and at the

end of that time step the accumulated weight of every

electron in each bin is scored. Thus, scoring occurs at

the end of every time step , and a new distribution function

is calculated at the end of each time step.

We here summarize the algorithm used in program MONTY.

1. The electron distribution produced by beam elec-

tron impact ionization is scored at time t=0. This is the

source for the ionization cascade.

2. A sample of electrons is taken from each bin .

The same number is sampled from each bin and scoring

weights are adjusted for the relative density of electrons

in each bin.

3. The electrons are accelerated by the electric

field , and interactions are determined by random sampling.

Depending upon the size of the time interval and the prob-

( ability of interaction , an electron may encounter several
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4: interactions within a time step, or, possibly, it may

encounter no interactions at all. For each interaction new

state variables are determined for the interacting elec-

tron. If an ionization event occurs the state variables

plus the birth time of the newly born electrons are stored.

After all initially sampled electron histories are com-

pleted , the histories of the newly born electrons are

completed for that time step.

14. At the end of the time step the accumulated

scoring weight of each electron is scored in the bin that

is in at the end of the time step. This generates a new

electron distribution .

5. We then repeat the procedure , beginning with step

2 , the desired number of times.

Experimental Cross Section Data

A large amount of experimental cross-section measure-

ments are available for low energy electrons (< 1 XeV) onto

N2. The data employed in program MONTY are listed in

Tables IV through VII . The vibrational , excitation , ioniza-

tion , and momentum transfer cross—section are taken from

Englehardt , Phelps and Risk (Ref 146), and the electronic

excitation cross sections are taken from Rees and Jones

(Pef 53). All cross sections are in units of l0~~
6 ~~2 ,

vd .~:i energies are in units of electron volts. Figure 34

• a plo of the total cross—sections, and Figure 35 is a

• of ‘~~..ir re ~~ctive reduced reaction rates (cv).
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.1. 
— —

There appears to be significant disagreement in the

momentum transfer cross sections as measured by Phelps (Ref

46) and as measured by Shyn (Ref 54). It does appear,

however , that above energies about 50 eV the angular dis-

tributions of the scattered electrons becomes decidedly

non—isotropic , with forward scatter predominating . For

electron energies below 50 eV the momentum transfer cross

section and the elastic scatter are virtually the same . In

order to simplify the numerical program , the equality of

the cross sections is assumed to extend up to 100 eV.

Considering the disagreement in the data between Phelps and

Shyn it is felt that the error introduced by extending the

region of equality up to 100 eV is less than the uncer-

tainty in the cross sections .

Theoretical Cross Sections

Data giving secondary electron distributions produced

in the ionization process is conspicuously absent from the

following tables. Only recently have a few measurements

been made. Toburen (Ref 55) has measured the energy and

angular distributions of secondary electrons produced from

ionization of N2 gas by proton impact up to 1.7 MeV in

energy. Opal , Beatty , and Peterson (Ref 56) performed

similar measurements , but with electrons as the projec-

tiles. Energy and angular distributions were found for 50

to 2000 eV electrons onto various gases, including N2.

Later, Green and Sawada (Ref 57) published analytic fits to

the secondary distributions of Opal.
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The data that exists , though , is limited to projectile

energies quite a bit lower than the energy of relativistic

particles. Very recently , Porter , Jackm an , and Green (Ref

12) published analytic forms of the secondary electron

distributions produced by either electrons or protons ,

valid from the region of experimental data up to one GeV

kinetic energy . Beyond the region of experimental data

(2000 eV for electrons and 1.7 Mev for protons onto N2
)

analytic forms were made to fit the theoretical calcula-

tions for the secondary electron distribution .

The electron distribution is,

do . F.(T) y2m B2c2C.

~ 
tm~ 82 c2/2) 

