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ABSTRACT

Local constraint analysis (“discrete relaxation ”)is used to reduce ambiguity in matching pairs of relational
structures. It is found empirically that if the set of
possible local properties is sufficiently large, this gen-
erally results in unambiguous identifications after only a
few iterations.
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Pref ace

In the past, “relaxation” methods have usually been

applied to problems of identifying points in a fixed, simple

structure (namely, the pixels in a digital picture array).

This report addresses the more general problem of identify-

ing objects which may be parts of an arbitrary structure.

Such a situation arises in the higher-level processing of

images, where the objects may correspond to regions of an

image, extracted by some segmentation process. Regions would

be linked by such relations as “is above” , “surrounds” , or

“is larger than”.

The first two sections of this report establish some

theoretical results concerning the effectiveness of relaxa-

tion in such situations. The third section demonstrates the

application of the method to some simple, but not unreason—

able problems; while the fourth, among other matters, dis-

cusses how such relaxation methods could be extended to better

handle practical image recognition problems. Some of these

extensions will be treated in a future report.
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List of Set-Theoretic Symbols not Defined in Text

Use of Symbol Meaning

a K A “a is an element of the set A” .

A C B “A is a subset of B”
(NB: This does not preclude A—B.)

A x B The Cartesian product of sets A
and B. This is the set of all
ordered pairs (a,b) where a E A,
b € B.

The set of all ordered n-tuples
of elements of A.

F: A -
~~ B “f is a function, which takes as

argument an element of the set A ,
and yields an element of B as
result”.

3 “there exists”.

{a: Property } The set of all objects, a, for
which the mentioned property
holds.

ERBATA

Section 3, page 2, line 14: Insert “on the list” after
“element” .

Section 4, page 2, line 1: Delete quotation mark after A.

--- - — — -- -—-



1. Relational structures and monomorphisms

Many authors have used finite relational structures as a

formalism for describing visual scenes, and for the recog-

nition of known objects in such scenes. (For example, Barrow

& Popplestone 1971, flarrow et al. 1972, Winston 1970.) In

this section we introduce the notion of a relational structure

using a treatment which closely follows Barrow et al. (1972).

Definition 1

A (finite) relational structure is a triple <X ,P,4> .

x is a finite set of nodes, called the carrier of the

relational structure.

P is a finite set of predicates. Each predicate P has

associated with it a positive integer called the order

of the predicate. We write P~’~ if P has n

arguments.

• is a function which maps each predicate P ~P to an

n—ary relation on X. That is , $(P~~~)~ Xi’.

For x2, ... , ~~~~~~ ~~ , ~~~~~~~~~~ P we write ~~~~ (x1~x2~ ...~x~)

precisely when (x11x2, . . .,x )~ $(P~~~). Conventionally , a

relational structure is referred to by the name of its carrier,

its two remaining components bsing left implicit.

Definition 2

Let M and W be two relational structures with the same

• predicate set P . A one to one mapping f : M W is called a

monomorphism of M into W (written f: M~~) when for all

and ~~~~~~~~~~~~~ ~~~~ (x1,x2,.. ~~~~ implies ~~(1’1) (f(x1) ,...,

f(Xn))• That is, f preserves the structure of M. If there



exists a mapping f : M~~ W, we will often write merely M ’  W,

the mapping f being left implicit.

The set M can be thought of as a model which describes

some object of interest, while W can be thought of as a

description of a world, or universe, in which we are searching

for an instance of this object. Thus the problem of finding

the monomorphisms between two relational structures is of some

importance. In general this problem is computationally very

difficult. [It is in fact NP—complete, since it is a generali-

zation of the sub—graph matching problem for graphs, a problem

which is known to be NP-complete (Read & Corneil 1977) . ]

However, for those relational structures which are commonly

encountered, we would hope that the problem is not so intract-

able. That is, while the worst-~case behavior of an algorithm

for finding monomorphisms may be exponential, “on the average”

it may find solutions quite rapidly.



