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ABSTRACT

Specialized nonlinear crack tip finite elements
which include the amplitude of the plastic singular solu-
tion as an additional unknown are investigated to deter-
mine their capability to directly predict the J-integral
for cracked elastoplastic bodies without recourse to
numerical evaluation of the J-integral over arbitrarily
chosen paths. The special elements are used in conjunc-
tion with conventional 12-node quadrilateral isoparametric
elements. Power hardening and multilinear representations
of the nonlinear stress-strain curve are considered for
both deformation and incremental theories of plasticity.
Numerical results are presented which demonstrate that
the elements fail to provide accurate direct calculation
of J, but that they lead to improved estimates of J based
on path calculations. It is concluded that special ele-
ments at the crack tip improve the accuracy of path values
of J, but that the special elements themselves predict ac-
curate values of J only in materials with high strain
hardening slope.

ADMINISTRATIVE INFORMATION
This work was authorized and funded within the Submarine Structures
Exploratory Development Program under Program Element 62543N, Project

SF 43.422.592, and Work Unit 1720-592.

INTRODUCTION

The finite element calculation of linear elastic stress intensity
factors for planar or axisymmetric bodies has become commonplace and highly
accurate. Indirect methods, in which conventional elements are forced to
display the correct near tip displacement field, have been discussed by
Henshell and Shaw,l* and by BarSOum2 for the 8-node quadrilateral isopara-
metric element, and by Pu et al.3 for the 12-node quadrilateral isopara-
metric element. In these methods, a corner node corresponds to the crack
tip, and edge nodes adjacent to the tip are moved to the 1/4 position for
the 8-node element, or to the 1/9-4/9 positions for the 12-node element, ;

thus imposing the proper vr variation of displacement with respect to

*A complete listing of references is given on page 27.




distance from the crack tip. Stress intensity factors KI and KII are then
calculated based upon examination of nodal displacements in the vicinity
of the crack tip.

On the other hand, Hilton and Gifford4-6 have found that highly accu-
rate elastic stress intensity factors can be calculated using specialized
crack tip elements in which the stress intensity factors themselves are
carried as unknowns. Special, small, circular "core" crack tip elements
joined along their periphery to conventional elements have produced good
results. An "enrichment" of conventional 12-node isoparametric elements,
as suggested originally by Benzley,7 has proved even more convenient and
has improved accuracy. Both of these approaches have been implemented into

the APES computer program6’8

which employs the 12-node isoparametric
quadrilateral as a conventional element.

The extension of embedded singularity finite element techniques to
the consideration of elastoplastic crack problems was first proposed by
Hilton and Hutchinson.9 In this work, the core crack tip element was
employed to embed the Hutchinson10 and Rice and Rosengren11 (HRR) plastic
singular sclution for Mode I crack problems into a deformation theory
finite element formulation. Using this approach, the plastic intensity
factor was calculated directly and the J—integra112 was determined from it.
Results were presented for the plane stress problem of a central crack in
an infinite domain subject to a uniform remote tensile stress field acting
normal to the crack direction. The authors extended this approach to
plane strain problems and to the use of high order isoparametric elements
instead of previously used constant stress triangles remote from the crack
tip. They report results for a number of geometries and characteristics,
including boundary influence, for example.l"13

In this approach, the core element was thought to be particularly
attractive for the following reasons:

1. It was not necessary to select a path, a number of paths, or a

"best" path over which to evaluate the J-integral.

2. The J-integral was a direct consequence of the calculation.




3. The J-integral was a first order quantity whose accuracy should
be on the order of that of nodal displacements; evaluation of J over some
path, on the other hand, involves the second order quantities of strain
and stress.

Success in elastic calculations with the enriched 12-node isopara-
metric element5 was even more dramatic than with the small core element.
Not only were problems considerably easier to idealize, but accuracy of
the elastic stress intensity factors was found to be practically insensi-
tive to the size of the enriched elements surrounding the crack tip. (Such
was not the case with the core element.) This fact quickly led the
authors to almost exclusive use of enriched 12-node elements for elastic
fracture computationé.

This success, glong with dissatisfaction over the limitations im-

A theory plasticity coupled with a power hardening

posed by deformatio
material model, has led the authors to yet another approach to the elasto-
plastic Mode I crack problem. This took the form of an enriched elasto-
plastic 1l2-node isoparametric crack tip element, coupled with conventional
12-node elements, and all formulated using incremental theory plasticity
and a multilinear representation of the material stress-strain curve.

