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ABSTRACT

% . The static and dynamic properties of rubberlike materials are reviewed
initially, followed by discussion of the simple and compound mounting systems.
Reference is also made to the dynamic vibration absorber and to the measure-
ment of mount transmissibility. Three sections then describe the natural fre-
quencies, the mechanical impedances, and the transmissibility of structural
members. Finally, four-pole parameter analyses are reviewed and the relative
transmissibility'of various mounting systems supported by a variety of non-

I rigid foundations is discussed.
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1. STATIC PROPERTIES OF RUBBERLIKE MATERIALS

The strain induced in a purely elastic linear material is proportional
to the stress that produces the deformation. As explained in Ref. 1, two
fundamental types of deformation that a rubberlike material may experience
are described by two independent elastic moduli. Thus, the shear modulus G
describes a shear deformation for which the material does not change in
volume [Fig. 1(a)], and the bulk modulus B describes a volume deformation
for which the material does not change in shape [Fig. 1(b)]. Rubbers that
do not contain fine particles of carbon black (filler) have shear and bulk
moduli of approximately 100 and 105 psi.

A sample of material sandwiched between plane, parallel, rigid surfaces
in the configuration of Fig. 1l(c) is frequently said to be in compression,
but it is not homogeneous compression governed by the bulk modulus B. 1In
fact, the mechanical behavior is governed primarily by B only when the
lateral dimensions of the sample are very large in comparison with the sample
thickness [Fig. 1(d)]. In this event, the material changes in both shape
and volume, and the ratio of stress to strain in the material is governed by

a modulus M given by

M =B + (4G/3) ~ B A (1)

This is to say, the resilience that is normally associated with the rubber-
like material is not apparent because B >> G. If resilience is required in
this situation, it is necessary to use spaced strips of material or a

perforated lh.lt.z

thereby leaving the material free to expand laterally when
it is compressed vertically.
Also considered must be the other geometric extreme, in which the lateral

dimensions of the sample are small in comparison with the sample thickness;
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namely, the sample is a rod or bar and the stress is applied along its axis
as in Fig. 1l(e). In this event, the ratio of stress to strain in the
material is governed by the Young's modulus E (approximately 300 psi), and
the ratio of the resulting lateral to axial strain is described by Poisson's

ratio V. For rubbers, it is well known that

9BG
E-mnilc (2)
and
v= [(E/2G) - 1] =~ 0.5 . (3)

An element of rubberlike material in the configuration of Fig. 1l(c)
possesses an apparent modulus of elasticity E. that is intermediate in value
to the moduli E and M [Figs. 1(d) and 1(e)]. The rubberlike material is
usually bonded to the rigid surfaces between which it {s compressed, in

which casc3 it is possible to state that

E = EQ‘ +«§sz)
a1+ E/BYQ + 85D))

(&)

where the shape factor S 1is equal to the ratio of the area of one loaded
surface to the tctal force-free area, and B8 1s a numerical constant. The
shape factor of a rubber cylinder of diameter D and height L is equal
to D/4%; the shape factor of a rectangular rubber block of side lengths a
and b and height £ 1is equal to ab/%(a + b). For all samples except
those with large lateral dimensions (large shape factors), Eq. (4) can be

written as

E, = EQL+ gs?) . (5)

s
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Note that, because E ~ 3G, the apparent modulus of elasticity is some simple
numerical multiple of the shear modulus G. For rubbers unfilled by carbon
black, B = 2. For rubbers filled with carbon black, values of B are listed
in Table I as a function of rubber hardness.

The dependence of the apparent modulus Ea on shape factor is plotted
in Fig. 2 for rubbers of various hardness (Ref. 3). The curves of this
figure have the form predicted by Eq. (4). Equation (5) is valid for samples
that are circular, square, or moderately rectangular in cross section. How-
ever, for a pronounced rectangular rail-type sample--a so-called compression

strip for which b >> a--a companion equation pertains; that is

E = (2/3) B2 +85D) (6)

where S = a/2%.

A series of stress-strain curves drawn from Ref. 4 is shown in Fig. 3,
which refers to various shape factors and deflections of up to 50% (a value
seldom reached in practice) for a rubber hardness of 40 Shore Durometer.
These data are said not to be limited to one type of rubber but they do
relate to room temperature and to rubber samples bonded to rigid surfaces

in the manner of an antivibration mount [Fig. 1(c)].

Table 1. Dependence of the parameter B on rubber hardness (Ref. 3).

Hardness 8 Hardness

IRHD + 2 IRHD + 2 8
30 1.86 55 1.28
35 1.78 60 1.14
40 1.70 65 1.08
45 1.60 70 1.06
50 1.46 75 1.04
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2. DYNAMIC PROPERTIES OF RUBBERLIKE MATERIALS

The dynamic properties of linear rubberlike materials that experience
sinusoidal vibration are readily accounted for by writing the elastic moduli
that govern the vibration as complex quantities.l For example, the Young's

modulus and the shear modulus are most generally written as

*
Ew.e i Ew,e &> jéEm,e) M
and
e S T €
w, 0 w, 0 i Gw, 8 3 )

Here, the star superscripts denote complex quantities and j = y~1; the so-called
*
,0 08

*
Gw,e; and GEw,e and 6Gw,8 are the so-called damping or loss factors associated

with the Young's modulus and shear deformations of the material. The subscripts

dynamic moduli E

w,0 d

and Gw are the real parts of the complex moduli E

wand 6 indicate that the dynamic moduli and damping factors are, in general,
functions of both angular frequency w (hereafter simply called frequency) and
temperature §. The damping factors are equal to the ratios of the imaginary
to the real parts of the complex moduli, and are directly equivalent to the
reciprocal of the quality factor Q that is employed in electrical circuit
theory to describe the ratio of an inductive reactance to a resistance. The
damping factors are also equivalent to other commonly employed measures of
damping such as those listed in Fig. 4.

For rubberlike materials, the complex shear and Young's moduli exhibit
the same frequency dependencel; that is to say,

w,0 3 3Gw,6 )




DAMPING FACTOR & = LOSS FACTOR n orp
=TAN §
=2 (DAMPING RATIO CICC)
= (1fr) (LOGARITHMIC DECREMENT)
= (1/2m) (SPECIFIC DAMPING CAPACITY)

= L/(QUALITY FACTOR Q)
= (RESONANT BANDWIDTH)/u,

(PROVIDED THAT THE DAMPING FACTOR IS LESS THAN APPROXIMATELY 0.3)

Fig. 4




and

GEw,S = 6Gw,6 . (10)

The dynamic moduli of Eq. (9) are found experimentally to increase in value
when frequency increases or when temperature decreases. This is best
visualized by reference to Fig. 5, where, for example, the dynamic modulus

Gw 9 and the damping factor § of a rubberlike material are shown
’

Gw,0
diagrammatically as a function of frequency w and temperature 6. The
transition frequency w, and temperature Bt refer to the transition of rubber-
like materials at sufficiently high frequencies or sufficiently low temperatures
to an "inextensible'" or glasslike state, Gw,e becoming so large that the
characteristic resilience of the material is no longer apparent. At the
so-called rubber-to-glass transition, the damping factor passes through a
maximum value that lies approximately in the frequency or temperature range
through which Gw,e is increasing most rapidly. The damping factors of
Eq. (10) are found experimentally not to change greatly with frequency.

Values of the dynamic shear moduli and of the associated damping factor
of unfilled natural rubber, natural rubber filled with 50 parts by weight of
high-abrasion furnace (HAF) black, SBR rubber (75/25 butadiene styreme),
Thiokol RD rubber, plasticized polyvinyl acetate, and butyl rubber filled
with 40 parts by weight of medium processing channel (MPC) black per 100
parts rubber, are plotted versus frequency in the audio-frequency range
1 Hz - 10 kHz at 5°C, 20°C, and 35°C (41°F, 68°F, and 95°F) in Figs. 6-11.1

Rubbers are reinforced with carbon black to increase their stiffness,
tear resistance, and abrasion resistance—~to an extent that depends upon
the type of black utilized. Furnace, channel, and thermal blacks cover a

wide range of particle sizes; furnace and channel blacks are the most finely

divided. Note that the presence of carbon black (1) has increased the
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dynamic shear modulus of the natural rubber of Fig. 7 by a factor of
approximately 10 above that of the unfilled natural rubber of Fig. 6, and
(2) has increased the value of the damping factor, particularly at low
frequencies. It should be noted, however, that the addition of carbon
black may reduce the damping factor significantly at frequencies above
the range considered here.

and §

Although Gu increase only by a factor of two or three at

9 Guw, 8
room temperature through the four decades in frequency considered in Fig. 7,
it is important to remember this fact if satisfactory engineering design is
to be achieved when high-frequency vibration is of concern. The same remark
can be made for the SBR rubber of Fig. 8. By contrast, the dynamic modulus
Gw,e of high-damping rubberlike materials increases greatly with frequency,
and Gw,e and 60w,6 are strongly dependent on temperature, as the curves of
Figs. 9 and 10 for Thiokol RD rubber and plasticized polyvinyl acetate

illustrate. Thiokol RD was produced some years ago as an experimental

copolymer of butadiene-acrylonitrile and, most probably, chloroprene. It

is referred to here because, in analytical studies of antivibration mountings
that are described subsequently, its properties have been considered to
typify those of high-damping rubbers. Plasticized polyvinyl acetate is a
primary constituent of the damping compound Aquaplas.

Butyl rubber is essentially polyisobutylene, in which a small pro-
portion of the isobutylene molecules has been replaced by isoprene (synthetic
natural rubber). Like polyisobutylene, butyl rubber is characterized by a

diffuse transition region. Thus, although the damping factor takes large

values through four decades in frequency at room temperature (Fig. 11), the
associated dynamic modulus only increases through the same frequency range

by a factor that is approximately equal to 15.
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The data of Figs. 6-11 relate to small amplitudes of vibration for which
i the rubberlike materials exhibit linear behavior. Whereas unfilled and lightly
| filled rubbers remain linear for increasing strain, up to relatively large
strains, the dynamic moduli and damping factors of moderately and heavily
filled rubbers show a strong amplitude dependence. This fact is exemplified

by the curves of Fig. 12 and 13, which are drawn from Ref. 5. The data of

§
z
.
4
.

Fig. 12, for example, which refer to exciting frequencies in the range 20-120

Hz, show that the dynamic shear modulus of natural rubber containing 40 parts

e e

by volume of medium processing channel (MPC) black per 100 volumes of rubber

is more than halved when an alternating shear strain of 3% breaks down the
three-dimensional aggregates or so-called matrix of carbon particles within
the rubber. The greatly increased damping factor that accompanies this
strain amplitude (Fig. 13) is primarily a reflection of the reduction in
value of the dynamic modulus--rather than an increase per se in the imaginary

part of the complex modulus, which remains essentially constant.

3. SIMPLE MOUNTING SYSTEM

The simple mounting system is shown in Fig. 14, where an item of mass
M is supported resiliently by a linear rubberlike material utilized so that

*
its behavior is governed by the complex shear modulus Gm Here, and sub-

0

’

sequently, it is assumed that the temperature remains constant, so that
*

Qn,e can be written as

*
G, =6, +135) . (11)

The mounted item M 1is assumed to be supported at its center of gravity,

and to vibrate only in the vertical direction; it is excited either by a
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~

sinusoidally varying ground displacement X

5 *
sinusoidally varying force Fl, as in Fig. 14(b). If the transmissibility

, as in Fig, 14(a), or by a

T across system (a) is defined as the magnitude of the displacement ratio
Iié/ill, and if the transmissibility across system (b) is defined as the

magnitude of the force ratio lfé/fi[-then, at any one frequency,

e = F ] (12)

where iz is the displacement of M in Fig. 14(a) and 52 is the force trans-
mitted to the ideally rigid foundation in Fig. 14(b). Thus, the results of

a single calculation or measurement of transmissibility have dual significance.
This is equally true for the dynamic vibration absorbers and compound mount-
ing systems that will be discussed in later Sections. Further, because sinu-
soidal motion is of concern, T can equally well be expressed as the

acceleration ratio IKZ/XII, where A, = (juDz ii’ = 3 2.

i
The transmissibility across the simple system is givenl by

2 %
S (1+‘Scm)

e . (13)
2 2 2 i

{11 - () @, /6 )1° + &5}

From this general equation, the transmissibility of any linear rubberlike

material can be calculated, provided that the dependence of Gw and 6Gw

upon frequency is known. The quantity Go is the value of Gw at the natural

frequency w, of the system, which is defined as the frequency for which,

ir the absence of damping, T becomes infinitely large; that is

2
w, = kGO/M 5 (14)

*
The tildes, here and henceforth, denote sinusoidally varying quantities.

[

| I
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where the constant k has the dimensions of length. For a rubber mount of
cross-sectional area A and length (height) , reference to Eq. (5) shows

that

k = 3(A/0) (1 + 8s%) (15)

more simply, if the rubber element is used directly in shear, rather than as
drawn in Fig. 14, then k = (A/R).

The transmissibility of natural rubber, natural rubber filled with
carbon’black, and Thiokol RD rubber is shown in Fig. 15. Data have been
taken from Figs. 6, 7, and 9 for these rubbers and inserted numerically into
the expression for transmissibility given by Eq. (13). The natural mounting
frequency has been chosen as 5 Hz and the ambient temperature as 20°¢.
Transmissibility is plotted on a decibel scale as 20 logloT decibels (dB).
Negative values of T(dB) mean that the input displacement or force has been
attenuated by the introduction of the rubber mounting; positive values of
T(dB) mean that undesired magnification has occurred.

An antivibration mounting is required to provide small values of
transmissibility at all frequencies that are contained in the Fourier
spectrum of the displacement applied to its foundation, as in Fig. 1l4(a),
or in the spectrum of the force applied to, or generated within, the item
of equipment or machinery that it supports, as in Fig. 14(b). Thus, an
effective antivibration mount should afford

(1) a low natural frequency Wy

(2) a low transmissibility at resonance,
and

(3) a transmissibility that decreases rapidly with frequency at

frequencies greater than Wy
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A low natural frequency can be obtained by employing a mount of
suitably low stiffness (or by increasing the mass of the mounted item).
The natural frequency of a simple mounting system is plotted versus the
static deflection of its antivibration mount in Fig. 16. Because the
lateral stability of the mounting system must be maintained, the extent
to which the stiffness of the mounting can be reduced is limited. 1In
practice, the natural frequencies of mounting systems are generally selected
to be equal to or greater than 5 Hz. The use of a high-damping rubber
can ensure that the resonant transmissibility will take small values.