(Kr2(T) ~~n[14( 2]~

1 B(T)

~~~ oe
)2+ t’e2(T’) — IQ—Q 1

)2+r1
2

N ite~+ e 1 + 1
p2 (T_Q_I~)2_r

2
2 (T+m c2)2

2Tm c 2 +(m c 2 ) 2
e e 1

— (T+m c2)2 — ~Q4I~.)(
T_Q_I

~ )+T2
2 }

with

= ionization cross section

- — - 
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Q secondary electron energy

do.
secondary electron distribution

T = pulse particle kinetic energy

m electron rest masse

8 v/c

y = 1 + T/mc 2

N Z number for N 2 14

p = 1.6 x l0~~~2 eV/erg

The rest of the parameters are given in Table VIII.

This form can be integrated to give the total ioniza-

tion cross section

(
0 do.
J~” ~~~~~~~~~ dQ (E-6)

where = T/2 , and is the maximum secondary electron

energy.

Thus,

F.(T) y2m $2c2C.
E 

~~jj~~~ 2 C 2/ )~~~ 
0<Te

2(T) f tnf4(

*~~~~..... Etan _l(~~!122e) + :::~‘ (~2.~.yJ

L



b
( B(T) Etan 1(~~~~~~

e) + tan ~~~ 
l )~~

N ire” T—I. T-Q —I.
+ e ~ tan~~~( r ~~ + t an~~~ ~ 

me
2 2 2

+ ~~ e 2 Tmec
2+(m

ec
2 )2 

2
(T+m c2)2 — (T+m c 2)2

T—2 1. T—3 1.
‘~ttanh~~~( ~~~~. -— tanh~~ ~2 ~~~~~~~~ ( E — 7 )

where

q 14 [I~ (T_ I~~) + r~
21 + (T-2I~~

)2

Figure 36 is a comparison of the experimental electron

ionization cross section with the theoretical ionization

cross sections for electrons.

Another useful bit of information that can be derived

from the analytic forms of the secondary electron distribu-

tion function is the energy distribution function . Def in-

ing

Q do (n? T’
f.(Q,T) I Q’ i ‘

~ ‘ ‘  dQ’ (E—8)
3- o dQ’

(
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we have ,

F CT) y2m B 2c2C
f1(Q,T) z 

~Ti~~2773 cKr 2 (T) { tn C L 4 (
• Cmj  e

(Q—Q ~2~r 2 
l(~~~~

oe)+tafl
_l
(~2!)]oe e )+ oe —

Q 2 .~ ’ 2 [tan re re
oe e e

B(T) (Q—Q )2~r 2 B(T)Q1 [tan~~ (
1

- 

2 tnt  
~1

2
~ r1

2 ~~ 
)~~~~

_1~~ 1_ )]}

N rre 4 (Q+T—I.)2 r 2 T—I Q+ ’— I

+ e 1~~- Ln ~ (T—I
_____  

2 
~ — (_ .f~~) [tan~~ ( r2p2

j

(
T-I 

+-t an~~~( 
r2~~~ ~~~+m c 2 ) 2

e

2Tm c2+(m c2)2 r2
2+I.(T_I~~)e e _ _ _ _ _ _ _ _ _ _ _ _- (T+m c2)2 

tn (
~~~2 4 Q(T . .2I .~~+r 2+I. (T_I ))

e j  2 j  j

T—21. T—21.—2Q 
— 

T—2 1 .
— ~~~ -~

) (tanh~~ (— ~ )—tanh l( ~)])) (E—9)
-q—q — q

with

q —4 (F2
2 + I.(I—I.) — ( T — 2 1 . ) 2 )

J ~J(
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( Finally , the energy loss rate of a beam particle is

given by

— 
~i~~ max ’ T)  + + 0e~~s 

(E-lO)

where

T = average ionization potential 16 ev

excitat ion cross section

C average electronic excitation energy loss

At high energies (> 1 lKev) 0e and ‘-i are nearly equivalent

for electrons since both cross sections vary approx imately

as (Refs 12 , 58)

(

~ 
(E-11)

Additionally, at high energies , the energy loss per

electronic interaction is

£ = 14.4 ev (E—12)

Calculations performed by Porter (Ref 12) indicate that the

foregoing is true. Thus , restricting ourselves to high

energies , and realizing the approximate nature of the

argument, one arrives at

( 
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( sitive to the spatial distribution of particles .

163

1
= — fi~~max~

T) + (E— 13)

where

I + E 30.14 ev (E—114)

