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I. TINTRODUCTION

The problem of survivability of ammunition stores is an important
military problem. Ammunition stores make attractive targets for enemy
fire, saboteurs and agents, Once an ammunition store sustains a hit, the
problem arises of preventing the sympathetic reaction of other rounds in
the store beyond those sustaining the direct hit. The sympathetic
reaction of other ammunition rounds through detonation or rapid burning
is usually referred to as the ammunition fratricide problem. Preventing
ammunition fratricide is an important objective in the design of ammuni-
tion stores and compartments on board of military vehicles, ships, and
aircraftl. Several approaches can be used to minimize ammunition
fratricide in such stores.

a. Improved packaging and wrapping of the individual rounds by the
use of a variety of shields and chemically treated packaging materials,
and fire retardents. This might slow down or prevent the spread of
reaction2’3, and minimize the hazards of fire and cookoff".

b. The use of explosive fillers, propellants, and components which
are less sensitive.

¢. Stack separation of ammunition to minimize the losses.

The vulnerability analysisproblem thus becomes: For a given ammuni-
tion store, or ammunition compartment design and given round conditions
such as fillers and packaging (or equivalently for a given interaction
probability p) what is the number of rounds lost per encounter with
enemy fire given a hit? Secondly, what is the probability distribution
of the number of rounds lost in an encounter, its mean and its standard
deviation?

The problem of propagation of reaction through an ammunition store
is analogous, from a mathematical point of view, to several physical
problems arising in several diversified fields, and collected together
under the banner of percolation theory. This theory finds application
in the theory of dilute ferromagnets, in the spread of disease through
an orchard of trees from an infected one, and the spread of viral

YHarry J. Reeves, "General Principles of Vulnerability Reduction
of Stacked Ammunition," BRL Memo Report 2376, April 1974. (AD #920708L)

2Leonard Teitell and Harry Reeves, "Fire Retardant Packaging for
Artillery Ammunition," BRL Memo Report 2490, August 1975.(AD #B009495L)

3SPhilip M. Howe and David Collis, "Effectiveness of Plastic Shields
in Prevention of Propagation of Reaction between Compartmentalized
Warheads," ARBRL-MR 2827, April 1978. (AD #B027466L)

“Philip M. Howe and W. Jackson, "Experimental Study of the Cookoff
Hazard of Compartmentalized Tank Projectiles," BRL MR 2666, August 1976.
(AD #B014010L)
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infections through a population from an infected person. Broadbent and
Hammersley® gave a survey of such problems, and a vast body of literature
exists describing many such problems, applications, and solution methods
and results. To the above problems of percolation theory we add our
present problem of the propagation of reaction through an ammunition
store.

In Section II we describe briefly some of the basic definitions and
problems in percolation theory, together with a brief description of
some of the general results. In Section III we formulate our problem
and indicate some of the differences from other percolation problems.

We give a description of our basic model and the method of solution.

In Section IV we apply our model to the problem of survivability of a
number of two and three dimensional ammunition stores given that they
sustained a hit. The results of such applications are given in tables
and graphs. It has been found as a result of those studies that in
order to prevent mass reaction in the ammunition store we need to keep
the inter-round interaction probability p substantially lower than a
critical value Pc, i 28k P’ << P.. In Section V we summarize the results
of our study and propose a generalized definition of the critical
probability P.. In the Appendix we give a listing of the developed code
together with some directions on its usage.

IT. ELEMENTS OF PERCOLATION THEORY

Percolation deals with the flow of fluid through a medium where the
flow is controlled by a random process associated with the medium. By
a medium we mean in general an infinite set of abstract objects called
atoms or sites®. The sites (atoms) are connected together by paths
along which the fluid flows. The paths are called bonds. Bonds are
said to be oriented if they allow the flow of fluid in one direction
only. A bond is said to be unoriented if it permits the fluid to flow
in both directions. When the random process is associated with the bonds
of the medium, the problem is called a bond percolation problem. A
bond is blocked with probability q = 1 - p, and unblocked with prob-
ability p. When the random characteristics of the medium are placed on
the sites (atoms) the problem is termed to be a site percolation problem.
A site is blocked with probability q = 1 - p and unblocked (or wet)
with probability p. The coordination number Z for any regular medium
is defined to be the number of bonds leaving any site. A set of
unblocked atoms linked together through unblocked bonds is called a
cluster. The percolation probability P(p) is defined as the probability
that the fluid from a single source atom, chosen at random, will wet

58. R. Broadbent and J. M. Hammersley, "Percolation Processes," Proc.
Camb. Phil. Soc., 53, p 629, 1957.

6V.K.5. Shante, and S. Kirkpatrick, "An Introduction to Percolation
Theory," Advances in Physics, Vol. 20, p 325, 1971.
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infinitely many other atoms. Mathematically,

P(p) = lim R ®) (1)

n-> o

where P, (p) is the probability that a single source atom wets at least
n other atoms. The critical probability P. is defined as

P. = Supremum [p|P(p) = 0] . (2)

A number of theoretical results have been established by a variety
of methods. For example the critical probability for both the site and/
or the bond percolation problem on the square lattice is greater than
or equal to 0.5. 1In fact, for the bond problem,it has been shown that
the critical probability’ for the square lattice P. = 0.5 and for the
cubic lattice P, = 0.254. Shante and Kirkpatrick® gave a survey of
these problems and results. Most of the results obtained in percolation
theory were arrived at numerically via Monte Carlo methods. Vyssotsky,
et. al.,’ computed the critical probabilities for the bond percolation
problem for a number of two dimensional lattices. Frisch, Hammersley
and Welsh® obtained numerical estimates of the percolation probabilities
for various two and three dimensional lattices. Dean® constructed a
new computational method which effectively evaluates the limit in
Equation (1) for an infinite lattice from a sequence of finite lattices.
The limiting process in Equation (1) is the essence of the different
computational methods and its evaluation is a major source of difficulty.

