AD=AO71 599 MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE CENTER F/6 5/8
ARCHITECTURE FOR HIGHER LEVEL DIGITAL IMAGE PROCESSING. (V)
JAL 78 T J WILLETY DAASS3=T6=C~0138

UNCLASSIFIED

E]

|0 &=

=1
TR

— | EES
s e, e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

N
e A

SR TR

ARCHITECTURE FOR HIGHER

LEVEL DIGITAL IMAGE PROCESSING

July 30, 1978

ADA071599

This is the first quarterly status report
on a program for Image Understanding Using
Overlays, conducted by Westinghouse for
! Maryland under Contract DAAG 53-76 C-0138
| iy with the U.S. Army Mobility Equipment
| , Research and Development Command, Fort
g Belvoir, Va. 22060.

- Prepared for

- Computer Science Center
' University of Maryland
College Park, Maryland 20742

By

Westinghouse Defense and Electronic Systems Center
Sz:tm Development Division
1timore, Maryland 21203

29 07 23 192

3

- st * S - SRR S -

-
™

ARCHITECTURE FOR QGHER

i 7
LEVEL DIGITAL IMAGE PROCESSING ,
= -

= —
= =

e —————————————
-

Sl July 30, 1978 V// /:g—_~—7_7~—_uﬁvf'
i o / Y Lo P

This is the first quarterly status report
on a program for Image Understanding Using
Overlays, conducted by Westi :

with the U.S. Army Mob? | y EqQuipmen
Research and Development Command, Fort
Belvoir, Va. 22060.

/
? Quarterly status rept, no, 1, /

e weac

S E—— b

Prepared for

Computer Science Center y///
Accession For University of Maryland
NTIS GRARL College Park, Maryland 20742

DOC TAB P R ST,

Unannounced . 7

Justification l() /
/ Thomas J, Millett /
/

| 5y feC DI FenSD |
. Distributions oW €NG
/vcilability Codes

Availand/or

special

i —————

By

Westinghouse Defense and Electronic Systems Center
Systems Development Division
Baltimore, Maryland 21203

DISTRIBUTION STATEMENT A | hos 0194 J)

Approved for public release;
Distribution Unlimited

— e &)
. o S —— g v
0) . ' A

TABLE OF CONTENTS

INTRODUCTION
1.0 SYSTEM DESIGN GOALS

Speed

Reliability

Size

Weight

Probability of Detection and Recognition
and False Alarm Rates

Power

Software Design Goals

b b et
~N O MBS WN =

—
.

 #
2.0 PROCESSORS

2.1 Architecture
2.2 Microprogramming Example
2.3 Processing Unit

3.0 APPLICATIONS OF LISP

3.1 Symbolic Expressions

3.2 Basic Functions

3.3 Conditional Expressions

3.4 Compiling, Interpreting, Machine Language,
and Subroutines

3.5 List Structures

4.0 ALGORITHM DEVELOPMENT
4.1 Relaxation (discrete case)
5.0 BIT SLICE PROCESSORS
5.1 Functional and Performance Characteristics

5.1.1 System Architecture

5.1.2 Central Arithmetic Unit
5.1.2.1 Data Formats
5.1.2.2 CAU registers
5.1.2.3 Addressing Modes

5.1.3 Memory Controlier
5.1.4 Extended Arithmetic Unit
5.1.5 I/0 System
5.1.5.1 Bus Control Interface Unit (BCIU-RT)
5.1.5.2 Interrupts
5.1.5.3 Discretes
5.1.5.4 Timers
5.1.5.5 Memory Protection

Page

apBpwWMN N

w WO ~ (S2 8]

20
20
22
28

29
33
33
39
40

40
41

43
43
46

50
51
53

53
55
57
58
58

6.0
7.0

SUMMARY

REFERENCES

TABLE OF CONTENTS
(Continued)

Page

60
61

LIST OF ILLUSTRATIONS

Figure Number Title

Block Diagram of Image Processor

Basic Architecture - Bit Slice Microprocessor
Flow Chart for COMPARE Macro Instruction
Processing Section

Field Explanation

Microinstructions for COMPARE

Block Diagram of ALU

Computer Word

Word Pointer

Typical Memory Structures

Memory Structure for (X-(Y-(Z:-X))-(Z-X))
An Alternate Structure

Graph Form of Relaxation

Arc Relations

Two Consistent and Possible Situations
Computer Functional Block Diagram
General Purpose Avionics Processor

CAU Organization

MC Archicecture

EAU drganization

Interrupt Schematic

Interrupt System

Memory Protect Ram

Memory Zone Protect

mmbhbwww?wmwmmmww

L]]
WONOONPWNHWNEUBSWNEODUTS WN

U‘!U‘IU‘I(lJ'IU'IU’IU‘l

LIST OF TABLES

Data Handling Characteristics
Arithmetic/Logic Functions

l’l\)l\)
N =

o

Mot o 1n

J

INTRODUCTION

This is the first quarterly status report on a program to investigate
various approaches to the design of architecture for higher level digital
image processing algorithms, being conducted by the Westinghouse Systems
Development Division for the Computer Science Center, University of Maryland.
This two-year program is a continuation of a program entitled "Algorithms and
Hardware Technology for Image Recognition", which was initiated in 1976. The
report was prepared by Mr. Thomas J. Willett. The Westinghouse program
manager is Dr. Glenn E. Tisdale.

During the quarter, monthly technical meetings were held at Maryland,
which included representatives from the Army Night Vision Laboratory, the
University of Maryland, and Westinghouse. Team members from NVL were Dr.
George Jones and Mr. John Dehne, and from the University of Maryland, Profs.
David Milgram and Azriel Rosenfeld.

\\\\Qb The report begins with a review of desired system design goals. This
is followed by a description of available microprocessor hardware, a review
of LISP approach to the manipulation of list structures, and a preliminary
discussion of the processing required to implement relaxation methods of
object classification. The report concludes with a description of specific

bit-slice processors.

\

1.0 SYSTEM DESIGN GOALS

Westinghouse, following the Smart Sensor work, has been given the
assignment of implementing the Maryland higher level image processing
algorithms in a digital processor. The purpose of this section is to
describe the system design goals which the hardware and software must meet,
goals such as speed, reliability, size, weight, probability of detection,
recognition, or false alarm, power consumption, and software requirements.
Each is now considered in a separate subsection.
1.1 Speed

The typical image processor has a block diagram 1ike that of Figure
1-1. The preprocessor filters the image (e.g., low pass or median filter)
to smooth it and axtracts primitives such as edges, amplitudes above a

certain threshold, and histograms; it also thins the extracted data to reduce

[+ HI LEVEL

SEGMENTOR || FEATURE | 1 CLASSIFICATION

PRE
b EXTRACTOR

IMAGE> | ppoCESSOR l

-+ LO LEVEL

Figure 1-1. Block Diagram of Image Processor

the amount and keep only the most important. The segmentor separates

data associated with a specific object. including threshold densities, edges, and
functions of them such as texture. The feature extractor then forms pre-
classification features such as shape, area, length, curvature, density, etc.

The classification process then attempts to identify the collection of objects

in the image. Assuming a video frame of 550 x 600 pixels, for a total of
330,000 pixels per frame, the processor would have to process 1 million

pixels per second to achieve a frame rate of 3 per second. Real time frame

rates are 30 per second, or 10 megapixels per second. If we assume that the

el 4 w0

e

preprocessing and segmentation function reduce the image bandwidth by 100:1,
i.e. a frame is now composed of 3300 words, then a frame rate of 3 per second
would require a word rate of 10,000 words per second. By words we mean the
following: The original image is composed of 330,000 pixels each; say, 5 bits
wide. When they are preprocessed and segmented, the resulting pieces of
information total about 3300 words which may be wider or narrower than 5
bits. Assuming an input rate of 10,000 words per second into the high
level feature extractor and classifier, the time between words is 100 micro-
seconds or 100,000 nanoseconds. If we assume, from Section 3, a micro-
instruction cycle time of 200 nanoseconds or less, the bit slice machines
can execute 500 microinstructions between words. If we further assume a
wide enough bit slice microprocessor, e.g. 56 bits wide such that on
average about 5 microinstructions are needed per macroinstruction (ADD,
SUBTRACT, etc.), then the program length can be of the order of 100 macro-
instructions. If we add a sophisticated bus structure, increasing the word
width to say 72 bits, then the program length might be increased to 200
macroinstructions. Going to real time opeation at 30 frames per second
would reduce the possible macroinstructions by a factor of 10 unless parallel
processors were employed. In the image processing case, small word widths
and parallel processors may be much more suitable than one machine of substantial
width. In any event, the rate with which the processor must cope is a
basic rate of 10,000 words per second with a goal of achieving 100,000 words
per second.
1.2 Reliability

There are really two parts to the reliability problem; they are both
branches from the central problem of time on station. For example, the fire
control computer built by Westinghouse for the F-16 program does not require
fault tolerance modes, dynamic reconfiguration, and internal trouble

shooting because the time of flight is not long. Further, the reliability

S e et s

of the bit slice processor is sufficiently high that a cascade of 18 bit slice
processors will exceed military reliability specifications.

On the other hand the E-3A (AWACS, Airborne Early Warning System)
computers built by Westinghouse have extensive internal trouble shooting
characteristics including fault isolation. dynamic reconfiguration, and fault
tolerance modes because the time on station is very long compared to the F-16.
Also the volume available in each case is sufficiently different. The E-3A is
housed in a Boeing 707, while the F-16 is one of the smallest of the new fighters.
Thus, the time on station is a critical factor in determining whether or not
internal trouble shooting techniques are required.

