
F -
~~~~~

I I AQ—A071 599 NARYU.AIC (REly C~~S&K PARK cOs.uTt* Sciba CtN1.n F,. its
ARcHITCCUn FOR HIIItR L.LVCL DISITAI. IMASE PROCESSIIES. (U)
a~ 75 7 .1 W IU.LTT DAASSS—7S-C—oiu

(RECLASSIFIED it

_ _ _

~

s

~

nfl

~

pl I

El
I I



11111 1.0 ~~L II~ill~ L
L 112.0

I I L

II~Il~8

11111’ 25 IIIII~•~ liii! a6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STA NOAR OS -1963 -A



tEvaat~ 
0ARCHITECTURE FOR HIGHER

LEVEL DIGITAL IMAGE PROCESSING
! 

~~~~

‘

,—

July 30, 1978

I
This Is the first quarterly status report

• on a program for Image Understanding UsingOverlays, conducted by Westinghouse for
Maryland under Contract DAAG 53-76 C-0138
with the U.S. Army Nobility Equipment
Research and Development Coeinand, Fort
Belvoir, Va. 22060.

Prepared for

Computer Science Center
University of Maryland

LJJ College Park, Maryland 20742

D D C
f~~~ LEU~DrEfl

By

_ _: 1 _
~~~ Westi nghouse Defense and Electroni c Systams Center _

__
_

____Systems Development Divi sion ________
Balti more , Marylan d 21703

DIST*t$UTIO$ STATEMENT A

~~Q 07 ~23 ‘D,~D**ibution Unllait.d V U
a — 

- 

— L 1~~ 
—



(2)
“

~
-__

~~~
‘

~~ CHITECTURE FOR HIGHER /
/I LEVEL DIGITAL IMAGE PROCESSI NG —I~~~~ - ~~~~ •- ~~~~ - .

~~~~

- /

July 30, 1978
—~~~~~~~~~~~~~~~~~~~~~~~~~ 

——-

~~ • 1 I ~ \ / j
~• • I 

/

~ 
g 1 

~~~~~~ ~~~ 
_ _ _ _

This is the first quarterly status report
on a program for Image Understanding Using

~ Over lays, conducted by
DAA 3-76—C - 138

wi th the U.S. Army Mob~ y quipmen
Researc h and Develo pment Corrunand , Fort
Belvoir , Va. 22060.

p
~~~~3~~~~~uarteriy status rept. no, 1. 7

Prepared for

Computer Sc ience Center
Aaoeseion1~or University of Maryland
~.ns G1~ &~ 

Co l lege Park, Maryland 20742
~)C TAB
Unalmounoed /Juatifjaatjon_ _

Thomas 3. AJtllett

~~~~~~~~~~~~~~~~~~~~~~~~ / /
• : ~~ab1~it~~Code s

_ ___
By

Westinghouse Defense and Electronic Systems Center
Systems Development Division
Baltimore , Maryland 21203

I
toy Z

~[1

_ _ _ _ _ _ _ _ _ _ _ _

Distributj o~ Unlimited
p

- _________________

TABLE OF CONTENTS

Page

INTRODUCTION 1

1.0 SYSTEM DESIGN GOALS 2

— 1.1 Speed 2
1.2 Reliability 3
1.3 Size 4

p 1.4 Weight 4
1.5 Probability of Detection and Recognition 5

and False Alarm Rates
1.6 Power 5
1.7 Software Design Goals 5

2.0 PROCESSORS 7

2.1 Architecture 8
2.2 Microprogranuuing Example 9
2.3 Processing Unit 13

3.0 APPLICATIONS OF LISP 20

3.1 Symbolic Expressions 20
3.2 Basic Functions 20
3.3 Conditional Expressions 22
3.4 Compiling, Interpreting, Machine Language, 28

and Subroutines
3.5 L i st Structures 29

4.0 ALGORITHM DEVELOPMENT 33

4.1 Relaxation (discrete case) 33

5.0 BIT SLICE PROCESSORS 39

5.1 Functional and Performance Characteristics 40

5.1.1 System Architecture 40
5.1.2 Central Ari thmetic Unit 41

5.1.2.1 Data Formats 43
5.1.2.2 CAU regi sters 43
5.1.2.3 Addressing Modes 46

5.1.3 Memory Controller 50
5.1.4 Extended Ari thmetic Unit 51
5.1.5 I/O System 53

5.1.5.1 Bus Control Interface Unit (BCIU-RT) 53
5.1.5.2 Interrupts 55
5.1.5.3 Dlscretes 57
5.1.5.4 Timers 58
5.1.5.5 Memory Protection 58

I
• ~~~ • ••

- -

/

TABLE OF CONTENTS
(Cont inued)

Page

6.0 SUMMARY 60
7.0 REFERENCEs 61

1

11

LIST OF ILLUSTRATIONS

Figure Number Title Page

1-1 Block Diagram of Image Processor 2
2-1 Basic Architecture - Bit Slice Microprocessor 8
2-2 Flow Chart for COMPARE Macro Instruction 10
2-3 Processing Section 10
2-4 Field Expl anation 11
2-5 Microinstructions for COMPARE 12
2-6 Block Diagram of ALU 14
3-1 Computer Word 29
3-2 Word Pointer 30
3-3 Typical Memory Structures 30
3-4 Memory Structure for (x•(Y.(Z X))•(Z•X)) 31
3-5 An Alternate Structure 31
4-1 Graph Form of Relaxation 34
4-2 Arc Relations 35
4-3 Two Consistent and Possible Situations 35
5-1 Computer Functional Block Diagram 40
5-2 General Purpose Avionics Processor 41
5-3 CAU Organization 42
5-4 MC Arch~ .ecture 50
5-5 EAU Organization 54
5-6 Interrupt Schematic 55
5—7 Interrupt System 56
5-8 Memory Protect Ram 59
5-9 Memory Zone Protect 59

LIST OF TABLES

2-1 Data Handling Characteristics 15
2-2 Arithmetic/Logic Functions 16

lii

•
-•-—

INTRODUCTION

This is the first quarterly status report on a program to investigate

various approaches to the design of architecture for higher level digita l

image processing algori thms, being conducted by the Westinghouse Systems

Development Division for the Computer Science Center, University of Maryland.

This two-year program is a continuation of a program entitled “Algori thms and

Hardware Tec hnology for Image Recogniti on” , which was initiated in 1976. The

report was prepared by Mr. Thomas J. Wi llett. The Wes tinghouse program

manager i s Dr. Gl enn E. Tisdale.

During the quarter, monthly technical meetings were held at Maryland,

which included representatives from the Army Night Vision Laboratory, the

Uni vers ity of Maryl and, and Westinghouse. Team members from NVL were Dr.

George Jones and Mr. John Dehne, and from the University of Maryland, Profs .

David Milgram and Azr iel Rosenfeld.

The report begins with a review of desired system design goals. This

is followed by a description of available mi croprocessor hardware, a review

of LISP approach to the mani pulation of list structures , and a prel iminary

discussion of the processing required to Implement relaxation methods of

object classifi cation. The report concludes with a description of specific

bit-slice processors.

1

1.0 SYSTEM DES IGN GOALS

Westinghouse , followi ng the Smart Sensor work, has been given the

assignment of implementing the Maryland higher level image processing

algori thms in a 4igita l processor. The purpose of this section is to

describe the system design goals which the hardware and software must meet,

goals such as speed, reliability , s i ze , weight , probability of detection ,
recognition , or false alarm , power consumption , and software requi rements.

Each is now considered in a separate subsection.

1.1 Speed

The typical image processor has a block diagram like that of Figure

1-1. The preprocessor fi l ters the image (e.g., low pass or median fi lter)

to smooth it and ~?xtracts primitiv es such as edges, amplitudes above a

certain threshold , and histograms ; it also thi ns the extracted data to reduce

-* HI LEVEL
IMAGE-F PROCESSOR]+

1

SEGMENTORII EXTRACTOR J+1cLASSIFI~
ATI0N

~ LO LEVEL

Figure 1-1. Block Diagram of Image Processor

the amount and keep only the most important. The segmentor separates

data associated wi th a specific object, includi ng threshold densities , edges , and

functions of them such as texture. The feature extractor then forms pre-

classification features such as shape, area , length , curvature, density, etc.

The classifi cation process then attempts to identify the collection of objects

in the image. Assuming a video frame of 550 x 600 pixels , for a tota l of

330,000 pixels per frame, the processor would have to process 1 mIllion

pixel s per second to achieve a frame rate of 3 per second. Real time frame

rates are 30 per second , or 10 megapixel s per second . If we assume that the

2

I
a - .—— — r, - S

preprocessing and segmentation function reduce the image bandwidth by 100:1,

i.e. a frame is now composed of 3300 words , then a frame rate of 3 per secon d
would requi re a word rate of 10,000 words per second. By words we mean the

following: The original image is composed of 330,000 pixels each; say, 5 bi ts

wide. When they are preprocessed and segmented, the resulting pieces of

information total about 3300 words which may be w ider or narrower than 5
• bits. Assuming an input rate of 10,000 words per second into the high

l evel feature extractor and classifi er, the time between words is 100 micro-

seconds or 100,000 nanoseconds. If we assume, from Section 3, a micro-

instruction cycle time of 200 nanoseconds or less, the bit slice machines

can execute 500 microin structions between words. If we further assume a

wide enough bit slice microprocessor, e.g. 56 bits wi de such that on

average about 5 microinstructions are needed per macroinstruction (ADD,

SUBTRACT , etc.), then the program length can be of the order of 100 macro-

instructions. If we add a sophisticated bus structure, increas ing the word

width to say 72 bits , then the program length might be increased to 200

macroinstructions. Going to real time opeation at 30 frames per second

woul d reduce the poss ibl e macro instructions by a factor of 10 unl ess parallel

processors were employed. In the image processing case, small word widths

and parallel processors may be much more suitable than one machine of substantial

width. In any event, the rate with which the processor must cope is a

basic rate of 10,000 words per second with a goal of achieving 100,000 words

per second .

• 1.2 Reliability

There are really two parts to the reliability problem ; they are both

branches from the central problem of time on station . For exampl e, the f i re

control computer built by Westinghouse for the F-16 program does not require

faul t tolerance modes , dynamic reconf iguration, and internal trouble

shooting because the time of flight Is not long. Further, the reliability
S

3

a S—— ---- --— S — - —--~~~~~~•‘• -•- •S - - — —--S S

of the bit slice processor is sufficiently high that a cascade of 18 bit slice

processors will exceed military reliability specifications.