The rate at which transmissibility decreases with frequency above

w, varies considerably with the type of rubberlike material utilized in

the mounting. Transmissibility decreases most rapidly with frequency for
natural and other low-damping rubbers--essentially in proportion to lluf
(12 dB/octave). The transmissibility of Thiokol RD and of other high-
damping rubbers decreases at a much slower rate. This is one of the

major drawbacks to the use of high-damping rubbers in antivibration mount-
ings; a second drawback is the low resistance to creep of high-damping
rubbers. The poor performance of these rubbers at high frequencies is
predominantly caused by the significant increase in value of their dynamic
moduli Gw with frequency (as in Figs. 9 and 10). Contrary to the supposi-
tion often made, the inherent high damping of the rubbers has relatively
small influence upon the values of transmissibility above resonance.1 To
explain these facts, it is helbful to refer again to the general trans-
missibility equation [Eq. (13)]). Thus, at frequencies well above Wy this

equation may be approximated as

2
s [ — GG‘; : (16)
(w/w )
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The values of Gm possessed by natural and other low-damping rubbers
increase only slowly with frequency, and Gcw remains small; consequently,
T decreases almost directly in proportion to the square of the exciting
frequency. By contrast, the values of Gm possessed by high-damping

rubbers increase rapidly with frequency--a fact that, as mentioned, is

|
5
£
:
;
}
%f

primarily responsible for the large values of transmissibility observed
for these rubbers at high frequencies.l

Although natural rubber and other low-damping rubbers such as Neoprene
are the rubbers normally utilized in antivibration mountings, high-damping
rubbers would have greater application if they could be produced such that
their dynamic moduli Gm remained constant or increased only slowly with
frequency. To date, it has proved impossible to satisfy this requirement;
however, the suggestion has been made1 that natural rubber be used mechanically
in parallel with a high-damping rubber of suitably smaller cross-sectional
area. In this way, the dynamic modulus of the combination of rubbers can
be adjusted to increase relatively slowly with frequency, while the
associated damping factor takes significant values intermediate to those
of the constituent rubbers, as in Fig. 17. Here, the parameter a 1is the
ratio of the cross-sectional area of the high- to the low-damping rubber.

It is appropriate now to mention some reasons why larger values of

transmissibility (reduced isolation) may occur at frequencies above
resonance than the curves of Fig. 15 predict. These reasons (a) may simply
be mechanical or (b) they may be basic. Thus,

(a) Vibration isolation may be impaired by mechanical links that

have significant stiffness and, hence, that bypass, to some extent, the
antivibration mounts. For example, vibration from a resi;;ently mounted
diesel engine may reach its foundation via an exhaust pipe that is still

rigidly connected to a surrounding enclosure, or it may reach the
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foundation via a bearing pedestal that supports a rotating shaft that extends
from the engine.

(b) Vibration isolation may be predicted inadequately at higher fre-
quencies for the basic reason that the mounting system of Fig. 14 is too
simplified a model of the practical situation. The mounting system can be
criticized for three primary reasons, which are outlined in what follows:

First, values of transmissibility have been derived theoretically from
knowledge of the mechanical properties of rubbers measured at small dynamic
strains. It may be thought, therefore--particularly in the case of rubbers
filled with substantial proportions of carbon black--that the performance
of the rubbers under greater strains would differ from the performance
predicted by curves such as those of Fig. 15. However, two comments may
be made. First, although it is possible that the character of the trans-
missibility curves of filled rubber will be strain dependent near resonance
(w = mo), well designed mounting systems normally possess natural frequencies
that fall significantly below the spectrum of frequencies that the mountings
are required to isolate. In consequence, the exciting frequencies should
fall where w >> Wy s and where the strain is relatively small and is
decreasing rapidly as w increases. Second, even should a filled rubber
exhibit nonlinear properties at frequencies above resonance, the dynamic
stiffness of the rubber would decrease in magnitude (Fig. 12), so that the
transmissibility of the mounting system would also decrease; that is, the
effectiveness of the mounting would become greater.

Second, "wave effects" may be observed at high frequenciesl when the
mount dimensions become comparable with multiples of the half-wavelengths
of the elastic waves traveling through the mounting. Alternatively, wave
effects may be thought of as occurring when the elasticity and the distributed
mass of the rubber mounting interact at high frequencies. Wave effects are

evident, for example, in the measured transmissibility curves of Fig. 18,
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which relates to a small natural-rubber mount containing 40 parts by weight
of EPC carbon black.1 and of Fig. 19, which relates to a helical-spring and
two natural-rubber mounts.6 Although many pronounced wave resonances occur
in the transmissibility curves of springs, as in Fig. 19, the resonances in

the transmissibility curves of practical rubber mounts are not always of

primary concern. In fact, (a) the resonances are suppressed reasonably well

by the internal damping of the rubber mounts, and (b), as will be demonstrated,

even the first of the wave resonances invariably occurs at frequencies in
excess of 20 W) where significant isolation has already been achieved.
Third, the mounted item M may not behave as an ideally rigid mass.
For example, the flanges or feet on which M 1is mounted may fail to remain
ideally rigid and may resonate because of their poor design, so giving
rise to other peaks in the transmissibility curve at high frequencies--even
though the bulk of the mounted item may continue to behave as a lumped mass
well into the high-frequency region. The peaks in the transmissibility
curve may well be troublesome because the internal damping of the metal
machine feet will be at least 5 or 10 times smaller than the damping of
the rubber mounts in which the previously discussed wave effects occurred.
The feet may protrude from the bottom of the mounted item, or from its
sides. This will be the case if the usually beneficial step is taken to
locate the mounts in a plane that passes through the center of gravity of
the mounted item (so minimizing the rocking motion it experiences if
subjected to horizontally directed forces). Analyses of a mounted item
with self resonances will be described subsequently. Other discussions of

the problem appear in Ref. 6-9.

3.1 Wave Effects

The geometry of the rubber components of antivibration mountings is

frequently complex, which makes precise theoretical calculations of

|
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transmissibility difficult at high frequencies. A guide to the character
of wave effects in antivibration mountings has been obtained, however, by
considering the transmissibility of "mountings' that obey the simple wave
equation for the longitudinal vibration of a rod of uniform cross section.

This approach has been taken by all earlier workersl although, on two

10. 11 "

occasions, mountings' have also been considered to obey the wave

equation for a transversely vibrating uniform beam. A disadvantage of
; these analyses is that they relate to "long" rods and beams with lateral
dimensions that remain small in comparison with the wavelength. However,
wave effects in a cylindrical rodlike mount of significant lateral dimen-

sions have been analyzedl using a "corrected" wave equation given by

A. E. H. Love. In the Love theory, the radial motion of the plane cross
{ sections of the mount caused by axial compression and extension is, in
some measure, accounted for.
The transmissibility T derived from the simple wave equation for

a "long" rod with internal damping can be wriCtenl

T = |[cos n'g - Y(n*l)sin n*E]I-l , an

*
where n 1s the complex wavenumber of the rodlike mount. The mass ratio

S ST 18)

where p and A are the density and uniform cross-sectional area of the

*
mount and £ 1is its length. The dimensionless product (n £) is conveniently

written as

(ntl) = (p+13q) , (19)




where

] Y
nl Eo DEm *1
ol o o W (20>
Ew (Tw
and
] ]
R | g Dw'l] : (21)
DEw Ew 2

In these equations, the dynamic Young's modulus Ew = Eo at the natural mount-

ing frequency W)

n= w(o/Eo)xs L (22)

and

- 2 43
Dg, = (@ + &) . (23)

It can be shown that, if the dimensionless quantity nf takes the value NR

when @ = ub,

nt = W) N+ (wo)m™ . (24)

Consequently, as n& is varied, corresponding values of ¢ will be specified
because NR and w, will have been designated. 1In turn, values of Ew and Gﬂn
will be known for each value of w (e.g., Figs. 6-11) so that the expressions
for p and q can be determined. In practice, it appears that the mass
ratio for the majority of mounting systems take values in the range

50 <y < 350. The smallest value of Yy yields the least favorable trans-

missibility curve. Thus, the wave resonances correspond closely with the

natural frequencies




o = ime N § I O L DN T (25)

of the mount when clamped rigidly at each end; consequently, the smaller
the value of Y, the lower the frequency at which the first wave resonance
occurs (1 = 1) and the more apparent the departure of the transmissibility
curve from the predictions of the simple one-degree-of-freedom theory

(e.g., Fig. 15). Note that, if Y > 50, w, > My, /50 > 20 -

1
The transmissibility T determined from the Love theory is identical

in form to Eq. (17)1:

T = |[cos NL - Y(N*l) sin N“IJ!,]]-1 - (26)

*
In this equation, the dimensionless parameter N L represents the complex
number (P + jQ), where P and Q are functions of the foregoing quantities
P and q. In the case of rubberlike materials for which Ew = 3Gm and

§ = Gcw [Eqs. (9) and (10)], the expressions for P and Q can be written

B £
a :

Patin+ o +xH @7
and

¢ nlp+ 0F + 0, (28)
where

T I T (29)

X=2pq/E , (30)
and

Eo - 0 - I+ P v (31)

(r/24) . (32)

©
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The quantity r 1is the radius of gyration of an elementary section of the
mount about its longitudinal axis; for example, if the mount has a circular
cross-section and has a diameter D, then r = D/2 V2.

Wave effect calculations based on the "long" rod theory [Eq. (17)]
are plotted in Fig. 20 for values of the mass ratio Y = 50, 100, and 250.
It has been assumed that the dynamic Young's modulus and associated damping
factor are frequency independent, that GE = (0.1, and that the first natural

frequency of the system, for which nf = N_ = 0.141 when Yy = 50--is again

R
f° = wO/Zﬁ = 5 Hz. The curves of Fig. 20, which may be thought of as 1
describing the transmissibility of natural rubber mounts that are heavily S
reinforced with carbon black, show how the level to which T is increased
by the wave resonances depends upon the value of Y. As mentioned previously,
the occurrence of wave resonances becomes of less concern as Y becomes
larger; from this point of view, therefore, it is desirable to utilize anti-
vibration mounts as near their maximum rated load as possible, thereby
making Y a relatively large quantity.

Wave effect calculations based on the Love theory [Eq. (26)] are plotted
in Fig. 21 for a representative value of Yy = 200 and for cylindrical mounts
having a length-to-diameter ratio /D = 5. Values of Ew = 3Gw and GEw = GGw
drawn from Figs. 6, 7, and 9 for unfilled natural rubber, natural rubber
filled with carbon black, and the high damping rubber Thiokol RD have
been inserted numerically into Eqs. (20) and (21) for p, q, and hence
into Eqs. (27) and (28) for P and Q. Transmissibility curves calculated .
from the simple one-degree-of-freedom theory [Eq. (13)] for the same three y
rubberlike materials are redrawn in Fig. 21 for comparison. Although the
transmissibility of the natural-rubber mountings is increased appreciably ;

by the occurrence of wave resonances at high frequencies, the peak values

of transmissibility occur at significantly lower levels than would be A

S A A A 4+ 5 A Ay
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observed if Yy = 50. Wave effects increase the transmissibility of the

Thiokol RD rubber by a relatively small amount; in fact, the simple theory
provides a remarkably accurate prediction of the transmissibility of this

and other high-damping rubbers. On the other hand, the transmissibility

of the heavily filled natural rubber is increased by approximately 20 dB

at high frequencies as compared with the prediction of the simple theory.
However, if Y were larger and if the ratio /D were smaller than con-

sidered here, as could well be the case in practice, the wave resonances

would shift to higher frequencies and to lower levels, and the transmissibility
curve would roll off at frequencies following the first wave resonance

(w > wl) more rapidly than observed at present.

3.2 Nonrigid Flanges

An item of equipment or machinery supported by nonrigid (multiresonant)
flanges or feet is shown in Fig. 22. This is not a contrived problem; in
fact, one does not have to look far to find examples of such situationms.

For instance, a marine engine attached to a subframe having significant
unsupported length is shown in Fig. 23; here, the subframe is fashioned
so that the mounting points lie on the same horizontal as the center of
gravity of the engine.12

A guide to the transmissibility T across the simple system of Fig. 22

has been obtained by visualizing the feet of the mounted item as short shear
beams; that is, as beams with length-to-depth ratios of approximately three
or less for which it can realistically be assumed that the beam deflection

13

due to bending is much less than the deflection due to shear. The mounts

are assumed here, and subsequently, to have the complex stiffness

K= k@ + 8y (33)
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where K and the damping factor GK are directly analogous to the previously
utilized quantities kcm [k is specified by Eq. (15)] and GEm - Gcw. Because
future discussions will be restricted to small values of GK = 0.05, the
quantities K and Gx are taken to be frequency independent, a justifiable
assumption for natural, neoprene, SBR, and other low-damping rubbers.

With the foregoing assumptions, the transmissibility across the system

of Fig. 22 can be expressed as followslB:

T |2F,/E | = ¥ - @'orTh (34)

where

V* = [cos n*l - YF(n*z) sin n*zl . (35)

n* = [sin n*z + YF(n*l) cos n*zl 3 (36)

*

ni=(p+3jq , (37
and

I = T+ 46/ + 38 - (38)

*
In these equations, n is the complex wavenumber of the shear-beam feet,

L is their length,

Yp = WM, (39)

and

where MF' KF’ and GF are the mass, static stiffness, and damping factor of

each shear-beam foot. In addition,




T Y VIO b

(a+ 512,)”

F

(w/wo) Np = ON

Here, the natural frequency w, of the mounting system is given by the

equation

g ARy ZK[IL] :

“’o'u(x+x?)'? + T

and NF is the value of n® for which the first peak value of 7 would be
observed (when w = mb) if GF = GK = 0. A close guide to this value of Np

can be obtained from the relation
-3
Np = [(yp + LT + vgl
or, if both Yp and T are large, from
-
“F x (YFr) .
Therefore, as the angular frequency w of the impressed force is varied,

corresponding values of nf are specified by Eq. (44), and the expressions

for p and q, and hence T, may be evaluated.
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Representative calculations of T are plotted as a function of the
frequency ratio Q = w/wb in Fig. 24, where the shear-beam feet have 1/40 of
the mass of the mounted item (Yp = M/ZMF = 40) and stiffnesses 5, 25, and
100 times greater than that of the mounts supporting them from below; the

damping factors 6§, = 0.05 and 6? = 0.01. The resonances of the shear-beam

K
feet, which are responsible for the pronounced peak values of T at high
frequencies, are seen to be of the least consequence when the stiffness ratio
I' is largest. In fact, the resonances will advantageously occur at the

highest possible frequency when the ratio of the static stiffness to mass

of the feet is made as large as possible; that is, in this simple example,

when the shear-beam feet are made as short as possible. Their first

resonance occurs at the approximate frequency

W, = (Mo /2) YYD = (n/2) /G (48)

»
PR

provided that Yp and [ are relatively large (I' > 5).

4. DYNAMIC VIBRATION ABSORBER

The dynamic vibration absorber is a mechanical device (mass and damped

spring), which is attached to a vibrating item, as in Fig. 25, to minimize

———

its displacement amplitude at resonance or to minimize the force trans-

- missibility from it at resonance. When attached to a mass-spring vibrator !
with negligible damping, mass Ml' and reference frequency w, = [Kl/(M1 + Mz)]%,
the dynamic vibration absorber with viscous damping (parallel spring and }

dashpot) is said to have optimum tuning when the tuning ta:iol
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i ¥, |
n= m‘/wo L TR [m, : - (49)

where m‘ - /szfn,) is the resonant frequency to which the absorber should
be tuned and Hz 1s the absorber mass. The absorber is said to have optimum

damping when the damping ratiol
S = (/A -wi* (50)
where GR = (manlzxz); Kz is the stiffness of the absorber spring, and n is

the required coefficient of viscosity of the absorber dashpot. For these

values of tuning and damping, the maximum transmissibility becomes

Y
T " (%—_"‘—E] : (51)

For example, if Hz = Ml/S, then u = 5/6 = 0.8333, GR = 0.25, and n = 0.9129;
Tmax = 3,317 = 10.4 dB.