1.3 Size

The previous remarks on reliability are entwined with those of size.

There has been a general agreement among the users that approximately 1 ft.3
is an appropriate size for most airborne short mission-time applications.
On the other hand, the longer term missions generally can accommodate

more space, which coincides with the added hardware needed for internal
trouble shooting. In these cases, internal trouble shooting is necessary
in order to meet reliability specifications. We shall assume in the latter
case that the total volume, including trouble shooting hardware shall be no
larger than 1.5 ft.3. For ground based computers, size is not so important,

but reliability and dynamic reconfiguration are.

1.4 Weight

There is no reason to change the airborne weight goal from that of .the
Smart Sensor; namely, in the area of 20 to 30 1bs. including power supply.

The fault tolerant machine can be at the high end of the range and perhaps exceed

it slightly since payload is not such a difficult problem. And in the ground

station application, weight is only important for mobility considerations.

1.5 Probability of Detection and Recognition, and False Alarm Rate

In this work we are including high level image processing in order to
handle more complex targets such as airports and camouflaged weapons and also
to increase performance figures on easier targets such as weapons with small
amounts of obscuration. For the Smart Sensor work, the probability of detection
was 96 percent, and the false alarm rate was 1.3 per frame. It would seem
reasonable to expect that the incorporation of higher level algorithms would
raise the probability of detection for the simpler targets and provide at least
0.90 on the more complex targets. The false alarm rate is probably too high
and should be reduced to something like one false alarm every Five frames or
lower. These figures, the reader must realize, are extrapolated performance
figures from the previous DARPA work. 1 :
1.6 Power

Our general goal for power cqnsumption is 200-300 watts. The addition
of fault tolerance hardware will increase the power requirements, but
certainly anything over 400 watts is not desirable in a airborne system. Thus

we expect some increase in size and power with the fault tolerance hardware.

For ground stations the allowable power varies with the installation‘requirements.

1.7 Software Design Goals

In this section, we attempt to discuss some of the constraints within
which the software should fall. For example, in Para. 1.1, we developed the
idea that each program should contain 100-200 macroinstructions in order to meet
the speed requirements. No doubt, the University of Maryland analysts will be
running their programs in source language (composed of macroinstructions)
so this number has meaning for them.

In Section 3.0, we discuss the candidate bit-slice processors
and it is noted that none have trigonometric functions. The tables shown in
Section 3.0 1ist the logic/arithmetic operations which can be performed by
them. Of course, other functions may be performed, but it is not an

efficient process and may require a substantial part of the allotted

R o it £V s 33, it

e ——————— T —r .~ —— — e -

P

100-200 macroinstructions. Another limitation is the window size in the
form of the number of available registers. For example, a 4 x 4 window
requires 16 registers which is available on the AMD 2901A microprocessor,
but not on some of the others. Finally, random memory access to a larger

capacity memory can be time consuming and we do not encourage it.

d

-

2.0 PROCESSORS

We shall be considering appropriate processors for the higher level
image understanding algorithms in this section, with subsections covering
architecture, micreprogramming, and processing units. We shall also describe
and contrast the features of several commercially available units. First
we consider some definitions.

Microprocessor - A single integrated chip containing an arithmetic (ALU)
logic unit; some random access memory for storing data
and intermediate results; some programmable read only
memory to hold instructions; and a controller for
handling status flags, I/0 duties, routing addresses
and data, and executing instructions. They are
usually manufactured in MOS technology and can execute
an instruction in approximately 10 microseconds. They
have a fixed instruction set, fixed architecture,
and fixed word length. They can be cascaded to handle
longer words but all parts of the microprocessor
increase linearly in size.

Bit Slice
Microprocessor - Generally, they are faster than the single chip micro-

processor by at least an order of magnitude, because
they are built from bipolar technology. Here the
controller and arithmetic logic unit are found on two
different chips, 2 to 4 bits wide. They have a
flexible approach to word length, instruction set,
and architecture: thus they have the capability of
being specifically configured for the application

and their components can be expanded independently

P —

of each other. The designer specifies the systems

instruction set by a program (microprogram) stored

in a PROM (Programmable Read-Only Memory). Some

significant applications of bit slice micro-

processors have occurred in signal processing where

algorithms lend themselves to parallel implementations.
Based upon the above capability, and in view of substantial Westinghouse -
experience in bit slice implementation of airborne signal processors, we
recommend use of bit slice machines in the image understanding area.

2.1 Architecture

| ! ((
| 1
Control Arithmetic/
Spauencer Logic [
=t Unit |
| } } i
| | f |
i [t i
| ! | |
i
]y, SN
Control Input/Output
Memory '] i
1 | | i
| | | l
| %) 1
Control Section Processing Section

Figure 2.1. Basic Architecture - Bit Slice Microprocessor

Pl N3

As a starting point, we can consider a bit-slice microprocessor as composed
of four sections as shown in Figure 2-1; a main memory, a control section,
a processing section and an input/output section. The control and processing
sections are on a minimum of two different chips; note that the dotted lines
imply that the sections are composed of a number of slices. This means that
in reality, the main memory, control sequencer, control memory and ALU may be
built up from a number of chips (slices) and that they need not all have the
same word width. The macroinstructions (ADD, SUBTRACT, etc.) and data are
stored in the main memory; these are transmitted through the system by means
of data and address buses. Some of the faster bit slice implementations have
a rather sophisticated bus structure and control. The microprogram control
memory contains the microinstructions through which the machine controls the
parallel operation of the bit slice ALU's, and generates pulses timed to
control the rest of the system including macroinstruction fetch from main
memory. The microprogram control sequencer contains macroinstruction decode
logic which maps it into a microprogram memory address and it examines all
the control and status bits to determine the next microinstruction address.
The macroinstruction (ADD) is executed as a series of microinstructions.
Referring to Figure 2-1, the microprogram control sequencer has an address
1ine to the microprogram control memory; the microprogram control sequencer
receives status bits along control lines from the ALU and microprogram
control memory. The microprogram control memory sends control signals
to the processing sections. We now present an example of a macroinstruction,
COMPARE, written in microcode on an imaginary 20 bit wide bit slice machine.
2.2 Microprogramming Examp]e2
The COMPARE instruction is IF A = B then A = 1/2 x A, OTHERWISE GO TO
NEXT INSTRUCTION. We assume that there is an instruction counter IC such

N B

that GO TO NEXT INSTRUCTION means IC = IC + 1. And, as is the usual case,
the test for A = B is performed by calculating C = A-B and comparing C with
zero. A =1/2 x A is accomplished by shifting A to the right. Then the
flow chart for COMPARE is show: in Figure 2-2.

A-B)
C « \

¥

B First Cycle g
A A-x1/2 IC=1IC+1 |___second Cycle

3

Figure 2-2. Flow Chart for COMPARE Macroinstruction

We assume a processing section configuration as shown in Figure 2-3. The
two source registers A and B are represented as well as the instruction
counter, IC, and the ALU. The zero detect logic issues a flag when all the

bits ‘on the data bus are zero. and the status register remembers the state

B PRy 557 TR TR T &7

£t B [T [stAatus]
]

J
,l | M —
ALU Je——- Carry Tn

SHIFTER |

§——Other Data

ZERO DETECT
LOGIC o

Figure 2-3. Processing Section

10

of the zero detect logic. Also, 1

's complemented notation is used for ALU

inputs, a carry-in bit is needed to convert to 2's complement as required

by the ALU. We now form a microinstruction where each field corresponds to

each entity in Figure 2-3.

Field A:

Field BC:

Field D:

Field EF:

Field GH:

Field 1J:

Field K:

A|{BC{D|EF

GH{1J[K|ZZ2Z1Z

1 bit wide; 0, A

is not gated to ALU

1, A is gated to ALU

2 bits wide; 00,
01,
10’
11,

neither B nor IC is gated to ALU
1's complement of B is gated to ALU
B is gated to ALU

IC is gated to ALU

1 bit wide; 0, addition with no carry in
1, addition with carry in

2 bits wide; 00,
01,
10,
11,

2 bits wide; 00,
019
10,
11,

2 bits wide; 00,
01,
10
11

1 bit wide; 0,
1,

Figure 2-4.

no shift of ALU output

shift output right one, gate to data bus
shift output left one, gate to data bus
other data gated to data bus

no destination

register A is data bus destination
register B is data bus destination
IC is data bus destination

portion of address (ZZZZ1J) for next
microinstruction

no action
set status register to 1 if zero detect
logic detects all zeroes on data bus

Field Explanation

Then the flow chart, Figure 2-2, of indicated mathematical functions

is replaced with three microinstructions which not only reflect those functions

but also indicate data flow through the processing section, as shown in

Figure 2-5.

11

i+ s

T —— - . pey—

MINS 1{1f o1f1jo0]cOo]o1l|1]] c=a-8

MINS 3, 777701 MINS, 777100

f1] oofojo1 o1 J1o Jo] next Aoo | fof11fifoo 1110 Jof NEXT ADD]

Figure 2-5. Microinstructions for COMPARE

Microinstruction 1 (MINS 1) provides that, referring to Figure 2-3,
A is gated to ALU,
B is gated to ALU in 1's complement form,
addition of A and B with carry in,
no shift of ALU output,
no destination
set 2nd address bit in field to state of status
register, and
set status register to zero if zero detect logic
finds all zeroes on data bus.
In MINS 1, the contents of the B register are subtracted from the A
register and the result is gated to the data bus and the status register is
set to zero if A = B. Since this is linked to the next instruction address,
the status bit is reflected in Field IJ which determines a left or right

branch.

