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Section 1
INTRODUCTION

The origin and character 'of
late-time, low-frequency ground
motion observed near the source
from large surface explosions
has been of interest for some
time. This motion has often
been termed the "ground roll"
and is observed at ranges at
least as small as 5 to 6 V 3,
where V is the explosion crater
volume. Recent investigations
have shown that, at least for the
several explosion events studied,
the characteristics of the
"ground roll" are those of a
Rayleigh wave (References 1
and 2).

The origin of this surface
wave motion is not well under-~
stood. That is, it 'is not well
established whether this surface
wave motion is solely the result
of the action of the outward
propagating airblast (airblast-
induced), or the energy coupled
to the ground immediately below
the explosion (direct-induced),
or the motion of the ground as-
sociated with the formation of
the crater (crater-induced), or
a combination of these mecha-
nisms. It is well known, how-
ever, that the propagating air-
blast is capable of generating a

surface wave (References 3-6).

A recent study by Murphy (Refer-
ence 2) has shown that for at
least one specific geology, a
desert playa, the Rayleigh wave
portion of the surface motion
observed from the Pre-Mine Throw
IV-Event 6 explosion can be cal-
culated theoretically, assuming
only airblast loading of the sur-
face. However, it is not clear
in general, and for all geo-
logies, whether the airblast is
the only mechanism contributing
significant energy to the surface
wave. The investigation reported
here addresses the question of the
relative contribution to the sur-
face wave of the direct- and
cratering-induced motion versus
the airblast-induced motion.

Section 2
DESCRIPTION OF CALCULATION

Orphal, et al. (Refer-

ence 1), performed a calculation
of the cratering and ground mo-
tion for a 5-Mt nuclear surface
burst over a layered geology.
This calculation included a full
description of the energy source
and thus the direct-, cratering-
and airblast-induced ground mo-
tion. The calculation was per-
formed to a real time of 2,1
seconds, and the ground motion
waveforms for scaled ranges as
small as 6V exhibited a dis-

tinct Rayleigh wave with a
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Figure 1 Original Lagrange grid near ground zero (distances in centimeters).

characteristic frequency of about
1 Hz.

The calculation reported
here consisted of repeating the
previous calculation cited in
Reference 1 with the exception
that the direct- and cratering-
induced energy was deleted.

Thus a comparison of the ground
motion waveforms from the two
calculations allows an assessment
of the contribution of the propa-
gating airblast to the surface
wave relative to the contribu-
tions from the direct- and
cratering-induced motion near the
source.

B

The calculation of Refer-
ence 1 was performed using the
ELK computer code and a coupled
Euler-Lagrange computational
grid. The Lagrange portion of
this grid was designed for ease
of computation of the developing
crater. This Lagrange grid in-
corporated a hemispherical Euler-
Lagrange coupling boundary with i
a radius of 36 meters and essen-
tially polar zoning in the near-
source region. The near-source :
portion of the Lagrange grid for
this calculation is shown in ;
Figure 1.

To ensure that the calcula-
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tional results reported here
would be directly comparable to
those results reported from the
previous calculation, it was con-
sidered important that the same
finite-difference zoning be used
in both calculations. Conse-
quently, although it was neither
optimum nor typical zoning for

an airblast-induced ground motion
calculation, the computational
grid used in the current calcula-
tion was also that shown in Fig-
ure 1. In the calculation, the
airblast loading function applied
at the point labeled B in Fig-
ure 1 (original radius of 36
meters) was also applied along
the boundary AB. The mathemati-
cal description of the airblast
loading function was that report-
ed by Brode (Reference 7) for a
5-Mt nuclear surface burst. The
identical airblast loading func-
tion was used in the previous
calculation.

As noted above, use of a
computational grid with the geom-
etry shown in Figure 1 and the
initiation of the airblast load-
ing at R=36 m instead of at the
origin were not normal procedures
in performing an airblast-induced
ground motion calculation but,
rather, were compromises made to
allow direct comparisons between
the current and previous calcula-
tions. These compromises did
have one positive aspect, how-
ever: to “define," for the pur-

pose of this calculation, direct-
and cratering-induced energy as
all energy originally coupled to
the ground at ranges less than
36 meters for a 5-Mt nuclear sur-
face burst. This "definition"
was arbitrary and no argument
will be made to justify it,

other than to note that while it
may have been arbitrary, it was
at least unambiguous.

