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ABSTRACT

Specialized nonlinear crack tip finite elements
which include the amplitude of the plastic singular solu-
tion as an additional unknown are investigated to deter-
mine their capability to direc tly predict the J—integral
for cracked elastoplastic bodies without recourse to
numerical evaluation of the J—integral over arbitrarily
chosen paths. The special elements are used in conjunc-
tion with conventional 12—node quadrilateral isoparametric
elements. Power hardening and multilinear representations
of the nonlinear stress—strain curve are considered for
both deformation and incremental theories of plasticity.
Numerical results are presented which demonstrate that
the elements fail to provide accurate direct calculation
of J, but that they lead to improved estimates of J based
on path calculations. It is concluded that special ele-
ments at the crack tip improve the accuracy of pa th values
of J , but that the special elements themselves predict ac-
cura te values of J only in materials with high strain
hardening slope.

ADMINISTRATIVE INFORMATION

This work was authorized and funded within the Submarine Structures

Exp loratory Development Program under Program Element 62543N, Projec t

SF 43.422.592, and Work Unit 1720—592.

INTRODUCTION

The f ini te element calcula tion of linear elas tic stress intensi ty

fac tors for planar or axisymmetric bodies has become commonp lace and highly
accurate. Indirect methods, in which conventional elements are forced to

display the correct near tip displacement field, have been discussed by
1* 2

Henshell and Shaw, and by Barsoum for the 8—node quadrilateral isopara—

me tri c elemen t, and by Pu et al.3 for the 12—node quadrilateral isopara—
metric element. In these methods, a corner node corresponds to the crack

tip,  and edge nodes adjacent to the tip are moved to the 1/4 position for

the 8—node element , or to the 1/9—4/9 positions for the 12—node element,

thus imposing the proper I~ variation of displacement with respect to

*A complete listing of references is given on page 27.
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distance from the crack tip. Stress intensity fac tors K
1 

and K11 are then

calculated based upon examination of nodal displacements in the vicinity

of the crack tip .

On the other hand , Hilton and Gif ford4 6 have found tha t highly accu-
rate elastic stress intensity factors can be calculated using specialized

crack tip elements in which the stress intensity fac tors themselves are
carried as unknowns. Special , small, circular “core” crack tip elements
joined along their periphery to conventional elements have produced good

results. An “enrichment” of conventional 12—node isoparametric elements ,
7as suggested originally by Benzley, has proved even more convenient and

has improved accuracy. Both of these approaches have been implemented into

the APES computer program
6’8 which employs the 12—node isoparametric

quadrilateral as a conventional element.

The extension of embedded singularity finite element techniques to

the considera tion of elastoplas tic crack problems was f i r s t propo sed by
Hilton and Hutchinson.

9 
In this work, the core crack tip element was

employed to embed the Hutchinson1° and Rice and Rosengren~~ (HRR) plastic

singular solution for Mode I crack problems into a deformation theory

finite element formulation. Using this approach, the plastic in tensi ty
factor was calculated directly and the J—integral

12 
was determined from it.

Results were presented for the plane stress problem of a central crack in

an infinite domain subject to a uniform remote tensile stress field acting

normal to the crack direction. The authors extended this approach to

plane strain problems and to the use of high order isoparametric elements

instead of previously used constant stress triangles remote from the crack

tip. They report results for a number of geometries and characteristics ,
4 ,13including boundary influence, for example.

In this approach, the core element was thought to be particularly

attractive for the following reasons :

1. It was not necessary to select a path , a number of pa ths , or a
“best” path over which to evaluate the J—integral.

2. The J—integral was a direct consequence of the calculation.

2



3. The J—In tegral was a first order quantity whose accuracy should

be on the order of that of nodal displacements; evaluation of J over some

pa th , on the other hand , involves the second order quantities of strain

and s t ress .

Success in elastic calculations with the enriched 12—node isopara—

metric elemen t5 was even more dramatic than with the small core element.

Not only were problems considerably easier to idealize, but accuracy of

the elastic stress in tens i ty  factors  was found to be pract ical ly insensi-

tive to the size of the enriched elements surrounding the crack tip. (Such

was not the case with the core element.) This fact quickly led the

authors to almost exclusive use of enriched 12—node elements for elastic

f rac ture computation ’s.

Thi s success , a’long with dissatisfaction over the limitations im-
posed by deformatio?i theory plastici ty coupled with a power hardening
material  model , has led the authors to yet another approach to the  e las to—

plas tic Mode I crack problem. This took the form of an enriched elasto—

plastic 12—node isoparametric crack tip elemen t, coupled with conventional

12—node elements , and all formulated using incremental theory p las t i c i ty

and a mult i l inear  representation of the mater ia l  s t ress—stra in  curve .

From ana1y~ 1ng the results of all of this work , the au thors are able
to compare the influences of the following in elastoplastic fracture

analysis:

1. Different models ot~ material behavior

2. Different near—tip elements (core, enriched , 1/9—4/9 and
nonsingular)

3. Path and singularity (direct formulation , first order) predic-

tions of the J—integral

In the following , the developmen t of each of the nonlinear form ula tions
will be out lined , and then numerical results will be compared . It will

he concluded that while path calculation of the J—integral is satisfactory

using singular elastoplastic elements, the directly calcula ted singular
values themselves are no t, in general , accurate. Thus the advantage en-

joyed In the use of such elements in the elastic case is lost in 

the3



nonlinear case. The unsatisfactory prediction of singular J values will

then be explained and discussion regarding the need for special elements

for accurate path prediction will be given.

