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THE HUMAN PERFORMANCE CENTER

DEPARTMENT OF PSYCHOLOGY

The Human Performance Center is a federation of research
programs whose emphasis is on man as a processor of information.
Topics under study include perception, attention, verbal learning and
behavior, short- and long-term memory, choice and decision proc-
esses, and learning and performance in simple and complex skills.
The integrating concept is the quantitative description, and theory,
of man's performance capabilities and limitations and the ways in
which these may be modified by learning, by instruction, and by task
design.

The Center issues two series of reports. A Technical Report
series includes original reports of experimental or theoretical
studies, and integrative reviews of the scientific literature. A Mem-
orandum Report series includes printed versions of papers presented
orally at scientific or professional meetings or symposia, methodo-
logical notes and documentary materials, apparatus notes, and ex-
ploratory studies.
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Abstract

One of the most crucial aspects of most multidimensional scaling
procedures is that the lowest-stress configuration is the output
produced. Unfortunately, little is known about the uniqueness of
a configuration generated from fallible data, yet this affects the
interpretation of the spatial output. It is possible, however, to
examine the uniqueness of a scaled solution by constraining the
configuration to conform to a particular psychological model. A
multidimensional scaling program, CONSCAL, which will allow the
imposition of such constraints, is proposed. .The implications of

this approach for interpreting scaling outputs and for model testing

in general are discussed.




Constrained Nonmetric Multidimensional Scaling

Multidimensional scaling algorithms yield spatial representations in which
the order of the scaled interstimulus distances matches, as closely as possible,
the order of observed interstimulus dissimilarities. In most multidimensional
scaling programs, the criterion for "as closely as possible" is the minimization
of stress or some other index of goodness-of-fit (Kruskal, 1964a). The major
goal of all scaling, however, is to reveal latent structure in data. Therefore,
interpretability of scaled configurations is the paramount consideration. By the
criterion of interpretability, a procedure that only minimizes stress may be
inadequate since a minimum-stress configuration may not be the most meaningful
or interpretable. This is especially true for nonmetric multidimensional scaling,
in which statistical guidelines are generally ad ioc.

In some instances it is possible to enhance the interpretability of a
minimum-stress configuration by systematically altering it. Though there will
often be a concomitant increase in stress, selection of the more interpretable
rather than the minimum-stress configuration may be justified.

We propose a method for nonmetric multidimensional scaling called CONSCAL,
which constrains a configuration to satisfy a prespecified interpretation. This
permits a comparison of the stress value obtained in this way with the minimum
stress value (obtained by an unconstrained scaling). Such a comparison provides

some indication of how well the prespecified interpretation characterizes the data.

Constrained Multidimensional Scaling (CONSCAL)

Interpreting each dimension of a multidimensional configuration is
conventionally done by comparing the obtained ordering of stimuli along that
dimension to unidimensional scale values for those stimuli. These theoretically-

or experimentally-derived scale values may also be used to constrain the
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configuration. This is important, since a configuration satisfies an interpre-
tation whenever the ordering along a dimension exactly matches the accompanying
scale values. Therefore, when the coordinates of the points are constrained, an
interpretation is forced upon a configuration. In CONSCAL, the coordinates may
be constrained in a specified order along one or more dimensions. Al1 configura-
tions satisfying these constraints are called feasible solutions.

One way to constrain a solution is by using arn external penalty function.
In this method, an iterative stress-minimizing procedure may initially generate
a non-feasible configuration. This minimum-stress configuration, however, will
be assessed a penalty so that a feasible configuration will tend to be generated
in the next iteration.

CONSCAL uses an alternative approach. A non-feasible configuration may be
generated during an iteration, but unlike the penalty function method, the
coordinates of points in the configuration, X, are altered to form a feasible
solution before the next iteration. The procedure can be implemented by modifying
an iterative multidimensional scaling program, such as KYST or MDSCAL (Kruskal,
1964a), to use a two-step procedure: 1) a method such as the gradient method
(Jacoby, Kowalik, & Pizzo, 1972) moves the points into a lower-stress configura-
tion, and 2) points are moved to conform to the ordering constraints. The two
steps alternate in each iteration until there is no improvement in stress, only
alternation between two configurations - one produced by each half of the
procedure.

There are many feasible configurations, so it is necessary to specify a
function from a non-feasible coordinate matrix, X, to a feasible coordinate
matrix, X'. We use a function mapping X into the feasible X' that minimizes the
sums of the squared distances from X. This is equivalent to finding X'ik
coordinate values that minimize

s 2
L (X=X 5)

i=1




for all dimensions k. An algorithm developed by Kruskal (1964b, p. 128; see
also van Eeden, 1957; Bartholomew, 1959; Miles, 1961) is used in step two to
move the Xlikls into a specified order (one producing a feasible X').

