
-~~—~~~—-— — . -~~~~~~~
-

~
,

EVEL~~~Ø~

L..

UNWERSITY OF MARYLAND
COMPUTER SCIENCE CENTER D D C

COLLEGE PARK, MARYLAND 1~~~~~~Effzi1
20742 In~ 

JUL 24 1919 J ~[thsT*ZRUTION 8TATE!~ENT A UU~ UD~L~ 11 [~LJ
Appmved fox public r.I.as.

Distrfbutjo~ Unli~ijted

~9 07 23 194



~-~~~~~~~~~~~~~~~~ -——---r~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /
6C- 0138

~~~~ EL?~XATION PPLIED TO MATCHIN~~L
~~~~~ITATIVE RELATIONAL STRUCTU RES

J
~~~~~ s itche~1

Compu er c~ ence Center
University of Maryland
College Park, MD 20742

ABSTRACT

A relaxation process is applied to the problem 
~\ 

/
of matching relational structures involving numeric \ /
quantities. The method is empirically shown to be
very sensitive to the exact form of the updating
rule used. However, with the proper updating rule,
the method works well, and is remarkably tolerant of
measurement errors.
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1. Introduction

This paper addresses the following problem: Suppose we

have a description of a certain object in terms of its parts ,

their properties , and the relations between them. Now suppose

we are given a description of some part of the real world in f
terms of these same properties and relations. How can we

determine whether an instance of this object actually occurs

in the given part of the world? A good example is the inter-

pretation of visual images. We may describe a house, for

example, in terms of its parts (roof, walls, windows, doors),

their properties (such as shape, orientation, color and

texture), and the spatial relations between them (roof above

walls, windows surrounded by walls, etc.). Given a visual

scene, we may segment its image into regions, and describe the

scene in terms of these regions, their properties and their

relations. We may now ask the question, Is there a house in

this scene? That is, are there regions in the scene which look

like roofs, walls, windows etc., and are those regions in the

proper spatial relationships to form a house?

A previous paper (Kitchen 1978) has dealt with descriptions

using properties and relations that must either be wholly true

or wholly false. However, these are not fully adequate for

describing real-world objects, so we are led to consider prop-

erties and relations which can take on numeric values, and

along with this, we must be prepared to deal with errors in

k—- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - --~—~~~-- -
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such values, permitting “approximate instances of a description

of an object. The next section provides a formalism for such
wquantitative~ properties and relations, and indicates how
relaxation methods can be applied to matching descriptions in

these terms. The third section contains an empirical study of

the effectiveness of these methods, while the fourth discusses

the results of this study and ways in which relaxation methods

can be further extended.
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2. Definitions and Description of Method

The following provides a formal notation for descriptions

of an object (or a scene) in terms of its parts, their prop—

erties, and the relations between them.

Definition

A quantitative relational structure is a triple <X ,$,~p >

whose components are as follows:

X is a finite set, called the carrier of the relational

structure. The elements of X are called nodes, and cor-

respond to the atomic parts of an object which are used

in its description.

~ is a finite set of quantities. Each quantity in • has

associated with it a pair of positive integers, called

respectively its order and dimensionality, indicated by

superscripts in parentheses. Thus Q(m? t)~~ in~’icates that

Q is a quantity in ~ with order m and dimensionality n.

For example , a quantity corresponding to the ordinary

Cartesian coordinates of a point would have order 1 and

dimensionality 2, since it assigns to single points pairs

of numbers. On the other hand, a quantity corresponding

to the ordinary Euclidean distance between points would be

of order 2 and dimensionality 1, since it assigns a single

number to each pair of points.

~F is a mapping that associates with each Q
(m~n)(4~ a partial
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function from ’X’~ to R~, where R is the set of real numbers.

Thus q~ determines exactly which m-tuples of nodes have

values associated with them by quantity Q, and what these

values are.

Let Q(m~1~~(,, and X li X 2 t • • ~~~
Xm~ X • By way of notation we write

Q(m~
n)(X ,X , X )  to indicate the value of ~(Q (m~n)) at

(Xl,X2~ •••~
Xm)t provided the function is defined at this point .

Following the usual convention, when no confusion can arise , a

quantitative relational structure will be denoted merely by

the name of its carrier.

Below, the symbol M will normally be used to denote a quan-

titative relational structure thought of as a model , that is,

a description of a certain object in terms of its parts and

their properties. Similarly , the symbol W will normally be

used to denote a quantitative relational structure which des-

cribes some part of the world.

In order to find an instance of an object in some part of

the world, it is necessary to match up the parts of the object

with the corresponding pieces in the world. However, because

of errors and uncertainties in measurements , we must be pre-

pared to assign different degrees of confidence to different

pairings of model parts with world parts. It therefore becomes

necessary to introduce the notions of fuzzy truth and fuzzy

logic. In ordinary logic, a given proposition can be assigned

one of two truth-values: it can be either “true” or “false”. 
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The usual logical connectives such as “and” and “or ” can be

thought of as truth—functions which take as arguments either

“true” or “false”, and return either “true” or “false” as

results, according to the truth-table for each. In the most

common treatment of fuzzy logic, a given proposition can have

assigned to it a real number in the range zero to one, reflect-

ing the degree of truth in that proposition . Similarly, the

truth-functions are extended to take real-valued arguments and

produce real—valued results. Suitable extensions of the “and”

function are xy or mm {x,y} for arguments x and y. For the

“or” function we can use max{x,y} or l- (l-x) (l-y) . For a more

detailed treatment the reader is referred to zadeh (1965).

Definition

Let M and W be quantitative relational structures. An

assignment of M to W (the order being material) is a function

which assigns to every pair (x ,y)~ MxW a real number in the

range zero to one. Thus an assignment indicates the degree of

confidence we have in each pairing of model node with world

node.

Definition

Let M and W be quantitative relational structures. Let

Q(m.n) be a quantity . Then the goodness of fit function for

Q, written YQI is a function YQ:R
l
~XR

h1
~ EO ,l). If u~R~ is a

value of Q in M , and v€R’~ a value of Q in W , then YQ(U~V)
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measures how closely u and v agree, with 1.0 indicating

perfect agreement, and 0.0 indicating no agreement whatsoever.

Clearly , the choice of YQ is determined by our tolerance for

measurement errors. A suitable form for is:

YQ(u,v ) 
_ l

l+
i~ 1 / (u ~~v1) 2

‘~~
si

where Uj  and ~~ represent the ith components of u and v

respectively, and s1,s2,...,s~ are scaling parameters associ-

ated with Q. This form of the goodness of fit function will

be the only one used in this paper. It has a peak of 1.0 when

u and v are exactly equal, and falls off towards zero as u and

v move apart.

Definition

Let N and W be quantitative relational structures with

quantities •, and let A be an assignment of M to W. Let

xEM and yEW. Then the local compatibility of x with y, with

respect to A , C(x,y,A) is given by

X l~ X 2~~• • • ~~Xm tM y1sy 2s...~~y~~~W 
~~~~~~~~~~~~~~~~~~~~~~