On the other hand the E-3A (AWACS, Airborne Early Warning System)

computers built by Westinghouse have extensive internal trouble shooting

characteristics i ncluding fault isolation. dynami c reconfiguration . and fault

tolerance modes because the time on station is very long compared to the F-16.

Al so the volume available in each case is sufficiently different. The E-3A is

housed in a Boeing 707, while the F-16 is one of the smallest of the new fighters.

Thus, the time on station is a critical factor in determining whether or not

internal trouble shooting techniques are required .

1.3 Size

The previous remarks on reliabilit y are entwi ned with those of size.

There has been a general agreement among the users that approximately 1 ft.3

is an appropriate size for most airborne short mission - time appl ications.

On the other hand , the longer term missions generally can acconinodate S

more space, which coinc ides with the added hardware needed for internal

trouble shooting. In these cases, internal trouble shooting is necessary

in order to meet reliability specifications. We shall assume in the latter

case that the total volume , including trouble shooting hardware shall be rio

larger than 1.5 ft.3. For ground based computers , size is not so important,

but reliability and dynamic reconfiguration are.

1.4 Weight

There is no reason to change the airborne weight goal from that of the

Smart Sensor; namely, in the area of 20 to 30 lbs. includi ng power supply.

The fault tolerant machine can be at the high end of the range and perhaps exceed

it slightly since payload is not such a difficult problem. And in the ground

station applicat ion, weight is only important for mobility considerations.4

1.5 Probability of Detection and Recognition , and False Alarm Rate

In this work we are including high l evel image processing in order to

handle more complex targets such as airports and camouflaged weapons and also

to increase performance figures on easier targets such as weapons with small

amounts of obscurati on. For the Smart Sensor work , the probability of detection

was 96 percent, and the false alarm rate was 1.3 per frame. It would seem

reasonable to expect that the incorporation of higher level algorithms would

raise the probability of detecti on for the simpler targets and provide at least

0.90 on the more comple* targets. The false alarm rate is probably too high

and shoul d be reduced to something like one false alarm every five frames or

lower. These figures , the reader must realize , are extrapolated performance

figures from the previous DARPA work.’

1.6 Power

Our general goal for power consumption is 200-300 watts. The addition

of faul t tolerance hardware will increase the power requirements, but

certainly anything over 400 watts is not desirable in a airborne system. Thus

we expect some increase in size and power wi th the fault tolerance hardware.

For ground stations the allowable power varies wi th the installation requirements.

1.7 Software Design Goals

In this section , we attempt to discuss some of the constraints within

wh ich the software’ should fall. For example, in Para. 1.1, we developed the

idea that each program should contain 100-200 macroinstructions in order to meet

the speed requirements. No doubt , the University of Maryl and analysts will be

running their programs i n source language (composed of macro instructions)

so thi s number has mean ing for them.

In Section 3.0, we discuss the candidate bit-slice processors

and it is noted that none have trigonometri c functions. The tables shown in

Section 3.0 list the logic/ari thmetic operations which can be performed by

them. Of course, other functions may be performed, but it is not an

efficient process and may require a substantial part of the allotted5

100-200 macroinstructions. Another limi tation is the window size in the

form of the number of &v-~ lable registers. For example , a 4 x 4 w indow
requires 16 registers which is availabl e on the AMD 2901A mi croprocessor,

but not on some of the others. Finally, random memory access to a larger
capacity memory can be time consumi ng and we do not encourage it.

6

•= ~~ •-- ---—--S~~~ -

2. 0 PROCESSORS

We shall be consideri ng appropriate processors for the higher level

image understand i ng algori thms in this section , wi th subsections covering

architecture, mi croprograming, and processing units . We shall also describe

and contrast the features of several cormiercially available units. First

we consider some definitions.
S Microprocessor - A single integrated chip containing an arithmeti c (ALU)

logi c unit ; some random access memory for stor i ng data

and intermediate results ; some programmable read only

memory to hold instructions; and a controller for

handling status flags, I/O duties , routing addresses

and data , and executing instructions. They are

usua lly manufactured in MOS technology and can execute

an instruction in approximately 10 mi croseconds. They

have a fixed instruction set, fixed arc hitecture,

and fixed word length. They can be cascaded to handle

l onger words but all parts of the microprocessor

increase linearly in size.

Bit Slice
Microprocessor - Generally, they are faster than the single chip mi cro-

processor by at least an order of magnitude , because

they are built from bipolar technology. Here th~

controller and ari thmetic logic unit are found on two

different chips , 2 to 4 bits wide. They have a

flexible approach to word length , instruction set,

and architecture : thus they have the capability of

being specif ically conf igured for the applicat ion

and their components can be expanded independently

7

of each other. The designer specifies the systems

instruction set by a program (microprogram) stored

in a PROM (Prograninable Read-Only Memory). Some

significant appl ications of bit slice micro-

processors have occurred in s ignal process ing where

algorithms lend themselves to parallel implementati ons.

Based upon the above capability , and in view of substantial Westinghouse

experience in bit slice implementation of airborne signal processors, we

recommend use of bit slice machi nes in the image understand i ng area.

2.1 Architecture

I I I
I I I I

[Ct ntrol L ...J Ari thmetic/
I S~~uencer I _____

Logic
______ — •—

~~~ 
Unit

I I
I I I

I I I
I I
I I

[ Control
1 I Input/Output

Memory~ 
___________

I I I
I I I

Control Section Processing Section

Figure 2.1. Basic Architecture - Bit Sl i ce Microprocessor

8

-S ,-
~~~~~~~~

.
~~~~- --i-

~
- -

~ 
- - 

S 

—



As a starting point, we can consider a bit-slice microprocessor as composed

of four sections as shown in Figure 2-1; a main memory, a control sec tion,

a process ing sec tion and an input/output sec tion. The control and process ing
sections are on a minimum of two different chips; note that the dotted lines

imply that the sections are composed of a number of slices. This means that

in reality, the main memory, control sequencer , control memory and ALU may be

built up from a number of chips (slices) and that they need not all have the

same word w idth. The macro instructions (ADD , SUBTRACT, etc.) and data are

stored in the main memory; these are transmitted through the system by means

of data and address buses. Some of the faster bit slice implementations have

a rather sophisticated bus structure and control . The microprogram control

memory contains the microinstructions through which the machine controls the

parallel operation of the bit slice ALU’ s, and generates pulses timed to

control the rest of the system including macroinstruction fetch from main

memory. The microprogram control sequencer contains macroinstruction decode

logi c w hi ch maps it into a microprogram memory address and it examines all

the control and status bi ts to determine the next microinstruction address.

The macroinstruction (ADD) is executed as a series of microinstructions.

Referring to Figure 2-1, the microprogram control sequencer has an address

l ine to the mi croprogram control memory; the mi croprogram control sequencer

rece ives status bits along control lines from the ALU and microprogram

control memory. The microprogram control memory sends control signals

to the processing sections. We now present an example of a macrolns truction~
• COMPARE , written in microcode on an Imaginary 20 bit wide bit slice machine .

2.2 Microprogranining Example 2

The COMPARE instruction is IF A = B then A = 1/2 x A , OTHERWISE GO TO

NEXT INSTRUCTION. We assume that there is an instruction counter IC 
such9



‘
S

that GO TO NEXT INSTRUCTION means IC = IC + 1. And , as is the usual case ,
the test for A = B Is performed by calculating C A-B and comparing C with

zero. A = 1/2 x A is accomplished by shifting A to the right. Then the

flow chart for COMPARE Is sho~.’i in Figure 2-2.

[ c ÷ A - B  I 
. 

First Cycle

A~- A:xl/2 ~ 
= IC + 1_]___Second Cycle

+

Figure 2-2. Flow Chart for COMPARE Macroinstruction

We assume a processing section configuration as shown in Figure 2-3. The

two source registers A and B are represented as well as the instruction

counter, IC, and the ALU. The zero detect logic issues a flag when all the

bits on the data bus are zero. and the status register remembers the state

f— S

A J [ B ] ~ 
IC J LSTATUS ]

J 4 3 , I~ 
.... _.~~~~~~~~~ I

ALU ]~—.-—-- Carry ‘n

SHIFTER 1
Other Data

k ZERO DETECTLOGIC

Figure 2-3. Processing Section

10

S ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __ S~~~~~~~~~~~ .-S • - .



‘S

of the zero detect logic. Al so, l’s complemented notat ion is used for ALU
inputs, a carry-in bit is needed to convert to 2’s complement as required

by the ALLJ. We now form a microinstruction where each field corresponds to

each entity in Figure 2-3.

f A J B CJ DJ E FJ G Hj I JJ i< l Z Z 2 zJ

Field A: 1 bit wide; 0, A is not gated to ALU
1, A is gated to ALU

Field BC: 2 bits wide; 00, neither B nor IC is gated to ALU
01, l’s complement of B is gated to ALIJ
10, B Is gated to ALU
11, IC is gated to ALIJ

Field 0: 1 bit wide; 0, addition with no carry in
1, addition with carry in

Field EF: 2 bits wide; 00, no sh ift of ALU output
01, shift output right one, gate to data bus
10, shift output left one, gate to data bus
11, other data gated to data bus

Field GH: 2 bits wide; 00. no destination
01, register A is data bus destination
10, register B is data bus destination
11, IC is data bus destination

Field ~J: 2 bits wide; 00, portion of address (ZZZZIJ) for next
01, microinstruction
10
11

Field K: 1 bit wide; 0, no action
1, set status register to 1 If zero detect

logic detects all zeroes on data bus

FIgure 2-4. FIeld Explanation

Then the flow chart, Figure 2-2, of indicated mathematical functions

is replaced with three microinstructions which not only reflect those functions

but also indicate data flow through the processing section, as shown in

FIgure 2-5 .

11



MINS1 [1I O l I l J O O  0 0 1 0 1 1 1 1 ~ 
C A-B

MIN S 3, ZZZ 1 MINS, ZZZZOO

Ii i 0 0~ 0 0 1  ~0 1 J 1 0  ~0 NEXT ADD (0 f 1 1 ~1 1 0 0  1’ 1 10 joJ NEXT AUD I

Figure 2-5. Microinstructions for COMPARE

Microinstruction 1 (MINS 1) provides that, referring to Figure 2-3,

A is gated to ALU,

B is gated to ALU in l’s complement form,

addition of A and B with carry in,

no shift of ALU output,

no destination

set 2nd address bit in field to state of status

register, and

set status register to zero if zero detect logic

finds all zeroes on data bus.

In M INS 1, the contents of the B register are subtrac ted from the A
register and the result Is gated to the data bus and the status register is

set to zero if A = B. Since this is linked to the next instruction address ,
the status bit is reflected in Field IJ which determines a left or right

branch.

12

. -- ___ _ _______-S___.__ __-- S



Microinstruction 3 (MINS 3) provides that

A is gated to ALU ,
nei ther B nor IC i s gatedto ALU,
addition with no carry in
shift output right one and gate to data bus,
register A is data bus destination,
next microinstruction address least signifi cant bits are specified ,
and status register takes no action.

In MINS 3, A is brought into and through ALIJ (A = A+O), the output is shifted

right one position resulting in A = 1/2 A , and the result is deposited via

the data bus to register A.

Microinstructi on 2 (MINS 2) produces the following action

A is not gated to ALU ,
IC is gated to ALU ,
addition wi th carry In ,
no shift of ALU output,
IC is data bus destination ,
next microinstruction address least signifi cant bits specified ,
and status register takes no action.

Next we examine the processing unit in some detail and contrast the character-

istics of several available bit-slice processors. We shall choose from

among these for implementati on of a higher level image processing machine.

2.3 Process ing Unit

The processing section is divided vertically, both registers and

ALU, into a number of bit slices which are identical as shown in Figure 2-1.

The ALU unit (Figure 2-6) typically contains an arithmetic logic unit, a

set of temporary data registers whi ch have one or two entrance and exit

paths, a mu ltiplexer which will select among a number of data sources

for the ALU, a decoder for control signals , and a register to hold status

bits as described in the last example.

13

a -



From Memory From I/O

JJ

Data In
j[
~

MULTIPLEXER 
_____________ 

. 

S

And
REGISTER FILE

I
ALU

SHIFTER

