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I.  INTRODUCTION 

The problem of survivability of ammunition stores is an important 
military problem.  Ammunition stores make attractive targets for enemy 
fire, saboteurs and agents. Once an ammunition store sustains a hit, the 
problem arises of preventing the sympathetic reaction of other rounds in 
the store beyond those sustaining the direct hit.  The sympathetic 
reaction of other ammunition rounds through detonation or rapid burning 
is usually referred to as the ammunition fratricide problem.  Preventing 
ammunition fratricide is an important objective in the design of ammuni- 
tion stores and compartments on board of military vehicles, ships, and 
aircraft. .  Several approaches can be used to minimize ammunition 
fratricide in such stores. 

a. Improved packaging and wrapping of the individual rounds by the 
use of a variety of shields and chemically treated packaging materials, 
and fire retardents.  This might slow down or prevent the spread of 
reaction2'3, and minimize the hazards of fire and cookoff1*. 

b. The use of explosive fillers, propellants, and components which 
are less sensitive. 

c. Stack separation of ammunition to minimize the losses. 

The vulnerability analysis problem thus becomes:  For a given ammuni- 
tion store, or ammunition compartment design and given round conditions 
such as fillers and packaging (or equivalently for a given interaction 
probability p) what is the number of rounds lost per encounter with 
enemy fire given a hit? Secondly, what is the probability distribution 
of the number of rounds lost in an encounter, its mean and its standard 
deviation? 

The problem of propagation of reaction through an ammunition store 
is analogous, from a mathematical point of view, to several physical 
problems arising in several diversified fields, and collected together 
under the banner of percolation theory. This theory finds application 
in the theory of dilute ferromagnets, in the spread of disease through 
an orchard of trees from an infected one, and the spread of viral 

1Harry J.  Reeves,   "General Frinoiples of Vulnevahility Reduction 
of Stacked Ammunition," BRL Memo Report 2276,  April 1974.   (AD #9207081) 

^Leonard Teitell and Harry Reeves,   "Fire Retardant Packaging for 
Artillery Ammunition," BRL Memo Report 2490,  August 1975. (AD #B009495L) 

3Philip M. Howe and David Collis, "Effectiveness of Plastic Shields 
in Prevention of Propagation of Reaction between Compartmentalized 
Warheads," ARBRL-MR 2827,  April 1978.   (AD #B027466L) 

^Philip M.  Howe and W.   Jackson,   "Experimental Study of the Cookoff 
Hazard of Compartmentalized Tank Projectiles," BRL MR 2666,  August 1976. 
(AD #B014010L) 
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infections through a population from an infected person.  Broadbent and 
Hammersley5 gave a survey of such problems, and a vast body of literature 
exists describing many such problems, applications, and solution methods 
and results.  To the above problems of percolation theory we add our 
present problem of the propagation of reaction through an ammunition 
store. 

In Section II we describe briefly some of the basic definitions and 
problems in percolation theory, together with a brief description of 
some of the general results.  In Section III we formulate our problem 
and indicate some of the differences from other percolation problems. 
We give a description of our basic model and the method of solution. 
In Section IV we apply our model to the problem of survivability of a 
number of two and three dimensional ammunition stores given that they 
sustained a hit.  The results of such applications are given in tables 
and graphs.  It has been found as a result of those studies that in 
order to prevent mass reaction in the ammunition store we need to keep 
the inter-round interaction probability p substantially lower than a 
critical value Pc, i.e., p << Pc.  In Section V we summarize the results 
of our study and propose a generalized definition of the critical 
probability Pc.  In the Appendix we give a listing of the developed code 
together with some directions on its usage. 

II.  ELEMENTS OF PERCOLATION THEORY 

Percolation deals with the flow of fluid through a medium where the 
flow is controlled by a random process associated with the medium.  By 
a medium we mean in general an infinite set of abstract objects called 
atoms or sites .  The sites (atoms) are connected together by paths 
along which the fluid flows.  The paths are called bonds.  Bonds are 
said to be oriented if they allow the flow of fluid in one direction 
only.  A bond is said to be unoriented if it permits the fluid to flow 
in both directions.  When the random process is associated with the bonds 
of the medium, the problem is called a bond percolation problem.  A 
bond is blocked with probability q = 1 - p, and unblocked with prob- 
ability p.  When the random characteristics of the medium are placed on 
the sites (atoms) the problem is termed to be a site percolation problem. 
A site is blocked with probability q = 1 - p and unblocked (or wet) 
with probability p.  The coordination number Z for any regular medium 
is defined to be the number of bonds leaving any site.  A set of 
unblocked atoms linked together through unblocked bonds is called a 
cluster.  The percolation probability P(p) is defined as the probability 
that the fluid from a single source atom, chosen at random, will wet 

5, E.   Broadbent and J.  M.   Hammersley,   "Percolation Processes," Proa. 
Camb.   Phil.   Soo.,   53,  p 629,   1957. 