The beam particle energy loss rate given by (E-13)

can be compared with the semi-empirical stopping power

formulas (Ref 29). For electrons

= r n 8 2c2 ftn
(
~~~~~ :

) 2]  (L—15)

where

empirical parameter = 86 ev

Table VIII  is a comparison between results of (E-l3) and

the stopping power formula for electrons.

(
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TABLE IV

N2 
VIBRATI ONAL EXCITA TION CR OSS SECTIO NS

Level 1 Energy Loss .290 Threshold .278

Number Energy Cross Number Energy Cross
Section Section

1 0 0.0000 18 1.800 .3300

2 .290 0.0000 19 1.900 1.5200

3 .300 .0010 20 2.000 1.3200

4 .330 .0020 21 2.100 .4600

5 .400 .0030 22 2.200 1.6300

6 .750 .0050 23 2.300 1.2300

7 .900 .0065 24 2.400 .14600

8 1.000 .0080 25 2.500 .8600

9 1.100 .0100 26 2.600 l.0’400

10 1.165 .0120 27 2.700 .2700

11 1.200 .0137 28 2.800 .14200

12 1.218 .0150 29 2.900 .4270

13 1.400 .0675 30 3.000 .4300

14 1.500 .0950 31 3.100 .5800

15 1.600 .1220 32 3.200 .3800

16 1.6500 .1390 33 3 .300 .2900

17 1.700 .1600 34 3.600 .2900

35 5.000 0.0000

(
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( of bins of variable length. Normally, 90 to 100 bins are

165

TABLE IV (CONT)

Level 2 Energy Loss -.590 Threshold = 1. 692

Number Energy Cross Number Energy Cross
Section Section

1 1.700 0.0000 10 2.600 .3100

2 1.800 .0900 11 2.700 .4900

3 1.900 .4000 12 2.800 .5100

4 2.000 1.5200 13 2.900 .1800

5 2.100 1.4800 14 3.000 .2~ 00

6 2.200 .6200 15 3.100 .1500

7 2.300 .6000 16 3.200 .1100

8 2.400 1.3900 17 3.300 .0700

9 2.500 1.11400 18 3.400 0.0000

(
Level 3 Energy Loss .880 Threshold = 1 .692

Number Energy Cross Number Energy Cross
Section Section

1 1.800 0.0000 10 2.700 .6400

2 1.900 .1800 11 2.800 .2600

3 2.000 .7500 12 2.900 .4000

4 2.100 1.4100 13 3.000 .4000

5 2.200 1.6900 14 3.100 .1600

6 2 .300 .9500 15 3.200 .1600

7 2.1400 .2900 16 3.300 .1600

8 2.500 .7700 17 3.400 0.0000

9 2.600 1.1700

(
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( ability of interaction , an electron may encounter several
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TABLE IV (CONT )

Level 4 Energy Loss 1.170 Threshold 1.894

Number Energy Cross Number Energy Cross
Section Section

1 1.9 0.0000 9 2.700 .6000

2 2.0 .1600 10 2.800 .4900

3 2.1 .4600 ~•1 2.900 .1800

4 2.2 1.1000 12 3.000 .1600

5 2.3 1.30 00 13 3.100 .1600

6 2.4 .7100 14 3.200 .1100

7 2.5 .2000 15 3.300 .0700

8 2.6 .3100 16 3.400 0.0000

Level 5 Energy Loss 1.470 Threshold 1.994

Number Energy Cross Number Energy Cross
Section Section

1 2.000 0.0000 9 2.800 .3700

2 2 .100 .200 0  10 2.900 .6200

3 2 . 2 0 0  .4 600  11 3.000 .4200

4 2.300 .7700 12 3.100 .2700

5 2.400 1.0400 13 3.200 .3500

6 2.500 1.0100 14 3.300 .3100

7 2.600 .5100 15 3.400 0.0000

8 2.700 .2700

(
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TABLE IV (CON T )

Level 6 Energy Loss 1.760 Threshold 2. 196

Number Energy Cross Number Energy Cross
Section Section

1 2 . 2 0 0  0 . 0 0 0 0  8 2 .9 0 0  .0900

2 2 . 3 0 0  .1100 9 3 . 0 0 0  .1600

3 2 . 4 0 0  .3700 10 3.100 .1800

4 2 . 5 0 0  .6000 11 3 . 2 0 0  . 0700

5 2 . 6 0 0  .6000  12 3 .300  .0500

6 2 . 7 0 0  .3700 13 3 .4 00  0 . 0 0 0 0

7 2 . 8 0 0  .1500

Level 7 Energy Loss = 2 .0 6 0  Threshold 2 .2 9 7
(

Number Energy Cross Number Energy Cross