For a dynamic absorber in which the absorber stiffness and damping
are provided by a low-damping rubberlike material, the optimum absorber
tuning is again given by Eq. (49). The optimum solid-type damping factor

is given by the following equation:

Y
Y 1-Q
- 1= 2. % 2.%, (10.5 - y a
o [f5rt) ma bt eqaeadi 03 et o
In this equation,
92 =19 [.]_'_:_E]‘, (53)
a,b 1l +y b

1?
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For example, if Mz = MI/S’ then py = 0.8333 again, n = 0.9129, and GG = 0.569.
Tnax will now be somewhat greater than 3.317 = 10.4 dB.

Increased effectiveness in suppressing resonant vibration can be
achieved through the use of a so-called three-element dynamic absorber,
as described in Ref. 14. Conventional dynamic absorbers are also of value
in suppressing the resonant vibration of undamped cantilever beams,l and
in suppressing the vibration of virtually undamped circular plates.15 In
the former case (Fig. 26), optimum tuning and damping parameters are shown
graphically in Figs. 27-30; maximum values of transmissibility (T = |§1/§°|)
are plotted in Figs. 31 and 32. (In Figs. 27-30, Wy is the frequency of

the fundamental and second beam resonances to which the absorber is tuned,

and Y = Ha/Hs, where Ma and Hb are the absorber and beam masses, respectively.)

In the latter case of circular plates, the optimum tuning and damping para-

meters can be listed as in Tables II and III.

Tabie II. Optimum values of the frequency ratio (wa/mm), the damping
ratio GR, and the corresponding values of maximum trans-

missibility Tmax for a dynamic absorber tuned to the funda-
mental resonance of frequency Wy of an undamped circular
plate of mass MP with a clamped boundary (Ref. 15).

(wa/wm) GR

0.908 0.222
0.828 0. 306
0.698 0.408
0.465 0.549
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Table III. Optimum values of the frequency ratio (ma/mm), the damping
ratio GR' and the corresponding values of maximum trans-
missibility Tmax for a dynamic absorber tuned to the funda-
mental resonance of frequency We of an undamped circular
plate of mass H? with a simply supported boundary (Ref. 15).

Ma/MP (wa/wm) GR Tmax
0.025 0.935 0.177 7.227
0.05 0.877 0.244 5.174
0.10 0.779 0.329 3.701
0.25 0.579 0.456 2.407

A cantilever beam absorber, where the beam supplies both the stiffness
and damping of the absorber, is applied to the free end of a vertical
stanchion in Ref. 16. A double-cantilever beam absorber applied to a
rectangular plate has also been considered.l6 Conventional dymamic
absorbers applied to the midpoints of simply supported rectangular and
square plates are considered in Ref. 17, and their values of optimum
absorber tuning and damping are as listed in Tables IV and V.

For example, optimum transmissibility curves for viscously damped
dynamic absorbers attached to an undamped primary system are shown in
Fig. 33 for absorber masses that are one-tenth, one-fifth, and equally
large as the primary mass. The transmissibility to the root of an un-
damped cantilever beam of length £ when driven by a vibratory force
at its free end, to which point a dynamic absorber is attached [Fig. 26(a)]
is shown in Fig. 34. The absorber has one-fourth of the beam mass. The

dashed-line curve shows the transmissibility in the absence of the absorber.
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Table IV. Optimum values of the frequency ratio (wa/mm) and of the
damping ratio GR’ and the corresponding values of maximum
transmissibility Tmax' for a dynamic absorber of mass H‘
tuned to the fundamental resonance of frequency Wy of a
centrally driven square plate of mass MP with negligible
damping and with simply supported boundaries (Ref. 17).

H./HP (wa/wm) GR Tnax
0.025 0.928 0.189 6.977
0.05 0.865 0.260 4.990
0.1 0.758 0.350 3.564
0.25 0.547 0.482 2.316

Table V. Optimum values of the frequency ratio (”h/”m) and of the damping
ratio GR’ and the corresponding values of maximum transmissibility
Tnnx’ for a dynamic absorber of mass Ha tuned to the fundamental
resonance of frequency Wy of a centrally driven rectangular
plate of mass “P with negligible damping and with simply

supported boundaries (Ref. 17).

ue=1/2" u=1/3*
Ma/HP (wa/wm) GR Tmax (wa,wm) 6R Tmax
0.025 0.932 0.192 7.010 0.941 0.200 7.125
0.05 0.869 0.268 5.026 0.880 0.292 5.158
0.1 0.760 0.369 3.592 0.763 0.424 3.712
0.25 0.537 0.520 2.322 0.611 0.600 2.994

*The parameter u 1is the ratio of the lengths of the shorter to longer sides
of the rectangular plates.
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The horizontal axis is the dimensionless product of the beam length £ and
beam wavenumber n = (w?p/rzt)k, where o 1is the beam density, r is the
radius of gyration of its cross section, and E 1is its Young's modulus
of elasticity.

The force transmissibility to the clamped ?oundary of a virtually
undamped circular plate of radius a 1is shown in Fig. 35. The plate is

.driven by a central force and carries a central viscously damped dynamic

absorber of mass equal to one~tenth of the plate mass (solid-line curve)
or to one-quarter of the plate mass (chain-line curve). The dashed-line
curve shows the transmissibility in the absence of the absorbers. The “
horizontal axis is the dimensionless product of the plate radius and
wave-number, a quantity that is proportional to the square root of fre-
quency. Again, the force transmissibility to the simply supported boundary
of a virtually undamped square plate (GE = GG = 0.01) is shown in Fig. 36
for a central driving force and a centrally located viscously damped
absorber. For the solid- and chain-line curves, the absorber has one-
twentieth and one-quarter of the plate mass, respectively. For the dashed-
line curve, the absorbers are absent. The horizontal axis is the dimension-
less product of one-half the plate wavenumber and the common plate side--a
quantity that is directionaly proportional to the square root of frequency.
The force transmissibility to the root of a virtually undamped stanchion
driven by a transverse force at its free end, to which point a cantilever-
beam absorber (Fig. 37) is attached is shown in Fig. 38 by the chain-line
curve for which the absorber has one-fifth of the stanchion mass. The
dashed~line curve shows the transmissibility in the absence of the absorber.

The horizontal axis is the product of the stanchion wavenumber and length,

a dimensionless quantity that is again directly proportional to the square
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root of frequency. The solid-line curve shows the force transmissibility

for quasi-optimum values of absorber tuning and damping.l6

One other valuable application of the dynamic absorber is in those
situations where it is feasible to damp the primary system heavily, in
which event the absorber can have negligible damping. In that case, trans-
missibility is as plotted in Ref. 1, and as plotted and confirmed experi-
mentally in Ref. 19. One figure drawn from Ref. 1 is reproduced here as
an example in Fig. 39. The absorber has one-fifth of the mass of the
primary system, which has a damping ratio GR = 0.5 (half critical damping).
The absorber has negligible damping and is tuned in turn to 2/3, 1.0, and

1.5 times the reference frequency of the system (the resonant frequency

T e P Py

of the system obtained when the absorber mass is attached rigidly to the
primary mass). 3

Finally, one additional and somewhat novel application of the dynamic
absorber arises when the absorber is tuned off resonance to produce a narrow-
band region of attenuation at, for example, the frequency of a troublesome
machinery discrete. This region of attenuation is usually accompanied by
a compensating narrow-band region of amplification at a neighboring fre-
quency that, hopefully, does not coincide with another machinery discrete
because these are normally separated widely in frequency. An example is
shown in Fig. 40, where a virtually undamped absorber for which y = 5/6
is tuned consecutively at frequencies 0.2, 0.5, 2.0, and 5.0 times the
reference frequency of the undamped primary system. Other examples are
given in Figs. 41-43, where (a) a rectangular plate with simply supported
boundaries and with an aspect ratio of 3 (u = 1/3) is centrally driven
and loaded by a dynamic absorber, which has one-tenth of the plate mass

and is tuned to 0.2 of the fundamental resonant frequency of the plate,

and (b) a circular plate of radius a with a clamped boundary
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that is centrally driven and loaded by a dynamic absorber having one-tenth
of the plate mass and tuned to 0.2 times the fundamental resonant frequency
of the plate, and (c) a square plate with simply supported boundaries that
is centrally driven and loaded by a dynamic absorber also having one tenth
of the plate mass and tuned to three times the fundamental resonant fre-
quency of the plate. The parameter u is the length of the longer plate sides.
Also mentioned must be the platelike dynamic absorber (Figs. 44 and
45),20 which comprises a damped circular plate that is attached centrally
to the vibrating primary system and which is loaded around its circumference
by a rigid annular mass that has the same radius as the plate, which supplies
both the stiffness and damping of the absorber. The plate could either
be coated with damping compound or be built up from several steel/visco-
elastic laminations. Such laminates can be produced with the relatively
large damping factors needed in many absorber applications. The optimum
tuning of the absorber is taken to be identical with that specified by
Eq. 49, and curves showing this optimum tuning and the accompanying damping
factor, for which equal peak heights are obtained in the transmissibility
curve, are plotted in Fig. 46. The resultant transmissibility across the
system of Fig. 44 with the absorber of Fig. 45(a) is shown in Fig. 47 for
which the absorber mass ratio p = 50/51, 10/11, and 2/3 (M2/M1 = 0.02, 0.1,
and 0.5). The absorber may equally well be applied to suppress the resonant
vibration of circular plates (bulkheads)20 and rectangular plates (panels)20
for which the optimum tuning and damping criteria will differ slightly from

those of Fig. 46.20

Also considered in Ref. 20 is an annular-plate
absorber, which is somewhat easier to tune than the circular-plate absorber
[Fig. 45(b)]. The absorbers share the advantagesof mechanical simplicity
and planar geometry, which makes them particularly well suited for flush-

mounted application on bulkheads and panels--and, for example, beneath the

floors and seats of the passenger and crew compartments of flight vehicles.
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S. COMPOUND MOUNTING SYSTEM

The compound system is a two-stage mounting in which the resilient
support for the primary mass Ml is divided into two by an intermediate or

1,13 The upper and lower mount stiff-

secondary mass M2’ as in Fig. 48(a).
ness are K1 and KZ’ respectively. The mounts will be assumed to share the
same damping factor GK and to have frequency-independent properties. Both
Ml and Mz are assumed to be ideally rigid. A force il applied to, or
generated within Ml gives rise to a force 252 transmitted to the ideally
rigid foundation of the mounting system. The compound system has both a
primary resonance wl and a secondary resonance Wy - Above the secondary
resonance, transmissibility falls off as the fourth power of frequency,

or at 24 dB/octave. The frequency ratio mzlwl will advantageously be a

minimum, and w, will occur closest to wl, when the mount stiffness ratio

1

2
Q= K2/K1 = (1+8) =[1+ (M2/M1)]. For this value of a,

wfug = [1+ 1+ B%/8T . (54)

It can be shown that, for this optimum value of ¢, it is possible to write

transmissibility asl3

- f— -+ umat@ g - 20+ 1- 687+ aspla - aah 1, 69
g |
where
.. [;—}—g} (56)
and
Q= wﬂmo ’ (57)

it i

* ¢ ’
Rt ] Oy

d
4
o e —————— MJ




(9) (°)

Fig. 48

T4
4 E 23 ¢
3 = 2y
3 2 *v_ »*
o A
NQ‘ Nec
~ | |
~ b A
x * M W W.._v.
W 'w

W
—
W
—




78

where W, is the reference frequency of the compound system:

2K_K
w2 o 172 , (58)
o (Kl + KZ)MI

which is the natural frequency of the simple system obtained when Mé = 0.

The transmissibility of a compound system that utilizes natural-rubber
mounts is shown in Fig. 49, where the transmissibility of three compound
systems with 8 = 0.1, 0.2, and 1.0 is compared with the transmissibility
of the simple mounting system (B = 0). The potential advantages of the
compound system as an especially effective antivibration mounting at high
frequencies are immediately apparent.

It will be realized that the system can be of particular value in
mitigating the increase in transmissibility that occurs, for example, when
it is necessary to mount an item of machinery upon a nonrigid foundation
such as a system of steel girders, which will have many resonances and very
small internal damping.

In general, it is advantageous to employ the largest possible inter-
mediate mass MZ (largest possible value of B) because it can be shown that,

at high frequencies,13

QA+ 612()(2 +8)2 41 + ai)
Tar = - 7 : (8 < 0.5) (59)
B(1 + B)Q 9]

A large-scale application of the system is considered in Ref. 21, which
describes the compound mounting of 17,000 1b and 80,000 1lb diesel generators
on one extensive intermediate mass. An adaption of the arrangement employed
is shown in Fig. 50. Two, much smaller, applications of the compound system
are described in Refs. 9 and 22, in both of which the system has effectively

ween compacted into an "“off-the-shelf" antivibration mount. The design of
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one mount22 is shown in Fig. 51, where the secondary mass comprises two

cylindrical lumped masses 10, a spacer yoke 12, and the resilient elements
comprise 16.

Other references to the compound system are listed in Ref. 1; analyses
of the three-dimensional vibration response of the system appear in Refs. 23
and 24.

If the compound system is to provide small values of transmissibility
as predicted, it is vital that the intermediate mass M, remains masslike. If
it does not, the performance of the system will be seriously impaired at
high frequencies. This situation is described in Fig. 48(b), where the
flanges from which M2 is supported behave as springs at some high frequencies
because of their poor design. To provide a quantitative illustration of the
increase in transmissibility that can be expected in this case, the com-
pocund system of Fig. 48(b) has been analyzed by modeling the nonrigid (multi-
resonant) flanges as short shear beams. The force transmissibility across
the system then becomes13
333

1

T - - @+ IR GG - 1) + (- g + §zp)?

+ [Az;Irzz - 8,Z. - &y + GKIZ}% : (60)

K°R

where A (Eq. 56) and GK have the same significance as before, and R and Ty

are the real and imaginary parts of a quantity ;* that is defined as follows:
* x * *
z = (n /¥)@*Ur ' (61)

* * *
where ¥ and n are given by Zqs. (35) and (36); ' is given by Eq. (38), and




82

o~
o
—
© % [\Y) i n
< \ \ N
2 -
= )
ol
A * 2 .
@®
e ——————— ] x
&

27

2
22§
10—
12




iR e A e i e bt S

83

("2 = @+ 30 (62)

where p and q are again given by Eqs. (41) and (42). In these equationms,
*
n 1is the complex wavenumber of the shear beam flanges (feet), 2 is their

length, and the quantity I in Eq. (38) is again given by

['= KF/KZ , (63)

where KF is the static stiffness of each foot.

The results of one calculation of transmissibility made from Eq. (60)
are plotted in Fig. 52 as the chain-line curve for which Yp = Mz/ZMF = 40,
=5, GF = 0,01, and B = 0.2, GK = 0.05. Pronounced peaks now appear in
the transmissibility curve--~to degrade the performance of the compound system
at high frequencies where the shear-beam flanges resonate, their ends having
large motion and their roots, which are attached to the mass Mz, having
relatively small motion. In addition, pronounced minima occur in the trans-
missibility curve at the antiresonant frequencies of the flanges for which
the flange ends have little motion and their roots, together with M., have
relatively large motion; in fact, at these frequencies, M2 and the flanges
are analogous in their behavior to the mass and stiffness of a dynamic
vibration absorber. The solid-line curve in Fig. 52 shows the transmissibility

across the system with 8 = 0.2 when the intermediate mass M, is ideally rigid.

