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ABSTRACT

Large deformation elastic-plastic buckling loads are ob-
tained for axisymmetric spherical caps with initial
imperfections. The problem formulation is based on equilib-
rium equations in which the plastic deformation is taken as
an effective plastic load. Both perfectly plastic and strain
hardening behavior are considered. Strain hardening

is represented by the Prager-Ziegler kinematic hardening

'theory, so that the Bauschinger effect is accounted for.

Solutions of elastic-plastic circular plates and spherical
caps are in good agreement with previous results. For the
spherical cap it was determined that both initial imperfec-
tion and plastic deformation have the same effect of reducing
buckling capacity; as the magnitude of the imperfection in-
creases, the influence of plastic deformation becomes less
important. It is also found that the geometric parameter A,
which is used as an important factor in elastic response, be-
comes meaningless for the elastic-plastic buckling analysis

of spherical caps.
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INTRODUCTION

To realistically predict buckling loads for spherical
caps, consideration should be given to the effect of geome-
tric and material nonlinearities as well as initial
imperfections, since all three factors play significant roles
in reducing spherical cap buckling capacity.

The axisymmetric buckling of clamped shallow spherical
shells were studied by Huang [l1] and Weinitschke [2]. To re-
duce the gap between experiment and theory, they introduced
asymmetrical deflections along the circumferential direction
and obtained buckling pressures for different cap geometric
parameters by solving eigenvalue problems.

Khojasteh-Bakht [3] analyzed small deflection elastic-
plastic shells of revolution by the finite element method.
Marcal extended the work of [3] to include large deforma-
tion terms [4]. An isotropic strain-hardening is assumed in
these two references and it is found in Ref. [4] that the
plastic yielding has the significant effect of reducing the
buckling pressure of shell structures. Various solution pro-
cedures for the large deformation elastic-plastic analysis of
shell structures were discussed in Ref. [5]. Shells of revo-
lution under cyclic loading were examined in Ref. [6].
Bushnell [7] employed a variational finite-difference ap-
proach to investigate the influence of plastic deformation on
a shell structure.

Initial imperfections in the shell shape sometimes ac-
counted for the discrepancy between experimentally observed

buckling loads and theoretically calculated values [8].
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Hutchinson [9] utilized the Koiter approach to determine the
approximate asymmetric buckling load of spherical shells with
initial imperfections. Asymmetric buckling loads for spheri-
cal caps with asymmetric imperfections were obtained in Refs.
{10,11] by directly solving two dimensional governing differ-
ential equations.

It is the purpose of this work to study the effect of
initial imperfections, and geometrical and material nonlinear-
ities on the axisymmetric buckling of spherical caps. It is
hoped that the result obtained may provide a better under-
standing on the axisymmetric buckling nature of spherical
caps. The analysis of the proposed title problem can be pro-
ceeded by incorporating the appropriate plasticity theory

into an existing computer code [12].

§ Selection of a plasticity theory is very important. The

theory should be simple in mathematical expression, easy to

apply and capable of representing the material property such as

the Bauschinger effect. 1In accordance with these criteria,

the von Mises initial yield condition, the incremental flow
theory [13] and the Prager-Ziegler kinematic hardening theory
[14,15]) are used in this study.

The problem formulation is based on equilibrium equa-
tions, treating the plastic deformation as effective plastic .
loads which are lumped together with actual applied loads
[16]. Governing equations are replaced by finite differences
and resulting equations are then solved by the nonlinear re-
laxation method [17].

| In the next section, the governing equations based on




equilibrium considerations are given. This is followed by

the description of plasticity relations and the general solu-
tion procedure. To test the validity of the plasticity theory
adopted, example problems are solved and comparisons with
other solutions are made. Large deformation elastic-plastié
buckling loads are then obtained for spherical caps with in-

itial imperfections. Conclusions and a general discussion

are given in the final section.




PROBLEM FORMULATION

The geometry of a spherical cap is shown in Fig. la, in
which H is the central height and R the shell radius; a is the
base radius; W(r) and U(r) are the displacement components
along normal and tangential directions, respectively, and
Wi(r) is the initial imperfection; g is the applied uniform
pressure. The undeformed shape of the perfect shell can be

adequately described by

2 = H[1l-(r/a)?} (1a)

and the radius of curvature of the shell is approximated by

R = a2/2H (1b)
where r is the radial coordinate.
Fig. 1lb shows the membrane forces Nr and Ne, the trans-

verse shear Qr and the moments Mr and Me. Equilibrium of

moments requires
L - =
(xrM_) M9 rQ 0 (2)

And equilibrium of stress resultants along radial and normal

directions provides

(rN_) '-N, = 0 (3) !
- 1 ] =
[xN_(W,=2) '+rQ ]'+rq = 0 (4)
where ( )'=3( )/9r and Wf=w+Wi. Note that the nonlinearity ’

has been introduced in Eq. (4) by considering the influence

of W

£
Elimination of Qr in Egs. (2) and (4) yields
w'
P TG S P (O
M;'+ r Mr r M6+Nr(wf a3 R)+N9(r 2 R)+q 0 (5)
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Egs. (3) and (5) are the basic equations for theé analysis of

axisymmetric spherical caps.

