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Abstract

Two Monte Carlo studies explore the relation of the tau measure of inter-
session response variability and the stress of the corresponding multidimensional
scaling solution, thereby providing a statistical basis for evaluating the goodness-
of-fit of a spatial configuration. In the first Monte Carlo study, the stress and
tau of 105 16, and 30-point configurations in 1, 2, 3, and 4 dimensions are
shown to be linear functions of the internal error level. In the second study,
these relations are shown to be relatively invariant with respect to the particular
configurations. Three methods are proposed for establishing acceptable levels

of stress for heuristic and for constrained multidimensional scaling.
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Statistical guidelines for evaluating stress are essential for the
successful application of multidimensional scaling. For this reason, Monte
Carlo studies have been published establishing correspondences between internal
error levels and stress values (Young, 1970; Sherman, 1972; Spence & Graef, 1974;
Cohen & Jones, 1974). Unfortunately, all previous investigations have short-
comings (see Arabie, 1973): 1) inflated stress values due to local-minimum prob-
lems, 2) scaling of interpoint distances plus noise or random rank order dissimi-
larities does not guarantee recovery of the interpretation of the original configura-
tion, 3) currently there is no way to independently estimate the error level to
the distribution of stresses, and 4) all previous Monte Carlo studies concentrate
only on lTocal-minimum solutions, but scaling with constraints (Noma & Johnson, 1977)
~often produces suboptimal-stress solutions. In this paper a method around these
complications is proposed.

In section 2, it is argued that the latent configuration is best assumed
equivalent to the scaled configuration. This assumption avoids both inflated
stresses due to recovery of suboptimal solutions and the recovery of non-
representative solutions. The Monte Carlo methodology relating error to stress
and error to intersession variability is introduced in section 3. In section 4,
the results of two Monte Carlo studies are presented. Ways of applying intersession

variability to evaluate stress appear in section 5.

2. The Latent Configuration

The multidimensional scaling methodology has been applied in two ways:
1) heuristic standard multidimensional scaling searches for structures in the data;
2) constrained multidimensional scaling with constraints emphasizes hypothesis
testing. When multidimensional scaling is used as a heuristic tool, it is
customarily assumed that the algorithm constructs a configuration that approximates

a latent or "true" configuration. Also, only one scaled configuration is of




interest: the local-minimum solution. Scaling with constraints, however,

produces configurations that are often suboptimal in terms of stress level.

In addition, from a single dissimilarity set, many different configurations are
produced by varying the constraints placed on interpoint distances (Borg & Lingoes,
1978), point coordinates (Bentler & Weeks, 1978; Bloxom, 1978), or order of point
coordinates (Noma & Johnson, 1977). Each configuration may also have a stress
comparable to that of the local-minimum solution yet illuminate a different struc-
ture in the data. This means that potentially many configurations could be
representative of structure in the data. Since any one of these configurations,

or none of them, may be the latent configuration, the latent configuration is

best defined as the configuration produced by the scaling algorithm. This
simplifying assumption also allows the separation of the recovery of the original
structure and the production of the lowest attainable stress level. That is,

by dictating that the structure is perfectly recovered, the stress may be examined
alone. Also there is no possibility of suboptimal stress for a given dissimilarity

set.

3. Methodology

By equating the latent and scaled configurations, the question is, given
a configuration (C), how much noise must be added to the interpoint distances
(D) to produce a given stress (S]). That is, a matrix of interpoint distances
plus noise (denoted by Dz) is computed for a given configuration. The matrix
and the given configuration are input to a scaling program which computes a
stesss value after zero iterations.

To generate the distance plus noise matrix the procedure described by
Sherman (1972; Hefner, 1958; Ramsay, 1969) is used. Briefly, the procedure
may be summarized as follows: 1) After specifying the number ofpoints (N) and

dimensionality (d), a configuration is randomly generated in a d-dimensional

b PO




unit hypercube. 2) A number called the level of noise is computed by multiplying
a specified error level (E), times the variance of the N*d coordinates (05).
3) The elements of the dissimilarity matrix are generated by adding noise to the

Euclidean distance between all N(N-1)/2 pairs of points:

k
d. = 2
e (% = %gp + €55
2 2
where €5 ik is a random variable distributed as N(0,2cCE ). 4) From these dissimi-

larities, the stress of the latent configuration is computed:

S3 = f(C,DZ)

1
For a given number of points, dimensionality, and configuration, many simulated
dissimilarity sets at a given error level will map out a distribution of stress
values.

One measure of noise in the data to be scaled is the intersession variability.
Due to the assumed ordinal nature of the input to the multidimensional scaling
algorithm, the tau statistic (Kendall, 1962) is used as the measure of the correla-
tion between dissimilarity sets from one session to another. By averaging taus
from all pairs of dissimilarity sets one can derive the expected error level.
For instance, intersession taus near unity imply that the error level is low so
only configurations with near-zero stresses are acceptable. Configurations with
stresses outside acceptable error bounds are considered inadequate representations

of the data.

4, Results
Two Monte Carlo studies were done. The first characterizes the relationship
of error level to mean stress and mean tau for specific configurations. The '

second determines the sensitivity of the error-stress and error-tau relationships




to different configurations.

In the first, arbitrary configurations were chosen with 10, 16, and 30
points in 1, 2, 3, and 4 dimensions. For each of the 12 configurations, five
dissimilarity sets were generated at error levels increasing from E = .025 by
steps of .025. Figures 1 and 2 show typical error-tau and error-stress relation-
ships from E = .025 to E = 1.5. Note that the functions are nearly linear up
to about E = .750 before reaching asymptotes at stress = 45% and tau = 0.
These relationships seem to typify all curves produced since all regressions
using E values in the range .025 to .500 had correlations in excess of .94. Since
scaling solutions would be excluded from further analysis with stress over 45%

or intersession tau near 0, all further analysis was done for error levels from

L.

