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Abstract

A project scheduling algorithm is developed and illustrated. For
each feasible project deadline time the minimum project cost and corre-
sponding optimal deterministic activity durations are derived. The cost

of an activity is assumed to be a convex plecewise linear function of its

duration. The algorithm is based upon network-flow techniques including
the use of a labeling procedure which preserves complementary slackness.

A computer implementation of the algorithm is documented.
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1. INTRODUCTION

This paper describes a scheduling algorithm for a project composed
of "jobs" or "activities." These activities are represented by arcs in
a directed network. The network nodes represent events in time. The

activities at any node can '

‘commence'" as soon as all activities "termin-
ating" at that node are completed. Associated with each activity is an
interval of possible completion times and an associated piecewise linear
cost function. Given that the project must be completed by a specified
deadline time, the algorithm determines the individual activity completion
times which minimize the total project cost. Repeating the process for
all feasible deadline times yields the entire project cost curve and asso-
ciated optimal activity completion times.

For example, suppose the project consists of activities A, B, C, D,
E and the order relations:

A precedes C and D,

B precedes D,

C and D both precede E
and those implied by transitivity. The corresponding network representa-
tion is shown in Figure 1 where the arcs represent activities and nodes
are events. Notice that arc F does not correspond to any 'real" activity
but merely represents the order relation that A must precede D. We shall
assume that such dummy activities have zero completion times and zero costs.

Using this networkvrepreaentation of the project, the problem of com~
puting the cost curve can be formulated as a network—;flw problem. We shall
make the following assumptions about the network: there are no directed

cycles, and each arc is contained in some difected path from the beginning
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node (called the "source") to the terminal node (called the "sink").

This problem can also be formulated as a linear programming problem;
however, due to the large number of variables and constraints, it would be
impractical storage-wise to solve it using linear programming methods.

D. R. Fulkerson (1961) has formulated a very efficient network-flow
algorithm for solving the problem with a linear activity cost function.

In this paper, Fulkerson's algorithm has been extended to accept a convex

plecewise linear cost function for each individual activity. ;

2. PROBLEM FORMULATION AND SOLUTION PROCEDURE

2.1. Problem Formulation

The cost of completing an activity is assumed to be a convex piecewise ;
linear function. The cost curve for activity I is depicted in Figure 2.
Note that the allowable completion times for activity I have been divided
into NK(I)-1 intervals: [TIME(I,1), TIME(I,2)], [TIME(I,2), TIME(I,3)],...,

{TIME[I,NK(I)-2], TIME[I,NK(I)-1]}, {TIME[I,NK(I)-1], TIME[I,NK(I)]} with
TIME(I, 1) < TIME{Z, 2) < ... < TIME[I, NR(I)]. (2.1)

Here we interpret TIME(I,1) as the shortest possible completion time and
TIME[I,NK(I)] as the cheapest completion time. Even though the duration of
activity I could be greater than TIME[I,NK(I)], such durations would be
needlessly expensive and hence TIME[I,NK(I)] is the practical upper bound :
on the duration of activity I. The intermediate times, TIME(I,2), ..., (

TIME[I,NK(I)-1], will be called "breakpoints."

T
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Breakpoints arise when there are alternative methods of performing an
activity. Thesé methods do not differ in the end result, but they do differ
in the amount of time they take and their cost. For example, suppose that
snow plows rent for a fixed $200/day and cost a varying amount per hour to
operate depending upon the speed at which they are operated. A correspond-
ing activity cost curve might be as in Figure 3 where the "breakpoints"
correspond to the use of different numbers of plows.

The cost for completing activity I in time TIME(I,M) is COST(I,M)

which satisfies
cosT(I1,1) > COST(I,2) > ... > COST[I,NK(I)]. (2.2)

Furthermore, letting C(I,M) represent the rate of decrease in the cost of

activity I on the Mth interval implies

_ COST(1,1) - COST(I,2)
TIME(I,2) - TIME(I,1) ° (2.3)

c(1,1)

- COST[I,NK(I)-1] - COST[I,NK(I)]
TIME[I,NK(I)] - TIME[I,NK(I)-1] °

C[I,NK(I)-1]

The convexity of the piecewise linear cost function implies that

Let XACT(I) represent the duration time for activity I. This duration

time, XACT(I), can be decomposed as

NK(I)-1
XACT(1) = § XACT(I,11) (2.4)
M=1
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where

XACT(I,1) = min[TIME(I,2),XACT(I)] (2.5)

and for M = 2, ..., NK(I) - 1

XACT(I,M) = min{TIME(I,M+1) - TIME(I,M),

max[0,XACT(I) - TIME(I,M)]}. (2.6)
For example, suppose that in Figure 4 XACT(I) = 25, then
XACT(I,1) = min[TIME(I,2), XACT(I)]
= min[10, 25]
= 10,
XACT(1,2) = min{TIME(I,3) - TIME(I, 2), ﬁax[O, XACT(I) - TIME(I,2)]}
= min{20 - 10, max[0, 25 - 10]}
= 10,

XACT(1,3)

min{TIME(I,4) - TIME(I, 3), max[0, XACT(I) - TIME(I,3)]}
= min{30 - 20, max[0, 25 - 20]}
"5,

and

3
XACT(I) = ] XACT(I,M)
M=1

=10+10+5

= 25.
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The total cost associated with duration time XACT(I) for activity I

is
NK(I)-1
RK(I) - ]  C(I,M)XACT(I,H) 2.7
M=1 : ,
where
KK(I) = COST(I,1) + C(I,1)TIME(I,1). (2.8)

The total project cost is

NK(I)-1
J [RR(I) - ]  C(I,M)XACT(I,M)]. (2.9)
I M=1 -

Let the node time XNODE(K) be the "length" of the longest path from
the source node to node K when the "length" of an arc (activity) is its

completion time. Thus, for example, in Figure 1

XNODE(1) = 0,

XNODE(2) = A,

XNODE(3) = max(B, A + F),

XNODE(4) = max(A + C, B+ D, A+ F + D), and
XNODE(5) = max(A + C+ E, B+ D+ E, A+ F + D + E).

If activity I originates at node OI’ terminates at node TI, and takes

XACT(I) units of time, feasibility requires that

XNODE(0_) + XACT(I) < XNODE(T,). (2.10)
Note that the time to complete the entire project is

XNODE(SINK) - XNODE(SOURCE).

In what follows
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4
i XNODE (SOURCE) = 0 (2.11)
2
without loss of generality.
The problem is to minimize the total project cost (2.9) subject to the
condition that the project is completed by a specified time LAMBDA. This
problem can now be formulated as
NK(I)-1
min{PCOST(LAMBDA) = J[KK(I) - ] C(I,M)XACT(I,M)]}
. eE (2.12)
subject to the constraints
: NK(I)-1 4
.; XNODE(0,) + “21 XACT(I,M)y - XNODE(T,) < 0, all I, (2.13)
XNODE(SINK) < LAMBDA, (2.14)
XACT(L,M) < U(L,M), all I and M, (2.15)
3 ’ XACT(I,M) > L(I,M), . all I and M, (2.16)
4
é ! where _
B UM = {Tmu’z) = i
i TIME(I,M+1) - TIME(I,M) M = 2, ..., NR(I)-1,
(2.17) ;
TIME(I,1) M=1, i
3 L(I’M) g 0 H - 2. seovey NK(I)-IQ
3 §
- : (2.18) | 3
'J 0, = the origin node of activity I, ,?
E
g . T, = the terminal node of activity I. 4
’ 4
* Since the addition or subtraction of a constarnt ih the objective function

does not change the problem, we can represent the objective function as
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NK(1)-1

max] J  C(I,M)XACT(T,M). (2.19)
I M=1

We shall solve this problem for all feasible values of LAMBDA. The
minimum feasible value of LAMBDA, LMIN, is the length of the longest path
from the source to the sink when the XACT(I)'s are at their lower bounds,
XACT(I) = TIME(I,1) for all I. The maximum value of interest for LAMBDA,
LMAX, is the length of the longest path from the source to the sink when
the XACT(I)'s represent the cheapest practical times, XACT(I) = TIME[I,NK(I)]

for all I. Thus, for a given LAMBDA such that
LMIN < LAMBDA < LMAX,

the constraints (2.13) - (2.16) are feasible. The proof for this and all
other underlying theorems presented in the problem formulation and algorithm
are found in Chapter 3, Section 2. We shall refer to the problem given in

(2.13) - (2.19) as the Primal Problem.

In the Primal Problem, dummy activities may be assumed to have times

and costs equal to zero.

2.2. The Dual Problem

The standard duality theory for linear programming implies that, if

the primal problem has the form

T
max ¢ x
subject to the constraints
Ax < b, (2.20)
i
|
-1 s e ———— R R
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then the corresponding dual problem is

min bTw
subject to the constraints
A?w - c

w>0,

(2.21)

see for example Hadley (1962). Writing our Primal Problem in the form

(2.20) 1implies that our dual problem can be written as

min[LAMBDA + V + JJU(I,M) * G(I,M) - JJL(I,M) * H(I,M]

IM

subject to the constraints

F(I) + G(I,M) - H(I,M) = C(I,M)

0

] 1) - § FQ) =
IEOI=K IETI=K -V

F(I), v, G(I,M), H(I,M) > 0.

i (2.22)

all I,M (2.23)

K = node # SOURCE,SINK

K = SINK,
(2.24)

(2.25)

Note that the coefficients in (2.21) of the sth dual variable are the co-

efficients in the sth primal constraint, so that, there is a natural one-

to-one correspondence between primal constraints and dual variables.

The dual problem (2.22) - (2.25) can be interpreted as a flow problem

for the project network. The dual variable, F(I), associated with constraint

(2.13) is the flow for the Ith activity. The constraint (2.24) implies

that except for the source and the sink the flow going into a node equals

the flow coming out of that node. Thus at all nodes other than the source

and the sink we have conservation of flow.

The total flow of the network is

-\
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V= I r - J K1) = I RO, (2.26)
IeT =SINK 10 =SINK LT =SINK

and V is the dual variable associated with constraint (2.14) for a fixed
LAMBDA.

The dual variables G(I,M) and H(I,M) are associated with the upper
and lower bounds for XACT(I,M) respectively.

Rearranging (2.23), we have an equation of the form
g-h=c¢c-f,
For a fixed value of f, we have ¢ - f = r, say, and
g=h+r. (2.27)
In (2.22) we want to minimize an expression of the form
Ug - Lh,
or equivalently using (2.27)
Ug - Lh > Uth + r) - Lh =Ur + h(U - L).

Since g = h + r and both g > 0 and h > 0, making h as small as possible

implies

h = max(0, -r).
Correspondingly

g=h+ r = max (r, 0).
Thus

g = max(0, ¢ - f),

h = max(0, f - ¢),
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and correspondingly
G(1,M) = max[0, C(I,M) - F(I)], il (2.28)
H(I,M) = max[0, F(I) - C(I,M]. (2.29)

Using (2.28) and (2.29) the dual becomes

min{LAMBDA + V + JJU(I,M - max[0, C(I,M) - F(I)]
: IM

- JJL(1,) - max[0, F(I) - C(1,M)]} (2.30)
IM

subject to the constraints

0 K = node ¥ SOURCE, SINK
I F() - ] FQ) =
Ie0 =K IeT =K W o K = SINK,
F(I), V > O.

A key observation at this point is that for all (I,M)

U(I,M)max(0, C{I,M) - F(I)] - L(I,Mmax[0, F(I) - C(I,M)]
(2.31)

is a convex piecewise linear function of F(I) as sketched in Figure 5.
The convexity of (2.31) follows from U(I,M) > L(I,M). Furthermore, since
the sum of convex piecewise linear functions is also a convex piecewise

linear function, it follows that

JUCT,Mmax[0, C(I,M) - F(I)] - JL(I,Mmax[0, F(I) - C(I,M)]
" B (2.32)
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is a convex piecewise linear function of F(I) as sketched in Figure 6.
The piecewise linear behavior of (2.32) suggests the following de-

composition of F(I):

NKfI)

J=1

F(I) = F(1,J)

0 < F(I,J) < C[I, NK(I) - J] - C(I, NK(I) - J + 1] (2.34)

C(1,0) = =

Cc[1, NK(I)] = 0.

(also see Figure 7).

Using (2.33) and the definition of L(I,M) in (2.18) the dual objective

function becomes

LAMBDA « V + JJU(I,M) « C(I,M
M

NK(I)-M
- Qw7 R | - TIME(I,1) - FI, NR(D)] .
I{M J=1

Using the definition of U(I,M) in (2.17), the dual ijective function can

be further simplified to

LAMBDA « V + JJU(I,M) « C(I,M) - JJTIME[I,NK(I)+1-J]F(I,J). (2.35)
M 1J

Since JJU(I,M)C(I,M) is a constant, (2.35) is equivalent to
IM :
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LAMBDA + V - JJTIME(I,NK(I) + 1 - J)F(I,J). (2.36)
IJ
The final form of the dual problem is

min{LAMBDA - V - JJTIME(I,NK(I) + 1 - J)F(I,J)} (2.37)
1J

subject to the constraints

' 0 K = node#SOURCE,SINK
) [§F(1,J)]- ) §F(I,J)] =

IeOI-K IeTlsK -V K = SINK
(2.38)
i
0 < F(1,J) < C[I, NK(I) - J] - C[I, NR(I) - J + 1] (2.39)
0 <V. : (2.40)

This dual problem can be solved as a network flow problem. The origi-
nal project network is enlarged by adding one arc, say ARC(I,J), for each

F(I,J) so that the project network has NK(I) arcs from 0I to T, correspond-

I
ing to each activity I. The flow F(I,J) through the ARC(I,J) has the cap-

acity restriction indicated in (2.39). The dual problem is now solved by fi
constructing a network flow from the source to the sink that minimizes

(2.36) subject to the capacity restriction in (2.39). Refer to Figure 8

for an example.

2.3. The Network-Flow Algorithm

An efficient algorithm for generating the entire project cost curve

is given below. The algorithm is initially sketched in general terms and

then presented in detail.




NK(I) = 3, all I.

FIGURE 8
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2.3.1. The Sketch

The algorithm starts with the largest LAMBDA of interest, LMAX, and
sequentially determines the LAMBDA corresponding to each breakpoint of the
convex piecewise linear project cost function PCOST(LAMBDA) defined in
(2.12). Corresponding to each of these LAMBDA values, node numbers XNODE(K)
are produced representing optimal event times in the project network. The

corresponding optimal activity times XACT(I) for the project are
XACT(I) = min{TIME[I, NK(I)], XNODE(T ) - XNODE(OI)} (2.41)

since the activity cost is a non-increasing function of the activity time.
Recall that the proofs of claims are given altogether in Chapter 3,
Section 2.

The algorithm is based on a labeling process in which labels are as-
signed to some of the nodes. In general, the procedure is a systematic
search for a path from the source to the sink having certain desired pro-
perties. Flow along this path may travel through arcs either in the same
direction as their orientation or in the opposite direction. Such flows
will be called forward and reverse flows respectively. Roughly speaking,
a reverse flow is really only a reversal or re-routing of earlier flow in
the forward direction. No net flow in the reverse direction is allowed.

The labeling process is started with a feasible and optimal solution
to the primal and dual problems for LAMBDA = LMAX. The initial node times
are found by setting the activity times equal to their upper bounds. These
initial XNODE(K)'s and the initial flow - F(I,J) = 0 for all (I,J) -

satisfy the following properties:
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ABAR(I,J) < 0 =>F(I,J) = 0, and (2.42)

v

0 =>F(I,J) = C[I, NK(T) - J] = C[1, NK(1) = 0 + 1]
(2.43)

ABAR(T,J)

where

ABAR(I,J) = TIME[I, NK(I) + 1 - J] + XNODE(OI) - XNODE(TI).
(2.44)

1l

Note that no restrictions are placed on F(I,J) when ABAR(I,J) = 0. Hence-
forth, the properties (2.42) and (2.43) will be referred to as the "optima-
lity properties'" for LAMBDA = XNODE(SINK). These'optimality properties
imply that complementary slackness holds and that the flow F(I,J) minimizes
(2.36).

The labeling process has been divided into two parts called the first
and second labelings, respectively. In both of these procedures we have
freedom to label with respect to complementary slackness since we work
exclusively with arcs having ABAR(I,J) = 0. The first labeling seeks a
path from the source to the sink composed of infinite capacity arcs, i.e.
those corresponding to J = NK(I). If such a path is found, the algorithm
terminates since the Primal Problem will be infeasible if the current value
of LAMBDA is decreased. If no such path is found, we go on to the second
labeling in which we search for a path from the source to the sink having
the following desired properties: for all forward arcs of the path ABAR(I,J)
= 0 and F(I,J) is less than its upper bound in (2.39); for all reverse arcs

of the path ABAR(I,J) = 0 and F(I,J) > 0. If at the end of the second label-

ing the sink has been labeled, we say "breakthrough" has occurred.
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If breakthrough occurs, then the minimum arc capacity along the path is

B e 0 W e i B

determined, say CAP(SINK). The old flow F(I,J) is changed by adding
CAP(SINK) to the amount of all forward flows on the path and by subtract-
ing CAP(SINK) from the amount of all reverse flows on the path. This

new flow still satisfies the optimality properties and is interpreted as

an alternate-optimal dual solution for the current LAMBDA=XNODE(SINK).

On the other hand, if the sink has not been labeled at the end of the

% second labeling, we say ''monbreakthrough" has occurred. When this happens,
the old dual variables are optimal for the old primal problem and no new
alternate dual solution can be found. In this case the node numbers

;5 XNODE(K) 's are changed by subtracting a positive quantity DEL from all
XNODE (K) corresponding to unlabeled nodes K. This does not change

XNODE (SOURCE) = 0 but reduces XNODE(SINK) = LAMBDA by DEL. Through (2.41),
these new node times impl& a set of optimal activity times for the new
LAMBDA where

! new LAMBDA = old LAMBDA - DEL.