such that
such that y~ y~ for some j
x~x1 for some i Q(yi,...,ym)~

v

I,’

‘1

___ —••~~--~~~~~ - - — - - — - -~ ---~~ ‘~~~~~ • -~~-~~--.- -- •—- •-
~~~
- ‘- - --

~~
- - —



where fl and Li stand for the operations of fuzzy logical “and”

and fuzzy logical “or ” respectively. While this formula may

seem rather daunting at first sight, it falls naturally i.~ to

three parts, each of which has a rather simple justification .

• The innermost part

(l~Q~~
A(xk~

yk))flyQ(u,v)

captures the following notion: Suppose we have two instances

of a quantity, Q(X
i~~• • • I

X
m
)
~~
U and Q(Yi~ •••IY m)~ V• Then these

two instances can only be considered “compatible” if their

numeric values match (hence the terms YQ (ulv)) and the assign-

ment permits all the pairings (XiPY i)f (X 2tY 2)i~~ •i (Xm sYm)

(hence the term

Moving outwards, the fuzzy logical “or” U, embodies the

following: Suppose we have an instance of a quantity Q(x1 .  . ,x~ )

which mentions x. Then in order for x to be “compatible” with

y, there must be in the world a corresponding instance

which mentions y, and which is “compatible” in

the sense of the previous paragraph.

Lastly , the outermost fuzzy logical “and” 11, ensures that

this “compatibility” is satisfied for every quantity instance

in the model which mentions x.

Note that there is a different local compatibility function

for each choice of fuzzy logical truth functions. 

~~~~~~~ - - ~~~~- -~~~~~~~~~~~~~~~~ -— --~~~~~
.--~~~~~--
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3. Relaxation

With the above ground-work , we can define a relaxation

scheme which generates a sequence A0,A 1,A2,... of assignments

between two quantitative relational structures M and W,

using the following recurrence :

A0(x,y) = 1.0 for  al l  x~ M , yt W

A1(x,y) C(x,y,A1_ 1 ) for all xtM , ytW , i>O.