6V.K.S.   Shante,  and S.  Kirkpatriok,   "An Introduction to Percolation 
Theory," Advances in Physics,   Vol.   20,  p 325,   1971. 
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infinitely many other atoms.  Mathematically, 

P(p) = lim   Pn (p) (1) 
n •* » 

where Pn (p) is the probability that a single source atom wets at least 
n other atoms.  The critical probability Pc is defined as 

P = Supremum [p|P(p) = 0] . (2) 

A number of theoretical results have been established by a variety 
of methods.  For example the critical probability for both the site and/ 
or the bond percolation problem on the square lattice is greater than 
or equal to 0.5.  In fact, for the bond problem,it has been shown that 
the critical probability7 for the square lattice Pc = 0.5 and for the 
cubic lattice Pc = 0.254.  Shante and Kirkpatrick6 gave a survey of 
these problems and results.  Most of the results obtained in percolation 
theory were arrived at numerically via Monte Carlo methods. Vyssotsky, 
et. al.,7 computed the critical probabilities for the bond percolation 
problem for a number of two dimensional lattices.  Frisch, Hammersley 
and Welsh8 obtained numerical estimates of the percolation probabilities 
for various two and three dimensional lattices.  Dean9 constructed a 
new computational method which effectively evaluates the limit in 
Equation (1) for an infinite lattice from a sequence of finite lattices. 
The limiting process in Equation (1) is the essence of the different 
computational methods and its evaluation is a major source of difficulty 

III.  THE PHYSICAL AND COMPUTATIONAL MODEL 

The problem of concern to us here is that of a stack of ammunition, 
arranged in a certain two or three dimensional lattice, receiving a hit 
which results in the initial detonation of a set of rounds (ISET] con- 
sisting of one or more rounds of ammunition. We assume that the set 
(ISET) consists of a randomly selected round and a subset of its first 
generation neighbors.  The number of rounds in (ISET) is an input 
parameter (NINS) which one specifies. We are interested here in 

1Y.  A.   Vyssotsky,  S.  B.   Gordon,  H.   L.  Frisch and J.  M.  Hammersley, 
"Critical Percolation Probabilities  (Bond Problem)," Phys.  Rev.   123, 
No.   5,  p 1566,   1961. 

8H.  L.  Frisch,  J.  M.   Hammersley,  and D.J.A.   Welsh,   "Monte Carlo Estimates 
of Percolation Probabilities for Various Lattices," Phys.  Rev.   126, 
No.   3,  p 949,   1962. 

9P. Dean,   "A New Monte Carlo Method for Percolation Problems on a 
Lattice," Proa.   Comb.  Phil.   Soc.   59,  p 397,   1963. 
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studying the propagation of the detonation in the stack (lattice) from 
the initial set (1SET) as a function of the interaction probability, P, 
of neighboring rounds achieving reaction.  The quantities that we are 
interested in determining are: 

a. The average number, n (mean), of rounds lost on a given test and 
the standard deviation, Sn, as functions of P.  N is a random variable 
representing the cluster size of reacted rounds, and n represents the 
value that N assumes on a given experiment. 

b. The cluster size of reacted rounds on a given trial and its 
probability mass function, i.e., P (N = n, P). 

c. The probability, Pn (P), of at least n rounds reacting, i.e., 
Pn (P) = P CN>n, P). 

d. The probability Qn (P), that the number of reacting rounds is 
less than n, i.e., Qn (P) = 1 - Pn (p) = p (N < n, P). 

The above problem of random propagation of the reaction through an 
ammunition lattice is seen to fit the model of an unoriented bond 
percolation problem as outlined in Section II.  The lattices we usually 
deal with in this problem are finite rather than infinite, whereas when 
one deals with problems concerned with the physical properties of 
continuous media, such as alloys and crystals, the lattices under con- 
sideration have to be infinite.  This is an important difference in our 
model and results in considerable simplification of the problem.  The 
essence of the various computational Monte Carlo methods devised by 
Vyssotsky7 et. al., Frisch^ et. al., and Dean9 revolve around the evalu- 
ation of the limit as n ->- « in Equation (1), in order to evaluate the 
percolation probability P(P) and the critical probability P . 

We assume therefore that we have a certain two or three dimensional 
lattice which is regular and finite, although it may consist of a large 
number of sites (rounds).  We assume that the reaction process starts 
with a set of neighboring round (ISET) reacting following a hit, and 
further assume that a round can only be initiated by an immediate 
neighbor.  The search process is therefore limited to the first genera- 
tion neighbors of the reaction front.  Figure 1 shows the first genera- 
tion neighbors of a site A (x,y) in a two dimensional square lattice. 
The lattice geometry is reflected by the way the neighbors of a typical 
round are defined.  We further assume that each bond (site) has 
probability P of being unblocked (or wet).  In our computational model 
this is achieved by using a random number generator to generate a 
continuous random variable r such that 0 < r < 1, and r has a uniform 
probability density distribution fr (r ).  The sample space for r is 
partitioned into two events, (i) the event Ei that the bond (site) is 
unblocked and propagates the reaction to a neighboring round, (ii) the 

12 
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event E2 that the bond (site) is blocked and does not propagate the 
reaction to a neighbor. Equivalently the events can be termed 1 and 0 
as shown in Figure 2.  One such partition of the sample space into the 
above two events is: 

If r < p      bond propagates the reaction (unblocked) 

and if r > p      bond does not propagate the reaction (blocked). 