Kruskal's monotone regression, as applied to interpoint distances, has two
options for resolving ties, known as the primary and secondary approaches. In
the primary approach, tied inter-item dissimilarities need not result in equal
interpoint distances, while in the secondary approach, equal dissimilarities
must result in equal interpoint distances. In CONSCAL, these two options are
also available when specifying the monotone order of projection onto the axes:
the primary approach is called weak dimensional monotonicity, and the secondary
approach is called semi-strong dimensional monotonicity. In both, if the coordinates
xik on a dimension k are constrained by scale value Ci» then the following is
required:

ifc; > Cys then X. > X5k
Weak dimensional monotonicity makes no additional requirements (note that C;
= cj does not restrict the ranks of xij and Xjk)' Semi-strong dimensional
monotonicity makes the stricter requirement that:

if c; = Cyo then xij = Xjk’
Semi-strong dimensional monotonicity is usually used for scaling stimuli in a
factorial experimental design, since all tied values of the independent variables
used to create the factorial design are usually assumed to have the same coordinate
values. However, when hypothesized psychological variables specify the order of
projection onto the axes, weak dimensional monotonicity should usually be used.
(For example, when two stimuli elicit category estimates of 6 on a 1-to-10 scale,
there is little reason to believe that they are psychologically equivalent.)

The CONSCAL program also permits the testing of one nonlinear-constraint

model in particular - a radex model. In this model (Levy & Guttman, 1975), the

relative location of each point is constrained according to ordered distance
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from an origin and ordered anguiar displacement from an arbitrary vector starting
at the origin. Since there are two relevant rank orders that locate each point
in a polar coordinate two-dimensional subspace, the CONSCAL program uses the

Kruskal monotone regression on both orders to obtain a feasible configuration.

An Application: Multidimensional Scaling of Ellipses

The following examples come from a study of the interactions among dimensions
of stimulus variation in the perception of ellipses (for a theoretical discussion
see Pachella, Somers, and Hardzinski, in press). We were interested in the
ability of the following dimension pairs to characterize the judged similarities:
physical area and physical eccentricity, judged area and judged eccentricity, or
judged Tength of major and minor axes.

A factorial design with four équa]]y spaced levels of area crossed wi:th four
equally spaced levels of eccentricity was employed in constructing the stimuli.
The area of the largest ellipse was in a 3:1 ratio to the smallest, and the
eccentricity of the most eccentric was in a 1.66:1 ratio to the least eccentric.2
Black-on-white slides were made of these sixteen ellipses. All ellipses were
presented with major axis horizontal.

Four subjects made dissimilarity judgments on a 10-point category scaie for
all possible pairs of ellipses. The entire set was presented three times, in a
different random order each time, and the judgments were averaged for each sub-
ject. In another session, subjects made category estimates, on the same 1-10
scale, of the following properties of each ellipse: area, eccentricity, length
of major axis, and length of minor axis. The order of these four tasks varied
among subjects. Six judgments were made of the four properties for each of the
16 ellipses (384 judgments total), and the judgments were averaged for each
subject in each task.

Unconstrained multidimensional scaling of the dissimilarity judgments showed
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Figure 1.
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Dimensional interpretation of unconstrained MDS plot, subject RR.
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Figure 2.

AREA

Deminsional interpretation of unconstrained MDS plot, subject JL.
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Figure 3. Dimensional interpretation of unconstrained MDS plot, subject TM.
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Figure 4.

AREA

Dimensional interpretation of unconstrained MDS plot, subject DT.
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Figure 5. Confirmatory MDS plot;

RR. Semi-strong monotonicity:

of judged area and judged eccentricity.
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PHYSICAL AREA

Figure 6. Confirmatory MDS plot; JL.

physical area and physical eccentricity.
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PHYSICAL AREA

Figure 7. Confirmatory MDS plot; JL. Semi-strong monotonicity:

of physical area and physical eccentricity.
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JUDGED MINOR AXIS

Figure 8. Confirmatory MDS plot; TM.

of judged major and judged minor axes.
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JUDGED MAJOR AXIS

JUDGED MINOR AXIS

Figure 9. Confirmatory MDS plot; RR. Semi-strong monotonicity: dimensions

of judged major and judged monor axes.
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Figure 10. Confirmatory MDS plot; RR. Semi-strong monotonicity, with respect

to dimension of physical eccentricity only.
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Table 1

Stress Values for Configurations with and
without Constraints, for Four Subjects

A
Confirmatory DT RR JL ™
A. Unconstrained .131 .056 .087 .070
B. Weak Physical Area .136 .058 .089 .074