12

o

Microinstruction 3 (MINS 3) provides that
A is gated to ALU,
neither B nor IC is gatedto ALU,
addition with no carry in
shift output right one and gate to data bus,
register A is data bus destination,
next microinstruction address least significant bits are specified,
and status register takes no action.
In MINS 3, A is brought into and through ALU (A = A+0), the output is shifted
right one position resulting in A = 1/2 A, and the result is deposited via
the data bus to register A.
Microinstruction 2 (MINS 2) produces the following action
A is not gated to ALU,
IC is gated to ALU,
addition with carry in,
no shift of ALU output,
IC is data bus destination,
next microinstruction address least significant bits specified,
and status register takes no action.
Next we examine the processing unit in some detail and contrast the character-
istics of several available bit-slice processors. We shall choose from
among these for implementation of a higher level image processing machine.
2.3 Processing Unit
The processing section is divided vertically, both registers and
ALU, into a number of bit slices which are identical as shown in Figure 2-1.
The ALU unit (Figure 2-6) typically contains an arithmetic logic unit, a
set of temporary data registers which have one or two entrance and exit
paths, a multiplexer which will select among a number of data sources
for the ALU, a decoder for control signals, and a register to hold status

bits as described in the last example.

13

From Memory From I/0

E

Data In J

MULTIPLEXER

And
REGISTER FILE

1

ALU

SHIFTER

* 3

CONTROL

o REGISTER
INPUTS = DECODER

FILE

1]

. STATUS

7 OUTPUTS

\

ADDRESS OUT Data OQut
(To Memory 1/0)

Figure 2-6. Block Diagram of ALU

14

Tables 2-1 and 2-2 show some of the characteristics of commercially
available bit slice microprocessors; Table 2-13 shows the data handling
characteristics, i.e., the type of registers and size, the number and kind of
data ports or bus lines available, and control lines. Table 2-23 shows the
extent of the arithmetic and logic capabilities of the ALU. The Intel 3002
is 2 bits wide while the remainder of the bit slice processors are 4 bits wide.
There are some important similarities and differences among these processors

which we shall note as regards their application to image processing.

TABLE 2-1. Data Handling Characteristics

REGISTERS DATA PORTS
POWER CONTROL
MODEL (MIN) ACCUM. REG. FILE BUFFERS INPUT OUTPUT BIDIRECT _LINES
Fairchild -
9405(T2L) 500 0 8 1 1 1 0 8
Intel-3002
(T2L) 725 1 11 1 3 2 0 9
MMI-6701
(T2L) 1,075 1 16 0 1 1 0 17
AMD-2901A
(T2L) 925 1 16 0 1 1 0 18
AMD-2903
(T2L) 1,000 2 8 0 1 2 0 11
TI-SBP0400A
(1%L) 1,125 2 0 2 1 2 1 17
SBP0401A
TI-SN745481
(T2L) 1,374 1 0 1 d 0 2 17
MC-10800
(ECL) 1,155 1 16 ;I 1 0 2 17
15 :
i
1
- T S S — _‘ e =

4ON [9%3 N3
30 "Lox@ 03
ueyj ssa| 91 Judwe |dwod,7 J2 4ON ON
ueyl 4ajeaub oy L AQ Juawaudu] L] NN WN
o4’z 7 L Aq juawsud3g L@ 30 0
lenba 3 Joeaagns S aNy VY
MO[Ju3A0 ppe Y Juaue [dwo))
J2°21°1l N3‘03 .
Z°0 S3A aav a@og ‘2a‘ta‘s‘y ‘ON‘YN‘0°‘V‘D 0080T-JW
Bu1 9349 %2 N3°03 ,
97°9v“3°0 Aduepunpay |edL|94) o 3QIAIQ/LTINKW ‘10°T1°S‘Y ‘ON‘YN‘0°Y*D I8¥SYINS
Y10¥048S
Z ¥ o o TSy N3°03°0°v*D Y00¥0d8S
9Z| | eUMON
apn3 Lubey/ubLs 2 N3°03
7°0 Juauwe | dwo) s,2 S\ 3QIAIQ/LNW 2T°T1°S‘y ‘ON“WN°O°VD €062
VA * = " 92°10°s‘y N3°03°0°V*D Y1062
Z°0 » " i 92°10°s‘Y 03°0°V*) 1049
z = * 5 9210y NI‘0°V*D 200¢
z " = - v 30°0°VY*D 5066
SNLYLS 43H10 ALIdvd E[08 (¢ SNOIL1Y¥3d0 SNOIL1V¥3d0 1300W
@3a093a ‘1w ‘aay adg

suor3oung 91607/9138u3 Luy

‘¢-2 11avl

16

The Monolithic Memories MMI-6701 is very similar in architecture to the
Advanced Micro Devices 2901A processor; the register configuration, data ports,
control lines, arithmetic/logic operations, and decoded status have a close
correspondence. The AMD 2901A has a cycle time of 200 nanoseconds, one of the
fastest built to conform to military specifications, which can be decreased
further by appropriate bus structures. The processors have found ready appli-
cation as control processors by cascading them to as many as 128 bits wide.
Their data manipulation abilities are not as powerful (number of data ports)
as others but the number of registers, 16, reduces memory manipulation and
execution time.

The Fairchild 9405 finds good application in simpler processing problems
where an inexpensive, simple machine is appropriate. It may not be powerful
enough to handle the image processing algorithms with sufficient speed.

The AMD-2903 is an upgraded version of the AMD 2901 with a muitiply/
divide capability, a smaller register file, and parity checking. The arithmetic
capability has been significantly enhanced and the data manipulation capability
has been changed in several ways: decreasing the number of register files and
increasing the number of output ports. The AMD 2901A, 2903, and MMI-6701 are
primarily aimed at numerical calculations with good data manipulation
characteristics. To increase manipulation ability, the designer must supply
additional features such as an enhanced bus structures, microinstruction
formatting, and perhaps additional temporary storages.

The Intel 3002 is two bits wide but has substantial data manipulation
capability in the form of a large number of I/0 ports; however, the single port
register file will probably require an increased number of instructions and
corrgqunqing_execution times. A fundamental consideration is the use .of

two chips to duplicate the word width of the other bit slice processors listed.

17

Y.

ki

The Texas Instrument SBP0400/SBP0400A processor is the first ALU
available in I2L technology. Unfortunately, it turns out to be slower than
any of the other listed processors, which hinders it for high throughput
operations such as image processing.

The Texas Instrument T174SN481 requires memory to memory architecture
because it lacks an internal register file; this is not difficult to implement
but simply requires more chips. Latches are provided on the input ports
so that multiple port rams can be used. An interesting feature is a multiple
use ALU, i.e. several registers are designated for addressing memory so that
they may be incremented while the ALU is performing some other operation.

The Targe number of control lines facilitates data manipulation and classical
signal processing techniques.

The Motorola MC 10800 is an interesting device; it is the fastest of
the group being built from ECL yet its power consumption (1155 milliwatts) is
less than the TI-SN745481 and comparable to the shown TI SBPO400A. It is
20 percent higher than the 2901 A which is a good competitor to it. The
MC 10800, like the TI SN745481, must also be supported by an external file
and has the appropriate I/0 bus structure. It also provides internal parity
error control and binary coded addition. At this point, we can with some
margin of error, eliminate several of these devices from further consideration.

o assume at this point that the higher level image processing
algorithms will require high throughput, a major emphasis on data manipulation,
and a lesser emphasis on arithmetic operations such as multiply and divide. The
Fairchild 9905 is probably not powerful enough for this application; there are
faster machines than the IT SBPO400A with almost comparable characteristics.
The MMI-6701 is directly comparable with the AMD 2901A, and our good experience
with the Tatter points to it as the choice here. We shall keep the MC-10800

18

R Wz i O T

in the race because we may need the speed, and the power consumption,

usually associated with ECL logic, does not seem oppressive.

19

P
4 n—

L

3.0 APPLICATIONS OF LISP

The higher order artificial intelligence and image understanding
algorithms attempt to acquire information from features already extracted
from the image; one can imagine a similar situation in which a number of facts
are given to an analyst and he must assemble them in a logical fashion. Thus,
for the most part, the higher level algorithms will be manipulating lists of
facts or symbols; this process lends itself to a language like LISP4 (from
List Processor) which is a language for manipulating list structures. As
suggested earlier by Lt. Col. David Carlstrom, we shall look at the possible
use of LISP as an appropriate language. Let us now spend some time working
through some of the fundamentals of LISP to obtain some idea of machine
requirements.
3.1 Symbolic Expressions

We define an atomic symbol as no more than thirty (30) alphanumerics
which represent an entity and are not capable of being split. Also, the
first character must be a capital letter, e.g. A5B63, ZQRSTWRR, M, P54321Q, etc.
S-expressions are the lists and are made up of atomic symbols or other
S-expressions in the following form: left parenthesis, an S-expression, a
dot, an S-expression, and a right parenthesis. Some examples are: (21'22),
(A5-(8-C)), and ((X1-Y) - Z - (Y-Z)). The third expression, for example,
consists of an S-expression, an atomic symbol, and an S-expression, further
the first and second S-expressions consist of two atomic symbols each. Having
described some symbolic definitions, let us consider five basic functions.
3.2 Basic Functions

The notation will be as follows: the function will be in lower case
letters; the arguments will be grouped in_square brackets -and separated by a-
semi-colon. The function "cons" is used to build a S-expression from two

smaller expressions (which, recall, may themselves be atomic symbols).