2. Discrete Relaxation

The term “relaxation” has been used to describe a class

of iterative methods for classification or constraint analysis

(Davis & Rosenfeld 1977, Rosenfeld 1977, Rosenfeld et al. 1976,

Zucker et al. 1976). All of these methods have the following

in common: we wish to calculate a value of some sort for

each point in a structure. This is done by firstly assigning

to each point an initial approximation to this value. Then

the approximation at each point is improved (in some sense)

by examining the values of the approximations at its

neighbors in the structure. This improvement step can be

repeated until some condition is satisfied, typically until

no further improvement can be made. The “values” referred to

above need not be numeric, they may be symbolic labels of some

sort, and an “approximation” to such a value might be a list

of possible labels, each with some sort of likelihood measure

attached. The “structure” referred to is often the grid of

pixels which represents a digital picture, and in this case

the “neighbors” of a point would~be its adjacent pixels on

the grid. The above is by no means intended as a definitive

description of relaxation methods, but merely to indicate

informally the type of processing which all these methods

have in common.

The same type of approach can be applied to the problem

of matching relational structures, and is developed below.

We assume that all relational structures mentioned have the

same predicate set P.



Definition 3

An assignment of a relational structure M to a relational

structure W (the order being material) is any subset of MXW .

Thus an assignment of M to W is a pairing of elements of M

with elements of W. It is in a sense a binary relation

between M and W, but should not be confused with those

relations that are responsible for the internal structures

of M and W.

Definition 4

Let M be a relational structure and xEMxW the neighbor-

hood of x (written Nbd(x)) is the set:

(y~M : 3P~~~,x1,x2,...x , i, j such that

P~~~ (x11 x21...1x~) and x=x~ and

The neighborhood of x consists of all those nodes which are

directly related to x in any way by a predicate.
Definition 5

Let R be an assignment of M to W. A pair (x,y)~ M is said

to be locally consistent with respect to R when there exists

a monomorphism f:Nbd(x)sNbd(y) such that f(x)=y, and f~ R

considered as a set of ordered pairs.

In other words, R permits a mapping which preserves the

local structure around x and y.

Definition 6

An assignment R is said to be locally consistent when

every pair in R is locally consistent with respect to R.



The notion of a locally consistent ascignment is consid-

erably weaker than that of a monomorphism. The directed

graphs of Figure 1 furnish an example: The assignment which

pairs every node of the “triangle” with every node of the

“square” is locally consistent, but there can be no monomor-

phism between the two. However, local consistency is a

“natural” generalization of monomorphism, as the following

theorem shows. Any mapping from M to W, where M and W are

relational structures, can be regarded as an assignment of

M to W, since a mapping is merely a particular type of pair-

ing. Monomorphisms are precisely those mappings which are

injective (i.e., one—to—one) and consistent as ~‘ssignments .

Theorem 1

L-et M and W be relational structures, and let f M -
~~ W

be injective. The f is a monomorphism if and only if f is

locally consistent.

Proof

(Sufficiency) 
-

If f is a monomorphisin, then clearly f must be locally

consistent.

(Necessity)

Assume f is locally consistent. Let p~~~EP, and Xii X 2 s~~ • • ~~
XnE M v

such that P~~~(x11x2~...~ x~). Since f is locally consistent,

in particular about x1, there exists a monomorphism f1:

Nbd(x1)~.Nbd(f1(x1)) where f1~f. Thus we have

However, f is a function, so the image

~ 

- 

-
~~~_~~~~~~~_ -iI_ j _ J_ __ 

~~



Figure 1. Many locally consistent assignments,
but no monomorphism.



-

of every po . .t in M is uniquely determined. Therefore,

f1(x1)=~ (x1), f1(x2)=f(x2), etc., and hence

f (x2) , .  . .  , f (x~)). We conclude that f is a monomorphism.

QED.

We now display an abstract version of the discrete relaxa-

tion algorithm, applied to two relational structures M and

W.
R0:=MxW; i: 0;

repeat

i: i+1

R.: fall pairs in R~_1which are1 t locally consistent w.r t. R~_ 1

until

R* :

This algorithm at each step removes all pairs from the local

assignment which are not locally consistent.

It is easy to see how this fits into the relaxation

framework. The stucture we are dealing with is the rela-

tional structure W. Each assignment can be regarded as attach-

ing a (possibly empty) set of model nodes from M as labels

on each world node in W. The improvement step consists of

removing those labels which are locally inconsistent. The

following results are generalizations of ~.hose in Rosenfeld

et al. (1976).



Theorem 2

The above algorithm always terminates.

Proof

L At the end of each iteration of the algorithm either

R~ = R.1 or R~ C R~_1. If R~ = R~~ 1 the algorithm terminates.

Since R0 = M~W is a finite set , there can only be a finite

nutther of iterations for which R
~ 

C R~~ 1. QED .

Theorem 3

The assignment R* produced by the abo”e algorithm is local-

ly consistent.

Proof

Suppose the algorithm terminates after k iterations, that

is R* = R.K . However, R.~ = {all pairs in Rk l  which are locally

consistent w . r . t .

But Rk = Rk l ,  since the algorithm terminated at this step .

So all pairs in Rk are locally consistent with respect to Ptkl

hence Rk = R* is locally consistent. QED.

Theorem 4

R* is the maximal locally consistent assignment of M to

W. That is, if R is any ].~~ fly consistent assignment of M to

W, then R~R*.

Proof (by induction on the number of iteration steps)

Basis

R ~ R0 = Mx W, by definition.

Induction

Suppose R ~ R~_1 for some i>O. Let (x,y) be any pair in



a. This pair is locally consistent with respect to R, and

so it is locally consistent with respect to R~_1 since

R
~
R
~_1

. Thus (x ,y) ~~ by the iteration step of the algorithm.

Conclusion

We see that R
~
R
~ 

for all i, and in particular R~R* .

Corollary . 
-

If f is any monomorphism E :M~W, then f~R*.

Thus the discrete relaxation algorithm is guaranteed to

capture any monomorphisms that exist between two relational

structures. In general R* will contain much else besides.

Figure 1 again illustrates a pathological case where R0=Mx W

is locally consistent. However , it seexrs that in practice the

only locally consistent assignments are usually in fact mono-

morphisms (or trivially the empty assignment). This is borne

out by the experiments described below. Even though discrete

relaxation may gain nothing at all, it often will in practice

provide solutions to the problem of finding monomorphisms

between relational structurE~s. The reader should note that if

there are several distinct monomorphisms between two relation-

al structures M and W, then at best R* will contain the union

of all these monomorphisms and there still remains the problem

of disentangling the individual monomorphisms.

The basic technique described above is not new. Calling

it “refinement” , Ullmann (1976) used it for the more restricted

problem of subgraph matching. Under the name “reduction” it

has been used by Haralick (1977, et al. 1978) in a more general



“Theory of Arrangements”. Uilxnann used his refinement as an

adjunct to a conventional tree—search procedure for detecting

subgraph isomorphism. The same technique could be used here,
L

and would be most useful for those cases where discrete relaxa-

tion makes considerable, but only partial, progress towards

finding monomorphisms.

Note that in order to determine whether a given pair (x,y)

is locally consistent with respect to an assignment R1_1, we
must still conduct a search for a monomorphism f :Nbd (x) £Nbd (y),

with the other required properties, f~R~_1 and f(x)=y , and this

search must be repeated for every pair in R1_1. Compared to a

tree—search procedure for detecting monomorphisms, we have

traded one large combinatorial search for many small combinatorial

searches. This would seem to make discrete relaxation consider-

ably faster. Furthermore, the local consistency checks for all

the pairs in Ri_i are independent, and could therefore be carried

out in parallel, if suitable hardware were available. The price

we pay for these advantages is the loss of any guarantee of find-

ing the monomorphisms between two structures.

It is possible to use a weaker characterization of consis-

tency which obviates the search for a monomorphism between

neighborhoods.

DefinitiOn 7

Let M and W be relational structures, and let R be an assign-

ment of M to W. A pair (x,y)EMxW is said to be weakly consistent

with respect to R when there exists an assignment Q of Nbd(x)

_ _ _ _ _ _ _  . - - ,- - .~~~~~~~~~~~ - —



to Nbd(y) with the following properties:

(j ) Q~R; 
-

(ii) (x,y)~Q;

(iii) (x , z)~~Q implies y =

(iv) for all P~~~, and for all ~~~~~~~~~~~~~ xE{x1,x21...,

x~} implies that there exist yjDy2s...?y~~W such that

(x1,y1),(x2,y2),...,(x~,y~)EQ and

That is , for every predicate instance in the model which

mentions x, R permits a renaming of arguments so that

the predicate holds in the world. This renaming need