MATERIAL MODELS AND ASSOCIATED CRACK TIP SINGULARITIES

POWER HARDENING MATERIAL

For a power hardening material, the uniaxial stress—strain law is

given by

a f o r a < a
—1 

— yp£ — E a — ao + aa (a/ a ) fl for > ayp yp yp

where a and c = uniaxial stress and strain

a = the yield stressyp

E = Young ’s modulus

cc and n = constants chosen such that Equation (1) models the experi-
mental stress—strain curve

For such a material model under conditions of plane stress , plane s train ,

or axial symmetry ,  Hutchinson9 has shown tha t the near crack tip fields
are given for the Mode I case by

01j K~r~~~~~
1 

~~~ (O) (2a)

n f
c~~ = cx ~~ r / n+1 

~ij~~
0
~ 

(2b)

u~ = u
1 

+ a ~~ rl~
’
~
1
~~ a 1 (e) (2c)
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6 where at ., C .., and u
1 

= stress , strain , and displacemen t componen ts

r and 0 = polar coordinates centered at the crack tip as
shown in Figure 1

K = the plastic intensi ty  fac tor

V. V

CRACK TIP

/
J INTEGRATION PATH r

— x.u

Figure 1 — Polar Coordinate System at Crack Tip and
Con tour for  J Pa th In tegral

The func tions 0) ,  E~~ (0)~ and ~i.(0) are determined by the numerical

solu tion of a nonlinear four th order ordinary differential equation; they
are dependen t on the hardening exponent n and are dis tinct for  the cases

of plane stress and plane strain. The near—tip fields , Equations 

(2),5



are limi ted to the region for  which plastic strain components C.~~ domin.~.te

the corresponding elastic components. Thus the physical region over which

Equation (2) applies is a function of app]ied load and increases in size

as the applied load increases.

Rices ’ J—integral
12 

given in terms of the strain—energy densi ty W ,

£mn

W = I ~~~. .dc . .  (3)
13 13

0

is

au .

T 

Wdy — T1
-~----~~ ds (4)

The notat ion of Equation (4) is shown in Fi gure 1. It has been shown that

along any path T (Figure 1), from the lower crack face to the upper , J is
path independent for deformation theory plasticity with no unloading .

Fur ther , its value is directly related to the plastic intensity factor K
when these cond itions are satisfied , i.e.,

j =~~~~~~~~~i (5)E n

whe re I is a def ini te in tegral10 dependen t only on the harden ing

exponent cc.

BILINEA R AND MULTILINEAR MATERIALS

The associated near—tip field found by Hutchinson1° for  bilinear
material models has not been employed previously in conjunction with the

finite element method to determine J values, etc. For this reason, the

description here will contain more detail than that for the power harden—
4ing material f ully described 

elsewhere.6



The uniaxial multilinear model of material behavior is

£ = -
~~ + 

~~~~~ 
(01

_ a )  ÷ 
~~~~~ 

(o~_a~ ) +... ~~ 
(a_o

i) (6)

where a < a < a and a is defined as (EAt —Aa )/Aa . The number ofrn—i — m m m m rn
inelastic plastic segments in the ma terial model , N, is greater than or

equal to m. The cutoff of the last segment is at infinity, i.e., t
N 

=

The Hutchinson work1° is based on the special case of bilinear

ma ter ial response , N = 1, and the assumption that the region immediately
surro und ing the crack tip is y ielded. He obtains the asymptotic solution

for  the Airy stress func tion

K r 3/2
= (cos 0/2+1/3 cos 30/2) (7)

appl icable to bo th plane stress and plane strain. Thus the plastic singu-

lar solution for the near tip stress components has the same (r,0) depend—

en~e as in the elastic case within the yielded zone.

The generalization of Equation (6) for multiaxial stress states is

- = a . - a s
1~J E ij  E p p i j

+ 

~~~ 
{ am

_ [ (a
ia

yp
)+( a2

_a
i )a i + ... (a

m
_a

m l
)am_i ]/ a

e} ~~~ 
(8) $

when (a ) < a < (a ) . In the above , V is Poisson ’s ratio , ~ . is thee m— i e—  e m
Kroneker delta, a is the effective or von Mises stress, s . is the devi—e ij
atoric stress tensor, and the a

1 
are the parameters defining the slopes of

the various segments describing the hardening portions of the uniaxial

7



stress—strain curve. Using Equation (8), the asymptotic stress, strain ,

and displacement fields within the yielded zone may be obtained from the

Airy stress function. The results for the disp lacement fields are:

u = u + ~~ ,/
~ [(5_3v÷ f a?I~) cos -

~~
- - (1-i-v-i- -

~~

- a~~) cos + 0 ( r )

(9a)

v = 

~~~~~

- 

~ 
[(7_ v-I- -

~~
-
~~ 

a~~) sin -
~~ — (l+v+ -

~~ 
aN) sin + 0(r)  (9b)

for plane stress and

u = u + ~ ~/‘~~~ [(5_3v÷ f a~ —8~ ) cos ~~
- — (i+v-l- 

~ 
ccx )  cos + 0 ( r )

(1O~ )

= ~~~~~- 

~~~~ [(7_ v-i- 4~ 
aN_ 8$) sin -

~~ 
— (1-i-v-i- -

~~

- c~~) sin + 0(r)

(lOb )

fo r  the plane s t ra in  case with ~ = (v+aN /2) 2 / ( l+aN ) .