20

gt

Some examples include:

cons [A1;23] = (A1-23)

cons [AAC;(BB-CD)] = (AAC-(BB-CD))

cons [cons[MN;0P];Z3] = (MN-OP)-Z3)

To obtain a divisible part of an S-expression, two different functions
are employed, one to obtain the leftmost, or first subexpression, and the
other to obtain the rightmost, or second subexpression. The former function

js called "car" and the latter is called "cdr"; some examples follow:

car[(A-B)] = A cdr[(A:B)] = B
car[((MN-OP)-Z3)] = (MN-OP) cdr[((MN-OP)-23)] = Z3
car(Z-N16]1 = Z cdr((N16-2)] = Z

These functions have one argument, but the functions are only defined when
that argument is not an atomic symbol.

Thus far we have described three functions which are used to construct
larger S-expressions or obtain divisible parts of an S-expression. Consider
another type of function, one whose value is either true or false; the
function "eq" is a test for equality of atomic symbols:

eq[A;A] = T
eq[A;B]

F
eq[(A“B);C] is undefined

The function "atom" is true if its argument is an atomic symbol, e.g.
atom{A] = T
atom [(A-B)] = F
atom [ABCDEFGHI1234] = T

21

Having described atomic symbols, S-expressions, five basic functions, and
having seen something of the recursive nature of LISP, let us consider some
more interesting conditional expressions. These kinds of expressions will
begin to give the reader some inkling of the processing capability necessary
to accommodate LISP.

3.3 Conditional Expressions

A conditional expression of the form [c1 > €3 Cy > €53Cy > eg3 el
means that if ¢ is true, then the value of e is the value of the entire
expression. If ¢ is false, then if <, is true, the value of e, is the value
of the entire expression. The c; are searched from left to right until the
first true one is found. Then the corresponding e; is selected. If none of
the c; are true, then the value of the entire expression is undefined. There
are some particular conditional expressions which we describe now, where lower
case x, y, z are symbols for general arguments.

The function subst [x; y; z] gives the result of substituting the
S-expression x for all occurrences of the atomic symbol y in the S-expression
z. The function is defined as

subst [x;y;z] = [atom[z] »[eq[z;y] » x; T » z]; T » cons [subst

[x;yscar[z]]; subst [x;yscdr [2]]]]
The expression may be put in the conditional form as:

subst [x;y;z] = [c1 > €45C, > ez]

where: c1 atom [z]

e = eqlzsy] » x;T » z]
c2 =T
e, = cons [subst[x;y;car[z]; subst [xiys;cdr(z)]]
22
— Suen

and: ¢,' = [z5y]

el' =%

c1 = T

e, = 7in

As an example, assume that z = ((A*B)-C), x = (X-A), and y = B, then
Step 1. ¢, = atom ((A-B)-C) is false

c2 = T s true
car [z] = (A*B)
cdr [2] = C

e, = cons [subst[x;y;(A+B)]; subst [x;y;C]]

and evaluating each part of cons:
Step 2. Subst [x;y;(A*B)] =
atom[(A-B)] is false

T is true
car (A-B) = A
cdr (A°B) = B

cons [subst [x;ys;Al; Subst [x;y3;B)] =

Subst [x;y;A] Subst [x;y;B]
atom[A] is true atom[B] is true
eq [A-B] is false eq [B3B] is true
T is true
Subst [x;y;A]l = Z = A Subst [x;y;B] = x = (X.A)

then cons [subst [x;y;Al; subst [x;y3;B]] = cons [A3(X-A)] = (A-(Z-A)).
Step 3. Subst [x;y;c]

atom [c] is true
eq [c;B] is false
T is true

Subst [X;yscl =z =¢
23

And, substituting into the original expression, we find that

e, = cons [(A-(X-A));C] = ((A-(X-A))-C)

which is equivalent to substituting X = (X-A) for B in the expression z = ((A+B)-C).

Another function is equal [x;y] which is true if its two arguments are
identical S-expressions and false if they are different:
equal [x;y] is defined as
equal [x;y] = [atom[x] + [atom[y] + eq[x;yl; T - F1;
equal [car[x]; car[y]] -~ equal [cdr[x]; cdr(y)]l;
L
Assume x = (A-B), y = (A-B), and substituting

Step 1. atom(x) is false

]
@

u

car (x) = A ‘cdr (x)

u

]
D

car (y) = A «cdr (y)
then

equal [car[x]; car[y] » equal [cdr[x]; cdr[y]]
becomes

equal[A;A] » equal[B;B]

n
—

equal[A;A] = atom[A] -~ atom[A] ~ eq[A;A]

n
—

equal[Bs;B] = atom[B] + atom[B] - eq[B;B]

and equal(x;y] =T

Where the expression has the conditional structure

¢y = atom[x]
€y = equal[car[x]; car[y]]
Cy = 137

The function null[x]is used to decide if a list is exhausted; it is true
if and only if the argument is NIL which is a terminator of lists i.e. c =

(C-NIL) and null (NIL) = T.

24

S e 4 = e

If the S-expressions are regarded as lists, the “append [x;y]"and
"member [x;y]"functions are useful. The "append" function puts two lists
together and is defined as:

append[x;y] = [nul1[x] » y;T + cons[car[x]; append [cdr[x];y]]].
As an example, let x - (X1:X2), y = (X3:X4), where

¢ = null[x]
¢, = T
Step 1. null[x] is false
T is true
car[x] = X1 cons[X1; append[X,,y]]

cdrix] = X2

Step 2.
append [x;y] = append [X2;(X3-X4)]

null[x2]is false

T is true

car[X2-NIL] = X2, cdr[X2-NIL] = NIL
append [NIL;(X3-X4)] =

nul1(NIL) - True

append [] = (X3-x4)

cons[car[X2-NIL] append[NIL;(X3 X4)1]

cons (Xp3(Xy X,))
(X5 = (X3°X4))

Step 3.
cons[X1; (X2-(X3-X4))1 = (X1. -(X2 -(X3-x4)))

The function "member [x;y]" is true if the S-expression x occurs among the
elements of the 1ist y and is defined as
Member[x;y] = [null[y] = F; equal [x;car[y]] + T;
T + member(x; cdr(y]]].
The function "pairlis [x;y;al" gives the list of pairs of corresponding
elements of the lists x and y, and appends them to the list a. The resultant

25

list of pairs, which is Tike a table with two columns, is called an association

list. The function pairlis [x;y;al is

pairlis [x;ys;a] = [null1[x] - a; T » cons [cons [car [x]; car [y]];
pairlis [cdr [x]; cdr [y]; alll.
As an example, consider two lists x = (X1:(X2°X3)) and y = (yl-(y2-y3))
which are to be paired and added to a list (X4:Y4)-(X5-Y5).
Step 1.

null [x] = false

T is true
car [x] = X1 cdr [x] = (X2-X3)
car [y] =Yl cdr [y] = (Y2.Y3)

cons [cons [x1;yl]; pairlis [(x2-x3); (Y2-Y3); al
Step 2.

cons [X1;Y1] = (X1<Y1)

pairlis [(X2:X3); (Y2-¥3);a] =

nul1(X2-X3) = false

T = true
car [(X2-X3)] = X2 cdr [X2-X3] = X3
car [(Y2-Y3)] = Y2 cdr [Y2:Y3] = Y3

cons [cons[X2;Y2]; pairlis [X3;Y3;al
Step 3.
cons [X2;Y2] = (X2-Y2)
pairlis [X3;Y3;a] =
null (X3-NIL) = false

T = true
car [X3-NIL] = X3 cdr [X3°NIL] = NIL
car [Y3-NIL] = Y3 cdr [Y3-NIL] = NIL

26

cons [cons [X33Y3]; pairlis [NIL;NIL;a]
Step 4.
cons [X3;Y3] = (X3-Y3)
pairlis [NIL;NIL;al =
null (NIL) = True
pairlis [NIL;NIL;a] = a = (X4-Y4)-(X5-Y5)
and substituting back,
cons [cons[X3;Y3]; pairlis [NIL;NIL;a] =
cons [(X3:Y3); (X4-Y4) - (X5-Y5)]
= (X3 Y3) * (X4 Y4) - (X5-Y5) = pairlis [X3;Y3;a]

Similarly
cons [con[X2;Y2]; pairlis[X3;Y3;a]]
= (X2:Y2)+(X3-Y3).(X4-Y4)-(X5-Y5)
= pairlis [(X2-X3);(¥2-¥3);a]
Finally

cons [(X1:Y1); pairlis [(X2-X3); (Y2.Y3);al
= (X1-Y1)-(X2:Y2)+(X3-Y3)-(X4:Y4)-(X5-Y5) = Pairlis [X;Y;al
We may then search the association list formed by pairlis and obtain the
first pair whose first term is, e.g.X = X3, by means of the assoc function
defined as
assoc [X;a] =[~qual [caar[a];X] + car[a]; T » assoc [X;cdr[al]]
where: caar = car[car[]]
There are other interesting functions in the LISP repertoire, but it does
not serve our purposes to analyze them in a quarterly report. The functions
described thus far do serve to give some indication of the basic LISP
structure and raises some issues for further investigation which we discuss

now.

e

3.4 Compiling, Interpreting, Machine Language and Subroutines

It is worthwhile to define the words "source program', "assembly
program", "compiler", "interpreter," and "machine language" before we proceed
very far into the discussion. These words are used frequently in computer
technology. An assembly program translates from symbolic instructions, source
program, into the language of a machine. The statements in an assembly
language are, generally, one to one with the machine language to which they
translate. Unlike a machine language, an assembly language allows the
programmer to use symbols with mnemonic significance. A compiler is a
program which translates from a source language into machine (or assembly)
language. An interpreter executes a source language program by examining
the source language and performing the specified algorithms. This is in
contrast to a compiler which translates the source language program into
machine (the object) language for a subsequent execution. As the title to
this section suggests, we have a choice of operational modes, namely to
compile the source program, interpret it, or write it directly in machine
language with subroutines for some of the functions.