From analyzing the results of all of this work, the authors are able
tc compare the influences of the following in elastoplastic fracture
analysis:

1. Different models of material behavior

2. Different near-tip elements (core, enriched, 1/9-4/9 and
nonsingular)

3. Path and singularity (direct formulation, first order) predic-
tions of the J-integral
In the following, the development of each of the nonlinear formulations
will be outlined, and then numerical results will be compared. It will
be concluded that while path calculation of the J-integral is satisfactory
using singular elastoplastic elements, the directly calculated singular
values themselves are not, in general, accurate. Thus the advantage en-

joyed in the use of such elements in the elastic case is lost in the




nonlinear case. The unsatisfactory prediction of singular J values will
then be explained and discussion regarding the need for special elements

for accurate path prediction will be given.

MATERIAL MODELS AND ASSOCIATED CRACK TIP SINGULARITIES
POWER HARDENING MATERIAL
For a power hardening material, the uniaxial stress-strain law is

given by

o for g < O

- yp
o - 00 + ao(o/o )n - for 0 > o (1)
yp yp Yp

IS

e=1
E

where 0 and € = uniaxial stress and strain

(0] = the yield stress
yp
E = Young's modulus
o and n = constants chosen such that Equation (1) models the experi-

mental stress-strain curve
For such a material model under conditions of plane stress, plane strain,
: Y 9 :
or axial symmetry, Hutchinson™ has shown that the near crack tip fields

are given for the Mode I case by

H -1/n+l -
oij = Kpr Oij(e) (2a)
K"
Y -n/n+l -
Eij ﬁ,eij o ER r eij(e) (2b)
2 ¥ Eg» 1/n+l1 - ) @
ui = uio o E r ui c)

b
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where O, .,
1]

of plane stress and plane strain.

s E.., @nd u, = stress, strain, and displacement components

1]
r and O = polar coordinates centered at the crack tip as
shown in Figure 1
Kp = the plastic intensity factor

f vy

CRACK TiIP

J INTEGRATION PATH 7

. X, U

Figure 1 - Polar Coordinate System at Crack Tip and
Contour for J Path Integral

The functions aij(O), Eij(O), and ﬁi(e) are determined by the numerical
solution of a nonlinear fourth order ordinary differential equation; they

are dependent on the hardening exponent n and are distinct for the cases

The near-tip fields, Equations (2),




are limited to the region for which plastic strain components Cij dominate

the corresponding elastic components. Thus the physical region over which

Equation (2) applies is a function of applied load and increases in size
as the applied load increases.

Rices' J—integral12 given in terms of the strain-energy density W,

mn
W =J oijds:jLj (3)
0
is
9ui
J = Wdy - Ti e ds (4)
T

The notation of Equation (4) is shown in Figure 1. It has been shown that
along any path T (Figure 1), from the lower crack face to the upper, J is
path independent for deformation theory plasticity with no unloading.
Further, its value is directly related to the plastic intensity factor K

when these conditions are satisfied, i.e.,

3w =l ¥ (5)

where In is a definite integrallo dependent only on the hardening

exponent n.

BILINEAR AND MULTILINEAR MATERIALS

The associated near-tip field found by HutchinsonlO for bilinear
material models has not been employed previously in conjunction with the
finite element method to determine J values, etc. For this reason, the
description here will contain more detail than that for the power harden-

ing material fully described elsewhere.4




The uniaxial multilinear model of material behavior is

o o

2
) + — (02—01) R

.4
€=% + B (ol—oyp E

) (6)

where O < 0 <0 and o is defined as (EAc -Ac )/Ac . The number of
m — m m m m m

-1
inelastic plastic segments in the material model, N, is greater than or

equal to m. The cutoff of the last segment is at infinity, i.e., Ey =
The Hutchinson work10 is based on the special case of bilinear

material response, N = 1, and the assumption that the region immediately

surrounding the crack tip is yielded. He obtains the asymptotic solution

for the Airy stress function

3/2

Kr
¢ = ;E:——— (cos 06/2+1/3 cos 360/2) )
21

applicable to both plane stress and plane strain. Thus the plastic singu-
lar solution for the near tip stress components has the same (r,0) depend-

ence as in the elastic case within the yielded zone.