An array (IND) in this computational model keeps record of the status of 
each round in the lattice.  Thus in our two dimensional bond problem 
IND (i,j) = + 1 if the reaction propagated to the round at (i,j), 
IND (i,j) = 0 otherwise.  Our model is also capable of treating a site 
percolation problem which can be considered to simulate the case when 
the lattice consists of highly sensitive rounds (reaction probability 
one) mixed with inert rounds. The number of reactive rounds in the 
lattice L is pL.  Thus in the case of a site percolation problem 
IND (ij) = - 1, 0, or + 1.  IND (i,j) = - 1 if the reaction front has 
not reached the round at (i,j) yet, IND (ij) = 0 if the round at (ij) 
is inert, and IND (i,j) = + 1 if the (i,j)th round achieved reaction. 

The reaction process is initiated by randomly selecting a set (ISET) 
of neighboring rounds and assuming it to be already reacted. The 
number of rounds in the set (ISET) is an input parameter (NINS).  If 
NINS is greater than one, then one of two subroutines DET2 or DET3 is 
called to select the remaining rounds that form the set (ISET).  The 
number of rounds selected to be in ISET is less than or equal to NINS. The 
inequality applies sometimes if the first initially selected round lies 
on the grid boundary, and NINS is greater than what is feasible. 

At a typical stage of the process the position of the reaction 
front is saved in arrays in terms of the rounds that form that front. 
The first generation neighbors of the rounds at the reaction front are 
examined and a determination is made of which subset of those rounds 
becomes part of the detonation front at the next stage. The process 
stops when this subset is the empty subset indicating no new rounds 
reacting.  The number of rounds in the reaction cluster, n,is then 
recorded for the current trial and a new trial then initiated.  After 
an input specified number of trials (NTRIAL), the mean cluster size n, 
and the standard deviation S are computed.  A histogram of the process 
is printed out in an input specified interval length (ISTEP).  The 
distribution of cluster size and its probability mass function can be 
computed.  The cumulative probabilities P  (p) and Qn (p) are printed 
out if input specified.  The constructed code will also print out the 
reaction cluster and its heirarchy for a given case on a given trial 
if specified by the input. 

14 
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IV.  APPLICATION OF THE MODEL 
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Table I. Dependance of the Mean Cluster Size n and Standard Deviation 
S on the Number of Trials, NTR, and Interaction Probability i 
in a Randomly Ini tiated Lattice L 

L P NRT n S 
n n/L 

Sn/L 

20X20 0.4 10 18.90 25.5 0.047 0.064 
20X20 0.4 20 27.55 29.4 0.069 0.074 
20X20 0.4 30 15.87 19.63 0.040 0.049 
20X20 0.4 40 17.95 26.06 0.045 0.065 
20X20 0.4 50 20.54 23.60 0.051 0.059 
20X20 0.4 60 14.53 16.06 0.036 0.040 
20X20 0.4 80 13.96 15.98 0.035 0.040 
20X20 0.4 100 21.07 29.76 0.053 0.074 
20X20 0.4 200 17.32 23.91 0.043 0.060 
20X20 0.4 300 21.49 29.12 0.054 0.073 
20X20 0.4 400 19.09 25.41 0.048 0.064 
20X20 0.4 500 19.66 24.70 0.049 0.062 
20X20 0.4 600 19.21 24.19 0.048 0.060 
20X20 0.4 800 20.11 25.31 0.050 0.063 
40X40 0.4 500 27.39 37.63 0.017 0.024 
100X100 0.4 2500 29.91 41.83 0.003 0.004 
20X20 0.5 10 63.60 94.18 0.159 0.235 
20X20 0.5 20 136.85 92.46 0.342 0.231 
20X20 0.5 30 100.97 104.06 0.252 0.260 
20X20 0.5 40 109.08 102.60 0.273 0.257 
20X20 0.5 50 119.36 106.76 0.298 0.267 
20X20 0.5 60 137.07 105.25 0.343 0.263 
20X20 0.5 80 107.30 97.72 0.268 0.244 
20X20 0.5 100 111.15 98.68 0.278 0.247 
20X20 0.5 200 123.86 105.18 0.310 0.263 
20X20 0.5 300 120.33 105.53 0.301 0.264 
20X20 0.5 400 112.00 102.25 0.280 0.256 
20X20 0.5 500 112.49 107.20 0.281 0.268 
20X20 0.5 600 119.12 104.49 0.298 0.261 
20X20 0.5 800 118.81 103.40 0.297 0.259 
40X40 0.5 500 405.98 387.95 0.254 0.242 
100X100 0.5 2500 2032.68 2206.27 0.203 0.221 
20X20 0.6 10 294.80 116.25 0.737 0.291 
20X20 0.6 20 285.25 140.85 0.713 0.352 
20X20 0.6 30 312.90 123.10 0.782 0.308 
20X20 0.6 40 325.33 92.28 0.813 0.231 
20X20 0.6 50 315.40 117.68 0.789 0.294 
20X20 0.6 60 293.07 136.92 0.733 0.342 
20X20 0.6 80 328.69 85.66 0.822 0.214 
20X20 0.6 100 319.92 100.15 0.800 0.250 
20X20 0.6 200 316.00 112.40 0.790 0.281 
20X20 0.6 300 310.96 115.11 0.777 0.288 
20X20 0.6 400 307.61 118.67 0.769 0.297 
20X20 0.6 500 315.91 111.51 0.790 0.279 
20X20 0.6 600 306.88 120.09 0.767 0.300 
20X20 0.6 800 313.69 113.61 0.784 0.284 
40X40 0.6 500 1355.39 399.05 0.847 0.249 
100X100 0.6 2500 8757.02 2357.48 0.876 0.236 
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(ii)  Case p = 0.5 