The definition of DEL guarantees that the new XNODE(K)'s and the old

F(I,J)'s still satisfy the optimality properties. Hence, when nonbreak-

through occurs, we have identified the point on the project cost curve

corresponding to the new LAMBDA.
The second labeling can termiﬁate only in breakthrough or nonbreak-

through. After either of these, the entire labeling process is repeated. <

2.3.2. The Details

Initially, the algorithm sets each activity time to its smallest

(most expensive) feasible value and determines the corresponding
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minimum feasible project completion time (deadline time LMIN). Then,

the algorithm sets each activity completion'time to its largest (cheapest)
feasible value and determines the corresponding minimum project cost and
maximum completion time of interest (deadline time LMAX).

The iterative procedure is begun with the node times XNODE(K) cor-
responding to all activity completion times at their largest (cheajest)
values and all flows F(I,J) equal to zero. These node times and flows
satisfy the optimality properties.

A. Labeling Process. During this routine, a node is considzred

to be in one of three states: unlabeled, labeled and unscanned, or

labeled and scanned. Initially all nodes are unlabeled.

In general, a node label has four parts [A, B, C, D] when the node is
being labeled because it is at "the other end" of an arc associated with
some F(I,J). If "the other end" is the terminal node T;» then the label
contains

A= OI, B=J, D= maximum allowable flow, and
C=0 [denoting that flow will be in the forward direction

(0I +> TI)].

If "the other end" is the origin 0;s then the label contains A = T»
B=J, D= maximum allowable flow, and C = 1 [denoting that flow will

be in the reverse direction (TI > OI)].

1. First Labeling. Assign the source node the label [-, -, -,

CAP(SOURCE) = =], 1In general, select any labeled, unscanned node, say

node n, and search for all unlabeled nodes TI such that n = 0I and

ARC[I, NK(I)] is an arc with
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ABAR[I, NK(I)] = O. (2.45)

Label such nodes TI with [OI, NK(I), O, CAP(TI) = @], Such TI's are now

labeled and unscanned, and node n is labeled and scanned. Repeat this

step until either the sink node is labeled and unscanned, or no more

nodes can be labeled and the sink node is unlabeled. In the former case,

terminate the algorithm. In the latter case, go on to the Second Label-

| ing.

2. Second Labeling. Nodes that were labeled from the First Label- 2

ing retain their labels. However, all nodes revert back to an unscanned
state. The general step is to select any labeled, unscanned node, say n.

(1) Scan n for all unlabeled nodes TI such that n = OI' For
each such node TI find the J (if one exists) such that both

ABAR(I,J) =0 (2.46)

and

&
O
R 3

F(I,J) < C[I, NK(I) - J] - C[I, NK(I) - J + 113 (2.47)

then assign node Ty the label [OI, 3,0, CAP(TI)] where .

CAP(TI) = min{CAP(OI), C[I, NK(I) - J] - C[I, NR(I) - J + 1] - F(1,J)}
1 (2.48)

- so that T, 1s now labeled and unscanned. If no such J exists, the node {
g TI is not labeled.
(11) Scan n for all unlabeled nodes 0I such that n = Ty For H

each such node 0, find the J (if one exists) such that both r

ABAR(I,J) = 0 (2.49) 3
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and

F(1,J) > 0; (2.50)
then assign node 0I the label [TI’ 71 R CAP(OI)] where
CAP(OI) = min[CAP(TI), F(1,J)] (2.51)

so that 0I is now labeled and unscanned. If no such J e;ists, the node
0I is not labeled.

Repeat the general step until either the sink node is labeled and
unscanned (breakthrough), or no more nodes can be labeled and the sink
node is unlabeled (nonbreakthrough). If breakthrough occurs, go on to

routine B; if nonbreakthrough occurs, go to routine C.

B. Flow Change. The labeling process has resulted in breakthrough.
The sink node will have a label of the form [OI, J, 0, CAP(SINK)]. The
total network flow will now be increased by CAP(SINK). The flows are up-
dated as follows. Add CAP(SINK) to F(I,J); then go on to node n = 0I
and its label. The general step for node n depends on its label and is:
1. Label = [OI’ Js 0 CAP(TI)]. Add CAP(SINK) to F(I,J)
since this additional flow along ARC(I,J) will be for-
ward flow from 0I ton = TI. The next node to consider
is n = OI'
2. Label = [TI, o1 (M CAP(OI)]. Subtract CAP(SINK) from
F(1,J) since this additional flow along ARC(I,J) will
be a reversal of previous flow from n = 0I to TI. The
next node to consider is n = T_.

I
This iternative procedure is continued until n = SOURCE. At this point

a path from the source to the sink has been retraced working backwards
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from the sink. The arcs on this path that are traversed in the forward
direction (0I + TI) as we go from the source to the sink have their flows
increased by CAP(SINK) while the arcs on this path that are traversed in
the reverse direction (TI > OI) have their flows decreased by CAP(SINK).
All labels are now discarded and the labeling process (A) is started

over.

C. Node Number Change. The labeling process has resulted in non-

breakthrough. The following subsets of arcs are determined:
A = {(I,J)]oI labeled, T, unlabeled, ABAR(I,J) < 0}, (2.52)
A, = {(I,J)IOI unlabeled, T, labeled, ABAR(I,J) > 0}. - (2.53)

We now define

DELTAl = min[-ABAR(I,J)], (2.54)
A
1

DELTA2 = min[ABAR(I,J)], (2.55)
A
2

DEL = min(DELTAl, DELTA2). (2.56)

The node numbers XNODE(K) are changed by subtracting DEL from all XNODE(K)
corresponding to unlabeled K. All labels are discarded and the labeling

process (A) is started over.

2.4. Flowchart of the Algorithm

See Figure 9.
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FIGURE 9: Flowchart of the Algorithm

For

Read the algorithm parameters:
NA = Total number of activities
NN = Total number of nodes
SINK = Number of the sink node
SOURCE = Number of the source node
each activity I:
0;» Tp» NR(I)
cosT(I,1),...,COST[I, NK(I)]
TIME(I,1),...,TIME[I, NR(I)]
Either the entire project cost curve is
determined or optionally just the optimal
activity times for one specified project
deadline time, LAMBDA.

B e e

Set all F(1,J)=0

Starting routines set all activity times at their minimums and
determine the corresponding XNODE(K)'s and minimum feasible
LAMBDA, LMIN.

is specified LAMBDA < LMIN?

ves /\ ¥

Terminate the algorithm.
No feasible activity

times.

LMAX.

Set all activity times at their upper
bounds and determine the corresponding

XNODE(K)'s and maximum practical LAMBDA,

Is specified LAMBDA > LMAX?

Terminate the algorithm.
The optimal activity com-
pletion times are their

upper bounds.

Assign the SOURCE the label [-,-,-,=],

all other nodes are unlabeled.

]
Go to(2)
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General step:

Select any labeled node, n, and search for activities T with OI-n.
TI unlabeled, and ABAR[I,NK(I)]=0.

Label such T. nodes with (OI,NK(I),O,CAP[TI]-~}

I
Repeat until no more nodes can be labeled.

Is SINK labeled?

YES A‘r—’”’_”"//——f—f—’—'ﬂ’"'-\\\\~\\\‘\\‘\~\-Eg_

Terminate the algorithm. Labeled nodes retain labels.
No feasible activity times. ' Current node=SOURCE.
v

General step:
Select any labeled node, then go to either (1) or (2) according to
the node:
(1) 1f nodeﬂol, search for unlabeled TI such that ARC(I,J) exists
with ABAR(I,J)=0 and F(I,J)<C[I,NKR(I)-J]-C{I,NK(I)-J+1].
Label such nodes {01, J,O,CAP[TI]} where CAP[Til-min{CAP[OI],
C[I,NK(I)-J]-C[I,NK(I)-J+1]-F(1,J)}.
(2) 1f node=TI, search for unlabeled 0I such that ARC(I,J) exists
with ABAR(I,J)=0 and F(I,J)>0. Label such nodes {T ,J,1,CAP[0 ]}
where CAP[OI]=min{CAP[TI],F(I,J)}.

Repeat general step until either no more nodes
can be labeled or the SINK is labeled.

If SINK is labeled, break- If SINK is not labeled, nonbreak-

through has occurred. through has occurred.

The path from the SOURCE to the SINK is retraced starting at the
SINK. Update the F(I,J)'s by adding CAP(SINK) to all forward
flows along the path and subtracting CAP(SINK) from all reverse flows
along the path. Continue until the SOURCE is reached. 7 .scard
labels and return to (:).




Find the following subsets:
A {(1,J) such that 0, is labeled, T, is unlabeled, and ABAR(1,J)<0}

A,: {(1,J) such that OI is unlabeled, T, is labeled, and ABAR(I,J)>0}

DELTAl = min[-ABAR(I,J)]
A
1

DELTA2 = min[ABAR(I,J)]
A
2

DEL = min[DELTAl, DELTA2].

b

Subtract DEL from all unlabeled nodes XNODE(K). Then the
XACT(I) = min{TIME[I,NK(I)],XNODE(TI)-XNODE(OI)}
are an alternative optimal solution for the current LAMBDA and also an -
optimal solution for new LAMBDA = current LAMBDA - DEL.
A new point on the project cost curve has been determined.
Is new LAMBDA < specified LAMBDA?

RS e /\ NO

Terminate the algorithm. Discard labels and return to
Desired solution found. (:) »




3. VERIFICATION OF CLAIMS

The algorithm described in the previous chapter is based on many
claims. The lemmas and theorems given below prove these claims and, at
the same time, show that the given algorithm does indeed yield for each
project deadline time LAMBDA the individual activity completion times

which minimize the total project cost.

3.1. Summary

The initial primal and dual variables XACT(I),XNODE(K) and F(I,J)
provide a feasible and optimal solution for the largest LAMBDA of interest,
LMAX (Lemmas 1, 5 and 6). The changes applied to these variables arise
from either breakthrough or nonbreakthrough and force the variables to re-
main feasible and satisfy the optimality properties throughout the algo-
rithm (Lemmas 2, 3, 4, 5, 6 and Theorem 1). The optimality properties
imply that complementary slackness.holds which, combined with feasibility,
implies that the solution is optimal for a given LAMBDA (Lemma 7 and
Theorem 2).

The algorithm itself terminates after a finite number of applications
of the labeling procedure (Theorem 3). At the conclusion of the compu-
tations a path from the source to the sink has been identified in the

First Labeling step such that along this path
TIME(I,1) + XNODE(OI) = XNODE(TI).

Since (TIMEI,l) is the minimum feasible completion time for activity I,
this means that the minimum possible time to complete the sequence of

activities along this path is XNODE(SINK) = LAMBDA. Hence any further
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decrease in LAMBDA would make the Primal Problem infeasible; i.e., the
project cannot be completed in any shorter time.

The project cost function PCOST(LAMBDA) is convex and is linear
between the successively determined values of LAMBDA generated in the
computations (Lemmas 8 and 9). Given two successively determined values
of LAMBDA, say L1 and L2 = L1 - DEL, the optimal node times and activity
completion times for any project deadline time L between L1 and L2 are

{XNODELI(K) if K labeled when LAMBDA=L1,
XNODEL(K) =
XNODELI(K)-(LI-L) if K unlabeled when LAMBDA=L1,

XACTL(I} = min{TIME[I,NK(I)],XNODEL[TI]-XNODEL[OI]}

where the subscript L1 implies LAMBDA = L1 (Theorem 4).
One additional feature of the algorithm is that, if the problem is
specified in terms of integers, then the breakpoints of the project cost

curve PCOST(LAMBDA) and the corresponding optimal activity times will all

be integers.
3.2. Proofs

Lemma 1: The original set of node integers XNODE(K) and the zero flow
F(I,J) satisfy the optimality properties. Furthermore, thié F(I,J) mini-
mizes (2.36) implying an optimal solution for LAMBDA = LMAX.

Proof: 1In a starting routine the activity times XACT(I) are set to
their largest feasible (cheapest) values. Tﬁen the node times XNODE(K)

are set to their corresponding smallest feasible values. This implies

that
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TIME[I, NK(I)] < XNODE(T,) - XNODE(O,)

or equivalently i

| TIME[I, NK(I)] + XNODE(OI) - XNODE(TI) < 0.

Thus all ABAR(I, J) < 0. Finally, since all ABAR(I,J) < 0 and F(I,J) = 0,

ﬁ‘ the optimality properties are satisfied.

The dual objective function is

LAMBDA + V - ] TIME(I,NK(I) + 1 - J) * F(I,J)
I,J

| = ‘[IZJTIHE(I,NK(I) +1-J) + F(1,J) - LAMBDA * V)

= -{ ] TIME(I, NK(I) + 1 - J) + F(I,J) + [XNODE(SOURCE)
1,J

- XNODE(SINK)]. V}

= -{ J TIMECI,NK(I) + 1 -J) « F(I,J) + } [XNODE(0,)
1,3

- XNODE(TI)] « F(I,J)}

-{ § ABAR(1,J) * F(I,D)].

1,J
T Thus, since all ABAR(I,J) < 0, F(I,J) = 0 is optimal. QED.
ﬂ; Lemma 2: If breakthrough occurs, the old node numbers and the new flow
j satisfy the optimality properties.
&
al
f{ Proof: The node numbers XNODE(K) do not change. The new flows are

obtained by adding the positive number CAP(SINK) to all F(I,J) correspond-
& ing to forward arcs of the path from the source to the sink, and subtract-

ing CAP(SINK) from all F(I,J) corresponding to reverse arcs of the path.




Flow changes occur only in arcs for which ABAR(I,J) = 0. No restriction
is imposed on the F(I,J)'s in the optimality properties when ABAR(I,J) = 0.
Thus, the old XNOPE(K)'s and the new F(I,J)"s still satisfy the optimality
properties. QED.

Lemma 3: If nonbreakthrough occurs, the node number change, DEL, is a
well-defined positive number.

Proof: For DEL to be well-defined, at least ome of the sets of arcs
Al, A2 (as defined in equations (2.52) and (2.53)) is non-empty.

Suppose Al were empty. Since there is a path from the source to the
sink in the project network, and since the source is labeled and the sink
is unlabeled, there must be a set of arcs {ARC(I,J), J =1, ..., NK(I)}
in the enlarged network with OI labeled and T. unlabeled. The definition

I

of A, implies that if A_ 1is empty, then ABAR(I,J) > O for this set of

1 1
arcs. From labeling rules (2.46) and (2.47), if ABAR(I,J) = 0 then F(I,J)
cannot be less than {C[I, NK(I) - J] - C[I, NK(I) - J + 1]}, otherwise
TI would have been labeled from OI. From (2.43), if ABAR(I,J) > 0, this
implies that F(I1,J) = C[I, NK(I) - J] - C[I, NK(I) - J + 1]. Hence!we
have F[I, NK(I)] = ». But this F[I, NK(I)] is part of the actual flow through
the network and, if it equals infinity, the first labeling process would
have terminated the algorithm. Since this has not happened, there are no

infinite flows and A1 is non-empty.

By definition, DEL is always positive. QED.

Lemma 4: If nonbreakthrough occurs, for any DEL' satisfying O < DEL' < DEL,

the new node numbers

P p
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XNODE (K) for K labeled,
XNODE' (K) =
XNODE(K) - DEL' for K unlabeled,
and the old flow F(I,J) still satisfy the optimality properties.

Proof: The new ABAR'(I,J) = TIME(I,NK(I) + 1 - J) + XNODE'(OI) - XNODE'(TI).

(1) Suppose ABAR'(I,J) < 0. Then F(I,J) = O because of the
following:
(a) If ABAR(I,J) < O, then F(I,J) = 0 by (2.42).

(b) If ABAR(I,J) = 0, then

TIME(I,NK(I) + 1 - J) + XNODE(OI) - XNODE(TI) =0,
or equivalently

TIME(I,NK(I) + 1 - J) = - XNODE(OI) + XNODE(TI);

so that

ABAR'(1,J) = TIME(I,NK(I) + 1 - J) + XNODE'(0;) - XNODE'(T ) < 0,
implies

- XNODE(0;) + XNODE(T,) + XNODE'(0;) - XNODE'(T;) < 0,

and finally
| XNODE'(OI) = XNODE(OI) < XNODE'(TI) - XNODE(TI);,
but this can happen only when 0I is unlabeled and TI is labeled. Hence,
if ABAR(I,J) = 0, then by labeling rules (2.49) and (2.50), F(I,J) =0,
otherwise 0I would be labeled from TI'
(c) If ABAR(I,J) > 0, then

TIME(I,NK(I) + 1 - J) + XNODE(OI) — XNODE(TI)>> 0,

or equivalently

TIME(I,NK(I) + 1 - J) > - XNODE(OI) + XNODE(TI);

so that
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ABAR'/1,J) = TIME(I,NK(I) + 1 - J) + XNODE'(OI) - XNODE'(TI) <0,
implies
TIME(I,NK(I) + 1 - J) < XNODE'(TI) - XNODE'(OI),

and

XNODE'(TI) - XNODE'(OI) > = XNODE(OI) + XNODE(TI),
and finally
XNODE'(TI) - XNODE(TI) > XNODE'(OI) = XNODE(OI).
Again, this§ can kappen only when 01 is unlabeled and TI is labeled. But

then the arc ARC(I,J) is in A, and DFL < ABAR(I,J). This would imply

2
that
ABAR'(I,J) = TIME(I,NK(I) + 1 - J) + XNODE(OI) - DEL - XNODE(TI)
= ABAR(I,J) - DEL

> 0.

which contradicts the assumption ABAR'(I,J) < 0. Hence this case cannot
occur.

(ii) Suppose ABAR'(I,J) = 0. There are no restrictions on
F(I,J) so the optimality properties still hold.