~~~ DECODER 
REGISTER

~~

ADDRESS OUT Data Out
(To Memory I/O)

Figure 2-6. Block Diagram of ALU

14

Tables 2-1 and 2-2 show some of the characteristics of commercially

ava ilable bit slice microprocessors; Table 2-la shows the data handl ing
characteri stics , i.e., the type of registers and size, the number and kind of
data ports or bus lin es ava il able, and control lines . Table 2-2~ shows the
extent of the ari thmetic and logic capabilities of the ALU. The Intel 3002

is 2 bits wide while the remainder of the bit slice processors are 4 bits wide.

There are some important s imi lar iti es and differences among these processors

which we shall note as regards their application to image processing.

TABLE 2-1. Data Handling Characteristics

REGISTERS DATA PORTS

POWER CONTROL
MODEL (MIN) ACCUM. REG. FILE BUFFERS INPUT OUTPUT BIDIRECT LINES

Fairchild -
9405(T2L) 500 0 8 1 1 1 0 8

Intel-3002
(T2L) 725 1 11 1 3 2 0 9

MMI-6701
(T 2L) 1,075 1 16 0 1. 1 0 17

AMD-2901A
(T2L) 925 1 16 0 1 1 0 18

AMD-2903
(T2L) 1,000 2 8 0 1 2 0 11

TI-SBPO400A
(12L) 1,125 2 0 2 1 2 1 17

SBPO4O1A

TI-SN745481
(T 2L) 1,374 1 0 1 1 0 2 17

MC-10800
(ECL) 1,155 1 16 1 . 1 0 2 17

——

15

.

—~~~~~~~~

.

C
24.) C

0 5- .C

CD ~4- r- 4.)
I - i ~~~0 i ~~~u)

ovl I • dJ~~~~ S_ a) 4fl
W~~ I CD > 0 - a) S- a)

0 a) N 0~r—
0<’ a

NI NI LU NI
W V) J . — —0 NI NI 0 NI 0 NI 0 0 0 LU NI CD CD

<-I

S

-
C

~04J. a) C

~0a)
I-

—~~~~‘—~ ‘ I E ’ ~-01 0~~~~~r—
•..

~~~~~

C FV)~~~~~. U a )
- >,.C

U,
C

•
0 1—I
4.) b~.4I 4)) U,
U Q~I ~ I a) a)
C <I >- >-
U-

U
•r
0,o a I
-J i — I
U ~~ I LU LU
.
~~~ X I 0 0
4-’ WI ‘-4

a) ~~~~~
‘-‘1 I 1 1 I — I — 0

.~~~ 0 0 0
-.5..

c~I I—
0 I —J _J 0
C..) ~~ () ., •~~~ S
~~ I E ~~

C..J a)
4J 4) C

a a a U W W r -
LU ~~ I ~~ ‘.0 C5.J C.) — C.J i

~~ E ~ 0.
...i 01 C~.J C~

..J .-I C,j 0 0 C..) S.. a) U ~I a a a ~.J 4.) 5. 5.. ~I— I CSJ ,_.4 . 4 ~~4 q 4 ,—4 a 0 .0 U U U
a ~~ 0 ..4 —i — 0 ~0 ~ a) C —

~~ I .—i a a a a a a _J l~ U) 0 ‘ 4 NJ
0 U) (I) U) U) U) U) a

a a a a C_) a a — ,~.4 (~)0i .
~~ < < < <~~sj < <~~4 < <U) 0 -4 C~.J

a a 4.)
U, i ~~ I LU LU 0
01 a a a a a

I w ~~ 0 0 < 0 < <i-I o w w w ~~ LU ~~a
~~~. 0 ~~~~~~~~

~~ 0 0 0 0 0 ~~ 0 0 z 0 Z ~~ 0 U U
a a a a a LU a a a LU ~~ <0  K K

< < < < <a  < < a  < a
0 a a a a aO a sQ

C..) L) C.) C.) C.) LU C.) C.) LU C.) LU
C.)< 0<O 0~~~~~z w w

< <  — 0
0—  ~~ 0

WI <
~~ — — ~~0 0 0 0 0 Q. Q. ~~~~ I -
0 N-. O~ 0’~ 

- - Z
a-. m ‘.o c’.j c’.j U) U)

16 

__________ 1
—-S —5- ——-5- ~~~~~~~~~~~~~~~~~~ S .- S - -S - - S .. — 

~~~~~~~~~~~~~~~~~~~~~~~~~ —


The Monolithic Memories 1111-6701 is very similar in architecture to the

Advanced Micro Devices 2901A processor; the register configuration, data ports,

control lines, arithmetic/logic operations, and decoded status have a close

correspondence. The AMD 2901A has a cycle time of 200 nanoseconds, one of the

fastest built to conform to military specifications, which can be decreased

further by appropriate bus structures. The processors have found ready appl i-

cation as control processors by cascading them to as many as 128 bits wide.

Their data manipulation abilities are not as powerful (number of data ports)

as others but the number of regi sters , 16, reduces memory manipulation and

execution time.

The Fairchild 9405 finds good application in simpler processing problems

where an inexpensive , simple machine is appropriate. It may not be powerful

enough to handle the image processing algorithms with sufficient speed.

The AMD-2903 is an upgraded version of the AMD 2901 with a multiply!

divide capability , a smaller register f i le, and parity checking. The arithmetic S

capability has been significantly enhanced and the data manipulation capability

has been changed in several ways: decreasing the number of regi ster files and

increasing the number of output ports. The AMD 2901A, 2903, and 11111-6701 are

primar ily a imed at numerical calculations with good data manipula t ion

characteristics. To increase manipulation ability, the designer must supply

additional features such as an enhanced bus structures, microinstruction

formatting, and perhaps additional temporary storages.

The Intel 3002 is two bits wide but has substantial data manipulation

capability in the form of a large number of I/O ports ; however , the s ing le port

register file will probably require an Increased number of instructions and

corresponding execution times. A fundamental consideration Is the. use .of - -

two chips to dupl icate the word width of the other bit slice processors listed.

17

The Texas Instrument SBPO400/SBPO400A processor is the first ALU

available in I2L technology. Unfortunately, it turns out to be slower than

any of the other listed processors, whi ch hinders it for high throughput

operations such as image processing.

The Texas Instrument T174SN481 requires memory to memory architecture

because it lacks an internal register file; thi s is not difficult to implement

but simply requires more chips. Latches are provided on the input ports

so that multipl e port rams can be used . An interesting feature is a multiple

use ALU , i.e. several registers are designated for addressing memory so that

they may be incremented while the ALU is performing some other operation.

The large number of control lines facilitates data manipulation and classical

signal processing techniques.

The Motorola MC 10800 is an interesting device; it is the fastest of
S

the group being built from ECL yet its power consumpti on (1155 milliwatts) is S

less than the TI-SN745481 and comparable to the shown TI SBPO400A. It is

20 percent hi gher than the 2901 A whi ch is a good competitor to it. The

MC 10800, like the TI SN745481, must also be supported by an external file

and has the appropriate I/O bus structure. It also provides internal parity

error control and binary coded addition . At this point , we can with some

margi n of error, eliminate several of these devices from further consideration .

~ assume at this point that the higher level image processing

algorithms will require high throughput, a major emphasis on data manipulation ,

and a lesser emphasis on arithmetic operations such as multiply and divide. The

Fairchild 9905 is probably not powerful enough for this application ; there are

faster machines than the IT SBPO400A wi th almost comparabl e characteristics.

The MMI-6701 is directly comparable wi th the AMD 2901A , and our good experience

with the latter points to it as the choice here. We shall keep the MC-10800

18

in the race because we may need the speed, and the power consumption ,

usually assoc iated with ECL logi c, does not seem oppressive .