Mean (N) = 116.82; Var (N) = 20.7517; /^ S- = 92.72; 
Mean (Sn) =103.82. 

n 

(iii)  Case p = 0.6 

Mean (X) = 312.98; Var (N) = 19.4847, ^3^= 89.85: 
Mean (S )= 113.08, n 

n 

Figure 4 shows a plot of the probability mass function P[Nel, N0] 
that the cluster size of reacted rounds, N, lies in an interval of length, 
I, centered at N0 for the case p = 0.4.  The probability P[NeI, N0] is 
plotted at the midpoint N0 for values of NTR = 50, 100, 200, and 400. 
The different points were connected by curves to facilitate comparison 
of the different cases.  The curves for NTR = 100, 200, and 400 are 
almost identical.  Figure 5 gives a comparison of the bar plots of the 
probability mass functions P[NEI, N0] defined above for the three 
interaction probabilities p = 0.4, 0.5, and 0.6.  Different symbols 
indicate the points of the different cases.  The interval length in 
both Figures 4 and 5 is 1 = 20. 

Table II gives the cumulative probability Pn (p) of clusters whose 
size is at least n for various values of n and corresponding to inter- 
action probabilities of p = 0.4 to 0.6 in steps 0.02.  The lattice in 
this case L = 100 x 100 and the detonation was started in the center of 
the lattice by a single round.  Figure 6 shows plots of P  (p) for a 
constant n as a function of the interaction probability p.  Some of the 
columns of Table II were not plotted to avoid crowding the figure.  The 
probability Qn(p) as a function of p may be derived from Table II as the 
complement of Pn (p).  Table III gives the variations of n , and Sn as 
functions of the interaction probability, p, for the above lattice. 
Table IV gives the cumulative probability Pn (p) for a 
square lattice L = 100 x 100 which is randomly initiated by a single 
round.  A plot of Pn (p) for this case is given in Figure 7.  Table V 
shows the variations of the mean cluster size, n, and the standard devia- 
tion Sn for this lattice.  Columns 5 and 6 of the table show that 
dn/dp has a maximum at p = 0.51, which is in the neighborhood of Pc. 
A comparison of Tables IV and V with Tables II and III shows the effect 
of random initiation versus central initiation.  The differences are 
due to the effect of the boundary.  Figure 8 shows the variations and 
comparison of the mean cluster size in a square lattice L = 100 x 100 
as a function of p for the two modes of initiation and Figure 9 shows 
the standard deviation as a function of p for those two cases.  Examina- 
tion of Tables III, and V, and Figures 8, and 9 reveal the sharp rise 
in the growth rate of n as p increases past the critical value of p = 
0.5.  In fact numerical differentiation of the values of n given in 
Table V reveals that dTT/dp has a maximum in the neighborhood of p = 0,51, 
and that d2n/dp2 has a zero in that neighborhood.  A more resolved 
calculation in that region might locate that maximum more closely. 
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Table III. Variations of the Mean n and the Standard Deviation 
Sn in a Square Lattice L = 100 x 100, Centrally 
Initiated 

p NTR n S 
n n/L SN/L 

0.40 2500 32.98 46.27 0.003 0.005 

0.42 2500 54.82 78.83 0.005 0.008 

0.44 2500 105.59 156.37 0.011 0.016 

0.46 2500 240.67 360.02 0.024 0.036 

0.48 2500 827.23 1036.91 0.083 0.104 

0.50 2500 2646.77 2216.54 0.265 0.222 

0.52 2500 5390.39 2913.57 0.539 0.291 

0.54 2500 6973.17 2957,45 0.697 0.296 

0.56 2500 7987.42 2581.81 0.799 0.258 

0.58 2500 8596.88 2203.51 0.860 0.220 

0.60 2500 8895.52 2100.34 0.890 0.210 
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0.60 

Figure 7:  Cumulative Probability Mass Distribution P fp") . 
n r 

L = 100x100, Random Initiation 
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Table V.  Variation of the Mean 
in a Square Lattice L 

n and Standard Deviation Sn 
= 100 x 100, Random Initiation 

p NTR n S n 
dn/dp 

— 

.,2-., 2 d n/dp 

0.40 2500 29.91 41.83 
970 

4.0275 x 104 0.42 2500 49.31 70.96 
1775. 5 

17.675 x 104 0.44 2500 84.82 123.99 
5310. 5 

65.3975 x 104 0.46 2500 191.03 300.16 
18390 

276.5125 x 104 0.48 2500 558.83 849.92 
73692. 5 

345.7375 x 104 0.50 2500 2032.68 2206.27 
142840 

-222.98 x 104 0.52 2500 4889.48 3176.54 
98244 

-238.985 x 104 0.54 2500 6854.36 3075.74 
50447 

-92.9025 x 104 0.56 2500 7863.3 2743.59 
31866, ,5 

-95.235 x 104 0.58 2500 8500.63 2374.12 
12819, .5 

0.60 2500 8757,02 2357.48 
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Figure 9 remarkably shows that the standard deviation curves for the 
two modes of initiation cross at the critical value of p = 0.5. 