That is, we set up an initial assignment A
0
, which permits

all pairings of model nodes with world nodes. Then we use

the local compatibility of each pair to generate a new assign—

ment. This process can be repeated. for a fixed number of steps,

or unti,1 the sequence of assignments converges in some suitable

sense . In fact , if we use maximum as a fuzzy logical “or” ,

and minimum as a fuzzy logical “and” in the local compatibility

function , and provided we assume that goodness of fit functions

are always greater than zero, then we can prove these two

results as generalizations of those in Kitchen (1978):

(1) There exists i such that Aj~Ak for all k>j.
(2) If we treat the M and W as discrete relational

- : structures (that is, we ignore the values of quant-

ities and regard them as discrete predicates) then

the relation R={(x ,y)fA
3
(x,y)>0} can be considered as

a discrete assignment from M to W which contains all

monomorphisms (structure preserving mappings) from M

to W.
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These results follow easily from those in Kitchen (1978)

when it is realized that local compatibility is the fuzzy

analog of the notion weak local consistency defined therein.

Under conditions other than those stated above, no such re-

suits can be simply proved, and the experimental results

described below suggest that no such results in fact hold.

—a.4
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4. Implementation and Empirical Resul ts

A compute r program was written in the programming

language Pascal to implement the above relaxation scheme.

However , two small changes were made . Firstly, the goodness

of f i t  funct ions  were modified to return zero if any term

in the summation were greater  than a cer ta in  bound . This was

• necessary to prevent arithmetic overflow when comparing widely

disparate quant i ty  va lue s .  In the experiments  described here ,

this bound was set at 100. The other modification permitted

the program to omit from further processing any pairing whose

assignment value had fallen below a certain threshold . This

saved computer time by avoiding re-computation for pairings

with so little support that they could be disregarded . The

threshold used here was l0 6. In several trials , the use of

such a threshold had a negligible effect on the course of the

relaxa tion , but often reduced co~nputation time by a factor of

two or three.

Several experiments were run to investigate the behavior

of the relaxation under various conditions. This section

• describes what was common to all experiments

All the experiments used as a world a quantitative rela-

tional structure describing 44 cities of the eastern United

States in terms of their populations and the road mileages

between them. Thus “popula tion ” was a quantity of order 1
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and dimensionality 1. which was defined at every city,

taking values between 0 and 7,605, 000. The scaling parameter

~l 
in its goodness of fit function was 10,000. “Distance”

was a quantity of order 2 and dimensionality 1, defined for

every pair of cities with a direct road route between them. 
• 

-

It took values between 37 and 387 , and had a scaling parameter

of 10. The data were drawn from the Rand-McNally 1976 Road

Atlas.

Models of various sizes were generated by randomly select-

ing compact, connected groups of cities, and then including

all populations of these cities and all direct distances be-

tween them. A perturbation of size d (say) could be introduced

into a model by the following method . For every quantity

value in the model, generate a random number uniformly dis-

tributed in the range [-d,+d], multiply it by the scaling para-

meter appropriate to that quantity , and add it to the quantity ’s

• value. Thus, a perturbation of size 10 would lead to an average

deviation of 50 miles in distance measurements , which is

roughly a 25% relative error. This feature permits investi-

• gation of how well the relaxation copes with errors in meas-

urement.

The first experiment tried various forms of the local

• compatibility function under increasing perturbations of the

models used. The different forms were as follows:
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Form 1: maximum for fuzzy logical “or ”

minimum for fuzzy logical “and”

Form 2: maximum for fuzzy logical “or ”

product for fuzzy logical “and”

Form 3: complemented-product for fuzzy logical “or ”

product for fuzzy logical “and”

The complemented-product has the formula

1—Cl-a ) (1—b) for real arguments a and b.

Three other forms (4 ,5, and 6) of the local compatibility

function were used. These corresponded to forms 1, 2 and 3,

except that the outermost application of the fuzzy logical

“and” in the local compatibility function was replaced by an 
I -

arithmetic mean. Roughly speaking , these forms of the local

compatibility function would be prepared to accept evidence

that looks good on average, ra ther than insist that all evi-

dence be found .

Two measurements were used to gauge the effectiveness of

the relaxation . The f i rst is called the “truth-value difference”.