The J— integral can be expressed in terms of the plastic intensity

factor K by carry ing out the integra tion on a pa th in the reg ion governed
by the plastic singularity solution, Equations (9) or (10). The results

are

J = (l+cQ K~/E (plane stress) (h a)

j  = 
[

l+y 2 ,2_l.5v.t ,-a
N (~

_ 
~ + f-)] K2/E (plane strain) (lib)

with  y = (v~
faN /2)  (l+c

~N )

8



It is important to note that the development of Equations (9) and (10)

d i f f e r s  significantly from the corresponding derivation of Equations (2)
for the power hardening material in tha t :

L 1. Equations (9) and (10) contain the elastic and the p lastic con-

tributions to the asymptotic displacement field while Equations (2) contain

only the plastic contribution.

2. In Equations (9) and (10), the contributions of order 0(r) which

are neglected contain the portion of the disp lacement componen t derived
from the S1./O term in Equation (8). In other words, the asymptotic solu-

tion has been found based on the strain—stress assumption

(l+v ) v 3
c . - = a . . — — a ~5 . + — a s . (12)

13 E 13 E pp ij 2E N i j

SPECIALIZED CRACK TIP ELEMENTS

CORE ELEMENT

A semicircular core element has been developed
4 for elastoplas tic

Mod e I problems in which the assumed displacemen t field is given by the
asymp totic solution, Equations (2), (9), or (10), with unknown parameters

u (the x displacement component of the crack tip) and K .  This small

special element is connected to standard 12—node isoparametric elements

along its periphery by using the last of Equations (2), (9), or (10) as
displacement constraints for nodes falling on tne boundary. The element

thus has a variable number of nodal points; usually, three or four standard

12—node elements adjoin its boundary. The related finite element calcula-

tions result in direct predictions of K and u as well as all nodal dis-
p 0

placemen t componen ts, strains, and stresses. Employing Equations (5),

(h a), or (llb), the au thors were able to direc tly calculate the J—integral
as an unknown associated with the plastic singular solution. In addition ,

provision has been made to evaluate J along a path near the crack tip in

the first ring of conventional elements around the core element according

to Equation (4).

9



,

ENRICHED ELEMENT
The concept of enriching the conventional element displacement assuinp—

tion wi tn  the asymptotic displacement field appropriate for fracture analy—
7sis originated with Benzley and has been extensively applied for the
5,6elastic case by the authors . The application described here for the

elastoplastic Mode 1 crack problem is new. In the approach the multilinear

material model is used and leading term of the asymptotic expansion for the

near—tip crack displacement, Equations (9) or (10), is added to the usual
polynomial displacement field within the element. The present application

involves enriching 12—node isoparatnetric elements, i.e.,

u = a
1 
+ a

2s + a
3
t + a

4
s
2 

+.. • + a12st 3 + K~~i(s,t)

or (13)

u = [P]fa} + K~~I(s,t)

where the “a’s” are generalized displacements, (s,t) are the local coor-

dinates associated with the isoparametric element, and ~i(s,t) represents
the term (transformed to local element coordinates) in Equations (9) or (10)

in the expression for u whose coefficient is K .  The expression for the v

component of displacement is similar.

Equation (13) is evaluated at each of the twelve nodes to obtain the

set of equations for the nodal values of u, i.e., {u}, in terms of the
vector {a} as

{u} = [C]{a} + K~~ii} (14)

Inversion yields

{a) = [C]
1 
({u} - K { ~i}) (15)

10



Back substitution into Equation (13) gives

u = [P][C] 
1 
({u}—K {ii}) + K~ i (16)

But from this equation, it is clear that [P][C]
1 
is nothing more than the

set of usual isoparametric shape functions [N] = [N1, N2 N12 ].
Therefore -

u = N
i
(s,t)ui + K 

[
~(s~ t) ~~~~~~~~~ N .(s~ t)a.] 

(17)

and , similarly,

v = N
1
(s,t)v. + K 

[
~(s~

t)_ 
4~;:~~~

’ 
N .(s~ t)~~.] (18)

Equations (17) and (18) are the enriched element displacement approxima-

tions , giving the displacement components within the element in terms of
their nodal values and the plastic intensity factor K .  The enriched

element s t i f fne s s  matrix is developed from these equations in the usual

manner , with the exception that higher order Gauss quadrature (8x8) is
employed in the area integration to properly handle the steep gradien ts
near the crack tip .