The generalization of Equation (6) for multiaxial stress states is

€ _—_-l-i-\{lo' __\i
1) E ij E ppij
+ Lo o -[(a,0 )+(a,-a,)o, +... (o -« )O 1/0 ] s (8)
E m 1 yp 2 e | m m-1" m-1 el ij

when (0 ) <0 < (0 ) . In the above, vV is Poisson's ratio, §,, is the
e’m-1 e— " em ij

Kroneker delta, O is the effective or von Mises stress, Sij is the devi-

atoric stress tensor, and the o, are the parameters defining the slopes of

the various segments describing the hardening portions of the uniaxial




stress-strain curve. Using Equation (8), the asymptotic stress, strain,

and displacement fields within the yielded zone may be obtained from the

Airy stress function. The results for the displacement fields are:

u=u +Z% zr [(5—3v+%aN)cos%—(1+v+% y) o g—]‘f-o(r)

K
_p [ S gl B 3 .. 30
v ZE VT [(7 W 2 aN)sm > <1+\H- 5 QN) sin 5 + 0(r) (9b)

for plane stress and

3 % 2 2 e 30
LR " + ZE V1o [(5 3v+ 5 O~ 88) cos 5 1+v+ > aN) cos 5 + 0(xr)

(10a)

- 2 VE (o Roagss) sin §- (1w 30) s 2]+ 0o

(10b)

for the plane strain case with B = (v+aN/2)2/(l+aN).
The J-integral can be expressed in terms of the plastic intensity
factor K by carrying out the integration on a path in the region governed

by the plastic singularity solution, Equations (9) or (10). The results

are
= (l+aN) KE/E (plane stress) (11a)

2 3y L Y2 L2
J = 1+y /2—1.5vY+uN 1- 4 + 2 KP/E (plane strain) (11b)

with vy = (v+aN/2) t (1+aN)




It is important to note that the development of Equations (9) and (10)
differs significantly from the corresponding derivation of Equations (2)
for the power hardening material in that:

1. Equations (9) and (10) contain the elastic and the plastic con-
tributions to the asymptotic displacement field while Equations (2) contain
only the plastic contribution.

2. In Equations (9) and (10), the contributions of order O(r) which
are neglected contain the portion of the displacement component derived
from the s../oe term in Equation (8). In other words, the asymptotic solu-

1]
tion has been found based on the strain-stress assumption

o 6., + = oS, (12)

L (I+y) s
pp ij  2E N'ij

€15 E  Cij

<

SPECIALIZED CRACK TIP ELEMENTS

CORE ELEMENT

A semicircular core element has been developed4 for elastoplastic
Mode I problems in which the assumed displacement field is given by the
asymptotic solution, Equations (2), (9), or (10), with unknown parameters
u (the x displacement component of the crack tip) and K . This small
special element is connected to standard 12-node isoparametric elements
along its périphery by using the last of Equations (2), (9), or (10) as
displacement constraints for nodes falling on the boundary. The element
thus has a variable number of nodal points; usually, three or four standard
12-node elements adjoin its boundary. The related finite element calcula-
tions result in direct predictions of Kp and u, as well as all nodal dis-
placement components, strains, and stresses. Employing Equations (5),
(11a), or (11b), the authors were able to directly calculate the J-integral
as an unknown associated with the plastic singular solution. In addition,
provision has been made to evaluate J along a path near the crack tip in
the first ring of conventional elements around the core element according

to Equation (4).




ENRICHED ELEMENT

The concept of enriching the conventional element displacement assump-
tion with the asymptotic displacement field appropriate for fracture analy-
sis originated with Benzley7 and has been extensively applied for the
elastic case by the authors.s’6 The application described here for the
elastoplastic Mode I crack problem is new. In the approach the multilinear
material model is used and leading term of the asymptotic expansion for the
near-tip crack displacement, Equations (9) or (10), is added to the usual
polynomial displacement field within the element. The present application

involves enriching 12-node isoparametric elements, i.e.,

- 2 3 =
u=a; + a,s + a3t + a4s Hove alZSt + Kpu(s,t)

or (13)

u = [P}{a} + Kpﬁ(s,t)

where the "a's" are generalized displacements, (s,t) are the local coor-

dinates associated with the isoparametric element, and u(s,t) represents
the term (transformed to local element coordinates) in Equations (9) or (10)
in the expression for u whose coefficient is Kp. The expression for the v
component of displacement is similar.