5-
.-

~~~~~~
— : - -

~~~~~~~~~~ 
- ~~~.

3.0 APPLI CATIONS OF LISP

The higher order artificial intelligence and image understanding

algori thms attempt to acquire information from features already extracted

from the image; one can imagine a similar situation in which a number of facts

are given to an analyst and he must assemble them in a logical fashion. Thus ,

for the most part, the higher l evel algorithms will be manipulating lists of

facts or symbols; this process l ends itself to a language like LISP4 (from

List Processor) which is a language for manipulating list structures. As

suggested earlier by Lt. Col. David Caristrom , we shall look at the possible

use of LISP as an appropriate language. Let us now spend some time working

through some of the fundamenta’s of LISP to obtain some idea of machine

requirements.

3.1 Symbolic Expressions

We define an atomic symbol as no more than thirty (30) alphanumerics

which represent an entity and are not capable of being split. Also , the

first character must be a cap ital letter , e.g. A5B63, ZQRSTWRR , M, P54321Q, etc.

S-expressions are the lists and are made up of atomic symbols or other

S-expressions in the following form: left parenthesis , an S-expression , a

dot, an S-expression , and a right parenthesis. Some examples are:

(A5~(8~C)), and ((Xi-Y) Z - (Y~Z)). The third expression , for example ,

consists of an S-expression, an atomic symbol, and an S-expression , further

the first and second S-expressions consist of two atomic symbols each. Having

described some symbolic definitions , let us consider five basic functions.

3.2 Basic Functions

The notation will be as follows : the functi on will be in lower case

letters; the arguments will be.- ou-ped--i-n--square brac-kets-and-separated by a

semi-colon. The function “cons” is used to build a S-expression frt~ two

smaller ex press i ons (wh ich , recall , may themselves be atomic symbols).

20

—
.~.--- 5— 5- - - - ~~4~••_.55- —5-55

Some examples include:

cons [A1;731 = (A1~Z3)

cons [AAC; (BB~CD)] = (AAC (BB~CD))

cons [cons[MH;OP};Z3] = (MN~OP) Z3)

To obtain a divisible part of an S-expression , two different functions

are employed , one to obtain the leftmost, or first subexpression , and the

other to obtain the rightmost , or second subexpresslon. The former function

is called “car ” and the latter is called “cdr ” ; some examples fol low:

car[(A-B)] = A cdr[(A~B) } = B

car[((MN.OP).Z3)] = (MN-OP) cdr [((MN-OP)~Z3)] = Z3

car[Z•N16 } = Z cdr[(N16-Z)] = Z

These functions have one argument, but the functions are only defined when

that argument is not an atomic symbol .

Thus far we have described three functions which are used to construct

larger S-expressions or obtain divisible parts of an S-expression . Consider

another type of function , one whose value is either true or false; the

Function “eq” is a test for equality of atomic symbols:

eq[A;A} = T

eqIA;B 1 = F

eq[(A B);C} is undefined

The function “atom” is true if its argument is an atomic symbo l , e.g.

• atomFA] = I

atom I (A-B)] = F

atom [ABCDEFGHI1234] = T

21

- - —5— ---5--5--5-,-

Having described atomic symbols, S-expressions , five bas ic func tions, and
having seen something of the recurs ive nature of LISP , let us cons ider some
more interes ting conditional express ions. These kinds of ex press ions w ill

begin to give the reader some inkling of the processing capability necessary

to acconinodate LISP.

3.3 Conditi onal Express ions

A conditional expression of the form [c1
-‘

~ e1; c2 + e2;c3 ~ e3; . . .]

means that if c1 is true, then the value of e1 is the value of the enti re
expression. If c1 is false , then if c2 is true, the value of e2 i s the value
of the entire expression. The c

~
are searched from left to right until the

first true one is found . Then the corresponding e1 is selected. If none of

the c
~

are true , then the va l ue of the entire expression is undefined. There

are some particular conditional expressions which we describe now, where lower

case x , y, z are symbols for general arguments.

The function subst [x; y; z I gives the result of subst i tuting the

S-expression x for all occurrences of the atomic symbol y in the S-expression

z. The function is defined as

subst [x;y;zI = [atom[zJ -‘-[eq[z;yJ -‘- X; T + zi; T ‘- cons [subst

[x;y;car[zfl; subst [x;y;cdr [z]]1J

The expression may be put in the conditional form as:

subst [x;y;zI = [c1 e1;c2 + e2]

where: c 1 = atom [z]

e1 eq[z;yI x;T zJ

c2
= I

e2 = cons t subst [x;y;car Ez) ; subst [x;y;cdr(z)])

22

and: c1’ = {z;y]

e1’ = x

C1
t’ = T

e2” = Z .

As an example, assume that z = ((A.B) C), x = (X .A) , and y = B, then

Step 1. C1
= atom ((A B) C) is false

c2
= T i s true

car [z] = (A B)

cdr [z] = c

e2
= cons [subst[x;y;(A•B)]; subst [x;y;C]J

S and evaluating each part of cons:

S

Step 2. Subst [x;y;(A•B)] =

atom[(A.B)] is false

T is true

car (A .B) = A

cdr (A B) = B

cons [subst [x;y;A]; Subst [x;y;B)] =

Subst (x;y;A] Subst [x;y;BJ

atoni[A] is true atom[B] is true

eq (A•B] is false eq [B;B] is true

T i s true
S

Subst [x;y;A) = Z = A Subst tx;y;B] = x = (X.A)

then cons (subst [x;y;A]; subst tx;y;B]] = cons [A;(X A)] = (A~(ZA)).

Step 3. Subst [x;y;c]

atom [ci Is true

eq [c;B] is false

T is true

Subst [X; y;c] = z • c
23

And , substituting into the original expression , we find that

e2
= cons [(A ~ (X ~A)) ; C J = ((A- (X-A)) .C)

which is equivalent to substituting X (X’A) for B in the expression z = ((A B)-C).

Another function is equal [x;yJ which is true if its two arguments are

identical S-expressions and false if they are different;

equal [x;y] is defined as

equa l [x;yJ = [atom [x] -~ [atom [d + eq[x;y]; I F];

equal [car[xI; car[y]j ~- equal [cdr[x]; cdr(y)]];

I -~ F].

Assume x = (A.B), y = (A~B), and substituting

Step 1. atom (x) is false

car (x) = A cdr (x)=B

car (y) A cdr (y) = B

then

equal [car[x]; car[y] equal [cdr[x]; cdr[y]]

becomes

equal [A;A} equal [B;B]

equal [A;A] = atom [A] + atom[A] + eq[A;A] = I

equal [B;B] = atom[B1 + atom[BJ ~ eq[B;B} = I

and equal [x;yI I

Where the expression has the conditiona l structure

c1 = atom[xl

c2
= equal[car[x}; car[y]]

c3
= T.

The function nu ll [xli s used to decide if a list is exhausted ; It is true

if and only if the argument is NIL which is a terminator of lists i.e. C =

(C.NIL) and null (NIL) = 1.

24

55

If the S-expressions are regarded as lists , the “append [x;y]” and

“member [x ;y]” func tions are useful . The “append” function puts two lists
together and is defined as:

append[x;y) = [null[x] + y;T -* cons[car [xJ ; append [cdr [x];y]JJ .

As an example, let x - (X1~X2), y = (X3 X4), where
c1

= null[x]

c2 T

Step 1. null [x] is false

T is true

car[x] = Xl cons[Xl; append[X2,y)]
cdr[x] = X2

Step 2.

append [x;y) = append [X2;(X3 ~X4) j

null [x2jis fal se

1 is true

car [X2 •NILJ = X2 , cdr[X2.NIL] = NIL

append [NIL;(X3•X4)] =

null(NIL) - True

append [I = (X3•X4)

cons[car[X2•NIL] append[NIL;(X3 X4))] = cons (X2;(X ,~ X4
))

= (X 2
• (x 3~x4))

Step 3.

cons[X 1; (X2 • (X3~X4)) 1 = (Xl . ~(X2 - (X3 X4)))

The function “member {x;yJ” is true if the S-expression x occurs among the

elements of the list y and is defined as

Member[x;y] = [n u ll [y] + F; equal [x;car[y]] T;

I -~ member[x; cdr[y]]].

The function “pa irlis [x;y;al” gives the list of pairs of corresponding

elements of the lists x and y, and appends them to the list a. The resultant

25

55— - .5-— - —- - -5. - - - .. 55 a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

list of pairs , which is like a table wi th two columns , is called an association

list. The function pair lis [x;y;aI is

pair lis [x;y;a] = [null [xI + a; I + cons [cons [car [xi; car [y]];

pairlis [cdr [x]; cdr [y]; all].

As an exampl e, consider two lists x = (X1•(X2 X3)) and y (yl-(y2 y3))

which are to be paired and added to a list (X4•Y4) (X5 Y5).

Step 1.

null [xl = false

T i s true

car [xl = Xl cdr [x] (X2 X3)

car [y] = Vi cdr [y] (Y2.Y3)

cons [cons [xl;yl]; pairlis [(x2 x3); (Y2~V3); a]

Step 2.

cons [X 1;Y1] = (X 1~Y1)

pai rlis [(X2-X3); (Y2’Y3);aJ =

null (X2~X3) = false

I = true

car [(X2-X3)] = X2 cdr [X2 X3] = X3

car [(Y2 Y3)J = Y2 cdr [Y2-Y3] = V3

cons [cons[X2;Y2}; pairlis [X3;Y3;a]

Step 3.

cons [X2;Y2] = (X2~Y2)

pairlis [X3;Y3;a] =

null (X3~N I L) = false

T = true

car [X3.NIL] = X3 cdr [X3-NIL] = NIL

car [Y3-NIL] = Y3 cdr [Y3.NIL] = NIL

H

cons [cons [X 3;Y3]; pairl is [NIL;NIL;a]

Step 4.

cons [X3;Y3] = (X3 Y3)

pairlis [NIL;NIL;a] =

• null (NIL) = True

pairlis [NIL;NIL;aJ = a = (X4~V4)~(X5-Y 5)

and subs t i tu t ing back ,

cons [cons[X3;Y3] ; pairlis [NIL;NIL;a] =

cons [(X3•V3); (X4’Y4) ~(X5•Y5)]

= (X 3 Y 3) (X4 Y4) (X5~Y5) = pairlis [X3;Y3;a3

Similarly

cons [con[X2;Y2]; pairlis[X3;V3;a]]

= (x2.Y2)•(X3 V3).(X4•Y4)~ (X5 Y5)

= pairlis [(X2-X3);(’(2Y3);a)

S
Finally

cons [(Xi.Yl); pairlis [(X2.X3); (Y2.Y3);a]

= (X1.Yl).(X2.Y2)-(X3.V3)-(X4•Y4).(X5•Y5) = Pairlis [X;Y;a]

We may then search the association list formed by pairlis and obtain the

first pair whose first term is, e.g.X X3, by means of the assoc function

defined as

assoc [X;aJ [iqual [caar[aJ;X) + car[a]; T -~ assoc [X;cdr[a]]]

where : caar = c a r [c a r []]

S

There are other interesting functions in the LISP repertoire, but It does

not serve our purposes to analyze them in a quarterly report. The functions

described thus far do serve to give some indication of the basic LISP

structure and raises some issues for further investigation which we discuss

now.

27

3.4 Compiling, Interpreting, Machine Language and Subroutines

It is worthwhile to define the words “source program” , l assembly

program ” , ‘compiler ” , “ interpreter,” and “machine language ” before we proceed

very far into the discussion . These words are used frequently in computer

technology . An assembly program translates from symbolic instructions, source S

program, i nto the language of a machine. The statements in an assembly

language are, generally, one to one wi th the machine language to which they

translate. Unlike a machine language , an assembly language allows the

progranuner to use symbols wi th mnemonic significance. A compiler is a

program which translates from a source language into machine (or assembly)

language . An interpreter executes a source language program by examining

the source language and performing the specifi ed algorithms. Thi s is in

contrast to a compiler which translates the source language program into

machine (the object) language for a subsequent execution. As the title to

this section suggests, we have a cho ice of operationa l modes , namely to

compile the source program , interpret it , or write it directly in machine

language with subroutines for some of the functions.

It takes about 20 times longer running time to include an interpreter

in the operational machine. Of course, the memory saving is large. But

wi th larger, cheaper, semi-conductor memories and running time at a premi um ,

it seems reasonable to lean towards the idea of microprogramming the subroutines

forming a macroinstruct ion of LISP.

There are several other issues also. We note from some of the preceding

examples that the functions are recursive; there are a number of steps involved

with storage required for intermediate results; there is an order in

evaluating an expression , i.e. certain inner expressions are evaluated first;

and there is a substantial amount of substitution. This immediately seems

to suggest several levels of memory including a fast memory for intermediate

28

resul ts; it also suggests some sort of two-level execution in which , for

exampl e, the appropriate part of a conditional statement is selected , i .e.

the c~ (conditions) are extracted ahead of time and then executed in parallel

when the ALU (Arithmetic Logic Unit) directs its attention to it. The l eft-

most true condition is then enacted. Also , if there are a signifi cant number

of members in a list , the ALU does not have to be as wide as the list if the

list l ength is characteri zed somehow. In other words , a list stored in memory

as (A.(B- (C.(D- (E NIL))))) = (A B C D E) could be characterized , when brought

into the ALU , as (A- (G).E) and car and cdr can be obtained wi thout ever knowing

what G is. This sort of pre-processing could signifi cantly cut down execution

time, reduce required bus , ALU , and memory widths at the pri ce of severa l levels

of processing and achieve a size and speed compatible with airborne require-

ments. Another related issue is computer memory structures compatible with

lists which we examine now.

3.5 List Structures

LISP utilizes a tree structure for storing lists inside the computer

instead of sequences of binary coded characters. “ computer word is shown In

Figure 3-1 as a rectangle divided into two sections called the address and

decrement, each of which is a 15 bit field of the word. A pointer to a computer

ADDRESS i DECREMENT

• Figure 3-1. Computer Word

• word is defined as the 15 bit complement of the address. We represent the

condition where the decrement of word A is a pointer to word B as shown

in Figure 3-2.

29

t
~~~-