Stress-Strain and Strain-Displacement Relations

For a shell deforming into plastic range, the strain in

a point within the thickness can be expressed by
{e} = {e®}+{eP} (6)

where {e}, {e®} and {eP} are the total, elastic and plastic
strain vectors, respectively.
Furthermore, the total strain can be considered as the
sum of the membrane and bending components:
{e} = {el+z{k} (7)
where z is the vertical coordinate through the shell thick-
ness (Fig. 1lb). The membrane and bending strains are related

to displacements by

= '-w l ' 2 W'
er 8] §+2(W) +WWi
0 r R (8)
= <W"
Kr W
wl
e e

Note that the elastic components of strains are the only

strains which can be related to stresses by Hook's law:

{o} = [E]({e}-{eP}) (9)
where [E], the elastic strain to stress transformation matrix,

is given as

1 v
(£] = =2 2[ ] (10)
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in which E is Young's modulus and v is Poisson's ratio.

Membrane stress resultants and bending moments are ob-

tained by
h/2
{N} = f {o}dz (11)
-h/2
h/z
{M} = / {o}zdz (12)
-h/2

Substituting Egs. (6-9) into Egs. (11) and (12), we obtain

the membrane forces

P
e g
2 P
Ne 1-v v 1 ee Ne
where the effective plastic membrane forces are
NP h/2 eP
; = [E] ’ ;‘ az (14)
Ne -n/2 eq
and the moments
M 1 v K MP
HD[ ]H : (15)
Me Vv 1 Ke Me

where D=Eh3/l2(l-v2), and effective plastic moments are

MP h/2 |(eP
rf — [E] f rl 2az (16)
Mg -h/2 eg

Governing Equations

In terms of displacements, the governing equation in-
volving the major displacement U is obtained by substituting

Egs. (13) and (14) into Eq. (3):

2 |
" u' & U - L=V P J

where




G(W) = FL(W)+vFs (W) + 22V (F_-F )

Fr(W) = -W/R+(W')2/2+W'Wi

Fo (W) = -W/R (18)
FL(W) = <W'/RW W"+W WY +W W}

Fy(W) = -W'/R

and qg, an effective plastic load, is expressed in terms of

effective plastic membrane forces by

P _ Py1,nP /P
q; = (Nr) +Nr/r Ne/r (19)

The governing equation involving the major displacement

W is also obtained by substituting Egs. (13-16) into Eqg. (5):

pviw- BB (e +ve ) (W+1/R) - —EB_(c tve ) (W/r+l/R)
FLELTVEL) (N Flegtve ) (W,
1-v 1-v
= g-a5-a} (203

whore vi=v" (02} and Y20 1=l 17+t F'es the menbrane straine

£ 1€y are defined in Egs. (8), effective plastic loads qg and

qg are given as

a3 = NPWie1/R) +NP(WL/r+1/R) (21)
q§’= (Mf)"+2(mf)'/r-(mg)'/r (22)

Egs. (17) and (20) are two fundamental governing equa-

tions in terms of displacements for the present analysis.

Boundary Conditions

At shell apex, the nature of axi-symmetry requires that
W'(0) =0 (23)

u(0) =0 (24)




Along the outer edge (r=q), if the cap is clamped:
U(aq) = W(a) = W'(a) =0 (25)
On the other hand, if the cap is simply supported, it re-
quires that
U(a) = W(a) =0 (26a)
and that Mr(a) in Eq. (15) to be zero, i.e.

2
a"w vaw _ .p s
D(gr—z‘ < o E -&) = Mr(a)' r=a (26b)

where Mf is defined in Eqg. ‘16).