Equation (13) is evaluated at each of the twelve nodes to obtain the
set of equations for the nodal values of u, i.e., {u}, in terms of the

vector {a} as

{u} = [c]{a} + KP{G} (14)
Inversion yields
{a} = [61"Y (fu} - K, (i) (15)
10




Back substitution into Equation (13) gives

u = [p]Lc]t (u)=k @) + K (16)

But from this equation, it is clear that [P][C]_l is nothing more than the

set of usual isoparametric shape functions [N] = [Nl’NZ .....N12].

Therefore

12 12
u = E Ni(s,t)ui + Kp [u(s,t)— 2 Ni(s,t)ui] (17)
i=1 i=1
and, similarly,
12 12
v = E Ni(s,t)vi + Kp [G(s,t%— z Ni(s,t)Gi} (18)
i=1 i=1

Equations (17) and (18) are the enriched element displacement approxima-
tions, giving the displacement components within the element in terms of
their nodal values and the plastic intensity factor K . The enriched
element stiffness matrix is developed from these equations in the usual
manner, with the exception that higher order Gauss quadrature (8%8) is
employed in the area integration to properly handle the steep gradients
near the crack tip.

Implementation of enriched elements of this type into a standard

3, i B AR A Y S

finite element code is not as straightforward as for the core element dis-
cussed previously. The enriched element stiffness matrix is of order 25
for the Mode I case, corresponding to 24 unknown nodal displacement com-
ponents and the singular solution coefficient Kp. Allowance in the con- \
struction and solution of the overall stiffness matrix must be made for

an additional row and column which correspond to Kp.

11




The J-integral is calculated from Kp using Equation (1la) or (11lb) as
described previously. In addition, the J-integral may be evaluated on up

to ten different paths specified by the analyst according to Equation (4).

ELEMENT WITH ADJUSTED NODE POSITIONS (1/9-4/9)

Barsoumla has shown that when midside nodes of 8-node quadrilateral
isdparametric elements are moved to the quarter point nearest the crack
tip, a 1/V/r singularity in the strain field is developed. Following this
work, Pu and Hussain3 found that the same effect could be achieved with
12-node quadrilateral isoparametric elements by moving intermediate nodes
to the 1/9 and 4/9 positions nearest the crack tip. The writers have per-
formed elastic calculations with 1/9-4/9 quadrilateral elements (rather
than corresponding collapsed triangular elements currently preferred by
most investigators) and have obtained highly accurate results. Benzley15
has shown that the use of quarter point 8-node elements in elastic-plastic
computations leads to improved path values of the J-integral. At the same
time, the plastic singular solution associated with a multilinear material
model contains the square root singularity associated with the 1/9-4/9
element. Thus it became logical to employ the 1/9-4/9 element with a

multilinear material model as an additional plastic singularity element.

NUMERICAL EXAMPLES OF J (PATH) VERSUS J (SINGULARITY)

Based on the material described previously, the authors are presently
able to make the following calculations:*

1. Calculation of J from the plastic singular solution (hereafter
called Js) of Equation (2) and calculation of J along a path (hereafter
called Jp) near the crack tip for a power hardening material using de-
formation theory plasticity and a small semicircular core crack tip
element.

2. The same as above but for a bilinear material model.

*These calculations have been made based on elastic-plastic extensions

of the APES-computer prdgram.é’ This nonlinear version of the program has

been given the acronym PAPST for Plastic Axisymmetric/Planar STructures.
The nonlinear program is still under development and has not yet been
formally documented.

12
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3. Calculation of JS and Jp for bilinear and multilinear material
models using incremental plasticity theory and the enriched element whose
displacement field is given by Equations (17) and (18).

4. Calculation of Jp as immediately above, but with the use of the
1/9-4/9 elements at the crack tip.

5. Again the same, but with no special treatment of the crack tip.

The hypothetical edge-cracked specimen whose symmetric upper half is
shown in Figure 2 is used as an example to illustrate the character of
numerical results to be expected. The following material properties were
assumed: E = 30 X 106 psi (20.7 x 105 Mpa), v = 0.3, and pr - 105 psi
(6900 Mpa). The finite element grid patterns are also shown in Figure 2
along with the contours used to evaluate Jp.

