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1. INTRODUCTION

As the development of sonar systems becomes increasingly sophisticated , so
the need for reliable undersea acoustic modelling becomes more acute . Particul-
arly in the case of low frequency long range propagation , environmental para-
meters such as sound speed profiles and bathyme try are likely to exhibit signifi-
cant changes over the range of interest. For such cases predictions based upon
range—independent models become dubious , and an effective range—dependent model
is essential .

There are a number of approaches to the problem of range dependence including
variations and combinations of ray—tracing and normal mode techniques (see for
example , references 1 ,2, and 3), but it is still true to say that no single model
is ideal for all cases. One of the most significant milestones in the recent
history of range—dependent modelling has been the application of the parabolic
equation technique to underwater acoustics(ref.4). This has given rise to what
could be described as the first range—dependent direct field propagation model.

This report describes a range—dependent acoustic propagation loss model based
upon the parabolic equation technique and developed for use on the DRCS IBM 370/1 68
computer. An earlier version of the model, derived from one in use at SACLANT
ASW Research Centre(ref.5) has been implemented by the author on a UNIVAC 1108
computer at U.S. Naval Underwater Systems Center , New London (NUSC) , ( r e f .6 ) .

The new version described in this report differs greatly from the version in
use at NUSC . The starting field is computed directly rather than by invoking
an elaborate and often extremely time consuming normal mode calculation procedure.
The second main difference is in the handling of range variation of parameters ,
and the treatment of bottom modelling. The new model assumes cor’tinuous inter-
polation in range between successive sound speed profiles, giving a greatly
improved capability for handling euch phenomena as the reflection of energy from
sloping bottoms. Like other models in common use, the parabolic equation model
works extremely well within the limits for which it is intended, but cannot be
expected to yield reliable results if those limits are exceeded. The point here
is that the model will still produce answers, and the answers will still look
reasonable, but they will nevertheless be systematically incorrect. This is
potentially dangerous as an inexperienced user not following the guidelines may
not recognise when his predictions are useless. One of the purposes of this
report is to explain the mechanics of operation of the model. At the same time
it is intended that the report should provide an understanding of the reasoning
behind the various procedures in the model so that a user may better recognise
when the model is t’r is not .3uited to a particular application, and may use the
model with maximum efficiency.

An appendix describing the input data format is included in this report.
Copies of the program listing ate available from the author on request.

2. THE PARABOLIC EQUATION AND THE MARCHING SOLUTION

The following section merely outlines the main steps leading to the marching
solution of the parabolic approximation to the time invariant reduced wa~e
equation (Helmholtz equation). For a more complete derivation the reader
should consult references 4 ,5 or 6.

The Helmholtz equation may be approximated by a parabolic equation of the form

2 2
+ 2ik0 8~’ ÷  k0 ( 2 

— i)~ = o ( i )
8r
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where = is a wave function

= reference wave number (= w/c~)

= index of refraction (= c /c)

c = sound speed c = c(r,z)

= source angular frequency
The main assumptions are those of cylindrical symmetry and the paraxial

(small angle) approximation

.
~< 2k~ ~~ (2)

which is satisfied by restricting the wave normals in the field to small grazing
angles. ~xperience shows that the model gives quite good results when the wave
normal grazing angles are restricted to less than about ± 250. Snell’s law may
be used to determine the range of source grazing angles corresponding to 250 wave
normal grazing angles at sound speed profile minimum.

Solution of equation (i) involves two additional assumptions. The first is
that both ~ and a~ go smoothly to zero for z ~ ± ~ . This is achieved by

extending the field far enough into the bottom in the presence of bottom atten-
uation, and reflecting the extended field about the sea surface with the approp-
riate 1800 phase shift. The second assumption is that at any range the refrac-
tive index 77 is independent of range and depth. While this is obviously incorrect
in any range dependent problem of interest , the errors introduced by the assump-
tion may by small enough for useful results to be obtained. It can be shown
that this assumption paves the way for a marching solution of equation (i) of the
form