Physical Eccentricity

C. Semi-Strong Physical Area .155 .095 .109 .096
Physical Eccentricity

D. Weak Psychological Area .163 .072 .093 .082
Psychological Eccentricity

E. Semi-Strong Psychological Area .174 .076 .100 .085
Psychological Eccentricity

F. Weak Psychological Major Axis .167 .186 .107 .089
Psychological Minor Axis

G. Semi-Strong Psychological Major Axis .174 .218 113 .090
Psychological Minor Axis ‘

H. Semi-Strong Physical Eccentricity .145 .081 .096 .079
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generally good fits for all four of the subjects in two-dimensional Euclidean
space. One configuration (subject DT) had a stress of .131 and the other
subjects' configurations had stresses ranging from .056 to .087. We were
reasonably confident that local minimum problems were being avoided because
starts from either random or "hypothesized best fit" (area by eccentricity
factorial design) configurations resulted in virtually identical stress values
and configurations. For two subjects, a third dimension was added, but this made
little difference in stress, and the extra dimension was uninterpretable.

In all four cases, c1e5r1y interpretable dimensions of area and eccentricity
were present. There were a few minor deviations from the hypothesized orderings
along the dimensions, as can be seen in Figures 1-4, and one major reversal of
area levels within the smallest eccentricity level in the highest-stress
configuration (DT, Figure 4). One question that cannot be answered using

traditional stress-minimizing techniques is, how meaningful are such reversals?

Are they merely noise, or does the subject actually have some anomaly in his or
her cognitive structure? One way we can try to answer this is to use a con-
strained multidimensional scaling analysis.

As can be seen in Table 1, constraining the configuration to fit the
factorial design according to which the stimuli were constructed causes increases

in stress from about .02-.04 for each subject, indicating that this model does

reasonably well for all four subjects. In fact, the configuration with the major
reversal (DT, Figure 4) shows the second-lowest increase in stress--only .026.
Even without a statistical analysis, this would seem to indicate that even though

her deviations from the model appeared to be more systematic than those of the
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other subjects, they seem to be no more important.

Comparing judged area and judged eccentricity with physical area and physical
eccentricity produced little difference in either stress values (see Table 1) or
configurations (see Figures 5 and 6). One would naturally expect the factorial
design, with strong monotonicity (see Figure 7), to produce higher stress than
any of the other models because of the large number of ties which must be
satisfied. These results indicate two things: (1) subjects' scaling of area
and eccentricity are reasonably veridical (which is not particularly surprising),
and (2) models based upon dimensional combinations of physical versus judged
area and eccentricity are for the most part interchangeable, with preference
perhaps going for the factorial design model because of its greater simplicity.

Comparing judged area-eccentricity to judged major axis-minor axis models
proved more interesting. For three of the subjects, the area-eccentricity and
major axis-minor axis models were approximately equivalent in terms of stress,
and produced highly similar configurations (compare Figures 3 and 8, for example).
However, for one subject, there was a dramatic difference in stress between area-
eccentricity and major axis-minor axis configurations. For RR, at least, even
though the two models are physically equivalent, they are not psychologically
equivalent (compare Figures 5 and 9). This comparison also shows that there can
be dramatic individual differences between subjects regarding the applicability
of certain models even though the configurations may appear quite similar.

Using confirmatory multidimensional scaling, it is also possible to constrain
only a subset of the dimensions. This might be especially helpful if one has
strong hypotheses only about some of the dimensions a subject is expected to use,
but not about all of them. For example, in Figure 10, eccentricity, but not area,

is constrained.
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Discussion
There is no universally accepted procedure for statistically evaluating the
stress value of a configuration produced by an unconstrained multidimensional
scaling algorithm. The problem of evaluating the difference in stress between
constrained and unconstrained configurations is even more complicated. Young
(1970) has suggested a degrees-of-freedom approach. Using Young's terminology,
in the unconstrained muitidimensional scaling of N points in a space of d
dimensions, there are N(N-1)/2 degrees of freedom of the dissimilarities and
d(N-1)-[d(d-1)/2] degrees of freedom of the coordinates. Young demonstrates that
in general, the stress increases with either increases in the degrees of freedom
of the dissimilarities (number of points) or decreases in the number of degrees
of freedom of the coordinates.
In certain cases, such as that of semi-strong dimensional monotonicity with
a factorial design, the degrees of freedom of the coordinates are drastically
decreased. For instance, in a four-by-four factorial experimental design, there
are 120, or 16(16-1)/2, degrees of freedom of the dissimilarities. In an un-
"~ constrained multidimensional scaling of the points in two dimensions there are
29, or 2(16-1)-[2(2-1)/2), degrees of freedom of the coordinates. By contrast, a
constrained multidimensional scaling in a two-dimensional four-by-four design
using semi-strong dimensional monotonicity has only 5, or 2(4-1)-[2(2-1)/2],
degrees of freedom of the coordinates. Extending Young's analysis, it might be
expected that the stress in the constrained analysis should be much higher than
that of the unconstrained solution. However, in our analysis of three of the
four subjects we found no large differences in stress when comparing unconstrained
and constrained analyses. This seems to imply that the factorial design is the
best representation of the data.
There are several reasons why the above approach is inadequate. One problem