It takes about 20 times longer running time to include an interpreter
in the operational machine. Of course, the memory saving is large. But
with larger, cheaper, semi-conductor memories and running time at a premium,
it seems reasonable to lean towards the idea of microprogramming the subroutines
forming a ﬁacroinstruction of LISP.

There are several other issues also. We note from some of the preceding
examples that the functions are recursive; there are a number of steps involved
with storage required for intermediate results; there is an order in
evaluating an expression, i.e. certain inner expressions are evaluated first;
and there is a substantial amount of substitution. This immediately seems

to suggest several levels of memory including a fast memory for intermediate

28

results; it also suggests some sort of two-level execution in which, for
example, the appropriate part of a conditional statement is selected, i.e.
the c; (conditions) are extracted ahead of time and then executed in parallel
when the ALU (Arithmetic Logic Unit) directs its attention to it. The left-
most true condition is then enacted. Also, if there are a significant number
of members in a list, the ALU does not have to be as wide as the list if the
list length is characterized somehow. In other words, a list stored in memory
as (A-(B-(C-(D-(E-NIL))))) = (A B C D E) could be characterized, when brought
into the ALU, as (A-(G)-E) and car and cdr can be obtained without ever knowing
what G is. This sort of pre-processing could significantly cut down execution
time, reduce required bus, ALU, and memory widths at the price of several levels
of processing and achieve a size and speed compatible with airborne require-
ments. Another related issue is computer memory structures compatible with
1ists which we examine now.
3.5 List Structures

LISP utilizes a tree structure for storing lists inside the computer
instead of sequences of binary coded characters. " computer word is shown in
Figure 3-1 as a rectangle divided into two sections called the address and

decrement, each of which is a 15 bit field of the word. A pointer to a computer

ADDRESS 7' DECREMENT

Figure 3-1. Computer Word

word is defined as the 15 bit complement of the address. We represent the
condition where the decrement of word A is a pointer to word B as shown

in Figure 3-2.

29

ABCDE

DECREMENT

Figure 3-2. Word Pointer

Figure 3-2 also shows the condition where word B contains a pointer to the

atomic symbol ABCDE in its address. Consider now some memory structures

for several S-expressions.

L% T+

e

(X-Y) —_—
(X-(¥-2)) = (XbYb2) L“*, X — ¥ —— 7 |
b = blank ' &
((X-Y) Z (x-Y)) NiL
l._,{ ? J

Y

s

Figure 3-3. Typical Memory Structures

e

In Figure 3-3, the first structure represents the basic S-expression

which is composed of a left parenthesis, an atomic symbol, a dot, an atomic

B

symbol, and a right parenthesis. A NIL pointer is not necessary in the memory

structure. The second structure has an X pointer in the address of word 1

but use the decrement as a pointer to the rest of the expression.

Similar

comments apply to word 2. Word 3 has a NIL pointer in its decrement. The

third structure has two basic S-expressions in it which can both be put in a

single word. The only problem remaining is tu point to them properly. Word

1

points to the first (X-Y) and its decrement points to the rest of the expression.

Word 2 points to the Z term and the remainder of the expression.

points to the final (X-Y) and the NIL termination.

Word 3

Another example is the

expression (X-(Y-(Z-X))-(Z-X)), whose memory structure is shown in Figure 3-4.

30

|
rt

Figure 3-4. Memory Structure for (X-(Y-(Z:-X)):(Z-X))

The expression may be written as (X:G-(Z-X)) where the first line of
words represent X and (Z-X) and the second line represents G. A simpler way
to form the structure is seen in Figure 3-5, which is similar to the third

structure of Figure 3-3.
l_;[ix ‘ y 1| NiL
I Z | X

Y < NL

Ean

T

Figure 3-5. An Alternate Structure

The advantages and disadvantages of such a memory structure are
stqted in quite general terms. As is the usual case, the particular application
will provide the appropriate weights to the plusses and minuses. On the plus
side, it has been suggested that the size and number of expressions which the
program must handle cannot be known in advance. Therefore, it is difficult
to arrange blocks of storage of fixed length to contain them. In point of
fact, this is done all the time. A second advantage is the use of pointers

which faciiitate a change in 1ist structures by changing pointers. On the

31

.

minus side, at least twice as much storage is required. To conclude this
discussion of LISP, let us give an example of altering a list structure and
altering the pointers.

Consider a list structure of the form ((ABC)(DEF)..., (XYZ)) which we
want to alter to (A(BC))(DEF)),...-(X(YZ))). The function LIST is used in the
sense that LIST [X] provides a list of the arguments of X. For example, if
X! =R, D, G ... Xo X2 =8B, E, Hy ... ¥, and X3 = C, FI, ... I then LIST [Xi;
X3; X3] = ((ABC) (DEF), ... (XYZ)). The expression X1 can be written as
car[{X] and LIST [car[X]] = A, D, G, ... X. Similarly, cdr[ABC] = BC so that
car[cdr[X]] = B, and cdr[cdr[X]] = C. Then the new LIST (A(BC)...) may be
formed by setting LIST [car[X]; list [carlcdr[X1]; cdrlcdr[X]1]1]1] = grp(X].

32

e AR _

4.0 ALGORITHM DEVELOPMENT

The purpose of this section is to describe the relaxation process dev-
eloped by the University of Maryland and ways of implementing it in an airborne
digital machine.
4.1 Relaxation (discrete case)5

For the first quarterly report we shall confine ourselves to the
discrete Relaxation case which will be superseded in the future by the
probabilistic case. However, it serves as a good introduction to the algorithm
and hardware implementation. Relaxation is essentially an iterative technique
where the relationships between objects are used to classify them; specific image
characteristics (objects) are used to classify the image figures. For
example, the objects could be line segments detected in the image. If
there were four of them and they were at right angles, one might conclude
that they formed some sort of a rectangular figure. Objects can also be
other image characteristics such as blobs, straight lines, or junctures
which, by themselves, do not have much meaning. But considered together,
the classification of the figure becomes apparent. We examine the
relationships for consistency, i.e. if the objects form a particular figure
(rectangle), they must have a certain relationship to each other for each
part of the figure. Further, inconsistent relationships must be rejected.
In a deeper cut through the problem, we may perform the iteration to find
a consistent relationship by discarding inconsistent relationships.
To show how this is done let us return to our previous example. Suppose the
four objects have several possible relationships between pairs, and we are
considering the relationships at the pair-wise level only. One way to iterate
is to assume a certain classification for object number 1 and cycle through
the relationship between object number 1 and each of the other objects in parallel.

If the classification of object number 1 is inconsistent with one of the other

33

oy

objects, the classification for object number 1 is rejected and the next
classification is tried. Clearly, the analyst can end up with a set of
consistent classifications, none of which dominates. This is the shortcoming
of the discrete case and is handled in the probabilistic approach. The next
item of interest is how the relationships are examined for consistency, as
outlined in the Maryland paper.5

Assume there are three objects ays Ay and as and their possible
classification can be A or u. More specifically, a kind of graph can be
formed as shown in Figure 4-1. The dots show that the objects can all be

represented as a A or a u. If it were

Figure 4-1. Graph Form of Relaxation

not possible, e.g. to represent a, as a u, there would be no dot at the (u, a3)
position. Suppose, further, that the following arbitrary set of relationships

exist between the objects.

A =A =l = Ags {2, u} (1)
Ao = Aya o {('\v"\‘)'a (L's'pl)} (2)
,\13 ~ Ir(/‘\tU)s (U’/\)} (3)

(1) states that the objects ays 3y, a5 Can be represented as either A or
u, i.e. {A,u}. (2) states that the relationship between a; and a, is the
same as that between a, and ag and can be characterized as A for each or
u for each. (3) states that the relationship between object 3 and a, can

be stated as either A for a and u for a, or u for a; and A for a2. Then

34

S - SR ST

these relationships can be drawn as arcs on the graph as shown in Figure 4-2.

a; 3, a5 a, a, a, a; 3, 3y
A e T &
; By
Figure 4-2a. Figure 4-2b. Figure 4-2c.
Relationship (1) Relationship Relationship

(1) + (2) (1) + (2) + (3)

Now, we see from Figure 4-2c, that there is an arc between each of the objects
which symbolizes the idea that there is a consistent relationship among them.
However, if we trace our way around the graph we find that a, = Xy a, = A, and
ag = A but to return to a, means that a, =u-a contradiction. On the other
hand, the graph of Figure 4-3 represents a case when there are two consistent
and possible interpretations of the set of relations. The two consistent
classifications from Figure 3 are (A, A, u) and (u, u, A) for objects ajps

3,y 24 respectively. Next we consider hardware implementation.
)

T—‘\

~—~

H . e
Figure 4-3. Two Consistent and Possible Situations

To form the graphs on a digital machine, we assume 2 is classified as A. We
cycle classifications for a, and aq against it by matching \'s. So for ags
we obtain (x,1) and for a; we obtain (Asu). Then for a;5 a,, a3, We obtain
(Ay Ay u). Similarly, assuming 3y = W, we obtain (u, u, A). These are the

same two consistent classifications shown in the graph of Figure 3.