+ A r,z) = exp (
~~~ (

2 
1) Ar). 

~ 
exp (_~~

A r s2) ~ 1~~(r,z)H (3)

where J~ and denote the forward and inverse Fourier transforms, respectively.

Beginning with a known field at one range ~/‘ (r0,z), the recursive form of

equation (3) enables us to find the field at all other ranges by “marching” the
solution out in range. Use of a Fast Fourier Transform (FFT) algorithm enabl€s
this to be carried out extremely rapidly.

3. THE STARTING FIELD

One of the big problems with generation of a starting field by means of
computation of normal modes has been that in the large proportion of cases of
interest , calculation of some of the contributing modes is diff icult , and up to
seve ral hundred modes may be required . Double or extended precision arithmetic
is usually necessary and computing times are often lengthy. While such an
approach has been fairly standard for initiating parabolic equation models up
until now a careful consideration of the problem shows that the precision neces-
sary for determination of the modes is far greater than that necessary to
describe the starting field itself, and that the normal mode method is grossly
inefficient.
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A number of laboratories using parabolic equation models have realised this
problem , and currently a number of methods are being investigated to overcome
it(ref.7).

The starting field generator used for the presently described model is an
extremely simple one , made possible by the existing constraints on the model of
dependence of FFT size on frequency and the paraxial limitation. This generator
consists of a simple algorithm for calculating a table of phase and amplitude
values at a series of equispaced points across a vertical line a short distance
from the location of a point source. For the purposes of generating the initial
field, sound speed is assumed to be locally depth — invariant at the source, so
that the wavefronts intersecting the line may be considered to be spherical.
The table values must be calculated at suitably close depth intervals along the
line for a distance subtending the source angle of interest, with table values
outside this angle set to zero. The paraxial approximation limitation of’ the
model precludes source grazing angles much in excess of 250 which in turn restricts
the vertical coverage of the non—zero data values (referred to as the aperture)
and so limits the error introduced by considering that the source region sound
speed is depth invariant.

Using the analogy that the aperture behaves like a beamforming array , it is
apparent that for satisfactory performance of this starting field model , two
conditions must be satisfied. The first condition is that the spatial sampling
be no coarser than half wavelength to avoid aliasing problems. The second is
that the aperture should be sufficiently large that it does not impose significant
diffraction effects upon its model of the source. We will deal with the spatial
sampling first. The comments apply equally well to the rest of the field as to
the starting field.

3.1 Choice of FFT size

The spatial sampling is finer than half—wavelength when the minimum size
of the FFT (the number of complex data points NFFT) appropriate to the
problem is simply the smallest integer power of two satisfying the inequality

4D 
< 

A min
NFFT 2

which may be arranged to a more useful form

NFFT ? 
A n  (2)

where D is water depth and A mm is the wavelength associated with the sound
frequency under consideration at the sound speed profile minimum . The factor
of four in (i) arises from the method of satisfying the boundary conditions
noted in Section 2. The field is extended into the bottom a distance equal
to the water depth , and this extended field is then reflected in the sea
surface , phase reversed , requiring that the model handle a spatial field four
times greater than that necessary to describe the water column alone.

To give an example , consider 100 Hz propagation in water 5000 m deep.
If the minimum sound speed is 1450 m/s ’ , A mm will be 14.5 m at 100 Hz, so
that from (2) we require NFFT ~ 2759. A 4096 point trahaform is the small-
est satisfying this requirement. Experience with use of the model however
shows that for cases in which only low grazing angle energy is of interest,
it would be possible to economize on computing by using only a 2048 point
transform sampling slightly in excess of A mm .

2
The explanation lies in the application of sampling theory to digital

transforms such as the FFT. The Fourier transform for a spatially sampled
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waveform over a vertical aperture is the plane wave angular spectrum which
would result from either an infinitely long aperture or a continuum of sample
points over the aperture, convolved with a Dirac comb function where the
angular spacing of the comb teeth is given by (e.g. reference 8)

S i n O =  AN (~
)z

where A is the (constant) wavelength in a medium of constant sound speed ,
N is the total number of evenly spaced samples of the waveform over the
vertical aperture, and z is the vertical extent of the aperture. In the