Table 1 gives results obtained for the plane strain case using the
core element approach and the grid pattern shown in Figure 2b. The core
radius L, in this case is 0.01 in. (0.25 mm) (0.67 percent of crack
length). Some of the stress-strain curves for these calculations are shown
in Figure 3.

The choice of a small hardening coefficient a(0.01) with a hardening
exponent n = 1 results in essentially elastic behavior as expected. The
Js and Jp values in this range of material behavior are in close agreement
with each other and also with the elastic finite element predictions (JSS s
These excellent precdictions are in accordance with the authors' earlier
work.z'—6

Reduced material hardening is handled in the material model by in-
creasing the coefficient o and/or the exponent n. The numerical results
given in Table 1 show increasing disparity between Js and J_ with de-
creasing strain hardening. Considering a fixed grid pattern and load
level, the JS values first increase slightly and then decrease dramatical-~
ly as n and/or a is increased. On the other hand, Jp increases monoton-
ically with decreasing strain hardening. The observed numerical dependerce
of Js on & and n is not physically realistic. The Jp values, on the other

hand, are believed to exhibit the correct trend.

13
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Figure 2 - Geometry and Idealizations of Hypothetical
Edge-Notched Specimen
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The authors have previously reported numerical predictions for

R %L
S

using the circular core element. Those results were for
materials with sufficient hardening so that no significant differences in
JS and Jp were observed. It is in the present extension of this approach
to lower hardening materials that the discrepancy between JS and Jp became
apparent.

The case for the enriched 12-node element is considered next in the
context of a bilinear material model (n=1). As shown in Table 2, when a
is very small leading to essentially elastic conditions, the singular and
path predictions of J are again in close agreement and also closely agree
with the linear elastic finite element results.6 Again, this was expected
based on previous work.

Some of the stress-strain curves assumed in Table 2 are shown in
Figure 3. As the hardening coefficient o increases (leading to reduced
strain hardening), the difference between Js and Jp increases, with Js
falling while Jp increases. As 0 increases beyond about 0.1, the accuracy
of the JS values rapidly decreases. The Jp values, on the other hand,
appear to be reasonably accurate over the range of nonlinearity studied.

Table 3 presents results obtained with core element, enriched ele-
ments, 1/9-4/9 elements, and conventional element treatments of the crack
tip singularity for the cases of plane strain and plane stress. The core
element results are from three different grid patterns: 9-element ideali-
zation with core radius ro of 0.02 and 0.01 in. (0.51 and 0.25 mm), and a
13-element idealization with ro = 0.01 in. (0.25 mm). These grids are
shown in Figure 2. The elastic results for J(Jssy) exhibit a maximum
difference between grid patterns of about 10 percent. This variation is
reflected in the plasticity results. The enriched, 1/9-4/9, and conven-
tional treatments of the crack tip shown in Table 3 are for two grid pat-
terns (Figure 2) consisting of 6 and 14 elements. The elastic results show
a much weaker dependence of J on grid pattern than that found for the core
element. Both enriched idealizations provide elastic results which are
more accurate than any of the core element predictions.4 Thus, the en-
riched element path values for Jp are believed to be the more accurate of

those presented in Table 3.
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The following general conclusions are drawn from the results presented
in Table 3:

1. Values of Js are inaccurate for both the core element and enriched
elements for materials which exhibit low strain hardening.

2. Values of Jp agree closely for core element (deformation theory
plasticity) and enriched element (incremental theory plasticity) idealiza-
tions for the plane stress case, but disagree moderately in the plane
strain case.

3. For plane strain and plane stress calculations, enriched and
1/9-4/9 elements provide about the same degree of accuracy for Jp values.

4., Inferior values of Jp are obtained when the ‘crack tip is treated
in a nonsingular manner. This trend may become much more significant if
the path used to calculate Jp is moved closer to the crack tip.