(iid) Suppose ABAR'(I,J) > 0. Then
F(I,J) = C[I, NK(I) - J] - Cc[I, NK(I) - J + 1]
because of the following:

(a) If ABAR(I,J) > 0, F(1,J) = C{L, NK(I) = J] - C[I, NK(I) - J + 1]

by (2.43).

(b) If ABAR(I,J) = 0, then

ABAR(I,J) < ABAR'(I,J)

or equivalently
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TIME(I,NK(I) + 1 - J) + XNODE(OI) - XNODE(TI)

< TIME(I,NK(I) + 1 -J) + XNODE‘(OI) - XNODE'(TI);
so that
XNODE(OI) - XNODE'(OI) < XNODE(TI) - XNODE'(TI).

This can happen only if 0I is labeled and TI is unlabeled. Hence, by

labeling rules (2.46) and (2.47)
F(1,J) = C[I, NK(I) - J] - C[I, NK(I) - J + L],

otherwise TI would be labeled from OI.

(¢) If ABAR(I,J) < O, then

ABAR(I,J) < ABAR'(I1,J),
and again

XNODE(OI) = XNODE'(OI) < XNODE(Ti) - XNODE'(TI).

This can happen only if 0I is labeled and TI is unlabeled. But then the

arc ARC(I,J) is in A1 and DEL < - ABAR(I,J) which would imply that

ABAR'(I,J) = TIME(I,NK(I) + 1 - J) + XNODE'(OI) = XNODE'(TI)

TIME(I,NK(I) + 1 - J) + XNODE(OI) = XNODE(TI) + DEL

ABAR(I,J) + DEL

< 0.

This contradicts the assumption ABAR'(I,J) > 0. Hence this case cannot

occur.

Cases (i) - (i1ii) together imply that the new node numbers and the

old flow still satisfy the optimality properties. QED.
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Theorem 1: The optimality properties (2.42) and (2.43) are maintained
throughout the algorithm.

Proof: From Lemma 1, we see that the initial ncde numbers XNODE(K)'s
and the zero flow provide an optimal soluti?n for LAMBDA = LMAX. If break-
through occurs, we see that the new F(I,J)'s are still optimal (Lemma 2).
If nonbreakthrough occurs, we have a well-defined positive number DEL with
which to update the XNODE(K)'s (Lemma 3) and, from Lemma 4, these updated
values satisfy the optimality properties. QED.

Lemma 5: The starting values of the XNODE(K)'s and XACT(I)'s are feasible
and remain feasible throughout the algorithm.

Proof: The starting values are found by an algorithm that sets the
XACT(I)'s to their largest feasible times, TIME[I, NK(I)]. Correspondingly
the XACT(I,M)'s are set equal to their upper bounds and hence (2.15) and
(2.16) are satisfied. Then the algorithm sets XNODE(K) equal to the
length of the longest path from the source to node K, which implies that
(2.13) is satisfied. We also define XNODE(SOURCE) = 0 and LAMBDA =
XNODE(SINK); hence {2.14 ) is satisfied and the initial values are feasible.

If breakthrough occurs, the XNODE(K)'S and XACT(I)'s are not changed
and hence remain feasible.

If nonbreakthrough occurs, the labeled XNODE(K)'s are unchanged, and
the unlabeled XNODE(K)'s are updated by subtracting DEL, determined by (2.56).
Then

new LAMBDA = XNODE(SINK) - DEL

so (2.14) 1is satisfied.

(1) Suppose both 0I and T. are labeled for activity I. Then

I
neither these nodes nor XACT(I) are updated and hence XACT(I) remains
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feasible.

(ii) Suppose both 0I and TI are unlabeled for activity I. Then
new XNODE(OI) = old XNODE(OI) - DEL, '
new XNODE(TI) = old XNODB(TI) - DEL, and
new XACT(I) = min{TIME[I, NK(I)]; old XNODE(TI) - DEL
- old XNODE(0;) + DEL}

= old XACT(I)

|A

old XNODE(TI) - old XNODB(OI)
= new XNODE(TI) - new XNODE(OI),

or equivalently

new XACT(I) + new XNODE(OI) - new XNODE(TI) <0;

so that (2.13) is satisfied. Since XACT(I) has not changed, (2.15) and
(2.16) are still satisfied. Therefore, in this case, feasibility is

maintained.

(1i1) Suppose OI is labeled and TI is unlabeled for activity I.
Then

new XNODE(TI) = old XNODE(TI) - DEL,
new XNODE(OI) = old XNODE(OI), and

new XACT(I) = min{TIME[I, NK(I)], old XNODE(TI) - DEL

- old XNODE(OI)};

e
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so that (2.13) and (2.15) are satisfied. The lower bound constraint,
(2.16), is also satisfied because of the following:
(a) Suppose ABAR[I,NK(I)] < 0. Then since OI is labeled and TI is

unlabeled, the definition of DEL implies that
XNODE(TI) - XNODE(OI) - TIME(I,1) > DEL
and hence
XNODE(TI) - XNODE(OI) ~ DEL > TIME(I,1)

which implies that XACT(I) > TIME(I,l1).

(b) Now ABAR[I, NK(I)] = 0 cannot occur, since T_ would have been

I
labeled from OI.

4
3
-
4
E

(c) Also ABAR[I, NK(I)] > 0 cannot happen since this would imply that

old XNODE(OI) + TIME(I,1) > old XNODE(TI)

which contradicts the feasibility of the previous node times.

(iv) Suppose OI is unlabeled and TI is labeled for activity I.

Then
new XNODE(OI) = old XNODE(OI) - DEL ,
new XNODE(TI) = old XNODE(TI), and
new XACT(I) = min{TIME[I, NK(I)], old XNODE(TI)
- old XNODE(OI) + DEL};

so that (2.13) and (2.15) are satisfied. Since

TIME(I,1) < old XACT(I) < new XACT(I),
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the lower bound constraint, (2.16), is trivially satisfied. QED.
Lemma 6: The starting values of the F(I,J)'s and V are feasible and re-
main feasible throughout the algorithm.

Proof: Initially, the values of the F(I,J)'s and V are set to zero. |
Conservation of flow, (2.24), is trivially satisfied since the flow going J

into each node is equal to zero which is also equal to the flow going out

of each node, 1i.e.

! [IFEL,®I=0= § [JR(1,D)].

IeOI'K J IETI=K J

Since all F(I,J) are set equal to zero, they satisfy their upper and
lower bounds. Hen:e, the starting values are feasible.

If nonbreakthrough occurs, the values for F(I,J) do not change,
hence remain feasible.

If breakthrough occurs, the F(I,J) along the path from the source to

the sink are updated by a positive number CAP(SINK) determined by (2.48)

or (2.51); all other flows remain unchanged. Suppose activity I is an

arc along the path from the source to the sink. Then either TI is labeled 4

from OI or 0I is labeled from TI'
(1) In the former case, F(I,J) < C[I, NK(I) - J] - C[I,NK(I) ]

~J + 1] by labeling rules (2.46) and (2.47), and CAP(I) is given by

(2.48). This CAP(I) is the minimum of the previous CAP and C[I, NK(I)

- J] - C[I, NK(I) - J + 1] - F(I, J) > 0. Now CAP(SINK) < CAP(I)

and new F(I,J) = old F(I,J) + CAP(SINK). Conservation of flow is satis-

fied since the same value is added to or subtracted from all activities

along this path and V, the total flow, is increased by CAP(SINK). Also,

(2.34) 1is satisfied since




0 < old F(I,J) + CAP(SINK) < old F(I,J) + CAP(I)

< C[I, NKR(I) - J] - C[I, NK(I) - J + 1].
Hence the new F(I,J)'s are feasible.
(i1) In the latter case, F(I,J) > 0 by labeling rules (2.49)
and (2.50), and CAP(I) is given by (2.51); i.e., the minimum of the pre-
vious CAP(K) and F(I,J). Conservation of flow is again satisfied. The

following also shows that (2.34) is satisfied: Now
old F(1,J) < C[I, NK(I) - J] - C[I, NK(I) - J + 1], and
new F(I,J) = old F(I,J) - CAP(SINK).

Since CAP(SINK) < CAP(I) < old F(I,J), this implies that

IA

0 < new F(I,J) < C[I, NK(I) - J] - C'T, NR(I) - J + 1].

Hence, F(I,J) remains feasible for this case as well and, therefore, re-
mains feasible throughout the algorithm. QED.

Lemma 7: The optimality properties (2.42) and (2.43) imply that comple-
mentary slackness holds between the primal and the dual problems.

Proof: We will use the original pair of primal and dual problems
((2.13) - (2.19) and (2.22) - (2.25) respectively) along with the defini-
tions of G(I,M), H(I,M) and F(I,J) to show that the complementary slack-
ness conditions are satisfied; i.e., -

(1) XACT(I) + XNODE(OI) - XNODE(TI) <0

implies that F(I) = 0;
(11) XACT(I,M) < U(I,M) implies that G(I,M) = 0; and

(111) XACT(I,M) > L(I,M implies that H(I,M) = 0.
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(1) If XACT(I) + xNODE(OI) - XNODE(TI) < 0, then
XACT(I) < XNODE(TI) - XNODE(OI).
Since

XACT(I) = min{TIME[I, NK(I)], XNODE(T ) - XNODE(0,)},
this implies that
XACT(I) = TIME[I, NKR(I)).
Hence,
TIME[I, NK(I)] + XNODE(0;) - XNODE(T ) < O.
Since
TIME(I, 1) < TIME(I, 2) < ... < TIME[I, NR(D)],
it follows that
TIME(I, NK(I) + 1 - J) + XNODE(0,) - XNODE(T;) < 0

for J =1, 2, ..., NK(I). From optimality property (2.42), F(I,J) = 0 for

J=1,2, ..., NK(I), and finally F(I) = }F(I,J) = O.
J

(Remark: Since

ABAR(I,J) = TIME[I, NK(I) + 1 - J] + XNODE(OI) - XNODE(TI)

and

TIME(I,1) < TIME(I,2) < ... < TIME[I, NR(I)],




it follows that

ABAR(I,1) > ABAR(I,2) > ... > ABAR[I, NK(I)].

E Now the TIME(I,J)'s will be strictly increasing and the ABAR(I,J)'s strictly
E decreasing unless there is only one possible value for XACT(I) in which : E

case the upper and lower bounds for F(I) and the F(I,J)'s are 0.
Therefore in the Second Labeling part (i), page 24, there can only i

4 be one J such that

ABAR(I,J) = 0

and

F(1,J) < C[I, NK(I) - J] -C[I, NK(I) - J + 1].

For this J !

| 3
0 > ABAR(I,J + 1) > ... > ABAR[I, NK(I)], ‘

so that by optimality property (2.42) \ ’ | ]

F(I, 3+ 1) = ... = F[I, NK(D)] = 0. | 3

Also, for this J

ABAR(I. 1) > see > ABAR(I,J gy 1) > 0.

so that by optimality property (2.43) 'F(I, 1Y ..., F(I, J - 1) are all at
their upper bounds. Thus, when F(I) is increased, it is the F(I,J) with

the smallest index J such that F(I,J) is less than its uppér bound which

is increased.
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Similarly the Second Labeling part (ii) and the optimality properties
imply that when F(I) is decreased it is the F(I,J) with the largest index
J such that F(I,J) > 0 which. is decreased. Therefore, if F(I,J) is posi-
tive,then F(I,1),...F(I,J - 1) are all at their upper bounds; and, if
F(1,J) = 0, then F(I, J + 1), ..., F[I, NK(I)] also equal 0. These natur-

al properties of the F(I,J)'s are used in parts (ii) and (i11) below.)

(11) Show that XACT(I,M) < U(I,M) implies G(I,M) = 0 where, as
in (2.15) and (2.28),

TIME(I,2) M=1

vit0 =

TIME(I," + 1) - TI!E(I,M) H - 2, seey NK(I) - 1'

G(I,M) = max{0, C(I,M) - F(D)},

and
min[U(I M), XACT(I)] M=1
XACT(I,M) = {
min{U(I,M), max[0, XACT(I) - TIME(I,M)]}

M=2, ..., NK(I) - 1.

If XACT(I,M) < U(I,M), then

XACT(I) M=1

XACT(I,M) = M=2, ..., NR(I)-1.

max[0, XACT(I) - TIME(I,M)]

Cagse I: M =1,

Since
TIME(I, 2) = U(I, 1) > XACT(I, 1) = XACT(I),

it follows that

ST ———
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TIME(I, 2) > XACT(I) = min{TIME[I, NK(I)].‘XNODB(TI) - X!OD!(OI)}.

TIME(I, 2)

< TIME[I, NK(I)],
this implies that

TIME(I, 2) > XNODE(TI) - XNODE(OI)

ABAR[I, NK(I) - 1] = TIME(I,2) + xuonn(ol) - XNODE(TI) > 0.
By (2-43) ’
F[I’ NK(I) - 1] s C(I’ 1) e C(I, 2)-

Therefore F(I,J) = C[NK(I) - J] - C[NK(I) - J + 1]

Hence

NK(I)-1
F(I) = JF(I,J) = F[I, NR(1)]1 + | F(1,0)
J J=1
= F[I, NK(1)] + C[I, NKR(I) - 1] - C[I, NK(I)]
+ C[I, NR(I) -2] - C[I, NK(I) - 1]
s ve
+C(1, 1) - c(1, 2)

= F[I, NK(I)] + C(I, 1) - C[I, NR(I)].

Since C[I, NK(I)]

0, F(I) > C(I, 1). Therefore,

G(I’ 1) ﬂlx[o’ C(In 1) P F(I)]

- o.
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Cagse II: M= 2, ..., NR(I) - 1.

Now U(I,M) > XACT(I,M) = max[0, XACT(I) - TIME(I,M)] implies
U(I,M) > XACT(I) - TIME(I,M)

’

and
4

¥
U(I,M) > min{TIME[I, NK(I)], xuonz('rl) - xnonz’(ol)} - TIME(I,M);

so that

U(I,M) + TIME(I,M) > min{TIME[I, NK(I)], XNODE(T,) - XNODE(0,)}.
Since U(I,M) = TIME(I,M + 1) - TIME(I,M),

U(I,M) + TIME(I,M) = TIME(I, M + 1)
and

TIME(T. ! + 1) > min{TIME[I, NK(I)], XNODE(T;) - XNODE(0_)}.
Since TIME(I,M + !) < TIME[I, NK(I)], thié implies

TIME(T, M + 1) > XNODE(T,) - XNODE(O )
or

TIME(I,M + 1) + XNODE(0,) - XNODE(T;) > O.
By (2.43),

r[i, NK(I) - M] = C(I,M) - C(I,M + 1).

Therefore F(I,1), ..., F[I, NK(I) - M - 1] are also at their upper bounds.




NK(I)
0f course ) F(1,J) > 0.
J=NK(I)-M+1

NK(I)-M
F(I) = JF(1,J) > ] F(@,J)
J :

Cc[I, NR(I) - 1] - C[I, NK(I)]

+ C[1, NK(I) -2] - C[I, NK(I) - 1]
* e

+ C(I,M) -C(I, M+ 1)

c(I, M) - C[I,NK(I)].

Since C[I,NK(I)] = 0, F(I) > C(I,M).

Therefore,

G(I,M) = max[0, C(I,M) - F(I)]

0

for M= 2, ..., NRK(I) - 1.

(111) Show that XACT(I,M) > L(I,M) implies that H(I,M) = O where, as

in (2.16) and (2.29),

L(I,M) =

{'rmz(x, 1) M=1

0 M-z’ ceecey NK(I)-I’

H(I,M) = max[0, F(I) - C(I,M)],
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4
§ min[U(I,M), XACT(I)] M=1
XACT(I,M) =
y min{U(I,M), max(0,XACT(I) - TIME(I,M)]}
M=2, ..., NK(I)-1.
Case I: M=1,
If XACT(I,1) > L(I,1), then

: | :
b | TIME(I,1) = L(I,1) < XACT(I,1) = min[U(I,1), XACT(I)].

Since U(I,1) = TiM®(I,2),
; TIME(I,1) < min[TIME(I,2), XACT(I))
1 TIME(I,1) < XACT(I).
Bl | Thus
Bl '
' : TIME(I,1) < XACT(I) = min{TIME(I, NR(I)], XNODE(T;) ~ XNODE(0 )}

! and
| TIME(I,1) < XNODE(T;) - XNODE(0,). :
Therefore

ABAR[I, NK(I)] = TIME(I,1) + XNODE(OI) - XNODE(TI) < 0.

Then by (2.42)

L T e—

F[I, NK(I)] = O,
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A

. &
NK(I) NK(I)-1

e F(I) = { F(I,LJ) = ] F(,))

2 J=1 J=1

: NK(I)-1

4 < Y (cl1, NK(I) - J] - C[I, NK(I) - J + 1]}

3 J=1

= C[I, NK(I) - 1] - C[I, NK(I)]

+ C[I, NK(I) - 2] - C[I, NK(I) - 1]

+ c(1, 1) - c(1, 2)

= C(1, 1) - C[1I, NK(I)].
Since C[I, NK(I)] = 0, F(I) < C(I,1). Therefore

H(I,1) = max[0,F(I) - C(I,1)]

= 0.
E Case II: M =2, ..., NRK(I) - 1.
j y If
b
¥ Q= L(I,m < XACT(I,M) = min{U(I,H) ,max[O,XACT(I) ' TIHE(I’H)]}9
] then

0 < min{U(I,M), max[Q, XACT(I) - TIME(I,M)]},

0 < max[0, XACT(I) - TIME(I,M)], and

0 < XACT(I) - TIME(I,M).

This implies that

TIME(I,M) < XACT(I) = min{TIME[I, NK(I)], XNODB(TI) = XNODE(OI)};
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so that

R ke Bl o e

TIME(I,M) < XNODE(TI) - XNODE(OI),

ABAR[I, NK(I) - M + 1] = TIME(I,M) + XNODE(OI) - XNODE(TI) < 0.
By (2.42),

F[I, NK(I) - M+ 1] = 0.