Nondimensional Forms

For convenience, the following nondimensional quantities’

are introduced

%= ol B = 12(1-v%)
32 = @’ an q.. = 4Eh’/R%n?
cr
Sal L P = a/q,, (27)
i 2 '
u = aU/h W= W, /h

w = W/h

where . is the classical buckling pressure of a complete
spherical shell of the same radius of curvature and thickness.
With the adoption of Egs. (27), the nondimensional forms of

Egs. (17) and (20) become
4 u
u"+ :— - x—z +g(w) = e e qi’ (28)

and
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4 o o A% L x*
v w-12(er+vao)( f+ _7)-12(€6+ver)(§_ s _7)
m m
?
A4 m4a4
2 4 S g~ =plgigR) (29)
m Eh

where g(w) and f(w) terms are nondimensional counterparts of
similar terms in Eq. (18):

g(w) = f;(w)+Vfé(w)+(l-V)[fr(w)-fe(w)]/x

2
3 o Wi, &
fr(w) = ;7 w+ 2(w ) “+w wi
AZ
fo(w) = - ;7 w (30)
A2
L} - - L NIy [ | Uy R | | " 1t
fr(w) = ;7 w'+w'w"+w wi+w w,
2
m s A '
fé(w) = ;7 w

and Er' €y are nondimensional quantities of membrane strains

€ and €, in Eq. (8)

()
2
—._.lA 12'"
G = Wt ;7 w+ E(w') +w wi
(31)
2
- u A
£, = — = w
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PLASTICITY RELATIONS

As indicated by Ziegler [15], the behavior of a strain-
hardening material can be described by

(a) an initial yield condition, defining the elastic
limit of the material,

(b) a flow rule, relating the plastic strain increment
with the stress and the stress increment,

(c) a hardening rule, specifying the subsequent yield
condition in the course of plastic flow.

Because of complexity associated with plastic deforma-
tion, the laws governing the behavior of materials in the
plastic range have not, as yet, reached a level of general
acceptance. A judicious choice, among all available plasti-
city theories, should consider both the simplicity in mathe-
matical expression and the proper representation of
experimentally observed material behavior.

Based on these considerations, the von Mises yield func-
tion, which describes a smooth surface in stress space and
represents a simple mathematical function, is chosen as the
initial yield condition. The flow rule of von Mises and the
Ziegler-Prager kinematic hardening rule are also selected in
this study. It is important to note that this hardening rule
does account for the Bauschinger effect.

In a 9-space stress field with origin 0 (Fig. 2), the

von Mises initial yield surface can be described by

F(oij) = k2 = constant (32)

For an initially isotropic material, the form of the function
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F is invariant with respect to a rotation of the stress state.
The Prager's hardening rule [14] assumes that during
plastic deformation, the yield surface moves in a translation

without changing its shape and hence the subsequent yield sur-

face takes fhe form

F(o,.-a..) =k (33)

where aij represents the total translation of the yield surface

center which is a measure of the degree of work hardening. 1In

the space O;:0 @ is the position vector of the yield surface

s el
center C which before plastic deformation takes place is lo-

cated at the origin (Fig. 2).

The flow rule of von Mises gives the following expression:

def, =
ij Boij

SF 4% , @t (34) .

which indicates that the plastic strain increment de?j lies
in the exterior normal of the yield surface (33).
The Ziegler's modification [15] of Prager's hardening

rule suggests that the surface (33) moves in the direction of

the radius connecting its center with the stress point (Fig. 2):

daij = (cij-aij)du ” du>0 (35)

d\X in Eq. (34) and du in Eq. (35) are to be determined.
Determination of duy is based on the condition that stress

point always remains on the yield surface in plastic flow.

This condition, in fact, states that for an infinitesimal in-

crement of loading the vector dcij-daij must be orthogone! to

the outer normal to the yield surface:

(40 . . =da, 4} > Bt s R (36)




Substituting (35) into (36) yields

(aF/aokQ)dok2

— (37a)
(Gmn amn)aF/Bomn

du =

and hence

(3F/3ag, )do
da, . = EE _EL i s ) (37b)

ij (cmn—amn)aF/aomn o R

According to Refs. [14,15], 99X in (34) can be obtained

by assuming daij=cde§j and putting this relation into (36):
R e (362)
. mn mn
and hence
o d (9F/90, ,)doy . SF i
ij c (8F/Bdmn)(3F/30mn) Boij

where ¢ is the hardening coefficient and can be determined
from the uniaxial stress-strain relation.