III. THE PHYSICAL AND COMPUTATIONAL MODEL

The problem of concern to us here is that of a stack of ammunition,
arranged in a certain two or three dimensional lattice, receiving a hit
which results in the initial detonation of a set of rounds (ISET) con-
sisting of one or more rounds of ammunition. We assume that the set
(ISET) consists of a randomly selected round and a subset of its first
generation neighbors. The number of rounds in (ISET) is an input
parameter (NINS) which one specifies. We are interested here in

V. A. Vyssotsky, S. B. Gordon, H. L. Frisch and J. M. Hammersley,
"Critical Percolation Probabilities (Bond Problem),'" Phys. Rev. 123,
No, 5, p 1566, 1961.

8H. L. Frisch, J. M. Hammersley, and D.J.A. Welsh, "Monte Carlo Estimates
of Percolation Probabilities for Various Lattices," Phys. Rev. 126,
No. 3, p 949, 1962.

SP. Dean, "A New Monte Carlo Method for Percolation Problems on a
Lattice," Proc. Camb. Phil. Soc. 59, p 397, 1963.
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studying the propagation of the detonation in the stack (lattice) from
the initial set (ISET) as a function of the interaction probability, P,
of neighboring rounds achieving reaction. The quantities that we are
interested in determining are:

a. The average number, H'(mean), of rounds lost on a given test and
the standard deviation, S,»> as functions of P. N is a random variable
representing the cluster size of reacted rounds, and n represents the
value that N assumes on a given experiment.

b. The cluster size of reacted rounds on a given trial and its
probability mass function, i.e., P (N = n, P).

c. The probability, P, (P), of at least n rounds reacting, i.e.,
Pn (P =P (N=n, P).

d. The probability Q, (P), that the number of reacting rounds is
less than n, i.e., Q (P) = 1 - P, (P) =P (N<n, P).

The above problem of random propagation of the reaction through an
ammunition lattice is seen to fit the model of an unoriented bond
percolation problem as outlined in Section II. The lattices we usually
deal with in this problem are finite rather than infinite, whereas when
one deals with problems concerned with the physical properties of
continuous media, such as alloys and crystals, the lattices under con-
sideration have to be infinite. This is an important difference in our
model and results in considerable simplification of the problem. The
essence of the various computational Monte Carlo methods devised by
Vyssotsky7 et. al., Frisch® et. al., and Dean?® revolve around the evalu-
ation of the limit as n -+ « in Equation (1), in order to evaluate the
percolation probability P(P) and the critical probability PC.

We assume therefore that we have a certain two or three dimensional
lattice which is regular and finite, although it may consist of a large
number of sites (rounds). We assume that the reaction process starts
with a set of neighboring round (ISET) reacting following a hit, and
further assume that a round can only be initiated by an immediate
neighbor. The search process is therefore limited to the first genera-
tion neighbors of the reaction front. Figure 1 shows the first genera-
tion neighbors of a site A (x,y) in a two dimensional square lattice.
The lattice geometry is reflected by the way the neighbors of a typical
round are defined. We further assume that each bond (site) has
probability P of being unblocked (or wet). In our computational model
this is achieved by using a random number generator to generate a
continuous random variable r such that 0 < r < 1, and r has a uniform
probability density distribution 2 (ro). The sample space for r is
partitioned into two events, (i) the event E; that the bond (site) is
unblocked and propagates the reaction to a neighboring round, (ii) the

12
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Figure 1: First Generation Neighors of a Node
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event E, that the bond (site) is blocked and does not propagate the
reaction to a neighbor. Equivalently the events can be termed 1 and 0
as shown in Figure 2. One such partition of the sample space into the
above two events is:

If r<p bond propagates the reaction (unblocked)
and if r > p bond does not propagate the reaction (blocked).

An array (IND) in this computational model keeps record of the status of
each round in the lattice. Thus in our two dimensional bond problem
IND (i,j) = + 1 if the reaction propagated to the round at (i,j),

IND (i,j) = 0 otherwise. Our model is also capable of treating a site
percolation problem which can be considered to simulate the case when
the lattice consists of highly sensitive rounds (reaction probability
one) mixed with inert rounds. The number of reactive rounds in the
lattice L is pL. Thus in the case of a site percolation problem

IND (i,j) = -1, 0, or + 1. IND (i,j) = - 1 if the reaction front has
not reached the round at (i,j) yet, IND (i,j) = O if the round at (i,j)
is inert, and IND (i,j) = + 1 if the (i,j)th round achieved reaction.

The reaction process is initiated by randomly selecting a set (ISET)
of neighboring rounds and assuming it to be already reacted. The
number of rounds in the set (ISET) is an input parameter (NINS). If
NINS is greater than one, then one of two subroutines DET2 or DET3 is
called to select the remaining rounds that form the set (ISET). The
number of rounds selected to be in ISET is less than or equal to NINS. The
inequality applies sometimes if the first initially selected round lies
on the grid boundary, and NINS is greater than what is feasible.