2
Another valuable application of the dynamic absorber is in reducing

the transmissibility of the compound system at its secondary resonant fre-

8

quency. This situation is illustrated in Fig. 53.1 where the absorber is

attached to the intermediate mass, for vhich it is possible to write 3

" |
, (64)

- 2
| s 512() [? - 1" + (20087

T =

(&g + t;‘;)"
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where

< e e e

o {=A2® + A[2 + (2A ~ 1) 2%/ 10% + 21006, 6,03
Ry ROk

f -( - &) + AaZe2m1a? - ing8,8,Q + 0262 (L - 82} (65) i
and }
y
I = {2A(né8,/WQ° + 266.0° - 2\nes. TR
D R Syl R I
-5, (2 + 2™ Da? + 2048, (1 - ci)a + ;%% } . (66)

a—

In these equationms,

Q= N/mo Y (67)
A= (L+B/(2+8) (68) |
A=)2(2X - 1) : (69) §
o
T=((2Xx +u =-1)/\u ’ (70) }

X Y

¢ = wy/w, = {[(Q+B)+ (1+8)°1/28} " (71) l
and =
WMy M) on U

where H‘ is the absorber mass, and the absorber tuning ratio

ns= Ua/wz » (73)

where

w, = (Ka/Ma)g . (74)
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Finally, the absorber damping ratio

GR - wanIZKa . (75)

The optimum absorber damping is taken to be that specified by Eq. (50).
By analogy to Eq. (49), the optimum tuning ratio is written as

nopt = wa/mz - (eu)li 4 (76)

where an appropriate value of € has been established for each value of U
utilized. For example, if u = 5/6 (Ma = MZ/S) or u = 25/26 of - M2/25),
then € = 0.76 or 0.90, respectively.18 For these values of €, the secondary
peak in the transmissibility curve is suppressed effectively in a smoothly
continuous manner. It is a considerable advantage that, for any given value
of u, the same value of € remains relevant throughout the range of 8
values considered here.

The three solid-line curves of Fig. 54 show the results of representative
transmissibility calculations made from Eq. (64) for the same values of 8
that were considered previously, and for values of u = 5/6, dK = 0.05,
GR = 0.25,and € = 0.76. An additional chain-line curve shows the results
of calculations made for the compound system possessing the largest secondary
mass, and for values of u = 25/26, GK = 0,05, GR = 0.12, and € = 0.90. Note
that the transmissibility at the secondary resonance of the compound systems
has always been suppressed effectively as compared with the peak values of
transmissibility evident in Fig. 49. If the mount damping factors were
smaller than the ones considered in Fig. 49, as they would be if the mounts
were steel springs, then these peak values would be increased correspondingly--
whereas the secondary peak heights in Fig. 54 would remain essentially un-

changed.
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As a final example, the great effectiveness of the compound system
L. is illustrated in Fig. 55, where the compound system is supported by a
simply supported rectangular plate with an aspect ratio u = 1/2, and a
fundamental natural frequency Wy The plate has relatively small internal
damping (GE = 6G = 0.01), the primary mass has four times the plate mass,
and the fundamental natural frequency of the primary system is mllb. The
mounts are located symmetrically about the plate center at distances of
1/3 the lengths of the plate sides from each plate corner. The mount damping
factors GK = 0.05. The mass ratio B = 1.0, 0.2, 0.1, and O (simple mounting

system shown by the dashed-line curve).

6. MEASUREMENT OF TRANSMISSIBILITY

Reported throughout the literature are transmissibility measurements
that have been obtained in one of two ways based on the simple sketches of
Fig. 1l4. No other methods of transmissibility measurement are known to have
been used previously or described elsewhere in the literature. Almost

exclusively, apparatus has been built to simulate the simple mounting system

of Fig. 1l4(a), the foundation and mounted item of which vibrate with the

amplitudes X, and iz. Transmissibility has been recorded as the readily

1
measurable ratio of the companion accelerations; that is, T = |(jm)2§2/(jm)2i1| =
lizlill. The design of a representative experiment to establish T in this

way, and a block diagram of the associated electronics, are reproduced from

Ref. 25 as Fig. 56. Only three early German workers chose to build apparatus

to record transmissibility as the force ratio T = |§2/§1|, thus simulating
the simple mounting system of Fig. 14(b).

An early experiment to determine the transmissibility of the compound
system is described in Ref. 26. It is remarkable that this reference, apparently

overlooked in the many years since its publication in 1931, should have introduced
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the theory of the compound system and have confirmed it by experiment. Recent
experiments to determine the transmissibility of the dynamic absorber are
described in Ref. 19.

A criticism of virtually all transmissibility measurements based on the
reciprocal method of Fig. 14(a) is that they were obtained from small-scale
or model experiments in which the mounts experience smaller static loads
than the ones for which they are rated. Consequently, the natural frequency
w, of the mounting system is often appreciably higher, and the strain in the
mount appreciably lower, than would be the case in practice. It is readily
apparent that care is necessary in any "vibrating foundation' measurement
of transmissibility [as in Fig. 14(a) and 56(a)] to design the foundation so
that its fundamental resonant frequency lies adequately above the frequency
range of measurement.

It is evident that consideration could well be given to the determination
of transmissibility by a four-pole technique. The measurements would utilize
an apparatus that has been designed to record the driving-point impedance
and quasi-transfer impedance of antivibration mounts subjected to significant
static loads. The apparatus, which is described in Ref. 27, sandwiches
between the top plate and base of a Universal Tension and Compression Machine
the following sequence of components (Fig. 57): a thick rubber pad, a small
vibration generator, an impedance head, the antivibration mounting under
test, an aluminum support block, and a piezoelectric force gage.

The antivibration mount is held by the support block in the manner
likely to be encountered "in service," preferably contacting the lower end
plate of the mount over the largest possible area. Mounts of other designs
would be mated with other support blocks of appropriate shape. The blocks
should have the greatest possible rigidity and could well be machined from

alumina rather than aluminum.
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It is convenient to designate the forces and velocities at the input

and output terminal pairs of the mount in Fig. 57 as Fll’ V11 and plZ' v12'

respectively, and to characterize the mount performance by the four-pole
parameters 011. 012, u21’ and a22' Because the output terminal pair is

rigidly blocked (See Sec. 10),

°'11"~—1‘ (77)
F -~
1217, = 0
and
v
o, =2 (78)
B S
1219, = 0

The quantities ill and 611 are readily measured by the impedance head
of Fig. 57, with suitable electronic concellation of the small integral mass
under the force gage in the head. The quantity §12 is readily measured by
the lower force gage at frequencies adequately below the resonant frequency
(which is > 5 kHz) of the gage and aluminum support block. Hence, the
frequency-dependent values of the parameters %7 and Ay, can be established
by straightforward measurement. Importantly, the parameters can be
established when there is significant static strain in the mount--which is
introduced, to the extent required, by the Universal Tension and Compression
Testing Machine.

If a basic comparison is required between the transmissibility curves
of various antivibration mounts in the simple system of Fig. 14(b), for
which the foundation impedance is extremely large and the mounted item of

mass M 1is ideally rigid, then it suffices to have knowledge of the para-

meters % and Ay for each mount of interest. Thus, the force transmissibility I

can be written as
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T = |1/(a, + juMay,)| . (79)

7. NATURAL FREQUENCIES OF STRUCTURAL MEMBERS

Loads carried by structural members reduce their natural frequencies.
Considered here first is the way in which loading masses reduce the first
three natural frequencies of a cantilever beam loaded at its free end by a
mass with negligible rotary inertia, and reduce the first three natural fre-
quencies of centrally loaded beams and plates with either simply supported
or clamped boundaries.28 The plates are assumed to be thin in comparison
to their diameters, and the beams either to be long in comparison with their
lateral dimensions or to be rectangular in section and to have length-to-
thickness ratios | of 10 and 20. The mass-loaded beams and plates are
excited to vibrate only in their symmetrical modes.

The natural frequencies of a beam are given by the equation

r Ni %
£ = —3—2 (E/p)

5 (80)
R om

where L 1is the beam length, E its Young's modulus of elasticity, and o
its density. For beam cross sections that are rectangular (thickness d),
circular (diameter D), or annular (in;ernal and external diameters D1 and
Dz), the relevant radii of gyration are r8 = d4//12, D/4, or /TDi + Dg)/b,

respectively. For a beam with rectangular section, Eq. (80) may be written

as
o
£ = =R (£/p)" (81)
E W IWL VP :
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which is drawn from Ref. 29. Values of the dimensionless parameter NR

Table VI. Values of (E/p)k and of (1 - vZ)H for some common materials

(Ref. 29).
Material (E/D)k(in./sec x 10'5) a- vz)k
Aluminum, rolled 1.97 0.935
Brass (70 Cu/30 z) 1.35 0.927
Magnesium, drawn,

annealed 1.94 0.952
Stainless steel,

No. 347 1.97 0.954
Iron, cast 1.76 0.963
Nickel 1.93 0.942
Lucite 0.724 0.917

depend on the value of the mass ratio y = H/Hb for cantilever, simply supported,
and clamped-clamped beams, as in Figs. 58-60, respectively. Because the beams
have natural frequencies that are directly proportional to Ni, the curves of
these figures show how mass loading causes the values of the natural fre-
quencies to shift downward. The extent of the frequency shift depends on

the magnitude of the loading mass but, for the second and higher beam resonances,
it cannot exceed the original frequency separation of the resonance of interest
and the next lower antiresonance of the unloaded bean.l The fundamental

natural frequencies of the beams are not bounded in this manner; in fact,

they are shifted downward without limit as the loading mass is increased

because, in every case, no antiresonance exists at a lower frcqucncy.l
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The dashed-line curves in Figs. 58-60 refer to beams that are much
longer than their cross-sectional dimensions. The solid-line curves refer
to beams of square or moderately rectangular cross section that have a
Poisson's ratio v = 0.33, and length-to-thickness ratios ¥ = 10 and 20.
(These curves were calculated from the Timoshenko theory of beam vibration,
which accounts for rotary inertia and shear displacement in the beams.l)
Appropriate substitution in Eqs. (77) or (78) for the beam length, the
parameter N., and the radius of gyration or Y, yields the value of fR in
Hz. Note that the loading masses are assumed to extend over only a small
fraction of the beam lengths.

When thin circular plates with simply supported or clamped boundaries
are centrally mass loaded and driven, their natural frequencies can be

calculated from the equation

NZ
£ = e TN

R 21.770a0 - V9

where 6 is the radius-to-thickness ratio of the plates, and a is the plate

radius. Values of the dimensionless parameter NR are plotted in Figs. 61 and

62 as a function of the mass ratio Y. Values of (1 - vz)k are listed in
Table VI for some common materials. Note that Figs. 61 and 62 relate to
plate thicknesses and to loading masses with lateral dimensions that are
small in comparison to the plate radii. Note also that the mass loading
causes a more pronounced reduction in the natural frequencies of the plates

than was evident for the beams considered previously.

The first four natural frequencies of a clamped annular plate of radius

a with a central concentric circular aperture of radius pa are plotted as
a function of u in Fig. 63. Here, the ordinate NR represents the product

of the plate wavenumber n and radius a. The plate wavenumber is given by

the equation

4
£
£
£
:
|
§
i
5
4
;
i
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o - ueplt - vz)/rzE : (83)
where
rz = d2/12 (84)
g
!

in which d 4is the (thin) plate thickness. 1In Figs. 64-67 are shown the
first three natural frequencies (values of NR) of clamped annular plates of
radius a with a central aperture of radius pa that is filled with an
ideally rigid mass, which is a factor of Yy times greater than the plate
mass. (The plate leaves the central mass with zero gradient.) Values of
p = 0.1, 0.2, 0.3, and 0.4 are considered. The ordinate N; has the same
significance as before. In Figs. 65-67 there is some overlapping of the
ordinate scales and, in some regions, a given ordinate had dual designation.
Note again that the natural frequencies drop significantly as Y increases.

The first three frequencies of a clamped circular plate with an ideally
rigid concentric annular rib are shown in Figs. 68-71 as a function of the
ratio Yy of the rib mass to that of the plate. The rib has a radius ya,
where a 1is the plate radius. Values of y = 0.2, 0.4, 0.6, and 0.8 are
considered. Again, the parameter NR has the same significance as before
(plate natural frequencies are proportional to Ni).

The first three frequencies of a simply supported circular plate of
radius a are shown in Figs. 72-74. The plate is mass loaded and driven
at an arbitrary point distant pa from the plate center. The mass has small
lateral dimensions and is a factor of Yy times greater than the plate mass.
The parameter NR has the same significance as in previous figures.

Shown in Figs. 75 and 76 are the values of NR for the first three
resonances of an undamped stanchion (cantilever) of length £ that is driven

by a vibratory force at its free end. The stanchion is loaded at an arbitrary

B i, i

T4 SETEY, e TR, ISR
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distance yf from the driving point by a mass that is a factor of Yy times

greater than that of the stanchion. In this case, the mass has a finite

- moment of inertia I that is governed by the equation

g = I/3Ib ’ (85)

where

Ib = Mb£2/3 . (86)

Values of ¢ = 0, 0.05, 0.1, 0.25, and 0.5 and of Yy = 1 - 9 have been con-
sidered, together with values of u = 0, 0.1, 0.3, 0.5, 0.7, and 0.9. 1In
this instance, the parameter NR = nl, where n 1is the beam wavenumber.
Shown in Figs. 77-82 are the values of NR for the first three natural
frequencies of a virtually undamped simply supported square plate that is
driven and mass loaded at an arbitrary point, which is designated by
coordinates with an origin at one plate corner, for example, the coordinates
(%,%) specify that the plate is centrally driven and mass loaded. In this
instance, NR = na, where n is the plate wavenumber, again given by
Eqs. (83) and (84), and a 1is the length of the plate sides. Note that,
as might be anticipated, the values of NR decrease as the mass ratio Yy grows
larger (Y is again the ratio of the loading mass to that of the plate),
especially for the first natural frequency, and are dependent upon the

location of the loading mass.

8. MECHANICAL IMPEDANCE OF STRUCTURAL MEMBERS

The driving-point impedance of a mechanical system is defined as the
ratio of force to velocity at a point within the system when force and

velocity vary sinusoidally with time at the same frequency w. The transfer
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impedance of a mechanical system is defined as the ratio of the force at

one point in the system to the velocity at another point in the system

when force and velocity vary sinusoidally with time at the same frequency

w. The moment impedance of a mechanical system is defined as the ratio

of the applied bending moment to the resultant angular (rotational) velocity
at one point in the system when the bending moment and angular velocity

vary sinusoidally with time at the same frequency w.

1. Impedance of a mass M: Z = juM (87)
2. Impedance of a spring of stiffness K: Z = K/jw (88)
3. Impedance of a dashpot having a coefficient of viscosity n: Z = n (89)

4. Driving-point impedance of a mass-loaded free-free rod in

longitudinal vibrationlz

VA e*
m
- ’ (90)
M @on”
where
n* = [cos n*l - Y(n*l) sin n*E] (91)
and

* * * *
6 = [sinn £ + y(n £) cos n ] (92)

here, Y = M/MR, where M 1is the loading mass at the driven end of the
%
rod and HR is the rod mass; n is the rod wavenumber given by Eq. (22),

and £ 1is the rod length.