Now, let us write Eq. (33) in terms of 3 principal
stresses:

f = F—kz

= %[(31-6’2)2+(52—63)2+(E3—61)2]-o§ =0 (39)

where Oy is the yield stress in uniaxial tension and 31 =

For the case of plane stress (Fig. 3), we have
O3 =@y =0,= 0 (40)
and Eq. (39) reduces to

o — S .
f = oy 0102+02 oy 0 (41)

|

By putting Eq. (39) into Eq. (38b) and using relations (40-41),

e S, SR L
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we obtain

P %
sey| 1[5 51551 (Ao,) -
2eP)  Dls.s ‘ T
e, Sl 2 S, A02

where
- 15 .= - i = o)
s1 = (ol 02/2)/0y ; 82 (02 01/2)/0Y , D= 5 ¢ (43)
From Hook's law, we have

e

Aol _E 1 V) Ael
o 2 e (44)

Aoz 1-v v 1 Ae,

2

It is also noted that

e p
Ael 2 Ael 3 Ae1 " ’
af ™ P (45)
Ae Ae Ae '
2 2 2
Introducing (42) into (44) provides f
Ao C c Ae '
{ 1} 2 [ 11 12] { 1} L |
Ao Ca1  Ca2l] lae, i
where
e 2
Cll = §(D+E 52) L
C = E(D\)—ES SL)=-C
12 Q2 172 21
- E 2
Caa = §'P*E 5,
S 2 2 2
0 = D(1-v )+E(sl+2vslsz+sz)

For a given displacement field, {Ae} are obtained from incre-
mental forms of Egs. (7) and (8). Egs. (46) are the
stress~-strain relations during the course of plastic flow

(loading). Otherwise, Egs. (44) should be used for all stress

computations.

PorepET rom— : ﬂ.‘...n...ii=!Illllllllllllllllllll“




Up to this point, the hardening coefficient ¢ in Eq.
(43) is the only constant yet to be decided. If the structure
is in a state of uniaxial stress, the stress-strain relation
is the csame as that obtained from tension or compression tests.

The expression for the hardening coefficient ¢ can be readily

obtained from Eq. (42) by setting Aep=Ae§, A0=Acl:
P
1 _ 3 Ae
e 230 (Tl
or
D = ___A“p (47b)
Ae

This equation shows that the value of D is equal to the slope
of the uniaxial stress-plastic strain curve.

From Egs. (47), the values of the hardening coefficient
for two special cases may be specified here: (i) for an
elastic-ideally plastic material, c=D=0, (ii) for a linear

hardening material, D=EEt/(E-Et), where E_ is the tangent

t
modulus. Uniaxial stress-strain curves for these two types

of hardening material are given in Fig. 4.

Nonlinear Hardening

Also given in Fig. 4 is the stress-strain curve for a
nonlinear hardening material. 1Its D value, instead of being
a constant, depends on the state of stress. One way of deal- 1
ing with this rather complicate situation is based on the
Ramberg-Osgood representation of a uniaxial stress-strain
curve [18]:

n-1

(48)

0.7
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log(17/7)
log(oy 4/04 gs)

where n = 1+

e is the total strain, E is the slope of the linear portion
of the stress-strain curve, and 9.7 ana 9y.85 are the stress-
es at which the curve has secant moduli of 0.7E and 0.85E,
respectively.

It is understood that the nonlinear term in Eq. (48) is

the plastic strain. D value of this material can be obtained

as

n-1
% .7

(0]

D=7_E

3n (49a)

We may generalize this equation to a multiaxial state of

stress [19,20]:

o n-1
B 0.7
D = SR = (49b)
o
where o, the effective stress, is defined as
& = S ot.o! (50a)
2 ij ij

in which Oij is the deviatoric stress. For the case of plane

stress,

(50b)

qQl
It

2 2
0,=0,0,+0,

Loading Criteria

In the incremental solution procedure for elastic-plastic
problems, in addition to the constitutive relations, it is
necessary to have a loading/unloading criterion. For this
purpose, let's define %=(3f/3cij) doij’ where f has been de-
fined in Eq. (39). Loading, unloading and neutral loading

are associated with the plastic state f=0, and are

FUSEENUSISRNIEE L N TS
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characterized by f>0, f£<0 and f=0, respectively. When load-
ing or neutral loading takes place, Eq. (46) must be applied.

On the other hand, Eq. (44) must be used when unloading occurs.

ki et
e e o Mt
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SOLUTION PROCEDURE

For convenience, a simple flow chart is sketched in Fig.
5 to explain the general solution procedure. The entire pro-
cess is divided into two major loops, namely, the elastic
solution and material property loops.

In the elastic solution loop, all material properties are
held constant. Consequently, the effective plastic loads,

q? in the two governing equations (28) and (29) are fixed and
combined with the actual externally applied load q, the prob-
lem is thus reduced to an elastic large deformation problem.