present context N is equivalent to NFFT, z is 4D, and the constancy of A
is one of the basic approximations of the parabolic equation technique.

Since the right hand side of (3) will often be greater than one, it is
apparent that the angular spacing of the comb function may be complex.
Indeed the fundamental spectrum itself may include complex wavenumters , but
in the present application most of the energy lies in the real portion of the
spectrum and the complex portion may be ignored. Provided thatAN~ 2

z
there will be no overlap of the fundamental angular spectrum wit:1 the complex
higher order angular spectra, so that they may for practical purposes be
ignored. As AN is allowed to fall below 2 however (in other words , the

z
sample spacing is permitted to exceed half wavelength), then some overlap of
the various spectra will occur. Where the half wavelength spacing is ex-
ceeded only slightly, the overlap also will be slight, with large positive
angles of the fundamental spectrum overlain by that portion of the adjoining
higher order spectrum representing large negative angles, and vice versa.
This phenomenon may be referred to as angular aliasing.

The reason that we can tolerate some apparent undersampling of the vertical
field distribution now becomes clear. Since the parabolic equation model is
limited by considerations of accuracy to ± 25° grazing angles, then the energy
in the source function angular spectrum should be essentially confined within
these limits. If higher angles in the source spectrum have no energy assoc-
iated with them, then provided that energy—free aliased angles merely overly
other energy—free high angles, there will be no degradation of the ± 25°
portion of the spectrum due to the apparently coarse spatial sampling.

To take full advantage of this it is clear that we can relax the constraint
on sampling of the inequality (2). For a limiting source angle y , an alias—
ing folding angle exists such that when the spectrum is folded about it, the
aliased portion of the spectrum will not overlap the source angle limits.
This condition is satisfied when (modifying (2)), we have

NFFT ~ 4 (1 + Sin ‘i’ ) Ymmn

0Returning to our example, if y = 25 , we find from i~4j that NFFT ~1955,
rather than 2759 as implied by (2), so that a 2048 point transfrom is indeed
adequate in this instance.

In the present version of the model the largest available transform is one
of 4096 points , which is satisfactory for most cases of interest. This
could be simply extended by increasing array dimensions provided that a
suitable FFT algorithm is used. The MKLFFT routine originally used(ref.9)
is limited to a maximum of 4096 points without modification , but a faster
machine language FFT routine now in use at DRCS can handle arrays up to 219.
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3.2 Starting field aperture

Choice of a~:erture size for the starting field generator is a compromise
between opposing factors. The model for simplici ty assumes a constant
sound speed over the starting field aperture. This will generally be a
good approximation over a small aperture, and a poor one for a large aperture.
The aperture should thus be made no larger than necessary to minimise putent—
ial errors arising from this assumption. On the other hand , the apert~r~
should be large enough that diffraction effects associated with it are small
compared with its geometrical properties if it is to effectively represent
the source.

Since by virtue of the application of Fourier transform techniques to the
problem we are resolving the field into its plane wave components , we may
therefore resort to simple diffraction theory for analysing the behaviour
of the aperture. Figure 1 shows the variation of the half—angle between
3 dB points for the main beam of a Fraunhofer diffraction pattern expressed
as a function of the aperture length in wavelengths. Substantial reductions
in beamwidth are effected by modest increases in aperture length out to
about 1OA , and certainly the aperture should if possible be no smaller than
5~ . For a limiting source angle of 150 or larger, an aperture of 5A or
more should not seriously distort the starting field. However, if we wished
to consider a limiting source angle of only 5 , then it is apparent from
figure 1 that the minimum aperture length should be increased to nearer 2~A.

For programming simplicity we will arbitrarily choose an aperture 1OA in
length. The source to aperture distance will then be determined simply by
the limiting source angle, which under the circumstances may lie roughly
between 100 and 25°.

For the 250 limiting source angle case , the source to aperture distance
will be about 1OA also. The assumption of constant sound speed will intro-
duce phase errors into the starting field , but for normally encountered
sound speed gradients these phase errors will be qiite small. For an ~~~~~~

water sound speed gradient of 0.2 s~~ , and a frequency of 100 Hz, the
assumption of constant sound speed will amount to a maximum error in sound
speed over a 1 O.\ aperture of the order of i%. This in turn will yield a
maximum phase error over the source to aperture distance equivalent to about