5. Transfer impedance across a free-free rod of length { that is driven

at one end and mass loaded at the otherlz

’ (93)
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which is also the transfer impedance across a free-free rod that is
*
driven and mass loaded at the same end. The parameter 6 is again

given by Eq. (92).

The characteristic impedance of a rod of cross-sectional area A in
longitudinal vibration that has infinite length, or is so heavily :
damped that no energy returns to the driving point to produce a standing-

wave pattern, can be written aslz

*® li ®
zZ, " A(E p) *= (Ap)cL y (94)

*

where CL is the complex velocity of longitudinal wave propagation in
*

the damped rod, and E and p are the complex Young's modulus and

density of the rod material.
Driving-point impedance of a free-clamped rod of mass HR in longitudinal
vibration that is driven and mass loaded at the same endl:

p 4 *

m -n
- s (95)
j““k (n*JL) sin n*l

where n* is given by Eq. (91).

Driving-point impedance of a free-clamped rod of length ¢ that is

driven at an arbitrary point distant uf from its free endlz

*
Z - cos n &

j'lL" * * x
NMR (n L) cos uyn 2 sin (1 - yw)n 2

, (96) j

4
where n is again given by Eq. (22).

Driving-point impedance of a centrally driven and mass loaded simply l
supported beam of length 231:
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2
m 2 ch.c.
——— m Y 4 [ = ] . (97)
jwa [: (n*a) sh.c.-ch.s. (n*a;]

where y = H/Hb in which M is the loading mass and Hb is the beam

mass. Such abbreviations as ch. and C. are employed to represent the
* *

terms cosh n a and cos n a, respectively, where n* is the beam wave-

number, which is defined by the equation
* *
n o= lreleh (98)

where w 1is angular frequency, p is the beam density, r is the radius
*
of gyration of the beam cross section, and E is the complex Young's

modulus of the beam material.

Driving-point impedance of a centrally mass loaded and driven clamped-

clamped beam of length 2a1:

Z

m 1 sh.c.+ch.s.
Tt |y + [ - ] " (99)
jmb [ (£0 ch.c.~1 th

where Y has the same significance as in 9.

Characteristic impedance of a semi-infinite beam driven transversely
at its free endlz

DAC;
S * T ary (100)

*
where A 1is the beam cross-sectional area, cB is the complex velocity
of bending waves on the beam, and 0 1s the density of the beam material.

Characteristic impedance of an infinite beam driven transversely at its

nidpointla
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*
Zch - ZpACB 1+ - . (101)

Transfer impedance of a centrally driven simply supported beam, where

velocity is monitored at a distance of pya from the beam centerl:

TZ 2(ch.c.)(n*a)

U
- ’ (102)
jw“b n*a [sh.c.chu.-ch.s.cu.-ch.c.(shu.-su.)](n*a)

*
where such terms as chu. represent the quantity cosh un a.

Bending moment impedance Bzo of a centrally driven simply supported beamlz

BZ
o . 6 sh.-s. (103)
Jul, (n*a)3 sh.c.-ch.s. (n*a) 3
The moment of inertia
2
I =Ma’/3 ’ (104)
where Hb is the beam mass.
Bending-moment impedance of a centrally driven clamped-clamped beamlz
Bzo o e [sh.c.-ch.s.] (105)
jwlb (n*a)3 l-ch.c. (n*a) v

where Ib is again given by Eq. (104).

Driving-point impedance at the center of a free-free beam of length 2a

driven transverselylz

Z
0 1 sh.c.+ch.s.
N ey £ LI XA ilIR LN % (106)
[ ch.c.+1 ](n*a)

ijb (n*a)

. '
S
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17. Bending-moment impedance at the center of a free-free beam of length 211:

BZ
0 3 ch.s.-sh.c.
= 5 (107)
ijb (n*a)3 [ ch.c.+1 ](n*a)

18. Driving-point impedance at the free end of a cantilever beam of length

11:

: (108)

zo o 1 ch.c.+1
ijb (n*l) sh.c.-ch.s. (n*l)

19. Bending-moment impedance at the free end of a cantilever beam of length

21:

e RO T B T (109)
JuI, (n*2)3 lsh.c.+ch.s. (n*z)
20. Driving-point impedance of a cantilever beam that is excited at an
arbitrary point distant pa from its clamped end and at a distance a
from its free endl:
z *
2y » (110)

B
I, (0 a)(1 + W (sh.c.~ch.s.)(ch.c.=1) + (ch.c.+1)(sh.c.~ch.8.) ], &
ey o) o ceaehis) Ty

where

*
Y = [1 - (ah.s.)(sh.s.)u + (sh.c.)(sh.c.)u - (ch.s.)(ch.s.)u + (ch.c.)(ch.c.)u](n*a) .

(110)

21. Driving-point impedance at the center of a simply supported circular plate

of radius 130:




[£1]

130

z 8"*
o &
- . (112)
oM rtay iy
where Mb‘is the plate mass and
& :
[-ZJOI° + ¢a(J°I1 + IoJl)](n*a) - (113)

v - {Z(YOIO +AJK) + ¢:[(Jo - I, + AK)) - (J, + 1)@+ Axo)l}(n*a). (114)
In these equations, 1.

o = - vH/a%) 115)
and N
A=din ; (116) ’
in addition, the plate wavenumber S
aH* = wdon1 - (v*)zllrzE* : an |
where !

r: - a%/12 (118)

*
in which d is the thin plate thickness and v is the complex Poisson's

*
ratio, and where Vv 1is a real quantity for those materials that have

damping factors associated with the foung's modulus and shear-modulus .
deformations of the plate material that are equal.3° In addition, such ‘i

quantities as Jo and I1 refer to ordinary and modified Bessel functions

*
of orders zero and one having the complex argument (n a). !

Driving-point impedance at the center of a circular plate of radius a with

free boundnrios3o:
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z *
s 86
jw"? ﬂ(n*a)zo*

where
y 1 203,11, *
.y [-(Jo 1 i Jllo) " ¢3J1 ll(n a)

and

t the center of a clamped circular plat: of

23. Driving-point impedance a
radius 131:
*
Lo AR
* ’
juMP (n*a)zr
where
T’ - (JI +J. 1), *
o'l 170" (n a)
.and
*
I eiQ, =~ L) (¥, + AR - G, + e+ Axo)l(“*a) "
24. Characteristic impedance of an undamped plate3°:
where d is the plate thickness, p is its density, and
;
l D = dEc3/(1 - "

* *
. {[(Jo * Io)(Yl 2 AK1) = (Jl i I1)(Yo i AKO)] * 2¢a(MlKl - Y111)}(n a)

(119)

(120) }

*

(121)

B v S A

(122)

(123)

(124)

(125)

(126)




g -

where rz is given by Eq. (118).

25. Driving-point impedance at an arbitrary point on a rectangular plate

driven transversely 32 2

i
—n : (127)

= k=1,3,5,... w=1,3,5...

where M.P is the plate mass and

Qk,m = gin km (hx/a) sin mw (hy/b) . (128)

Rl T e (129)

in which

~er2

g* o Tk’ + @w?]
(p + ja)

(130)

and hx and hy are the coordinates of the arbitrary driving point; the
parameter u 1is the aspect ratio of the plate (the ratio of the shorter
to the longer plate sides). The term (n*a), where n* is the plate wave-
number and a 1is the length of the longer plate side has been written

as (p + jq), where

s
5
[- 1 +(1+DE)
|2/, " 220,

P»q = + (na) (131)

and

2. %
Dp= (14 GE) 3 (132)

Samiins

. P A——|

} Sy
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The coordinate origin is one plate corner, the x axis being parallel

to the longer plate side. When the plate is centrally driven, the

impedance can be written as follows:

5t I W - -

k=1,3,5,... m=l1,3,5,...

TS S ARSI, TN KT -SSR IH I

26. Transfer impedance between the midpoint of a centrally driven simply

supported rectangular place and an arbitrary point having the coordinates
a, %
;R

-1
ki | (6-1), ,,* y  (134)
| o Z Z [0, o(h b)) =D I

: i k-1’3’5’ooo m‘1,3.5,-.. !

*
where % m and A are given by Eqs. (128) and (129), and
’

6= (k +m)/2 . (135)

9. TRANSMISSIBILITY OF STRUCTURAL MEMBERS

Force transmissibility is defined as the magnitude of the ratio of the

e AN

force transmitted to the boundary or boundaries of a mechanical system to

the impressed force. Displacement transmissibility is defined as the
magnitude of the ratio 6f the displacement of a point within a mechanical

fg system to the displacement of its boundary or boundaries. Equally well,

} displacement transmissibility can be expressed as a velocity or acceleration

ratio when sinusoidal motion is of concerm.

1. Transmissibility of the simple mounting system: This is specified by
Eq. (13).
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2. Transmissibility of the dynamic vibration absorber; this is specified
by the following equation, which relates to a viscously damped absorber

of stiffness K, and mass M, that is applied to an undamped primary

2 2 {
system of stiffness K1 and mass Mi:
A
2
g -2 + 0h)” + (2006)*
T = 73 5 (136)

(e - 22 + o) +0?)? + (ZnQGR)Z(l - H %)

~ where GR and n are the absorber damping and tuning ratios and N is a

frequency ratio such that |

n= wa/mo % (137)
5 Q= w/wo 5 (138)
é and
‘: ; GR - wan/m(z ' (139)
? where
: W = (K, /M) 0 a0
! a - Ll =
w o= [K./ML +M)E (141)
(6] 1 2 .

and n 1is the coefficient of viscosity of the absorber dashpot.

3. Transmissibility of the compound mounting system: this is specified

by Eq. (55).

4. Transmissibility of a mass-loaded rod in longitudinal vibration: this

is specified by Eq. (17).

5. Transmissibility of a simply supported beam driven and mass loaded

ccntrlllylz

- e e
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(ch.+c.)

centrallylz

2 ch.c. + Y(n*a)(sh.c.-ch.s.)

where abbreviations such as ch. and c. are employed to represent the
* . *
terms cosh n a and cos n a, where a 1is the half-length of the beam
*
and n is the beam wavenumber, which is given by Eq. (98). The para-

meter Y = M/Mb, where M 1s the loading mass and Mb is the beam mass.

Transmissibility of a clamped-clamped beam driven and mass loaded

_(sh.+s.)

length of the beam.

mass loaded at its free endlz

Lol ctand & tn; Khiah.c.~1)

where Y has the same significance as in 5 and a 1is again the half

Transmissibility of a cantilever beam of length £ that is driven and

(ch.+c.)

mass of the cantilever.

circular plate

2 [y(n*z) (sh.c.-ch.s.) + (ch.c.+1)]

in which Y 1is again = H/Hb, where M 1is the loading mass and Mb is the

Transmissibility of a centrally driven and mass loaded simply supported

| (2 /3uty)

o [Y¥ @ )
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where (zolijP) is given by Eq. (112) and
%
T = |a'Et (146)
where E* is given by Eq. (113), and

g" [~ + 1) + ¢:(J1 1)1 %, (147)

*
in which a 1is the plate radius and n 1is the plate wavenumber given by
*
Eq. (117); in addition, the parameter °a is given by Eq. (115) and

Y= H/MP, where M is the loading mass and MP is the plate mass.

Displacement transmissibility of a plate of radius a with a free

boundary3°:

T = |4s2*/n(n*a) 'Y | . (148)

where Q* is given by Eq. (147) and ¢* is given by Eq. (121). This plate
is driven centrally and T 1is the ratio of the displacement of the

plate edge to the central displacement. However, if the plate is driven
around its free boundary by a ring force, then the ratio of the central
plate displacement to that of its edge is given by an alternative trans-

nissibility3o

T= |o"=% (149)

* *
where Z 1is given by Eq. (113) and @ by Eq. (147).

Transmissibility of a centrally driven and mass-loaded circular plate with
31,

clamped boundaries

.

L 2]

. ’
S—— e

———
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IAAT + y(n a) P

* *
where A is given by Eq. (116) and T and I are given by Eqs. (123)

and (124). The parameter Y has the same significance as in 8.

11. Transmissibility to the boundary of a clamped annular plate driven around
its inner perimeter of radius a by a ring force31:
* * %
2(0Q + ¢aﬂ )

T = * * ® k% ’ (151)
A(m a)[A(p +6) + 2¢an ]

* *
where ¢a is given by Eq. (115) and @ by Eq. (147). In additionm,

w* - ZA/k(n*a)2 ’ (152)
e [T, + LYK = RI) ) + (K = K I (YT + 1),
+ (Y°K1 - KoYl)(JOIl + JIIO)A + (JOII + Jllo)(YoK -Y K ))‘](u a) 5
(153)
" (I + {ID @R, = @L) + 3T (KD, - (XK - YK ) (1),
- K, = RO I w (154)

and

L]
I = [(YlJlx - JlYlA) + A(lelx - Klllk)](n*a) " (155)

where such terms as JlA and KlA are used to represent the quantities

Jl(An*a) and Kl(kn*a).

e e T S
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Transmissibility of a centrally driven clamped circular plate with an

ideally rigid concentric annular rib of radius ua31:
AH* (3. +I.)
T.l —au 1y (156)
I (n a)o

*
where Il 1is given by Eq. (155) and

* * * *
+J. I )[4un +y(mna)® -y} , @57

* *
)(e o W ) + (Joullu 1u ou

1wl

x % *
in which  , 6 and n are given by Eqs. (152), (153), and (154) in which

the parameter A 1is replaced by u. Such abbreviations as J e

1w’ Ilu ar
* *

used to represent the quantities Jl(un a) and Il(un a). The parameter

Y = M/MP, where M 1is the rib mass and MP is that of the plate.

Transmissibility of a simply supported rectangular plate driven at an

arbitrary poinc32:

169 * 4
o Z Z zk’m [ EBI,) :l ' (158)
1,5.5,... T J(B)" -1

k=1,3,5,...

*

where % m is given by Eq. (128), and (B ) by Eq. (130). The coordinate
’

orgin is one plate corner, the x axis being parallel to the longer

plate side.

Transmissibility of a simply supported rectangular plate that is centrally

driven32:

* 4
T = Z Z 16 [_@h DTN aw
%k L(B*)" -1 !

k-1.3.5,... 3-1,3,5,...
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where 6 = (k + m)/2. An expression for T having faster convergence

can be written as followssz:

(6-1)
(e [“ Z z ;23;;_)_7_] ' (160)

S T S LI

*
where A 1is given by Eq. (129).

15. Transmissibility of a simply supported rectangular plate that is centrally

driven and mass loadedaz:

*

e o

* ’ (161)
vy +v)

T =T
m

*
where T is given by Eq. (160) and § = (ZoljwMP). a quantity that is
given by Eq. (133). Again, the parameter y = M/MP. where M 1is the

central loading mass and HP is the plate mass.

10. FOUR-POLE PARAMETER ANALYSES

Four-pole parameters will now be referred to widely and, consequently,
it is appropriate to review briefly some of their relevant properties.
Detailed discussions of four-pole parameters can be found, for example in
Refs. 15 and 33, where many other pertinent articles are listed. Application
of four-pole parameter techniques enables a general account to be taken of
the lack of rigidity in the foundation and in the mounted item.

