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ABSTRACT

Large deformation elastic-plastic buckling loads are ob-

tained for axisymmetric spherical caps with initial

imperfections. The problem formulation is based on equilib-

riuzn equations in whi ch the plastic deformation is taken as

an effective plastic load. Both perfectly plastic and strain

hardening behavior are considered. Strain hardening

is represented by the Prager-Ziegler kinematic hardening

theory, so that the Bauschinger effect is accounted for.

Solutions of elastic-plastic circular plates and spherical

caps are in good agreement with previous results. For the

spherical cap it was determined that both initial imperfec-

tion and plas tic deforma tion have the same effec t of reducing

buckling capacity ; as the magnitude of the imperfection in-

cr eases , the inf luence of plas tic deforma tion becomes less

important. It is also found that the geometric parameter A ,

which is used as an important factor in elastic response, be-

comes meaningless for the elastic-plastic buckling analysis

of spherical caps.
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INTRODUCTION

To realistically predict buckling loads for spherical

caps, consideration should be given to the effect of geome—

tric and material nonlinearities as well as initial

imperfections , since al l three factor s play si gnif icant roles

in reducing spherical cap buckling capacity .

The axisymxnetri c buckl ing of clamped shal low spherical

shells were studied by Huang [1] and Weinitschke [2]. To re-

duce the gap between experiment and theory, they introduced

asymmetrical deflections along the circumferential direction

and obtained buckling pressures for different cap geometric

parameters by solving eigenvalue problems.

Khojasteh-Bakht [3] analyzed small deflection elastic-

plastic shells of revolution by the finite element method.

Marcal extended the work of [3] to include large deforma-

tion terms [4]. An isotropic strain-hardening is assumed in

these two references and it is found in Ref. [4] that the

plastic yielding has the significant effect of reducing the

buckling pressure of shell structures. Various solution pro-

cedures for the large deformation elastic-plastic analysis of

shell structures were discussed in Ref. [5]. Shells of revo—

• lution under cyclic loading were examined in Ref. [6].
V

Bushnell [7] employed a variational finite—difference ap-

proach to investi gate the influence of plastic deforma tion on

a shell struc ture .

Initial imperfections in the shell shape sometimes ac—

counted for the discrepancy between experimentally observed

buckling loads and theoretically calculated values [8].

~
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Hutchinson [ 9 1 uti l i zed the Koi ter approach to determi ne the

approximate asymmetric buckling load of spherical shells with

initial imperfections. Asymmetric buckling loads for spheri-

cal caps with asymmetric imperfections were obtained in Refs.

[10,11] by direc tly solving two dimens ional governing di f fe r -

ential equations.

It is the purpose of this work to study the effect of

initial imperfections, and geometrical and material nonlinear—

ities on the axisymmetr ic buckl ing of spherical caps. It is

hoped that the result obtained may provide a better under-

standing on the axisyimnetric buckling nature of spherical

caps. The analysis of the proposed title problem can be pro—

ceeded by incorporating the appropriate plasticity theory

into an existing computer code [12].

Selection of a plastici ty theory is very important. The

theory shoul d be simple in mathematical expression , easy to

apply and capable of representing the material proper ty such as

the Bauschinger effect. In accordance with these criteria,

the von Mises initial yiel d condi tion , the incremental flow

theory [13] and the Prager-Ziegler kinematic hardening theory

114 ,15] are used in this study.

The problem formulation is based on equi l ibr ium equa-

tions , treating the plastic deforma tion as ef fec tive plas tic

loads which are lumped together with actual applied loads

— [16]. Governing equations are replaced by finite differences

and resul ting equations are then solved by the nonlinear re-

laxation method [17].