. .



f ADDRESS f DECREMENT 1 .‘ ABCDE DECREMENT j
Figure 3-2. Word Pointer

Figure 3-2 also shows the conditi on where word B contains a pointer to the

atomic symbol ABCOE in its address. Consider now some memory structures

for several S-expressions.

(X- ( Y z)) = (XbYbZ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~
( C X . ?)  Z (x Y ))

Figure 3-3. Typical Memory Structures

In Figure 3-3, the first structure represents the basic S-expression

which is composed of a left parenthesis, an atomic symbol , a dot, an atom ic

symbol , and a right parenthesis. A NIL pointer is not necessa ry in the memory
structure. The second structure has an X pointer in the add ress of word 1
but use the decrement as a pointer to the rest of the expression. Similar

comments apply to word 2. Word 3 has a NIL pointer In Its decrement. The

third structure has two basic S-expressions in It which can both be put in a

single word. The only problem remaining Is to point to them properly. Word 1

points to the first (X.V) and Its decrement points to the rest of the expression.

Word 2 points to the Z term and the remainder of the expression. Word 3

points to the final (X.y) and the NIL termination. Another example is the

expression (X.(Y-(Z.X)).(Z X)), whose memory structure is shown in Figure 3-4.

30

5 5 --  -55--- 
—-55- --. a5-—-—-— -- 55-



S 

Figure 3-4. Memory Structure for (X- (Y (Z X)) (Z X))

The expression may be written as (X~G ( Z X ))  where the f i rst line of

wo rds represent X and (Z~X) and the second line represents G. a\ simpler way

to form the structure is seen in Figure 3-5, which is similar to the third

structure of Figure 3-3.

I 

~r(~ I 
] ‘1 I II ‘1 I NIL

~ 1 11
- 

I _____

[r I~~~~~~ I

1~~ I x I

Figure 3-5. An Alternate Structure

The advantages and disadvan tages of such a memory structure are

stated in quite general terms. As is the usual case, the particular application

will prov ide the appropriate weights to the p lusses and minuses. On the plus

s ide, it has been suggested that the s ize and number of express ions which the

program must handle cannot be known in advance. Therefore, i t  is d i f f i c u l t

to arrange blocks of storage of fixed length to contain them. In point of

fact , this is done all the time. A second advantage is the use of pointers 
S

which facilitate a change in list structures by changing pointers. On the

31



minus side, at least twice as much storage is required. To conclude this

discuss ion of LISP, let us give an example of altering a list structure and

altering the pointers.

Consider a list structure of the form ((ABC)(DEF)..., (XYZ)) which we

want to alter to (A(BC))(DEF)),. . .-(x(YZ))). The function LIST is used in the

sense that LIST [XI provides a list of the arguments of X. For example, if

Xl = A, D, G, ... X, X2 = B, E, H, ... Y, and X3 = C, Fl , ... Z then LIST [X l;

X3; X3] = ((ABC) (DEF), ... (XYZ)). The expression Xl can be written as

car[X) and LIST [car[X]] = A, D, G, ... X. Similarly, cdr[ABC] = BC so that

car[cdr{X}] = B, and cdr[cdr[X)] = C. Then the new LIST (A(BC)...) may be

formed by setting LIST [car[X]; list [car{cdr[X]]; cdr[cdr[X]]ll = grp [Xl.

32



4.0 ALGORITHM DEVEL OPMENT

The purpose of this section is to describe the relaxation process dev-

eloped by the University of F1aryland and ways of implementing it in an airborne

digital machine.

4.1 Relaxati on (discrete case)5

For the first quarterly report we shall confine ourselves to the

discrete Relaxation case which will be superseded in the future by the

probabilistic case. However, it serves as a good introducti on to the algori thm

and hardware implementation. Relaxation is essentially an i terative technique

where the relationships between objects are used to classify them; specific image

characteristics (objects) are used to classify the image figures. For

examp le , the objects could be line segments detected in the image. If

there were four of them and they were at right angles , one might conclude

that they formed some sort of a rectangular figure . Objects can also be

other image characteristics such as blobs , straight lines , or junctures

which , by themselves , do not have much meaning. But considered together,

the classification of the figure becomes apparent. We examine the

relationships for consistency , i.e. if the objects form a particular figure
S (rectangle), they must have a certain relationship to each other for each

part of the figure. Further, inconsistent relationships must be rejected.

In a deeper cut through the problem , we may perform the iteration to find

a consistent relationship by discarding inconsistent relationships.

To show how this is done let us return to our previous example. Suppose the

four objects have several possible relationships between pairs , and we are

considering the relati onships at the pair-wise l evel only. One way to iterate

i s to as sume a certa in class ifi cation for object number 1 and cycle through

the relati onship between object number 1 and each of the other objects in parallel.

If the class ifica tion of object number 1 Is incons i stent with one of the other

33

I



objects, the classification for object number 1 is rejected and the next

classification is tried . Clearly, the analyst can end up with a set of

consistent classif ications , none of which dominates. This is the shortcoming

S 
of the discrete case and is handled in the probabilis tic approach. The next

item of interest is how the relationsh ips are examined for consistency , as

outlined in the Maryland paper.5

Assume there are three objects a1, a2, and a3 and their possible S

classification can be A or ji. More specifically, a kind of graph can be

formed as shown in Figure 4-1. The dots show that th~ objects can all be

represented as a A or a i. If it were

a1 . a2 a3

A .

1.1 .

Figure 4-1. Graph Form of Relaxation

not possible , e.g. to represent a3 as a p, there would be no dot at the (11, a3)

position. Suppose, further, that the following arbitrary set of relationships

exist between the objects.

A = A1 = A 2 = A3 = {A , i.’} ( 1)

= = ~~~~~ (~_ ,~i)} (2)

1j3 W~~), (~i ,x ) )  (3)

(I) states that the objects a1, a2, a3 can be represented as either A or

p. i.e. ~A ,p}. (2) states that the relationship between a1 an d a2 is the

same as that between a2 and a3 and can be character ized as A for each or

~ for each. (3) states that the relationship between object a1 and a3 can

be stated as either A for a1 and p for a2 or p for a1 and A for a2. Then

S_ _

~

S

~ 

- — . - -



. 5

these relationships can be drawn as arcs on the graph as shown in Figure 4-2.

a1 a2 a3 a1 a2 a3 a1 a2 a3

iTT >K
Figure 4-2a . Figure 4-2b. Figure 4-2c.
Relationship (1) Relationship Relationshi p

(1) + (2) (1) + (2) + (3)

Now, we see from Figure 4-2c, that there is an arc between each of the objects

which symbol izes the idea that there is a consistent relationship among them.