A linear mechanical system is shown schematically in Fig. 83(a). The
system may be comprised of one or more lumped or distributed elements, or be

constructed from any combination of such elements. The input side of the

%
E:
{
f
’
}
b
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system vibrates sinusoidally with a velocity 61 in response to an applied

force ;1. In turn, the output side of the system exerts a force iz on the

input side of some further system, sharing with it a common velocity 52.

Thus, the system is said to have input and output terminal pairs, a force

-~

il and velocity 61 at the input terminal pair giving rise to a force Fz
and velocity 62 at the output terminal pair, the reaction of any subsequent
mechanical system being accounted for. Forces are considered positive
when directed to the right.

Consider now the mechanical impedance Z of a mass M and a spring

of stiffness K (Fig. 84) in the context of the foregoing discussion; thus,

L Zy = JuM = (F) - F,)/V, = (F, - F,)/N, (162)
[ or
li - -~ -~
F) = F) +juv, , (163)
61 - 32 5 (164)
and
Z, = (K/jw) = F/(V, = V,) = F,/(V, - V,) (165)
. or
s il = ;2 ’ (166)
\71 - iiz(jm/x) + 62 3 (167)

Inspection of these equations makes it possible to understand that the vibra-
tion response of the general four-terminal system of Fig. 83(a) can be re-

presented by the following equatioms:




Y%

Fig. 84




143

Fio=o,F + 5%

V) = o F t ¥,

(168)

(169)

where 011. %o Oy and ®,, are known as four-pole parameters. It is directly

apparent that

1

b1 F |- g
2 Vz =0
1

%2 v |~ 4
2 Fz = 0
1

%1 F |- i
2 V2 =0

and

1

b - o *
2 Fz =0

where the subscript 62

and the subscript §2 = 0 indicates that the output terminal pair is free

(unrestrained). The parameters %, and a,, are dimensionless; has the

%12

dimensions of impedance and a,, the dimensions of (impedance) L.

21
In general, the four-pole parameters are frequency-dependent complex

quantities. Of considecrable advantage is the fact that the parameters

characterize only the system for which they are determined; their value

is not influenced by the preceding and subsequent mechanical systems.

Equations (168) and (169) enable expressions for the driving-point and

(170)

(17)

(172)

(173)

= (0 indicates that the output terminal pair is blocked
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transfer impedance and for the force and displacement transmissibilities to

be written down concisely; gﬁus. driving-point impedance,

]
]

$ [ - S 2 %hyfe * %y ,
o = l » S &+ o H (174)
Vi ey HagVy) (Pt T %2
transfer impedance
12, = =2 = (a2, + ; (175)
5T Mol Mg s
2
force transmissibility
F z
2 T
T = |==|= : (176)
et DL BT :
and displacement transmissibility
gE
T = |—| = 177)
D12 v, I(a22 + QZIZT)

In these equations, ZT - §2/62 is the driving-point impedance of thé mechanical
system subsequent to the one under consideration.

It can be demonstrated that, without exception,
(@)1%95 = Ap05) =1 (178)

consequently, knowledge of only three of the four-pole parameters is sufficient
to specify the performance of the system completely (Refs. 15 and 33). Further,
in the special case of a symmetrical system (when it does not matter which

terminal pair is input or output),
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& 4, = %, (179)

and knowledge of only two independent four-pole parameters is sufficient to

determine the system performance completely.
Should the mechanical system be reversed, so that the original output
and input terminal pairs are interchanged, as in Fig. 83(b), then the

relevant four-pole equations become

Fie = %22Fp ¥ 95% (X80}
Vie " %1% Y 2V o (181)
{ ~ - -
l . . where the input and output forces and velocities are now Flr’ Vlr and FZr?
i ‘ 62 , respectively, and
E T 1
i §
(182)
(183)
(184)
1
(185)
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remain unchanged,

Although the values of the four-role parameters all and o

22
their definitions differ here from those of Eqs. (169) and (172); in fact,

the parameters have dual significance and can be determined in alternate
ways, which is sometimes an advantage. By comparing the companion defini-

tions of a,, and @ it follows that

11 22°
F v
;11— —— . (186)
t 7| 7. |=
1 V2 0 1r F2r 0
and
v F
L2 - . (187)
22 V.|~ o
1f, =0 Fiel¥,_=o0

These equations show, as noted previously (Section 2), that the force and
displacement (and, therefore, the velocity and acceleration) transmissibilities
in opposite directions between the two terminal.pairs of a mechanical system
are identical.

If the output terminal pair of one mechanical system is rigidly connected
to the input terminal pair of another system (Fig. 85), so that the output
from the first is exactly the input to the second, the two systems are connected
in series. Moreover, for n systems in series, the output force and velocity

~ ~

F(n +1)° V(n + 1) can be related to the input force and velocity by the

15,33

continued product of n 2 x 2 matrices. Simply, for a two-stage system,

¥y %1 %2 M %2l |F,
% e ' ' e X o (188)
Yy O1 %] %21 %2] [Y5

or
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| | X2 1, i i T L 4l A

l r ' 4 I3 An (n+ 1) (n+])
1 2 esoe n —
L
| L
f Fig. 85
| |




,,,,,,

1] 11 | ] 11] 1] " "
(@139 + @5%) (@500, + aj50,))

- ) roon t u T N (190) ;
(091017 + Ggp0py)  (ay0y, + ayyay,) -

v v

11 12

V) v

21 21

To conclude, it is helpful to list the four-pole parameters for a slender

rod of uniform cross-sectional area A, length %, and density p when the rod is

driven axially by a sinusoidally varying force.

*
Gy = Gyp =S8 m &

*
sin n £ %

o+ S

and

* / *
u21 - sinn & UR -

where

by = Gu/n'n) .

rod; that is, MR = pAfL and

n* o (wzo/E*)j‘ »

*
where E is the complex Young's modulus. As in Sec. 3, it is convenient to

*
write the dimensionless product n & as the complex number (p + jq), where »p

For this symmetrical system,

(191)

(192)

(193)

(194) |

*
In these equationmns, MR and n are the mass and the cowplex wavenumber of the

(195)
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and q are given by Eqs. (20) and (21) in which the frequency dependence of

Em and GEm is now assumed to be negligible.

10.1 Characterization of an Antivibration Mounting

Consider now the antivibration mounting of Fig. 86 that is comprised of
a uniform rodlike sample of rubberlike "material" bonded to metal end plates
of masses Ml and M2. The mechanical behavior of the rubberlike material is
assumed to be governed by Eqs. (191) - (194). An input force and velocity
El’ 61 produce an output force and velocity ?2. 62 at some termination sub-
sequent to the end plate of mass M,. An equation of the form of Eq. (188)

2

remains relevant to this three-stage system, but now

*
ull U12 1 jw“l c. UgS: 1 jwMZ
- . (196)
* -1
Yoy Y 0 1 (uR) s. c.|] 0 1

where the abbreviations s. and ¢. represent the complex circular functions

* *
sin n £ and cos n £, and the matrices for the masses Ml and M2 follow directly

from inspection of Eqs. (163) and (164). It is readily shown that

vy, " [e. - Yl(n*l)s.] . (197)
Uy = g {ls. + v, @"De] + y,@"Dle. - v @]y (198)
Vyy =~ M) (199)

*
22 ™ [c. - Yz(n 2)s.] ’ (200)
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where Yl - MIIMR and Y2 - MZIMR. These four-pole parameters relate equally
well to a rodlike mount having significant lateral dimensions when n* is
replaced by the complex wavenumber N* specified by Eqs. (27) - (32).

Of considerable interest is the simplicity of the four-pole parameter
021, the reciprocal of which describes a blocked quasi-transfer impedance

; that is independent of the values of H1 and Mz; thus

-~ *
sl iy T el o ois
V) - * S * .
23~ VI sinn 2 nfsinn 2
1 V2 =0

Further, at frequencies well below the initial wave-effect frequency wl in

® *
the mount, sinn £ + n £ and

1 w(pAR) fE* ,m*m , (202)
b, R | L 4 Ju

*
which is the impedance of a simple spring of complex stiffness K = (AE*II).

*
If this stiffness is symbolized by K = K(1 + jGK) then

1 K
E . _ (203)

and measurements of the imaginary part and of the ratio of the imaginary to
real part (tan phase angle) of 1/U12 will yield K/w and the reciprocal of

the damping factor GK' respectively. The larger the value of GK‘ the greater
the accuracy to which the phase angle and, hence, 6K can be measured. This

measurement approach was proposed and utilized in Refs. 27 and 34, where the

permissible upper bound of measurement was said to be 0.25 W, .

————— - s o —
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10.2 Resilient Mounting on Nonrigid Substructures

Examined now is the vibration response of a nonrigid substructure of

arbitrary impedance ZT that lies beneath the antivibration mounting con~-

sidered in the foregoing. The mount and substructure are characterized by
the four-pole parameters Uij [Eqs. (197) - (200)] and a

J
Initially, the item supported by the mount is assumed to. remain masslike

» respectively.

at all frequencies. The entire assembly is shown diagrammatically in

,
Fig. 87(a). The same item of mass M 1is shown rigidly mounted in the
reference assembly of Fig. 87(b), where it generates an untenably large

vibration of the substructure.

The same exciting force is considered to act upon or to be generated

within M in both Figs. 87(a) and (b). This force gives rise to a trans-

mitted force §12 at the point of juncture of the mount and the substructure

in Fig. 87(a), and to a force §12R at the same location on the substructure

in Fig. 87(b). The companion velocities are 512 and GIZR’ respectively.

-~

Beneath the substructure, the output forces and velocities are §2’ Vz, and

-~ ~

For® Vor:

In prior discussions of the vibration of nonrigid substructures,
attention is devoted either to the mount transmissibility T = Igzlfll, or
to the mount response ratio R = l612/§12R| -- or its reciprocal, mount
effectiveness E = R-l. Consequently, it is appropriate to evaluate the
quantities T and R in general terms using the four-pole parameter
techniques described in the foregoing.

The forces and velocities experienced by the mounted item and sub-

structure in Fig. 87(a) are readily understood to be related by the equation

F 1 JuM| |V v J
’ (204)
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where the matrix product can be written as the third matrix

in which Ull‘ Vygs U21’ and V,, are again defined by Eqs. (197) - (200), the

only change being that the mass ratio Y, in Eqs. (197) and (198) for 311 and

GiZ is redefined as
Yl - (M + Ml)luR ~ M/NR . (205)

It is evident from Eq. (204) that

Fy = Oy Fyp +93,%,)

—_ —

- ( 112T + U12) FlzlzT = ( nz,r + ulz)v12 . (206)

Likewise, from reference to Fig. 87(b), it can be stated that

Fl 1 JuM rlZR
% - % (207)
Yir] [© 1] [Yim
and, consequently, that
n - (ilzn +JuMVoe) = (Zp + JuM) V0 . (208)

From Eqs. (206) and (208) it is possible to write down the transmissibilicy

and response ratio of the mounting system directly; thus

14
5
£
%.
!
b
§
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F z
T.{{Z.{_ I _ (209)
s (Vg2 + Ypp)
and
. V12 Zp + JuM (210)
Vi2r V127 * Yy,

Response ratio, the magnitude of the substructure velocity observed when M
is resiliently mounted to the velocity observed when M 1is attached rigidly

i to the foundation, provides a measure of the vibration reduction that the

mounting affords -- the smaller the value of R, the greater the reduction of

substructure velocity and the more beneficial the mounting. Note that,

because

-~ ~

Zp = Fip/Vyp = FroplVigg 11)

the response ratio could have been defined equally well as the ratio |§12/§12R|

of the forces exerted on the substructure in the resiliently and rigidly

mounted cases. Note also that R is not as small at T unless Z,r >> juM;
that is to say, if jwM is comparable with, or greater than, ZT the mount will
be less effective than predicted by its transmissibility curve. Physically,

this reflects the fact that the beneficial action of the antivibration mount

in Fig. 87(a) will be countered, to some extent, by the greater freedom of

the foundation to respond to a given applied force than was possible in

Fig. 87(b). Thus, the foundation in Fig. 87(a) is no longer relieved of part
of the applied force by the inertia of the mass M -~ an acute disadvantage
if M 1is large, as it may well be. In this circumstance, it has been

suggestedl that the response of the substructure be restrained by an auxiliary
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mass m having a significant fraction of the mass M of the mounted item. The
relevant expressions for transmissibility and response ratio follow immediately
from Eqs. (209) and (210) if the mass ratio Y, ™ M2/MR that appears in the
four-pole parameter ﬁiz of these equations is redefined as

Yo m (M, + m)/Mp ~ m/M (212)

One further result follows from consideration of the matrix equation

for the substructure,

o T
» : (213)
a1 %2
and its constituent equations
F12 - ulle + alzvz (214)
and
V., =a,F, +a,V . (215)

Thus, the output velocity can be eliminated from these equations to yield

Fp = Vo @2y =3y (216)

likewise,
Far ™ Vir @p2%r = %) - ol
Consequently, an additional definition can be stated for response ratio,

which now has the triple significance




TS ———.

R = |612 g |§2 b lilZ : (218)
GIZR izn i12n

The new definition of R describes the ratio |§2/§2R| of the forces that

are transmitted to the termination of the substructure in the resiliently

and rigidly mounted cases. Further, a companion force transmissibility
across the entire system can logically be defined and determined from

Eqs. (206) and (216) as

P Oyplp = %y
overall i i S
1 TETT 12

This significant quantity differs from both R and T as previously specified.

Note tyat the quantities Gil and BiZ are related to the (transmissibility)_l
and transfer impedance of the mount [Eqs. (170) and (171)].

The results of one independent calculation of T for a rectangular

overall
platelike substructure with an aspect ratio of 0.5 are plotted in Fig. 88 as
the dashed-line curve. The mounted item is driven by a vibratory force fl
and is supported by four antivibration mounts that are located symmetrically
about the plate center, each at coordinates of one-third the length and
breadth of the plate from the nearest plate corner. The mounting points
have the same driving-point impedance and experience the same velocity. The
output force §2 comprises four discrete forces at the plate corners plus

distributed forces along the simply supported plate boundaries. Trans-

missibility T

overall © |F2/F1| has been calculated in terms of the frequency

ratio Q = w/wo. where w is the natural frequency of the mounting system
calculated as though the platelike substructure were ideally rigid. The
mounted item is four times more massive than the substructure, and the

fundamental plate resonance is assigned the frequency 4 W, The mounté and

L]
the substructure have the damping factors 0.05 and 0.01, respectively. The
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transmissibility curve at high frequencies is characterized by many plate
resonances; moreover, the number of plate resonances that are excited can
detrimentally increase if the mounts are located at other, less favorable,

positions.36

The overall transmissibility across an identical mounting system to
which lumped masses have been added to each mount location is shown by the
solid-line curve. The total added mass m 1is equal to that of the mounted
item (m = M). Use of such heavy mass loading is necessary if the level of
the ftransmissibility curve is to be reduced significantly. For added mass
equal to 0.25M, the resultant transmissibility curve would lie approximately
halfway between the solid~line and dashed-line curves at frequencies above
the fundamental plate resonance (R = 8). Such small added mass as 0.05M
would be ineffectual in reducing transmissibility much below the level of
the dashed-line curve except at very high frequencies where the impedance of

the loading mass m would eventually predominate the plate impedance.

