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to the proble. area presented to us by Captains B. Ristvet and W. Ullrich of
AFWL, and th. superb X—ray diffraction work carried out under Captain Robert
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INTRODUCT ION

During the previous year, we have both developed quantitative criteria for

determining the peak shock stresses experienced by carbonate rocks, and applied

these to infer the peak shock pressure history of carbonate core (XC—l) mate-
rials recovered from ground zero beueath the Cactus explosion crater at Eniwetok.

Our efforts were directed toward three simultaneously conducted research phases:

a) the development of quantitative methods of shock effec t analyses, b) careful

application of these methods to Cactus core material, and c) comparison of Cactus

core results with analagous carbonate rocks experimentally shocked in the labora-

tory to known stress levels.

The first of these phases demanded the greatest expenditure of effort , and

the techniques that have been developed are still in a process of refinement.

Due to the nature of the core material , an inhomogeneous, very fine—grained

biogenic carbonate , traditional optical methods of shock effect documentation
have, to date, proved to be unproductive. Application of X—ray and electron

spin resonance techniques was subsequently attempted; the resulting data appear

to be quantitatively relatable to the stress levels imposed on carbonate rocks.

Debye—Scherrer arc spreading, X— ray diffract ion peak broadening, radiation

damage erasure, and electron spin resonance (ESR) Mn zero—crystal—field

splitting effects are all observed to vary consistently with depth within the

XC—l core section. An additional, and very fortunate property of all the above

mentioned effects is their first—order independence of the relative abundance of

the carbonate polymorpha, aragonite and calcite, found in these rocks. Analogous

variations are observed in experimentally shocked specimens of both single—

crystal calcite and Eniwetok material sampled from areas unaffected by the Cactus

event. Comparing data from in—situ and laboratory recovered carbonates has
enabled us to place upper and lower limits on the stresses experienced at various

levels in the XC— l core.

In addition to the already mentioned refinement of shock—effect detection

methods, further recovery experiments should allow us to more narrowly limit

shock pressures. Also, physical models providing a theoretical basis for the

processes which take place upon shock processing fine—grained carbonates are

presently under development. This understanding would be of considerable value

in predicting the response of shocked carbonate materials occurring in other

3 
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geologiss. In the case of the electron spin resonance method , the work on the
Cactus core material is , in fact , a pioneering e f fo r t  in this area of research.
It is likely tha t the results of this research program can be applied to other
explosively shocked and meteorite impacted rocks .

RESEARCH SUMMARY
Angular Strain Analysis

A systematic increase in angular strain with pressure, analagous to that
measured in laboratory shocked specimens, is displayed by calcite crystals
isolated from XC—l core material. (see Table 1.) Experimental single crystal

calcite data provide a preliminary calibration curve relating observed strain
to a documented shock pressure (Figure 1). In addition to such an empirical

correlation, a theoretical model based on campressional data of Ahrens and

Gregson (1964) has been applied to the material. Knowing the pressure—volume
behavior of a mineral, shock pressure may be explicitly related to angular
strain , 0 , by the following relation

tan~~ ~~~~~ —tan 1 (1)

V and V represent initial and compressed volumes, respectively. Equation (1)

is applicable in the region of deformational behavior at pressures not exceeding

those of a shock—induced phase change which, in calcite , occurs at ‘.l6—17 kbar

(4~I~ ens and Gregson, l”64). According to this model , it is inferred that calcite
from a depth of 41.8’ to 43’ has been exposed to peak pressures of approximately
10 ± 5 kbars. Calcite from depths of ~.90’ indicates strains corresponding to

less than ‘.5 kbars .
As first observed by ft. Cot~ h , aragonite disp lays a more consistent varia-

tion of Debye—Sch.rrer pattern angular broadening with depth , i.e., shock defor-

mation, than does calcite. However, an extensive series of shock recovery exper i-
ments on single crystal aragonite , followed by Debye—Scherrer investigations of

these samples , will be required before an observed—angular—st rain to impact—

stress relationship can be quantiUed . We propose to do just this in the

future. A comparison of calculated stress levels from angular strain in both

aragonite and calcite would serve to verify and more narrowly limit the shock

4
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pressure inferred for same depth in the core. Toward this end , preliminary
equation of state data for aragonite has been obtained during the present
proJect .