not be one to one, nor even a function, but x must always

be replaced by y.

Weak consistency can be used instead of local consistency in

a discrete relaxation process, and corresponding theorems can be

proved. However, the results it produces are more likely to be

ambiguous, in that weak consistency will permit pairings which are

locally inconsistent. It should be noted that weak consistency

corresponds to the notion of consistency introduced by Rosenfeld

et al. (1976).



3. Experiments

A computer program has been written wh.~ch implements the

discrete relaxation algorithm described above. There are, however,

several minor differences. The initial iteration is anomalous.

Since R0 MxW , we can check the local consistency of pairs in

H0 “on the fly” by examining all pairs systematically, without

the need to store them. Furthermore, since on this iteration

many pairs are examined, the program uses the simpler weak consis-

tency comdition. This does not invalidate any of the results

proved in the last section, but is easier to test. All subse-

quent iterations use the full local consistency condition.

Obviously, the whole sequence of assignments R1,R2,...,R* need

not be stored; only the current version is . On each iteration

those pairs in the current assignment which are not locally con-

sistent are flagged, and at the end of each iteration these

flagged pairs are deleted from the assignment. This means that

the algorithm terminates whenever no deletions are made on a

given iteration.

The remaining difference is in the testing of the local con-

sistency of a pair (x,y). Rather than search for an appropriate

monomorphism of Nbd(x) into Nbd(y), the program searches for an

appropriate partial function from Nbd(y) to Nbd(x) which preserves

structure in a reverse sense. The two types of maps are essentially

equivalent (in that the existence of a map of the one sort implies

the existence of a map of the other), but the second characteri-

zation was more convenient to use in the context of the program ’s

data structures.

•0-- 
-- - - -- ---- — - --- -~~~~~-- -—- - --- - — - -



The data and instructions of the program were organized to

avoid any gross inefficiences; however, no attempt was made to

optimize its pen . ~rmance. The program itself, about ~OO lines

long, is written in Pascal, and runs on the Univac 1108.

At first the program was tried in an ad hoc fashion on the

matching of varieus relational structures, some concocted by

hand, others based on the adjacencies of states in political

maps. On these the program generally performed quite well, and

encouraged by these results we conducted the more systematic

tests described below.

The program was modified to generate random sub-structures

of a relational structure read as input. The method used was

this: An element of the structure is chosen at random, and

used to start a list. Then repeatedly an element which has

neighbors not on the list is chosen at random, next one of

its neighbors not on the list is chosen at random and placed

on the list. This continues until the list reaches some pre—

specified size. The list is then used as the carrier of a

relational structure which inherits from the original relational

structure all those predicates which have as arguments only

elements which appear on the list. This process tends to

generate compact substructures, embedded in a larger relational

structure, and thus corresponds to the intuitive notion ~f com-

pact objects embedded in a large visual scene. The projram then

attempts to match the substructure generated as model with the

• larger parent structure as world. In this case a monomorphism

certainly exists, so we can measure how often the program finds

it , and how much computation the relaxation takes.

—V — — -.—--- - .- — -  —
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The data for the first group of tests was derived from the

political map of Africa, which has 46 countries. The map is

described in terms of the adjacencies of the countries, to-

gether with some of the following properties:

a) Whether a country is coastal or inland

b) The number of letters in its name

c) The first letter of its name

d) Its color on the globe (National Geographic

Society, 1976)

e) The first letter of the name of its capital city

We thus have a relational structure with one binary predicate,

adjacent, and a large set of possible unary predicates.

Tests were made using the adjacency data together with

various subsets of the properties. All tests were run on the

same randomly generated models of sizes ranging from 4 to 13

nodes, using five examples of each size.

The results of these tests are summarized in Tables 1—5.

In each of these tables, the column headed “Iterations” gives

the average number of iteration steps required for convergence.

The column headed “Comparisons” gives the average number of

times (000 omitted) that it was necessary to compare one predi-

cate with another in the matching; thus it is an indication

of the computational effort required by the relaxation process.

The column headed “Ambiguity” measures the average number of

•xcsss pairs remaining after convergence is complete; it is

zero if there is exactly one pair for every element in the

model. All of these averages are taken over the five instances



Model
Size Iterations Comparisons Ambiguity

4 3.4 4.2 0

5 3.6 7.0 0.6

6 4.0 8.6 0.2

7 3.8 11.1 1.2

8 4.0 11.0 1.0

9 3.8 14.4 0.4

10 4.0 17.2 1.2

11 4.2 18.1 2.0

12 4.0 20.8 0.8

13 4.2 23.3 0.4

Table 1. First letter of name (Africa)