10.3 Nonrigidity of Mounted Item

To conclude this Section, it is appropriate to demonstrate how readily
the effects of nonrigidity in the mounted item can be accounted for in the
preceding four-pole equations. Thus, if the mounted item is characterized
by the four-pole parameters vij’ then the forces and velocities experienced

by the mounted item and the substructure in Fig. 87(a) will be related, not

by Eq. (204), but as follows:

s (220)

where

B Shapvia WS ST
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| Vg = (Vg FeoYy) (221)
| :
Vig = (919Y15 ¥ 90%0) (222)
5 '
Upp = (933917 + 9509) (223)
3 and
1]
Vpp = (91V15 + 95Yp5) - (224)

: In these equationms, Ull’ 012, U21, and 022 are defined precisely as before

by Eqs. (197) - (200) in which the initial definition of e MI/MR pertains.
Because Eqs. (204) and (220) are closely similar, the expressions that were

derived previously for transmissibility can be restated, by inspection, as

follows:
,f l z
T 2] - | — (225)
l ' l(ullzT + Ny
and
) ®pp%p = %
T - (= - | |— : (226)
overall F Wl #u
1 11T 12
Response ratio can also be restated simply by noting from Eq. (220)
that
L L} 4’
Fi o WitV V9 (27 <

and by noting from the relation between the forces and velocities experienced

by the mounted item and substructure in Fig. 87(b) that

. SR
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F) = (030 + 90p5V100)
= (9,20 * 95) Vo i (228)
in consequence,
R= z-li - M (229)
V2R V¢ * Yy

11. RELATIVE PERFORMANCE OF MOUNTING SYSTEMS

The relative performance of mounting systems or, rather, their relative
transmissibility has been defined as the difference in dB between a reference
transmigsibility curve and the transmissibility curve of the mounting system
under consideration. The reference transmissibility curve is that of the
simple mounting system having a mount or mounts with frequency-independent

properties; namely,

Qa+ af()l‘

T=
[(1 - Q%Y+ 512(]”

(230)

where, as usual, the frequency ratio Q = w/wo in which w, is the natural fre-
quency of the mounting system and w 1is the impressed frequency. In each
case, wo has been adjusted to coincide with the natural frequency of the
mounting system under consideration. In both mounting systems, it has been
assumed that the mount damping factors GK = 0.05, whereas the damping factor
of the foundation of the mounting system under consideration has been equated

to unity. If Tl is the transmissibility of this mounting system, then




Relative Transmissibility = (20 logloT - 20 logloTl) A (231)

An improvement in transmissibility above that of the simple mounting system

is therefore reflected by positive values of Relative Transmissibility in dB.

11.1 Beamlike Foundation3S

The relative transmissibility of a mounted item supported by eight
mounts along the length of a clamped-clamped beam of length L 1is shown
in Fig. 89. The mounts are uniformly spaced at distances of 0.125L, 0.375L,
0.625L, and 0.875L from each beam termination. The mounted item is ten times
more massive than the beam and the fundamental resonance of the beam occurs
at the frequency 10 W . By cenirast, the relative transmissibility of a
mounted item with four mounts spaced av disrances of 0.25L and 0.75L from
each termination appears in Fig. 90. Now, beneath each of the four mounts
;s placed a concentrated mass;.the total mass is two and one-half times that
of the beam mass. The mounted item again has ten times the beam mass and
the fundamental natural frequency of the beam equals 10 Wy The performance
of the same mounting system but with viscously damped dynamic absorbers
attached to the beam at each of the four mount locations is shown in Fig. 91

(the mounts remain located at distances of 0.25L and 0.75L from each beam

termination). The absorbers have one-fourth of the beam mass and are tuned

to a frequency of 0.88 w3 their damping ratios equal 0.226.

Finally, the performance of the compound mounting system is plotted in
Fig. 92 as the three solid-line curves for which the mass ratio g = 0.1, 0.2, {
and 1.0 (the intermediate mass one-tenth, one fifth, and equally massive as
the mounted item). Also plotted is the performance of the simple mounting ]
system for which 8 = 0. In each case, the mounts are located at distances '

of 0.25L and 0.75L from each beam termination. As before, the mass of the
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mounted item is 10 times that of the beam and the fundamental frequency of
; the beam is 10 w s where W is now the reference frequency of the compound

system [Eq. (58)]. The performance of the compound system clearly exceeds

that of the simple system and that of the mounting systems considered pre-

| viously in Figs. 89 - 91.

11.2 Platelike Founda:ionsl7'36

The relative transmissibility of the simple mounting system supported

by a square platelike foundation is shown in Fig. 93 as the solid-line curve.

The mounted item is supported by a total of eight mounts that are symmetrically

located about the plate center. The mounts are located at distances of 0.2a
and 0.4a from the plate cormers in one direction, and at distances of a/3
and 2a/3 from the plate corners in the other direction, where a is the
length of the plate sides. The mounted item is four times more massive than
the simply supported plate beneath it, and the fundamental natural frequency
of the plate equals 4 Wy where w, is now the natural frequency of the mount-
ing system calculated as though the platelike foundation were ideally rigid.
The dashed-line curve shows the performance of the same mounting system but
with the mounted item supported by only four mounts, again located symmetrically
about the plate center at distances of a/4 from each plate corner in both
directions.

The relative transmissibility of a simple mounting system that is
supported by a rectangular plate with an aspect of 0.5 is shown in Fig. 94.
The plate is simply supported and beneath each of the four mounts -- which
are located at distances of a/3 from the plate corners in one direction, and
at distances of a/6 from the plate corners in the other direction (a is the
length of the longer plate sides) -~ are placed concentrated masses that
are one or four times more massive than the plate (y = 1 or 4). For com-

parison, the performance of the mounting system on the bare (unloaded) plate
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(y = 0) is also shown. The advantage of heavy mass loading is clearly
apparent. The mounted item is four times more massive than the plate and
the fundamental natural frequency of the plate is 4 W » where Wy is again
(and will be in all future cases considered) the natural frequency of the
mounting system calculated as though the plate were ideally rigid.

The relative transmissibility of the simple mounting system supported
by four mounts on a simply supported rectangular plate again having an
aspect ratio of 0.5 is shown in Fig. 95. To the plate at each of the four
mount locations are attached viscously damped dynamic absorbers together
having 0.2 times the plate mass and being tuned to a frequency of 0.869 Wy»
and having the damping ratio 0.268. The mounted item has six times the
plate mass and the fundamental natural frequency of the platelike foundation
is equal to 5 W, The mounts are located at distances of a/3 from the plate
corners in one direction, and at distances of a/6 from the plate corners in
the other, where a 1is the length of the longer plate sides.

The performance of the simple mounting system supported by a circular
simply supported plate of radius a is plotted in Fig. 96. For the solid-
line and dashed-line curves, the four mounts of the mounting system are
symmetrically located about the plate center at distances of 0.707a and
0.441a from it, respectively. In both cases the mounted item is four times
more massive than the plate, the fundamental natural frequency of which is
equal to 4 Wy In practice, the circular plate would be supported, for
example, around its perimeter by a rigid circular rib and be separated by

an expansion joint from the adjacent floor areas of the square or rectangular

3
-

machinery room in which it is located.
The performance of the simple mounting system supported by a quadrant
plate is shown in Fig. 97. The simply supported quadrant plate is square and

so, therefore, are the quadrants. The mounted item is four times more massive
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than the undivided plate, the fundamental natural frequency of which is equal

to 4 ub. The plate is assumed to be cut by expansion joints into four identical ;
quadrants that are supported by ideally rigid cross members. Each quadrant is
assumed to have simply supported boundaries, to be free to vibrate independently
of the other three quadrants, and to be driven solely by the vibratory force
transmitted by a single antivibration mount. For the solid-line curve, the
mounts are centrally located on the quadrants; for the dashed-line curve, the
mounts are located at distances of a/6 from the plate corners, where a is

the side lengths of the undivided plate.

Finally, the relative transmissibility of the compound mounting system
supported by a rectangular simply supported plate is shown in Fig. 98. The
plate has an aspect ratio of 0.5 and a fundamental natural frequency that is
equal to 10 Wy where W, is again the reference frequency of the compound
system [Eq. (58)]. The mounted item has ten times the plate mass and inter-
mediate masses that are one-tenth, one-fifth, and equally large as the
mounted item (for which the mass ratio 8 = 0.1, 0.2, and 1.0). The mounts
are located at distances of a/3 from the plate corners in one direction
(parallel to the longer plate sides), and at distances of a/6 from the plate
corners in the other direction, where a 1is the length of the longer plate
sides. For comparison, the performance of the simple mounting system (8 = 0)
is shown as the dashed-line curve. The performance of the compound system
is clearly superior to that of the simple system and, indeed, to all of the
mounting systems considered previously (Figs. 93 - 97), the only system

approaching the performance of the compound system being that of the simple

mounting system supported by a heavily mass-loaded foundation (Fig. 94).
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FIGURE LEGENDS
Simple deformations of a rubberlike material.

Dependence of the apparent modulus of elasticity Ea on the shape

factor S for natural rubbers of various hardnesses (Ref. 3).

Stress~-strain curves of 40 durometer rubber in compression with

various shape factors (Ref. 4).

Equivalence between the damping factor ¢ employed in this handbook

and other commonly employed measures of damping.

Dependence of (a) the dynamic shear modulus Gm g’ and (b) the shear
damping factor 6Gm 6 of a rubberlike material on angular frequency w
’

and temperature 6 (Ref. 1).

Frequency dependence of (a) the dynamic shear modulus and (b) the

shear damping factor possessed by unfilled natural rubber (Ref. 1).

Frequency dependence of (a) the dynamic shear modulus and (b) the
shear damping factor possessed by natural rubber filled with 50

parts by weight of HAF carbon black per 100 parts rubber (Ref. 1l).

Frequency dependence of (a) the dynamic shear modulus and (b) the
shear damping factor possessed by an unfilled SBR rubber (75/25

butadiene styrene) (Ref. 1).

Frequency dependence of (a) the dynamic shear modulus and (b) the

shear damping factor possessed by unfilled Thiokol RD rubber (Ref. 1).

Frequency dependence of (a) the dynamic shear modulus and (b) the
shear damping factor possessed by unfilled plasticized polyvinyl

acetate (Ref. 1).
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FIGURE LEGENDS -- CONTINUED

Fig. 11 Frequency dependence of (a) the dynamic shear modulus and (b) the ‘
shear damping factor possessed by butyl rubber filled with 40 parts

by weight of MPC carbon black per 100 parts rubber (Ref. 1l).

| ]
Fig. 12 Dependence on vibration amplitude (%2 shear) of the dynamic shear ,i
modulus of natural rubber filled by various parts by volume of MPC

] carbon black per 100 volumes of rubber (Ref. 5).

Fig. 13 Dependence on vibration amplitude (% shear) of the shear modulus
damping factor of natural rubber filled with various parts by

volume of MPC carbon black per 100 volumes of rubber (Ref. 5).

Simple mounting system with an antivibration mount of rubberlike

material.

Transmissibility of antivibration mounts of natural rubber, natural
rubber filled with carbon black, and Thiokol RD rubber at 20°C;

natural mounting frequency = 5 Hz.

- Natural frequency of a simple mounting system versus the static

deflection of its antivibration mount.

| S

Frequency dependence of (a) the dynamic shear modulus and (b) the
shear damping factor possessed by a parallel combination of natural
and Thiokol RD rubbers (Ref. 1). E
Transmissibility of a simple mounting of natural rubber filled with

40 parts by weight of EPC channel black at 19°C. The dashed-line

curve has been calculated from Eq. (13) assuming that qn and GGm are

frequency independent quantities (Ref. 1).

spring (solid-line curve), (b) a natural-rubber cylinder (chain-line

curve), and (c) a commercial shear mount (dashed-line curve). (Ref. 6).

Transmissibility of simple mountings that incorporate (a) a helical ‘l
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FIGURE LEGENDS -- CONTINUED
Fig. 20 Transmissibility of a simple mounting with wave effects calculated
: ; from the "long-rod" theory. Damping factor GE = 0.1, mass ratio

Y = 50, 100, and 250; natural mounting frequency = 5 Hz (Ref. 1).

Fig. 21 Transmissibility calculated from the Love theory of rod vibration
for simple mountings of unfilled natural rubber, natural rubber

filled with 50 parts by weight of HAF carbon black, and Thiokol RD

L rubber. Cylindrical mounts have a length-to-diameter ratio of 5; mass

ratio Y = 200; natural mounting frequency = 5 Hz (Ref. 1).

Simple mounting system with an ideally rigid mounted item supported

via nonrigid (multiresonant) feet.

Simple mounting system with essentially the situation pictured in

Fig. 22 (Ref. 12).

Transmissibility of the simple mounting system of Fig. 22 with shear-
beam resonances in feet of the mounted item. Mass ratio Yp = 40;
stiffness ratio ' = KF/K = 5, 25, and 100; damping factors GK = 0.05

and SF = 0.01 (Ref. 13).

Vibrating item to which is attached a dynamic vibration absorber with

damping of the viscous type.

Dynamic vibration absorbers attached (a) to the end, (b) to the mid-
point, and (c) to both the end and the midpoint of a cantilever beam

driven at its free end by a sinusoidally varying force.

Values of the optimum tuning ratio for the dynamic absorber of Fig. 26(a)

when tuned to the first or second beam resonance (Ref. 1).

Values of the optimum damping ratio for the dynamic absorber of Fig. 26(a)

when tuned to the first or second beam resonance (Ref. 1).
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FIGURE LEGENDS -- CONTINUED ‘)

Values of the optimum tuning ratio for the dynamic absorber of i)

Fig. 26(b) when tuned to the first or second beam resonance (Ref. 1).

Values of the optimum damping ratio for the dynamic absorber of

Fig. 26(b) when tuned to the first or second beam resonance (Ref. 1).

Maximum values of transmissibility at the first and second resonances

of the beam of Fig. 26(a) (Ref. 1).

Maximum values of transmissibility at the first and second resonances oh

of the beam of Fig. 26(b) (Ref. 1).

Transmissibility of the dynamic absorber with damping of the viscous
type. Optimum absorber tuning and damping for values of the mass

ratio u = 10/11, 5/6, and 1/2 (MZ/Ml = 0.1, 0.2 and 1.0) (Ref. 1).

Transmissibility across the beam of Fig. 26(a); mass ratio Yot 0253

tuning ratio (ma/mm) = 0.551; damping ratio = 0.460 (Ref. 1).

Transmissibility across a centrally driven circular plate that is
clamped around its boundary and which carries a dynamic absorber
attached to its midpoint. Mass ratio Ya = 0.1 and 0.25 for the
solid-line and chain-line curves, respectively, and Ya = 0 for the

dashed-line curve (Ref. 15).

Transmissibility across a simply supported square plate with a central
driving force and a central dynamic absorber. For the solid-line
curve, Ya = 0.05; for the chain-line curve Ya = (0.25; for the dashed- .

line curve b 0. Plate damping factors GE = GG = 0.01 (Ref. 17).

[

Single cantilever absorber attached to an end-driven stanchion.