Altogether, the results presented in Tables 1, 2, and 3 lead to two
basic conclusions of fundamental importance:

1. Path values Jp may be evaluated with apparently reasonable accu-
racy for a wide class of stress-strain curves using either the enriched or
1/9-4/9 crack tip elements in conjunction with the incremental theory of
plasticity, provided that the chosen path is not very close to the crack =
tip. This conclusion has limited experimental verification* and has been
confirmed analytically by comparison with results obtained in the ASTM-
sponsored round-robin J-integral calculation.16

2. Singular values Js are seriously in error for all cases except
those involving materials which are nearly elastic. This error occurs
with both the core element using deformation theory plasticity and with
enriched elements using incremental theory plasticity.

The second conclusion is in contrast to the successful elastic results
which prompted this work. The notion that (analogous to the elastic case)
JS could be calculated directly as a first order quantity, independent of
path, and with accuracy on the order of that of nodal displacements, has

been found to be false. The explanation follows.

*This work has been reported informally in DTNSRDC Structures Depart-
ment Technical Note m-4, "J-integral Analysis of a Compact JIC Specimen,"
by L. Nash Gifford (Sep 1978).
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EXPLANATION OF J (SINGULARITY) RESULTS

For elastic crack problems, the asymptotic expansion of the elastic
singular solution about the crack tip has always been convergent over the
entire region upon which it has been imposed, i.e., over the core element
or over the enriched elemeni . The higher order terms neglected in the
elastic singular solution displacement fields become increasingly important
with distance from the crack tip; they can apparently be accommodated by
the regular contributions to the displacement field in the 12-node enriched
element case. For the core element, on the other hand, their importance
has been minimized by keeping the element radius at a very small value.
Thus, calculations with enriched or core elements in the elastic case have
always led to the successful prediction (directly) of the amplitude of the
elastic singular solution (KI or Jssy)'

The domain of convergence of the plastic singular solution in elasto-
plastic crack problems, however, is limited to a region well within the
elastic-plastic boundary, i.e., where the plastic strain contributions
dominate the corresponding elastic ones. As an example of how this assump-
tion is easily violated, Figure 4 shows the near-tip finite element mesh
(the region within 1/2 in. (12.7 mm) from the crack tip) for the l4-element
enriched plane strain test case of Table 3a with n = 1 and a = 10. The
enriched elements for this case are considerably smaller than would be used
in the elastic case. Superimposed on the finite element grid in Figure 4
are the elastic-plastic boundaries for various values of the applied remote
stress. It can be seen that at an applied remote stress of 20 ksi (138
Mpa), the plastic zone is still quite small and occupies an area less than
one-third that of the already relatively small plastically enriched ele-
ments surrounding the crack tip. At higher applied stress, the situation
improves somewhat, but even at 50 ksi (345 Mpa), one of the enriched ele-
ments is not fully within the plastic zone, and neither of the enriched
eleﬁents are well within the plastic zone. Recall further that the en-
riched element calculations are based on incremental theory plasticity.

Thus the stress state at the higher load increments is dependent on the
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stress history, i.e., inconsistencies at lower amplitude loading may prop-
agate to influence the 50 ksi (345 Mpa) load solution. Were the ideali-
zation one of plane stress, on the other hand, the plastic zones would be
larger at a given load, but still not sufficiently large to enclose the
enriched elements well within the plastic zone. The natural tendency would
be to overcome this difficulty by drastically decreasing the size of the
enriched elements, but that is precisely what this work sought to avoid.
Mcreover, elastic work8 indicates a loss of accuracy as enriched element
size is made exceedingly small.

We conclude that imposing the plastic singular solution, Equations
(2), (9), or (10), over regions which violate the limitation that the
plastic singular solution be contained well within the plastic zone leads
to incorrect results. Further substantiation of this conclusion can be
found by considering the incremental finite element calculations involving
enriched elements as reported in Tables 2 and 3b. At low values of ap-
plied load, the plastic zone and, therefore, the region of applicability
of the plastic singular solution is small. In fact, the magnitude of the
lowest load shown in Tables 2 and 3b was chosen so that the most highly
stressed quadrature point in the enriched elements is exactly at yield
while all others are at or below yield stress. This condition corresponds
to small scale yielding, and the elastic singular solution should describe
the near field behavior in the enriched elements. For plane stress with
v = 0.5, the asymptotic élastoplastic displacement field, Equation (9), is
exactly (l+aN) times the elastic solution. (Similar, though more com-
plicated, relations hold for v # 0.5 and for plane strain.) If the
elastic solution holds, Kp = KI/(1+aN) and J = (l+aN)K:/E = Jssy/(l+aN).
The results in Tables 2 and 3b at the lowest load (first yield) exhibit
just this behavior in both the cases of plane strain and plane stress,
i.e., Js'erssy/(l+aN)’ and thus support the conclusion that the enriched
element is modeling the elastic singularity on the first load increment.
As the load increases incrementally, the plastic region spreads to include
the entirety of the enriched elements and the value of JS improves relative

