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I. INTRODUCTION

In this report we will be concerned with studying the propagation
and interaction of solitary waves in a face-centered-cubic (FCC)
lattice. Our intention will be to determine the extent to which the
properties of these waves, well known in many one-dimensional models,
are affected by the additional space dimensions and to assess the likely
physical implications of these properties. Most of the work will be
undertaken using a computer-molecular-dynamic model, although extensive
analytic work is also presented. - 

-

Since the discovery
1 that solitary-wave solutions of the Korteweg-

de Vries (KdV) equation were stable to mutual collisions, these stable
pulses (solitons) have received considerable attention. Interest in the
problem arises from the fact that, if relatively stable pulses exist in
real physical systems, they will substantially affect the manner in

• which energy is transported in the system as well as the speed with

which it approaches thermal equilibrium. Early work
2 
on solitons was

devoted to the study of one-dimensional systems whose equations of
motion could at least be approximated by equations which possessed

soliton solutions. More recently, some progress
3
~
6 has been made in

extending the results to multiple dimensions, although the work is
largely mathematical in nature and/or applicable to only rather idealized

systems. In more applied work, Schneider, Stoll , and Hiwatari
7 have

observed in a three-dimensional discrete-lattice model that heat pulses

exhibited solitonlike properties, and Ikezi~ has experimentally verified
the existence of solitons in plasmas. These latter results suggest that

1. N.J. Zabusky and M.D. Kruskal, “Interaction of Solitons in a Col-
lisionless Plasma and the Recurrence of Initial States,” Phys.
Rev. Letters 15, 240 (1965).

2. A.C. Scott, F.Y.F. Chu, and D.W. McLaughlin, “The Soliton: A New
Concept in Applied Science,” Proc. IEEE 61, 1443 (1973).

3. J. Denavit, N.R. Pereira, and R.N. Sudan, “Two-Dimensional Stabil-
ity of Langmuir Solitons,” Phys. Rev. Letters 33, 1435 (1974).

4. K.H. Spatschek, P.K. Shukla, and M.Y. Yu, “On the Two-Dimensional
Stability of Ion-Acoustic Solitons,” Phys. Letters 54A, 419 (1975).

5. Y. Gel!, “Drift Solitons and Their Two-Dimensional Stability,”
Phys. Rev. A 16, 402 (1977).

6. R.G. Newton, “Three-Dimensional Solitons,” J. Math. Phys. 19, 1068
(1977).

7. T. Schneider, E. Stoll , and Y. Hiwatari, “Solitonhike Properties
of Heat Pulses,” Phys. Rev. Letters 39, 1382 (1977).

8. H. Ikezi, “Experiments on Solitons in Plasmas,” in Sohitons in Action,
edited by K. Lonngren and A. Scott (Academic, New York, 1978),
p. 153.
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soliton propagation may indeed be an important real effect in solids
and further studies are appropriate at this time.

Our motivation for investigating the particular problem of solitary
waves in the FCC lattice arose from our efforts to explain anomalous
effects observed in computer simulations of shock waves in discrete
lattices. The first studies of this problem were the three-dimensional,

computer-molecular-dynamic calculations reported by Tsai9 and his co-
workers approximately ten years ago. Their work suggested that, though
the shock front propagates at a constant velocity, the shock profile
itself is not steady. In fact, the transition zone which connects the
two equilibrated regions ahead of and behind the front appeared to in-

• crease in length as the shock wave propagated farther into the lattice.
In addition, the energy associated with random motion appeared to be
higher directly behind the shock front than in the equilibrated region

far behind the front. Shortly thereafter Tasi’°12 reported the results
of his studies of shock propagation in a one-dimensional, quiescent
lattice. He also observed a nonsteady shock profile and explained its
occurrence on the basis of solitary-wave propagation.