However, if we trace our way around the graph we find that a1 
= A , a~ = A , and

a3 = A but to return to a1 means that a1 
= - a contradiction. On the other

hand, the graph of Figure 4-3 represents a case when there are two consistent

and possible interpretations of the set of relations. The two consistent

classifications from Figure 3 are (A, A , ji ) and (1.1, ji, A) for objects a1,

a2, a.., respectively. Next we consider hardware implementation.

a1 a2 a3

Figure 4-3. Two Consistent and Possible Situations

To form the graphs on a digital machine, we assume a1 is classified as A. We

cycle classifications for a2 and a3 against it by matching X’ s. So for a2,

we obtain (A,A) and for a3 we obtain (A,p). Then for a1, a2, a3, we obtain

(A, A , ii). Similarly, assuming a1 
= p, we obtain (ii , p, A). These are the

same two consistent classifications shown in the graph of Figure 3.

35



Since we are manipulating lists of symbols rather than lists of numbers ,

a natura l computer language for this problem is LISP .2 Referring to LISP ,

we note that some defined functions are directly applicable to the problem.

Firs t of all , there are two possibilities for a1, A , or p. Thi s should be

compared with the first of each two of A
1 2  i.e. A of (X ,X ) or p of (p,p)

which represents a1. In the language of LISP , A = ( A S p ) ,  =

A =  [(A .p ).(p .A )J. Further to make the form of A compatible with that of

and not change the meaning of A ,  we let A = [~~ . p ) . (A ~p) ] .  Then we could

employ the pa irlis and equal functions seq uentially. The function pairlis

[x;y;a] gives this list of pairs of corresponding elements of the lists x

and y, and appends them to the list a. As an example , let x = (X l. (X2 ~X3))  and

y = (Y 1~(V2 .Y3) )  which are to be paired and added to a list (X4 .V4) ~ (X5~Y5) ,

then pairlis [x ;y;a] = (X1~Y1)~(X2~V2)•(X3 Y3) (X4~Y4) (Y5.Y5). Then pair lis

[A 1;A 12
;l] = ~~~~~~~~~~~~~~~~~~ and equal ~~.x ) = True; we obtain A for

a2 from the second pair , assuming we remembered a2’ s position in that pair.

Simultaneously , pairlis [A 1;A 13 ;l] is computed to obtain the classif icat ion

for a3. A more direct approach in LISP is the “SASSOC” function which has

the followi ng definition:

sassoc [x;y;iJ]: searches y, which is a list of dotted pairs for

a pair whose first element is x. If such a pair

is found , the value of sassoc, ;i , is this pair.

sassoc [x;y;pl = [null[y] -~ 
p [ 1; eq [caar [y]; x] + car [y];

I -~ sassoc [x; cdr ly]; p J ]

Applying sassoc,

A = [X ,p ], car IA 1 = A = x
I I

y = A = [ ( A ~ X )~ (p~p ) ]
1 2

then ,

sassoc [A ; ((A.>~).(p.p))•p] =

36



k

Step 1.

null [yJ is false

caar [(A A )~(p.p)] = car [A ~A ] = A

eq [carr [y1;xJ eq [A;X] = I

sassoc car [yj = (x~A).

The pair has been found , the second atomi c symbol of the S-expression is the

classifi cati on for a2, namely A. Now , we repeat sassoc for A to find a

consistent classification for a3.

A = [X ,p ] ,  car [A J = A = x
I I

II 
= [(A~p)~(p~A) ] = y

then

sassoc= [A;((X~p)~(wp));p] =

Step 1.

null [y] is false

caar [(A~p) (p~p )J = car [X~pJ = A

eg [caar [yl;xI = eq [A~A l = T

sassoc = car (y) - (A p)

and the classifi cation for a3 is the second atomic symbol in the S-expression ,

i.e., p for a3. And the classification becomes (A,A ,p) for (a1, a2, a3).

We would then repeat the procedure above where a1 starts with p, and we obtain

(p,p ,A ) for (a 1,a2,a3). In summary , we have shown that there are at least two

LISP structures which produce the consistent classifi cation lists for objects

a1, a2, a3 as also shown in the graph of Figure 3.

37

—55-—— — — 55--- -55 — —55- -S -~ — - - S —



S In terms of bit slice implementation, we mi ght assign a processor

to each object. The width of each processor would be the width of the

classification word. It is worth pointing out that, since each processor

would be doing the same thing, it is poss ib le to have one controller
L. for all three CPU ’s. This reduction in hardware is not possible with 

-
microprocessors which are not bit slice.

38

3

— - S •5. ._SS 55 — ____f
_
~~~~~ -- —55- -55 —— S 

__
~

/

5.0 BIT SLICE PROCESSORS

West inghouse has substantial experience in bui lding av ionics processors

(high speed, small size) from bit slice components; we have built process

—

controllers, general purpose mac hines, signal processors, and processors for

satellite applications where reliability must be extremely high. The general

purpose avionics processor (a member of the Westinghouse Mill i-EP family)

described in this section is an exampl e of a bit slice CPU and bus controller;

it has the following characteristics:

Volume : < 1 ft3

Throughput : 400,000 operations/sec.

Memory : 128,000 words, 16 bits each

Mean T ime Before Fai lure : 2027 hours

Instruction Set : Proposed A ir Force Standard

General Registers : 16

Indi rect Address ing : Unl imited

Fast Floating Point : 32 or 48 bit

Bus Structure : Microprogrammed

CPU : Microprogramed

Bit Operation : 1, 8, 16, 32, or 48

Power : 600 watts
A functional block diagram of the computer is shown in Figure 5-1.

39

Primary Pow.,r
Pow,, Supply

Backu p Power

Processor Pow,r

Dl

F CMADD 7 1 MAD

1 1 I t 411_ I _ _ _

[

CAU

_

~~~~ 

EAU 

[ 

MC 

~ r 

MEM

] [ ~~~ 
~~~~~~tsrn i

DO
J 1?

~~

MDTA t
SE/AGE Interface 78~O158-V•1

Figure 5-1. Computer Functional Block Diagram

5.1 Functional and Performance Characteristics

5.1.1 System Architecture

The architecture of the avionics processor AN/AYK-15A is shown in

Figure 5-2.

The processor portion is composed of the CAU (Central Arithmetic Unit),

the EAU (Extended Arithmetic Unit), and the MC (Memory Controller). These

modules are functionally partitioned for ease of built -in test.

The I/O portion is comprised of standard military interfaces, interrupts ,

discrete inputs and outputs , interval timers, watchdog timer, real time clock ,
and memory protection circuitry . The memory system consisting of 128K of core

memory expandable to 256k, 4k of bootstrap ROM, and 2kX32 main memory ROM is

interfaced directly to the I/O bus. The support equipment interface consists

of a serial computer control port. The computer control port is the means by

which operator control and maintenance of the computer is achieved .

40
- S

-— — -- —-r- - - - - -* - - - - S

00 i~~~~~~
]0’ Cdl.

MOTAcMAoo
_ _ _

I I L , ~~~~~~~~
_ _ _

_ _ _~~~ c*u 1 [iAU I Luc i ,io

_ _ _ _
_ _ _ _

L~~~
—i

~~~~~~ ~ p~ T uoo,.r, Corntrot1~~~~tdlS1 
_________

L 
Mijvosv/ fl~~ ffUO!1 L T..ron 

F “h.a 1 [
~~~~‘ 

1
•~i.d Pt. Dirndl L 4k Soot ~AM I.. Cladil

_j I P,~ocsuov
__1

a,*ew,w,ac
L AGE ~~~

I — I
‘ 1 1 l _~ F T

- F~T~ iDI o~ ~~~
DID

44V .t5v —12V Nuds~~ t,sVttIflI

~
T

1
11T1 1 1 1

~~ iE I
£~ E

~~~ r [t.. ,1~~WI~ .p tucw., Ew.nt IC ~~~~~~ Cl d c l  c~d lSvoo’v E~~o, L°”~°”—1 iv v v v ‘ v !  ~‘ I ~ I

~j~~ L~i L~’~~~~i
i isv 25V _____________

4~~~H1
MIL.STD 1153A
0~~~~ ,$.Oi5~ V•2

Figure 5-2. General Purpose Avionics Processor

5.1.2 Central Arithmetic Unit , CALl

The CALl performs all the fixed point arithmetic operations necessary

to implement the instruction set. The CAU module is structured around the

AM-29O1A bipolar LSI microprocessor as shown in Figure 5-3. The microprocessor

is 16-bits wide and contains 16 general purpose registers for arithmetic and

indexing. Two registers (RSAV) latch the general-purpose register numbers

duri ng an instruction fetch. Their outputs are multiplexed to give register

number i nformation to the AM-2901A. A four-bit counter (MDCT) catches the shift

count for shift instructions. It is also used as a sequence counter and

to generate the data bit mask (through the BITMSK decoder) for data bit

manipulation.

The AM-2901A is integrated with the other system elements by way of

two 16-bit buses, DI and DO. The DI bus is the data interface to the micropro-

cessor. Information from the MC, I/O, and EAU are routed to the microprocessor

on this bus.

41

p  — 5 —



__________________________________________________________ -

_ _  

1 1 ~
4 ~~~~ 

.

I. 7801M-v 3

Figure 5-3. CALl Organization

The DO bus is the output data bus from the microprocessor. Results

of the microprocessor operations may be routed on this bus to the MC , I/O,

or EAU registers.

The control structure for the processor is implemented with a micro-

program control store as illustrated in Figure 5-3. Schottky LSI microprogram

sequences are used to control the sequenc ing of add resses to the control ROMs

(CROMs). The sequences provide both conditional branch capability , as wel l as

a “push—down stack” for microprogram subroutining .

Addres s sources for the microprogram sequencer may come from one of

three Pointer ROMs. These ROMs are used to translate system states into

starting addresses for microprogram control routines . The MC pointer ROil

translates the order type field into a starting address for instruction

execution. In a like manner , the JADD ROM is an address source for the

microprogram sequencer .

Microprogram address modification is provided by means of a 16 to 1

conditiona l branch multiplexer. Appropriate system flags are selected by thi s

mul tiplexer for microprogram testing.

42



The microprogram address (CMADD) is supplied to the MC , EAU, and I/O

to control sequencing .