TABLE 1

Ni—K Debye—Scherrer Reflection Strain Anglea~~

A. CIT Shocked Calcite~~, Single Crystal (101)

Diffraction Line Arc (), Rhombic Notation

Shock Pressure
(kbar) (102) (100) (113) (202) (204) (208)

0~0
c) 0.00 0.00 o.oo o.oo o.oo o.oo

±.05 ±0.04 ±0.10 ±0.13 ±0.093 ±0.11

7 0.25 0.46 0.26 0.68 0.17 0.23
±0.21 ±0.30 ±0.19 ±0.20 ±0.17 ±0.25

36 1.23 2.23 1.76 1.81 1.27 1.55
±0.63 ±1.37 ±1.06 ±0.89 ±1.09 ±0.90

B. Calcite Crystals from Cactus, XC—l Core Hole

Diffraction Line Arc (), Rhombic Notation

Core Interval
(feet) (102) (100) (113) (202) (204 ) (200)

41.4—48 0.38* 1.03 0.20 0.46 0.29 0.17
±0.18 ±0.97 ±0.27 ±0.47 ±0.20 ±0.18

83—87 0.30* 0.19 0.38 0.22* 0.24* 0.26*
±0.11 ±0.18 ±1.22 ±0.09 ±0.16 ±0.03

87—91 0.25* 0.31 0.02 0.17 0.16 0.15
±0.06 ±0.43 ±0.15 ±0.16 ±0.15 ±0.15

a) X—ray diffraction patterns taken by ft. Couch.
b) Samples supplied by F. Hbrz.
c) Sample, AFWL Standard calcite #6, unshocked sample gave 0.04 to 0.ll ,

natural beam width. The natural beam width has been subtracted from
data for each diffraction peak.

* Lowest unc .rtainty, angular strain data.

5
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Figure 1. Maximum angular strain vs. pressure in shock
recovered calcite.

.~~25

Angular Strain ( °)

Figure 2. Preliminary shock pressure vs. angular strain
based on Equation (1). Data plotted are for
(102) calcite reflection.
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Particle Size Analysis

Powder X—ray diffraction spectra of XC—l core material display a systematic

decrease in broadening of both calcite and aragonite peaks, measured at half

their maximum intensity, with Increasing depth of sample. Tracings were obtained

with a standard 45 Ky—Cu X—ray goniometer; unstrained, biogenic calcite was

used as a reference standard. Diffraction peak broadening is known to be related
to the mean dimension, D, of the crystallites composing the powder according to

the following equation from Klug and Alexander, p. 491:

K).D 8cos0 (2)

K is a constant related to the crystallite shape, A is the wave length

of the X—rays, 0 the Bragg reflection angle for the (102) calcite peak, and

B the half—width of that peak at half—maximum Intensity.
The variation in crystallite size with depth in the XC—l Cactus core is

plotted in Figure 3. Although data points from intermediate to lower core

samples show considerable scatter, those from the uppermost levels are signif I—
cand y displaced toward the fine end of the granulation scale. Comparison with

recovery data indicates that the shallow XC—1 material was exposed to pressures

in excess of 2 kbars. Successful recoveries of saturated core material shocked

to ‘.20 kbars have been achieved, but X—ray diffraction data on these samples

is not yet available.

7
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Figure 3. Variation of mean crystallite dimension, D,
relative to that of unstrained biogenic
calcite, D0, as inferred from calcite (102)

- 
I peak broadening. Preliminary data for grain

sizes in two shock—recovered water—saturated
cores (10’ depth, XRU—3) and a control sample
(0.0 kbar) are also indicated.

Shock—Induced Erasure of Radiation Damage Centers

-

, The electron spin resonance peak attributed to intracrystalline radiation

damage displays a unique pattern in spectra of laboratory and Cactus explosion

shocked specimens. Natural U238 , K”0, and cosmic ray influences are believed

to produce vacancies in the C0’ sites of both aragonite and calcite; the

observed spectral peak Is presumably due to the resonance of free electrons

occupying these vacancies. Comparison of unshocked and laboratory shocked

(2.17 kbars) carbonates indicates that the intensity of this feature consistently

decays with the application of increasing stresses. It is hypothesized that

shocked induced annealing provides the erasure mechanism. Figure 4 depicts the

variation in radiation damage peak with depth in the XC-1 Cactus core. As seen

in this diagram, heating the specimens to 430°C somewhat decreases the amplitude

of this feature. However, the depth vs. intensity pattern remains unaltered

and shock rather than thermal erasure is concluded to be the dominant mechanism.