Section Section

1 2 . 3 0 0  0 . 0 0 0 0  7 2 . 9 0 0  .1800

2 2 . 4 0 0  .0700 8 3 .000 .0500

3 2 . 5 0 0  .1800 9 3.100 .0700

4 2 . 6 0 0  .2900  10 3 . 2 0 0  .1600

5 2 .7 0 0  .4400 11 3 .300 .0700

6 2 . 8 0 0  .3300 12 3 .400  0.0000

(
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TABLE XV (C ONT)

Level 8 Energy Loss 2.350 Threshold = 2.499

Number Energy Cross Number Energy Cross
Section Section

1 2.500 0.0000 5 2.900 .2400

2 2.600 .0700 6 3.000 .1500

3 2.700 .1100 7 3.100 .0700

4 2.800 .1800 8 3.200 0.0000

(
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TABLE V

N2 ELECTRONIC EXCITATION CROSS SECTIONS

Level 1 Energy Loss = 6.200 Threshold 6.211

Number Energy Cross Number Energy Cross
Section Section

1 6.200 0.0000 8 14.00 .1800

2 8.000 .1600 9 20.00 .0900

3 9.000 .2500 10 25.00 .0800

4 10.000 .2800 11 35.000 .0500

5 11.000 .2800 12 50.000 .0170

6 12.000 .1800 13 70.000 .0060

7 13.000 .1500 14 100.000 0.0000

( Level 2 Energy Loss 7.200 Threshold = 7.195

Number Energy Cross Number Energy Cross
Section Section

1 7.200 0.0000 13 25.000 .0800

2 8.000 .0044 14 30.000 .0700

3 9.000 .0132 15 35.000 .0570

4 10.000 .0220 16 40.000 .0440

5 11.000 .0310 17 45.000 .0403

6 12.000 .0400 18 50.000 .0367

7 13.000 .0480 19 55.000 .0330

8 14.000 .0570 20 60.000 .0290

9 15.000 .0660 21 65.000 .0260

H
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TABLE V (CONT)

Number Energy Cross Number Energy Cross
Section Section

- 10 16.000 .0690 22 70.000 .0220

11 18.000 .0756 23 75.000 .0180

12 20.000 0.820 24 100.000 0.0000

Level 3 Energy Loss = 7.400 Threshold 7.397

Number Energy Cross Number Energy Cross
Section Sect ion

1 7.400 0.0000 8 14.000 .1500

2 8.000 .1800 9 20.000 .1100

3 9.000 .4100 10 25 .000 .0900

( 4 10.000 .6000 1]. 35.000 .0600

5 11.000 .6000 12 50.000 .0240

6 12.000 .2200 ~.3 70.000 .0090

7 13.000 .1800 14 100.000 0.0000

Level 4 Energy Loss = 8.400 Threshold = 8.407

Number Energy Cross Number Energy Cross
Section Section

1 8.400 0.0000 10 35.000 .2500

2 9.000 .0300 11 50.000 .1700

3 10.000 .0900 12 70.000 .1200

4 11.000 .1800 13 100.000 .0800

(
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TABLE V (CONT)

Number Energy Cross Number Energy Cross
Section Section

5 12.000 .3000 14 200.000 .0400

6 13.000 .3500 15 300.000 .0270

7 16.000 .4100 16 1000.000 .0080

8 20.000 .4100 17 2000.000 0.0000

9 25.000 .3600

Level 5 Energy Loss = 11.200 Threshold = 11.210

Number Energy Cross Number Energy Cross
Section Section

1 11.200 0.0000 8 20.000 .1300

( 2 12.000 .0500 9 25.000 .1000

3 13 .000 .2200 10 35.000 .0700

4 14.000 .4200 11 50.000 .0280 j
5 15.000 .3400 12 70.000 .0100

6 16.000 .2700 13 100.000 0.0000

7 18.000 .1900

Level 6 Energy Loss - 12.400 Threshold 12.396

Number Energy Cross Number Energy Cross
Section Section

1 12.400 0.0000 7 100.000 1.4500

2 15.000 .0650 8 200 .000 1.2000

_
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TABLE V (CONT)

Number Energy Cross Number Energy Cross
Section Section

3 20.000 .2700 9 300.000 .9200

4 30.000 .6700 10 1000.000 .4100

5 50.000 1.2500 11 2000.000 0.0000

6 70.000 1.4500

Level 7 Energy Loss 14.1400 Threshold 14.391

Number Energy Cross Number Energy Cross
Section Section

1 14.400 0.0000 7 100.000 1.8000

2 20.000 .0800 8 200.000 1.5000

3 22.000 .31400 9 300.000 1.1500