Therefore F[I, NK(I) - M + 2], ..., F[I, NK(I)] are all equal to 0. Hence,

NK(I)-M
F(I) = JF(1,5) < [ {c[I, NK(I) - J] - C[I, NKR(I) - J + 1]}
J J=1

c(I, NR(I) - 1] - C[I, NK(D)]

+ C[I, NK(I) -2] - C[I, NKR(I) - 1]

£ e

+ C(I,M) - C(I,M + 1)

c(I,M) - c[1, NR(I)].

Since C[I,NK(I)] = 0, F(I) < C(I,M). Therefore,

H(I,M) = max[0, F(I) - C(I,M)]

for M= 2, ..., NK(I) - 1. QED.

Theorem 2: Since the XNODE(K)'s, XACT(I,M)'s, V, AND F(I)'s are feasible and

complementary slackness holds, they are optimal.




Proof: The primal problem (2.13) - (2.19) is in the form

subject to
Ax < b,

where the x vector contains the XNODE(K)'s and XACT(I,M)'s. The dual problem

(2.22) - (2.25) is in the form
min bTw

subject to

ATw = c

w>0

where the w vector contains V and the F(I)'s.

For any feasible x

Ax < b;
so that for any feasible w
wTAx :.wa.
Since wTA = cT for any feasible w,

cx <bw

holds for any feasible x and w. When Ax < b is rewritten in the form

Ax + x =D
8



where Xg is a vector of slack variables, complementary slackness means

wa = 0.
s

Therefore, since for any feasible x and w

vTAx + was = wa

or
ch + was = bTw,
complementary slackness implies
ch = bTw

and hence that both x and w are optimal. QED.
Theorem 3: The algorithm terminates after finitely many applications of the
labeling procedure.

Proof: 1In order that the algorithm fail to terminate, an infinite sequence
of breakthroughs and nonbreakthroughs would have to occur.

Since the flow change following a breakthrouéh has a positive minimum, an
infinite number of breakthroughs would produce floys having arbitrarily large
values V. However, when a sufficiently large value V is reached, there will be
a path from the source to the sink with F[I, NK(I)] > 0 all along this path.
Since ABAR[I, NK(I)] < O throughout the computations, we would have ABAR[I,NK(I)] = 0
for arcs on this path. But then the first labeling procedure would terminate.
Therefore, there can only be a finite number of breakthroughs.

Following a nonbreakthrough, all nodes previously labeled can again be
labeled. (This follows from the fact that for labeled 0I and TI’ the new ABAR(I,J)

is equal to the old ABAR(I,J)). In addition, at least one more node can be




R

labeled (the node(s) corresponding to the arc(s) in Al and Az that determine

DEL). Eventually, the number of nodes that can be labeled will reach the total

number of nodes implying that the sink can be labeled and the occurrence of a

breakthrough.

Hence, there can only be a finite number of applications of the labeling

procedure. QED.

Definition: A function P(X) is said to be convex over some interval in X, if

for any two points X1, X2 in the interval and for all a, 0 < a <1,
Pla*X2 + (1 - a)X1] < a*P(X2) + (1 - a)+P(X1).
Lemma 8: PCOST(LAMBDA) is convex for LMAX > LAMBDA > LMIN, where

LMAX

the longest (cheapest) time to complete the project

and

LMIN = the shortest time to complete the project.

Proof: Let L1 > L2 both be in the interval [LMIN, LMAX]. Let

L =qalL2 + (1 - a)L1

for some a in [0, 1]. Also let XACTI(I)t XNODEI(OI) XNODEI(TI), XACTZ(I),
xnonzz(ol). and XNODEZ(TI) represent optimal solutions to the problems corres-
ponding to LAMBDA =L1 and LAMBDA = L2 respectively. We first want to show that
[aXNODEZ(K) + Q1 - a)XNODEi(K)]and [a-XACTz(I,M) + (1 -a) XACTI(I,M)] are
feasible when LAMBDA = L. This result follows easily since the constraints

(2.13), (2.14), (2.15), and (2.16) are linear:

Therefore, infinitely many successive nonbreakthroughs cannot occur,
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(1) Since XNODE,(0,) + %nc'rl(r,u) - XNODE, (T;) < 0

and
XNODE, (0;) + I§XACT2(I.H) - XNODE,(T;) < 0,
it follows that :
[aXNODE,(0,) + (1 - a) XNODE, (0,)] + ):{u.XAC'rz(I,M) + (1 - a) XACT (1,M)]
M
- [almonzz('rl) + (1 -a) xnomr.l('rl)]

<0

and the constraints (2.13) are satisfied.

(11) Now XNODEI(SINK) < L1 and XNODEz(SINK) <L2; so that
(1- a)XNODEl(SINK) + aXNODEz(SINK) <(1=-a)ll +al2 =1L

and constraint (2.14) is satisfied.

(111) Also, L(I,M) < XACT (I,M) < U(L,M) and L(I,M) < XACT,(I,M) < U(L,M)

implies
L(I,M) < (1 - m)XACTl(I,M) + aXACTz(I,M)
2 u(I,M)

and hence constraints (2.15) and (2.16) are satisfied.

Recall that

PCOST(LAMBDA) = KK - ] [C(I,M)XACT(I,M)]
I,M

where
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:

KK = J[COST(I,1) + C(I,1)TIME(I,1)].
1

Hence,

aPCOST(L2) + (1 - a)PCOST(L1)

- ot~ 1 [CCIOMCT@0 N + (- o0k - T caomer,aml)
I,M I,M :

= oKK + (1 - 0)RK - o | C(I,M)XACT,(L,M) - (1 - ) L C(I,M)XACT (1,M)
I,M 1M

= KK = ] C(I,M) [9XACT,(1,M)}- L C(I,M)[(1 - )XACT(I,M)]
I,M I,M

= KK - ) C(L,M) [9XACT, (I,M) + (1 - ®XACT, (I,M)].
I,M
Furthermore aPCOST(L2) + (1 - a)PCOST(L1l) is the objective function value corres-
ponding to [aXNODEz(K) + (1 - a)XNODEl(K)] and [aXACTz(I,M) + (1 - a)XACTl(I,M)]

which we have just shown are feasible. Therefore, since we are minimizing

"PCOST(LAMBDA) ,

PCOST(L) - £COST[aL2 + (1 - a)L1]
:_QPCOST(LZ) + (1 - a)PCOST(L1),

and PCOST(LAMBDA) is convex.

Lemma 9: The project cost function, PCOST(LAMBDA), is piecewise linear.
Proof: Let L1 > L2 = L1 - DEL be two successively determined LAMBDA's

where DEL is determined by (2.56). (Of course, L1 could be the initial value

of LAMBDA.) Suppose L1 > LAMBDA > L2 and that F(I,J)'s and V were the flows

when LAMBDA was changed from L2 to L1. Recall that

PCOST(LAMBDA) = PCOST [XNODE(SINK)] = EIKK(I) - XC(I.M)XACT(I,M)]
I M
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which is the primal objective function. Since the primal and dual objective
functions are equal under optimality, we have, for all LAMBDA with L1 > LAMBDA
> L2,

PCOST(LAMBDA) = Z - LAMBDA'V + ) F(I,J)TIME[I, NR(I) - J + 1]
1J

where Z is a constant. Therefore

PCOST (LAMBDA) - PCOST(L1)

= Z - LAMBDA°V + Z F(I,J)TIME[I, NK(I) - J + 1]
1J

- Z + L1-V - JF(I,J)TIME[I, NR(I) - J + 1]
1J

= - LAMBDA°*V + L1-V
= (L1 - LAMBDA)°-V

for L1 > LAMBDA > L2, so that PCOST(LAMBDA) is linear on the given interval.
QED.

Theorem 4: If L1 > L2 = L1 - DEL are two successively determined values of
LAMBDA where DEL is determined by (2.56), then for any value of L such that

L1 > L > L2 the optimal values of the XNODE(K)'s and XACT(I)'s for that L are
given by

([ XNODELl(K) if K is labeled when

LAMBDA = L1,
XNODE, (K) = :
XNODELI(K)—(LI-L) if K is unlabeled when

4 LAMBDA = L1,

XACTL(I) = min{TIME[I,NK(I)], XNODEL(TI) = !NODEL(OI)}




where the subscripts L and L1 imply LAMBDA = L and L1 respectively.

Proof: Since Lemma 1 states that we begin with an optimal solution when

LAMBDA = LMAX, we can without loss of generality assume that we have found op-

timal solutions for all LAMBDA values produced by the nonbreakthrough procedure

up to LAMBDA = L1. We will now show that the above XNODE(K)'s and XACT(I)'s

are optimal for all LAMBDA between L1 and L2 including L2. The terms "labeled"

and "unlabeled" below refer to "labeled when LAMBDA = L1" and "unlabeled when

LAMBDA = L1" respectively.

We first want to show that for L1 > L > L2 the XNODEL(K)'s and XACTL(I)'s

are feasible. Since the definition of XACTL(I) implies that

XACTL(I) + XNODEL(OI) - XNODEL(TI) <0

XACT, (I) < TIME[I, NK(D)],

(2.13) and (2.15) are satisfied. Therefore, the only aspect of feasibility

left to show is (2.16), i.e.
TIME(I,1) < XACT, (1)

or equivalently

TIME(I,1) S_XNODEL(TI) - XNODEL(OI).

Suppose 0I and TI are both labeled for a specific activity I. Then

XNODEL(TI) - XNODEL(OI) = XNODELI(TI) - XNODELI(OI) > TIME(I,1)

since the solution at L1 is feasible.
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(i1) Suppose 0I is labeled and TI is unlabeled. Then

({11)

XNODBL(TI) - XNODEL(OI) = XNODELI(TI) - (-1 - mODELI(OI)°

The definition of DFL implies that if ABAR[I, NK(I)]) < O, then

XNODE, , (T,) - XNODE,, (0 ) - TIME(I,1) > DEL > L1 - L.

Hence,

XNODELI(TI) - XNODELI(OI) - (L1 - L) > TIME(I, 1)

and

XNODE, (T,) - XNODE, (0,) > TIME(I, 1).

If ABAR[I, NK(I)] = O, then TI would have been labeled from OI' Since

feasibility is satisfied at LAMBDA = L1, it follows that
TIME(I, 1) + XNODELI(OI) - XNODEL]_(TI) <0,

and consequently, since

ABAR[I, NK(I)] = TIME(I,1) + XNODELI(OI) - XIJOD!'.LJ"‘CTI),

ABAR[I, NK(I)] cannot be positive.

Suppose OI and TI are both unlabeled. Then

XNODEL(TI) - XNODEL(OI) - XNOD&LI(TI) - (@l -1 - [monxu(ol) - (L1 - L)}

= XNODE, , (T;) - XNODE,, (0,)
> TIME(I, 1)

since the solution at L1 is feasible.

AT TR AT
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(iv) Suppose 0I is unlabeled and TI is labeled. Then
XNODEL(TI) - XNODEL(OI) = XNODELl(TI) - IXNODBLI(OI) - (L1 - L)]
= XNODE , (T,) - XNODE, , (0,) + (L1 - L).

Since feasibility is satisfied at LAMBDA = L1,

¢

XNODELI(TI) - XNODELI(OI)-: TIME(I,1l)

and trivially

XNODELI(TI) - XNODELI(OI) + (L1 - L) > TIME(I,1l).
Hence,

XNODEL(TI) - XNODEL(OI) > TIME(I, 1).

Now, we have just shown that the XNODEL(K)'s and XACTL(I)'s are
feasible. Lemma 6 implies that the F(I,J)'s are always kept feasible.
Lemma 4 implies that the optimality properties (2.42) and (2.43) are
satisfied'f&ibtﬂﬁﬂﬁlxﬁdﬁEiQiyquﬁﬁd”F(I,J)'s; so that by Lemma 7 these
XNODEL(Kﬁ'S’Hﬁdgifféﬁy'ﬁjﬁf33d352§§f§ goﬁpiggggtaéglslackéggs. Since
wd'fave sH6whOTHat FeddibiTi?y 478 2Bmplementary slackness are satis-
fied, Theorem 3 imﬁifasSEﬂHQetﬁgjxﬁﬁbﬂifﬁfessggd ﬁﬁéfiil)‘gofor
Ll > L > L2 are optimal. QED, *ARES JoacG

(obor sdnka o3 Yo ysdmun sAT :€S-0S .IoD
4. A COMPUTER IMPLE”%§?§T}2§101
A compuyter program.implementing the iwproved pr6jedt schédulingcdlgorithm
described in Chapter 2 is available. The bgsthd imput to the program is

(a) amiacyclic preject network with:ome sourece and one sink, and

(bl u@opLheablen o f raetlivity -qonple tlapAttines and their associated costs.
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The program's output for each feasible project deadline time consists mainly of

(a) the optimal activity completion times and costs, and

s Ak,

(b) the total project cost.

Optional output may include node labels, optimal node times for each project

deadline time, and dual variables (flows).

Incorporated in this program is the option to have the minimum project cost
and corresponding optimal activity completion times determined for only one

specific project deadline time.

A listing of the computer program is given in the appendix. The flowchart

for this program is given in Chapter 2, Section 4, pages 27-29.

4.1. Specific Input Instructions

Card 1. Col. 1 - 4: The number of nodes in the network,
Format (I4).
Col. 6 - 9: The number of activities in the network,
Format (I4).
Col. 11: TEST1 = O print the input data,
= ] do not print the input data.
Col. 13: TEST2 = 9 print the intermediate output,
= 1 do not print the intermediate output.
Col. 15-18: The number of the source node,
Format (I4).
Col. 20-23: The number of the sink node,

Format (I4).

Col. 25: TEST3 = 0 do not wish to specify a single value for
LAMBDA,
= 1 do wish to specify a single value for

LAMBDA and print the intermediate output,




= 2 do wish to specify a single value for

.
1
4 ' LAMBDA but do not print the intermediate output.

!

}% For each activity I one set of 3 -~ 5 cards:

'% Card 1. Col. 1 - 4: 0I = the number of the origin node,

;: Format (14).

1 Col. 6 - 9: TI = the number of the terminal node,

. ‘ Format (I4).

Col. 11-12: NK(I) = the number of activity completion times and costs
that are read in (< 11),

Format (I2).

Card(s) 2 - 3. Format (8110): TIME(I,1l),...,TIME[I, NK(I)] = the activity
completion times in increasing order (8
on Card 2, 3 on Card 3 if needed).

Card(s) 4 - 5. Format (8I10): COoST(1,1),...,COST[I,NK(I)] = the cost associated
with each activity completion time (8 on Card 4,

3 on Card 5 if needed).

The next card is present only if TEST3 = 1 or 2.

Last Card. Col. 1 -10:Specified project deadline time,

LAMBDA, Format (I10).
The nodes and activities may be numbered in any order. The current dimensions

will allow 3000 nodes, 3000 activities, and at most 11 different completion times

and costs.

R =

I
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4.2. An Example

The program's input and output are illustrated in terms of the example net-

y

work in Figure 10. The input data are found in Table 1. As an example, the acti-

o aalie ke - 4

vity cost curve for activity 7 is illustrated in Figure 11.

A listing of the computer input is given in Figure 12. The optimal pro-
e Ject cost curve determined by the algorithm is plotted in Figure 13. The opti-

mal activity durations for two values of the project deadline time, LAMBDA,

are given in Table 2. The actual computer output is given in Figure 14.
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FIGURE 10
FIGURE 11
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- Figure 11: Computer Input for Example
A ;
A
v 6 10 0 O 1 € 0
1 2 e
2 4
8 4
1 =
! & 12 15
| 23 8 2
! 1 4 a4
a 4 8 12 16
27 s 7 3
3 4 2
j o
) 0
2 & 3
20 21 c2
8 4 1
3 5 3
5 10 1e
28 13 2
| 3 6 a
23 24 zs 26
10 & a4 3
1 4 6 2
‘3 3 23 25
: = 8 4
1 ’ 5 g 3
3 15 17 15
' 12 7 2
é 2 3 .2
6 €
4 4
1
B 4
|
§ . :
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PCOST (LAMBDA)
T+ 70

1 4 65
+ 60

T 55

! -~

A (7]

i 8 E =3 50
A )
3 @

: 3+ 45

&

: E 1 %0

| 2

s

B

& %

' ' 4 30
+ 25 _v
3 3 9 41 42 4 4 45 47 9 :
| I B D oM a5 g8 R,

5 Project Deadline Time

y Figure 13.
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Table 2: OPTIMAL PROJECT SCHEDULES

FOR TWO SPECIFIED DEADLINE TIMES

Project Deadline Time

Project Deadline Time

LAMBDA = 40 LAMBDA = 44
Activity Activity
Duration Duration
Activity # Time Activity Time Activity
(1) XACT(I) Cost XACT(I) Cost
1 2 8 4 4
2 12 8 12 8
3 15 4 16 3
4 0 0 0 0
5 21 4 22 1
6 n 1 14 5
7 26 3 26 3
8 25 4 25 4
9 17 7 18 5
10 6 4 6 4

s - — - e
y .,*‘I‘ PP e e N S DR
. - 2 S ¥

=

e
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Figure 14: Computer Output for Example

THE NUMBER OF NCDES IS 6.
THE NUMBER OF ACTIVITIES IS 10. 5
THE SOURCE NOCE IS NUMBERED 1 AND ThE SINK NOOE 1S ANUMBERED

.

% NODES: »¢

K 1 2 3
INITIAL XNCCE(K) o 4 1S

*® ACTIVITIES: o»

| XACT ORIG TERM J TIME cosT

[} . 1 2 1 2
2 .