Central finite differences are used to conveft Egs. (28)
and (22) to a discrete system of equations, and the nonlinear
relaxation technique is employed to solve these nonlinear
equations. For details of solving these equations by the non-
linear relaxation technique, readers are referred to Ref.
[17]). The iteration in this loop is considered converged
when the average absolute change of u and w displacements at
all points is less than 0.0001.

With the new displacement field {u}k, the material prop-
erties must be updated so that the (nonlinear) stress-strain
relation can be satisfied at all points over the shell surface
and through the thickness. In the material property loop,
the loading criterion is first checked. If the material point
is in an unloading situation or still in the elastic range,
Hook's law is used and the computation is very straight-for-
ward.

If the material point is in a loading situation, incre-

mental strains {Ae} are computed from Eq. (7) by using




{Au)} = fu}k - {u} %=1 cbere & 1s the masbos GF T material property
loop, see Fig. 5), and {Ac} are computed from Eq. (46). Having obtained

{Ac}, the new values of {0}, {e®} and {eP} can readily be calculated.

p

Effective plastic loads qi

are thgn evaluated from integration formulae
(19), (21) and (22) through the use of Simpson's rule (9 thickness points
are used for the entire computation in this paper).

The material property is considered to be updated if average absolute
change of displacements between the present and the previous material
property loop is less than 0.00l1. Otherwise, the iteration goes to the

elastic solution loop again and the entire operation is repeated until

the material property and equilibrium equations are satisfied.

e i itai " i -—’M
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COMPARISON WITH EXISTING SOLUTIONS

To test the validity and accuracy of plasticity theory
utilized in this study, three small deformation circular
plates and two large displacement spherical caps of various
material properties are chosen as example problems.

The first example is a uniformly-loaded simply supported
circular plate (Fig. 6a). Elastic-ideally plastic material
is assumed with the value of the fully plastic moment, MO'
equal to 4000 1b in/in. 11 and 9 points are selected along
the plate surface and thickness, respectively. After the
elastic limit has reached the load was increased in incre-
ments of 4 to 5 psi.

Results are displayed in Fig. 6a-6c; also shown in these
figures are solutions of Ref. [21]. Ref. [21] adopted a fi-
nite element formulation and the isotropic hardening rule.
Despite differences in the method of solution, these two sets
of results are virtually identical.

Also shown in these figures are solutions from the elas-
tic analysis. A redistribution of displacements and moments
as a result of the plastic deformation is quite apparent in
these figures.

The same example problem is considered again with the
exception that the material property is of linear hardening
behavior as given in Fig. 7a and 7b. The same surface and thickness points

are used and results are displayed in Fig. 7a and 7b. Also plotted in

these figures are elastic solutions and those calculated by
Khojasteh-Bakht [3]. He used a finite element analysis and

an isotropic hardening rule. Comparison of present results




p————

and those of (3] is excellent. Again, the effect of the plas-
tic deformation on displacements and moments is obvious from
these figures.

The third example problem is a uniformly loaded clamped
circular plate of nonlinear hardening material (Fig. 8a).
This problem was originally considered in Ref. [22]. The ma-
terial stress-strain curve given in Ref. [22] can be described
by the following Ramberg-Osgood parameters: E = 107 psi,
00'7=24x103 psi, n=6.66, oy=16x103 psi and v=0.33. Present
solutions and those of Refs. [19,22] are shown in Figs. 8a
and 8b. The finite element method and kinematic hardening
rule are used in Ref. [19]. On the other hand, a finite ele-

ment formulation together with an isotropic hardening rule are

employed in Ref. [22]. Good agreement is observed between
present solutions and those of [22]. At higher load levels,
results of Ref. [19] drift away from present solutions and
those of Ref. [22].

Next we consider a simply-supported isotropic spherical

cap under a uniform external pressure. Svalbonas and Levine

predicted an elastic-plastic buckling load for such a cap in
Ref. [20]. The material under consideration obeys a linear
hardening law with a ratio of tangent modulus to Young's mod-
ulus of 0.1 and yield stress to Young's modulus of 0.002. A
shell geometry parameter A=4 is chosen. Other geometric quan-
tities are given in Fig. 9. Also shown in this figure are

the present load vs central deflection curve and that of [20].
Comparison between these two sets of solutions is guite good;

the present analysis predicts a buckling load of 2050 psi




which is about 5% below the value of 2150 psi estimated in
[20].
The final example problem considered is a uniformly load-

ed clamped spherical cap of linear hardening material (Fig. 10).