A/b , which corresponds to an uncertainty in the position of the source of
only a few metres. While the phase errors due to the assumption of locally
constant sound speed are proportional to frequency , the aperture is scaled
to wavelength , which tends to compensate for this. For cases where large
apertures are necessary because of very low frequencies the average sound
speed ~radient across the aperture will typically be considerably less than
0.2 s~~ , so that for most practical cases the errors introduced by this
simple source model will be quite insignificant.

It should be emphasized that the approximation of locally constant sound
speed over the aperture is only invoked for the calculation of the starting
field. Once the starting field has been determined the field is then
calculated at all successive range intervals by the marching technique of
equation (3), using the full sound speed profile. The predictions thus
generated with the simple starting field technique , provided that the above
constraints on aperture size are observed, will be virtually indistinguish-
able from those obtained using an equivalent normal mode starting field
generator.

4. SOUND SPEED RAN GE VARIATION AND BOTTOM MODELLING

Sound speed profiles consisting of up to 100 depth , speed pairs must be read
in for both zero and maximum ranges from the source as well as at any desired
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intermediate ranges. The bottom profile point is interpreted as being at the
sea bottom. A maximum in—bottom sound speed is read in , as well as a chosen
in—bottom sound speed gradient. Both of these parameters apply over the full
range of the run.

Each input profile is first linearly interpolated in depth to give a profile
of points at the spatial frequency of the FFT. At every range step a new local
sound speed profile is horizont8lly linearly interpolated between the two applic-
able interpolated input profiles. The bottom depth for the intermediate profile
is also linearly interpolated. Where one of the input profiles has reached
bottom , in the case of a sloping bottom , the horizontal interpolation procedure
must be modified . If the water depth is greater than 1000 m , the sound speed is
chosen to be the same as the sound speed at that depth for the profile which has
not yet reached bottnm. Where the water is less than 1 000 m deep, the inter-
mediate sound speed is interpolated between the in—water value at the appropriate
depth on the deeper side, and the in—water bottom value on the shallower side.
• The break—point value of 1 000 m is chosen as the nominal dep th of the bottom
of the thermocline , below which the range dependence of sound speed profile can
be expected to be very slight in comparison with the variations closer to the sea
surface.

At every range step the profile is extended into the bottom by increasing the
in—water bottom sound speed value according to the chosen input sub—bottom sound
speed gradient until the maximum sub—bottom sound speed is reached , whereafter
the speed will be constant.

This method of profile interpolation with range has the effect of smoothing
out the in—water range variations into a large number of small increments , as
distinct from having relatively large discontinuities in profile at a few ranges.
The smoother approach must give a more realistic description of what occurs in
the sea in most situations, and certainly is better suited to the capabilities
of the model(ref.6).

4.1 Choice of bottom gradient

The interaction of acoustic energy with the sea bottom is a source of
difficulty in all acoustic models, but especially those specifically suited
to dealing with low frequencies. Before looking at the present model we
will consider two other approaches.

In a raytracing model it is usual to determine the proportion of energy
reflected from the bottom by referring to tables of bottom loss versus
grazing angle for various frequencies. Such tables are generally determined
experimentally , and different tables may apply to different regions.
Figure 2 shows typical experimental data.

The Fast Field wave model(ref.1O) does not use a bottom—loss table.
Instead the bottom is modelled as comprising one or more discrete fluid layers,
and the layer sound speeds and densities are varied to produce various
combinE.tions ~f plane wave reflection coefficients as a function of grazing
angle. Figure 3 shows some bottom loss predictions calculated on the basis
of a simple two layer plane wave reflection coefficient inoael , for likely
combinations of bottom and sub—bottom sound speeds and densities. Where
the lateral wave is taken into account(ref.11) or a multilayer bottom is
assumed , such smooth curves will generally be replaced by a more complicated
interference pattern set up between multiple bottom arrivals.

Multilayer bottom modelling is generally only significant at low frequen—
cies where sub—bottom attenuation is low enough for significant energy to be
returned to the water from deep layers and where sufficient information
about the sub—bottom structure exists to give the model some practical basis.
Figure 4, following reference 10 , is an example of a multilayer bottom loss