In the next section, the governing equations based on

k L  _______:
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equilibrium considerations are given. This is followed by

the description of plasticity relations and the general solu—
1

tion procedure. To test the validity of the plasticity theory

adopted, example problems are solved and comparisons with

other solutions are made. Large deformation elastic—plastic

buck l ing loads are then obtained for spherical caps with in-

itial imperfections. Conclusions and a general discussion

are given in the final section.
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PROBLEM FORMULATION

The geometry of a spherical cap is shown in Fig. la, in

which H is the central height and R the shell radius; a is the

base radius; W(r) and U(r) are the displacement components

along normal and tangential directions, res pectively , and

W~~(r) is the initial imperfection; q is the applied uniform

pressure. The undeformed shape of the perfect shell can be

adequately descri bed by - •

Z = H[l— (r/a)2] (la)

and the radius of curvature of the shell is approximated by

R a2/2H (ib)

where r is the radial coordinate.

Fig. lb shows the membrane forces Nr and N6, the trans-

ver se shear 
~r 

and the moments Mr and M0. Equilibrium of

moments requires

(rMr) ‘
_M

0
_rQ

r 0 (2)

And equilibrium of stress resultants along radial and nOr~fla1

directions provides

• 
~
rNr)’

_N
0 = 0 (3)

• [rN~~(Wf
_Z)

~~+rQ~ ]’+rq = 0 (4)

where ( ) ‘ =a ( )/ar and Wf=W+Wi. Note that the nonlinearity

has been introduced in Eq. (4) by considering the influence

of Wf.

Elimination of 
~r 

in Eqs. (2) and (4) yields

• M~ ’+ ~ M~- ~ 
M
~
+Nr(W~

’+ ~)+N0
(j~ + ~)+q = 0 (5)

• •
-— —-~-.-..--—--- - • - - -

~~~~
---
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Eqs. (3) and (5) are the basic equations for the analysis of

axisymmetric spherical caps.
1

Stress-Strain and Strain-Displacement Relations

For a shell deformirig into plastic range, the strain in

a point within the thickness can be expressed by

{e) = {ee}+{ep} (6)

where {e}, (eel and {e~ } are the total, elastic and plastic

strain vectors, respectively.

Furthermore, the total strain can be considered as the

sum of the membrane and bending components:

(e} = {e}+z{K} (7)

where z is the vertical coordinate through the shell thick-

ness (Fig. ib). The membrane and bending strains are related

to displacements by

c = U’- +r R 2 1

U W
o r R (8)

K 14”r

• w ’K o r

Note that the elastic components of strains are the only

strains which can be related to stresses by Hook ’s law:

(ci = [E]((e}—{e~ }) (9)

where [El, the elastic strain to stress transformation matrix ,

is given as

r i  v- ~[El  E 
2 I I (10)

• i—v Lv 1J 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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in which E is Young’s modulus and v is Poisson’s ratio.

Membrane stress resultants and bending moments are ob—

tam ed by

f h/2
{N} = J {a}dz (11)

-h/ 2

f h/2
fM} = J (c i jz dz  ( 12)

-h/2

Substituting Eqs. (6-9) into Eqs. (11) and (12), we obtain

the membrane forces

Nr 
= 

Eh ~~ V 1 j
E r N~ (13)

N 0 i—v 2 Lv iJ ~c0~ N~

where the effective plastic membrane forces are

r h/2 e~r 
= [El I r dz (14)

J -h/ 2 e~

and the moments

M ri v~ K
= DI r 

— 
r (15)

~M0 Lv lJ K
0 M~

where D=Eh3/12(l-v2), and effective plastic moments are

M~ fh/2 e~r 
= [El , r zdz (16)

• M~ ~~-h/2 e~

Governing Equations
1

In terms of displacements, the governing equation in-

volving the major displacement U is obtained by substituting

Eqs. (13) and (14) into Eq. (3):

011+ ~~~—. — +G (W) = (17)

where
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G(W) = F’(W)+vF~~(W)+ 
1 v  (F —F0)

F (W) =

- 
F0(W) = —W/ R (18)

F’(W) =r 1 1

• F~~(W) =

and q~ , an effective plastic load , is expressed in terms of

effective plastic membrane forces by

= (N~ ) ‘+N~/r-N~/r (19)

• 
The governing equation involving the major displacement

14 is also obtained by substituting Eqs. (13—16) into Eq. (5):

DV4W— Eh
2 (c

r
+vc

O
) (W?+1/R)_ Eh (~~~~~~~) (W~/r+l/R)1—v 1—v

— 
p
~ p_ q q 2 q3

• where V4=V2 (V 2) and V2( ) = (  )“ +( )‘/r; the membrane strains

1r’~~() 
are defined in Eqs. (8), effective plastic loads q~ and

q~ are given as

q~ = N~~(W~+l/R.)+N~~(W~/r+l/R) (21)

q~~= (M~)”+2(M~)’/r-(M~)’/r (22)

Eqs. (17) and (20) are two fundamental governing equa—

V tions in terms of displacements for the present analysis.

Boundary Conditions

• At shell apex , the nature of axi-symmetry requires that

W’ (0) = 0 (23)

0( 0 ) = 0 ( 2 4 )

•  
• 

•

a •-a - — — — -• —- -.
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Along the outer edge (r=a) , if the cap is clamped:

U(a) = W(a) = W ’ ( a )  = 0 ( 2 5 )

On the other hand , if the cap is simply supported , it re—

quires that

0(a )  = W(a ) = 0 (26a)

arid that Mr (a )  in Eq. (15) to be zero , i.e.

D(~—~ + ~~ ~~~~) M~~~(a ) ,  r=a (26b)

where M~ is defined in Eq. ~l6).

Nondimensional Forms

For convenience, the following nondimensional quantities

are introduced

4 2x = r /a  m 12(1v)

A 2 = m2a2/Rh = 4Eh 2/R 2
m2

)‘ = ~~( )/3x p = q/q (27)
2u = a U/h 