Geometric dimensions and material properties are the same as those of Fig. 9
: except the thickness. Two geometric parameters of A=4 and 5.5 obtained by
¢
:’ varying the shell thickness are analyzed. Load vs central deflection
: curves are plotted in Fig. 10. Also shown in this figure are
: the results obtained in Ref. [6]. Good agreement between
4 these two solutions are noted for the spherical caps of both
?- A=4 and 5.5. The present analysis predicts buckling occurs
&
B . s
g at load of 2060 psi for A=4 and 1060 psi for A=5.5.
§
5
4
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ELASTIC-PLASTIC BUCKLING OF SPHERICAL CAPS WITH INITIAL
IMPERFECTIONS

Having established the validity of plasticity theory
adopted in this work, we turn our attention to the main ob-
jective of this paper: the large deformation elastic-plastic
buckling analysis of spherical caps with initial imperfec-
tions.

Two types of spherical caps (called shells A and B in
Fig. 1l1) are chosen with considerable difference in geometrical
dimensions. Shell A is the same as that shown in Fig. 10;
shell B was used in Ref. [23] for the dynamic buckling analy-
sis. Three geometric parameters, A=5,7.5 and 10, for each
type of the spherical caps are selected for this study, the
value of A is obtained by varying the shell thickness h (A=
2[3(1-v2)]1/4(H/h)1/2). Material properties of these two
spherical caps are given in Fig. 1l1; 1in both cases, only
linear hardening is considered.

The axisymmetric initial imperfection adopted in this
study is of the dimple type which was also used in Ref. [8].
The type of imperfection is expressed mathematically as

3

W= (W o/h) (1-x%)

where Wio is the maximum imperfection which occurs at the
shell apex. Selection of this expression is, in fact, quite
arbitrary. However, it does provide an adequate description
for actual shells since the important parameter is the maxi-
mum eccentricity and not the imperfection shape function.

In the buckling analysis of spherical caps with the non-

linearity in both geometry and material, time consuming
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iteration schemes are usually involved, and hence an efficient
numerical procedure is highly desired. The computer program
developed in this study provides a restarting capability at
any load level. Thus, in the buckling load calculation, it

is able to halt the execution at any load level and restart
from that point by a proper choice of load increments. Also,
it is able to restart from the last converged load level by
selecting a smaller load step after the iteration fails be-
cause of load level already advancing into the buckling zone.
With this facility, more accurate buckling loads may be obtain-
ed, and considerable computing time may also be saved.

A geometric parameter of A=5 is first studied. This cor-
responds to h=0.26 in. and 0.0227 in. for shells 2 and B,
respectively. The magnitude of imperfections considered are
in/h=O’ 0.1, 0.5 and 1. Results associated with this geo-

metric parameter are depicted in Fig. 11 for buckling load vs

imperfection. They include the elastic solution and those 1
from elastic-plastic (linear hardening) analyses. It is im- §

portant to point out that both shells A and B yield the same

elastic solution. However, their elastic-plastic results are
different.

For the purpose of references, load vs central deflection
curves are plotted in Fig. 12 for )=5 of shell A for different
imperfections. Both elastic, elastic-plastic solutions are
shown. A redistribution of displacements as a result of the
plastic deformation is obvious from this figure.

Similar to what is shown in Fig. 11, the results for A=
7.5 and 10 are given in Figs. 13 and 14, respectively. Again,

both shells A and B provide the same elastic solution for each




=24~

of A=7.5 and 10. It is also noted that both solutions from

elastic and elastic-plastic analyses are the same for shell

B in Fig. 14. This means that the shell with this geometric

parameter has the thickness so thin that it never does allow

plastic deformation to develop before buckling occurs. The

effect of the thickness dimension on plastic yielding can also
§ be seen from a comparison of results among Figs. 11, 13 and
14: the larger the thickness, the more the influence of the
plastic deformation. A summary of results presented in Figs.

11, 13 and 14 is given in Table 1.
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DISCUSSION AND CONCLUSIONS

An incremental flow theory based on von Mises yield sur-
face and in conjunction with the Prager-Ziegler kinematic
hardening rule is utilized for the calculation of plastic de-
formations. The theory is then incorporated into an existing
program for the large deformation analysis of spherical caps
with initial imperfections. The problem formulation is based
on equilibrium equations in which the plastic deformation is
treated as an effective plastic load and lumped together with
the actual applied loads.

In every solution cycle, the material property and effec-
tive plastic loads are held constant, and the problem is
reduced to an elastic one whose solutions are obtained by fi-
nite differences and the nonlinear relaxation technique [17].
Effective plastic loads are then modified and the procedure
is repeated until they correspond to the computed state of
stress and to specified stress-strain relations at all points
over the shell surface and through the thickness. The solu-
tion procedure mentioned here is sketched in Fig. 5 for
reference.