prediction.
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The parabolic equation model uses neither of the above approaches.
Since it is a field method it does not keep track of individual rays, so the
first method is inapplicable. The second method is not suitable either,
since the parabolic equation model is inherently incapable of accommodating
a discontinuity in the sound speed profile.

Instead we model the bottom interface by a combination of a relatively
sharp gradient in sound speed and a volume absorption factor. The gradient
causes some energy to be refracted back into the water before it has suffer-
ed too much absorption. Control over the amount of energy refracted up-
wards is established by varying the sub—bottom gradient and the absorption.
To understand the way in which the parabolic equation bottom loss modelling
works it is instructive to picture what happens in terms of ray theory.

Consider energy impinging on the bottom to be represented by a ray equiv-
alent, incident on the bottom at an angle to the normal 0 , with a sound

speed c
~
. From Snell’s Law

p = Sin 0 / c

where p is known as the ray constant. If we represent the bottom by a
region with constant sound speed gradient

dc
= g

we have (following reference 12)

= pg =

where co is the local ray angle, S is the distance along the ray, and p is
the radius of curvature.

This simply states that the curvature of the ray path in the presence of
a constant gradient is constant, that is to say, the path is circular.

It is apparent from figure 5 that the ray will emerge back into the water
from the sub—bottom region of constant gradient at the same angle as it
entered , reflected about the normal. The path length of the ray in the
sub—bottom region is given by

S = ~~ — 2  0 0 ) p

Figure 6 shows the variation of sub—bottom distance S(g , a )  travelled

by the ray equivalent before re—emergence into the water column, as a
function of grazing angle for the case of a bottom interface so~nd speed
c0 

= 1 500 m.s~~ and a sub—bottom sound speed gradient g0 = 1 s

For other cases the sub—bottom distance may be simply scaled from figure
6, using the relation

S(g, c) = s(g , c )  x c/(1500 g) (i)
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where c is the bottom interface sound speed and g is the sub—bottom sound
speed gradient.

For most situations of interest the variation of c will only be small,
and the main parameter of concern will be the sub—bottom sound speed gradient
g. The higher the value of g, the greater will be the curvature of the sub—
bottom ray equivalent. This in turn will result in a smaller total phase
change within the bottom. Hard bottoms will thus be represented by high
values of g, and s?fter bottoms by lower values of g.

A value of 1 s is a reasonable choice of g for a soft bottom. For a
hard bottom the highest value of g possible is obviously going to provideL the best approx~mation to a discontinuous step in sound speed. However,
the higher the value of g, the shorter is the permissible range step for the
marching solution, and consequently the greater the amount of computation
needed to predict propagation loss to any given range.

For low frequency app~.ications there seems to be little point in increas-
ing g beyond about 10 s— , except, perhaps, for shallow water, hard bottom
modelling as in Section 6. A comparison of a c.w. prediction for bottom
limited propagation(ref.6) using the FFP model with a parabolic eqi~ation
prediction assuming a g of 4 s 1 shows almost identical behaviour of the
interference fringes arising from bottom reflections (figure 7). One could
not expect the two curves to be indistinguishable , since apart from the in-
herent approximations of the parabolic equation technique , the two methods
treat the bottom differently and interpolate the input sound speed profile
points differently. Nevertheless, the general features of each curve
correspond remarkably well. From 0—8 kyds each curve shows a rapid shadow—
zone fall off, from 10—20 kyds, a coarse interference structure (which corres-
ponds to singly bottom—reflected Lloyd ’s mirror fringes), and from 20—25 kyds
a zone of fine fringes which become coarser from 25—33 kyds.

Within the full spectrum of acoustic propagation prediction models only the
FFP and normal mode models could be expected to produce results more similar.
When the parabolic equation model with its additional capability for handling
range dependent data also shows close agreement in a range—independent case
with such a mathematically powerful model as the FFP, it is clear that the
parabolic equation method too is a powerful technique.

It has proved far easier in a study of bottom limited propagation to achieve
close correspondence between predictions from a number of models than between
any Of the models and experimental data, despite exceptionally precise experi-
mental control(ref.13). At present it is still usual to descrit~ the
bottom interaction rather like an electronic “black box” , as though all effects
take place at the boundary. This is demonstrably an oversimplified approach
for low frequency propagation modelling, but is probably adequate for most