Implementation of enriched elements of this type into a standard

finite element code is not as straightforward as for the core element dis—

cussed previously . The enriched element stiffness matrix is of order 25

for the Mode I case, corresponding to 24 unknown nodal displacement com—

ponents and the singular solution coefficient K .  Allowance in the con—

struction and solution of the overall stiffness matrix must be mqde for

an additional row and column which correspond to K~ .

11



The J—in tegrah is calculated from K using Equation (lla) or (llb) as

described prev iously. In addition, the J—integral may be evaluated on up

to ten different paths specified by the analyst according to Equation (4).

ELEMENT WITH ADJUSTED NODE POSITIONS (1/9—4/9)

Barsoum 14 
has shown that when midside nodes of 8—node quadrilateral

isopararnetric elements are moved to the quarter point nearest the crack

tip,  a h/i’? singularity in the strain field is developed . Following this

work , Pu and Hussain 3 fo und tha t the same e f fec t could be ach ieved wi th

12—node quadrilateral isoparametric elements by moving in termed iate nodes

to the 1/9 and 4/9 positions nearest the crack tip. The writers have per-

formed elastic calculations with 1/9—4/9 quadrilateral elements (rather

than corre spond ing collapsed triangular elements curren tly p re fe r red  by

most investigators) and have obtained highly accurate results. Benzley
15

has shown that the use of quarter point 8—node elements in elastic—plastic

computat ions  leads to improved path values of the J—integral. At the same

t ime , the p lastic singular solution associated wi th  a mul t ih inear  mater ia l

model contains the square root singularity associated with the 1/9—4/9

element. Thus it became logical to employ the 1/9—4/9 element with a

mult i l inea r  mater ia l  model as an additional plastic singularity element.

NUMERICAL EXAMPLES OF J (PATH) VERSUS J (SINGULARITY)

Based on the material described prev iously, the au thors are presently

able to make the following calculations :*
1. Calculation of J from the plastic singular solution (hereafter

called J )  of Equation (2) and calculation of J along a path (hereafter

cal led J~ ) near the crack tip for a power hardening material using de-
forma tion theory pla sticity and a small semicircular core crack tip
element.

2. The same as above but for a bilinear material model.

*These calculations have been made based on elastic—plastic extensions

of the APE~~-coinputér program.
6’8 This nonlinear version of the program has

been g iven the acronym PAPST for  Plast ic  Axi symmet r ic /Planar  STructures .
The nonlinear program is still under development and has not yet been
fo rmal l y documented .

12



3. Calculation of J and J for bilinear and multilinear material
S p

models using incremental plasticity theory and the enriched element whose

disp lacement field is given by Equations (17) and (18).

4. Calculation of J as immediately above , bu t with the use of the

1/9—4/9 elements at the crack tip .

5. Again the same, but with no special treatment of the crack tip.

The hypothetical edge—cracked specimen whose symmetric upper half is

shown in Figure 2 is used as an example to illustra te the char acter of

numerical results to be expected. The following material properties were

assumed: E = 30 x 106 psi (20.7 x l0~ Mpa) ,  v = 0.3, and 0yp 
= lO~ psi

(6900 Mpa). The finite element grid patterns are also shown in Figure 2

along wi th  the contours used to evaluate Jp
Table 1 gives results ob tained for  the plane strain case using the

core element approach and the grid pattern shown in Figure 2b. The core

radius r in this case is 0.01 in. (0.25 mm) (0.67 percen t of crack
length). Some of the stress—strain curves for these calculations are shown

in Figure 3.

The choice of a small hardening coefficient a(O.Ol) with a hardening

exponent cc = 1 results in essentially elastic behavior as expected . The

and J values in this range of material behavior are in close agreement

with each other and also with the elastic finite element predictions (J ) .ssy
These excellent predict ions  are in accordance wi th  the authors ’ earlier

4—6work.

Reduced material hardening is handled in the material model by in-

creasing the coefficient a and/or the exponent n. The numerical results

given in Table 1 show increasing disparity between and J with de-

creasing strain hardening. Considering a fixed grid pattern and load

level, the values f irs t increase slightly and then decrease draniatical—
ly as cc and/or a is increased . On the other hand , J increases monoton—

ically with decreasing strain hardening . The observed numerical dependerLca

of J on a and n is not physically realistic. The J values, on the other

hand , are believed to exhibit the correct trend .

13
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The authors have previously repor ted numerical predic tions for
4,9,13

= using the circular core element. Those results were for

materials with sufficient hardening so that no sign ificant differences  in

and J were observed. It is in the present extension of this approach

to lower hardening materials that the discrepancy between and became

apparen t

The case for the enrich4-d 12—node element is considered next in the

context of a bilinear material model (n=l). As shown in Table 2, when a

is very small leading to essentially elastic conditions, the singular and

path predictions of J are again in close agreement and also closely agree

with the linear elastic finite element results.
6 Again , this was expected

based on previous work.

Some of the stress—strain curves assumed in Table 2 are shown in

Figure 3. As the hardening coefficient a increases (leading to reduced

strain hardening), the d i f f e rence  be tween J and J increases , with J
5 p 5

falling while J increases. As a increases beyond about 0.1, the accuracy
of the J values rapidly decreases. The J values, on the other hand ,
appear to be reasonably accurate over the range of nonlinearity studied .