35

Since we are manipulating lists of symbols rather than 1ists of numbers,
a natural computer language for this problem is LISP.2 Referring to LISP,
we note that some defined functions are directly applicable to the problem.
First of all, there are two possibilities for 2 XA, or u. This should be

compared with the first of each two of Alg, ize. A of (x,1) or u ‘of (i)

1 (Aew)s A = [(Ax) ()],
32

A13= [(A-p)-(u-A)]. Further to make the form of A1 compatible with that of

which represents a In the language of LISP, /\1

/\12 and not change the meaning of Al, we let /\1 = [(p)-(X*u)]. Then we could

employ tﬁe pairlis and equal functions sequentially. The function pairlis
[x;y;a] gives this list of pairs of corresponding elements of the lists x

and y, and appends them to the list a. As an example, let x = (X1-(X2°X3)) and
y = (Y1-(Y2-Y3)) which are to be paired and added to a list (X4-Y4)-(X5'Y5),
then pairlis [x;ys;al = (X1-Y1)-(X2°Y2)-(X3-Y3)-(X4-Y4)-(Y5-Y5). Then pairlis
[A

Azl = (A X)) (u-A) (A-p)-(u-u) and equal (A-A) = True; we obtain A for

i
a, from the second pair, assuming we remembered a2‘s position in that pair.

Simultaneously, pairlis [Al;A 1] is computed to obtain the classification

13’
for as. A more direct approach in LISP is the "SASSOC" function which has
the following definition:
sassoc [x;ys;i]: searches y, which is a list of dotted pairs for
a pair whose first element is x. If such a pair
is found, the value of sassoc, u, is this pair.
sassoc (xsysu] = [nully] > wu []; eq [caar [y]; x] » car [y];

T » sassoc [x; cdr [y]; ul]

Applying sassoc,

l\1 fA,n}, car [A]] =X =X

A= [(AX) (u-n)l

y 12

then,

sassoc [A;((A=A)-(pep))su] =

36

Ve et~

Step 1.
null [y] is false
caar [(A-A)-(u-u)] = car [A:A] = A

eq [carr [yl;x] =eq [M2] =T

sassoc = car [y] = (A*A).

The pair has been found, the second atomic symbol of the S-expression is the

to find a

classification for 2y namely A. Now, we repeat sassoc for A13

consistent classification for a

3°
Al = [A,u], car [A]] =\ = X

A, = [(wn)] =y
then
sassoc = [A;((x-p)-(u-u))sul =
Step 1.
null [y] is false
caar [(A-u):(u-u)] = car [A-u] =2

eg [caar [yl;x] =eq [A*A] =T

sassoc = car (y) - (A-u)

and the classification for aj is the second atomic symbol in the S-expression,

i.e., u for as. And the classification becomes (A,\,u) for (al, 3, a3).

We would then repeat the procedure above where ay starts with py, and we obtain

(pu,u,n) for (al,az,a3). In summary, we have shown that there are at least two

LISP structures which produce the consistent classification lists for objects

2y, 3y, 35 35 also shown in the graph of Figure 3.

37

In terms of bit slice implementation, we might assign a processor
to each object. The width of each processor would be the width of the
classification word. It is worth pointing out that, since each processor
would be doing the same thing, it is possible to have one controller
for all three CPU's. This reduction in hardware is not possible with

microprocessors which are not bit slice.

38

5.0 BIT SLICE PROCESSORS

Westinghouse has substantial experience in building avionics processors

(high speed, small size) from bit slice components; we have built process

controllers, general purpose machines, signal processors, and processors for

satellite applications where reliability must be extremely high.

The general

purpose avionics processor (a member of the Westinghouse Milli-EP family)

described in this section is an example of a bit slice CPU and bus controller;

it has the following characteristics:
Volume :
Throughput :
Memory :
Mean Time Before Failure :
Instruction Set :
General Registers :
Indirect Addressing :
Fast Floating Point :
Bus Structure :
CPU :
Bit Operation :

Power :

<1ft3

400,000 operations/sec.
128,000 words, 16 bits each
2027 hours

Proposed Air Force Standard
16

Unlimited

32 or 48 bit
Microprogrammed
Microprogrammed

1, 8, 16, 32, or 48

600 watts

A functional block diagram of the computer is shown in Figure 5-1.

39

Primarv Power
Power Supply
Backup Power

r

Processor Power
DI 7
CMADD l | MAID :
i
1
CAU EAU MC MEM 0 - <
s
I 0o I l MDTA I j
SE/AGE Interface 78-0158-v-1

Figure 5-1. Computer Functional Block Diagram
5.1 Functional and Performance Characteristics

5.1.1 System Architecture

The architecture of the avionics processor AN/AYK-15A is shown in
Figure 5-2.

The processor portion is composed of the CAU (Central Arithmetic Unit),
the EAU (Extended Arithmetic Unit), and the MC (Memory Controller). These
modules are functionally partitioned for ease of built-in test.

The I/0 portion is comprised of standard military interfaces, interrupts,
discrete inputs and outputs, interval timers, watchdog timer, real time clock,
and memory protection circuitry. The memory system consisting of 128K of core
memory expandable to 256k, 4k of bootstrap ROM, and 2kX32 main memory ROM is
interfaced directly to the I/0 bus. The support equipment interface consists
of a serial computer control port. The computer control port is the means by

which operator control and maintenance of the computer is achieved.

40

| |6 F
{88

MAD
00
vOTA
CMADO -]
& x32
[eau [Cwe | 10 [axmam | [axmanm | Tk
Reoguster Set Floaung Pt. Memory Controt | Oucretes l ‘
Mys Myx
Multiory/ Interruots Timen
o1 TN RS PR o S
AGE Intarface Control
RE 0 g gg
E|E|E|E &
. eV e18V 12V Nuclear Event Int Tirit|T Tlrtlr
Aty : ey
Power tnt 4 . g XXX X
g . ',
N i SRR
L . nlnlnle {ryR{aln]
ISPt T
- AL
3Phem MILSTD- 15534
Channels
780158 V-2

Figure 5-2. General Purpose Avionics Processor

5.1.2 Central Arithmetic Unit, CAU

The CAU performs all the fixed point arithmetic operations necessary
to implement the instruction set. The CAU module is structured around the
AM-2901A bipolar LSI microprocessor as shown in Figure 5-3. The microprocessor
is 16-bits wide and contains 16 general purpose registers for arithmetic and
indexing. Two registers (RSAV) latch the general-purpose register numbers
during an instruction fetch. Their outputs are multiplexed to give register
number information to the AM-2901A. A four-bit counter (MDCT) catches the shift
count for shift instructions. It is also used as a sequence counter and
to generate the data bit mask (through the BITMSK decoder) for data bit
manipulation.

The AM-2901A is integrated with the other system elements by way of
two 16-bit buses, DI and DO. The DI bus is the data interface to the micropro-
cessor. Information from the MC, 1/0, and EAU are routed to the microprocessor

on this bus.

41

CMAD

o %
Do MC Pointer JADD
AL RAN. ROM
| RSAV l
a 4 T ‘ 4 Drogram 4 program
Jump
Sequenc

a4 & Conditions
C 7 29014

4 Microprocessor CMADD s

10

- 78-0158-v-3

Figure 5-3. CAU Organization

The DO bus is the output data bus from the microprocessor. Results
of the microprocessor operations may be routed on this bus to the MC, I/0,
or EAU registers.

The control structure for the processor is implemented with a micro-
program control store as illustrated in Figure 5-3. Schottky LSI microprogram
sequences are used to control the sequencing of addresses to the control ROMs
(CROMs). The sequences provide both conditional branch capability, as well as
a "push-down stack" for microprogram subroutining.

Address sources for the microprogram sequencer may come from one of
three Pointer ROMs. These ROMs are used to translate system states into
starting addresses for microprogram control routines. The MC pointer ROM
translates the order type field into a starting address for instruction
execution. In a like manner, the JADD ROM is an address source for the
microprogram sequencer.

Microprogram address modification is provided by means of a 16 to 1
conditional branch multiplexer. Appropriate system flags are selected by this
multiplexer for microprogram testing.

42

deade.

The microprogram address (CMADD) is supplied to the MC, EAU, and 1/0

to control sequencing.

5.1.2.1 Data Formats
The CAU module performs fixed-point arithmetic on 16-bit data (single

precision) and on 32-bit data (double precision). The data formats are shown

below:
4] Single Precision
S . (Fixed Pt)
16 1
'\
S MSH
16 Double Precision
(Fixed Pt)
LSH
16 y

In addition, the CAU performs operations on 8-bit data (byte operations) and
single-bit data (bit operations).
A1l fixed-point data operations are performed using two's complement

integer arithmetic (binary point at the extreme right end of the data).