At a typical stage of the process the position of the reaction
front is saved in arrays in terms of the rounds that form that front.
The first generation neighbors of the rounds at the reaction front are
examined and a determination is made of which subset of those rounds
becomes part of the detonation front at the next stage. The process
stops when this subset is the empty subset indicating no new rounds
reacting. The number of rounds in the reaction cluster, n,is then
recorded for the current trial and a new trial then initiated. After
an input specified number of trials (NTRIAL), the mean cluster size n,
and the standard deviation S, are computed. A histogram of the process
is printed out in an input specified interval length (ISTEP). The
distribution of cluster size and its probability mass function can be
computed. The cumulative probabilities Pn (p) and Q (p) are printed
out if input specified, The constructed code will also print out the
reaction cluster and its heirarchy for a given case on a given trial
if specified by the input.

14
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IV. APPLICATION OF THE MODEIL

The application of our computational model to the munition problem
requires that we determine the minimum number of trials necessary for
the various computed physical parameters to converge to their limiting
values. The minimum number of trials is necessarily a function of the
interaction probability p, and the lattice size L. Table I shows the
mean cluster size T (the average number of reacted rounds per trial) and
the standard deviation Sp as functions of the number of trials
(abbreviated NTR) for the bond problem in a square lattice L = 20 x 20,
for the cases P =20.4, 0.5, and 0.6. Unless otherwise noted all our
computational results assumed that the initial set (ISET) consisted of
one round, i.e., NINS = 1. The results of similar calculations on two
other lattices of 40 x 40 and 100 x 100 are also included in Table I.
Figure 3 gives a graphical display of those results. It is seen from
these calculations that on the average the number of trials NTR should
be at least 25% of the lattice size L and preferably equal to L or
larger. It is also seen from the table that for P = 0.4, the values of
n and Sp are limited by the boundary of the lattice when L = 20 x 20,
but both converge to their terminal values when the value of L is in-
creased to the larger size lattices of 40 x 40 and 100 x 100. This
becomes apparent from the last two columns of Table I, where values of
n/L and Sp/L are given. The values of those variables decrease
significantly due to the increase in the size of L, while m and S, re-
main finite at about the same value in this case. We note here that
P = 0.4 is less than the known Critical probability Pc = 0.5, The cases
of p = 0.5 and 0.6 show similar behavior with regard to the number of
trials NTR needed for convergence, but the values of T and Sp continue
to increase with the size of the lattice as would be expected since the
interaction probability p > P. in this case.

A rough check can be made of the computed values of T and S, in
Table I. Assume that the random variable N representing the cluster
size is drawn from a population with a distribution whose mean is p and
standard deviation o. Let samples Sis S2, ..., » Sx of size m be drawn
from that population. Let the mean of a typical sample be denoted by
N, and its standard deviation by S,. Thus if the distribution of N is
characterized by (4, o) then the distribution of N is characterized!®
by (u, o//ﬁ). In other words the distribution of the mean has the same
mean as the original population and its standard deviation Sx = o/Vm.

Sample size m = 414.29:

(i) Case p = 0.4
Mean (N) = 19.71; var (N) = 1.6467; /& S = 26.125 Mean (S ) =
26.06.

YOw. J. Dizon and F. J. Massey, Jr., "Introduction to Statistical
Analysis," p 45, MeGraw-HIll, 1969.
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Table I. Dependance of the Mean Cluster Size n and Standard Deviation
S, on the Number of Trials, NTR, and Interaction Probability p,
in a Randomly Initiated Lattice L

i p NRT n S5y /L i
20X20 0.4 10 18.90 5.5 0.047 0.064
20X20 0.4 20 2755 20.4  0.069  0.074
20X20 0.4 30 15.87 19.63  0.040  0.049
20X20 0.4 40 17.95 26.06  0.045  0.065
20X20 0.4 50 20.54 23.60  0.051  0.059
20X20 0.4 60 14.53 16.06  0.036  0.040
20X20 0.4 80 13.96 15.98  0.035  0.040
20X20 0.4 100 21.07 29.76  0.053  0.074
20X20 0.4 200 17.32 23.91  0.043  0.060
20X20 0.4 300 21.49 29.12  0.054  0.073
20X20 0.4 400 19.09 25.41  0.048  0.064
20X20 0.4 500 19.66 24.70  0.049  0.062
20X20 0.4 600 19.21 24.19  0.048  0.060
20X20 0.4 800 20.11 25.31  0.050  0.063
40X40 0.4 500 27.39 37.63  0.017  0.024