~~~. = W 1/h
• w W/h

where is the classical buckling pressure of a complete

spherical shell of the same radius of curvature and thickness.

With the adoption of Eqs. (27), the nondimensional forms of

Eqs . ( 17) and ( 2 0 )  become

- ~~~~ +g(w) = 
(l—v 2)a3 q~ (28)

and

- I

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ •• -~~~~~~~~
• - ~ -•‘—• •———.
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4 A
2 

— W f A 2
V w_l2(

~ r
+v
~ 0
) (w~+ 

_
~)_l2(c 0

+v~ )(_ +

= 4 ~ 
m a

4(q
p÷qp) (29)

where g (w) and f (w) terms are nondimensional counterparts of

similar terms in Eq. (18) :

g ( w) = f~~(w ) + v f ~~(w ) + ( l — v ) [f ( w ) — f 0 (w) J /x

2
= - -~-~~ w+

m

2
f0 (w) = — w (30)

• 2
f’(w) = - w ’+w ’w”+w ’w”+w”w’r 1. 1m

2
f~~(w) = —

• and cr~ ~~ 
are nondimensional quantities of membrane strains

Cr and in Eq. (8)

2 
2= u’- —a- w+ ~(w’) +w’w’~

(31)
2

— u A
C — —  W0 x m

~ 

-~~~~~~ 
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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PLASTICITY RELATIONS

As indicated by Ziegler [151, the behavior of a strain-

hardening material can be described by

(a) an initial yield condition, defining the elastic

limit of the material ,

(b) a flow rule, relating the plastic strain increment

with the stress and the stress increment,

(c) a hardening rule, specifying the subsequent yield

condition in the course of plastic flow.

Because of complexity associated with plastic deforma-

tion, the laws governing the behavior of materials in the

plastic range have not, as yet, reached a level of general

acceptance . A judicious choice , among all available plasti-

city theories , should consider both the simplicity in mathe-

matical expression and the proper representation of

experimentally observed material behavior.

Based on these considerations , the von Mises yield func-

tion , which describes a smooth surface in stress space and

• represents a simple mathematical function, is chosen as the

• initial yield condition. The flow rule of von Mises and the

Ziegler—Prager kinematic hardening rule are also selected in

this study. It is important to note that this hardening rule

does account for the Bauschinger effect.

In a 9—space stress field with origin 0 (Fig. 2), the

von Mises initial yield surface can be described by

F(a~~ ) = k
2 

= constant (32)

For an initially isotropic material, the form of the function
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F is invariant with respect to a rotation of the stress state.

The Prager ’s hardening rule [141 assumes that during

plastic deformation , the yield surface moves in a translation

without changing its shape and hence the subsequent yield sur-

face takes the form

F(c. .—
~~~~~