Transmissibility across the stanchion of Fig. 37 when the mass ratio

Yl = 0.2 (Ref. 16).
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FIGURE LEGENDS -- CONTINUED
Transmissibility across the primary system of Fig. 25 to which a
dynamic absorber with damping of the solid type is attached
(6G = 0.01); the primary system has damping of the viscous type
for which GR = 0.5; the tuning ratio n 1is successively equal to

2/3, 1.0, and 3/2 (Ref. 1).

Transmissibility across the primary system of Fig. 25 to which is
attached a dynamic absorber with negligible damping (GR = 0.01) that
is tuned off resonance with a tuning ratio successively equal to

0.2, 0.5, 2.0, and 5.0; mass ratio y = 5/6 (M2 = MI/S).

Transmissibility across a simply supported rectangular plate with

an aspect ratio of 3 that is centrally driven and loaded by a dynamic
absorber having one-tenth of the plate mass; the absorber is tuned

to 0.2 of the fundamental resonant frequency of the plate; the

quantity u 1is the length of the longer plate sides.

Transmissibility across a clamped circular plate that is centrally
driven and loaded by a dynamic absorber having one-tenth of the
plate mass and that is tuned to 0.2 of the fundamental natural

’

frequency of the plate.

Transmissibility across a simply supported square plate that is
centrally driven and loaded by a dynamic absorber having one-tenth
of the plate mass and that is tuned to 3.0 times the fundamental
natural frequency of the plate; the quantity u is the common

length of the plate sides.
Simple mass-spring systems with a platelike dynamic absorber.

Section through (a) a platelike dynamic absorber held centrally,
and (b) an annular platelike absorber held around its inner peri-

meter.
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FIGURE LEGENDS -- CONTINUED

Fig. 46 Values of the optimum damping factor and of the square of the optimum

!

tuning ratio for the platelike absorber utilized as in Fig. 44

(Ref. 20).

Fig. 47 Transmissibility across the mass-spring systems of Fig. 44 with the
platelike absorbers tuned and damped as specified in Fig. 46. Absorber

mass ratios u = 50/51, 10/11, and 2/3 (M2/M1 = 1/50, 1/10, and 1/2).

Fig. 48 Compound mounting system with an ideally rigid machine mass Ml and an :

intermediate mass M2 that is supported (a) directly and (b) via non-

rigid (multiresonant) flanges or feet (Ref. 13).

Transmissibility of the compound mounting system employing natural- : E

rubber mounts. Mass ratio 8 = MZ/M1 = 0, 0.1, 0.2, and 1.0 (Ref. 1).

Compound mounting of 17,000 1b and 80,000 1b diesel generators on one

extensive intermediate mass (Ref. 21).

Small-scale compound mounting with an intermediate mass M, comprising

2
two cylindrical masses 10 and a spacer yoke 12 (resilient elements

comprise 16) (Ref. 22).

Transmissibility across the compound system of Fig. 48(a) (solid-line
curve) and Fig. 48(b) (chain-line curve). Mass ratios 8 = MZ/M1 = 0.2
and Yg = MZ/ZMF = 40; stiffness ratio I' = 5; damping factors SK = 0.05
and GF = 0.01. Transmissibility of the simple mounting system (8 = 0)

shown by the dashed-line curve; damping factors GK = 0.05 (Ref. 13). ’I

Compound mounting system with a machine mass Ml and an intermediate

mass M2 plus a dynamic vibration absorber of mass Ma (Ref. 18).

Pt}

Transmissibility across the compound mounting system of Fig. 53.

Mags ratios B = 0.1, 0.2, and 1.0, and u = 5/6 (Ma = MZ/S). Damping
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FIGURE LEGENDS -- CONTINUED

factor GK = 0.05. Absorber damping ratio GR = 0.25, and tuning
parameter € = 0.76. For the chain-line curve, u = 25/26 (Ma = MZIZS),

8 =1.0, GR = 0.12, and € = 0.90 (Ref. 18).

Transmissibility across a compound mounting system supported by a
simply supported rectangular plate with an aspect ratio of 0.5.
Primary mass is four times more massive than the plate; fundamental
natural frequency of plate is four times the reference frequency of
the compound system. Mounts are located symmetrically about the
pliite center at distances of 1/3 of the lengths of the plate sides
from each plate corner. The mass ratio B = MZ/H1 = 1.0, 0.2, 0.1,
and 0 (simple mounting system); mount damping factors GK = (.05

plate damping factors GE = GG = 0.01.

(a) apparatus and (b) electronic equipment used in a direct measurement

of mount transmissibility (Ref. 25).

Apparatus for the indirect measurement of mount transmissibility by

a four-pole technique (Ref. 27).

Values of the dimensionless parameter N_ for the first three natural

R

frequencies of a cantilever beam that is mass loaded at its free end

(Ref. 28).

Values of the dimensionless parameter NR for the first three natural

frequencies of a simply supported beam that is centrally mass loaded

(Ref. 28).

Values of the dimensionless parameter NR for the first three natural

frequencies of a clamped-clamped beam that is centrally mass loaded

(Ref. 28).
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FIGURE LEGENDS -- CONTINUED

Values of the dimensionless parameter NR for the first three natural
frequencies of a simply supported circular plate that is centrally

mass loaded (Ref. 28).

Values of the dimensionless parameter NR for the first three natural
frequencies of a clamped circular plate that is centrally mass loaded

(Ref. 28).

Values of the dimensionless parameter NR for the first four natural
frequencies of a clamped annular plate of radius a; the central con-

centric circular aperture has the radius pa.

Values of the dimensionless parameter NR for the first three natural
frequencies of a clamped annular plate with its central aperture

filled by a mass of radius 0.la, where a is the plate radius.

Values of the dimensionless parameter NR for the first three natural
frequencies of a clamped annular plate with its central aperture

filled by a mass of radius 0.2a, where a 1is the plate radius.

Values of the dimensionless parameter NR for the first three natural
frequencies of a clamped annular plate with its central aperture

filled by a mass of radius 0.3a, where a 1is the plate radius.

Values of the dimensionless parameter NR for the first three natural

frequencies of a clamped' annular plate with its central aperture

filled by a mass of radius 0.4a, where a 1is the plate radius.

Values of the dimensionless parameter NR for the first three natural

frequencies of a clamped circular plate loaded by a concentric

annular rib of radius 0.2a, where a 1is the plate radius.
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FIGURE LEGENDS -- CONTINUED

Values of the dimensionless parameter NR for the first three natural
frequencies of a clamped circular plate loaded by a concentric

annular rib of radius 0.4a, where a 1is the plate radius.

Values of the dimensionless parameter NR for the first three natural
frequencies of a clamped circular plate loaded by a concentric annular

rib of radius 0.6a, where a 1is the plate radius.

Values of the dimensionless parameter NR for the first three natural
frequencies of a clamped circular plate loaded by a concentric annular

rib of radius 0.8a, where a 1is the plate radius.

Values of the dimensionless parameter NR for the first natural fre-
quency of a simply supported circular plate of radius a driven and
mass loaded at an arbitrary point distanc 0.2a, 0.4a, 0.6a, and 0.8a

from the plate center.

Values of the dimensionless parameter NR for the second natural fre-
quency of a simply supported circular plate of radius a driven and
mass loaded at an arbitrary point distant 0.2a, 0.4a, 0.6a, and 0.8a

from the plate center.

Values of the diﬁonaionloss parameter NR for the third natural fre-
quency of a simply supported circular plate of radius a driven and
mass loaded at an arbitrary point distant 0.2a, 0.4a, 0.6a, and 0.8a

from the plate center.

Values of the dimensionless parameter NR for the first three natural
frequencies of a cantilever beam of length £ loaded at a distance
ul from its free end by a concentrated mass having a finite moment

of inertia for which the parameter ¢ = 0, 0.05, 0.1, 0.25, and 0.5.
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Values of the dimensionless parameter “R for the first three natural
frequencies of a cantilever beam of length £ loaded at a distance
ul from its free end by a concentrated mass having a finite moment

of inertia for which the parameter ¢ = 0, 0.05, 0.1, 0.25, and 0.5.

Values of the dimensionless parameter NR for the first natural fre-
quency of a simply supported square plate of side length a driven
and mass loaded at arbitrary points having the coordinates (a/2, a/8),

(a/2, a/4), (a/2, 3a/8) as measured from one plate corner.

Values of the dimensionless parameter NR for the first natural fre-
quency of a simply supported square plate of side length a driven
and mass loaded at arbitrary points having the coordinates (a/5, a/5),

(al4, a/4), (al/3, a/3), (a/2, a/2) as measured from one plate corner.

Values of the dimensionless parameter NR for the second natural fre-
quency of a simply supported square plate of side length a driven
and mass loaded at arbitrary points having the coordinates (a/2, a/8),

(a/2, a/4), (a/2, 3a/8) as measured from one plate corner.

Values of the dimensionless parameter NR for the second natural fre-
quency of a simply supported square plate of side length a driven
and mass loaded at arbitrary points having the coordinates (a/5, a/5),

(a/4, al/4), (a/3, a/3), (a/2, a/2) as measured from one plate cormer.

Values of the dimensionless parameter N, for the third natural fre-

R
quency of a simply supported square plate of side length a driven
and mass loaded at arbitrary points having the coordinates (a/2, a/8),

(a/2, a/4), (a/2, 3a/8) as measured from one plate corner.

Values of the dimensionless parameter NR for the third natural fre-

quency of a simply supported square plate of side length a driven
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and mass loaded at arbitrary points having the coordinates (a/5,
a/5), (a/4, al/4), (a/3, a/3), (a/2, a/2) as measured from one plate

corner.

(a) General four-terminal mechanical system, and (b) system reversed

so that its input and output terminal pairs are interchanged.

(a) Lumped mass obeying Newton's second law, and (b) a massless spring

obeying Hooke's law.
Series connection of n four-terminal systems.

Antivibration mount with end plates of masses Hl and Mz to which the
boundaries of a uniform rodlike sample of rubberlike material are

attached.

(a) Antivibration mount of Fig. 86 isolating the vibration of a mounted
item of mass M from a nonrigid substructure of arbitrary impedance ZT’
and (b) the rigid attachment of M to the substructure at the same

location as in (a).

T for an item of mass M that is resiliently mounted near each
overall

corner of a rectangular platelike substructure with simply supported
boundaries and with an aspect ratio of 0.5; M is four times more
massive than the plate. The antivibration mounts are symmetrically
and favorably located about the plate center, and are terminated on
the plate by lumped masses of total mass m = M. The damping factors
of the mounts and the platelike substructure are 0.05 and 0.01,

respectively. The dashed-line curve shows T for the same

overall
mounting system without the loading masses (m = 0) (Ref. 36).

Relative transmissibility of a simple mounting system in which the

mounted item is supported by eight mounts along the length of a
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clamped-clamped beam of length L with the mounts located at distances

of 0.125L, 0.375L, 0.625L, and 0.875L from each bean termination. The

mounted item has ten times the beam mass and the fundamental natural

frequency of the beam occurs at ten times the natural frequency (10 u%)

of the mounting system; mount and beam damping factors GK = 0.05 and

GE = 1.0.

Relative transmissibility of a simple mounting system in which the
mounted item is supported by four mounts along the length of a clamped-
clamped beam of length L with the mounts located at distances of
0.25L and 0.75L from each beam termination. Beneath each mount is a
lumped mass loading the beam; the total added mass is 2.5 times the
beam mass. The mounted item has ten times the beam mass, and the
fundamental natural frequency of the beam is equal to 10 Wy the mount

and beam damping factors GK = 0.05 and GE = 1.0.

Relative transmissibility of a simple mounting system in which the
mounted item is supported by four mounts along the length of a clamped-
clamped beam of length L with the mounts located at distances of
0.25L and 0.75L from each besm termination. Beneath the beam at each
mount location, dynamic vibration absorbers are positioned; together
the absorbers have 0.25 times the beam mass whereas the mounted item

is ten times more massive than the beam; the fundamental natural
frequency of the beam is 10 Wy The mount and beam damping factors

6K = 0.05 and GE = 1.0.

Relative transmissibility of the compound mounting system in which the
intermediate mass is supported by four mounts along the length of a
clamped-clamped beam of length L; the mounts are located at distances

of 0.25L and 0.75L from each beam termination. The mounted item has
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ten times the beam mass; the fundamental natural frequency of the
beam is equal to ten times the reference frequency of the compound
system. Mass ratio 8 = 1.0, 0.2, 0.1, and 0 (simple mounting system).

Mount and beam damping factors §, 6 = 0.05 and GE = 1.0.

K
Relative transmissibility of a simple mounting system supported by
eight or by four mounts on a simply supported square plate of side
length a. The mounted item is four times more massive than the

plate and the fundamental natural frequency of the plate is four

times greater (4 mo) than the natural frequency of the mounting system.
For the solid-line curve, eight mounts are located at distances of
0.2a, a/3 and 0.4a, a/3 from each plate corner; for the dashed-line
curve four mounts are located at distances of 0.25a from each plate
corner. Mount and plate damping factors GK = 0.05 and GE - GG -

1.0.

Relative transmissibility of a simple mounting system supported by
four mounts on a simply supported rectangular plate with an aspect
ratio of two. Mounted item is four times more massive than the
plate; fundamental natural frequency of the plate is equal to 4 w .
Mounts are located at distances of a/3 and a/6 from each plate
corner, where a is the length of the longer plate sides. Beneath
each mount is located a lumped mass that is a factor of Y times
greater than the plate mass. Mount and plate damping factors

6& = 0.05 and 6; - GG = 1.0.

Relative transmissibility of a simple mounting system supported by
four mounts on a simply supported rectangular plate with an aspect
ratio of two. Mounted item is six times more massive than the plate;

fundamental natural frequency of the plate is equal to 5 Wy Mounts
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are located at distances of a/3 and a/6 from each plate corner,
where a 1s the length of the longer plate sides. Beneath the
plate at the mount locations are positioned four dynamic vibration
absorbers, the total mass of which is one-fifth of the plate mass.

Mount and plate damping factors §, = 0.05 and GE = GG = 1.0.

K
Simple mounting system supported by four mounts on a simply supported
circular plate of radius a. The mounts are symmetrically located
about the plate center at distances of 0.707a and 0.44la from the
plate center (solid-line and dashed-line curves, respectively).

The mounted item is four times more massive than the plate and

the fundamental natural frequency of the plate is equal to 4 W .

Mount and plate damping factors &, = 0.05 and GE - GG = 1.0,

K
Relative transmissibility of a simple mounting system supported by
four mounts on a simply supported square plate that has been divided
by rigid cross members into four identical quadrants that are free
to vibrate independently of one another; each quadrant supports

an antivibration mount. The mounted item is four times more
massive than the undivided plate; the fundamental natural frequency
of the undivided plate is equal to 4 W, . The mounts are located at
distances of a/2 from the plate corners (solid-line curve) or at
distances of a/3 from the plate corners (dashed-line curve), where

a is the length of the undivided plate sides. Mount and plate damp-

ing factors 6& = 0.05 and SE = GG - 1.0,

Relative transmissibility of the compound mounting system, the inter-

mediate mass of which is supported by four mounts on a simply supported

rectangular plate with an aspect ratio of two. The primary mass of

the compound system is ten times more massive than the plate; the
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fundamental natural frequency of the plate is ten times greater than
the reference frequency of the compound system. Mass ratio 8 = 1.0,
0.2, 0.1, and 0 (simple mounting system). Mount and plate damping

factors GK = 0.05 and GE - GG - 1.0.
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