The cost of conducting full scale tests on ammunition stores is high, 
hence, experimentally one can conduct tests on small scale stack con- 
figurations such as those shown in Figures 10 and 11.  The results of 
such tests are then used to extrapolate and make predictions for the 
larger stores.  Alternatively one can utilize the results of the small 
scale test to compute the interaction probability p for the lattice of 
interest, and then utilize the present model to predict the survivability 
(or vulnerability) of ammunition stores of any size. Such calculations 
can be performed quickly and economically.  Table VI shows the results 
of a calculation for a three dimensional lattice 1-^ = 2x3x6 which is 
shown schematically in the top of Figure (10a).  The above table shows 
a parametric study in terms of p, of the probability Qn (p) that the 
cluster size of reacted rounds is less than n.  In some sense Qn (p) 
can be considered as a measure of survivability (or vulnerability) of 
the ammunition store.  Figure 12 shows a plot of the probability mass 
function Q2 (p) which is the probability that the detonation of an 
initial round in the stack will not propagate to other rounds.  Table 
VII shows the probability Qn (p) for the lattice L2 = 3 x 2 x 10 shown 
in Figure (11a).  The equation 

Pn (P) + C^ (P) = 1 

can be used in conjunction with the above tables to infer the probability 
Pn(p).  Figure 13 shows a plot of Q2(p) as a function of p for the pallet 
in Figure (11a), which is the probability that the reaction does not 
propagate beyond the initial round.  Table VIII gives the mean cluster 
size n and the standard deviation Sn for lattices L-^ and L2 as functions 
of p.  Figure 14 shows a standard storage magazine for the 155mm pro- 
jectile partially full, and containing 36 x 40 x 3 ammunition boxes. 
We applied the present model to study the vulnerability of this magazine 
in terms of the interaction probability p. The magazine was assumed to 
be full, and containing L3 = 40 x 40 x 5 boxes.  Table IX shows the 
probability Qn (p) for L, for values of p from 0.10 to 0.55 in increments 
of 0,05 and for values of n from 11 to 7891 in steps of 10 at first and 
100  later on. Table X reveals the large increase in the growth rate of 
n as p increase again past the critical probability for the cubic 
lattice.  As a matter of fact dn/dp has a maximum in the neighborhood 
of p = 0.325 as can be seen by numerically differentiating the values 
of n in Table X.  Two factors influence the value of p at which dn/dp 
has a maximum, first the resolution of the calculations, and secondly 
the effect of the boundary due to the finiteness of our lattice. A 
smaller step in p would result in a more accurate location of the 
maximum of dn/dp.  A second more resolved calculation with smal_ler steps 
in p and greater number of trials placed the maximum value of dn/dp at 
p = 0.305. 
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Table VI.  The Probability Q^ (p) that the Cluster Size of 
Detonated Rounds is Less than n, for a 2 x 3 x 6 
Pallet. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  0.9 

1 0 0 0 0 0 0 0 0 0 

2 0 60 0.44 0.20 .15 0.04 0.02 0.01 0 0 

3 0 90 0.60 0.36 0.21 0.07 0.03 0.01 0 0 

4 0 97 0.74 0.45 0.27 0.09 0.04 0.01 0 0 

5 0 98 0.83 0.54 0.31 0.09 0.04 0.01 0 0 

6 0 99 0.88 0.60 0.35 0.10 0.05 0.01 0 0 

7 0 99 0.93 0.66 0.37 0.11 0.06 0.01 0 0 

8 0.94 0.70 0.39 0.12 0.06 0.01 0 0 

9 0.95 0.75 0.41 0.12 0.06 0.01 0 0 

10 0.96 0.77 0.44 0.14 0.06 0.01 0 0 

11 0.96 0.80 0.47 0.14 0.06 0.01 0 0 

12 0.98 0.84 0.47 0.17 0.06 0.01 0 0 

13 0.99 0.84 0.50 0.20 0.06 0.01 0 0 

14 0.88 0.52 0.21 0.06 0.01 0 0 

15 0.91 0.55 0.22 0.07 0.01 0 0 
16 0.92 0.58 0.23 0.07 0.01 0 0 
17 0.93 0.59 0.24 0.07 0.01 0 0 
18 0.94 0.60 0.27 0.07 0.01 0 0 
19 0.95 0.62 0.29 0.07 0.01 0 0 
20 0.97 0.67 0.31 0.07 0.02 0 0 
21 0.98 0.69 0.31 0.08 0.02 0 0 
22 0.98 0.73 0.31 0.08 0.02 0 0 

23 0.99 0.75 0.33 0.09 0.02 0 0 
24 0.99 0.77 0.35 0.09 0.02 0 0 

25 0.81 0.38 0.10 0.02 0 0 
26 0.84 0.40 0.11 0.02 0 0 

27 0.86 0.41 0.11 0.02 0 0 
28 0.87 0.43 0.12 0.02 0 0 

29 0.90 0.47 0.13 0.02 0 0 
30 0.92 0.51 0.14 0.02 0 0 
31 0.95 0.57 0.16 0.02 0 0 
32 0.99 0.66 0.21 0.02 0 0 
33 0.99 0.73 0.25 0.03 0 0 