2 1S 1 3 1 ?
2 12

3 s

3 16 1 . 1 L]
2 8

3 12

a 16

4 (] 3 4 1 o
2 ]

S 22 2 S 1 20
2 21

3 22

6 15 3 S 1 S
2 10

2 15

7 26 3 6 1 23
2 26

3 25

. 26

8 2% 4 6 1 23
2 28

9 19 S 6 1 16
2 17

3 19

10 6 2 3 1 6
2 )

THE CNTIRE PRCJECT COST CURVE IS GOING TO UE OETERMINFED.
LAMLOA = PROJECT CCMFLETICN TIME
THE STARTING VALUE OF LAMDDA IS 49,

THE CORRESFONOING TOTAL PROJECT COSY S 0.27000E C2.

- N

- N
SPPUNNIOWIPOCOWWDR=PODOOWNNNND WSO

6.

16

THE SOURCE HAS A VALUE OF ZERU AND IS ASSIGNED THE LABEL (~s~,=sINF).

30

[
020000€

0+30000E
0.20000E

0+30000E
0+2C000€
0« 10000E
0.0

0+40000€
0.+3000CE

0+30C00E
0.20000€

0.40200E
0.20000E
0+10000CE
0.20000E

0.S0000€
0.20000E

o1
ot
o1
o1

o1

o1
o1

o1
(]
01

ot
a

49

ABAR
-2

-3
-8

-8

-1
-4
-S
-6

-10
-11

-8
-10

-2
-3
-5
-3




THE

THE

THE

THE

THE

THE

THE

ITERATICN NUMBER ) e

SINK HAS NOY BEEN REACHED WITH INFINITE CAPACITY - CONTINVE wiTH THE LABELING PROCESS.

NOOES THAT HAVE BEEN LABELED WILL RETAIN THAT LAUEL FOR THE REMAINOER OF THE [TERATION.
NODE 2 FAS ThE LABEL ( 1, | ] 0. 0.20000€ 01).
NGOE 2 FAS THE LABEL ( ‘. e 0. 0.,20000€ O1).
NODE 4 FAS ThE LABEL ( i, 1, O 0.10000E 01).
NOOE S FAS TFE LABEL ( 3. ls [ % 0.20000€ Ot)e.
NODE 6 FAS THE LABEL ( Se le Qs 0.20C00€ 01).

BREAKTHROUGH: ULPDATE THE DUAL VARIAELES.,

ACTIVITY #2 |

LA 2]

THE

THE

THF

THE

[

NEW FLOW: FlL,J)

0.0

0,0
0.20000E 01
0.0

0.0

0.0

0.0

°'°

0.0

0.0

0.0

0.0

0.0

o.o
0.20000€ 01 !
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.20000E 01
0.0

0.0

0.0

0.0

QO VVOBBANNNNOCGCOOPOVNVLE L WWWWNNN -
N WN=N=2WUN=WN= 0NN S WN=UN =N -

ITERATICN NUMBER 2 T
SINK HAS NCT UEEN REACHED WwiTH INFINITE CAPACITY - CUNTINUE WITH THE LAHELING PROCESS,
NODES THAT HAVE UEEN LABELED wiLL RETALIN THAT LABEL FOR THE REMAINDER OF THE I[YERATIGN.
NODE 2 FAS THE LAUEL ( le Ly C, 0+20000E O1)e

NQOE 4 FAS THE LAUEL ( 1o 1 Qe 0+ 10000€ 91)e




3
g
& =70~
’<
%
o
&
x .
b | '
3
2 NONHREAKTHRQUGH: UPOATE THE PRIMAL VARIABLESS
_. } I«Eo . DETERMINE OPTIMAL ACTIVITY TIMES FOR LAMBOA = 46,
|
b DELTA (REPRESEANTEC BY “D%) RANGES FRUM O TG 3. ;
5 LAMBOA RANGES FRCM 49 10 46,
a THE MINIMUM CCST PRCJECT SCHEDULE FOR PROJECT DEADLINE = 49-p:
3 NODE #: X NE® VALUE: XNODE(K)
‘ 1 °
3 2 .
E 3 15-0
: ' N 16
: | s 20-0
j & 49-0
3 PROJECT COMPLETICN TVIME = 49-D,
ACTIVITY #: I  NEW VALUE: XACT(1) ACTIVITY COST
i 1 a 0.40000€ 01
2 15-0 0.20000€ 01 ¢ { 0.20000E 01%D)
] 3 16 0.30000€ 01
E: L 3 o Q.0
s 22 0.10C0CE 01
{ 6 1s 0.3000CE 01
| ? 26 0.30000€ 01
' 8 2s 0.40C00€E 01
9 19 0.30000€ 01
10 6 0.40000E 01
THE CURRENT VALUE CF THE PRCJECT COST IS 0¢27000€ 02 ¢ ( 0,20000€ 0140},
'-; NEW VALUES OF ABAR FCR J=102seeesNK(])
1 { T 1 2 3 s % 6 7 8
WAy 1 (] ~2
B | 2 3 ° -5
| 3 0 -4 -8 -12
{ 4 -8 -4
‘ s -1 -2 -3
6 0 -5 -10
7 -8 -9 -10 -11
8 -5 -7
9 0 -2 -3
: 10 -2 -2
e ITERATICN NUMBER 3 e
THE SINK HAS ACT WEEN REACHED WITH INFINITE CAPACITY = CONTINUE WITH THE LABELING PROCESS.
THE NODES THAT HAVE BEEN LABELED wILL RETAIN THAT LABEL FOR THE REMAINDER OF THE ITERATION.
THE NODE 2 FAS TFE LABEL (  1s le¢ O, 0.2C000E 01).
THE NODE 3 FAS THE LABEL (1, 2. O 0.10000E 01),
:j THE NODE 4 hAS THE LABEL ( 1, 1, O, C+10000E 01).
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b S UG S R e A

e s A

NONBRFAKTHROUGKF: UPCATE THE PRIMAL VARIABLESS

i
Te€Es' DETERNINE OPTIMAL ACTIVITY TIMES FOR LAMUCA = 45, :‘
DELTA (REPRESENTED BY "D") RANGES FROM 0 TO | Y . 7
LAMBDA RANGES FRCM 46 TO 45. i
THE MINIMUM CCST PROJECY SCHEDULE FOR PROJECY DEADLINE = 46-D3
NODE #: K NEwW VALUE: XNODE(K) |
] (]
2 4 |
3 12
4 16
S 27-0
6 46-0
PRUJECT COMPLETICN TINE = 46-0.
ACTIVITY #: NEw VALUE: XACT(1) ACTIVITY COST
1 4 0.40000E 01
2 12 0.80000E 01
3 16 C«30C0CE 01t
4 (] 0.0
S 22 0.10000€ 01
6 15-0 0+30000€E 01 ¢ ( 0¢20000E 01¢D)
7 26 0.30000€ 01
8 2% 0.4000CE 01
9 19 0.30000€ 01
10 ] 0.40000E 01
THE CURRENT VALUE CF THE PRCJECT COST 1S 0.33000E 02 + ( 0. 20000E 01%D).
NEW VALUES OF ABAR FOR J=142scsesNK(])

L L L]

THE

THE

THE

THE

THE

THE

Jt 1 2 3 . & 6 7 8 9

$ |
1 0 -2 |
2 3 ) -s |
3 0 -4 -8 -12 {
4 -4 -8

s 0 -1 -2

6 ! -a -9

7 -7 -8 -9 -10

8 -8 -8

9 o -2 -3
10 -2 -2

ITERATICN NUMBER L) ’"ee

SINK HMAS NCT BEEN REACHEC WITH INFINITE CAPACITY - CUONTINUE WITH THE LABEL ING PROCESS.
NOUES THAY HAVE HEEN LABELED wilLL RETAIN THAT LAUWEL FOR THE REMAINDER CF THE ITERATICN.

NODE 2 FAS ThE LABEL ( le | Co 0.,20000E O1L)e.
NODLE 3 FAS THE LABEL ( le 24 Co 0.10000€ J1).
NOOE 4 hAS Tr€é LABEL ( le 1, O, 0.,100C0E O1l). i
NODE 5 FAS THE LABEL ( 2, 1, O C+20000E 01). .




4~ B, i - e S 330

NONUREAK THROUGH

1
2
2
4
S
6

PROJECTY COMPLETICN TINE =

ACTIVITY #: NEW VALVE:

CONOYPWUN™

UL )
NN =0 POWO

OCLCONOLSWN®=™

ITERATICN NUMEER

2 FAS TFHE LAUEL

3 FAS THE LABDEL

4 hAS THE LABEL

€ FAS THE LABEL

45 TC

.
12
16

-2

0
-4
-4
-1
-a
-6
-4

0
-2

XNGODE (K)

0
4
12
16
26

45-0

XACT(1)

THE CURRENT VALUE CF ThE PROJECT CaST (S

NEW VALUES OF AEBAR FOR J=1+2s00esNK(])

45-D.

UPCATE THE PRIMAL VARLADLES:
‘ODETERMINE OPTINAL ACTIVITY TIMES FOR LAMODA =

DELTA (REPRESENTEC BY %D») RANGES FRUM 0 TO
LAMEDA RANGES FRCwM
THE MINIMUM CCST PROJECT SCHEDULE FOR PROJECTY DEADLINE =
NEW VALUE:

43,

-2
-9
-7

-1

0.40000E
C«.8000CE
003000CE
0.0

0.10C00E
0.5C0COE
0.30C00E
0.40000E
0+30000F
0.40000€E

ACTIVITY COST

01
o1
oi

Q+3SQ00€ 02 + ¢

SINK HAS ACT OGEEN REACHED WITH INFINITE CAPACITY = CONTINUE WITH THE LABELING PROCESS.
NODES THAT HAVE BEEN LABELED WILL RETAIN THAT LAUEL FUR THE REMAINDER OF THE [TERATION.

0.200C%€ Ot).

010000 01)

0.100C0E 0O1),

0.20C00F 901)e

0.20000E 01%D)

0+20009€ O1%D).,




S o i
P e

THE

NODE 6 FAS THE LADEL ( Se 24 0. 0.20000t 01).

.

BREAKTHRQUGH: UPDATE THE DUAL VARIABLES.

ACTIVITY #:

LR 1]

THE

THE

THE

THE

——
(5

NEW FLOW: F(l.J)
0.2C000E 01
0.0
0.20000E& 01
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0+20000E 01
0.0
0.0
0.200C0E 01
0.0
0.0
Q.0
0.0
0.0
0.0
0.0
J.0
C+20000€ O1%
0.20000€ 01
0.0
0.0
0.0

QO VOB NNSNNOCOCOCOVNVNNS & WWUWNNN®~
N WNeEN=DWN=UN™WNEN=S WN>WGN=N -

ITERATICN NUNBER 6 e
SINK HAS NCT BEEN REACHED WITH INFINITE CAPACITY - CONTINUE WITH THE LABELING PROCESS.
NODES THAT HAVE BEEN LABELED WILL RETAIN THAT LABEL FOR THE REMAINDER OF THE ITERATION.
NOOE 3 FAS THE LAHEL ¢ 1 24 0, 0.10000€ 01).

NUDE 4 FAS THE LABEL ( le 1o 0, 0.10000E 01).

NONHREAKTHROLGF: UPCATE THE PRIMAL VARLABLES

1+E.

DETFRMINE OPTIMAL ACTIVITY TIMES FOR LAMBDA = 41,

DELTA (REPRESENTEC BY “D") KANGES FRAOM 0 TC 2.

L AMUDA HRANGES FRCM 43 10 al.
THE MINIMUNM CCST PRGCJECT SCHEDULFE FCR PROJECT DEAOLINE = 43-D:
NODE #: K NEW VALUE: XNCDE(K)
1 (]
2 4=-0
3 12
4 16
S 26-0

Wi g " \ S RO Ay (NN P TR PSR .0 7

o



43-0

PROJECT COMPLETICN TINE = 43-0D.

ACTIVITY #: 1 NEW VALUE: xaCT(I) ACTIVITY COST
1 4-0 0.,40000€ 01 ¢ ( 0.20000E 01¢0)
12 0.80C00E 01
16 0.300C0E 01
] 0.0
22 0.1000CE 4
14-D 0.,50000E +# ( 0.20000€ QO1%0)
26 0.30000E
2s 0.,40000E
17 0.7000CE
10 6 0.400J0E

THE CURRENT VALUE CF ThE PRCJECT COST IS 0+39000E 02 + ( 0,40000E O1*D).

NEW VALUES OF ABAR FCR J=142se00esNK(I)

32 1 2 3
0
0

-4

-a

-1

-2

-3

-2
0

-8

P U B R A ST e~ (o

QO ®ONOUVNLWN ==
PNOWWODI»OWN

ITERATICN NUMBER 7 *%s

NODE 2 FAS TrE LABEL ( 1s 2+00INF) .

THE SINK HAS NCT JEEN REACHEOD WITH INFINITE CAPACITY - CONTINUE WITH THE LABELING PROCESS.
THE NODES THAT HAVE BEEN LABELED WILL RETAIN THAT LABEL FOR THE REMAINDER OF THE 1TERATION.

THE NODE 3 FAS THE LABEL ( 1, 20 0, 0.100C0E 01).
THE NOODE 4 FAS LAYEL | 1e 1o () 0+10000E O1).
THE NOOE S KFAS LABEL ( 20 | & (- 0.10000E 01).

THE NOOE € FAS LABEL a4, 1, O, 0.17000E 01).

BREAKTHROQUGH: UPDATE THE OUAL VARTAULES.

ACTIVITY #: 1 W FLOW: F(Ll+J)
0.,20000E 01
0.0
0.200C0E 01
0.0
0.0




- i asalnba skt i , . "

ke DAY . s AP vl s
-

0.10000E 01
0.0

0.0

0.0

0.0

0.0
0.,20000€ 01}
0.0

0.0
0.20000€ 01
0.0 3
0.0

0.0

0.0

0.0

0.0
0.100C0E 01
0.0
0.20000€ 0!
0.20000E 01
0.0

0.0

0.0

N WUN=N=2WN=WN= NN WN -

Ll
QOVVYVOVOEOECNNNNCOOIOVLBLLLEIWWUWW

;l L L2 ({TERATICN NUMBER 8 L

THE NODE 2 FAS THE LABEL ( ls 2,0,INF) .

THE SINK HAS NCT BEEN REACHED WITH INFINITE CAPACITY = CONTINUE WITH THt LABELING PROCESS.
THE NODES THAT HAVE BEEN LABELED WILL RETAIN THAT LAGEL FOR THE REMAINDER OF THE ITERATION.
THE NODE 3 FAS THE LABEL ( 1, 2, Q. 0.10000€E O1).

THE NODE § HAS THE LABEL ( 2, 1, 0, 0.100CO0E 01) e

THE NODOE 6 HAS THME LABEL ( Se 2, Co 0«10000E 0O1)e.

HREAKTHROUGH: UPDATE THE DUAL VARIABDLES.

» ACTIVITY #: 1 J NEW FLOW: F(l,J)
va20000E 01
0.0

0.,20000E 01
0.0

0.0

0.10009%€ 01
0.0 !
0.0 q
0.0

0.0

0.0

04 30C0CE 01

0.0

0.0

04200C0E 01

0.0

0.0 g i

OOV UNREPUWWMBMNNNGS-
WN=WN=N=DWN~WN =N -

o
.
BT o L T T g T W PPy TV T
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0.0
0.0
0.0
0.0
0.10000E O1
0.0
0.20000€ 01
0.300CCE 01
0.0
0.0
0.0

CO0OVVOBNNNY
N=UN=N=D LN~

s ITERATICN MUMBER 9 s

THE NOOE 2 FAS THE LABEL ( [ XY 2:04+INF) .
THF SINK HAS NCT DEEN REACHED WITH INFINITE CAPACITY = CONTINUE WITH THE LABELING PROCESS.
THE NODES THAT HAVE BEEN LABELED WwiLL RETAIN THAT LABEL FOR THE REMAINDER OF THE [TERATION.

THE NODE J HAS THE LABEL ( Lo Z (5 0.10000E 031).

NONBREAKTHROLGF: UPCATE THE PRIMAL VARIAHLESS
LeEe OFETERMINE OPTIMAL ACTIVITY TIMES FOR LAMBDA = 40.

NFLTA (REPRESENTED BY "D") RANGES FRCM 0 TO 1e

LAMEDA RANGES FRCM a1 TO 40.
THF MINIMUM CCST PRCJECT SCHEDULE FOR PROJECT DEADLINE = 41-D:
‘ NUDE #: K NEW VALUE: XNGDE (K) :
& 1 : o
k- 2 2
E 3 12
b 'Y 16-0
e s 24-D
3 6 41-0
Al
F. PROJECY COMPLETICN TIME = 41-De
ACTIVITY #: I NEW VALUE: XACT(I) ACTIVITY COST
' 1 2 0.8000CE 01
; 2 12 0.8009CE 01
B | 3 16=-0 0.30C00E 01 # ( 0.10000E 01#D)
i LY 0 0.0
L | s 22-0 0.10C00E 91 + ( 0.30000E Q1%D)
' 6 12-0 : 0.90000E Ol ¢ ( 0,2000CE 01%D)
7 26 C+3N000E 0}
8 2s 0.40COCE 01
9 17 0.70COCE 91
10 6 0.40000E 01
THE CURRENT VALUE OF THE PRUJECT COST IS 0+47000F 02 #+ { 0.60000E 01%D)e

MEW VALUES OF AEAMR FCR J=1s2seeesNK(I)

Ut 1 2 3 . s 6 14 8 °
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»
2 3 o -5
3 1 -3 -7 -11
s -3 -3
S 1 0 -1
6 4 -1 -6
7 -2 -3 -4 -5
8 0 -2
9 2 [} -1
10 -4 -4
LA 2 ITERATICN NUMBER 10 e
THE NCOE 2 FAS THE LAUGEL | 1 2,00INF) o

THE SINK HAS NCT BEEN REACHED WITH INFINITE CAPACITY - CONTINUE WITH THE LABELING PROCESS.
THE NODES THAT HAVE BEEN LABELED wiILL RETAIN THAT LABEL FOR THE REMAINDER OF THE [TERATICN.