. . )  = k~~ (33)  - •
13 13

where ci. . represents the total translation of the yield surface

center which is a measure of the degree of work hardening. In

the space o~~ , ajj is the position vector of the yield surface

center C which before plastic deformation takes place is lo-

cated at the origin (Fig. 2).

The flow rule of von Mises gives the following expression:

den . = ~F dA , dA>0 (34)
ij ~a.13

which indicates that the plastic strain increment de~~. lies13

in the exterior normal of the yield surface (33).

The Ziegler ’s modification [151 of Prager ’s hardening

rule suggests that the surface (33) moves in the direction of

the radius connecting its center with the stress point (Fig. 2):

d c i . .  = ( o . . — c * . . ) d i~ , dp>0 (35)

dA in Eq. (34) and dp in Eq. (35) are to be determined.

Determination of dii is based on the condition that stress

point always remains on the yield surface in plastic flow.

• 

- 
This condition , in fact, states that for an inf in itesimal in-

crement of loading the vector 
~~~~~~~~~~ 

must be orthogon~~. to

the outer normal to the yield sur face:

• ~F(o. .— c. .)
(do . .—dc~. . )  

13 1j 
= 0 ( 3 6 )

13 13 

~~~~~~~~~~~~~~~~~~~~~~~ 
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Substituting (35) into (36) yields

(
~ F/a c1k~~

) d c
~k~dii = )~~F/~o 

(37a)
• mn mn mn

and hence

(aF/ac )dc
dci. . = —

~~~ 
(a. .—ct. .) (37b)

1) (a~~— x )aF/aa 13 1]

According to Refs. [14,15], 3A in (34)  can be obtained

by assuming dc
~~~

=cde
~~

. and putting this relation into (36):

~~. 
(aF/aa k~

)dokLdA = 
~~ (3 F / a c ) ( aF7ac~~~~) (38a)

and hence

(aF/ao )da

ij 
— 

~ ( 3F/3a ) (aF/ ac ) a c . .

where c is the hardening coefficient arid can be determined

• from the uniaxia]. stress—strain relation.

Now, let us write Eq. ~33) in terms of 3 principal

stresses:

f = F-k 2

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 ( 3 9 )

where °y is the yield stress in uniaxial tension and =

G 3 cL~~ a2=c12—cL2, a3 0 3 a 3.

For the case of plane stress (Fig. 3), we have

o3 = c z3 = a 3 = 0  (40)

and Eq. (39) reduces to

= ~~~~~~~~~~~~~~~~~~~~~ = 0 ( 4 1 )

By putting Eq. (39) into Eq. (38b) and using relations (40-41),

-—
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we obtain

P 2Ae1 
— 

u s1 S1S
21 

Ac 1
— 

D 1 2 (42)• Ae2 1S1S2 S2 J Ac2

where

S1 
= (~~1—~ 2/2 )/ a  S2 = (~ 2-~ 1/2)/c , D = c (43)

From Hook ’ s law, we have

= 
l_v 2 E\) 1] i::~i 

( 4 4 )

- It is also noted that

1 = 1 _ 1 
( 4 5 )

Ae~

j Introducing (42) into (44) provides

Ac1 = 1C 11 C
12] 

Ae
11 (46)

Ac2 LC 21 C22J Ae 2 )

where

• C11 = ~ .(D+E S~~)

C12 = ~ (Dv—ES 1S2) = C 21

C 22 = .( f ~+~ S~~)

= D(i—v 2) + E ( S~ +2vS1S2+S~~)

• For a given displaceme nt f ield , {Ae} are obtained from incre—

mental forms of Eqs. (7) and (8). Eqs. (46) are the

stress—strain relations during the course of plastic flow

(loading). Otherwise, Eqs. (44) should be used for all stress

computations.