The shock profile predicted by these computer simulations contra-
dicted the shock-wave structure predicted by the usual continuum
equations and, if true, could have a significant impact on several areas
of ballistics research. In view of this fact, we initiated an in-house,
computer-molecular-dynamics program to study shock waves in crystal
lattices. We initially restricted our investigations to studies of
shock structure in a one-dimensional lattice. Our calculations in the
quiescent lattice essentially confirmed Tasi’s earlier results. In
addition , however, we found that stable solitary waves were also gener-

ated when the lattice was initially at some nonzero temperature.
13’14

9. D.H. Tsai, “An Atomistic Theory of Shock Compression of a Perfect
Crystalline Solid,” in Accurate Characterization of the High-Pressure
Environment, edited by E.C. Lloyd, Nat!. Bur. Stds. Spec. Pub!.
No. 326 (U.S. GPO, Washington, DC, 1971), p. 105.

10. J. Tasi, “Perturbation Solution for Growth of Nonlinear Shock Waves
in a Lattice,” 3. App!. Phys. 43, 4016 (1972). See also Erratum [J.
Appi. Phys. 44, 1414 (1973)].

11. J. Tasi, “Far-Field Analysis of Nonlinear Shock Waves in a Lattice,”
J. Appl. Phys. 44, 4569 (1973).

12. J. Tasi, “Perturbation Solution for Shock Waves in a Dissipative
Lattice ,” J. Appl . Phys . 44, 2245 (1973).

13. J.H. Batteh and J.D. Powell , “Shock Propagation in the One-Dimen-
• sional Lattice at a Nonzero Initial Temperature,” J. App!. Phys.

49, 3933 (1978).
14. J.H. Batteh and J.D. Powell, “Soliton Propagation in a One-Dimen-

sional Lattice Under Shock Compression,” in Solitons in Action,
edited by K. Lonngren and A. Scott (Academic, New York, 1978) p. 257.
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In an effort to determine whether the unexpected results observed in
three dimensions could be explained on the basis of solitary-wave
behavior , we modified our code to treat shock propagation in a face-
centered-cubic lattice. The results of that investigation will be
presented in a subsequent report. Here, we mention only that the sim-
ulations indicated the presence, at least for early times, of solitary
waves near the shock front. It soon became apparent that, in order to
interpret the results of the shock-wave calculation, we would first
have to understand the behavior of solitary waves in three-dimensional
lattices . Consequently, we initiated the studies reported here which
were designed solely to elucidate the properties of solitary waves in a
three-dimensional system. Specific points we include in this report
include the extent to which the FCC lattice can support solitary waves;
the effect of mutual collisions upon the wave profile; the stability
of the profiles to perturbations in the direction of propagation as
well as perpendicular to it; and the extent to which longitudinal and
transverse oscillations are coupled and how the energy is exchanged

• between them.

We begin in Sec. II by describing the model under consideration,
writing down the equations of motion for each atom in the lattice, and
describing the method for solving them. In Sec. III we present the
results of the numerical studies which have been undertaken using the
discrete-lattice model. In particular, we address the generation of
solitary waves and discuss their stability. It is pointed out that in
some cases it is possible to generate coupled longitudinal and transverse

• solitary waves which propagate in phase at the same velocity. In Sec.
IV we derive the long-wavelength (continuum) limit of the equations of
motion for the FCC lattice. It is demonstrated that there exists a
steady solution to the equations which predicts the coupled solitary
waves found in the previous section. The equations are solved numeric-
ally and an approximate analytic solution is also obtained. Finally,
Sec. V contains a summary of the results and the conclusions drawn as
well as some discussion of the physical implications that the existence
of solitary waves might have on energy transfer in crystalline solids.

II. MODEL AND EQUATIONS OF MOTION

The model whose properties we wish to study consists of a pure,
monatomic, FCC lattice which is made as long as necessary in the z
direction and which is reriodic in the x and y directions. The pen-
odicity in these directirns is characterized by the integers L

~ 
and Ly i

respectively. ‘Thus , for any function F which depends upon the velocities
and displacements of the atoms in the lattice we have
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F(x+LL
~
a0, Y+mL~%1Z) F(x,y z) (2.1)

where & and m are arbitrary integers and is the lattice constant or

cube edge of the conventional cell.