In any assignment, there will be some pa ir ings which are cor-

rect, and many pairings which are incorrect.. Ideally , all

• I correct pairings should receive the value one, all incorrect

pairings zero. This ideal situation will not always occur ,

but a good measure of how well an assignment separates correct

pairings from incorrect pairings can be obtained by taking

the average truth-value assigned to correct pa i r i ng s , and

• —- • • • - • • •-• --_
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subtracting from it the average truth-value of incorrect

pairings. However, since we are interested in the separ-

ation of good pairings from bad , and not absolute truth

values, the values used for computing the averages were not

the raw truth-values of the assignment; instead they

were linearly scaled by division by the largest truth-value

in the assignment . This also permitted a more equitable comp-

arison across the different  forms of local compatibility ,

since all the truth-values were standardized. Note that this

normalization occurs only when actually computing the truth-

value difference; the assignment used for the relaxation was

in no way altered. In the best case the truth-value difference

will have value 1.0, at very worst it could be -1.0, however

in the normal worst case it would take a value very close to

zero, indicating that the assignment makes no significant

distinction between correct and incorrect pairings.

The othi r measurement used was called “good separation ”.

An assignment is said to have good separation when the correct

pairings have higher truth value than any incorrect pairing .

Since good separation is either present ~r absent, it cannot

distinguish between those assignments which only just fail to

have good separation and those which fail miserably . However

it captures the important desideratum that the correct pairing

of model with world can be found merely by selecting the best.

pairs in the assignment.

• - --- •--~~
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For each form of the local compatibility function , f our

randomly generated models of size 5 were used, and these

models were perturbed by amounts 0 through 5, and 10. The

relaxation process was run for five iterations , and measure-

• ments made on the final assignment. Figure 1 shows the average

truth-value difference over the four models, while Figure 2

shows the number of models (out of the four) which exhibited

good separation. The same series of random models and per-

turbations was used for each form of the local compatibility

function , so that the results are comparable across the table

(in each row, all six forms were applied to the very same

matching problems). Figures 3, 4 and 5 apply only to form 1

of the local compatibil ity func tion , the best behaved of the

• six tried.

F~.gure 3 is derived from the same experiment as Figures

1 and 2. It shows the average truth-value difference at the

end of each iteration. (The rightmost column of Figure 3 is

identical with the lef tmost column of Figure 1.) Each row of

Figure 3 gives some idea of the convergence behavior of the

relaxation process.

Figures 4 and 5 demonstrate the effect of changing the

model size. For each of three sizes 5, 7, and 10, four models

were generated of that size. Each model was perturbed by

various amounts. Five iterations of the relaxation process
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were applied , and measurements were taken on the f inal

assignment. Figure 4 shows the truth-value differences

(averaged over the four models). Figure 5 shows the number

of models (out of four) which exhibited good separation.

(The leftmost column of Figure 4 is identical with that of

Figure 1; similarly for Figures 5 and 2.)

1 

-
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5. Discussion of Results and Extensions

One of the most striking things about the results shown

in Figures 1 and 2 is that the ability of the relaxation

process to tolerate noise depends ver y much on the particular

form used for the local compatibility function . Those forms

which use multiplication as a fuzzy logical “and” seem to fare

the’ worst. While remarkable at first sight , this behavior

has a rather simple explanation, which is best illustrated

by an example: Suppose we combine three truth-values: 0.1,

0.1 and ~, whe re cz~ O.l. The minimum of these three numbers

will reflect directly any changes in ~~; while with the product,

any changes in z will be attenuated by a factor of 0.lx0.l=0.0l.

Thus , the use of multiplication will not produce such a good

separation of truth-values in an assignment, even when a linear

rescaling is done. In practice it is observed that while the

truth values of incorrect pairings are reduced quickly to zero ,

the truth values of pairings without perfect support (but

which are nonetheless almost correct) are also reduced very

quickly to zero. However, when using minimum as a fuzzy logi-

cal “and ” , a pairing without perfect support is reduced to a

non-zero level which reflects the strength of its weakest sup-

port , and stabilizes at that level. Thus multiplication works

badly because it too readily throws out pairings which should

have been retained.
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On the other hand, the use of an average at the outer-

most level of the local compatibility function does not work

as well as the use of a minimum there , because the relaxation

then holds onto incorrect pairings which should have been

discarded. It does this because some incorrect pairings may

have generally good support, and only fail in one or two

respects. To an average such pairs would look good, while a

minimum would reject them. Note however that these remarks

apply only to the experiments described above, where “noise ”

was introduced into a model by perturbing the values of quan-

tities without otherwise altering the structure. It is also

possible to introduce “noise” by deleting nodes and quantity

instances from the world. In visual terms, this corresponds

to identifying an object, parts of which may be obscured or

otherwise invisible. For this type of problem , the averaging

of evidence may very well be the better method , as is suggested

• by the work of Ranade and Rosenfeld (1978).