5.1.2.1 Data Formats

The CALl module performs fixed-point arithmetic on 16-bit data (single

precision ) and on 32-bit data (double precision). The data formats are shown

below:

Single Precision
I S (Fixed Pt)

16 1

[ S (  MSI{ I
Double Precision
(Fixed Pt)

LSH 1
In addition , the CALl performs operations on 8-bit data (byte operations) and

single—bit data (bit operations).

All fixed-point data operations are performed using two’s complement

integer arithmetic (binary point at the extreme right end of the data).

5.1.2.2 CAU Registers

The CAU contains a set of 16 genera l registers for use by the programmer

for arithmetic operations and address modification . Certain registers hi~ve

implied usage as follows :

o Registers Ri , R2, ..., R15 may be used as index registers for those

instructions having the RX field.

o The registers may be partitioned as 16 single-precision (16.-bit)

accumula tors , 8 double-precision (32-bit) or floating-point

accumula tors , 4 extended-precision floating point accumulators,

or any combination of the above.

43



o Four regi sters , R4, R5, R6, R7 may be used as base registers

for instructions having the Base Relative Address Mode.

o For instructions having the Base Relative Addressing Mode, RO

is the accumulator for double-precision and floating-point

operations, and R2 is the accumulator for single-precision and

integer operations .

o R15 is the implicit stack pointer for the Push and Pop Multiple

instructions.

All the general registers are 16 bits in length.

Three additional registers are accessible to the programmer for

certain operations. They are:

a. IC Register

b. Status Register

c. Interrupt Mask Register

The IC is 18 bits long . The other two registers are 16 bits .

The IC register directly addresses 256K of memory to point to the next

instruction to be executed. It is incremented by hardware during the instruction

fetch machine cycle. The IC register may be loaded by executing any of the

following instruction types:

a. Jump Instruction

b. Subroutine Jump Instruction

c. Load PSW Instruction

d. Return from Interrupt Instruction

To provide maximum software flexibility to accommodate the 18-bit IC,

instructions are provided in two formats: normal 16-bit address fields (which

leave the upper two IC bits unchanged) and long 18-bit address fields for

jumping to any of 256k locations (refer to Section 5.1.2.3). Upon interrupt,

the upper two bits of the IC are automatically saved in the status register.

44

~~~~ 
5_ S _ _SS__ -~ -.- -r -~ - ~~~-- S

Return from interrupt automaticall y restores these bits along with the rest

of the IC. This implementation provides symetry for software and compiler

operation , providing maximum efficiency .

A similar 2-bit extension is associated with the operand address.

These extensions may be loaded via the Load Block I/O command and read via

the Read Block I/O conmar~d. A Move instruction is provided to allow blocks

of data to be efficiently moved anywhere in 256k of memory .

These two extension registers allow addrcs sing of up to 256k memory

half—words for both instructions and operands . If instructions are allocated

to block 2 and operands to block 1, no block switching would be required

during a program running on the basic 128k processor.

The status register reflects the current arithmetic status of the

processor. Its format is shown below. The status word is automatically

updated by hardware after execution of every arithmetic instruction.

Additionally, it is loaded by the LPSW instruct ion.

STATUS REGISTER

F5
~
z 0 ~U ~OT US ED EA~ I~1L - ~—~‘ _________

IC Block t’~umber
16 15 14 13 8 LA 3lock Number

I ‘ Floating PT Underf low
____________________ Fixed Pt or

Floating Pt Overflow
_______________ Resul t = 0

- Sign of Results

The interrupt mask is a 16-bit register in the priorit y interrupt

system used to individuall y mask interrupts. It is loaded when executing

either the LPSW instruction on the OUT (interrupt mask) instruction . Its

format is shown below.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ S

I1~
Ix

2 1

~
I INT N0. 1

L INT No. 2

- INT No. 15

________________________ NOT USED
O = Allow Interrupt
1 = Disable Interrupt

5.1.2.3 Addressing Modes

Al though the memory system is defined in terms of 32-bit words, the

system can efficiently handle 16-bit half-words. These half-words can be

directly addressed by all instructions using 16-bit data, and 16-bit instructions

arid data can be packed 2 half-words to a full -word with no penalty to memory

space or throughput. Instructions for l oading and storing bytes can directly

address the upper or lower byte of a half-word .

The CALl provides 10 modes of operand addressing . Each addressing

mode and its related instruction format is as follows :

o Reg ister Direc t, R: An instruction-specified register contains

the required operand. (With the exception of this address mode,

DA denotes a memory address.) Double word operands begin in

even-numbered registers.

o 7 8 11 12 15

[oc I~~~~1

46

5 -- -5-—— —- - -

o Memory Direct , D: An instruction -specified memory address contains

the required operand :

ICC l~~ I A

31

o Memory Direct- I ndex , DX: The memory address- of the required operand

is specified by the sum of the content of an index register and the

instruction address field. Registers Ri , R2,..., R15 may be S

specified for i ndex ing .

O 15 16 31

IOC I R A R X I A

RX = 0 (~ onindexed)
RX ~ 0 (Indexed)

o Memory Indirect , I: An instruction-specified memory address contains

the address of the required operand . The address is a 32-bit

word containing an 18-bit address plus a bit which specifies whether

the instruction should go indirect another level .

~ RP. [~ A

o Memory Ind irect with Preindexing , IX : The sum of the content of a

specified i ndex register and the instruction address field is the

address of the address of the required operand . Registers Ri , R2,

R15 may be specified for preindexing . The indirect address

is in the same format as for Memory Indirect.

(oc I RA IRX A I
RX (R1, R2m ...R15]

47

_

, ~~~~~~~~~~~~~~
s__S __ s_ _ - - ~~~~~~~~ 5 —_- - S — SS_S__ ~S55 ~5 —— S ___~~~~~~~~~ 5 _

O Immediate Long Indexable: The contents of Rx when added to the

address field , A , is the operand if R
~

c [R1,...R15]. If

Rx 0, then A is the operand .

1 R~ JR~
A

o Long Address : The RB field contains an extension of the address

field (BLK). These instructions provide the capability to jump to

any word in memory or move data from any word in memory.

I ~ I~ I BLK I A

16 116

0 Immediate Short , IS: The required (4-bit) operand is contained within

the 16-bit instructions. There will be two methods of Immediate

Short addressing; one which interprets the content of the immediate

field as positive data and one which interprets the content of

immediate field as negative data.

o Immediate Short Positive , ISP: The immediate operand is treated

as a positive integer between 1 and 16.

o Immediate Short Negative, ISN: The immediate operand is treated

as a negative integer between 1 and 16. Its internal form will be

a two’s complement, sign-extended 16-bit number

I RA Ii~J
o IC-Relative, ICR: This address mode is used for 16-bit branch

instructions. The content of the instruction counter (he., the

address of the current instruction) is added to the sign extended

8-bit displacement field of the instruction . The sum points to

the memory address to which control may be transferred If a branch

48

is executed. This mode allows addressing within a memory region of

_i28
io to 127io words relative to the address pointed to be the

instruction counter.

16

I D J
o Base Realtive , B: The content of an instruction-specified base

register is added to the 8-bit displacement field of the (16-bit)

instruction. The displacement field is taken to be a positive number

between 0 and 25S
~
o. The sum points to the memory address of the

required operand . This mode allows addressing within a memory

region of 256io words beginning at the address pointed to by the

base register.

b c I D

o Stack Addrcssing : The CAU provides for a’register/memory stack

mechanism . Two instruction formats are permitted. The first

format allows any of the 16 general registers to be designated

as the stack pointer, while the second format uses R15 as the implied

stack pointer.

The stack is formed in memory by execution of appropriate micro-

program routines to implement a “ las t in first out” (LIFO)

algorithm . “Stacking ” will proceed by loading data into successively

larger memory addresses. Stack overflow will be detected as a

memory protect violation when the stack area advances into protected

memory.

49

Four instructions are provided for stack manipulation. The SJS

and URTS instructions provide for subroutine stack linkage allowing

any register to be designated as the stack pointer. PSHM and POPM

provide register-to-stack capability for stacking and unstacking

1 to 16 general registers. Both PSHM and POPM use Ri5 as an

implied stack pointer.

5.1.3 Memory Controller

The memory control (MC) contains the contro l necessary to i nterface

the CALl with the memory system (Figure 5-4). The MC is implemented with Schottky

logic. The MAD bus provides address information for memory and I/O operations.

The DI and DO buses comprise the data exchange buses for communication with the

CALl. Memory activity is initiated by microprogram signals which direct control

logic to begin a memory cycle. When the appropriate memory is ready,

the control logic sequences its data onto the MDRA bus (Read) for transfer

to the MC.

~~~~~~~~~ ~ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _  _ _ _ _ _  _ _ _ _ _

I MOR1 MDR2 tC 1 EA m~ ~~ ,

I I I I _ _ _

L ~~~~~~~  
L~~~~I

4;~~~~] [__ 2 *  I I
_____ 

I IMAD
I &

DI 
____________________

MC Conirol

I__i MEMEN Msmo,y

CMADD ~
[

contioi j ~~ 
} ~ 4

AGf

Figure 5-4. MC Architecture

- - - 5 -



Two 16-bit registers (MDR 1&2) are provided to hold data words

from the memory. The IC counter supplies instruction addresses to the

memory, while the EA counter supplies data addresses. All of these registers

can be loaded from the CAU via the DO bus or read by the CAU via the CI bus.

The priority interrupt system is implemented using an LSI circuit

(AM-2914), which incorporates the interrupt capture flip-flops , priority
* encoder and interrupt reset logic into a single device .

A 4k bootstrap ROM is provided on the MC to handle the functions of

automatic startup (memory verification) and bootstrap load.

5.1.4 Extended Arithmetic Unit

The EAU contains the logic necessary to support the CALl in execution

S of floating-point arithmetic and fixed-point multip ly and divide. The module

is implemented with bipolar Schottky logic.-

Single precision floating-point numbers are represented in 32 bits

with an 8-bit two’s complement (nonbiased) exponent and a 24-bit two’s

complement fractional mantissa . The format i s shown below :

~~~ 2 23 Is EXP~
16 15 116 9 8

Floating-point results are normalized after each instruction. A floating-

point zero is represented by an all-zero mantissa and the maximum negative

exponent.

51

Examples of floating-point numbers:

Hex
Decimal Number Mantissa EXP

0.5 x 2127 4000 00 7F

0.5 x 20 4000 00 00

0.5 x 2
_i

4000 00 FF

0.5 x 2-128 4000 00 80

0.0 x 2
_128

0000 00 80

-1.0 x 2127 8000 00 3F

-1.0 x 20 8000 00 00

-1.0 x 2
_i

8000 00 FF

-1.0 x 2
_128

8000 00 80

-0.75 x A000 00 FF

Extended precision floating-point numbers are represented in 48

bits with an 8-bit two’s complement exponent and a 40-bit two’s complement

fractiona l mantissa . The extended precision floating-point format is shown

below:

Is 1 2~~ 2 141

I 2 15 2 31 I
1~

32
~~~~ I I EXP ]

In addition to assisting the CAU in performing floating-point calculations ,

the EAU provides hardware for enhancing fixed-point multiply and divide.