The atoms will be assumed to interact via a Morse-type interatomic
potential and therefore the Hamiltonian of the lattice can be written

r + + ,2
+2 -R~ 1 Ir~ —r . ~I-1) I

• H 1/2 ). v1 + 1/2 ~ le ~ ,a j~ -l . (2.2)
i,~ 

‘ i,a L -~

In writing Eq. (2.2) we have adopted the convention whereby the notation

(i,cz) denotes the ~th particle in the ~
th plane normal to the z axis.

These planes are numbered consecutively beginning with the first located
at z=0. Any convenient labeling scheme may be used to number atoms
within a given plane, but the particular convention used is irrelevant

• to further discussion here. This labeling convention is convenient for
some of our later discussions.

In Eq. (2.2) all quantities have been made nondimensional. H
represents, of course, the total energy in the lattice and has been
normalized by D, the dissociation energy of a single, isolated atom pair;

is the velocity of the (i ci)th atom, normalized by ~~~ where m

is the atomic mass; 
j c i  is the position vector of the (i,a)

th atom,

normalized by a ;  A is the lattice constant, normalized by r0, the

separation of an isolated atom pair at minimum potential; and R is a
dimensionless parameter representing the degree of nonlinearity in the
Morse potential. The sum over (i,c*) runs over all atoms in the lattice
and that over (j,~) is taken over all atoms in the vicinity of the
(i ct)th for which the potential interaction is appreciable.

The equation of motion satisfied by the (i,a)th atom can be found
in a straightforward manner from Eq. (2.2) and the result is

. = 2 R A ~ . (2.3)H 1,cg o i,a

where is the nondimensional force (normalized by 2 RD/n0) exerted
~n the (i,a)th atom by the remaining atoms in the lattice. Explicitly,
P. is given by

1 . . -

8

4- H
~~~~~ 

~~~, - I
4 - - —•

~~~~
• 
.. --

~~~
‘ • -1’ .~~~~~~~~ ~~~ • 4’

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ _~~___ — ~~~~~~~~~~~~~ - - —.~~~~



= ~ 1e
2R ø ,a j, 1)