Table 3 presents results obtained with core element, enriched ele-

men ts, 1/9—4/9 elements, and conventional element trea tments of the crack
tip singularity for  the cases of p lane strain and plane stress. The core

element results are from three different grid patterns : 9—element ideali-

zation with core radius r of 0.02 and 0.01 in. (0.51 and 0.25 mm), and a
13—element idealization with r = 0.01 in. (0.25 mm). These grids are

shown in Figure 2. The elastic results for J(J ) exhibit a maximumssy
dif fe rence  be tween grid patterns of about 10 percent. This variation is

reflected in the p lasticity results.  The enriched , 1/9—4/9, and conven-

tional treatments of the crack tip shown in Table 3 are for two grid pat-

terns (Figure 2) consisting of 6 and 14 elements. The elastic results show

a much weaker dependence of J on grid pattern than that found for the core

element. Both enriched idealizations provide elastic results which are

more accurate than any of the core element predictions .
4 Thus , the en-

riched element path values for J~, are believed to be the more accurate of

those presented in Table 3.
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The following general conclusions are drawn from the results presented

in Table 3:

1. Values of J are inaccurate for both the core element and enriched
5

elements for materials which exhibit low strain hardening.

2. Values of J agree closely for  core element (deformation theory

p las t ic i ty )  and enriched element (incremental theory plas t ic i ty)  idealiza-

tions for  the p lane stress case , but disagree modera tely in the plane

strain case.

3. For plane strain and plane stress calculations, enriched and

1/9—4/9 elements provide about the same degree of accuracy for  J~ values.

4. Inferior values of J are obtained when the 0crack tip is treated
p

in a nonsingular manner. This trend may become much more significant if
the path used to calculate J is moved closer to the crack tip .

Altogether , the results presented in Tables 1, 2, and 3 lead to two

bas ic conclusions of fundamen tal impor tance :

1. Path values J may be evaluated with apparently reasonable accu-

racy for a wide class of stress—strain curves using either the enriched or

1/9—4/9 crack tip elements in conjunction with the incremental theory of

p l a s t i c i t y ,  provided that the chosen path is not very close to the crack

tip. This conclusion has limited experimental verification* and has been

confirmed analytically by comparison with results obtained in the ASTM—
16

sponsored round—roT in J—integral calculation.

2. Singular values J are seriously in error for all cases excep t

those involving materials which are nearly elastic. This error occurs

with both the core element using deformation theory plasticity and with
enriched elements using incremental theory plasticity.

The second conclusion is in contrast to the successful elastic results

which prompted this work. The notion that (analogous to the elastic case)

J could be calculated directly as a first order quantity, independen t of
pa th , and with accuracy on the order of tha t oil nodal displacemen ts, has
been found to be false. The explanation follows.

*This work has been reported informally in DTNSRDC Structures Depart-
ment Technical Note m—4, “J—integral Analysis of a Compact J

1~ 
Specimen ,”

by L. Nash Gifford (Sep 1978).
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EXPLANATION OF J (SINGULARITY ) RESULTS

For elastic crack problems , the asymp totic expansion of the elastic

singular solution about the crack tip has always been convergent over the

entire region upon which it has been imposed , i.e., over the core element

or over the enriched elemern - The higher order terms neglected in the

elastic singular solution displacement fields become increasingly impor tan t

with distance from the crack tip; they can apparently be accommoda ted by

the regular contributions to the displacement field in the 12—node enriched

element case. For the core element, on the other hand , thei r impor tance

has been minimized by keeping the element radius at a very small value.

Thus, calculations with enriched or core elements in the elastic case have

always led to the successful prediction (directly)- of the amplitude of the

elastic singular solution (K or J ) .I ssy
The domain of convergence of the plastic singular solution in elasto—

plastic crack problems , however , is limited to a region well within the

elastic—plastic boundary , i.e., where the plastic strain contributions

dominate the corresponding elastic ones. As an examp le of how this assump-

tion is easily violated , Figure 4 shows the near—ti p f in i t e  element mesh

(the region within 1/2 in. (12.7 mm) from the crack tip) for the 14—element

enriched plane strain test case of Table 3a with n = 1 and a = 10. The

enriched elements for this case are considerably smaller than would be used

in the elastic case. Superimposed on the finite element grid in Figure 4

are the elastic—plastic boundaries for various values of the applied remote

stress. It can be seen that at an applied remote stress of 20 ksi (138

Mpa), the plastic zone is still qui te small and occupies an area less than

one—third that of the already relatively small plas tically enriched ele-
ments surrounding the crack tip. At higher applied stress, the situation

improves somewhat, but even at 50 ksl (345 Mpa), one of ths enriched ele-

ments is not fully within the plastic zone, and neither of the enriched

elements are well within the plastic zone. Recall further that the en-

riched element calculations are based on incremental theory plasticity.

Thus the stress state at the higher load increments is dependent on the
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(LOADS OF 20.30,40~ AND 50 ksi , BILINEAR MAT ERIAL MODEL)

50 ksi

-- 

~~~~

/

4o7

0.5 in. \30

20

— — 

CRACK TIP -
~~~~ 0.1 in.

0.5 in. -
~~ I 0.5 in.