- ~~~~~~~~~~~~~~~ ~~~- .



Model
Size Iterations Comparisons Ambiguity

4 3.4 5.2 0

5 3.4 8.1 0

6 3.4 10.3 0

7 3,4 12.7 0.4

8 3.6 13.4 0.6

9 3.4 16.9 0.2

10 3.6 lP.7 0.8

11 3.8 21.4 1.2

12 3.8 23.2 0.2

13 3.4 25.8 0

Table 2. First letter of name ; coastal/inland (Africa )



Model
Size Iterations Comparisons Ambiguity

4 2.6 4.9 0.0

5 3.0 7.6 0.0

6 2.8 9.8 0.0

7 3.0 12.0 0.2

8 3.0 12.5 0.0

9 3.0 16.1 0.2

10 3.0 17.5 0.4

11 3.0 19.8 0.6

12 3.0 21.7 0.6

13 3.2 24.8 0.2

Table 3. First letter of name ; color on globe (Africa)  

.—- . - - —



Model
Size Iterations Comparisons Ambiguity

4 3.2 4.3 1.4

5 3.6 6.7 1.0

6 3.6 8.3 0.2 A
7 3.8 10.4 0.6

8 3.6 11.8 1.2

9 4.0 16.2 1.2

10 3.8 16.3 1.8

Li 3.8 20.3 1.6

12 4.0 21.4 1.2

13 3.8 22.3 0.8

Table 4. First letter of name of capital city (Africa )



Model
Size Iterations Comparisons Ambiguity

4 2.4 4.9 0

5 2 .6  7 .6  0 .2

6 2.8 9.8 0

7 3.6 12.4 0.2

8 3.4 12.8 0.2

9 3.4 16.6 0.2

10 3.2 17.8 0.4

11 3.2 20.1 0.0

12 3.4 22.5 0.0

13 3.4 25.2 0.0

Table 5. First letter of name of capital city ;

length of name (of country) (Africa)



of each model size. [The predicates used are indicated in the

table captions; the adjacency relation was also used in every

test.]

A second , similar group of tests was run, using corres-

ponding data derived from the 48 contiguous states of the

U.S.A. The results of these tests are shown in Tables 6-10.

It is seen from these tables that if there is a reason-

able variety of different predicates, so that local inconsist-

encies are easily found, the results are quite unambiguous,

and convergence is rapid (3 to 4 iterations). The remaining

ambiguity was most of ten due to the existence of multiple

monomorphisms for the chosen models. It is interesting to

note that the number of iterations does not seem to depend

significantly on the model size. The number of comparisons

does increase with the model size , but only at an essentially

linear rate.

A version of the program which uses weak consistency for

all iterations was also tried. The results of using this version

on the same data as used in Table 1 are shown in Table 11.