to Jp, but not quickly enough to give accurate values within the practical
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range of loading considered here. Thus the inconsistency between assumed
and actual asymptotic displacement fields imposed at lower load levels per-
sists at higher load levels where the elastoplastic displacement field is
likely to be more correct.

The elastoplastic calculations involving the use of the semicircular
core element exhibit less discrepancy between JS and Jp values than the
enriched element results. This observation is believed to be a direct con-
sequence of the fact that the core elements employed were significantly
smaller in dimension than the corresponding enriched elements. With this
exception noted, the poor Js performance of the core element is explained

in like manner.

DISCUSSION AND CONCLUSIONS

Calculations to obtain values of the J-integral for a sample crack
problem have been carried out using four different near tip models: the
core element, enriched elements, 1/9-4/9 induced singularity elements, and
conventional 12-node isoparametric elements. The J values were determined
in all cases by path integration (Jp), and by direct calculation of the
amplitude of the crack tip singularity (JS) for core and enriched elements.
An aim of this effort was to develop a method for calculating unique J
values based on the crack tip singularity and thus avoid the necessity of
choosing integration paths and comparing resulting J estimates. The results
presented demonstrate failure in reaching that goal; rather, the most re-
liable J estimates are obtained from path integration based on finite
element solutions employing some form of specialized near-tip elements.

Further verification of the accuracy of path values of J calculated
using enriched crack tip elements with a multilinear material model has
been obtained by comparison with J values from the ASTM round-robin
plastic crack problem.16 The path values of Jp, calculated in this manner,
were in the central region of the band of results, leading to increased
confidence in the use of the technique. As expected, the corresponding
singularity values of J(JS), as calculated with enriched 12-node elements,
were substantially lower than the path values and were outside of the

range of other reported results.
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In retrospect, the fact that the specialized finite element calcula-
tions give accurate path values for J and yet are unable to yield accurate
JS predictions can be explained as follows: The path independence of the
J-integral implies a 1/r singularity of the strain energy density function
at the crack tip.* The elastic-plastic asymptotic analysis of the two-
dimensional crack problem for either a power hardening or a multilinear
material model discussed and referenced earlier yields a plastic singular
solution which indeed contains a 1/r singularity in strain energy density.
The region over which this singularity dominates is, however, dependent on
geometry, material behavior (hardening), and applied load amplitude. It
is this dependence (of the region of applicability for the plastic singu-
lar solution) that has led to the difficulties, discussed earlier, associ-
ated with imposing the plastic singular solution on a region (element or
elements) and solving for its amplitude JS. On the other hand, the J path
integral, which is a measure of the amplitude of the near-tip fields, is
independent of these size restrictions and is applicable over the range
from small scale yielding to situations involving significant plastic de-
formation. Therefore, accurate values of J CAN be obtained by using the
path integral approach in conjunction with specialized crack tip elements
which impose the 1/r singularity in the strain energy density at the crack
tip.

Although the present effort failed in the objective of calculating the
J-integral directly as the amplitude of the plastic singular solution, the
use of plastic singular elements at the crack tip was found to be bene-
ficial for the evaluation of J about paths remote from the crack tip. Thus
the only real limitations of the present effort toward the prediction of
fracture are imposed by the restrictions on the use of the J-integral as
a fracture criterion. Briefly, the J approach is limited to prediction
of fracture initiation from a preexisting flaw. The J-integral serves to

measure the amplitude of the near-tip field and, given its critical value,

*This may be seen by considering a limitingly small contour or path
surrounding the crack tip. A lower order singularity in the strain energy
density would lead to a limitingly small value of J on this path and a
higher order singularity would result in increasingly large J path values.
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to predict crack growth. This approach clearly presupposes the same failure
mechanism in all situations where J is applicable. Thus, the scale of the
plastic deformation prior to failure must be limited such that the mecha-

nism is flat fracture and, for example, excludes ductile tearing.
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