i ,c

~ 
~~~~~~ 

L (2.4)
-4. -4.
r. -r.

x i.,cz j ,
~~4 . 4 . -U

r. -r.
i ,a J ,~

and each dot represents differentiation with respect to the dimension-

less time T , i.e., the real time normalized by /i75 a0.

In all our calculations we will be concerned with solving Eqs.
(2.3) numerically to determine the temporal evolution of the position

* and velocity of each atom in the lattice subject to some specific set
of initial and boundary conditions. From the solution of these
equations, it is then possible to infer all information concerning the
response of the lattice to any excitation. The procedure for solving

• Eqs. (2.3) is to employ a fourth-order Runge-Kutta technique15. The
details of the method of solution, as well as a listing of the appro-

16priate computer program, will be presented elsewhere and will not be
discussed further here.

III. NUMERICAL RESULTS FOR DISCRETE LATTICE

In all solutions of Eqs. (2.3) we have, unless otherwise stated ,
chosen the anharmonicity factor R to be 6.29, a value which leads to a

reasonable representation for a lattice of Nickel atoms’7. Furthermore,
we have assumed that only atoms which were separated by a distance of
unity or less (real distance normalized by a0) exerted an appreciable

force on one another. This assumption is equivalent to assuming that,
in the equilibrium lattice, only an atom’s first- and second-nearest
neighbors contribute significantly to its potential interaction. The
assumption was found to be reasonable for the currently used value of

• R. The lattice constant A was then calculated’6 so as to minimize the
potential and found to be~

’l.4O34.

• 15. B. Carnahan, H.A. Luther, and J.O. Wilkes, Applied Numerical
Methods (Wiley, New York, 1969), Chap. 6.

16. J.D. Powell and J.H. Batteh, “Shock Propagation in the Three-Dimen-
sional Lattice. II. Method of Calculation,” (to be published).

17. F. Milstein, “Applicability of Exponentially Attractive and Repul-
sive Interatomic Potential Functions in the Description of Cubic
Crystals,” J. Appl. Phys. 44, 3825 (1973).
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A. Generation and Collision of Solitary Waves.

In previous work we have used the model described in this paper to
study shock propagation in solids. In those studies, we observed that,
when the atoms of the lattice are initially at rest in their equilibrium
positions, compression along a crystalline axis produces a sequence of
solitary waves which propagate into the lattice. The solitary-wave
profiles used in the computer experiments which are described in this
paper were obtained by isolating a single solit;~y wave from thissequence.

An example of the shock-wave calculation is shown in Figure 1.
For this case, the end-most plane of the lattice, located at z=0, was
driven at a nondimensional velocity U~=l.0 in the z direction. The

equations of motion of the atoms in the lattice were solved and the
velocity-time trajectories of various planes parallel to the plane at
z=0 were plotted. For this calculation and for all others where the
motion of each atom in a plane is identical, the same results are
obtained regardless of Lx and Lyi the periodicity of the lattice in

the x and y directions. Therefore, L
~ 
and L~ can both be set to unity

so that we need to solve the equations of motion for only two atoms in
each plane , one located at the corner of the plane and one located at
the center.

In Figure 1 is plotted the z component of the velocity as a function

of time t for the 40th and 80th planes in the lattice. (The single sub-
script is used hereafter to refer to the plane as a whole.) In order
to facilitate comparisons of the graphs, we have plotted the velocity
in each case as a function of ‘t-T where t is the time at which the
propagating disturbance first excites the plane in question. It is

- 
• evident from the figure that a spectrum of solitary waves is evolving

near the front of the disturbance, just as occurs in one dimension.
Asymptotically, the pulses will completely separate, approach the same
constant shape, and propagate at a steady speed through the lattice.
Consequently, a single solitary wave can be launched into a lattice by
driving the end-most plane with the solitary-wave profile obtained from
the shock-wave calculations. This is not the only conceivable method
of generating solitary waves in the lattice, but is a reasonable one.

In previous studies’3 we demonstrated that solitary waves propagat-
ing in a one-dimensional , Morse-potential lattice are stable to mutual
collisions. That is, to within the accuracy of our numerical data, two
solitary waves emerged from a collision with the same profile as prior
to the collision. It is of interest to determine whether similar effects
occur in the three-dimensional, FCC lattice.
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Figure 1. Spectrum of solitary waves generated by steady compression at 
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We have launched two solitary waves having equal but oppositely
directed velocities from opposite erds of a lattice and allowed them to

• approach one another and eventually collide. By plotting the velocity-
time trajectories of various planes encountered by the solitary waves,

• the effect of the collision can be ascertained. The results of such a
calculation are shown in Figure 2 for two solitary waves launched from
the ends of a lattice which was forty-eight planes long. The initial

• solitary-wave profiles were obtained from a shock-wave calculation with

U~=3.O. The top figure shows the velocity-time trajectory of the 13th

plane in the lattice beginning at the time when the solitary wave propa-
gating in the positive z direction first encounters the plane. For the
time shown in this figure the two waves have not yet collided so that
this profile corresponds to the initial solitary-wave profile. The
solitary wave depicted in the figure represents a rather strong distur-
bance. In fact, in the neighborhood of the solitary wave the density in
the lattice is increased by about 40%. The two solitary waves encounter

one another in the vicinity of the 24th plane in the lattice and the
trajectory of that plane is shown in the center of the figure during the
time of collision . Finally, at a much later time, the collision has
been completed and the negative-velocity solitary wave has reached the

13th plane. Its trajectory is shown in the bottom of the figure.

It is apparent from the figure that the two solitary waves maintain
their shapes only approximately after the collision. Evidently, some
of the energy which initially resided in the two solitary waves now
exists in the form of oscillations which are left behind by the waves.
Although it is not apparent from the figure, the amplitude of the
solitary waves subsequent to the collision is decreased by about 3%
from the amplitude prior to the collision. We conclude, then, that
solitary waves in an FCC lattice with a Morse-potential interaction
are not stable to mutual collisions.

In addition to the results discussed above, we have also observed
collisions between solitary waves having smaller initial amplitudes.