52



Figure 5-5 shows the organization of the EAU hardware. Data is

exchanged with the CALl on the DI and DO buses. A 40-bit wide arithmetic

unit is provided to handle floating-point mantissa and fixed-point calculations.

The X-REG is used in conjunction with the X-ROM to perform exponent

calculations for floating-point o~;erations. The X-ROM indicates a “scaling

count” for mantissa alignment prior to performing a floating-point add .

The necessary control lines to coordinate the EAU data flow are derived

by control ROMs (CR011) from the CALl microprogram address (CMADD) which is

supplied to the EAU and by internal control ROMs.

5.1.5 I/O System

The I/O system for the Avionics Processor is composed of five separate

functions:

o BCIU-RT

o Interrupts
o Di scretes
o T imers

o AGE Port

5.1.5.1 Bus Control Interface Unit (BCIIJ -RT)

Eight 1553 channels are provided. The BCIU-RT is the functional

control unit utilized to operate and control the MIL-STD 1553A serial data

interface channels. The BCIU-RT incorporates many unique features which trans-

late into significant user advantages.

a. Microprocessor Control

o Microprogramed for flexibility to conform to MIL-STD-1553A,

or upcoming MIL-STD-1553B (Standard Military Bus)

o Independent of main CAU

53



16
OO~~~~~~~

4_ _  _  _  

-
~~~~~

— [II~i ~
SL MQU 1 [MQL 1 ~~Req j

4,

_ _ _ _ _ _ _

[XROM
J ~

T 4 1] 4,

_ _ _ _ _

I [21 1

_ _ _ _

1~

S

I 1 [CTR7

‘I,
Shifter

4,
A

16
D 14

_ _ _ _ _ _ _ _ _ _ _ _

_ 4 -+
CMADD~~~

LHSROCTR1 [l-4SRICT R 1
[CROM J L_

HSRO 1 J HSR1

LL~~~j
£AU Control •

ROM Reg

78~O1

Figure 5-5. EAU Organization

5 5

-
.

— - -_ ~~~ - - -~~- - —~~~~~~~~-
s

- -~ -~~~ -. - -~~~~~~-~~-~~~~~~~~~~~~~_H

o Interfaced to main memory through DMA and RAM for minimal impact

on throughput

o No degradation of CALl throughput. CALl intervention is required

only to serv ice data channe l malfunction or data channel complet ion
or data channel interrupts.

b. Extensive Error Detection

c. Wraparound BIT

d. Self-Test

5.1.5.2 Interrupts

Sixteen levels of vectored priority interrupts are provided . Receipt

of an interrupt by the CAU causes an automatic (hardware action) saving of

machi ne status (IC, Status Word, Interrupt Mask) in memory and their subsequent

replacement with a new set to accomplish interrupt vectoring. Each interrupt

can be individually “masked” (w ith the exception of nuclear event and power down) ,

under software control.

In sc hematic form, an interrupt would be handled as follows (see Figure

5-6).

VICtor T.bl. Liflk.~.

•
_ _ _ _ _ _

Computer Stews

NIW Computer 11~~~A~~9
P5W to Star t
Service R~ut,,,i ______________

7 00S1.v4

FIgure 5-6. Interrupt Schematic

55

— - —,r- -~ —~ ... -- - —.

The “vector table” is a set of i6 double-memory words used as pointers

to status word storage areas. “LPTR” (linkage pointer) points to the memory

locations to receive the machine status when starting an interrupt. “SPTR”

(service pointer) points to the memory locations to be used to load the

new machine status which “vectors ” the CAD to the interrupt service routine.

Return from the interrupt service routine is accomplished by executing the LOST

instruction with LPTR as an effective address. Thus the original machine

status (IC , SW, Interrupt Mas k) w ill be re instated and the CAU will return

to execute the interrupted program.

Figure 5-7 illustrates the interrupt system. System interrupts are

caught in the capture register whose outputs are gated with appropriate bit

in the mask register. The output of the mask gates is then encoded and

presented to the CAD when INTACK is activated. The encoded interrupt number

is then decoded and used to reset the appropriate capture register bit. Thus

all interrupts are captured and can only be reset by servicing. Once the CAD

accepts an interrupt, the interrupt system will be disabled with the exception

of interrupts 14 to 16, until reactivated by a software command.

5, ,~~ — ID.
7D1.’ VI

Figure 5-7. Interrupt System

56

The power down and nuclear event interrupts are special in that they

cannot be disabled or masked off. These interrupts receive highest priority .

Nuclear event interrupt differs from the other interrupts in that the hardened

memory address register is stored instead of the IC to facilitate memory

recovery. This interrupt also prevents the power supply from entering a false

power down sequence.

Othr r interrupts are assigned to such events as memory protect violation ,

memory parity error, real-time clock or internal timer overflow, external

events, etc.

The interrupt implementation scheme allows for flexibility in ordering

priorities and for determining which interrupts may be masked .

Interrupt response time is a function of the instruction being executed

and typically ranges from 2 to 6 usec.

5.1.5.3 Discretes

The I/O contains 32 output discretes and 32 input discretes. Output

discretes are differential IlL level signals using differential line drivers.

Similarly, the input discretes are received as differential IlL signals using

differential line receivers. The discretes output holding register may be

loaded with an OUTPUT instruction. The discrete inputs may be read by

executing an INPUT instruction.

Three input discretes are dedicated to the functions CDS Load mode,

Select, and Device Select. One discrete output is provided for the Processor

Failure Warning . These discretes , in conjunction with an Initiate Binary

Load interrupt , interface the AP with the Control and Display Subsystem (CDS).

57

- - — 5 - --~~-— — — --5-- — — S —

5.1.5.4 Timers

Two programmable interval timers are provided . The timers have 100 usec

per counting interval. Both interval timers count to 2i6 and can be preset to

any va l ue in that interval. Interrupts occur when the timers overflow. The

timers can also be read, started, and ha l ted.

A real-time clock is provided that can interface with other APs.

The frequency of the clock is hardware selectable. Under software control ,

the cloc k can be initialized and have its internal and external interrupts

enabled or disabled .

A watchdog timer is provided which is reset by a CAU output instruction .

Receipt of a reset outside the allowable window limits generates a NO-GO

interrupt. -

The real-time clock and one interval timer are radiation hardened .

5.1.5.5 Memory Protection S

Memory write protect is accomplished by using a 1-k x 1 bit high-speed

RAM under software input/output instruction control . By wiring the 10 high-

order bits of the memory address and the memory read/write signal to the RAM ,

for example blocks of 256 memory locations can be protected by gating off

the memory execute signals. This method is commonly referred to as zone

protect. Larger zones can be easily accommodated by wiring only 8 bits for

example. Protect zones for DMA access may also be established independently

of the zones for the processor. This allows the processor access to the DMA -

the processor’s protected zones. Memory protect may be “overr idden” from the

Processor Control Unit under operator control when connected to the computer.

Figures 5-8 and 5-9 illustra te the memory zone protect concept.

58

a — —S.-.
~
5_ _

~~
••_ S~__~S_ S_~ 5__~ ~_~__•_ S.-——---— - -

I~O BUS I

DISABLE

WRIT E

~PATH SELECT
~~ I I I

Pno:::o R ~~, 2/I

—

78.~~ 1.v.Io

Figure 5-8. Memory Protect RAM

P,oca,sc, DMA
Port

—— ‘ ..
-

f Pr~

L. .-. ~~~~~~~~ LProt.c led - ________

_L L~~~~ 1 2frt
O (iG..I .V- Li

FIgure 5-9. Memory ?onc Protcct

59

6.0 Summary

In this , the first quarterly report on “Hardware Implementation of

Higher Level Digital Image Processing ”, we have described the system design

goals to which the hardware implementation must be directed. A number of

commercially available bit slice processors have been described in terms of

their data handling and arithmetic/logic characteristics. We have devoted

some space to LISP, since the higher level algorithm s may be using symbols

and lists f-~r data. A set of basic LISP functions have been analyzed to

show the number and kinds of instructions the microprocessor array must ac-

comodate to execute LISP. The relaxation algorithm which Maryland may use for

higher level image processing was formulated in two versions of LISP for

the discrete case. Finally an example of a Westinghouse processor was given

in which bit slice microprocessors both form the ALU and control the bus.

In the next period , we shall be expand i ng the basic problem to 10

classes and 100 objects and begin considering the interconnect problem and

dynami c reconfiguration for a variable number of classes and objects, and

reliability . It is important to consider special implementation for

relaxation operations in order to provide for real or non-rea l time

operations. The University of Maryland has estimated that it will require

many hours to perform the relaxation computations for one image frame on a

general purpose machine .

60

.5 ——-5-— - - -

7.0 References

1. Milgram , D.L., Rosenfeld , A., Willett , T., Tisdale , G., Algorithms
and Hardware Technology for Image Recognition - Final Report, DARPA
Order 3206, March 31, 1978.

2. Alexandridas , N.A., Bit - Sliced Microprocessor Architecture , Computer,
Volume 11 Number 6, June 1978, IEEE Computer Society.

3. Adams, W.T., Smith , S.M., How Bit - Slice Families Compare: Part 1,
Evaluating Processor Elements, Electronics, August 3, 1978, McGraw-Hill.

4. McCarthy et. al., Programming Manual for LISP 1.5, MIT Press , Cambridge ,
Mass. 1962.

5. Rosenfeld , A., Hummel , R.A., Zucker , S.W., Scene Labeling by Relaxation
Operations, lEE Transactions on Systems, Man , and Cybernetics, Vol . SMC-6,
No. 6, June 1976.

61

p 5- —