cases at present because of other limiations , including navigational error and
lack of precise environmental data.

4.2 Sub—bottom volume absorption coefficient

It should be noted that the expression S(g,c) in (i) is only the F ub—
bottom distance of the ray equivalent. To obtain the bottom loss a the
appropriate anile it is necessary to multiply this by the bottom attenuation
coefficient a (dB/m).

In the program the chosen value of a is simply used to determine the mag-
nitude of an imaginary comprnent of the square of the refractive index which
appe’irs in equation (3). This then causes appropriate attenuation of the
sub—bottom component of the field.

In—water volume absorption could be treated in a similar manner, but is
inclitded in the present model instead as a simple frequency dependent atten-
uation coefficient acting upon range and based upon the empirical formula of
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Thorp(ref. 14).
If experimental data is available for the area , the parabolic equation

model bottom prediction may be scaled to it approximately by varying a to
compensate for the choice of g in the following manner.

Table 1 covers a typical range of sub—bottom gradient values and experi-
mental bottom loss values. Say, for example , that the measured bottom loss
at a grazing angle of 200 is 5 dB. If we suspect the bottom t? be soft,
as would be the case for thick sediment, then choosing g = 1 s we would
have to adopt a value near a = .005 dB/m to achieve the appropriate experi-
mental bottom loss. To realise the same bottom loss at 200 for a hard
bottom , the values g = 10, a = .05 would be adopted.

TABLE 1. RELATIONSHIP BETWEEN SUB—BOTTOM GRADIENT,
VOLUNE ABSORPTION COEFFICIENT AND BOTTOM LOSS

Sub—bottom gradient g( sec~~)
Absorption (bottom hardness parameter)
coefficient ___________ _____________ ___________

a (dB/m )
Soft Medium Hard

1 5 10

Bottom loss 2 .002 .01 .02
at 200

(dB/bounce ) 5 .005 .025 .05

10 .01 .05 .1

15 .015 .075 .15

4.3 Choice of range step size

As a result of the approximate nature of the parabolic equation technique
a number of errors will be introduced into the field solution as it progresses
in range (see references 5 and 6). The maximum permissible range step
between two successive marchi ng solutions is determined by an error term

E range step c~ ( k A r  -~ )

The higher the vertical sound speed gradient or the higher the frequency,
the smaller the range step mus t be to keep this error suitably small.
Consideration of the square law dependence of this error shows that it will
accumulate far more slowly over the same total distance if taken as the sum
of a large number of small steps rather than a few large ones.

Choice of the maximum permissible step size comes from experience. By
running the program with a large step size and again with  a reduced step
size, the step size will be found to be adequate when further reduction
causes no further change to the predictions . At present the program is
limited to 1100 steps , although this may be increased by altering array
dimensions on any large computer. Program running time is independent of
step length as such , but is proportional to the total number of marching
solution steps involved in the prediction. To minimize computing costs the
range step length should be made no smaller than necessary .
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Table 2 gives examples of some step lengths found to be satisfactory, and
some typical running times. These running times are generally well under
half those expected for similar runs using the NUSC program(ref.6), and are
attributable to the use of the simple starting field algorithm, rather than
the elaborate normal mode procedure employed in the NUSC model.

TABLE 2. SAMPLE MODEL PARAMETERS FOR A RANGE OF CASES
SHOWING COMPARATIVE RUNNING TIMES

Maximum TotalWater Freq A

de th profile FFT ‘~R No. of Running
P., gradient exponent range time
(mj (Hz) i~ 1~~ (in )

~. sec— j steps ~mins

4700 100 .1 12 250 500 5.8

2000 100 4 9 50 800 1 .3
100 200 100 8 5 4000 4.4

5. SOUND FIELD INTENSITY DIAGRAMS

In addition to the tables and plots of propagation loss for one source depth
and up to five receiver depths generated by the program at the conclusion of the
run , this version of the program also produces a sound field intensity diagram
on the line printer during the course of the run.

The water column and bottom is represented by 128 line printer character
positions across the page with the surface at the right hand end of the carriage.
In practice the first 32 points depicting the deeper half of the bottom are
suppressed because they usually contain little information. Since the 128
points must represent an array of up to 2048 points, each represents an average
intensity over the appropriate members of the full array.

To avoid the generation of diagrams over 10 pages long when the full 1100
range steps are used , the user can specify the approximate maximum number of
pages which the diagram should occupy. Where the total number of lines expected
to be gener~ted would significantly exceed this space, then the program will