THE NODE 3 FAS THE LAHEL | 1, 2, 0, 0«.100CNE 0O1).

THE NOOE S FAS ThHE LABEL ( 2, 2 0, 0.10000E 01).

NONBREAK THROLGF: UPCATE THE PRIMAL VAR[ABLES:
leFe DETERMINE OPTIMAL ACTIVITY TIMES FUR LAMBOA = 39.

DELTA (REPRESENTED BY "0") RANGES FRCM 0 TC 1.

L AMHBDA RANGES FHRCM 40 TO 39.
THE MINIMUM CCST PROJECT SCHECULE FOR PROJECT DEADLINE = 40-0:
NODE #: X NEw VALUE: XNODE(K)
1 ]
2 2
3 12
L] 15-0
S 23
6 40-0
PROJECT COMPLETICN TIME = 40-D.
ACTIVITY #: I NEW VALUL I XACT(I() ACTIVITY COST
1 2 0.80C0CE 01
2 12 0.800C0E 01
3 15=-0 C.40000E 01 + ( O0+10000E 01%D)
q o 0.0
S 21 0.40000E 01
€ 11 0.11CNCE 02
7 26 C. 30000E 01
8 25 0.40000E 01
9 17-0 0.70C)CE 01 ¢+ f 0+S0000E 01%*D)
10 6 0.4C000FE 01
THE CURRENT VALUE CF THE PROJECT COST 1S 0e53000F 02 ¢ ( O0.60000E 01*D).

NEW VALUES OF AUAR FOR J=1e2seeeeNK(I)

1 J: 1 2 3 4 S 6 7 8




i
o
|
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L2 2

THE

THE

THE

THE

THE

THE

L

ACTIVITY #: 1

e R o e AT 1 i I 5 S B i NN

=18
L
2 3 0 -5
3 2 -2 © -6 ~10
a -2 -2
s 1 0 -1
6 a -1 -6
7 -1 -2 -3 -a
8 0 -2
9 3 1 0
10 -4 -4
ITERATICA NUMEER 11 e
NODE 2 kAS THE LABEL ( 1+  240.INF).

SINK HAS NCT BEEN REACHED WITH INFINITE CAPACITY =~ CONFINUE WITH THE LABELING PROCESS.
NODES THAT HAVE BEEN LAEBELED WILL REVAIN THAT LABEL FOR THE REMAINDER CF THE ITERATION.

NODE 3 FAS THE LABEL ( 1 2 0. 0«100Q0C0E 01},
NOOE S FAS TFRE LABEL ( 2, 2 Os 0.10000E 01)e.
NODE 6 FAS TFE LABEL ( Se Je O 0.10000E 01)e

BREAKTHROUGH: UPDATE THE DUAL VARIABLES,

[

NEW FLOW: F(1,J)
0.20000E 01
0.0
0.20000E 01
0.0
o.o
0.1000Q0E 01
0.0
0.0
0.0
0.9
0.0
C«30009E 01
0.1C000E 01
0.C
0.20C00E 01
0.0
0.0
0.0
0.0
0.0
0.0
0.10000E 01
0.0
0+20000E 01
0.3C000E 01
0+10000€ 01
0.0
0.0

DO VOVBBNVYNANCPONVNE D WWWWRNNN =
N NN 2N UN= W= DWN™ WN - -

IrEmatiEn AyNBEN 12 see

e

e



NUOE 2 FAS THE LAUEL | 20:04.INF)

SINK HAS NCT BEEN REACHED WITH INFINITE CAPACITY = CONTINUE wlTH THE LABELING PROCESS.
NODES THAT HAVE BEEN LABELED wllLL RETAIN THAT LABEL FOR THE REMAINDFR OF THE [VERATION,

NODE 3 RAS THE LABEL ( 1. 2 0. 0.10000E 01).

NONBREAKTHROUGK: UPCATE THE PRIMAL VARIABLESS
Ie.E. DETERMINE OPTIMAL ACTIVITY TIMES FUR LAMBDA =

DELYA (REPRFSENTED BY "D”) RANGES FROM 0 TC le
LAMBOA RANGES FRCM 35 10 38,
THE MINIMUM CCST PRCJECT SChHEDULE FOR PR0JECT DEADOLINE =
NODE #: K NEw VALUE: XNODE(K)
o
2
12

PROJECT COMPLETICN TIVNE = 39=De

ACTIVITY #: | NEW VALUE: XACT(I) ACTIVITY COST
2 C.800C0E 01
12 0.80CCCC 01 <
14=-0 UeS50000E 01 + ( 0.100GJE 0O1%D)
(] 0.0
21-0 0.40000E 01 + ( 0.40C00E 01%D)
11-0 0.11000E 02 ¢« ( 0.20000E Q1%0)
26 0.30000E
2S 0.40000€
16 0.12000€
6 0.4000CE

1
2
3
4
S
6
7
8
S
o

-

THE CURRENT VALUE CF THE PRCJECT COST IS 0.59000E 02 ¢ ( 0.70000E 01#D).

NEW VALUES OF AEAR FGCR J=132,eeesNK(I)

J: 1 2 3

QXTI NOLRIPUN - m™
P LOOUN=WWN

e ITERATICN NUMBER 13 LL LS

THE NODE 2 HAS THE LAHEL | 2+04INF) .




G W R 3

THE NQDE S FAS THE LAHBEL ( 2, 3.,0,INF) .

k. THE NODE € FAS ThE LABEL ( Se J«04INF) .

* & % 8

THE SINK WAS REACHED w(TH INFINITE CAPACITY [MPLYING AN INFEASIBLE SOLUTICN YO THE PRIMAL PROBLEM
IF LAMUDA ORUPS EELCW ITS CURRENT VALUE. 38.
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C Appendix: Program Listing COSY001
C#tt.‘ttt*t.#‘.t“#t“‘..“t‘t0#“#“‘###"#ttt‘t‘t‘ttt..“‘.‘tt‘.0..‘O‘COSTOOl
C COSTO002
C THIS PROGRAM IS DESIGNED TC FIND THE MINIMUM PROJECT COST AS A COST00zZ
c FUNCTION OF PROJECT DEADLINE TIME. CURRENT DIMENSIONS WiILL COSTO003
c ALLOW A PRCJECT NETWORK WITH UP TO 30C0 NODES, 3000 ACTIVITIES, COSTO001
c AND 11 LEVELS OF COSTS AND TIMES. ALL VARIABLES ARE INTEGER$2. COST004&
C C(IF ANY VARIABLE IS NOT ALREADY IN INTEGER FORM, THE VALUES MUST COSTO0O0&
C BE RESCALED = THAT IS, MULTIPLIED BY AN APPROPRIATE POWER OF 10 = COSTO0S
C UNTIL THE VALUES ARE INTEGER.) COST00S
C COST006 -
C##*tt‘*‘tt‘ttt#*‘i##*t####“‘tt‘t#‘t#t**‘##t##‘#*“‘#‘#t‘.‘.“ttt"‘..tCOSTOOd 3
C COSTO007
c THE INPUT IS AS FOLLOWS (ALL RIGHT=JUSTIFIED): COSTCO7
c COST008
C : COLUMN DESCRIPTION COST008
C CARD1 : 1=4 NUMBER QF NODES COST009
C 6=9 NUMBER OF ACTIVITIES COST009
c 11  OPTION TO SUPPRESS PRINTING OF INPUT = TESTL COSTO010
c (0O=PRINT, 1=NO PRINT) CcosT010
C 13 OPTION TO SUPPRESS INTERMEDIATE OUTPUT=TEST3 COSTOL1,
c {0=PRINT, 1=NO PRINT) cosTo1l1
C 1S=18 SCURCE NCDE COSTO012
C 20=23 SINK NODE COsTO012
c 25 CFYION TC SPECIFY VALUE FOR LAMBDA = TEST3 COSTCI13
c {0=NO, 1=YES AND SEE INTERMEDIATE COSTO13
C OUTPUT, 2=YES BUT NO INTERMEDIATE OUTPUT)ICOSTOLl4
c COSTO14'
C THE FOLLOWING CARDS ARE IN SETS OF 3= CARDS COSTO15!
c {ONE SET FOR EACH ACTIVITY). COSTO1S
C COSTO16¢
c COLUMN DESCR IPT IDN COSTO16!
c CARD1: 1=4 ORIGIN NCDE cOSTO17¢
C 6=9 TERMINAL NODE COSTO17¢
C 11=12 NUMBER OF ACTIVITY COMPLETION TIMES COSTO018¢
C AND COSTS THAT ARE READ IN (<=11) COSTO018¢
c CARD(S)2=3:  FORMAT 8110 COMPLETION TIMES (8 ON CARD 2. COSTO019¢
c 3 OGN CARC 3 IF NEEDED) COSTO1L9¢
c CARD(S)4=S: FORMAT 8110 COST ASSOCIATED W/EACH COMPLETION  COST020(
[ TIME (8 ON CARD 4, 3 ON CARD S) COST020¢
c COSTO021¢
C LAST CARD (USE ONLY IF TEST3 = 1 OR 2): cOsTo021°¢
C COLUMN DESCRIFTICN cosT022¢
c 1=10 SPECIFIC VALUE OF LAMBDA casvoz2<
c COST023¢
CEEEEREEREREERRE R AR AR KK KRR KRR R R REEREERAK AR PR SRS RE AR AE SRR RS S Sk $2COSTO2 3
C cosvtoz2ac
(4 DEFINITION OF VARIABLES: COSTO024¢
C €cOST0250
- ABAR(I+J) = TIME(I,NK(I)¢i=J) + XNODE{ORIG(I))=XNODE(TERM(I)) COST025S
c C(I,4) = DECREASE IN I TH ACT®*S COST PER UNIT FOR J TH TIME COST0260
c CAP = MIN(FLOW REACHING ORIGIN NODE. EXCESS CAPACITY TO COST026S
C TERMINAL NCOE) cosTc27¢
C COST(IsJ) = COST OF COMPLETING ACTIVITY I AT TIMECI,J) COsST027S
C DEL = MIN(DELTA1,DELTA2) COSTC280
C DELTA1 = MIN(=ABAR(I,J) WITH I LABELED AND J UNL ABELED, cosT0285
C ABAR( I ,J)<0) COST0290
- DELTA2 = MIN(ABAR(I.J) WITH I UNLABELEC AND J LABELED, cOsT029
c ABAR(I ,J)>0) €0ST0300
c DIPEC(J) = DIRECTION OF FLOW REACKING NODE J COST030
- (0=FORWARD, 1=REVERSE) COSTO310

o
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C FLOW(I,J) = FLOW IN J TH PIECE OF ACTIVITY 1 COSTO31
C INF = ANY NUMBER GREATER THAN MAX(CAP) COSTO03
5 C (CURRENTLY SET AT (2%MAX +1)) COST032
C K1(I) = THE NUMEER OF THE TIME=COSY PIECE USED IN casT033
c LABELING TERM([) FROM ORIG(I) CcOST03
: C KOUNT = KEEPS TRACK OF ORDER IN WHICH NODES WERE LABELED COSTO034
c LABEL(I) = 0 IF NODE I UNLABELED COSTO34
C 1 IF NCDE I LABELED . COSTO3
C LINPUT = SPECIFIC VALUE OF LAMBDA IF TEST3=1 OR 2 cOST03S
C NA = TOTAL NUMBER OF ACTIVITVIES COST036
C NK(I) = NUMBER OF DIFFERENT TIMES AND COSTS FOR ACTIVITY [ COST036
C NN = TOTAL NUMBER OF NODES COSTO037
C ORIG(I) = CRIGIN NCDE FCR ACTIVITY I cOSTO037
c OR1G2({1) = WHERE TFE FLOW IS FROM = USED IN LABELING ONLY cosv038
C PCOSYT = PRCJECY COST FUNCTION cosT038
C SINK = NUMBER OF THE SINK NODE COST03¢
C SOQURCE = NUMBER OF THE SQURCE NQDE cCOSY039
C TERM(I) = TERMINAL NCDE FCR ACTIVITY I CasST040
C TEST1 = CPYION TO SUPPRESS PRINTING OF INPUT COST04a0
C (0O=FRINTe 1=NC PRINT) cOSY04}
C TEST2 = OPTION TO SUPPRESS INTERMEDIATE OUTPUT COSTO41
i C {O=FRINT, 1=NO PRINT) COSY042
i C TEST3 = CPYION TO SPECIFY VALUE FOFR LAMEDA COST042
E | C (0=NO, 1=YES AND SEE INTERMEDIATE OUTPUT, COST043
E | c 2=YES BUT NC INTERMEDIATE CUTPUT) coSsT043
| C TIME(I+J) = J TH BREAKPOINT (DURATION TIME)} FOR ACTIVITY I COSTo44
c XACT(I) = ACTIVITY DURATION TIME COSTO4&4s
3 c XNODE(I) = NODE TIME COST04S
2 C XDIFF(1) = XNODE(ORIG(I))=XNODE(TERM(I))s AN UPPER BOUND ON COST045
| C THE ACTIVITY DURATION TIME COST046
| C [eJsKsMyNsP = INDICES COST046
E | C INODE+ ITERM.IACT ¢ IORIG,IDIFF,ETC. COST0a7
c = NON=INDEXED VERSICNS OF XNOOE(I) TERM(I)(XACT(I)s COSTO47
A r C ORIG(I)XDIFF(I),ETCe. COSTO048
| ! C cosvoasi
B CEERERRERERER R RER R R R R ERERRE R E SRR SRR KRR R EERR R KRR KR R E S E R SRR kS 2% COSTO49F
| ! c COSTC49
e C DIMENSIONS COST0504¢
| { C NN = TOTAL NUMBER OF NODES COST050¢
: C NA = TOTAL NUMBER OF ACTIVITIES casTosi1f
; C MAX = MAX(NK(I)) COSTOS1
C CAP(NN)oFLOW( NAJMAX) s C{NAsMAX),ORIGINA), TERM(NA) s TIME(NA ,MAX),COSTOS2¢
c COSTINA MAX) sNK(MAX) ¢ ABAR(NASMAX) +XDIFF (NN) ¢« XNODE (NN) + XACT(NA ), COSTO0S52¢
{ c DIRECINN) sLABELINN) ¢K1(NN) ,ORIG2(NN) s KOUNT(NN) s AORD{NA) , CcOSTO0S3
| C ND{NN) s NDDINN) s TR(NA) ,CTIME(NA) cOST0S53
E | ’ C COSTO0S4&
CEESEAERERER XXX R AA R AR SRR ESE SR SRR R KRS AR AR ERE R R E P AR KK R LR KRR EE KXk COSTOS54
E | c COSTO0SS
k| IMPLICIT INTEGER®*2(A=Z) COSTO055%
& REAL*4 CAP(3000),FLOW(3000,11)+C(3000+11)+PCOST,INF,PCOST1, cOST056
) IKCOST,ACOST PNEW COST056
COMMON TIME, CTIME ¢ XNODE+ORIGs TERM, AORD ¢NK s NN o NAJLMINJLMAX,TESTI COSTO57¢(
;i DIMENSION CRIG(3000) ,TERM(3000), TIME(3000,11),COST(3000,11), cosTO057
1 INK(3000), ABAR( 3000+11)«XDIFF(3000) XNQDE(3000), COST058¢
b | 2XACT(3000), DIREC( 3000), LABEL( 2000). COST058!
‘ v 3K 1( 3000) yORIG2(3000) KCUNT(3000) sAORD(3000),CTIME(3000), cOST059
4AND(3000),NCD(3000), IP{32000) COSTO059¢
c CO0ST060
c INPUT DATA COST060
| C COSTO061

{ READ(S5+100) NN NAJTEST1 «TEST2+SOURCE +SINK,TEST3 COST061
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INF=0.,

PCOST=0.