100X100 0.4 2500 29.91 41.83  0.003  0.004
20X20 0.5 10 63.60 94.18  0.159  0.235
20X20 0.5 20 136.85 92.46  0.342  0.231
20X20 0.5 30 100.97 104.06  0.252  0.260
20X20 0.5 40 109.08 102.60  0.273  0.257
20X20 0.5 50 119.36 106.76  0.298  0.267
20X20 0.5 60 137.07 105.25  0.343  0.263
20X20 0.5 80 107.30 97.72  0.268  0.244
20X20 0.5 100 111.15 98.68  0.278  0.247
20X20 0.5 200 123.86 105.18  0.310  0.263
20X20 0.5 300 120.33 105.53  0.301  0.264
20X20 0.5 400 112.00 102.25  0.280  0.256
20X20 0.5 500 112.49 107.20  0.281  0.268
20X20 0.5 600 119.12 104.49  0.298  0.261
20X20 0.5 800 118.81 103.40  0.297  0.259
40X40 0.5 500 405.98 387.95  0.254  0.242
100X100 0.5 2500 2032.68  2206.27  0.203  0.221
20X20 0.6 10 29480 116.25  0.737  0.291
20X20 0.6 20 285.25 140.85  0.713  0.352
20X20 0.6 30 312.90 123.10  0.782  0.308
20X20 0.6 40 52533 92.28  0.813  0.231
20X20 0.6 50 315.40 117.68  0.789  0.294
20X20 0.6 60 293.07 136.92  0.733  0.342
20X20 0.6 80 328.69 85.66  0.822  0.214
20X20 0.6 100 319.92 100.15  0.800  0.250
20X20 0.6 200 316.00 112.40  0.790  0.281
20X20 0.6 300 310.96 115.11  0.777  0.288
20X20 0.6 400 307.61 118.67  0.769  0.297
20X20 0.6 500 315.91 111.51  0.790  0.279
20X20 0.6 600 306.88 120.09  0.767  0.300
20X20 0.6 800 313.69 113.61  0.784  0.284
40X40 0.6 500 1355.39 399.05  0.847  0.249
100X100 0.6 2500 8757.02  2357.48  0.876  0.236
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(ii) Case p = 0.5

Mean (N) = 116.82; Var (N) = 20.7517; /3 S— = 92.72;
Mean (S,) = 103.82.
(iii) Case p = 0.6
Mean (N) = 312.98; Var (N) = 19.4847, V& S_ = 89.85;

Mean (S )= 113.08. n

Figure 4 shows a plot of the probability mass function P[Nel, Nol
that the cluster size of reacted rounds, N, lies in an interval of length,
I, centered at N, for the case p = 0.4. The probability P[NeI, Ny] is
plotted at the midpoint N, for values of NTR = 50, 100, 200, and 400.
The different points were connected by curves to fac111tate comparison
of the different cases. The curves for NTR = 100, 200, and 400 are
almost identical. Figure 5 gives a comparison of the bar plots of the
probability mass functions P[NeI, N,] defined above for the three
interaction probabilities p = 0.4, 0.5, and 0.6. Different symbols
indicate the points of the different cases. The interval length in
both Figures 4 and 5 is I = 20.

Table II gives the cumulative probability P, (p) of clusters whose
size is at least n for various values of n and correspondlng to inter-
action probabilities of p = 0.4 to 0.6 in steps 0.02. The lattice in
this case L = 100 x 100 and the detonation was started in the center of
the lattice by a single round. Figure 6 shows plots of P, (p) for a
constant n as a function of the interaction probability p Some of the
columns of Table II were not plotted to avoid crowding the figure. The
probability Q,(p) as a function of p may be derived from Table II as the
complement of P, (p). Table III gives the variations of W, and S, as
functions of the interaction probability, p, for the above lattice.

Table IV gives the cumulative probability P, (p) for a

square lattice L = 100 x 100 which is randomly initiated by a single
round. A plot of P, (p) for this case is given in Figure 7. Table V
shows the variations of the mean cluster size, T, and the standard devia-
tion S, for this lattice. Columns 5 and 6 of the table show that

dn/dp has a maximum at p = 0.51, which is in the neighborhood of R

A comparison of Tables IV and V with Tables II and III shows the effect
of random initiation versus central initiation. The differences are

due to the effect of the boundary. Figure 8 shows the variations and
comparison of the mean cluster size in a square lattice L = 100 x 100

as a function of p for the two modes of initiation and Figure 9 shows
the standard deviation as a function of p for those two cases. Examina-
tion of Tables III, and V, and Figures 8, and 9 reveal the sharp rise

in the growth rate of T as p increases past the critical value of p =
0.5. In fact numerical differentiation of the values of T given in
Table V reveals that dn/dp has a maximum in the neighborhood of p = 0.51,
and that d n/dp has a zero in that neighborhood. A more resolved
calculation in that region might locate that maximum more closely.
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Centered at N0 for Various Sample Size NTR
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Figure 6: Cumulative Probability Mass Distribution Pn(p),

L = 100x100, Centrally Initiated
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Table III.

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Variations of the Mean m and the Standard Deviation
S, in a Square Lattice L = 100 x 100, Centrally
Initiated

_EIE n Sn n/L SN/L
2500 32.98 46.27 0.003 0.005
2500 54.82 78.83 0.005 0.008
2500 105.59 156.37 0.011 0.016
2500 240.67 360.02 0.024 0.036
2500 827.é3 1036.91 0.083 0.104
2500 2646.77  2216.54 0.265 0.222
2500 5390.39  2913.57 0.539 0.291
2500 6973.17  2957.45 0.697 0.296
2500 7987.42  2581.81 0.799 0.258
2500 8596.88  2203.51 0.860 0.220
2500 8895.52  2100.34 0.890 0.210
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Figure 7: Cumulative Probability Mass Distribution Pn(p),

L = 100x100, Random Initiation
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Table V. Variation of the Mean n and Standard Deviation Sn
in a Square Lattice L = 100 x 100, Random Initiation