- .- - ~:~~~~~-•~
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Up to this point, the hardening coefficient c in Eq.

(43 ) is the only constant yet to be deci ded . If the structure

is in a state of uniaxial stress, the stress—strain relation

is the s ame as that obtained from tension or compression tests .

The expression for the har dening coef ficient c can be readi ly

obtained from Eq. (42) by setting Ae~=Ae~ , Aa=Aa 1:

(47a)

or

D =~~—°— (47b)
Ae~

This equation show s that the value of D is equal to the slope -
•

of the uniaxial stress-plastic strain curve.

From Eqs. (47), the values of the har dening coefficient

for two special cases may be specified here: (i) for an

elastic—ideally plastic material , c=D=0, (i i ) for a l inear

hardening material , D=EE
~
/(E_E t), where Et is the tangent

modulus. Uniaxial stress—strain curves for these two types

of hardening material are given in Fig. 4.

Nonlinear Har dening

• Also given in Fig. 4 is the stress-strain curve for a

nonlinear hardening material. Its D value, ins tead of being

a constant , depends on the state of stress. One way of deal-

- • ing with this rather complicate situation is based on the

Ramberg-Osgood representation of a uniaxial stress—strain

curve [18]:

~ 3a ~ 
n—i

(48) 

-~~-- ~~ —.- -~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~
-— 

~~~~~~~~~~~~~~~~~~~~~~
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where ri = 1+ log(l7/7)

r log(cY0 7/0085)

e is the total strain, E is the slope of the linear portion

of the stress—strain curve , and °0 7  and 00 8 5  are the stress-

es at which the curve has secant moduli of 0.7E and 0.85E,

respectively.

It is understood that the nonlinear term in Eq. (48) is

the plastic strain.  D value of this material can be obtained

as

D = 

n-l 
(49a)

We may generalize this equation to a multiaxial state of

stress [19,20]:

n-i
7E 00 7D~~~~~~ — 

(4 9b)

• t  

a

where ~~, the effect ive stress , is defined as

~~~ = — a ! . o ! .  (50a)
2 13 ij

in which cJj ~ is the deviatoric stress. For the case of plane

stress,

G = G
~~~

G
l

0
2

+0
~ 

(SOb)

• Loading Criteria
p

In the incremental solution procedure for elastic-plastic

problems, in addition to the constitutive relations, it is

necessary to have a loading/unloading criterion . For this

purpose, let’s define f = ( a f / 7 3 t 3
~~~~