As the amplitude decreases, the waves appear to become more stable.
In fact, solitary waves generated by steady compression with

having initial amplitudes of about 1.8 (as compared with about 5.4 for
the U =3.0 case), were found to be stable to within our numerical

accuracy.

It might appear surprising that, although the only motion in the
FCC lattice is one-dimensional, the solitary waves do not appear to be . 

-

so stable as in our previous one-dimensional-chain calculations. The
reason for the apparent anomaly is not completely clear but two possible
explanations may be offered. First, it must be understood that, even
though the motion in the Morse-potential FCC lattice is planar and one
dimensional , the model is nevertheless different from a one-dimensional

12
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• 
chain with a Morse-potential interaction. Consider, for instance, the
one-dimensional chain with the atoms initially in their equilibrium
positions. As two neighbors approach one another , their force of
interaction increases monotonically, reaching a maximum as the separation
distance decreases to zero. In the FCC lattice, however, as two neigh-
boring planes approach one another, the force exerted by an atom on its
neighbor in an adjacent plane is not in the same direction as that of
the planar motion. Therefore, as the planes approach one another, their
force of interaction first increases, reaches a maximum value, and then
decreases to zero as the planes become coincident. (Of course, it would

• be possible to reproduce the results of the FCC calculation with a one-
dimensional-chain model by replacing the Morse-potential interaction
with another potential defined so as to give the same force as a function

• of separation distance in the two cases.) Second, it is likely that the
solitary waves observed in our previous one-dimensional calculation were

• not rigorously solitons but only appeared to be so to within our numerical
accuracy. Thus, after many collisions we would expect that some change
in the solitary-wave profile would be observed. In fact, we speculated
then that such an effect might be responsible for the apparent tendency
for equilibration that was observed far behind the shock front in our
one-dimensional lattice.

B. Stability of Solitary Waves to Planar and Thermal Oscillations.

• In addition to investigating the effects of mutual collisions upon
the solitary-wave profiles, we have also examined the effects of
relatively small planar oscillations both along and transverse to the
propagation direction. To perform the calculations we launched a
solitary wave at the end of the lattice and allowed it to propagate some
distance into the interior. At some point ahead of the solitary wave,
a few planes in the quiescent lattice were displaced slightly, released,
and allowed to oscillate. The solitary wave then eventually passed
through the region of the oscillating planes and emerged on the other side.
The intention was to determine the effect of the region of planar
oscillations on the solitary-wave profile.

An example of the effect of longitudinal planar oscillations is
shown in Figure 3. A solitary wave having an amplitude of 3.6 (generated
from compression at U =2.0) was launched into the lattice. Just prior

to the time the solitary wave reached the 14 plane in the lattice,
• planes 14-18 were uniformly displaced a distance of 0.1 in the positive

z direction and allowed to oscillate. In Figure 3a is plotted the velocity-

time trajectory of the 6th plane in the lattice which shows the unper-
turbed solitary wave. Figure 3b, on the other hand, shows the same

disturbance as it propagates past the 15th plane in the lattite which
• clearly lies within the region of longitudinal oscillations. The shape

of the original solitary wave is obviously distorted as it propagates

14
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Figure 3. Effects of longitudinal planar oscillations on solitary-wave
profile. (a), (b), and (c) represent solitary wave before,
during, and after traversing the oscillatory region,
respectively. —
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through the region. Finally, in Fig. 3c we have plotted the trajectory

of the 67th plane in the lattice at the time when the original distur-
bance first reaches it. By this time the original solitary wave has
completely traversed the region of longitudinal oscillations. Though
not shown, the trajectories of some later planes have also been plotted
to demonstrate that the shape of the emerging solitary wave did not
change.

Comparison of Figures 3a and 3c indicates that the longitudinal
planar oscillations have had an insignificant effect upon the original
solitary-wave profile. In fact, to within our numerical accuracy, the
profile was found not to have changed at all. These results might
appear surprising since the pulses were found to be unstable to mutual
collisions which involve only longitudinal planar oscillations. Appar-
ently, however, the oscillations discussed above were too small a
perturbation to make any change in the wave profiles observable numeri-
cally. Perhaps if the oscillatory region were much longer, or the
oscillations of larger amplitude, a noticeable eflect would have been
seen.

Calculations identical to those above, except that the five planes
were displaced in the transverse (y) direction, have also been carried
out. It is interesting to note that a displacement of the planes in
the transverse direction will give rise to both longitudinal and transverse
oscillations , whereas displacement in the longitudinal direction produces
only longitudinal oscillations. (This point is discussed further later.)
Consequently, we cannot examine the stability of the solitary waves to
completely transverse oscillations, but only to oscillations which contain
a mixture of both. Furthermore, although the planes were displaced by the
same amount in the two calculations, the change in the energy in the

- 

i lattice due to the transverse displacement is approximately a factor of
two less than that due to the longitudinal displacement.

The results of propagating the solitary wave through the region
containing transverse planar oscillations are shown in Figure 4. Again,
in Figure 4a is shown the unperturbed solitary wave and in Figure 4b

- • the disturbance during the time it traverses the region of planar oscil-
lations. Figure 4c represents the resulting disturbance which emerges
from the oscillatory region. As can be seen from the figure, the trans-

• verse oscillations have significantly affected the size of the original
• solitary wave. In fact, the amplitude of the pulse, which was about

3.60 prior to traversing the oscillatory region has been reduced to
about 3.12. Again, in order to be certain that the emerging pulse was
indeed a solitary wave, we have followed its propagation farther than

the 70th plane into the lattice and observed no change in shape.

Finally, we have allowed the solitary wave to propagate through a
region which contained random, thermal oscillations. The length of the

16

_ _ _ _  ~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _  

- 

• 