• Barrow and Tenenbaum (1976) in their paper about MSYS remark

that the particular choice of fuzzy logic functions seems not

to have much effect on the relaxation. The different behavior

observed here can probably be attributed to the fact that

these experiments deal with larger matching problems, and with

apparently larger perturbations than theirs.

In Figure 3 we see the improvement in the separation in the

assignment. Not only does perturbation of the model degrade
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the result at a given i teration, but it also increases the

number of iterations required to reach convergence .

Figures 4 and 5 show that the size of the model has

little ef fec t  on how good an answer the relaxation produces.

It should be remarked in passing that the computation time

varies in a roughly linear fashion with the size of the model.

This is because the computation associated with each model node

on a given iteration is fixed , depending only on the quantity

instances which explicit ly mention that node ; while the

number of i terations required for convergence seems unaffected

by model size.

Relational structures can be extended in many ways to make

them more useful  tools. Some of these have already been

mentioned (Kitchen 1978). However , one rather simple extension

to quantitative relational structures would seem to be quite

• powerful. First of all , instead of having a general goodness

of f i t  function for a quantity , we should permit a d i f ferent

goodness of f i t  function for each instance of a property in

a model. By this means we could enforce a tighter match to

more critical parts of a model , while easing the constraints

on less critical parts . We could then make queries like “Find

a city with exactly 68 ,000 people about 100 miles from another

city with a population of roughly 100,000.” Furthermore , there

is no need for goodness of f i t  functions to be symmetric with

L -
~~~~~
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respect to deviations above and below the ideal. Using

asyrmnetric functions we could pose problems such as “Find a

- town with population about 10,000 which is less than 100 miles

from a city of at least 500,000 people.”

Even without such embellishments, relaxation seems to be

a very useful method for matching quantitative relational

structures under distortion. With the use of a well-behaved

local compatibility function, the method is remarkably tolerant

of measurement errors.
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Form of local compatibility
Perturbation 1. 2 3 4 5 6

O 1.00 1.00 1.00 0.94 0.98 0.98

1 1.00 0.00 0.00 0.86 0.51 0.63

2 1.00 0.00 0.00 0.70 0.31 0 .40

3 0.99 0.00 0.00 0.60 0.13 0.17

4 0.99 0.00 0.00 0.54 0.14 0.16

5 0.99 0.00 0.00 0.40 0.1]. 0.15

10 0.90 0.00 0.00 0 .23 0 .02 0.02

Figure 1. Truth-value difference for different  forms
of local compatibility

Form of local compatibility
Perturbation ]. 2 3 4 5 6

0 4 4 4 4 4 4

• 1 4 0 0 4 1 1

2 4 0 0 1 0 1

3 4 0 0 0 0 0
-

- 

4 4 0 0 0 0 0

5 4 0 0 0 0 0

10 0 0 0 0 0 0

Figure 2. Good separation for different forms of local
compatibility
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Iterations
Perturbation 1 2 3 4 5

0 0 .98  1.00 1. 00 1.00 1.00

1 0 .79  0 .95  1.00 1.00 1.00

2 0.57 0.78 0 .94  1.00 1.00

3 0.33 0.72 0.96 0.99 0.99

4 0 .32  0 .73  0 .92  0.99 0 .99

5 0 . 2 3  0 .83  0 .98  0 .99  0 .99

10 0.10 0.53 0 .86  0 .86  0 .90

Figure 3. Truth-value difference for form 1, by iteration

Model size

Perturbation 5 7 10

0 1.00 1.00 1.00

1 1.00 1.00 1.00

2 1.00 1.00 1.00

3 0 .99 0 .99  1.00

4 0 .99 0.99 1.00

5 0 .99  1.00 1.00

10 0.90 - 0.93 1.00

• Figure 4. Truth-value difference for form 1 for various
model sizes
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Mode l size

Perturbation 5 1 10

0 4 4 4

1 4 4 4

2 4 4 4

3 4 4 4

- 1  4 4 4 3

5 4 3 2

10 0 3 2

Figure 5. Good separatior 1 for forn 1 for various model
sizes
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