The geology for the present
calculation was the same as that
used in the previous calculation
and consisted of multiple layers
of shales and sandstones. A
detailed description of the
stratigraphy, physical proper-
ties, and constitutive models
used to describe the geology and
earth materials is given in Ref-
erence 1.

Finally, to extend the
finite-difference grid to the
long ranges necessary to achieve
the objectives of the calcula-
tion, it was necessary to period-
ically "dezone" the grid, add
zones to the end of the current
grid, etc. These procedures were
performed identically for both
calculations and are described
more completely in Reference 1.

Section 3
CALCULATIONAL RESULTS

As was noted previously, the
full-source calculation of Refer-
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Figure 2 Vertical (X) and horizontal (Y) velocity and displacement at a range of 550 meters (solid line,
airblast-only calculation, dashed line, full-source calculation).

ence 1 was performed to a real
time of 2.1 seconds.
intent to perform the current,

airblast-only calculation to 2.1

seconds also.

However,

It was the

difficulties prevented the cou-
pling of the LEEK linear-elastic
computational grid to the ELK-

Lagrange grid.

This had the ef-

fect of shortening the time of
arrival at the free surface of
retlected waves from the bottom
of the computational grid to

The airblast-
only calculation was only per-

to a real time

about 1.1 seconds.

formed,
of 1 second.

therefore,

technical

Figures 2 through 6 display
the computed vertical and horizon-
tal ground velocity and displace-
ment histories at ranges of 550,
800, 900, 1220, and 1400 meters
from ground zero for both the
airblast-only and full-source
calculations. All of the ground
motion histories are for a depth
of 15.2 meters below the ground
surface. In the figures, XD is
vertical velocity (positive down-
ward) and YD is horizontal veloc-
ity (positive outward), with cor-
responding orientations for the
vertical and horizontal displace-
ments. For the geology modeled
in the calculations, outrunning

:
1
.
J
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Figure 3 Vertical (X) and horizontal (Y) velocity and displacement at a range of 800 meters (solid line,
airblast-only calculation; dashed line, full-source calculation).

begins at a range of about 1200
meters.

Examination of the vertical
velocity histories reveals that
the overall waveforms from the
two calculations were very simi-
lar. This is to be expected--
since the near-surface vertical
ground velocity was dominated by
the airblast. At early-times the
vertical velocity histories from
the two calculations are essen-
tially identical. Peak downward
velocity, which is the result of
the initial arrival of the air-
blast, was the same for both
calculations. With the onset of

iniarcl it a

the direct-induced motion in the
full-source calculation, the re-
sults from the two calculations
begin to differ somewhat. These
differences, however, were rela-
tively minor and the vertical
velocity waveforms from the two
calculations were very similar,
with the airblast-only calcula-
tions exhibiting perhaps a
slightly higher frequency content
at later-times.

The similarity of the verti-
cal velocity waveforms from the
two calculations suggests that
the vertical displacement his-
tories will be very similar also,

anioas.
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Figure 4 Vertical (X) and horizontal (Y) velocity and displacement at a range of 900 meters (solid line,
airblast-only calculation; dashed line, full-source calculation).

and indeed this was the case. At
the 550- and 900-meter range, the
vertical displacement waveforms
from the two calculations were
nearly identical, with peak down-
ward displacements differing only
about 4 or 5 percent; peak upward
displacement was achieved after a
time of 1 second at this range so
no direct comparison could be
made between the two calculations.