34 0.99 0.83 0.36 0.06 0.01 0 
35 1 0.88 0.55 0.15 0.02 0 
36 1 0.95 0.80 0.35 0.11 0 
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Table VII.  The Probability Qn (p) that the Cluster Size of 
Reacted Rounds is Less than n, for L=3x2xl0 
Pallet. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1   0 0 0 0 0 0 0 0 0 
2  0.63 0.41 0.21 0.13 0.03 0.02 0 0.01 0 
3  0.91 0.53 0.36 0.22 0.04 0.03 0 0.01 0 
4  0.96 0.69 0.46 0.25 0.05 0.04 0 0.01 0 
5  0.97 0.75 0.52 0.27 0.06 0.04 0 0.01 0 
6  0.99 0.82 0.60 0.31 0.06 0.04 0 0.01 0 
7  1 0.88 0.66 0.33 0.06 0.04 0 0.01 0 
8   1 0.90 0.70 0.36 0.07 0.04 0 0.01 0 
9  1 0.93 0.76 0.37 0.09 0.04 0 0.01 0 

10  1 0.94 0.78 0.39 0.09 0.04 0 0.01 0 
11  1 0.95 0.83 0.42 0.09 0.04 0 0.01 0 
12  1 0.96 0.84 0.42 0.11 0.04 0 0.01 0 
13  1 0.97 0.84 0.46 0.13 0.04 0 0.01 0 
14  1 0.98 0.86 0.47 0.13 0.04 0 0.01 0 
15  1 0.99 0.87 0.50 0.14 0.04 0 0.01 0 
16  1 0.99 0.88 0.53 0.16 0.04 0 0.01 0 
17   1 0.99 0.89 0.54 0.18 0.04 0 0.01 0 
18   1 0.90 0.54 0.18 0.04 0 0.01 0 
19   1 0.90 0.56 0.20 0.04 0 0.01 0 
20  1 0.91 0.58 0.22 0.05 0 0.01 0 
21   1 0.93 0.60 0.22 0.06 0 0.01 0 
22   1 0.94 0.61 0.22 0.06 0 0.01 0 
23   1 0.95 0.61 0.22 0.06 0 0.01 0 
24   1 0.95 0.64 0.23 0.06 0 0.01 0 
25   1 0.96 0.68 0.23 0.06 0 0.01 0 
26  1 0.96 0.70 0.25 0.06 0 0.01 0 
27  1 0.97 0.73 0.25 0.06 0 0.01 0 
28  1 0.97 0.73 0.26 0.06 0 0.01 0 
29  1 0.97 0.74 0.27 0.06 0 0.01 0 
30  1 0.97 0.76 0.28 0.06 0 0.01 0 
31  1 0.97 0.77 0.29 0.07 0 0.01 0 
32  1 0.98 0.78 0.30 0.07 0 0.01 0 
33  1 0.99 0.79 0.30 0.07 0 0.01 0 
34  1 0.79 0.31 0.08 0 0.01 0 
35  1 0.81 0.32 0.09 0 0.01 0 
36  1 0.82 0.32 0.10 0 0.01 0 
37   1 0.82 0.33 0.10 0 0.01 0 
38  1 0.83 0.33 0.11 0 0.01 0 
39  1 0.85 0.35 0.11 0 0.01 0 
40  1 0.87 0.38 0.12 0 0.01 0 
41  1 0.88 0.39 0.12 0.01 0.01 0 
42  1 0.88 0.41 0.12 0.02 0.01 0 
43  1 0.89 0.43 0.12 0.02 0.01 0 
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Table VII. (Cont'd) The Probability Qn (p) that the Cluster Size of 
Reacted Rounds is Less than n, for L = 3 x 2 x 10 Pallet. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

0.9 

0.89 0.44 0.13 0.02 0.01 0 
0.91 0.45 0.13 0.02 0.01 0 
0.92 0.46 0.13 0.02 0.01 0 
0.93 0.49 0.14 0.02 0.01 0 
0.95 0.52 0.14 0.02 0.01 0 
0.96 0.54 0.15 0.02 0.01 0 
0.97 0.59 0.16 0.02 0.01 0 
0.99 0.62 0.17 0.02 0.01 0 
0.99 0.67 0.18 0.02 0.01 0 