) 
~~~~~ 

where f has been de-

• f ined in Eq. (39). Loading, unloading and neutral loading

are associated with the plastic state f=0, and are

_ _ _  _ _  
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characterized by f>0, f<O and f=O , respectively. When load-
ing or neutral loading takes place, Eq. (46) must be applied.
On the other hand, Eq. (44) must be used when unloading occurs.

I 

~. • a A



U
-17-

SOLUTION PROCEDURE

For convenience , a simple flow chart is sketched in Fig.
I

5 to explain the general solution procedure. The entire pro-

• cess is divided into two major loops, namely, the elas tic

solution and material property loops.

In the elastic solution loop, all material properties are

held constant. Consequently, the ef fective pl astic loads ,

qP in the two governing equations (28) and (29) are fixed and

combined wi th the actual externally appl ied load q, the prob-

lem is thus reduced to an elastic large deformation problem.

Central finite differences are used to convert Eqs. (28)

and (29) to a discrete system of equations, and the nonlinear

relaxation technique is employed to solve these nonlinear

equations. For details of solving these equations by the non-

linear relaxation technique, readers are referred to Ref.

[17]. The iteration in this loop is considered converged

when the average absolute change of u and w displacements at

all points is less than 0.0001.

With the new displacement f ield {U)~~~, the material prop-

erties must be updated so that the (nonlinear) stress—strain

relation can be sati s f i ed at al l  points over the shell surface

and through the thickness. In the material property loop ,

P the loading criterion is f irst checked . If the material point

is in an unloading situation or still in the elastic range,

Hook ’s law is used and the computation is very straight-for-

ward .

If the material point is in a loading situation , incre—

mental strains (Ae) are computed from Eq. (7) by using



—.1~~~~~~ 
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.-~~ —---. - - - .--.- — ---— ---- --

{~ u1 = {u) k 
— (u }  (where k is the number of t t e  material property

loop, see Fig. 5), and {~ a) are computed from Eq. (46). Having obtained

(Ac} , the new values of (ci, (eel and {e~ } can readily be calcu lated.

Effective plastic loads q! are then evaluated from integration f ornulae

(19), (21) and (22) through the use of Simpson ’s ru le (9 thickness points

are used for the entire computation in this paper).

The material property is considered to be updated if average absolute

change of displacements between the present and the previous material

property loop is less than 0.001. Otherwise, the iteration goes to the

elastic solution loop again and the entire operation is repeated until

the material property and equilibrium equations are satisfied.

I

_ _ _ _ _ _  _ _
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COMPARISON WITH EXISTING SOLUTIONS

To test the valid ity and accu racy of plasticity theory

uti l ized in thi s stud y , three small def ormation circular

• plates and two large displacement spherical caps of various

materi al proper ties are chosen as example problems .

The first example is a uniformly-loaded simply supported

circular plate (Fig. 6a). Elastic—ideally plastic material

is assumed with the value of the fully plastic moment, M0,

equal to 4000 lb in/in. 11 and 9 points are selected along

the plate sur face and thickness , respectively. After the

el astic limit has reache d the loa d was increase d in incre-

ments of 4 to 5 psi.

Results are displayed in Fig. 6a—6c; also shown in these

figures are solutions of Ref. [21]. Ref. [21] adopted a fi-

nite element formulation and the isotropic hardening rule.

Despite differences in the method of solution , these two sets

of results are vir tually identical .

Also shown in these f igures are solutions from the elas-

tic analysis. A redistribution of displacements and moments

as a result of the plastic deformation is quite apparent in

these figures.

The same example problem is considere d again with the

exception tha t the material property is of linear hardening

behavior as given in Fig. 7a and 7b. The same surface and thickness points

are used and results are displayed in Fig. 7a and 7b. Also D].otted in

these figures are elastic solutions and those calculated by

Khojasteh—Bakht [31. He used a finite element analys i s  and

an isotropic hardening rule. Comparison of presen t resul ts

I • — .-— • —,
~~ 

.-
~~
•——

~~~
—‘-. -— — -—

~~~~~

—.