-p NTR n S, dn/dp dzﬁydpz
0.40 2500 29.91 41.83
970 4
0.42 2500 49. 31 70.96 4.0275 x 10
1775.5 4
0.44 2500 84.82 123.99 17.675 x 10
5310.5 "
0.46 2500 191.03 300.16 65.3975 x 10
18390 4
0.48 2500 558.83 849.92 276.5125 x 10
73692.5 4
0.50 2500 2032.68  2206.27 345.7375 x 10
142840 "
0.52 2500 4889.48  3176.54 -222.98 x 10
98244 4
0.54 2500 6854.36  3075.74 -238.985 x 10
50447 4
0.56 2500 7863.3 2743.59 -92.9025 x 10
31866.5 i
0.58 2500 8500.63  2374.12 -95.235 x 10
12819.5
0.60 2500 8757.02  2357.48
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Figure 8: Mean Cluster Size Versus p in a Square Lattice

L = 100x100
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Figure 9: Standard Deviation Versus p in a Square Lattice

L = 100x100
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Figure 9 remarkably shows that the standard deviation curves for the
two modes of initiation cross at the critical value of p = 0.5.

The cost of conducting full scale tests on ammunition stores is high,
hence, experimentally one can conduct tests on small scale stack con-
figurations such as those shown in Figures 10 and 11. The results of
such tests are then used to extrapolate and make predictions for the
larger stores. Alternatively one can utilize the results of the small
scale test to compute the interaction probability p for the lattice of
interest, and then utilize the present model to predict the survivability
(or vulnerability) of ammunition stores of any size. Such calculations
can be performed quickly and economically. Table VI shows the results
of a calculation for a three dimensional lattice Ly = 2 x 3 x 6 which is
shown schematically in the top of Figure (10a). The above table shows
a parametric study in terms of p, of the probability Q, (p) that the
cluster size of reacted rounds is less than n. In some sense Q, (p)
can be considered as a measure of survivability (or vulnerability) of
the ammunition store. Figure 12 shows a plot of the probability mass
function Q2 (p) which is the probability that the detonation of an
initial round in the stack will not propagate to other rounds. Table
VII shows the probability Q, (p) for the lattice L, = 3 x 2 x 10 shown
in Figure (1la). The equation

P (@) +Q (p) =1

can be used in conjunction with the above tables to infer the probability
P (p). Figure 13 shows a plot of Q,(p) as a function of p for the pallet
in Figure (1la), which is the probability that the reaction does not
propagate beyond the initial round. Table VIII gives the mean cluster
size n and the standard deviation S for lattices L; and L, as functions
of p. Figure 14 shows a standard storage magazine for the 155mm pro-
jectile partially full, and containing 36 x 40 x 3 ammunition boxes.

We applied the present model to study the vulnerability of this magazine
in terms of the interaction probability p. The magazine was assumed to
be full, and containing Lz = 40 x 40 x 5 boxes. Table IX shows the
probability Q, (p) for L, for values of p from 0.10 to 0.55 in increments
of 0.05 and for values o% n from 11 to 7891 in steps of 10 at first and
100 later on. Table X reveals the large increase in the growth rate of
n as p increase again past the critical probability for the cubic
lattice. As a matter of fact dn/dp has a maximum in the neighborhood

of p = 0.325 as can be seen by numerically differentiating the values

of m in Table X. Two factors influence the value of p at which dn/dp

has a maximum, first the resolution of the calculations, and secondly
the effect of the boundary due to the finiteness of our lattice. A
smaller step in p would result in a more accurate location of the
maximum of dn/dp. A second more resolved calculation with smaller steps
in p and greater number of trials placed the maximum value of dn/dp at

p = 0.305.
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yd yd
pA / Z
(a) 36 BOXES
(STANDARD PALLET SIZE)
y4 Z

(b) 24 BOXES

(c) 6 BOXES

Figure 10: Stack Configurations Used for 8lmm Tests
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(a) 60 BOXES

L
Z
/
(b) 15 BOXES
(STANDARD PALLET SIZE)
y4

(c) 10 BOXES

Figure 11: Stack Configurations Used for 105mm Tests
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Table VI. The Probability Q, (p) that the Cluster Size of
Detonated Rounds is Less than n, for a 2 x 3 x 6

Pallet.

e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0 0 0 0 0 0 0 0 0
2 0.60 0.44 0.20 .15 0.04 0.02 0.01 0 0
3 0.90 0.60 0.36 0.21 0.07 0.03 0.01 0 0
4 0.97 0.74 0.45 0.27 0.09 0.04 0.01 0 0
5 0.98 0.83 0.54 0.31 0.09 0.04 0.01 0 0
6 0.99 0.88 0.60 0.35 0.10 0.05 0.01 0 0
7 0.99 0.93 0.66 0.37 0.11 0.06 0.01 0 0
8 1 0.94 0.70 0.39 0.12 0.06 0.01 0 0
9 1 0.95 0.75 0.41 0.12 0.06 0.01 0 0
10 1 0.96 0.77 0.44 0.14 0.06 0.01 0 0
11 1 0.96 0.80 0.47 0.14 0.06 0.01 0 0
12 1 0.98 0.84 0.47 0.17 0.06 0.01 0 0
13 1 0.99 0.84 0.50 0.20 0.06 0.01 0 0
14 1 1 0.88 0.52 0.21 0.06 0.01 0 0
15 1 1 0.91 0.55 0.22 0.07 0.01 0 0
16 1 1 0.92 0.58 0.23 0.07 0.01 0 0
17 1 1 0.93 0.59 0.24 0.07 0.01 0 0
18 1 1 0.94 0.60 0.27 0.07 0.01 0 0
19 1 1 0.95 0.62 0.29 0.07 0.01 0 0
20 1 1 0.97 0.67 0.31 0.07 0.02 0 0
21 1 1 0.98 0.69 0.31 0.08 0.02 0 0
22 1 1 0.98 0.73 0.31 0.08 0.02 0 0
23 1 1 0.99 0.75 0.33 0.09 0.02 0 0
24 1 1 0.99 0.77 0.35 0.09 0.02 0 0
25 1 1 1 0.81 0.38 0.10 0.02 0 0
26 1 1 1 0.84 0.40 0.11 0.02 0 0
27 1 1 1 0.86 0.41 0.11 0.02 0 0
28 1 1 1 0.87 0.43 0.12 0.02 0 0
29 1 1 1 0.90 0.47 0.13 0.02 0 0
30 1 1 1 0.92 0.51 0.14 0.02 0 0
31 1 1 1 0.95 0.57 0.16 0.02 0 0
32 1 1 1 0.99 0.66 0.21 0.02 0 0
33 1 1 1 0.99 0.73 0.25 0.03 0 0
34 1 1 1 0.99 0.83 0.36 0.06 0.01 O
35 1 1 1 1 0.88 0.55 0.15 0.02 0
36 1 1 1 1 0.95 0.80 0.35 0.11 0.2
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Figure 12: The Probability that the Detonation does not Propagate