A detailed series of chemical analyses would be required to accurately calibrate

this effect in terms of applied shock stress. Of interest is the high level of

8
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ESR radiation damage observed in the 36.5’ (approximately the fall—back breccia—
in—situ rock interface level). This radiation damage is unaffected by heating
to 430°C and is considerably greater than seen in any of the other core material.
This material may have experienced high fluxes of gameas and low—energy neutrons.
On a simplistic level, the total radiation dose of this material may be calibra—
table. That this is so, is suggested by a preliminary experiment in which a
CO6° source was used to irradiate Iceland spar with a dose of 1.2 x 106 rads
(Figure 50) and annealing at 600°C for 20 mm ., Figure 5H.

We thus, tentatively, interpret the amplitude of the relative damage ESR

spectrum versus depth (Figure 4) as resulting f rom two competing effects as
follows: the non—thermal or non—shock eraseable peak in the uppermost core

appears to be radiatively induced by the device...this effect decays to a

negligible value at a depth of between 46’ to 89’ below which the shock wave

appears to have attenuated the natural radiative damage spectral resonance peak,

the latter effect decreasing with depth.

I I I I I I r I I I I I 1
1.0 — -

Heated
380•C~thf

~ 0.2 ’
Unheoted 

-

O 1 I I I I I I I I I
20 40 60 80 100 120 140

Depth (ft)

Figure 4. Relative intensity of radiation—damage ESR peak at
‘.3300 Gauss at 9.1 GHz versus depth for XC—l core ,
from Cactus crater unheated and heated to 430°C for
one hour. Two effects are superimposed. At shallow
depth, the non—erasable device—induced radiation damage
dominates, whereas between ~a90 to ~l45 f t .  the natural
radiation damage is progressively less—erased as the
result of the decaying shock wave.

I - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Lattice Distortion Effects—Evidence From Mn’~~

The sensitivity of the ESR method to paramagnetic elements allows for the
detection of both the presence and structural positioning of Mn~

1 , a coemon

t race constituen t of carbonates, substituting for Ca in the crystal lattice.
In an undistorted octahedral environment (6 oxygen anions surrounding a Mn’1’

ion ) provided by the calcite structure, the 3d5 electrons of assume an
energetically favorable configuration known in crystal field theory as “zero—

field” splitting. This “energy distribution” appears in the ESR Mn
+4 spectra

as a distinctive doublet feature (9.1 GHz resonance at “.3540 Gauss) corresponding

to the transition I — 5/2, S — +1/2 -‘ S — —1/2. A severe change in the ligand

field and/or disturbance of host lattice structure appears to introduce a five-

fold electron spin degeneracy which is reflected in the ESR spectra (“.3540 Gauss)

as a single peak. A consistent increase in the amount of splitting, and hence,

decreasing shock deformation with depth is j~bsetved for XC—l core samples

(Figures 5 & 6). In particular, samples from depths of 36.5 and 4l.4-.48..l feet

indicate a considerable amount of lattice distortion. Comparison with spectra

of laboratory shocked single crystal calcite (Figure 5A) provides an upper limit

of 55 kbars for pressures seen by these shallow XC—l samples. This variation

in Mn’4~
’ zero—field splitting is extremely consistent, reproducible, and apparently

independent of thermal history (no effect seen in samples heated to 430°C). It

has also been observed in some lightly shocked calcite contained in several

carbonaceous meteorites. As such, it holds a great deal of promise as a stress

level indicator.

Another feature of ESR, Mn spectra, based on the partitioning of t:wo Mn oxi—
dation states between (undeformed) calcite and aragonite, might provide a means

of pressure calibration. Structural considerations and experimental observations

indicate that MnH is stable in the calcite structure whereas aragonite accosmo-

dates Mn+ (Low 6 Zeira, 1972). However, shocking the aragonite possibly

affects its crystal lattice so that it can no longer provide a stable configura-
tion fer Mn (Gjj,bons, Ahrens & Rossean, 1974). Under such deforming conditions

and in the presence of a reducing ionic species (abundant in an aqueous environ-
ment) is reduced to Mn 44 . Since the partitioning of these two states is

effectively complete and the temperature contribution to the reducing transition
- ‘ apparently minimal, only Mn’~

’
~
’ detected in aragonite might be explained as a shock

pressure effect. Such an affec t is very tentatively indicated by analyses of
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~~~~~~core material experimentally shocked in the 2+17 kbar range. However , its

variation is not consistent and numerical shock pressures cannot at this time
- be inferred from the data. The consistency may be observed by widely varying