Note that the number of iterations required has increased slightly ,

but the number of comparisons has decreased, while the ambiguity

remains the same.



Model
Size Iterations Comparisons Ambiguity

4 4.0 4.9 0.2

5 3.4 5.8 1.0

6 4.0 7.9 0.2

7 4.2 9.3 0.2

8 3.6 12.1 0.6

9 4.0 14.0 1.4

10 3.8 14.4 1.0

11 4.0 17.6 0.6

12 3.6 18.5 0 .4

13 4.0 22.1 0.2

Table 6. First letter of name (U .S .A .)



Model
Size Iterations Comparisons Ambiguity

4 3.8 6.0 0.0

5 3.2 7.0 1.0

6 3.6 9.5 0.2

7 3.8 11.2 0.2

8 3.6 14.7 0.4

9 3.8 16.8 0.8

10 3.6 17.3 1.0

11 3.6 21.0 0 .6

12 3.6 22.6 0.4

13 3.6 26.6 0.2

Table 7. First letter of name; coastal/inland (U.S.A.)

- j 
_ _
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Model 
-

Size Iterations Comparisons Ambiguity

4 2.8 5.7 0.2

5 3.2 6.8 0.0

6 3.0 9.2 0~0 ;

7 3.2 10.6 0.0

8 3.2 14.3 0.2

9 3.0 15.9 0.0

10 - 3.0 16.8 0.2

11 3.0 19.8 0.2

12 3.2 —‘ - . 22.2 0.0

13 3.0 24.9~ - 
0.0

Table 8. First •let~er qf name; color: on globe (U.S.A.)

- ~~~~~ .

a - —— — — — --_- -— ~~ — —----—- - 
~~~~~
.- - -



Model
Size Iterations Comparisons Ambiguity

4 3.4 4.8 0.4

5 3.6 5.8 1.0

6 3.6 7.7 0.2

7 3.6 8.6 0.4

8 3.6 12.1 0.6

9 3.8 13.3 0.0

10 4.2 14.3 0.4

11 3.8 16.8 0.8

12 4 ,0 19.1 0.6

13 4.0 21.8 0.2

Table 9. First letter of name of capital city (U.S.A .)

: 

~



Model
Size Iterations Comparisons Ambiguity

4 2.8 5.7 0.0

5 2.8 6.7 0.0

6 3.0 9.2 0.0

7 3.0 10.5 0.0

8 3.0 14.2 0.0

9 3.0 15.8 0.0

10 3.0 16.8 0.0

11 3.0 19.7 0.0

12 3.0 22.0  0.0

13 3.0 24.8 0.0

Table 10. First letter of name of capital city; length

of nar~e (of state) (U .S . A .)



Model 
-

- Size Iterations Comparisons Ambiguity

4 3.4 4.1 0.0

5 - 3.8 6.4 0.6

6 4.0 8.2 0.2

7 4.0 10.2 1.2

8 4.0 10.4 1.0

9 4.2 13.5 0.4

10 4.4 14.9 1.2

1.]. 4.4 16.8 2.0

12 4.6 18.6 0.8

13 4.4 20.8 0.4

Table 11. First 1ette~ of name (weak consistency--Africa)

I,

T~ i~~~Iii. 
- : -



4. Discussion and extensions

We have described an algorithm which provides an “approxi-

mate” -solution to the problem of finding monomorphisms between
- relational structures. Instead of finding monomorphisms,

the discrete relaxation algorithm produces a set of ordered

pairs which is guaranteed to contain all the monomorphisms

between two structures, but this set may contain much else

besides. However, in reasonable, practical cases, relaxation

finds exact solutions, or very nearly exact solutions , and

finds them quickly . This is not to say that a conventional

tree-search method would not perform as well, for the very

circumstances under which relaxation works well would permit

considerable pruning of a search tree. We wish merely to re-

mark that relaxation appears to be a useful tool for solving

such problems, either alone, or in conjunction with a tree-

searching procedure.