It is noted that the kinematic hardening rule utilized
in this work accounts for the Bauschinger effect, and that
perfectly plastic, linear and nonlinear hardening behavior
are all included in the program. Nine thickness points and
a Simpson rule are used for the calculation of the plastic
deformation. A dimple type of imperfection is adopted which
provides a quite adequate description of the local nature of

spherical shells.




In general, the convergence related to material property
iterations is quite rapid. For example, for a load level not
too close to the buckling zone and with a proper load incre-
ment, only about 2-5 iterations are usually required to
satisfy the material property.

To test the validity of the plasticity theory implemented
in the existing program [12], five elastic-plastic plate and
spherical cap problems were solved. Good agreement with other
solutions was obtained.

Large deformation, elastic-plastic buckling loads are
calculated for two types of spherical caps (Fig. 11). For
each of these caps, three geometric parameters (A) are studied.
Results obtained for each of these three parameters are pre-
sented in Figs. 11, 13 and 14, respectively. From these re-
sults, it is found that both initial imperfection and plastic
deformation have the same effect of reducing buckling capa-
city, and that as the magnitude of imperfection increases, the
influence of the plastic deformation becomes less significant.
For example, at Wio/h=1, elastic and elastic-plastic solu-
tions are almost the same in Figs. 11, 13 and 14. It is also
found that the geometric parameter A, which is used as an im-
portant factor in elastic buckling load calculations, becomes
meaningless for the elastic-plastic buckling analysis of these
caps. Elastic-plastic buckling loads, in fact, depend on ac-
tural cap geometric dimensions and material properties.

As a final remark, the plasticity theory adopted in this
work, due to its simplicity in the mathematical representation,
is quite easy to apply. More importantly, because of its ca-

pacity of predicting an ideal Bauschinger effect, the theory




=00
also provides very realistic results. The later feature is
essential for the analysis of cases involving reversed or

cyclic loading situations.

ACKNOWLEDGMENT

The author is deeply indebted to Dr. N. Perrone, Office
of Naval Research, for his helpful suggestions and discussions

during the course of this investigation.

ST PRV




-29-

REFERENCES

1. Huang, N. C., "Unsymmetric Buckling of Thin Shallow Spher-
5 ical Shell," Journal of Applied Mechanics, Vol. 31, No. 3,
Sept. 1964, pp. 447-457.

4 2. Weinitschke, H. J., "On Asymmetric Buckling of Shallow
Spherical Shells," Journal of Mathematical Physics, Vol.
44, 1965, p. 141.

3. Khojasteh-Bakht, M., "Analysis of Elastic-Plastic Shells
of Revolution Under Axisymmetric Loading by the Finite
Element Method," Ph.D. thesis, University of California,
Berkeley, 1967.

4. Marcal, P. V., "Large Deflection Analysis of Elastic-
Plastic Shells of Revolution," AIAA Journal, Vol. 8, No.
9, Sept. 1970.

5. Stricklin, J., Haisler, W., and Von Riesemann, W., "Formu-
lation, Computation, and Solution Procedures for Material
and/or Geometric Nonlinear Structural Analysis by the
Finite Element Method," Texas A&M University and Sandia
Corporation Report SC-CR-72-3102, January 1972.

6. Levine, H. S., Armen, H., Jr., Winter, R., and Pifko, A.,
“Nonlinear Behavior of Shells of Revolution Under Cyclic
Loading," Computers and Structures, Vol. 3, 1973, pp.
589-617.

7. Bushnell, D., "Large Deflection Elastic-plastic Creep
Analysis of Axisymmetric Shells," Numerical Solution of
Nonlinear Structural Problems, Proceedings of ASME Winter
Meeting, Nov. 1973.

8. Koga, T., and Hoff, N. J., "The Axisymmetric Buckling of
Initially Imperfect Complete Spherical Shells," Interna-
tional Journal of Solids and Structures, July 1969.

9. Hutchinson, J. W., "Imperfection Sensitivity of External-
ly Pressurized Spherical Shells," Journal of Applied
Mechanics, Vol. 34, No. 1, March 1967, pp. 49-55.

1C. Kao, R., and Perrone, N., "Asymmetric Buckling of Spher-
s ical Caps with Asymmetric Imperfections," Journal of
Applied Mechanics, Vol. 38, No. 1, March 1971.

11. Kao, R., "A Note on Buckling of Spherical Caps with Ini-
tial Imperfection," Journal of Applied Mechanics, Vol.
39, No. 3, Sept. 1972.