~~~~ ~~~~~~~~~~~~~~ 

—— — 
~~~~~~~~~~~~~
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and those of [3] is excellent. Again, the ef f e c t  of  the plas -

tic def o rmation on displacements and moments is obvious f rom

these figures.

The thir d example problem is a uni formly loade d clamped

circular plate of nonlinear hardening material (Fig. 8a).

This problem was originally considered in Ref. [221. The ma-

terial stress-strain curve given in Ref. [221 can be described

by the following Ramberg-Osgood parameters: E = 10~ psi,

GO f24xl0
3 psi, n=6.66, a~=l6xl0

3 psi and v=O.33. Present

solutions and those of Refs. 119 ,22] are shown in Figs .  8a

and 8b. The finite element method and kinematic hardening

rule are used in Ref. [19]. On the other hand, a finite ele-

ment formulation together with an isotropic hardening rule are

employed in Ref. [221. Good agreement is observed between

present solutions and those of [22]. At higher load levels,

results of Ref. [19] drift away from present solutions and

• those of Ref. [221.

Next we consider a simply—supported isotropic spherical

• cap under a uniform external pressure. Svalbonas and Levine

• predicted an elastic-plastic buckl ing load for such a cap in

Ref. [20]. The material under consideration obeys a linear

• hardening law with a ratio of tangent modulus to Young ’s mod-

ulus of 0.1 and yield stress to Young ’s modulus of 0.002. A

shell geometry parameter A=4 is chosen. Other geometric quan-

tities are given in Fig. 9. Also shown in this figure are

the present load vs central deflection curve and that of [20].

Compari son between these two sets of  solutions is quite good;

the presen t analys is pre dicts a buckl ing loa d of  2050 psi 

_•_



-•

which is about 5% below the value of 2150 psi estimated in

• [20].

The final example problem considered is a uniformly load-

ed clamped spherical cap of linear hardening material (Fig. 10).

Geometric dimensions and material properties are the same as those of Fig. 9

except the thickness. Two geometric parameters of A=4 and 5.5 obtained by

varying the shell thickness are analyzed. Load vs central deflection

curves are plotted in F ig. 10. Also shown in this figure are

:~ the results obtained in Ref. [6]. Good agreement between

these two solutions are noted for the spherical caps of both

A=4 and 5.5. The present analysis predicts buckling occurs

at load of 2060 psi for A=4 and 1060 psi for A=5 .5.



ELASTIC-PLASTIC BUCKLING OF SPHERICAL CAPS WITH INITIAL
IMPERFECTIONS

Having established the validity of plasticity theory

adopted in this work, we turn our attention to the main ob-

jective of this paper: the large deformation elastic—plastic

buckling analysis of  spherical ca ps with initial imperf ec-

tions.

Two types of spherical caps (called shells A and B in

Fig. 11) are chosen with considerable difference in geometrical

dimensions . Shell A is the same as that shown in Fig. 10;

shell B was used in Ref. [23] for the dynamic buckling analy-

sis. Three geometric parameters , A=5 , 7 .5  and 10 , for each

type of the spherical caps are selected for this study , the

value of A is obtained by varying the shell thickness h ( A =

2[ 3(l-v 2 ) ] 1”4 (H/h) 1’~
2 ) .  Material properties of these two

spherical caps are given in Fig. 11; in both cases, only

linear hardening is considered .

The axisymmetric initial imperfection adopted in this

study is of the dimple type which was also used in Ref .  [ 8 ] .

The type of imperfection is expressed mathematically as

3
= (W

~o
/h) (l-x 2)

where is the maximum imperfection which occurs at the

shell apex. Selection of  this expression is, in fact, quite

arbitrary . However , it does provide an adequa te descri ption

f o r  actual shell s since the impor tant par ameter is the maxi-

mum eccentricity and not the imperfection shape function.

In the buckling anal y s i s  of  spher ical cap s with the non-

linearity in both geometry and material , time consuming
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iteration schemes are usually involved , and hence an ef f i c i e n t

• numerical procedure is highly desired . The computer program

developed in th is study provides a restarting capability at

any load level. Thus, in the buckling load calculation , it

is able to halt the execution at any load level and restart

from that point by a proper choice of load increments. Also,

it is able to restart from the last converged load level by

selecting a smaller load step after the iteration fails be-

cause of load level already advancing into the buckling zone.

With this facility , more accurate buckling loads may be obtain-

ed, and considerable computing time may also be saved.

A geometric parameter of A=5 is first studied . This cor-

responds to h=0.26 in. and 0.0227 in. for shells A and B,

respectively. The magnitude of imperfections considered are

W10/h=0, 0.1, 0.5 and 1. Results associated with this geo—

metric parameter are depicted in Fig. 11 for buckling load vs

imperfection . They include the elastic solution and those

from elastic-plastic (linear hardening) analyses. It is im-

portant to point out that both shells A and B yield the same