The second Monte Carlo study explores the relation of the slopes of the
error-stress and error-tau functions to the number of points, dimensionality,
and specific configurations. Fifty dissimilarity sets were generated at each
combination of 5 different random configurations at N=10, 16, 30, d=1, 2, 3, and
3 error levels (the error levels were picked to produce mean taus of approximately
.5, .75, and .9 as predicted by the regression coefficients obtained in the first
Monte Carlo study). For each of the 135 configurations, (5 x 3 x 3 x 3), means
and variances of the stress distributions were computed for the set of 50
dissimilarities. To save computation, taus were computed only between the first
15 of the 50 dissimilarity sets. Means and variances of these 105 values,
(15(15 - 1)/2), were computed for each configuration.

In accordance with the results of the first Monte Carlo study, for each
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fixed level of N and d, the error-mean stress and error-mean tau correlations
were all in excess of .98. However, the 27 analyses of variance of the stress
distributions across the five configurations for a given N, d, and error level
were all significant at p < 05. Therefore it must be concluded that the two
functions, the one relating error and mean stress and the one relating error and
mean tau, are only relatively invariant with respect to specific configurations.
Two other issues are of interest: ;he mean tau-to-mean stress relation and the
variance of the taus and stresses for a given level of tau and stress. To

HStress

estimate the slope of the tau-stress function, was computed for each

tau
of the 135 configurations. Figure 3 shows the geometric means of these values

for all combinations of N and d. The log ( “Stress ) values are then regressed on
-u
tau

Tog (N) and log (d) yielding the following equationﬁ

H
(1) ]fsress . = @ 1.5301 N,25377 ¢7.25498 y = 729
tau

Similarly, the standard deviation-to-mean ratios of tau and stress (see Figures

4 and 5) were computed as these equations:

(o]
(2) tau  _ 66718 N1.1713 r

- = ,970
" tau

(3) IStress _ o1.1278 g1, 323 r = .964
HStress
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5. Discussion

Previous techniques for statistically evaluating stress are inadequate for
a variety of reasons. Fixed criteria (Kruskal, 1964) are affected by the number
of points and the dimensionality. "Looking for the elbow" requires the existence
of such an elbow. Other Monte Carlo studies have the shortcomings of inflated
stresses due to local-minimum problems (Arabie, 1973; Spence, 1974). Evaluating
the output of constrained multidimensional scaling programs is even more difficult
since the scaled configurations are usually not a local-minimum solution. There-
fore all previous Monte Carlo studies are inappropriate since they deal only with
local-minimum solutions. Attempts to extend the Monte Carlo results by counting
the number and type of constraints also appear inadequate (see Noma & Johnson, 1977).
In this section, three different methods are proposed for establishing acceptable
bounds on stress in heuristic multidimensional scaling. The first two are also
applicable to constrained multidimensional scaling.

A11 three methods are based on comparisons of mean stress and mean tau. To
compute mean stress (§i), a single configuration (C') is produced using some average
of responses over replications in a two-way analysis or a group space from a three-
way analysis (e.g. INDSCAL - Carroll & Wish, 1974). The stresses are then computed

for each of the r replications with the same configuration:

S]i = f{C', Di) 1= 1,000

and the mean stress is computed. Mean tau (t) is computed by averaging the

taus for all pairs of replications:

Tij'-'(Dig Dj) i=]’ .-.‘r j=],...,?‘ i#j

Irn ~ ‘hod one, the tau predicts the mean stress (S}) using either equation 1

or the appropriate ratio of “Stress in Figure 3. The empirical mean stress
-u
tau




¥

(55) must fall within specified confidence bounds of S for the configuration
to be acceptable.

In method two, varying amounts of error are added to the interpoint distances
(Dz) of the scaled configuration (C') to determine an error stress curve. Assuming
this curve is linear within a reasonable range of error values, the error value

(E) for the empirical stress (§5) is derived from the regression equation. The

range of compatible taus is then easily computed using the formula (see Figure 6):
1= -1.2725E + 1 r= .987
and the variance of t is found by using equation (2).

The third method can be applied only to scaled local-minimum solutions.
In contrast to the first two methods, no assumptions are made as to the relation-
ship between the latent and the scaled configurations. One only assumes that a
latent configuration exists. Previous Monte Carlo studies (e.g. Sherman, 1972)
are first used to estimate the error level (E) given the mean stress (§i). This
error level is then used, as in method two, to determine a range of acceptable
taus.

In all three methods, stresses that are too high indicate an inadequate
configuration. In this case, an attempt should be made to scale the configuration
in a higher dimensional space. Stresses that are too low indicate a fit that is

too good and the scaling should be done in a lower dimensional space or with con-

straints.
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Figure Captions

Simulated taus for an arbitrary 16 point configuration in two dimensions.
Simulated stresses for an arbitrary 16 point configuration in two dimensions.
Mean slope of the stress-tau relationship for theimean stress and tau values
of the 135 random configurations. Lines describe the best fitting log-linear
function of N and d (see text).

The standard deviation of the tau distribution as a function of the mean tau
of the 135 random configurations.

The standard deviation of the stress distribution as a function of the mean
stress of the 135 random configurations.

Mean tau as a function of the error level for the 135 random configurations.
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