WRITE(6+,228)

IF(TEST1.EGel) GO TO 401

WRITE(E€+15C) NNoNAs SCURCE 4SINK
401 DO 12 I=1¢NA

READ(S+230) ORTIGI(I) o TERM(I)NK(I)

KN=NK(I)

READ(S5.:231) (TIME(IoJd)sJ=1,KN)

READ(S,231) (COST(I ¢J) 2J=1,KN)

12 CONTINUE
CALL ORDER

- SET UP INITIAL VALUES

NnAN

IF(TEST1.EQ.1) GO TO 193
K3=1
192 K2=K3+8
IF{K2<GT «NN) K2=NN
WRITE(6,151) (K,K=K3,K2)
WRITE(6,157) (XNODE(K) ¢K=K3,K2)
IF(K2.GE.NN) GO TOC 191
K3=K2+1
GO YO 192
191 WRITVE{(6,152)
193 DO 10 I=1,NA
LABEL( I)=0
XDIFF(1)=XNODE(QGRIG(I))=XNCDE(TERM(I)}
NKMI=NK( ()=}
KN=NK( 1)
DO 9 J=1,NKM1
IF(TIME(I2J+1)=TIME(IJY) T7+8+7
7 CUI«J)=(COSTL{I 4J)aCCST(I oJ+1))/(TIME(I9J¢]1)=TIME(I,J))
{ GO TO €
; 8 C{I+J)=0,
! 6 IF(INF LT.C(I,J)) INF=C(I,J)
I XACT(I)=XDIFF(1I)
IF(XACTY(TI) eLToTIME(I sJ+1)) XACTH{I)I=TIME(I+J+1)
JJI=NK( [ )= +1
ABAR(1I 4 J)=TIME(I,JJ)+XCIFF(1)
FLOW(I,J)=0
9 CONT INUE
ABARI{I 4KN)=TIME(I,1)+XDIFF(1)
FLOW(IKN)=0
IFITEST1.EQGel1) GC TO 10
WRITE(6+153) [+ XACT(I) +ORIG(LI) sTERM(I DI o(JsTINME(ILJ),COST(I,J),
1C(I+J0ABAR(I1,4J)sJ=1sNKM]1)
WRITE(G6:+156) KNSTIME(TIJKN)3COSTUI+KN) s ABAR(I,KN)
10 CONTINUE
INF=2.%INF+1,
DO 417 I=]1,NA
C(I+NK(I))=0,
NKML =NK( I )=l
PCOST1=0,
IKK=0
DO 418 K=1 NKM1
IF(K+NE.1) GO YO 40
XIJ=XACT(1)
IFUXIJ eGTTIME(I,2)) XIJ=TIME(I,,2)
GO TO 41
40 XIJ=XACT(I)=TIME(!I ,K)

CoSsTo7i
cosT07
cosTo7
cosTo73

CosT081

cosTo87
cosToa?

castose

COST088E
COSTC89¢
COSTCaGS
COST0904
COST090¢
COST0910
COST0918
Ccosvo92(
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nonon

41

S0

418

417

700

96

724

99

97

14

403

IF(XIJLTe0) XIJU=0

IFIXIJeGT o (TIME(I oK¢1)=TIME(IoK))) XIJU=STIME(I K+1)=TIME(I K)

IF(IKK.EQ.1) GO TO 41
IF(CUI+K)eGTeC(IsK=1)) GC TC SO

PCOST1=PCOSTLI+C(I K)EXTJ
GO TO 418
IKK=1

WRITE(€,237) 1,I
PCOST1=FCOST14C(TI.K)*XIY

CONTINUE
PCOST=PCOST+COST( 1,1 )0+C{I+1)%TINME(TI,1)=PCCSET1
PNEW=RPCCSY

CONTINUE

LAMBDA=LMAX

IF (TEST3.GE.1) GO TC 700

WRITE(G6,154)

LINPUT=0

GO TO G€

READ(S,232) LINPUT

IF(LINPUT.LT.LMIN) GC TC 70S
IF(LINPUT .GE .LMAX) GO TO 704

IF (TEST3.EQ.2) GO TO 724

WRITE(6,18€) LINPUT

WRITE(6,200) LAMBDA, PCOST
IF(TEST2¢EQe1¢0R.TEST3GE#1) GO TO 724
WRITE(6,23€)

CAP( SOURCE)=INF

I TER=0

L ABEL { SOURCE)=1

IF(TEST2+.ECe1 eORTEST3.GE.1) GO TO 97
(TER=ITER+1

WRITE(6,22€) ITER

INITIAL LABEL ING ITERATION

1=1

J=SOURCE

M=0

IF ACTIVITY STARTS AT DESIGNATED CRIGINs TRY TQ LABEL,
OTHERWISE, CHANGE ORIGINS.

IF (ORIG(I)«NE.J) GC TO 13

ITERM=TERMI{I)

CHECK IF NCDE ALREADY LAEELED AND

CHECK IF ABAR(I NK(ID))=0.

IF (LABELCITERM)NE<O.ORAEAR(I,NK(I))eNE<C) GO TO 13
IF NODE NOT ALREADY LABELED AND ABAR(I(NK(I))=0,
PROCEDE WITH LABELING.

LABEL{ ITERM)=1

ORIG2( I TERM) =J

K1{ITERM)=NK(1)

DIREC{ITERM) =0

CAP( I TERM)=INF

IFCTEST2+ECel eOR.TEST3GEs1) GO TO 403

WRITE(6,201) ITERM,ORIG2(ITERM) K1 (ITERM)

IF CAN REACK SINK, TERMINATE (IMPLIES INFEASIBLE)

IF (ITERM.EQ.SINK) GC TQ 1S

M=M+1

KOUNTE M)=ITERM

IF EVERY PATH TESTED AND INFINITE FLCW NOT PCSSIBLE,
GO ON TO LABEL ING PART(II).

13 I=1+1

COST092!

cOST093
COST093%
COST094
costo94l
COST0954
COST09S
COST096
COST1096
COST0974.
COST097
cosvo9e!
COST0984%
COSTC99
COST099¢
COST100
COSsT100
COosT101
CosT1914
CcOST102
CcoSsT102
coSsT103
cosST103
CcOST104
CcOST104
COST10S
CcOSsT1059
cOST106
COST106
COST107¢
cosT107¢
cosT108
cosSv108
COST109
COST109
COST110¢
cosT110
coSsT111
COST1i1
cosT112
cosT112
COSTI11 3¢
cCOST113¢
cosTilaqd
COST114
COST115¢
COST1159
COST116
cOoST116%
COST117¢
cosT117
COST118¢
cosTi18
cosT119¢
cCOST119%
COST120
COST120
cOosT12]
cosTi21
cosT122

RS —

s

cosvi122%
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IF (1.GT.NA) GO TO 11

GO TO 14

CHANGE DESIGNATED ORIGINS.

IF (J<EQ«SOURCF)
IF(P«GT.M) GO TC 16
IF ALL LABELED NODES HAVE BEEN SCANNED

HAVE BEEN

J=KOUNT(P)

P=P+1
1=1
GO TO 14

LABELED,

P=1

AND NC NEwW NODES

GO CON TO LABELING PART (II).

IF(TEST3.GE.1) GO TO 404

WRITE(€,202) LAMBDA

GO TO 999

IF(TEST2.ECel «ORsTEST3.CE+1) GO TO 40S
WRITE(€,203)

NEXT LABEL ING PROCEDURE

I=1
J=SOURCE
AGAIN,
IE.

ITERM=TERM (I )

KN=NK (1)

DO 25 K=1 4KN
IF (KEQe.KN) GO TO 27
IF(LABEL(ITERM) cNEcOsORe¢ ABAR(I K )eNEcOORFLOW(IK) «GE
1(C(I NK(I)eoK)=C(I NK{I)=Ke¢1)))GC TC 25

DIREC({ ITERM)I=0
CAPACITY IS MIN OF PREVICUS FLOW AND THE EXCESS CAPACITY
CAP(ITERM)=C(I NK(I)=K)=sC(I NK(I)=K+1) = FLOW(I K)

GO TO 23

TC 24

CHECK ALL CONDITIONS FOR LABEL ING
CHECK IF NODE 1S ALREADY LABELED,
IF THE FLOW(I,J) IS LESS
IF (ORIG(I)«NE.J) GO

IF ABAR(I.J)=0s AND

THAN ITS UPPER BCUND,

27 IF(LABEL(ITERM) «cNEcOsOF«¢ABAR(TI sK)eNEcOORFLCW(IsK) cGEINF)

23

406

25

24

1

GO TO 2S5
IF THE NODE HAS NCT
THE FLOW IS LESS THAN ITS UPPER BCUND,

OF THE NODE.

DIRECIITERM)=0
CAP(ITERM)=INF
LABEL{ ITERV)=1
ORIG2( ITERM)=J

KI1{ITERM)=
IF (CAP(ITERM) «GT.CAP(CRIG(I)))

K

ALREACY BEEN LABELED,

ABAR(I,J)=0+. AND
PROCECE WITH THE LABEL INC

CAP(ITERM)=CAP(ORIGI(I))

IF(TEST2+EQe1.0R.TEST3.GE«1) GO TO 406

WRITE(6+204) ITERM,ORIG2(ITERM)+KI1(ITERM)+DIRECIITERM) ,CAP(ITERM)
IF SINK LABELED, GO TO UPDATE FRCCEDURE

IF (ITERM.EQeSINK) GO To 21

M=M+1

KOUNT(M)=1ITERM
CHECK IF ALL FATHS TRIEC

CONTINUE
GO TO 19

IF(TERM(I).NE.J) GO TO 19
IORIG=0RIG(I)

KN=NK(I)

DO 26 K=1,KN
IF(LABEL( IORIG) eNE.OsORABARI I +sK) e NEcCeORFLOWI(I +K) «LE.O)

2 GO TO 26

cosT123
cosT123
COoST124
cosTi124
cosT125( |
COST125¢
coSsT126
COST126
cosT127
cosT127
cosT128
cosT128
cosT129
CcOST129
COST130
COST130
CcOoSsT131
COST131
cosT132
cosT132
cosT133
cosT133
coSsT134
cOSsT13a
COST135¢
cosT135
COST136C
COoST136
COST137C
cCOST137%8
cosT138Q
cosT138
COST139C
COST139
COST1400
cOST140
CosT1410
cosTi419
cosT1420
cosTis425
COST1430
COST1435
COST1440
COST144
COST1450
COST145S
COST1460
COST146
COST147¢
cosTia7
cosT148¢
cosvia8s
COST1490
CcOST149
COST1500
costi1sd
COsST151
COST151
cosTi152
CcOSsT152
COST153
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402
26
19

18

22

&

407

721

408

DIREC( IORIG)=1

CAP{IORIG)=FLCW(I «K)

LABEL( IORIG)=1

ORIG2( IORICG)=J

K1(IORIG) =K

IF(CAP{IORIG) «GT.CAP(TERM(I))) CAP(IORIG)=CAP(TERM(I))
[IF{TEST2.EQel eOR.TEST3.CE-.1) GO TO 402

WRITE( 6,204)
M=M+1
KOUNT(M) =ICRIG

CONT INUE

I=1+1

IF (I1.GT.NA) GO TO 18
GO TO 20

IF (J+EQ.SOURCE) P=1
IF (P.GT.M) GO TO 22
J=KOUNT{P)

P=P+1

=1

GO TO 20

NONBREAKTHROUGK HAS OCCURED. DELTAS ARE FOUND AND UPDATING
MADE IN THE XNCDES ANC XACTS,

DELTAL=INF+1

DELTA2=INF +1

DO 4 I=1,NA

KN=NK(1)

IF (LABEL(CRIG(ID)eEQelAND.LABEL(TERM(I))«EQ.0) GO TO 1
Al IS SET CF I LAEELEC AND J UNLABELED,

A2 IS SEY OF I UNLABELED AND JU LABELEC.,
IF(LABEL(CRIG(I))+EQeO0.ANDLABEL(TERM(I)).EQ.1) GO TO 2
GO TO 4

FINDING DELTAl1°'S,

DO 3 J=1.+KNM

IF (ABAR(I +J) «GE.O) GO 7C 3

IF (=ABAR(I,J)eLT.DELTA1) DELTA1==ABAR(I.,J)
CONTINUE

GO YO &

FINDING DELTA2'S

DO S J=1,4KNA

IFUABAR(I,J) .LE.O) GO TO &

IF (ABAR(I +J) «LT.DELTA2) CELTA2= ABAR(1I,J)
CONTINUE

CONT INUVE

DEL=MIN(DELTA1 ,DELTA2)

DEL=DELTAIl

IF (DELTA2..T.DEL) DEL=DELTA2
LAMBDA=LAMBDA=DEL

UPDATING TFE XNODESe.

IF(TEST24ECe1 «0ReTEST3.GE«1) GO TO 407
WRITE(€,20€) LAMBDA

IF (TEST3.FC.2) GC TO 721

DELTA= LAMBDA ¢+ DEL

WRITE(64,209) DEL+DELTALAMBDA,,DEL TA
IF(TEST2.EQel1 «ORTEST3.GE«1) GO TO 408
WRITE(6,207) -

DO 80 I=1,NN

I NODE = XNODE(T)

IF(LABEL(I)«EQ.0) GO TC 81

IF(VTEST2+EQe1 sORTEST3.GE«1) GO TO 409

IORIG,ORIG2(ICRIG) +K1 {IORIG) DIREC(IORIG)+CAP(IORIG)

COST153
cOSsT154
cOsT154
COST1554¢
COST15S
COST156
COST156
COST157¢
COST157¢
coSsT158}
COST158¢
COST159¢
COST159
COST160¢
COST160
COST161
COST1614
COST16 2¢
COST162¢
COST163¢
COST 16 3¢
COST164
cosvi6a4
cosrxssg
cosT165§
cosT1664
COST166
coSsT167
COST167
COST168
cosT168
cosT169¢
COST169%

S ey e

cosT180
cosviag
cosTiAa}
COST182

cosT182
COST1A3
cosv18
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722

43

552

42
S50
S53

83

SS9

84

S8

WRITE(6:210) I, INODE
XNODE( I )=INODE

GO TO &80

IFITEST2.EQel ¢ORTEST3.GE«1) GO TO 410
WRITE(6.211) I,INCDE

XNODE ( I )=INODE=DEL

CONT INUE :

IF {TEST3.EQ.2) GO TO 722
WRITE(6,212) DELTA

PCOST=0.

DO 82 I=1,NA

IP(I)=0

PCOST1=0.

NKM1=NK{( I )=}

TACT=TIME( I ,NK{1))
IORIG=0ORIG(I)

ITERM=TERM(I)
IDIFF=XNODE( I TERM)=XNODE( ICRIG)
XDIFF( I )==IDIFF

IF (IDIFF.GE.IACT) GO YO 86
XACT(I )=1IDIFF

DO 550 K=1,NKM}

IF{K.NE.1) GO TC 43

XIJ=XACT{I)
IF(XIJeGTTIME(I+2)) XIJU=TIME(I,2)
FLAG1=0

GO TO &2

XTJI=XACT(I)=TIMEC(E ,K)
IF(XIJ.LT.0) GO TO 552

IFIXIJeGT o (TIME(T sK#1)=TIME(I+K))) XIJU=TIME(I K¢1)=TIME(I.K)

FLAG1=0

GO TO a2

FLAGI =1

FLAG2=K=1

GO TO 553

PCOST1=PCOST1+C(T sKI*XIJ

CONTINUE
KCOST=COST(I+1)4C(I+1)%TIME(I+1)
ACOST=KCOST=PCOSTI

PCOST=PCOST+ACOST

IF {TEST3.€2.2) GO TC &2

{F (LABEL (IORIG)=LABEL{ITERM)) 83,84,85
IDIFF=1DIFF=DEL

IF(FLAG1.EQ.1) GO TO S9

ACOST=ACOST + C{I,NKM1)*DEL

1PL1) =1

WRITE(64214) I,IDIFF,ACOSTCCI,NKM1)
GO TO 82

ACOST=ACOST+C(1,FLAG2)*DEL

PLI)=1

WRITE(6,214) 1,IDIFF,ACOST.C([,FLAG2)
GO YO 82

WRITECG,216) [ XACT(L),ACOST

GO to e2

IDIFF= IDIFF4DEL

1IFIFLAG] +ECs1) GO TC 58

ACOST=ACOST = C(I ,NKM1)*DEL

1Pl1)=2

WRITE(64213) [ ,IDIFF,ACOST,CC I ,NKM1)
GO TO 82

ACOST=ACOST=C(1,FLAG2)#*DEL

cOST1909

cOsST1910
CcOST191
COST1920
cOosT192
COST1930
COST1938

COST1940

COST 1945

COST1950
cosT19s55.
COST1960

COST196S

COST1970

cosT198
COST1990

COST200S

cOoST2010
COST201S
CO0ST2020
CO0ST202S
cosrzoaq
COST203s
COST2040
COST2045
COST20%0
CaST205S
COST2060
COST2065
cOST2070
COST207S
cOSsT2080
cosv2085
COST2090
COST209%
CcOST2100
CO0ST2105
cOST2110
cosT2115
CO0SY2120
cOST212S
CcO0ST2130
cOST2138

COST2140

CO0sST214S
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’ P(I)=2 cosT21

i WRITE(6+213) I,IDIFF,ACOST,C(I,FLAG2) cosT21

s GO TO €2 cosv2

) 86 XACTII)=IACT COST214

} DO 551 K=1 4NKM1 cosT21

b 3 IF(KNE.1) GO TO 4S5 cost21

: XIJ=XACT(1) cosT21i

) IF(XIJeGTTIME({I,2)) XIJ=TIME(I,2) cosvzi

? GO TO 46 COST21¢

) 45 XIJ=XACT(I)=TIME(T+K) COST214

: IF{XIJeLTaC) XIJ=0 COST22

) IF(XIJeGTo(TIME(I +K+1)oTIMEC(TIsK))) XIJ=TIME(I K+1)=TIME( [ +K) cosv22

; 46 PCOST1=PCOST1+C(I K)®X1J cosvz2
b 551 CONT INUE cosT221
; KCOST=CCST(I1+1)4C{I 1 )#TIME(I,1) COST12232

) ACOST=KCOST=PCOST] cost22

¢ PCOST=PCOST+ACOSY cosT22;

) IF (TEST3.EQ.2) GO TO 82 cosv22

: WRITE(6421€) I.XACT(I) +ACOSY COST 22

s 82 CCNTINUE cost22

; IF {TEST3.E0.2) GC VC 723 cosv22
4 [ o PCOST1=PNEW cosTt228%
| ¢ PNEW=( FCCST=PNEW)/DEL cosv22
k| 4 WRITE(€.224) PCCSTL PNEW COST 226
F t . 723 PNEW=PCCST cosTv22%
' IF (TEST3«NE«OsAND.LAMEDALE.LINPUT) GO TO 703 cosTz2
_ f C RESET LABELS TO O AND REFIGURE ABARS. cosT228
A : C THEN START CVER. cosv22
] E DO 87 [=1,sNN COST 22§
: LABEL{ 1)=0 COST22%
; 87 CONTINUE COST23(
. : IF(TEST2.EQe1+0R.TEST3,GE+1) GO TO 420 COST23(
} 4 WRITE(6+22€) (JeJ=1,411) cosT231
£ i 420 DO 88 T=1,4NA cosrta3
NKM1=NK ( I)=1 CcasT23;
DO S00 K=1 ¢NKM] C0ST23%
i J=NKM1 +2=K : COST233

' 500 ABAR(I K)=TIME(I,J)+XDIFF(1I) cosT23
4 , ABARCI yNK(I))=TIME(TI, 1)¢XCIFF (1) COST234
: ! IF(TEST2.EQ.1.0R.TEST3.GE«1) GO TO &8 COST234
: § NK1=NK(I) casvz3
| i WRITE(€4227)1 (ABAR(I sJ) ¢J=1,NK1) cosT23
b | i 88 CONTINUE COST23¢
b | i IF (LAMEDALLT.LMIN) GC TC 98 COST238
4 ; GO YO 99 cosT23
k| | c CO0ST237
| i c UPDATE THE FLOW AFTER EREAKTHRCOUGH . COST 238
| | C COST238
| : 21 IF(TEST2.EC.1+.0RTEST3.GE+1) GC TO 34 COST239
3 ’ WRITE(6,20%) : COST 236
) . 34 FLOW(I.K1(ITERM))=FLOW(I K1(ITERM))+CAP(ITERM) cosT24
| [ IF DIREC =0 THEN CAP ACDED TO FLOW, COST24¢

| C IF DIRFC =1 THEN CAP IS SUBTRACTED. COST24]

1 ! 30 ITERM=CORIG2(ITERM) ; coSsTza
| , C CHECK IF BACK A1 SOURCE. COST243
: -8 IF(ITERM.EC.SOURCE) GO TQ 22 COST2432
C FIND WHERE FLOW CAME FFOM. COSTzA.