0.70 0.20 0.02 0.01 0 
0.76 0.23 0.02 0.01 0 
0.79 0.28 0.02 0.01 0 
0.86 0.34 0.03 0.01 0 
0.90 0.41 0.03 0.02 0 
0.95 0.52 0.10 0.02 0 
0.97 0.67 0.24 0.05 0 
1 0.87 0.47 0.16 0 
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Table VIII.    Variations of the Mean n and Standard Deviation Sn 

for Lattices L1  and L9 

JL "CLp Sn(L1) n(L2) Sn(L2) 
0-l 1-59 0.98                        1.56 0.97 

0-2 2.82 2.58                        3.36 3.24 

0-3 6.14 5.63                        6.83 7.43 

0-4 13.52 10.29 18.41 15.64 

0-5 24.42 10.72 39.43 17.59 

0-6 31.51 8.17 52.55 13.18 

0-7 35.04 3.72 58.74 4.14 

0-8 35.70 2.49 59.21 5.88 

0-9 35.99 0.12 60.00 0.07 
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Table IX.  The Probability Qn (p) that the Cluster Size of Reacted 
Rounds in a 40 x 40 x 5 Store is less than n 

n .0.10  0.15  0.20  0.25  0.30  0.35  0.40  0.45  0.50  0.55 

11 1 0.94  0.80 0.56 0.36 0.18 0.12 0.09 0.05 0.02 
21  1 0.99  0.90 0.67 0.41 0.19 0.12 0.09 0.05 0.02 
31  1 1     0.94 0.73 0.44 0.19 0.12 0.09 0.05 0.02 
41  1 1     0.97 0.77 0.45 0.19 0.12 0.09 0.05 0.02 
51  1 1     0.98 0.81 0.46 0.20 0.12 0.09 0.05 0.02 
61  1 1     0.99 0.83 0.47 0.20 0.12 0.09 0.05 0.02 
71  1 0.85 0.48 0.20 0.12 0.09 0.05 0.02 
81  1 0.86 0.49 0.20 0.12 0.09 0.05 0.02 
91  1 0.88 0.49 0.20 0.12 0.09 0.05 0.02 

191  1 0.95 0.53 0.20 0.12 0.09 0.05 0.02 
291  1 0.98 0.55 0.20 0.12 0.09 0.05 0.02 
391  1 0.99 0.57 0.20 0.12 0.09 0.05 0.02 
491  1 0.58 0.20 0.12 0.09 0.05 0.02 
591  1 0.60 0.20 0.12 0.09 0.05 0.02 
691  1 0.61 0.20 0.12 0.09 0.05 0.02 
791  1 0.62 0.20 0.12 0.09 0.05 0.02 
891  1 0.62 0.20 0.12 0.09 0.05 0.02 
991  1 0.64 0.20 0.12 0.09 0.05 0.02 

1991  1 0.70 0.20 0.12 0.09 0.05 0.02 
2991  1 0.82 0.20 0.12 0.09 0.05 0.02 
3991  1 0.95 0.20 0.12 0.09 0.05 0.02 
4991  1 0.20 0.12 0.09 0.05 0.02 
5991  1 0.29 0.12 0.09 0.05 0.02 
6991  1 1 0.33 0.09 0.05 0.02 
7491  1 1 1 0.67 0.05 0.02 
7891  1 1 1 1 1 1 
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ile X. The Mean Cluster Size n and the Standard Deviation Sn 
for a 40 x 40 x 5 Store 

P n S 
n 

dn/dp A
2
-IA  

2 
d n/dp 

0.10 2.03 1.70 
25.4 

0.15 3.30 3.65 
85.4 

1200 

0.20 7.57 11.83 
616.4 

10620 

0.25 38.39 78.65 
21979.4 

427260 

0.30 1137.36 1482.97 
75804.4 

1076500 

0.35 4927.58 2448.49 
24647.8 

-1023132 

0.40 6159.97 2317.35 
13214.0 

-228676 

0.45 6820.67 2118.38 
10898.4 

-46312 

0.50 7365.59 1617.13 
6456.6 

-88836 

0.55 7688.42 1125.93 
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V.  CONCLUSIONS 

A simple stochastic model has been developed using the framework of 
percolation theory.  The model can be used to treat both an unoriented 
bond percolation problem and/or a site percolation problem. The bond 
problem formulation is the more useful for the study of the problem of 
survivability (vulnerability) of ammunition stores and magazines given 
a hit.  The application of the model to a specific store or magazine 
requires only a knowledge of the geometry and the interaction probability 
p.  Small scale tests can determine the interaction probability and a 
calculation with our model will determine the survivability (vulner- 
ability) of an ammunition store for the given interaction probability. 
Such calculations reduce the need for many of the large scale tests, 
result in substantial savings, and can be performed rather quickly.  The 
use of a sometimes desired large sample size, to improve the accuracy of 
the results would only add marginally to the cost of the calculations. 
Furthermore, the present model provides a probability mass distribution 
for each cluster size together with the mean cluster size n and the 
standard deviation S for a given interaction probability p. 

The results of our sample calculations on both two and three 
dimensional lattices indicate that ammunition store survivability 
dictates that the interaction probability, p, be kept less than the 
critical probability Pc for the lattice in question and preferably 
P <<  Pc-  The critical probability for the two dimensional square lattice, 
Pc = 0.5.  For this case our calculations on L = 100 x 100 show that if 
p < 0.4 then the average number of rounds lost per encounter is less than 
30, and the probability of keeping the losses less than or equal to 90 
rounds is 0.92.  For the three dimensional cubic lattice Pc = 0.254 our 
calculations on the lattice L3 indicate that if we keep p < 0.2 then on 
the average we lose less than 8 rounds per encounter and with probability 
of 0.90 our losses^ are less than 21 rounds.  Our results here show that 
the mean cluster n takes a sharp rise as p increases through Pc.  The 
experimental investigations2'3 cited show that the interaction probability 
p can be reduced by a variety of methods such as the treatment of pack- 
aging materials with suitable chemicals, such as fire retardant, by the 
use of coatings around the charges, the use of less sensitive fillers 
or by increasing the separation distances between rounds. 