is that the ordinal-scale assumption of the dissimilarities does not lend itself
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to a degrees-of-freedom analysis. Another is that we lack prior knowledge of

the number of parameters needed to characterize a constrained solution. It is
also unclear how weak dimensional monotonicity and nonf--torial designs could be
interpreted in 1ight of a degrees-of-freedom analysis. A further problem is that
there are no adequate statistics for evaluating stress for constrained, or un-
constrained, multidimensional scaling outputs. This, of course, is a problem

for multidimensional scaling in general.

Such difficulties notwithstanding, constrained multidimensional scaling
offers unique advantages in its new approach to interpretation. Some such
advantages can be seen by comparing and contrasting other interpretation methods
with constrained scaling. Of particular interest in this context are other
methods for fixing vectors through the space, such as principal components
analyses, regression methods, and some methods for drawing cross-configuration
comparisons. These interpretation methods fix vectors through the space with an
accompanying goodness-of-fit measure after a multidimensional scaling algorithm
fixes points in a space and computes the stress. (For a broader discussion of
alternative interpretation methods, see Noma and Johnson, 1977).

An example of a method for comparing configurations is PINDIS (Lingoes &
Borg, 1978), which fixes axes through a space by combining configurations across
subjects. The PINDIS method optimizes two goodness-of-fit criteria - one within
each individually scaled configuration (stress), and another across configurations.
Such a method is potentially susceptible to tradeoffs between these two criteria.
The validity of approaches in which one or more configurations are compared may
also be questioned because there might be slight modifications of each configura-
tion that would produce vastly different goodness-of-fit measures across
configurations, and change the group space.

Both principal components analysis (see Napior, 1972) and regression of

independent variables onto the point coordinates (see Chipman and Carey, 1975)

o cosmmmn s icmeans e
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locate vectors in a fixed space. In both, there are two goodness-of-fit measures
optimized by the scaling methods. The multidimensional scaling algorithm
minimizes stress, while the Principal components and regression methods maximize
explained variance. There may be a tradeoff between these two optimization
criteria. A configuration with higher than minimal stress may give rise to a
better-fitting vector through the space. Alternatively, using a lower-stress
configuration in a higher dimensionality might change the fit of the vector. :
CONSCAL resolves these tradeoff problems by perfectly fitting the vector through
space before constructing the configuration.

One other method for testing an interpretation of a configuration may be
the Krantz and Tversky (1975) axiomatic tests incorporating an error theory.
Such tests set 1limits on the number of axiom violations acceptable, given a model
of random errors. Constrained scaling may also have an advantage over such
axiomatic tests in that estimates can be made of the "importance" of violations
of the axioms. In other words, some violations of the necessary axioms may be
of little psychological interest, since they are an artifact of a particular
experimental paradigm. If a subject, for instance, rank orders the inter-stimulus
dissimilarities, he may use an arbitrary rule to break ties. However, a measure-
ment theoretic analysis of such data may result in interpreting this bias as an
important psychological effect. Scaling these data with a constrained multi-
dimensional scaling shows these anomalies to be unimportant, as they contribute
little to the stress.

Using constrained scaling, models of the psychclogical attributes determining
a set of responses may be developed and tested by first scaling the dissimilarity
measures using an unconstrained multidimensional scaling method. From this out-
put configuration, and from theoretical arguments, possible interpretations can
then be formulated. By applying constrained muitidimensional scaling, the rela-

tive validity of each interpretation may be assayed.
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Despite its shortcomings, CONSCAL offers a different approach to multi-
dimensional scaling by emphasizing the testing and comparing of interpretations.
} By permitting a hypothesis-testing approach, CONSCAL may provide strong support
L for a particular interpretation of spatially scaled data since it is not vulnerable

to stress-interpretability tradeoff problems. In contrast, conventional multi-
dimensional scaling approaches are exploratory and provide weaker support for
specific interpretations. In summary, CONSCAL determines how the goodness-of-fit

measure is affected when a given model is satisfied, rather than determining how

closely the scaled output resembles a hypothesized space.
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Footnotes

1This research was supported by the Office of Naval Research, Department

of Defense, under Contract No. N0O014-76-0648 with the Human Performance Center,

Department of Psychology, University of Michigan. The senior author was

supported by a training grant from NIGMS (GM-01231) to the University of

Michigan.
2area = NI-major-minor
 ————
eccentricity = minor 2
~/mnor
major

The area levels were (in arbitrary units): .3, .5, .7, .9.

The eccentricity levels were: .600, .940, .986, .995.
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