12, Kao, R., and Perrone, N., "Dynamic Buckling of Axisymme-
tric Spherical Caps with Initial Imperfections," Compu-
ters and Structures, Vol. 9, 1978, pp. 463-473,.

13. Hill, R., The Mathematical Theory of Plasticity, Oxford

x . _...__nun.-nin-uui;:;::===lll.lllllllllll.




s dh Mg ol

14.

15.

16.

19

18.

19.

20.

21.

22,

23.

30

Univ. Press, 1950.

Prager, W., "The Theory of Plasticity: A Survey of Re-
cent Achievements," (James Clayton Lecture), Proc. Instn.
Mech. Engrs., Vol. 169, 1955, p. 41l.

Ziegler, H., "A Modification of Prager's Hardening Rule,"
Quart. Appl. Math., Vol. 17, No. 1, 1959,

Lin, T. H., Theory of Inelastic Structures, John Wiley
and Son, New York, 1968.

Perrone, N., and Kao, R., "A General Nonlinear Relaxa-
tion Technique for Solving Nonlinear Problems in
Mechanics," J. of Applied Mechanics, Vol. 38, No. 2,
June 1971, pp. 371-376.

Ramberg, W., and Osgood, W. R., "Description of Stress-
Strain Curves by Three Parameters," NACA TN 902, 1943.

Armen, H., Jr., Pifko, A., and Levin, H. S., "Finite
Element Analysis of Structures in the Plastic Range,"
NASA CR-1649, February 1971.

Svalbonas, V., and Levine, H., "Numerical Nonlinear In-
elastic Analysis of Stiffened Shells of Revolution," Vol.
I - Theory Manual for STARS-2P Digital Computer Program,
NASA CR-2559, July 1975.

Popov, E. P., Khojesteh-Bakht, M., and Yaghmai, S.,
"Analysis of Elastic-Plastic Circular Plates," J. of
Eng. Mechanics Div., ASCE, Vol. 93, No. EM6, December
1967, pp. 49-65.

Popov, E. P., Khjojasteh-Bakht, M., and Yaghmai, S.,
"Bending of Circular Plates of Hardening Material," Int.
J. Solids and Structures, Vol. 3, 1967, pp. 975-988.

Stricklin, J. A., et al., "Nonlinear Dynamic Analysis c¢”
Shells of Revolution by Matrix Displacement Method," AIAA
Journal, Vol. 9, No. 4, April 1971, pp. 629-636.




SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE i,

|
T. REPORT NUMBER 2. GOVYT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

& TITLE (and Subritle) S. TYPE OF REPORT & PERIOD COVERED
LARGE DEFORMATTON ELASTIC-PLASTIC BUCKLING
ANALYSIS OF SHERICAL CAPS WITH INITIAL ol

IMPERFECTIONS ¢ PERFORMING ORG. REPORT NUMBER
) |7 AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(s)
. Robert Kao AVY 00014-75-C-0946 —
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
The George Washington University SRRE S BOVEC WY "

School of Engineering and Applied Science™
Washington, D.C. 20052

1. CONTROLLING OFFICE NAME AND ADDRESS . 12. REPORT DATE
0ffice of Naval Research May 1979 ¢
Arlington, Virginia 22217 et G e
‘fl. MONITORING AGENCY NAME & ADDRESS(iI( different from Controlling Office) 18. SECURITY CLASS. (of thie report)
UNCLASSIFIED

1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)

Buckling Initial _imperfections

Large deformation Spherical caps

Plastic deformation Finite differences

auschinger effect Effective plastic loads
\\Eipematic hardening Nonlinear relaxation method

YL Ge de fora i On THIETE BIETLICBIEkTTRY 10ads are obtained for axisym
metric spherical caps with initial imperfections.—The problem formulation is
based on equilibrium equations in which the plastic deformation is taken as

: effective plastic loads. Plasticity theory is derived from von Mises initial
B yield condition and Prager-Ziegler kinematic hardening rule. Results show
that both initial imperfection and plastic deformation have the same effect
of reducing buckling loads, and that the influence of plastic yielding di-

minishes as the magnitude ofh1mpenfectinns_Jnnrease&QRF_______,__- 3

e
DD , %%, 1473  Eoimion oF 1 Nov 68 13 OBsOLETE \
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SR TS ORI AT e & T B T




Fig.1- Geometry, stress resultants and moments for axisymmetric
clamped spherical cap with initial imperfection,
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Fig. 2= Flow rule and kinematic hardening.

Yield Curve

Fig. 3 = Kinematic hardening in plane stress.
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