• elastic solution. However, their elastic—plastic results are

different.

For the purpose of references, load vs centr al def l e c tion

curves are plotted in Fig. 12 for A=5 of shell A for different

imperfections . Both elastic , elastic—plastic solutions are

shown. A redistribution of displacements as a result of the

plastic deformation is obvious from this figure.

Similar to what is shown in Fig. 11, the results for A=

7.5 and 10 are given in Figs . 13 and 14, respectively . Again ,

both shells A and B provide the same elastic solution for each

- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
-.. --
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of A=7.,5 and 10. It is also noted that both solutions from

elastic and elastic-plastic analyses are the same for shell

B in Fig. 14. This means that the shell with this geometric

parameter has the thickness so thin that it never does allow

plastic deformation to develop before buckling occurs. The

effect  of the thickness dimension on plastic yielding can also

be seen from a comparison of results among Figs . 11, 13 and

14: the larger the thickness , the more the influence of the

plastic deformation . A summary of  resul ts presented in Figs .

11, 13 and 14 is given in Table 1.
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DISCUSSION AND CONCLUSIONS

An incremental flow theory base d on von Mises  y ield sur-

face and in conjunction with the Prager—Zieg ler kinematic

hardening rule is utilized for the calculation of plastic de-

formations. The theory is then incorporated into an existing

program for the large deformation analysis of spherical caps

with initial imperfections. The problem formulation is based

on equilibrium equations in which the plastic deformation is

treated as an effective plastic load and lumped together with

the actual applied loads.

In every solution cycle, the material proper ty and eff ec -

tive plastic loads are held constant, and the problem is

reduced to an elastic one whose solutions are obtained by fi—

nite differences and the nonlinear relaxation technique [17].

Effective plastic loads are then modified and the procedure

is repeated until they correspond to the computed state of

stress and to specified stress—strain relations at all points

over the shell surface and through the thickness. The solu—

tion procedure mentioned here is sketched in Fig. 5 for

• ref e rence .

• It is noted that the kinematic hardening rule utilized

in this work accoun ts for the Bauschinger ef f e c t, and tha t

perfect ly plastic, l inear an d nonl inear har dening behavior

are all included in the program. Nine thickness points and

a Simpson rule are used f o r  the calcul ation of  the pl astic

deformation. A dimple type of imperfection is adopted which

provides a qui te adequate descri ption of  the local nature of

spherical shells.

- • 
_ ,
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In general, the convergence re la ted to material proper ty

iterations is quite rapid. For example , for a load level not

too close to the buckling zone and with a proper load incre-

ment , only about 2-5 iterations are usually required to

satisfy the material property .

To test the validity of the plasticity theory implemented

in the existing program [12], five elastic-plastic plate and

spherical cap problems were solved . Good agreement with other

solutions was obtained.

Large deformation , elastic-plastic buckling loads are

calculated for two types of spherical caps (Fig. 11). For

each of these caps, three geometric parameters (A) are studied .

Results obtained for each of these three parameters are pre-

sented in Figs. 11, 13 and 14, respectively . From these re-

sults, it is found that both initial imperfection and plastic

deformation have the same effect of reducing buckling capa-

city , and that as the magnitude of imperfection increases , the

influence of the plastic deformation becomes less significant.

For example, at W10/h=l, elastic and elastic—plastic solu-

tions are almost the same in Figs. 11, 13 and 14. It is also

found that the geometric parameter A , which is used as an im—

• portant factor in elastic buckling load calculations , becomes

meaningless for the elastic-plastic buckling analysis of these

caps. Elastic-plastic buckling loads, in fact, depend on ac—

tural cap geometric dimensions and material properties.

As a final remark , the plasticity theory adopted in this

work , due to its simplicity in the mathematical representation,

is quite easy to apply . More importantly , because of its ca—

• pacity of predicting an ideal Bauschinger effect, the theory

• ,~~—.~ -‘- •---, _
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also provides very realistic results. The later feature is

essential for the analysis of cases involving reversed or

cyclic loading situations.
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• To cope with the expanding technology, our society must
be assured of a continuing supp ly of rigorously trained
and educated engineers. The School of Engineerin g and
App lied Science is completely committed to this ob-
jective.