To this end, some improvements could be made in the present

program. First of all , some attention áhould be given to the

order in which predicates are checked when testing for local

consistency. If rarer predicates are examined first, it is

more likely that a locally inconsistency will be discovered

early. Secondly, since unary predicates can affect local

consistency only on the first iteration of relaxation, they

should be disregarded on all subsequent iterations. Thirdly ,

provision should be made for special treatment of commonly

occurring types of relations. For example, each instance of

a symmetric binary relation (like adjacency in the previous



section) must be stored twice, once in each sense (“A” is adja-

cent to B” and “B is adjacent to A”). Special handling of

symmetric relations could reduce space and processing require-
- ments considerably.

Beyond this, extensions can be made both to the notion of

relational structures, and to the application of relaxation

techniques. A first step is the introduction of quantitative

predicates. A quantitative binary predicate Distance would

indicate not only that its two arguments have a distance

between them, but would provide the numeric value of this

distance, for instance Distance (Earth , Moon , 400 ,000km) .

Two quantitative predicates would agree when their numeric

values were equal , or nearly equal relative to some error

tolerance. Such predicates pose few problems in themselves,

since each quantitative predicate could be replaced by a whole

family of ordinary qualitative predicates , one for each value

that the numeric quantity can take according to some more or

less fine quantization.

However, quantitative predicates soon lead us to considera-

tion of fuzzy or probabilistic truth. The more closely two

quantitative predicates agree, the more likely it is that they

actually match. Further, the real—world data we use may be

subject to measurement errors with possibly known distributions.

Even qualitative information may be more or less certain. Re-

laxation can be readily adapted to handle such concepts by

associating with each predicate some sort of truth measure,



and associating with each pair in an assignment some measure

of its local consistency. The relaxation iteration would

adjust this local consistency measure based on the local

consistency values of its neighbors, and on the truth values

of predicates that link it with these neighbors . Of course

many details remain to be filled in , but the basic approach is

clear.

In this application , a relaxation-type technique has the

advantage that, since all local consistency checks are inde-

pendent, the result produced is not affected by the particu-

lar order in which the checks are performed. Thus the results

produced by relaxation would tend to be more stable and

reliable than those produced by tree—search methods.

Another topic worth pursuing is the development of more

general models. While a relational structure can adequately

represent a particular view of a particular object, it cannot

easily describe the three-dimensional structure of an object

(at least in a manner which allows different views of it to be

recognized). Nor can it describe a whole class of objects,

generally similar , but individually distinct, in a way which

permits particular instances of that class to be recognized.

Obviously , such problems are very difficult; however, it may

be possible to make some progress towards solving them. For

example, a relational structure is implicitly a conjunction

of all the predicate instances in it. We could use as models

structures which permit other logical connectives. It may



be possible to match such models against relational structures

without invoking the full  generality of predicate calculus and

mechanical theorem proving. It would also be useful to have

models that are structured in a hierarchical fashion from

smaller pieces. This permits economy of description, since

commonly occurring pieces need not be duplicated for every

instance. It would also simplify the modelling of complex

objects.

Relational structures provide an adequate mechanism for

describing visual images, since an image is a static sort of

thing: a particular set of objects, with particular proper-

ties , all in particular relations with each other. However,

such a use of relational structures can only be effective if

the image in question has been property segmented to begin

with. The regions , edges and other features extracted from

the image must correspond closely with real objects ; otherwise

the derived relational structure will fail to be an accurate

representation ofthe scene. With this in mind, it may be

desirable to create the relational structure which describes

the image “on the f ly ” so to speak, during the matching pro-

cess. That is, rather than segment the image once and for all,

and then build a relational structure from the pieces , we

could use the matching process to guide the segmentation ,

extracting features and properties from the image only as

needed to match part of the model.

Of course , much more could be written on the subject of

recognizing objects in pictures. Suffice to say that

p ——--- — --—---- -.- — — — — — - .- —



relational structures (or their extensions) provide a con-

venient data structure for describing objects and pictures,

and relaxation is a useful method for operating on them. 
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