On the other hand, while the
vertical displacement waveforms
at 800 meters from the two cal-
culations had a nearly identical
shape, the peak downward dis-
placement for the airblast-only

S Gesle et b Lial i i

case was more than 50 percent
higher than for the full-source
calculation: 27.5 cm versus

17.5 cm. This illustrates well
the importance of the time-
phasing of individual arrivals.
Examining the vertical velocity
history at 800 meters, one can
see that between about 400 ms and
800 ms there were two distinct
downward velocity excursions on
the time-history for the air-
blast-only case, whereas there
was only a single such excursion
for the full-source calculation.
This result is probably due to
the arrival of refracted direct-
induced energy in the full-sourc=
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Figure 5 Vertical (X) and horizontal (Y) velocity and displacement at a range of 1220 meters (solid line,
airblast-only calculation; dashed line, full-source calculation).

calculation, although there are
insufficient data to demonstrate
this conclusively. A direct-
induced compressional wave, re-
tracted along one of the deep
geologic layers, returns to the
surface with an initial upward
and outward motion, retarding
some of the downward motion as-
sociated with the airblast-
induced ground motion.

At the 1220- and 1400-meter
ranges, the waveforms from the
two calculations were similar to
a time of l-second, with the
full-source case having higher
downward displacements after 700

to 800 ms. The peak downward dis-
placement at these ranges was
achieved after l-second so a
direct comparison of this param-
eter between the two calculations
was not possible.

The horizontal velocity
histories from the two calcula-
tions were very similar in over-
all waveform. Maximum horizontal
velocity occurred shortly after
first arrival and was dominated
by the airblast-induced motion.
Thus, peak horizontal velocities
were nearly the same for the two
calculations. At later times,

while the waveforms were similar,
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Figure 6 Vertical (X) and horizontal (Y) velocity and displacement at a range of 1400 meters (solid-line,
airblast-only calculation; dashed line, full-source calculation).

the full-source calculation for the full-source calculation
resulted in generally higher were nearly a factor of two high-
amplitude outward velocities. er than calculated for the air-
On the other hand, the airblast- blast-only case. On the other
only calculation generally hand, the airblast-only calcula-
exhibited higher amplitude in- tion resulted in greater inward
ward velocities. displacements than for the full-
source case. The overall fre-
The most striking differ- quency content of the horizontal
ences between the airblast-only displacement histories was
and full-source calculations slightly higher for the airblast-
were in the horizontal ground only case than for the full-

displacement histories. Although source calculation.
the horizontal displacement wave- ‘
forms for the two calculations

were very similar, the amplitudes

generally differed substantially.

Maximum outward displacements

10
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Section 4
SUMMARY

The calculation and analyses
reported here were initiated as
part of an investigation of the
origin of near-source surface
waves from surface explosions.

In particular, effort was focused
on evaluating the relative con-
tribution of the direct- and
cratering-induced motion to the
near-source surface wave, as
compared to the contribution from
the outward propagating airblast.
The two calculations that formed
the basis of this analysis in-
volved a specific geology of
layered shales and sandstones.
Lxtrapolation of the results of
this analysis to other geologies
may not be warranted.

Specific conclusions from
this analysis may be summarized
as follows:

1. Airblast loading alone
was sufficient to generate
a near source (R/V1/3 = g)
Rayleigh wave for the
geology studied.

2. Vertical ground velocity
and displacement near the
surface was dominated by the
airblast. However, direct-
and cratering-motion do in-
fluence the surface-wave
portion of the vertical
velocity and displacement
histories. This influence

is generally relatively
minor, at least to the
times studied. Peak verti-
cal velocities are control-
led by the airblast. How-
ever, maximum vertical dis-
placements may be influenced
by the direct- and crater-
ing-induced motion, depend-
ing on the time phasing of
discrete arrivals.

3. Horizontal ground veloc-
ity and displacement were
significantly affected by
the direct- and cratering-
induced motion. For this
geology, maximum outward
displacements were about a
factor of two greater for
the calculation that in-
cludes the direct- and
cratering-induced motion
than for the calculation in
which this near-source
energy was omitted. Con-
versely, the airblast-only
calculation exhibited
greater inward displacements
than the full-source calcu-
lation. The horizontal dis-
placement waveforms were
generally similar for the
two calculations as were
the horizontal velocity
waveforms. However, the .

full-source calculation
generally exhibited higher
amplitude outward velocities.
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