Beyond the Initial Set VS. p,in a Lattice L, = 2x3x6
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Table VII.

The Probability Q, (p) that the Cluster Size of

Reacted Rounds is Less than n, for L = 3 x 2 x 10

(o]

Pallet.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
0 0 0 0 0 0 0 0 0
0.63 0.41 0.21 0.13 0.03 0.02 0 0.01 0
0.91 0.53 0.36 0.22 0.04 0.03 0 0.01 0
0.96 0.69 0.46 0.25 0.05 0.04 0 0.01 0
0.97 0.75 0.52 0.27 0.06 0.04 0 0.01 0
0.99 0.82 0.60 0.31 0.06 0.04 0 0.01 0
1 0.88 0.66 0.33 0.06 0.04 0 0.01 0
1 0.90 0.70 0.36 0.07 0.04 0 0.01 0
1 0.93 0.76 0.37 0.09 0.04 0 0.01 0
1 0.94 0.78 0.39 0.09 0.04 0 0.01 0
1 0.95 0.83 0.42 0.09 0.04 0 0.01 0
1 0.96 0.84 0.42 0.11 0.04 0 0.01 0
1 0.97 0.84 0.46 0.13 0.04 0 0.01 0
1 0.98 0.86 0.47 0.13 0.04 0 0.01 0
1 0.99 0.87 0.50 0.14 0.04 0 0.01 0
1 0.99 0.88 0.53 0.16 0.04 0 0.01 0
1 0.99 0.89 0.54 0.18 0.04 0 0.01 0
1 1 0.90 0.54 0.18 0.04 0 0.01 0
1 1 0.90 0.56 0.20 0.04 0 0.01 0
1 1 0.91 0.58 0.22 0.05 0 0.01 0
1 1 0.93 0.60 0.22 0.06 0 0.01 0
1 1 0.94 0.61 0.22 0.06 0 0.01 0
1 1 0.95 0.61 0.22 0.06 0 0.01 0
1 1 0.95 0.64 0.23 0.06 0 0.01 0
1 1 0.96 0.68 0.23 0.06 0 0.01 0
1 1 0.96 0.70 0.25 0.06 0 0.01 0
1 1 0.97 0.73 0.25 0.06 0 0.01 0
1 1 0.97 0.73 0.26 0.06 0 0.01 0
1 1 0.97 0.74 0.27 0.06 0 0.01 0
1 1 0.97 0.76 0.28 0.06 0 0.01 0
1 1 0.97 0.77 0.29 0.07 0 0.01 0
1 1 0.98 0.78 0.30 0.07 0 0.01 0
1 1 0.99 0.79 0.30 0.07 0 0.01 0
1 1 1 0.79 0.31 0.08 0 0.01 0
1 1 1 0.81 0.32 0.09 0 0.01 0
1 1 1 0.82 0.32 0.10 0 0.01 0
1 1 1 0.82 0.33 0.10 0 0.01 0
1 1 1 0.83 0.33 0.11 0 0.01 0
1 1 1 0.85 0.35 0.11 0 0.01 0
1 1 1 0.87 0.38 0.12 0 0.01 0
1 1 1 0.88 0.39 0.12 0.01 0.01 0
1 1 1 0.88 0.41 0.12 0.02 0.01 0
1 1 1 0.89 0.43 0.12 0.02 0.01 0
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Table VII. (Cont'd) The Probability Qn (p) that the Cluster Size of
Reacted Rounds is Less than n, for L = 3 x 2 x 10 Pallet.