The present model can be used for a parametric study, in terms of 
p, of the survivability of a given ammunition store or magazine.  Such 
calculations were performed here for the lattices L = 100 x 100, Li = 
2x3x6, L2 = 3 x 2 x 10, and L3 = 40 x 40 x 5.  Although for the 
purposes of this report the results of our calculations on L, were done 
in steps of 10 and 100, it is a simple matter to perform such calcula- 
tions in more details and with more resolution for a case of specific 
interest. 

Finally our results suggest that dn/dp has a maximum at the critical 
value of p, i.e., p = Pc.  If we generalize our observation and define 
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for a given lattice, the critical probability to be the value of the 
interaction probability p for which dn/dp is a maximum, then our results 
suggest that for the lattice L = 100 x 100, P w 0.51 and for the 
lattice L3 = 40 x 40 x 5, Pc » 0.305 as was indicated by our detailed 
calculations.  The fact that the third dimension of this lattice is small 
makes this lattice behave intermediately between an infinite square and 
an infinite cube lattice.  We have not incorporated any calculations 
for a site percolation problem, or any calculations for a bond problem 
where the initial reaction set consists of more than one round (NINS > 1), 
in order to keep the size of this report to a reasonable level.  Possible 
modifications of this model would make the interaction probability a 
function of the relative orientation of the rounds to each other and/or 
make it a function of the physical conditions at the detonation front. 

Finally we included in this report an Appendix containing a listing 
of our computer program which is written in Fortran IV. The Appendix 
contains an explanation of the symbols and some helpful hints for its 
usage.  The code is rather easy to use for an analyst with some knowledge 
of probability and with a mathematical background.  Knowledge of percola- 
tion theory is desirable although not absolutely necessary.  Blind usage 
of the code by a person with primarily programming interest can lead to 
amazing and spectacular results and is therefore not recommended. 

ACKNOWLEDGMENTS 

The author expresses his gratitude to Dr. Philip Howe who interested 
him in this problem and pointed out the relationship of this problem 
with percolation theory.  The author is also indebted to Mr. Ralph Shear 
who proposed one of the early versions of the model and provided several 
technical discussions. 

43 



APPENDIX 

The following is a listing of the code developed on the basis of the 
model outlined in the body of this report. The code consists of the 
main program called PROGRAM MAIN, and two subroutines DET 2 and DET 3 
which are used in two or three dimensions, when the number of rounds 
detonating on the initial hit is greater than one.  DET 2, or DET 3 
selects the initial detonation set. To use the code in one dimension 
with two or more detonations initially an analogous subroutine DET 1 
would have to be added. 

The usage of the code requires six input cards written in the 
appropriate format 

Card 1: 

ITYPE   Variable indicating type of problem desired 

ITYPE = 0 for a Bond problem 
ITYPE =-1 for a Site problem 
IDIM = 1, 2, or 3 depending on the dimensions of the problem 
IX, IY, IZ = number of nodes in the x, y, or z direction 

respectively 
NTRIAL = number of trials desired per case. 

Card 2: 

NNP = Number of different interaction probabilities desired 
Q(k) = An array representing the interaction probabilities desired, 

Card 3: 

NINS = Number of initiation sites (rounds) desired on the initial 
hit 

ISTEP = Number of rounds desired per step or block in sorting 
reaction clusters. 

NUM = Number of cluster sizes for which cumulative probabilities 
are desired. 

Card 4; 

ITALLY(L) = An array representing cluster sizes for which 
cumulative probabilities are desired. 
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Card 5; 

NQP = Number of probabilities for which certain hierarchy of 
reaction clusters is desired to be printed. 

QP(I) = An Array of probabilities for which the hierarchy of 
reaction clusters is desired to print. 

Card 6: 

NCY = Number of cycles for which the hierarchy of reaction cluster 
is desired per probability 

NPCY(l) = An array representing the cycles on which the hierarchy 
of reaction cluster is desired for each QP(I) value. 

The output is simple and easy to understand. The IH BLOCK contains 
a histogram of the process in the number of trials (NTRIAL) specified 
in steps of ISTEP. The mean cluster size and the standard deviation 
(SIGMA or SIGALT) are printed. PNP( ) and QNP( ) stand for P (p) and 
0 (p) as outlined in the text of the report. The hierarchy or reaction 
clusters is printed out if input specified for the desired interaction 
probabilities and for the desired cycles. Some of the input is printed 
at the end of the run. 
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LIST OF SYMBOLS 

p interaction probability 

P (p] percolation probability 

r random variable 

r value assumed by the random variable r 

IND(i,j) an array to represent the status of the lattice nodes 

L lattice 

ISET initial reaction set 

N random variable representing cluster size 

n value assumed by random variable N 

n mean value of n 

S^ standard deviation n 

]i population mean 

a population standard deviation 

m sample size 

P[NeI, N 1       probability that N lies in an interval of length I 
centered at N o 

Pn (p) cumulative probability of clusters at least of size n 

0 (p) cumulative probability of clusters whose size is 
less than n 
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