print out every second , or every fourth line or so on, to condense the full
diagram to a more acceptable size.

Different int3nsities are produced by employing different printer characters,
with up to three levels of overprinting used. The user can choose the lowest
value of propagation loss, and the number of decibels per intensity increment
to give the most useful diagram. In addition to white, ten shades of grey are
available. Increments of 2 or 3 dB will thus cover a full 20 or 30 dB range,
which is generally adequate to define all the features of interest in the sound
field.

Since the field at all depth points is calculated at each step of the marching
solution , very little extra computing is necessary to produce the line printer
intensi ty diagrams . When such diagrams are used in conjunction wi th  the usual
single receiver depth plots, they often contribute materially to a better under-
standing of the sound field.

6. A RANGE DEPENDENT TEST CASE

To demonstrate the capability of the model in predicting propagation in a range
dependent situation , we consider the simple case of low frequency propagation in
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an idealized shallow water duct. Sound speed is constant throughout the duct ,
and the duct bottom is represented by a linear sound speed gradient of 100 s~~~,
to provide a close approximation to a totally reflecting hard bottom. For the
simple case of a constant in—water sound speed , the approximations inherent in
the parabolic equation technique are minimized and the behaviour of the sound
field within the duct is readily interpretable ~y consideration in terms of mode
structure or rays.

Three cases are shown in figure 8, of the sound field in a 100 in duct for a
200 Hz source at 50 in depth. In the flat bottom case (figure 8 ( b ) ) ,  the struc-
ture which at first glance appears to be bundles of rays coming from the surface
and bottom near the source is not rays at all, but an almost symmetric modal
interference pattern. A maximum intensity spot occurs at regular intervals
1 .44 km apart at source depth with strong minima near the surface and bottom at
the same ranges. At ranges halfway between these points , nulls may be observed
at source depth.

In the second case (figure 8(a)), a linear sloping bottom from 100 m at the
source to 150 in at 5 km range produces i similar pattern, but stretched in range
towards the deer end. The effect can be even more clearly seen in figure 8(c),
where the bottom slopes up from 100 in to 50 in over the same range, producing a
sound field pattern increasingly compressed in r ange towards the shallow end~
This is made clearly apparent by comparing the strong similarities in form of the
interference structure of figures 8(b) and 8(c) ,  and noting the relative positions
of successive nulls.

In terms of ray theory, every reflection from the bottom in the case of
figure 8(c) will be at an angle 1.14~ greater then the incident grazing angle, so
that where the ray equivalent for the lowest order mode is initially about 4

0
, it

can be seen that the effect of several bounces will be quite significant.
Calculation of the variation of ray equivalent cycle distances (the ray equivalent
of a particular mode is the ray which goes through one full cycle in the same
distance as the mode also goes through one full cycle) for the main source depth
reinforcements is consistent with the range compression of the pattern due to
the influence of the sloping bottom.

Thus despite the model being totally digital in form, so that the bottom is in
fact represented as a number of small steps rather than a true slope, the model
can nevertheless effectively simulate the reflection process at a sloping ~bottom.
The reason is that in the example given, the bottom model is well within the
diffraction limits necessary to represent the case as reflection.

Figure 9 shows the sound field for a case similar to those presented in figure
8, but this time with the bottom depth varying in a moderately irregular manner,
rather than the uniform fashion of figure 8. The flat  bottom case of figure 8(b)
is included again for ease of comparison. We see that whereas in the cases of
figure 8, in which the modal interference pattern was simply compressed or extend-
ed because of the special conditions of constant bottom slope and constant in—
water sound speed , in figure 9 the sound field intensity pattern is changed
completely by the irregular bottom variation. Figure 10 represents curves of
propagation loss versus range for three different receiver depths for the case
of figure 9. In addition to tables of propagation loss values , up to five such
curves , one for each receiver depth , are generated routinely at the conclusion of
each run.

7. CONCLUSION

The parabolic equation model described in this report is an extremely versatile
aid to the prediction of c.w. propagation loss prediction at low frequencies in
the ocean. One of the features of the model which perhaps sets it apart from
most other models is the way in which use of it engenders a feeling for the inter—
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action of the sound field and its environment. It is true that a great deal of