)
n\0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
44 1 1 1 0.89  0.44  0.13  0.02 0.0l 0
45 1 1 1 0.91  0.45 0.13 0.02 0.0l 0
46 1 i 1 0.92  0.46  0.13  0.02 0.01 0
47 1 1 1 0.93  0.49  0.14 0.02 0.0l 0
48 1 1 1 0.95 0.52 0.14 0.02 0.01 0
49 1 1 1 0.96 0.54  0.15 0.02  0.01 0
50 1 1 1 0.97 0.59 0.16 0.02 0.01 0
51 1 1 1 0.99 0.62 0.17 0.02 0.0l 0
52 1 1 1 0.99 0.67 0.18 0.02 0.0l 0
53 1 1 1 1 0.70  0.20  0.02 0.0l 0
54 1 1 1 1 0.76  0.23  0.02 0.01 0
55 1 1 1 1 0.79  0.28  0.02 0.01 0
56 1 1 1 1 0.86 0.34  0.03  0.01 0
57 1 1 1 1 0.90 0.41  0.03  0.02 0
58 1 1 1 1 0.95 0.52  0.10 0.02 0
59 1 1 1 1 0.97 0.67  0.24  0.05 0
60 1 1 1 1 1 0.87  0.47  0.16 0
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Figure 13: The Probability that the Detonation does not Propagate

Beyond the Initial Set VS. p, in a Lattice L2 = 3x2x10
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Table VIII. Variations of the Mean T and Standard Deviation S
for Lattices L1 and L2

P (L) 8, (L) n(L,) 8,(Ly)
ETI 1.59 0.98 1.56 0.97
0.2 2.82 2.58 3.36 3.24
0.3 6.14 5.63 6.83 7.43
0.4 13.52 10,29 18.41 15.64
0.5 24.42 _ I ) 39.43 17.59
0.6 31.51 8.17 52.55 13.18
0.7 35.04 3.72 58.74 4.14
0.8 35.70 2.49 59.21 5.88
0.9 35.99 0.12 60.00 0.07
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Table IX.

11
21
31
41
51
61
71
81
91
191
291
391
491
591
691
791
891
991
1991
2991
3991
4991
5991
6991
7491
7891

The Probability Q, (p) that the Cluster Size of Reacted
Rounds in a 40 x 40 x 5 Store is less than n

0.10__ 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
1 0.94 0.80 0.56 0.36 0.18 0.12 0.09 0.05 0.02
1 0.99 0.90 0.67 0.41 0.19 0.12 0.09 0.05 0.02
1 1 0.94 0.73 0.44 0.19 0.12 0.09 0.05 0.02
1 1 0.97 0.77 0.45 0.19 0.12 0.09 0.05 0.02
1 1 0.98 0.81 0.46 0.20 0.12 0.09 0.05 0.02
1 1 0.99 0.83 0.47 0.20 0.12 0.09 0.05 0.02
1 1 1 0.85 0.48 0.20 0.12 0.09 0.05 0.02
1 1 1 0.86 0.49 0.20 0.12 0.09 0.05 0.02
1 1 1 0.88 0.49 0.20 0.12 0.09 0.05 0.02
1 1 1 0.95 0.53 0.20 0.12 0.09 0.05 0.02
1 1 1 0.98 0.55 0.20 0.i2 0.09 0.05 0.02
1 1 1 0.99 0.57 0.20 0.12 0.09 0.05 0.02
1 1 1 1 0.58 0.20 0.12 0.09 0.05 0.02
1 1 1 1 0.60 0.20 0.12 0.09 0.05 0.02
1 1 1 1 0.61 0.20 0.12 0.09 0.05 0.02
1 1 1 1 0.62 0.20 0.12 0.09 0.05 0.02
1 1 1 1 0.62 0.20 0.12 0.09 0.05 0.02
1 1 1 1 0.64 0.20 0.12 0.09 0.05 0.02
1 1 1 1 0.70 0.20 0.12 0.09 0.05 0.02
1 1 1 1 0.82 0.20 0.12 0.09 0.05 0.02
1 1 i 1 0.95 0.20 0.12 0.09 0.05 0.02
1 1 1 1 1 0.20 0.12 0.09 0.05 0.02
1 1 1 1 1 0.29 0.12 0.09 0.05 0.02
1 1 1 1 1 1 0.33 0.09 0.05 0.02
1 1 1 1 1 1 1 0.67 0.05 0.02
1 1 1 1 1 1 1 1 1 1
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Table X. The Mean Cluster Size n and the Standard Deviation Sh
for a 40 x 40 x 5 Store

p 7 s_ dn/dp %7/ dp?
0.10 2.03 1.70
25.4
0.15 3.30 3.65 1200
85.4
0.20 7.57 11.83 10620
616.4
0.25 38.39 78.65 427260
21979.4
0.30 1137.36 1482.97 1076500
75804. 4
0.35 4927.58 2448. 49 -1023132
24647.8
0.40 6159.97 2317.35 ~228676
13214.0
0.45 6820.67 2118.38 _46312
10898.4
0.50 7365.59 1617.13 ~88836
6456.6
0.55 7688.42 1125.93
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V. CONCLUSIONS

A simple stochastic model has been developed using the framework of
percolation theory. The model can be used to treat both an unoriented
bond percolation problem and/or a site percolation problem. The bond
problem formulation is the more useful for the study of the problem of
survivability (vulnerability) of ammunition stores and magazines given
a hit. The application of the model to a specific store or magazine
requires only a knowledge of the geometry and the interaction probability
P. Small scale tests can determine the interaction probability and a
calculation with our model will determine the survivability (vulner-
ability) of an ammunition store for the given interaction probability.
Such calculations reduce the need for many of the large scale tests,
result in substantial savings, and can be performed rather quickly. The
use of a sometimes desired large sample size, to improve the accuracy of
the results would only add marginally to the cost of the calculations.
Furthermore, the present model provides a probability mass distribution
for each cluster size together with the mean cluster size m and the
standard deviation Sn for a given interaction probability p.