5.1.2.2 CAU Registers

The CAU contains a set of 16 general registers for use by the programmer

for arithmetic operations and address modification. Certain registers have

implied usage as follows:

0 Registers Rl, R2, ..., R15 may be used as index registers for those
instructions having the RX field.

0 The registers may be partitioned as 16 single-precision (16-bit)
accumulators, 8 double-precision (32-bit) or floating-point
accumulators, 4 extended-precision floating point accumulators,
or any combination of the above.

43

O Four registers, R4, R5, R6, R7 may be used as base registers
for instructions having the Base Relative Address Mode.

O For instructions having the Base Relative Addressing Mode, RO
is the accumulator for double-precision and floating-point
operations, and R2 is the accumulator for single-precision and
integer operations.

0 R15 is the implicit stack pointer for the Push and Pop Multiple

instructions.
A1l the general registers are 16 bits in length.

Three additional registers are accessible to the programmer for
certain operations. They are:

a. IC Register

b. Status Register

c. Interrupt Mask Register
The IC is 18 bits long. The other two registers are 16 bits.

The IC register directly addresses 256K of mémory to point to the next
instruction to be executed. It is incremented by hardware during the instruction
fetch machine cycle. The IC register may be loaded by executing any of the
following instruction types:

a. Jump Instruction

b. Subroutine Jump Instruction

c. Load PSW Instruction

d. Return from Interrupt Instruction :

To provide maximum software flexibility to accommodate the 18-bit IC,
instructions are provided in two formats: normal 16-bit address fields (which
leave the upper two IC bits unchanged) and long 18-bit address fields for
jumping to any of 256k locations (refer to Section 5.1.2.3). Upon interrupt,

the upper two bits of the IC are automatically saved in the status register.

44

P

Return from interrupt automatically restores these bits along with the rest
of the IC. This implementation provides symmetry for software and compiler
operation, providing maximum efficiency.

A similar 2-bit extension is associated with the operand address.
These extensions may be loaded via the Load Block I/0 command and read via
the Read Block I/0 command. A Move instruction is provided to allow blocks
of data to be efficiently moved anywhere in 256k of memory.

These two extension registers allow addrecssing of up to 256k memory
half-words for both instructions and operands. if instructions are allocated
to block 2 and operands to block 1, no block switching would be required
during a program running on the basic 128k processor.

The status register reflects the current arithmetic status of the
processor. Its format is shown below. The status word is automatically
updated by hardware after execution of every arithmetic instruction.

Additionally, it is loaded by the LPSW instruction.

STATUS REGISTER

SJZ |00 NOT CSED ER&LIC
IC Block Number

16 15 14 13 8 43 2 17/ pa Block Number
s Floating PT Underflow
Fixed Pt or

Floating Pt Overflow

Result = 0
Sign of Results

The interrupt mask is a 16-bit register in the priority interrupt
system used to individually mask interrupts. It is loaded when executing
either the LPSW instruction on the OUT {interrupt mask) instruction. Its

format is shown below.

45

o .]f___ INT No. 1
| INT No. 2
INT No. 15

NOT USED

0 = Allow Interrupt
1l = Disable Interrupt

5.1.2.3 Addressing Modes
Although the memory system is defined in terms of 32-bit words, the
system can efficiently handle 16-bit half-words. These half-words can be
directly addressed by all instructions using 16-bit data, and 16-bit instructions
and data can be packed 2 half-words to a full-word with no penalty to memory
space or throughput. Instructions for loading and storing bytes can directly
address the upper or lower byte of a half-word.
The CAU provides 10 modes of operand addressing. Each addressing
mode and its related instruction format is as follows:
0 Register Direct, R: An instruction-specified register contains
the required operand. (With the exception of this address mode,
DA denotes a memory address.) Double word operands begin in
even-numbered registers.

0 7 8 i1 12 15

ocC RA RB

46

-

Memory Direct, D: An instruction-specified memory address contains

the required operand:

0 16 31

oc RA RB A

Memory Direct-Index, DX: The memory address of the required operand
is specified by the sum of the content of an index register and the
instruction address field. Registers R1, R2,..., R15 may be
specified for indexing.

0 15 16 31

ocC RA J RX A

RX = 0 (nconindexed)
RX # 0 (Indexed)

Memory Indirect, I: An instruction-specified memory address contains
the address of the required operand. The address is a 32-bit
word containing an 18-bit address plus a bit which specifies whether

the instruction should go indirect another level.

ocC R2 (o] A
16 1 16 o

Memory Indirect with Preindexing, IX: The sum of the content of a

specified index register and the instruction address field is the

address of the address of the required operand. Registers Rl, R2,
.., R15 may be specified for preindexing. The indirect address

is in the same format as for Memory Indirect.

oC RA RX A
RX c[Rl, R2m°°'R15]

a7

Immediate Long Indexable: The contents of RX when added to the
address field, A, is the operand if RX € [Rl""RIS]' If
RX = 0, then A is the operand.

ocC RA Rx A

16 116 1

Long Address: The RB field contains an extension of the address
field (BLK). These instructions provide the capability to jump to

any word in memory or move data from any word in memory.

OC |RA | BLK A

16 1 16

Immediate Short, IS: The required (4-bit) operand is contained within
the 16-bit instructions. There will be two methods of Immediate

Short addressing; one which interprets the content of the immediate
field as positive data and one which interprets the content of
immediate field as negative data. .

Immediate Short Positive, ISP: The immediate operand is treated

as a positive integer between 1 and 16.

Immediate Short Negative, ISN: The immediate operand is treated

as a negative integer between 1 and 16. Its internal form will be

a two's complement, sign-extended 16-bit number

ocC Ry 1

16 1

IC-Relative, ICR: This address mode is used for 16-bit branch

instructions. The content of the instruction counter (i.e., the
address of the current instruction) is added to the sign extended
8-bit displacement field of the instruction. The sum points to

the memory address to which control may be transferred if a branch

48

ll st

is executed. This mode allows addressing within a memory region of
-128,, to 127, words relative to the address pointed to be the

instruction counter.

oC D

16 9 8 1

Base Realtive, B: The content of an instruction-specified base
register is added to the 8-bit displacement field of the (16-bit)
instruction. The displacement field is taken to be a positive number
between 0 and 25510. The sum points to the memory address of the
required operand. This mode allows addressing within a memory

region of 25610 words beginning at the address pointed to by the

base register. '

ocC D

Stack Addrecssing: The CAU provides for a'register/memory stack
mechanism. Two instruction formats are permitted. The first

format allows any of the 16 general registers to be designated

as the stack pointer, while the second format uses R15 as the implied

stack pointer.

The stack is formed in memory by execution of appropriate micro-
brogram routines to implement a "last in first out" (LIFO)

algorithm. "Stacking" will proceed by loading data into successively
larger memory addresses. Stack overflow will be detected as a
memory protect violation when the stack area advances into protected

memory.

49

Four instructions are provided for stack manipulation. The SJS
and URTS instructions provide for subroutine stack linkage allowing
any register to be designated as the stack pointer. PSHM and POPM
provide register-to-stack capability for stacking and unstacking

1 to 16 general registers. Both PSHM and POPM use R15 as an

implied stack pointer.

5.1.3 Memory Controller

The memory control (MC) contains the control necessary to interface
the CAU with the memory system (Figure 5-4). The MC is implemented with Schottky
logic. The MAD bus provides address information for memory and I/0 operations.
The DI and DO buses comprise the data exchange buses for communication with the
CAU. Memory activity is initiated by microprogram signals which direct control
logic to begin a memory cycle. When the appropriate memory is ready,

the control logic sequences its data onto the MDRA bus (Read) for transfer

to the MC.
o e MDTA
——»
i S g g NN o
{mory } [morz | | ic | | EA] 4k Boot Memisow
ROM
?i frrerr T f'|
i3 et 5
= MAD
s >
o o
i MC Control
4 MEMEN) Memory
L =
l 78.0158-v-4

AGE

Figure 5-4., MC Architecture

50

B T R

Two 16-bit registers (MDR 1&2) are provided to hold data words
from the memory. The IC counter supplies instruction addresses to the
memory, while the EA counter supplies data addresses. All of these registers
can be loaded from the CAU via the DO bus or read by the CAU via the CI bus.

The priority interrupt system is implemented using an LSI circuit
(AM-2914), which incorporates the interrupt capture flip-flops, priority
encoder and interrupt reset logic into a single device.

A 4k bootstrap ROM is provided on the MC to handle the functions of

automatic startup (memory verification) and bootstrap load.

5.1.4 Extended Arithmetic Unit

The EAU contains the logic necessary te support the CAU in execution
of floating-point arithmetic and fixed-point multiply and divide. The module
is implemented with bipolar Schottky logic.

Single precision floating-point numbers are represented in 32 bits
with an 8-bit two's complement (nonbiased) exponent and a 24-bit two's

complement fractional mantissa. The format is shown below:

s | 271 2723 |s EXP

1 15 116 9 8 b

Floating-point results are normalized after each instruction. A floating-
point zero is represented by an all-zero mantissa and the maximum negative

exponent.

51

Examples of floating-point numbers:

Hex

Decimal Number Mantissa EXP
0.5 x 2247 4000 00 7F
0.5 x 2° 4000 00 00
0.5 x 27! 4000 00 FF
0.5 x 2128 4000 00 80
0.0 x 27128 0000 00 80
ER T o 8000 00 %
1.0 x 29 8000 00 00
bl %20 8000 00 FF
BN 8000 00 80
-0.75 x 271 A000 00 FF

Extended precision floating-point numbers are represented in 48
bits with an 8-bit two's complement exponent and a 40-bit two's complement

fractional mantissa. The extended precision floating-point format is shown

below:
g 2-1 2-14
2"15 2-31
2=32 2=39 EXP
16 9 8 1

In addition to assisting the CAU in performing floating-point calculations,

the EAU provides hardware for enhancing fixed-point multiply and divide.