Figure 4 — Elastic—Plastic Interfaces for Fourteen—Element
Enriched Test Case of Table 3
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stress history, i.e., inconsistencies at lower amplitude loading may prop-

agate to influence the 50 ksi (345 Mpa) load solution. Were the ideali-

zation one of plane stress, on the other hand, the plastic zones would be

larger at a given load, but still not sufficiently large to enclose the

enriched elements well within the plastic zoile. The natural tendency would

be to overcome this difficulty by drastically decreasing the size of the

enriched elements, but that is precisely what this work sought to avoid.

Moreover, elastic work
8 
indicates a loss of accuracy as enriched element

size is made exceedingly small.

We conclude that imposing the plastic singular solution, Equa tions

(2) ,  (9) ,  or (10), over regions which violate the limitation that the
plastic singular solution be contained well within the plastic zone leads

to incorrect results. Further substantiation of this conclusion can be

found by considering the incremental finite element calculations involving

enriched elements as reported in Tables 2 and 3b. At low values of ap-

plied load, the plastic zone and, therefore, the region of applicability

of the plastic singular solution is small. In fact, the magnitude of the

lowest load shown in Tables 2 and 3b was chosen so that the most highly
stressed quadrature point in the enriched elements is exactly at yield

while all others are at or below yield stress. This condition corresponds

to small scale yielding, and the elastic singular solution should describe

the near field behavior in the enrict~ed elements. For plane stress with

V = 0.5, the asymptotic elastoplastic displacement field, Equation (9), is

exactly (l-faN
) times the elastic solution. (Similar, though more com-

plicated , relations hold for V ~ 0.5 and for plane strain.) If the

elas tic solu tion holds, K = K1/(1+cQ 
and J = (l+a

N
)K 2/E = J /(I+a

N).

The results in Tables 2 and 3b at the lowest load (first yield) exhibit

just this behavior in both the cases of plane strain and plane stress,

i.e., J$~~~
J
SSY

/(l+czN)H and thus support the conclusion that the enriched
element is modeling the elastic singularity on the first load increment.

As the load increases incrementally, the plastic region spreads to include

the entirety of the enriched elements and the value of J improves relative

to J , but not quickly enough to give accurate values within the practical
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range of loading considered here. Thus the inconsistency be tween assumed

and actual asymptotic displacement fields imposed at lower load levels per-

sists at higher load levels where the elastoplastic displacement field is

likely to be more correct.

The elastoplastic calculations involving the use of the semicircular

core element exhibit less discrepancy between J and J values than the
enriched element results. This observation is believed to be a direct con-

sequence of the fact that the core elements employed were significantly

smaller in dimension than the corresponding enriched elements. With this

exception noted , the poor J performance of the core element is explained

in like manner .

DISCUSSION AND CONCLUSIONS

Calculations to obtain values of the J—integral for a sample crack

problem have been carried out using four different near tip models: the

core element, enriched elements, 1/9—4/9 induced singularity elements, and

conventional 12—node isoparametric elements. The J values were determined

in all cases by path integration (J ), and by direct calcula tion of the

amplitude of the crack t ip s ingulari ty ( J )  for core and enriched elements.

An aim of this effort was to develop a method for calculating unique J

values based on the crack tip singularity and thus avoid the necessity of

choosing integration paths and comparing resulting J estimates. The results

presented demonstrate failure in reaching that goal; rather , the most re-

liable J es timates are obtained from path integration based on f in i te

element solutions employing some form of specialized near—tip elements.

Further verification of the accuracy of path values of J calculated

using enriched crack tip elements with a multilinear material model has

been obtained by comparison with J values from the ASTM round—robin

plastic crack problem.16 The path values of J , calculated in this manner,
were in the central region of the band of results, leading to increased

confidence in the use of the technique. As expected , the corresponding

singularity values of .1(J ), as calculated with enriched 12—node elements,

were substantially lower than the path values and were outside of the

range of other reported results.
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In retrospect, the fact that the specialized finite element calcula-

tions give accurate path values for J and yet are unable to yield accurate

~~ 
predictions can be explained as follows: The path independence of the

J—integral implies a h r  singularity of the strain energy density function

at the crack tip .* The elastic—plastic asymptotic analysis of the two—

dimensional crack problem for either a power hardening or a multihinear

material model discussed and referenced earlier yields a plastic singular

solution which indeed contains a h r  singularity in strain energy density.

The region over which this singularity dominates is, however, dependent on

geometry , mat”-rial behavior (hardening), and applied load amplitude. It

is this dependence (of the region of applicability for the plastic singu-

lar solution) that has led to the difficulties , discussed earlier, associ-

ated with imposing the plastic singular solution on a region (element or

elements) and solving for  its amp litude J~ . On the other hand, the J path

integral , which is a measure of the amplitude of the near—tip f ields , is

independent of these size restrictions and is applicable over the range

from small scale yielding to situations involving significant plastic de-

formation. Therefore, accurate values of .1 CAN be obtained by using the

path integral approach in conjunction with specialized crack tip elements

which impose the h r  singularity in the strain energy density at the crack

tip.