The results of our sample calculations on both two and three
dimensional lattices indicate that ammunition store survivability
dictates that the interaction probability, p, be kept less than the
critical probability P. for the lattice in question and preferably
p << P.. The critical probability for the two dimensional square lattice,
P. = 0.5. For this case our calculations on L = 100 x 100 show that if
p < 0.4 then the average number of rounds lost per encounter is less than
30, and the probability of keeping the losses less than or equal to 90
rounds is 0.92. For the three dimensional cubic lattice P. = 0.254 our
calculations on the lattice Lz indicate that if we keep p < 0.2 then on
the average we lose less than 8 rounds per encounter and with probability
of 0.90 our losses are less than 21 rounds. Our results here show that
the mean cluster n takes a sharp rise as p increases through P.. The
experimental investigationsz’3 cited show that the interaction probability
P can be reduced by a variety of methods such as the treatment of pack-
aging materials with suitable chemicals, such as fire retardant, by the
use of coatings around the charges, the use of less sensitive fillers
or by increasing the separation distances between rounds.

The present model can be used for a parametric study, in terms of
p, of the survivability of a given ammunition store or magazine. Such
calculations were performed here for the lattices L = 100 x 100, Ly =
2x3x6, Ly=3x2x10, and Ly = 40 x 40 x 5. Although for the
purposes of this report the results of our calculations on L, were done
in steps of 10 and 100, it is a simple matter to perform such calcula-
tions in more details and with more resolution for a case of specific
interest.

Finally our results suggest that dn/dp has a maximum at the critical
value of p, i.e., p = P.. If we generalize our observation and define
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for a given lattice, the critical probability to be the value of the
interaction probability p for which dfi/dp is a maximum, then our results
suggest that for the lattice L = 100 x 100, Pc =~ 0.51 and for the

lattice Lz = 40 x 40 x 5, P, ~ 0.305 as was indicated by our detailed
calculations. The fact that the third dimension of this lattice is small
makes this lattice behave intermediately between an infinite square and
an infinite cube lattice. We have not incorporated any calculations

for a site percolation problem, or any calculations for a bond problem
where the initial reaction set consists of more than one round (NINS > 1),
in order to keep the size of this report to a reasonable level. Possible
modifications of this model would make the interaction probability a
function of the relative orientation of the rounds to each other and/or
make it a function of the physical conditions at the detonation front.

Finally we included in this report an Appendix containing a listing
of our computer program which is written in Fortran IV. The Appendix
contains an explanation of the symbols and some helpful hints for its
usage. The code is rather easy to use for an analyst with some knowledge
of probability and with a mathematical background. Knowledge of percola-
tion theory is desirable although not absolutely necessary. Blind usage
of the code by a person with primarily programming interest can lead to
amazing and spectacular results and is therefore not recommended.
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APPENDIX

The following is a listing of the code developed on the basis of the
model outlined in the body of this report. The code consists of the
main program called PROGRAM MAIN, and two subroutines DET 2 and DET 3
which are used in two or three dimensions, when the number of rounds
detonating on the initial hit is greater than one. DET 2, or DET 3
selects the initial detonation set. To use the code in one dimension
with two or more detonations initially an analogous subroutine DET 1
would have to be added.

The usage of the code requires six input cards written in the
appropriate format

Card 1:
ITYPE Variable indicating type of problem desired

ITYPE = 0 for a Bond problem

ITYPE =-1 for a Site problem

IDIM = 1, 2, or 3 depending on the dimensions of the problem

IX, IY, IZ = number of nodes in the x, y, or z direction
respectively

NTRIAL = number of trials desired per case.

Card 2:

NNP = Number of different interaction probabilities desired
Q(k) = An array representing the interaction probabilities desired.

Card 3:
NINS = Number of initiation sites {rounds) desired on the initial
hit
ISTEP = Number of rounds desired per step or block in sorting

reaction clusters.

NUM = Number of cluster sizes for which cumulative probabilities
are desired.

Card 4:

ITALLY(L) = An array representing cluster sizes for which
cumulative probabilities are desired.

45



Card 5:

NQP = Number of probabilities for which certain hierarchy of
reaction clusters is desired to be printed.
QP(I) = An Array of probabilities for which the hierarchy of
reaction clusters is desired to print.

Card 6:

NCY = Number of cycles for which the hierarchy of reaction cluster
is desired per probability
NPCY(I) = An array representing the cycles on which the hierarchy
of reaction cluster is desired for each QP(I) value.

The output is simple and easy to understand. The IH BLOCK contains
a histogram of the process in the number of trials (NTRIAL) specified
in steps of ISTEP. The mean cluster size and the standard deviation
(SIGMA or SIGALT) are printed. PNP( ) and QNP( ) stand for P_(p) and
(p) as outlined in the text of the report. The hierarchy of reaction
clusters is printed out if input specified for the desired interaction
probabilities and for the desired cycles. Some of the input is printed
at the end of the run.
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LIST OF SYMBOLS

P interaction probability

P (p) percolation probability

T random variable

v ro value assumed by the random variable T

IND(i,]j) an array to represent the status of the lattice nodes

L lattice

ISET initial reaétion set

N random variable representing cluster size

n value assumed by random variable N

n mean value of n

Sn standard deviation

u population mean

o population standard deviation

m sample size

P[NeI, No] probability that N lies in an interval of length I
centered at No

Pn (p) cumulative probability of clusters at least of size n

Qn (p) cumulative probability of clusters whose size is

less than n
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