52

A i ot

Figure 5-5 shows the organization of the EAU hardware. Data is
exchanged with the CAU on the DI and DO buses. A 40-bit wide arithmetic
unit is provided to handle floating-point mantissa and fixed-point calculations.

The X-REG is wused in conjunction with the X-ROM to perform exponent
calculations for floating-point overations. The X-ROM indicates a "scaling
count" for mantissa alignment prior to performing a floating-point add.

The necessary control lines to coordinate the EAU data flow are derived
by control ROMs (CROM) from the CAU microprogram address (CMADD) which is
supplied to the EAU and by internal control ROMs.

5.1.5 1I/0 System

The I/0 system for the Avionics Processor is composed of five separate
functions:

0 BCIU-RT

0 Interrupts

0 Discretes

0 Timers

0 AGE Port

5.1.5.1 Bus Control Interface Unit (BCIU-RT)
Eight 1553 channels are provided. The BCIU-RT is the functional
control unit utilized to operate and control the MIL-STD 1553A serial data
interface channels. The BCIU-RT incorporates many unique features which trans-
late into significant user advantages.
a. Microprocessor Control
0 Microprogrammed for flexibility to conform to MIL-STD-1553A,
or upcoming MIL-STD-1553B (Standard Military Bus)

0 Independent of main CAU

53

16

e T e
Lew Jlee | [mou] lmoe] [xRe |}
S - 4 ©
«$58° xag; é
Lot
CTR
3
Shifter
L A o
16
DI #
CROM HSRO HSRI
l EAU Control
ROM Reg T
L ,
780158.V-5

Figure 5-5.

EAU Organization

54

0 Interfaced to main memory through DMA and RAM for minimal impact
on throughput

0 No degradation of CAU throughput. CAU intervention is required
only to service data channel malfunction or data channel completion
or data channel interrupts.
b. Extensive Error Detection
c. Wraparound BIT

d. Self-Test

5.1.5.2 Interrupts

Sixteen levels of vectored priority interrupts are provided. Receipt
of an interrupt by the CAU causes an automatic (hardware action) saving of
machine status (IC, Status Word, Interrupt Mask) in memory and their subsequent
replacement with a new set to accomplish interrupt vectoring. Each interrupt
can be individually "masked" (with the exception of nuclear event and power down),

under software control.

In schematic form, an interrupt would be handled as follows (see Figure

5-6).
Vector Table Linkage
LPTR -—/ e
Computer Status
:‘m:: SPTR OLO FLAGS at time of
terry Interrupt

oLbIc

LPTR - Linkage PoinTeR
SPTR — Service PoinTeR

New Computer NEW MASK
PSW to Start
Service Routine NEW FLAGS
NEW IC
N —————
78-0081-v8

Figure 5-6. Interrupt Schematic

55

The “vector table" is a set of 16 double-memory words used as pointers
to status word storage areas. “LPTR" (linkage pointer) points to the memory
locations to receive the machine status when starting an interrupt. "SPTR"
(service pointer) points to the memory locations to be used to load the
new machine status which "vectors" the CAU to the interrupt service routine.
Return from the interrupt service routine is accomplished by executing the LDST
instruction with LPTR as an effective address. Thus the original machine
status (IC, SW, Interrupt Mask) will be reinstated and the CAU will return
to execute the interrupted program.

Figure 5-7 illustrates the interrupt system. System interrupts are
caught in the capture register whose outputs are gated with appropriate bit
in the mask register. The output of the mask gates is then encoded and
presented to the CAU when INTACK is activated. The encoded interrupt number
is then decoded and used to reset the appropriate capture register bit. Thus
all interrupts are captured and can only be reset by servicing. Once the CAU
accepts an interrupt, the interrupt system will be disabled with the exception

of interrupts 14 to 16, until reactivated by a software command.

e : -

il m

- B2

$2I0RITY ENCODER
& ENABLE LOGIC

s WTACK
e
wWTREQ
-
.
w
o © r—)
: 4 P o
™o Ve

Figure 5-7. Interrupt System

56

The power down and nuclear event interrupts are special in that they
cannot be disabled or masked off. These interrupts receive highest priority.
Nuclear event interrupt differs from the other interrupts in that the hardened
memory address register is stored instead of the IC to facilitate memory
recovery. This interrupt also prevents the power supply from entering a false
power down sequence.

Other interrupts are assigned to such events as memory protect violation,
memory parity error, real-time clock or internal timer overflow, external
events, etc.

The interrupt implementation scheme allows for flexibility in ordering
priorities and for determining which interrupts may be masked.

Interrupt response time is a function of the instruction being executed

and typically ranges from 2 to 6 usec.

: 5.1.5.3 Discretes

The 1/0 contains 32 output discretes and 32 input discretes. Output
discretes are differential TTL level signals using differential line drivers.
Similarly, the input discretes are received as differential TTL signals using
differential line receivers. The discretes output holding register may be
loaded with an OUTPUT instruction. The discrete inputs may be read by
executing an INPUT instruction.

Three input discretes are dedicated to the functions CDS Load mode,
Select, and Device Select. One discrete output is provided for the Processor
Failure Warning. These discretes, in conjunction with an Initiate Binary

Load interrupt, interface the AP with the Control and Display Subsystem (CDS).

57

5.1.5.4 Timers

Two programmable interval timers are provided. The timers have 100 usec
per counting interval. Both interval timers count to 216 and can be preset to
any value in that interval. Interrupts occur when the timers overflow. The
timers can also be read, started, and halted.

A real-time clock is provided that can interface with other APs.
The frequency of the clock is hardware selectable. Under software control,
the clock can be initialized and have its internal and external interrupts
enabied or disabled.

A watchdog timer is provided which is reset by a CAU output instruction.
Receipt of a reset outside the allowable window limits generates a NO-GO
interrupt.

The real-time clock and one interval timer are radiation hardened.

5.1.5.5 Memory Protection

Memory write protect is accomplished by using a 1-k x 1 bit high-speed
RAM under software input/output instruction control. By wiring the 10 high-
order bits of the memory address and the memory read/write signal to the RAM,
for example blocks of 256 memory locations can be protected by gating off
the memory execute signals. This method is commonly referred to as zone
protect. Larger zones can be easily accommodated by wiring only 8 bits for
example. Protect zones for DMA access may also be established independently
of the zones for the processor. This allows the processor access to the DMA -
the processor's protected zones. Memory protect may be "overridden" from the

Processor Control Unit under operator control when connected to the computer.

Figures 5-8 and 5-9 illustrate the memory zone protect concept.

58

WRITE

PATH SELECT —1

DISABLE —1
-

1/0 BUS 1

WRITE

r ENABLE

~
-

PROCESSOR e

xCcTN

DMA

Figure 5-8.

RAM
KX
PROTECT
MEMORY
EXECUTE
£ X E Commumey

78-0081-v-10

Memory Protect RAM

Procaisor DMA
Port Port
"-]"'—r P!
Pratected [
—
RO, - (IS Protected
PRT A-
b > Protected
Protected fiogs
l'-r)v'—cu-d
s VTR, AN
766631V

Figure 5-9, Mémory Zonc Protcct

59

6.0 Summary

In this, the first quarterly report on "Hardware Implementation of -
Higher Level Digital Image Processing", we have described the system design
goals to which the hardware implementation must be directed. A number of
commercially available bit slice processors have been described in terms of
their data handling and arithmetic/logic characteristics. We have devoted
some space to LISP, since the higher level algorithms may be using symbols
and Tlists for data. A set of basic LISP functions have been analyzed to
show the number and kinds of instructions the microprocessor array must ac-
comodate to execute LISP. The relaxation algorithm which Maryland may use for
higher level image processing was formulated in two versions of LISP for
the discrete case. Finally an example of a Westinghouse processor was given
in which bit slice microprocessors both form the ALU and control the bus.

In the next period, we shall be expanding the basic problem to 10
classes and 100 objects and begin considering the interconnect problem and
dynamic reconfiguration for a variable number of classes and objects, and
reliability. It is important to consider special implementation for
relaxation operations in order to provide for real or non-real time
operations. The University of Maryland has estimated that it will require
many hours to perform the relaxation computations for one image frame on a

general purpose machine.

60

A ke

7.0 References

1. Milgram, D.L., Rosenfeld, A., Willett, T., Tisdale, G., Algorithms
and Hardware Technology for Image Recognition - Final Report, DARPA
Order 3206, March 31, 1978.

2. Alexandridas, N.A., Bit - Sliced Microprocessor Architecture, Computer,
Volume 11 Number 6, June 1978, IEEE Computer Society.

3. Adams, W.T., Smith, S.M., How Bit - Slice Families Compare: Part 1,
Evaluating Processor Elements, Electronics, August 3, 1978, McGraw-Hill.

4. McCarthy et. al., Programming Manual for LISP 1.5, MIT Press, Cambridge,
Mass. 1962.

5. Rosenfeld, A., Hummel, R.A., Zucker, S.W., Scene Labeling by Relaxation

Operations, IEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-6,
No. 6, June 1976.

61