14 30.000 .7700 10 1000.000 .5100

5 50.000 1.5500

6 70.000 1.8000

C
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TABLE V I

N2 TOTAL IONIZATION CROSS SECTIONS

Energy Loss 15.500 Threshold 15.502

Number Energy Cross Number Energy Cross
Section Section

1. 0.000 0.0000 15 43.000 1.9440

2 15.500 0.0000 16 46.000 2.0880

3 16.590 .0346 17 48.000 2.1660

14 16.760 .0408 18 50.000 2.2270

5 17.110 .0513 19 54.000 2.3700

6 18.680 .1161 20 60.000 2.5300

7 20.000 .2010 21 65.000 2.6200

8 23.000 .4400 22 70.000 2.7000

( 9 25.000 .6160 23 75.000 2.7600

10 28.000 .8800 24 80.000 2.8100

11 30.000 1.0490 25 85.000 2.8500

12 34.000 1.3600 26 90.000 2.8700

13 37.000 1.5730 27 95.000 2.8900

14 40.000 1.7720 28 100.000 2.900

(
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TABLE VII

N2 MOMENTUM TRANSFER CROSS SECTIONS

Number Energy Cross Number Energy Cross
Section Section

1 6.0000 1.0000 19 2.8000 28.0100

2 .0144 2.4900 20 3.0000 21.6300

3 .0651 4.9000 21 3.3000 17.1900

4 .2260 8.2200 22 3.6000 14.6600

5 .4450 9.9500 23 4.0000 12.6200

6 1.0000 9.9800 24 4.5000 11.5200

7 1.1000 10.1400 25 6.0000 10.3000

8 1.2000 10.5100 26 10.0000 9.5100

9 1.3000 11.0000 27 15.0000 11.1000
I

10 1.4000 11.14500 28 20.0000 12.0000

11 1.5000 11.9600 29 25.0000 11.7000

12 1.6000 12.9000 30 35.0000 10.5000

13 1.7000 13.4300 31 140.0000 10.1000

14 1.8000 16.9500 32 42.0000 9.9000

15 1.9000 19.8300 33 50.0000 9.3500

16 2.0000 24.0100 34 56.0000 8.8500

17 2.2000 28.7600 35 100.000 6.5600

18 2.6000 29.8800
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TABLE VIII

PARAMETERS FOR ELECTRON IMPACT~

F~ (T) D~_exP
[_
~T_I~ )/aI~]

r r 2 T
re(T) = + (T_E

T
)2+rB

2

Qoe (T) r - (T+T B)

B(T) = B Un[(y_l)m
ec

2/Eo
]2 + B1}(

A T
r2(T) T—I.

J

Parameter Value

B 0.029
0

B1 1.035

E (ev) 8239.

53.3

115.

A1
(ev) 5000.

2.3

K 7.58 x io
.16

CAdapted from Porter, Jackman and Green.
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TABLE VIII (CONT)

Parameter Value

F5(ev
) 11.1

r 0.029
0

r (ev) 51.3B

Er
(ev ) 61.5

Ts 4.0

TA 2450.

TB 63.8

i I. f. D. C.
1

1 15.58 0.456 4.23 2.48

2 16.73 0.2 2.3 2.66

3 18.75 0.104 3.35 2.99

4 22. 0.07 200 3.50

5 23.6 0.07 200 3.76

6 40. 0.1 200 6.37

(
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TABLE IX

COM PARISON OF STOPPING POWER FORMULAS

FOR ELECTRONS

Energy (eV) from (E—l3) from (E-15)
eV/cm /molecule eV/cm/molecule

1O 3 5.l2xl0~~
5 5.45xl0~~

5

l0~ 9.55xl0~~
6 9.31xl0~~

6

l0~ l.73x10~~
6 1.60xl0~~

6

106 7,74xl0~~
7 7.15x10 ’7

io7 9.09x10 17 8.44x10 ’7

io8 1.15xl0~~
6 l.02xl0~~~

l0~ 1.39x10~~
6 1.12xJ.0~~

6

/
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for the electron avalanche of the air, were solved on a computer. The major
conclusions from calculational results are:

i’-(lt ~he ionization model adequately describes the ionization process
over a pressure range of from five Torr to 760 Torr.

- 
- 

~~~~~2) Ionization lag from the high energy secondary electrons is
unimportant.

-
~ 
(3) In many cases the one—dimensional model was found to be rs good as

the two—dimensional model.
.1

- ~ (4)r J~’he net current saturates near 15 kilo—Amperes at sea—level pressure,and saturates at lover values at lower air pressure.ç~~~~~
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