Although the present effort failed in the objective of calculating the

J—integral directly as the amplitude of the p la stic singular solut ion , the

use of plastic singular elements at the crack tip was found to be bene-

ficial for the evaluation of J about paths remote from the crack tip. Thus

the only real limitations of the present effort toward the prediction of

fracture are imposed by the restrictions on the use of the .1—integral as

a fracture criterion. Briefly , the J approach is limited to prediction

of fracture initiation from a preexisting flaw. The J—integral serves to

measure the amplitude of the near—tip field and , given its critical value,

*This may be seen by considering a himitingly small contour or path
surrounding the crack tip. A lower order singularity in the strain energy
density would lead to a limitingly small value of .1 on this path and a
higher order singularity would result in increasingly large .1 path values.

25



V

to predic t crack growth. This approach clearly presupposes the same failure

mechanism in all situations where J is applicable. Thus, the scale of the

plastic deformation prior to failure must be limited such that the mecha-

nism is flat fracture and, for example, excludes ductile tearing.

26



REFERENCES

1. Henshell, R.D. and K.D. Shaw, “Crack—Tip Finite Elements are

Unnecessary,” International Journal for Numerical Methods in Engineering,

Vol. 9, pp. 495—507 (1975).

2. Barsoum , R.S., “On the Use of Isoparametric Finite Elements in

Linear Fracture Mechanics,” International Journal for Numerical Methods in

Engineering, Vol. 10, pp. 25—37 (1976).

3. Pu, S.L. and M.A. Hussain, “The Collapsed Cubic Isoparametric

Element as a Singular Element for Crack Problems,” International Journal

for Numerical Methods in Engineering , Vol. 12, No. 11, pp. 1727—1742 (1978).

4. Hilton, P.D. et al., “Finite Element Fracture Mechanics Analysis

of Two—Dimensional and Axisymmetric Elastic and Elastic—Plastic Cracked

Struc tures ,” NSRDC Report 4493 (1974).

5. Gifford , L.N. and P.D. Hilton, “Stress Intensity Factors by

Enriched Finite Elements,” Engineering Fracture Mechanics, Vol. 10,

pp. 485—496 (1978).

6. Gif ford , L.N., “APES—Second Generation Two—Dimensional Fracture

Mechanics and Stress Analysis by Finite Elements,” DTNSRDC Report 4799

(1975).

7. Benaley , S .E . ,  “Representation of Singularit ies wi th  Isopara—

metric Finite Elements,” Interna tional Journal for  Numerical Methods in

Eng ineering, Vol. 8 , pp. 537—545 (1974).

8. Gif ford , L.N., “APES—Finite Element Fracture Mechanics Analysis :

Revised Documentation,” DTN SRDC Report 79/023 (Mar 1979).

9. Hilton, P.D. and J.W. Hutchinson, “Plastic Intensity Factors for

Cracked Plates,” Engineering Fracture Mechanics, Vol. 3, pp. 435—451 (1971).

10. Hutchinson, J.W., “Singular Behavior at the End of a Tensile

Crack in a Hardening Material,” Journal of Mechanics and Physics of Solids,

Vol. 16, No. 1 (1968).

27



11. Rice, J.R. and G.F. Rosengren, “Plane Strain Deformation Near a

Crack Tip in a Hardening Material,” Journal of Mechanics and Physics of

Solids, Vol. 16, No. 1 (1968).

12. Rice, J.R., “Mathematical Analysis in the Mechanics of Fracture ,”

in “Fracture,” Vol. 2, Academic Press (1968).

13. Hilton, P.D., “Elastic—Plastic Analysis for Cracked Members,”

Trans. of ASME, Journal of Pressure Vessel Technology , Series J, Vol. 98,

No. 1, pp. 47—55 (Feb 1976).

14. Barsoum, R.S., “Application of Quadratic Isoparametric Elements

in Linear Fracture Mechanics,” International Journal of Fracture , Vol. 10,

pp. 603—605 (1974).

15. Benzley, S.E., “Nonlinear Calculations with a Quadratic Quarter—

Point Crack Tip Element,” International Journal of Fracture, Vol. 12,

No. 3, pp. 475—477 (Jun 1976).

16. Wilson, W.K. and J.O. Osias, “A Comparison of Finite Element

Solutions for an Elastic—Plastic Crack Problem,” International Journal of

Fracture, Vol. 14, pp. R95—R1O8 (1978).

28



INITIAL DISTRIBUT ION

Copies Copies

1 DDR&E, Tech Lib 1 NADC

2 ANMRC 1 NOSC
1 Library
1 Dr. T.P. Rich 1 NWC

2 WATERVLIET ARSENAL 1 NCSC
1 Library
1 Dr. S.L. Pu 1 NSWC, White Oak

1 CNO, OP987 R&D Plans Div 1 NSWC , Dahigren

4 CHONR 1 NUSC
1 ONR 102
1 ONR 430 1 NAVAIR , 320
1 ONR 465
1 ONR 474 1 NAVFAC, 03

3 NAVMAT 1 CBC Port Hueneme CA CEL
1 MAT 08E
1 MAT 08T1 1 NAVSHIPYD C}IASN
1 MAT 08T23

1 NAVSHIPYD MARE
8 NRL

1 Code 6300 1 NAVSHIPYD PTSMH
1 Code 63b0
1 Code 6380 1 SUPSHIP GROTON
1 Code 6382
1 Code 6384 1 SUPSHIP NEWPORT NEWS
1 Code 8406
1 Code 8430 1 SUPSHIP PASCAGOULA
1 Code 8433