I=NA , cosT2a
. 32 1=1=1 CaST244

IF (ORTG(I)«EC.ORIG2(ITERM) sAND.TERM(I)+EC.ITERM) GO TO 31 cOST24

GO TO 32 cosT2a
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CHECK IF DIRECYION OF FLCW IS POSITIVE OR NEGATIVE, C0ST245
ALSO CHECK IF CAPACITY IS INFINITE. C0OSY246

31 IF(CAP(ITERM) .EC.INF) GC TC 33 C0572§6’.
IF (DIREC(ITERM) .EQ.,0) GC TO 34 coOSsT247¢
FLOW(I +K1{ITERM) )=FLOWI(IK1(ITERM) )=CAP(ITERM) COSTZC?Q
GO YO 30 c0Sv2481
RELABEL AND START OVER. C0Sv248!¢
33 IF(TEST2.EQe!l eOR.TESTI«GEe1) GO TO 415 CO0SY246¢
DO S60 1=1,NA COST249¢
NK1=NK(1) CO0ST250¢t

DO S60 K=1,NK1 co0SsT250¢
560 WRITE(6+220) [+K.FLOW{(I,K) COsST251¢
41S DO 98 1=1,NN cosT251¢
LABEL(I)=C casva2s2¢

98 CONTINUE cosv252¢
GO YO S¢S COSTzS 3¢
PROGRAM TERMINATES WHEN EVENTUALLY AN INFINITE FLOW IS ACHIEVED C0OST253¢
FROM THE SCURCE TC ThE SINK, OR WHEN THE VALUE OF LAMBDA DROPS CasT254(¢
BELOW THE MINIMUM LENGTH CF THE NETWORK. COST254¢
998 IF(TEST3.NE.O) GO TO 9G9 CO0ST255¢C
WRITE(€,202) LAMBDA COST25¢¢

GO TQO 99 COST25%6(C-
705 WRITE(6,233) LINPUT,LLMIN CO0ST256¢
GO TO 6SS €osT257C

704 WRITE{6:,236) L INPUT sLMAX COST257¢
WRITE(6,238) LINPUY COST258¢(C
D=0 €Qsv258¢<
DO 60 I=1,NA CcOsSv259¢C
60 IP(1)=C COST259¢
GO TQ 707 CcosT260C
703 WRITE{(€6,234) LINPUT COST260¢
706 WRITE(6,238) LINPUT cosv261cC
D=LINPUT=_ AMBCA CO0ST261¢

707 PCOST=0. cosvz262cC
DO S7 I=1,NA COST262¢%
IFCIPCI)eEGCel e ANDeDeGT «0) XACT(I)=XACT(I)=D CO0ST263C
IF(IP(I)eEQe2¢ANDe¢DeGTe0) XACT(I)=XACT(I)+D COST263¢
PCOST1=0. COST264C
NKM1=NK(I )=} COSTZz6%4¢

DO S1 K=1,NKM1 caQsTt126%sa
IF{KeNE.1) GO TC 52 COST265%
XIJ=XACT(1) CcOSsT2660
IFIXTIJ «GT <TIME(I,+2)) XIU=TIME([,2) COST2665

GO YO S3 cQstYz67C

52 XIJ=XACT(I)=TIME(I,K) COST267S
IF(XIJeLTe0) X14=0 cosT2680
IFIXIJeGTo(TIME(T oK41)aTIME(LIoK))) XIJ=VTIME(IK+1)=TIME(I.K) C0ST268S

53 PCOSTI=PCOST1I+ClI . KI%XIJ COST2690
51 CONTINUE COST269¢
KCOST=COST(I+1)4C(I +1)*TIME(I,1) cosT2700
ACOST=KCCST=PCOST! COST270S
WRITE(E+21€) T +XACT(1),ACOST cosv2710

S7 PCOST=PCOST+ACDSY casTta271s
WRITE(6,23S) PCCST COSv2720

999 WRITE(6,228) cosvavras
STOP cCQsT2730

100 FORMATI(TI 4 o1 XoT8 01Xl eo1XellelXoelAs1Xel@1XeI1) cOosTz73s
150 FORMAT{ *=" , " THE NUMBER OF NODES IS *3I4,°.7,/,1X,*THE NUMBER OF ACCOST2740
ITIVITIES IS 91853 °0%:/¢1Xs*'THE SCURCE NQDE IS NUMBERED *,14,* AND COST2745
2THE SINK NODE IS NUMBERED *,14,%.' 9/ y%mt ¢ *% NCDES: #*%?) C057275Q
151 FORMAT (0 416X e*'K®*37X+9(2Xs14,5X)) COST2755
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152 FORMAT{ Ym? ¢ & ACTIVITIES: #%9,//,6Xo I ¢7X*XACT? ;6X,"0ORIG? ,3X,COST27
1°TERM® 34X J? o €EXe "TIME* 4 SXs 'COST ' 14X0°C*,13%,°ABAR"?) casrTam

1S3 FORMATI(® % 33X oTA4s3X 11003 Xel@¢3Xs14:(T39,12,3Xe110,3X,110,3X, cosvz7

LE16.5,3X,110)) cosT27’
154 FORMAT('=*® ,* THE ENTIRE PROJECY COST CURVE 1S GOING TO BE DETERMINECOST27!|

1D-*%) cast27t
155 FORMAT( *=*,¢*THE OPV IMAL ACTIVITY COMPLETION TIMES FOR A SPECIFIED COST27¢
1PROJECT DEADLINE TIME = *,110,° ARE GCING TO EE OETERMINED.*) cosT27¢
156 FORMAT( ' *,73G¢12¢3X+sI110s3X+110+22X,110) cosTt28(
157 FORMAT('0°*, 4Xo "INITIAL XNODE(K) "9 3X, cosrzad
19(110+,2X)) cosvasl
200 FORMAT{'0*,'LAMBDA = PROJECT COMPLETICN TIME',//, cosv1281
1 1X+*THE STARTING VALUE CF LAMEDA IS *,4110,%c',7/ cosvzsaz
2

21X, *THE CORRESFONDING TOTAL PROJECTY COST [S *4sE16¢5+¢%¢')COST282

201 FORMAT('0°'+° THE NODE ',148,°* HAS THE LABEL (*+18,%,°,14,°,0,INF).*)COST283
202 FORMAT(%0% o////7 30X %% % % % %°3///// 91X, cosv283
1 *THE SINK ®AS REACHED WITH INFINITE CAPACITY IMPLYING ACOST284

1IN INFEASIBLE SCLUTICN 7O THE PRIMAL PRCBLEM °*,/,20X,*IFf LAMBDA DROCOST284
2PS BELOW ITS CURRENY VALUEs *,110+s%.°) c0ST28S
203 FORMAT (*=2 , ¢ THE SINK HAS NOT BEEN REACHED WITH INFINITE CAPACITY =COST285
1 CONTINUE WITH THE LABELING PROCESS.? 4/ »1Xe*THE NODES THAT HAVE COSv286
2BEEN LABELED wWILL RETVAIN THAT LABEL FOR THE REMAINDER OF THE ITERACDST286
3YION.*') cosvza?

204 FORMAT(*0°®,*THE NODE " ol4 ' HAS THE LABEL (®*s14:°+°314,%,°,14,%,°,C0ST287
1E16eS5¢*)et)

cosv288
20S FORMAT (*=* ,*BREAKTHROUGH: UPDAYE THE DUAL VARIABLES.,® cosv2s8s8
19//7/7+1 X" ACTIVITY #2 [%:3Xe%J'eSXs*NEW FLOW: F(IeJ)*) €0ST289¢

206 FORMAT(*=? ,* NONBREAKTHROQUGH: UPDATE THE PRIMAL VARIABLES:'s/.1X, COST289S"
1*'1.Es« DETERMINE OPTIMAL ACTIVITY TIMES FOR LAMBDA = *,110+s%.°) COST290¢

207 FORMAT(* ¢ ,¢ NODE #: K®*¢5X,*NEW VALUE: XNODE(K)*) COST1290!
209 FORMAT(*=* ,*DELTA (REPFRESENTEL BY ®D") RANGES FROM O TO* CO0ST291¢
1 2s144,%0%,/,51Xe °LLAMBDA RANGES FROM® ,I1Co?* TC*I10,%,°, COsT291¢
2 Z91Xe *THE MINIMUM COST PROJECT SCHEDULE FOR PROCOST292¢
3JECT DEADLINE = *,110,'=pD:¢) C0sST292!
210 FORMAT(®* ' ,7Xs14,12X,110) CASsS 129 3¢
211 FORMATI(®* * 47X414,12X,110¢%°=D?) CO0STz913!
212 FORMAT (= ,'pROJECTY COMPLETION TIME = *,1104°=De?s// 0l X CO0ST294(
1 L ACTIVITY #: I®*43X,°*NEW VALUE: XACT{I)°®°,9X, *ACTIVITY COCOST294°¢
2SV7?) COST1295¢(
213 FORMAT (' ®*,SX314912Xel10e°=D?9IXsE168eSs® + (*,E13.5.°%D)*) COST295¢
214 FORMAT(® * EX 214412 X 91106 4D* ¢ 9IXIEL16GeSs® ¢+ ("4E13.5,'%D)?) COST296¢
216 FORMAT (* *,SXel4+12XesI10411XsEL1€EeS) CO0ST296¢
220 FORMATI® * 412X 14 ,2X912¢7XsE1645) COST297C
224 FORMAT(*0*,* THE CURRENT VALUE CF THE FROJECT COST IS *,E16.50 COST297¢
17 4 {(*+E13.S+°%D).?) cOosv298(
225 FORMAT( "m? ¢ k%% ITERATICN NUMBER'®,I6,° *x%ke) cosva9es

226 FORMAT{*=%, ' NEW VALUES OF ABAR FCR J=132s000e sNK(I)®,//46Xs*I®+3X, COST299C
1°J2° 411 (5X+12,3X))

COST299¢
227 FORMAT(®" ® 42X 414+ 7X+11(1842X)) CO0ST300C
228 FORMAT(1MH1) CaQsST300¢
230 FORMAT(TA4,,1X1I8,1X,12) COST201C
231 FORMAT(8110) COST3018
232 FORMATL(I10) <agsvt302cC

233 FORMAT (*=* ,* THE SPECIFIED VALUE CF LAMBDA,*,1I10,'+.1IS LESS THAN THECOST302%

1 MINIMUM VALUE+*»T10,5*sIMPLYING AN INFEASIBLE SCLUTION.® +//¢1 X, €C0ST39%30
2'THE PROBLEM wILL NCY EE WCRKED.') €OSV302¢

234 FORMAT('1°,'THE SPECIFIED VALUE CF LAMBDA,*,110,°sHAS BEEN REACHEDCQOST3040

1¢°) COST304aS
23S FORMAT (0", *THE SCURCE HAS A VALUE OF ZERC-.-AND IS ASSIGNED THE COST2050
3LABEL (=y= =, INF)e’'y// ) COST305%

236 FORMAT ('=* ,* THE SPECIFIED VALUE CF LAMBDA, *,110s°,1IS GREATER THANCOST3061
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1 OR EQUAL TO THE MAXIMUM VALUE.: *9110:°3°%°4/7,
1 1Xe *THEREFORE ,
2XNODE(K)** S AND XACT(I)**S ARE CPTIMAL.®)

237 FORMAT(®* *,*%* WARNING:
10ST FUNCTIONS®o/912Xe*IE.

THE ORIGINAL

T

COST306
COST307
COST307

ACTIVITY NUMBER *,14,* HAS A NON=CONVEX CCOST3080
THE C(*s14,°y,M)**S ARE NOT NON=INCREASINCOST208¢%

2Ge") COST3090
238 FORMAT ('=* ,* FCR PROJECT COMPLETION TIME = ¢,110.,%, THE OPTIMAL SOLCOST309S
IUTION IS:®e//01X, COST3100
1 * ACTIVITY #: I1°,3Xe*NEW VALUE: XACT(I)® ,9X,*ACTIVITY COCOST3105
2ST) C0OST2110
239 FORMAT(*=*,* THE CORRESFCADING PROJECT COST IS *4E16:5¢°4°) COST311S
END cosT2120
SUBROUTINE CRDER COST3125
cOST3130

THIS SUBRCUTINE CETERMINES THE ORDER IN WHICH TO CONSIDER COSTY3135

THE ACTIVITYIES FOR THE CALCULATICN OF THE CRITICAL PATH TIME COST2140

D IMENS IONS COST3145
NA=M= THE NUMBER OF ACTIVITIES IN THE ANETWORK CcOST21S0
NN=N= THE NUMBER OF NODES IN THE NETWORK COST3155
ORIGI(NA) yTERMINA) y AGRDINA) ,CT IME(NA ) o XNOCDE{NN) s NDINN) s NDDI(NN) o COST3160
TIME(NA sMAX) NK(MAX) COST316S
CcOST3170

IMPLICIT INTEGER%*2{A=2) cOST2178
COMMON TIME.CTIME ¢XNODE+ORIGs TERMsAORD oNK sNNoNA LMINsLMAX,TEST1 €0ST3180
DIMENSICN ORIG(3000)+TERM(3000 )s AORD(3000),CTIME(3000), COST3185
1XNODE( 3000) 4+ND( 3000) ,ADD(3000)  TIME(3000,11) sAK(3000) €OST3190
N=NN COST3195
M=NA C0ST2200
NDD(1)=1 CCST3205
DO 5 I=2,N COST3210
NDD{I)=0 \ cOST321S
DO 6 I=1,M cOST3220
ACRD{(I1)=0 CcOST322S
K=0 CO0ST3230
MP=M+1 CO0S13235
DO 1 II=1,MP cO0ST3240
DO 20 I=14N COST3245
ND{I)=NDD( 1) COST3250
I11=0 cCOSTv328s
IP=11i+1 COST3260
DO 2 J=1.M COST226%
IF(ND(ORIG(J))NE.II) GO TQ 2 €OST3270
NDOD(TERML{J))=1IP COST13275
I11=1 C0ST3280
IF(K.EQ.0) GO TO i4 c0ST3285
DO 10 L=1,K COST3290
IF(AORD(L )«EQsJ) GO TO 11 Cc0ST329S
CONTY INUE CDST3300
K=K+1 C0ST3305
GO TO 13 CO0ST3310
IF(L.EC.K) GC TO 2 COST3315
KM=Ke1 €CO0ST3320
00 12 LL=L KM cOST3325
AORD(LL)=ACRD(LL#+1) cOST2330
AORD(K )=J COST333s
CONTINUE COST3340
IF(111.EQ.0) GO TC 3 costaaaq
CONT INUE COST3350
CONTINUE COST33€E
DO 30 I=1,NA COST3360
CTIMECL)=TIME(I+1) COST13365
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LMIN=SCPTIME(CPATHT)
DO 31 I=1.NA
NK1=NK(I)
CTIME( I)=TIME( I,NK1)
LMAX=CPTIME(CPATHKT)
RETURN
END
FUNCTION CFTIVE(CFATHT)

ODETERMINE THE CRITICAL PATH TIME: CPTIME
XNODE(I) = EARLIEST TIME THAT AN ACTIVITY BEGINNING AT NODOE 1
CAN COMMENCE
DIMENSICNS:
NA=M= THE NUMBER OF ACTIVITIES IN THE NETWORK
NN=N= THE NUMEER OF NOCES IN THE NETWORK
ORIGI(NA) s TERM(NA) sAORD(NA) ¢CTIME(NA) s XNODE(NN) s ND(NN) ¢ NDDI(NN) ¢
TIME(NAsMAX) s NKEMAX )

IMPLICIT INTEGER*2(A=2)
COMMON TIME+CTIME+XNODEsORIGyTERMy ADRD sNKoNNoNASLMINLMAX,TEST]
DIMENSICN ORIG(3000) s TERN{3000):A0RD(30009+CTIME(3000),

1XNODE(3000)sND(3000)sNDD(3000)sTIME(3000+11) +AK(3000)

1

DO 1 I=1,NA

XNODE(1)=0

DO 2 II=1.NA

I=AORD(11)

IF(XNODE(ORIG(I))+CTINE( 1) «GTXNODE(TERM(I)))
XNODE(TERM(TI))=XNODE(CRIG{I))+CTIME(I)

CPTIME=XNCDEINN)

RETURN

END

COST337
COST337
cOST23
COST338¢
COST3394
COST 239!
COST 3404
COST 240!
COST341
COST341
COST3a
COST342
COST243
COST343
COST344(
COST344
COST34S
COST24S
COST 3460
COST3468
COST347
COST347
COS T34 8¢
COST348¢
COST349¢
COST2499
costasoq
cosT13509
cosv3si1q
CcOST3519
cosr:sz@

!
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