insight into the behaviour of a sound field can be gleaned from ray theory
considerations , but at low frequencies attempts to visualise the field in terms
of wave behaviour are less likely to be misleading.

Since this model could in principle accept a new sound speed profile and a
new bottom depth at every range step, the capacity of the model to be influenced
by the input data is orders of magnitude ahead of our ability to provide such a
data density .

Such a situation highlights the need for clear thinking on the part of potent-
ial users of propagation loss predictions. When it is reasonable to assume that
the full amount of environmental information will never be available and would
rarely be used even if it were , it is proper to question the accuracy it is
reasonable to expect out of such a prediction model. Further it is proper to
question the need for developing a model free of the limiting approximations of
the parabolic equation method , when the predictions of such a model may be no
more accurate then those of the parabolic equation model due to the limited
accuracy of the environmental data.

There are nevertheless areas where the parabolic equation technique runs into
difficulties , and a more rigorous approach seems t~ie only way on. The handling
of sloping bottom c~ses where there is a large and systematic change in bottom
depth in the presence of oceanic sound speed profiles is difficult for the para-
bolic equation model , and the modelling of an oceanic front also present problems.
Any model which could hope to address such problems with any semblance of rigour,
would presumably have to dispense with the use of the FFT, and could thus be
expected to generate prohibitive amounts of computing. An investigation of this
problem being conducted by the author at the present time serves to maintain an
awareness of the wonderful power and simplicity of the parabolic equation tech-
nique.

It has been jestingly said that regardless of the prior work carried out in
designing and testing any model, the first time it is ever used to assist in
someone else ’s problem , the case presented turns out to be either one which finds
a residual error in the program, or else one quite beyond the scope of the model.
The presently described model is no exception, since there are limits to its
applicability. It is hoped , however, that this report will make the limits
quite clear to any potential user, and that the model is sufficiently simple to
operate that with a little experience any new user may generate results which
instil confidence .
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APPENDIX I

INPUT DATA R)R THE PARABOLIC EQUATION MODEL

1.1 All data (unless alphanumeric) is read in under formats 110 and F10.0,
which means that all whole numbers are right justified to character position
10, 20, 30 etc., and any numbers with decimal point included may occur any-
where in the appropriate floating point field.

DATA DECK STRUCTURE

Block Card Data

1 1 TLPLOT, MFLAG
2 1 RMAX , 1~
3 1 RSCALE, TLMAX
4 1 SIGMIN, SIGSCL, PAGES
5 1 BETA
6 1 SD,ANG
7 1 1~m,(1u)(II), ii = i ,i~R)
8 1 TITLE (Alphanumeric, 60 characters)
9 1 H,C,GRAD
10 1 F
1 1 1 MFFT,NSEC

1 2 1 PRANGE,HBOT
onwards 2 ND

3 ZL(1),CL(1)
(NSEC
Blocks)

ZL(ND),CL(ND)

1.2 Explanation of input data

TLPLOT plot flag set to 1 for plot; 0 for no plot
MFLAG : 1 for metric units plot; 0 for English units
RMAX : maximum range for transmission loss calculation (in )
DR range increment (m)
RSCALE : desired plot range scale in kyds/inch (English) or

km/inch (metric)
TLMAX : ~aximum value of transmission loss axis (scale fixed

at 10 dB per inch)
SIGMIN : minimum value of propagation loss for grey scale of

line printer sound field intensity diagrams
SIGSCL : humber of decibels per grey level step for sound field

intensity diagrams
PAGES length control for intensity diagrams . Number of

printer pages will lie between one and two times this
value, up to a maximum correponding to one line per
range step

BETA : sub—bottom attenuation (dB/metre )
SD : source depth (in)
ANG limiting grazing angle of interest at the source
NR number of receiver depths (maximum 5)
RD(II) : depth of (II)th receiver



WSRL—0034—TR — 16 —

TITLE : header for transmission loss plots; centre in first
60 characters

H : arbitrary water depth, usually chosen to be tha t at the
source. This value scales the whole propagating field
to be 4 x H Cm)

c : uniform speed of sound in bottom below sub—bottom
gradient layer (in/sec)

/ —1GRAB : sub—bottom sound speed gradient ~, s
F frequency (Hz)
MFFT : 2~~ MYPT is size of the Fourier transform
NSEC : must be greater than or equal to 2. Total number of

sound speed profiles to be read in.
PRANGE : distance from source in metres of associated sound speed

prof ile
HBOT bottom depth (m) applicable to PRANGE
ND number of points on sound speed profile for individual

range block
ZL(1), CL(1)
etc depth, sound speed pairs in metres, metres/sec. Depth

is zero at sea surface, and direction of positive increase
is downwards.
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Figure 10
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