12 DDC
4 NAVSEA -

1 SEA 035 1 ASD/ENFSF, WPAFB
1 SEA 03511
1 SEA 03521 1 AFDL, WPAFB
1 SEA 0353

1 ASIAC (AFFDL/FBR)
1 USNA

Dr. J.G. Joyce 2 BUSTAND, Boulder
1 Library

1 NAVPGSCOL 1 Dr. D.T. Read

1 USNROTC & NAVADMIN , MIT

29



Copies Copies

3 BUSTAND, Washington, D.C. 1 Colorado State Univ
1 Library Dr. F.W. Smith
1 Dr. R. DeWit
1 Dr. J.T. Fong 1 Univ of Connecticut

Prof A .J. McEvily
1 USCG

1 Univ of Dayton Research
1 DOE, Oak Ridge Institute

Dr. J.P. Gallagher
1 MARAD

2 Franklin Institute
1 NASA/Goddard 1 Library

1 Z. Zudans
3 NASA/Langley

1 Library 2 George Washington Univ
1 Dr. R.E. Fulton 1 J.D. Lee
1 Dr. J.C. Newman 1 A.K. Noor

3 NASA/Lewis 1 Georgia Inst of Tech
1 Library Dr. J.M. Anderson
1 Dr. B. Gross
1 Dr. J.E. Strawley 1 Harvard Univ

Dr. J.W. Hutchinson
1 NASA Scientific Tech Info Of c

2 Johns Hopkins Appl Phys
1 NUC Reg Comm Lab

1 Library 1 Library
1 Dr. J.R.N. Rajan 1 G. Daley

1 University of Arizona 0 2 Lehigh Univ
Dr. R.H. Gallagher 1 Dr. G.C. Sih

1 Dr. R.P. Wei
3 Battehle Memorial Institute

1 Library 1 Univ of Maryland
1 Dr. G.T. Hahn Dr. G.R. Irwin
1 Dr. E.F. Rybicki

1 Univ of Massachusetts
1 Boston University Dr. W.A. Nash

Dr. I. Fried
1 MIT

1 Brown University Dr. K. Masabuchi
Dr. J.R. Rice

1 Michigan Tech Univ
2 Carnegie—Mellon Inst Dr. V.W. Snyder

1 T.A. Cruse
1 Dr. J.L. Swedlow 1 Stanford Research Inst

30



Copies Copies

1 Southwest Research Inst 1 Combustion Engineering
J.R. Maison Dr. R.S. Barsoum

1 VPI&SU 1 General Dynamics Corp
- - Dr. G.W. Swift Electric Boat Div

4 Univ of Washington 2 General Electric Co
1 APL (Schenectady)
1 Dr. A.F. Emery 1 Dr. C.F. Shih
1 L. Hodulak 1 W . R .  Andrews
1 Dr. A.S. Kobayashi

1 Ingalls Shipbldg Corp
0 2 Washington University

1 Dr. M. Gomez 1 Lockheed Palo Alto Res Lab
1 Dr. P.C Paris

1 NNSB&DD Co
1 Yale Univ

Dr. D.M. Parks 1 Northrop Corp (Hawthorne)
J.R. Yamane

1 Air Products & Chemicals
M.G. Zellner 1 Oak Ridge National Laboratory

S.K. Iskander
1 Allis—Chalmers Corp

H.R. Jhansale 6 Sandia Laboratories
(Albuquerque)

1 ALCOA (Pi t t s )  5 Dr. P . D .  Hilton
J.G Kaufman 1 Dr. S.E. Benzley

1 Babcock and Wilcox 1 U.S. Steel Corp (Monroevihle)
Research Center J.M. Barsom
J.M. Bloom

1 Welding Research Council
2 Battelle Pacific Northwest

1 M.C.C. Bampton 3 Westinghouse Elec Corp
1 G.H. Beeman (Pittsburgh)

1 Dr. W.K. Wilson
1 Bethlehem Steel Corp 1 Dr. D.E. McCabe

B.D. MacDonald 1 Dr. N.E. Dowling

1 Boeing Aerospace Company 1 Weston Components & Controls
(Seattle) W.R. Hartman
A .V. Viswanathan

2 Brookhaven National Lab
1 Dr. M. Reich
1 D. Gardner

31



CENTER DISTRIBUTION

Cop ies Code Name

1 11

1 17

1 1702

1 1706S (m)

1 1707

2 172

1 1720.1

1 1720.2

1 1720.3

20 1720.4

1 1720.5

1 1720.6

1 173

1 1730.5

1 1730.6

1 174

1 1740.5

1 177

1 177.7 (m)

1 1805

1 1844

1 28

1 2814

1 282

10 5211.1 Reports Distribution

1 522.1 Unclassified Lib (C)

1 522.2 Unclassified L~lb (A)

12

—- .-.---—- - - -— ~~~~ -- - - - - . =----— — —---- --~~~~~ —_---.0 -__ -



F