Mn content (unknown) and aragonite—calcite ratios (aragonite content varies
- 

- erratically from 0÷94% in the XC—l core); fi~~the r chemical analyses will be

required before the validity of this method can be established .
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Figure 5. ESR spectra taken at 9.1. GHz. Splitting of ~354O Gauss
peak is indicated above the right hand side of each spectrum.
A — Shot #117 , pu re calcite shocked to 55 kbar. Note complete
absence of 3540 Gauss split peak. B — spectra of most intensely
shocked Cactus sample from a depth of 36.5 ft., XC—1. Note
absence of 3540 Gauss split peak. C — 41.4—48.1 ft., XC—l.
D — 87—91 ft., XC—l. E — 133—135 ft., XC—l. F — 146 ft.. XC—l.
C — pure calcite unshocked; notice very wide doublet in spectra
at 3540 Gauss and radiation—induced damage peak “.3300 Gauss
produced by exposure to 1.2 x 106 rads of Co6° radiation.
H - same sample as in C , except radiation—induced damage peak
partially annealed by application 600°C for 20 m m .
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Figure 6. Magnitude of “zero—field” splitting of “.3540
Gauss peak versus depth. Magnitude of splitting
of 55 kbar shocked calcite and unehocked calcite
shown for conceptual purposes only.

CONCLUSION

It appears possible, by examining non—elastic permanent deformations of

very small crystallites of carbonate minerals , such as occur in the Eniwetok

cores, to relate these deforma tions via possibly four differen t shock effects ,

to peak shock pressure and appropriate equa tions of state. The techniques which

appear applicable , and in some cases, have already tentatively been applied to
determining peak shock pressures for aliquots of core taken directly beneath

the Cactus explosion (Eniwetok) are :

(1) Peak Broadening, in X—Ray Powder Diffractometer Spectra.

We have observed a systematic decrease of the effective size of the
average diffracting crystallites of calcite and aragonite for successively more

inten~ely shocked in—situ coral material . Samples recovered from ~.2 kbar stress

levels, indicate a slight decrease in crystallite size similar to that observed
in the rock at depths of ~.50 a at the Cactus site. Detailed analysis of aliquots

of initially unshocked coral, shocked in the laboratory has not yet been carried

out.

13
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(2) Angular Strain in Calcite Single CrystaUitea.

The angular strains in single crystals of calcite recovered front bot h
laboratory experiments and in—situ carbonate rocks from Eniwetok demonstrate

a systematic increase with peak shock pressure. We have used the single

crystal data to provide an approximate peak shock pressure calibration for

the in—situ shocked coral material. X—ray patterns (taken by R. Couch,

McClellan AFB) indicate that aragonite crystals within the coral demonstrate

the angular straining effect more definitively than in calcite. The appropri-

ate calibration experiments have not yet been carried out on aragonite.

Although the strain data analyzed under the present program are scanty,

they are not inconsistent with strains measured in shock—recovered calcite.

Angular strain measurements in calcite crystals from a series of samples from

beneath the Cactus explosion imply peak shock pressures of “.8 kbar at a depth

of “.15 a decaying to ‘.3 kbar at a depth of ~.30 m. These values are , at present ,
tentative. We expect upon examination of shock deformation in aragonite to

obtain a better grasp on the shock—wave amplitudes.

(3) Shock— Induced Erasure of Defect Spectra in Calcite.

Electron—spin resonance spectra for a series of aliquotes of shocked
carbonate material, both shocked in the laboratory and by the Cactus explosion,

demonstrate the major feature observed is the resonance of an electron in a

CO~ vacancy. This feature which is presumed to arise from the natural radio-

genie sources is apparently very sensitive to the stress history of calcite.

A systematic decrease in amplitude of this resonance, which occurs at “.3300

Gauss and 9.1 CHz, is observed to occur for material shocked in the laboratory

over the range 2 to 17 kbar. A similar change in spectra is observed in samples

explosively shocked, in—situ. A detailed series of measurements to “calibrate”

this effect in terms of strain, and ultimately, shock stress, has not yet been

carried out.

(4) Effect of Shock on Zero—Field Splittin.g of Mn’~
4
~ in Calcite.

Recently we discovered a systematic loss of fine struc ture in electron
1-4 44 -spin resonance spectrum arising from Mn , substituting for Ca in calcite toi

samples exposed to increasing amplitude shock waves in the 2 to 38 kbar range.

A similar variation with depth , and hence, effectively shock pressure, is ob-

served in shocked coral from Eniwetok and also in some lightly shocked calcite

L~ 

in several meteorite s.
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