-

~~~~~~~~

- -

-4 --  ~~ x —- .- - -- - -—-•  -- - - -- - -



--

- 

(v 6) 2 :: T0 ~~~~~~~~ 

(a)

(v
~~~ 

~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:

° 
:0316 

(b)

4.0 —

(v 67 )2 
2:
_f

~~~~ 

T0 z 2.728

Fi gure 4. Effects of transverse and longitudinal oscillations on
solitary-wave profile. (a), (b), and (C) represent solitary
wave before, during, and after traversing oscillatory region,
respectively.
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region was the same as for the previous calculations and the cross section
contained 32 atoms (Lx=Ly=4)• The thermal energy per particle was the

same as the energy per particle associated with the mixture of trans-
verse and longitudinal planar oscillations. Again some decay of the
initial solitary-wave amplitude was observed. We should point out,
however, that the finite size of the lattice in the transverse directions
unavoidably gives rise to some planar oscillations. These planar oscil-
lations, which are unexpected in macroscopic, equilibrated crystals, no
doubt accentuate the decay of the solitary-wave profiles. Nevertheless,
we expect some decay of the profiles even in the absence of planar
oscillations although the decay should be slower than that observed here.

• Unfortunately, capability of treating only small systems is a fundamental
limitation of computer molecular dynamics.

C. Coupled Solitary Waves.

The instability of the original solitary wave to transverse planar
oscillations can be explained in part by the generation of coupled
longitudinal and transverse solitary waves. We have observed these
waves in the numerical data from which Figure 4 was plotted. Specifi-
cally, it was found that there existed a solitary wave which propagated -

in phase with the emerging longitudinal wave but which produced a dis-
turbance in the transverse (y) direction.

The effect is demonstrated in Fi gure 5 in which we have plotted the
• velocity-time trajectory of the 70th plane. The upper part of the graph

is identical to Figure 4c and represents the emerging longitudinal pulse.
On the lower part of the graph is plotted the y component of the velocity
of the same plane beginning at the same time. As can be seen from the
figure, the transverse solitary wave has somewhat smaller amplitude
than the longitudinal wave and propagates in phase with it. We have
also computed the energy of the initial-wave profile and compared it
with that of the final coupled waves. The final energy was found to be
about 10% less in the coupled configuration, suggesting that part of
the energy in the initial wave is given up to thermal oscillations.

We have also observed coupled solitary waves in our study of the
effects of thermal oscillations upon the wave profile. In that case
transverse solitary waves were found to propagate in both transverse
directions. In a1l likelihood they arose from the planar oscillations
generated by the finite size of the crystal discussed earlier. In the
following section we will see that the continuum limit of the equations
of motion predicts the existence of these coupled solutions and we will
discuss their properties in greater detail.
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Figure 5. Coupled longitudinal and transverse solitary waves.
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IV. CONTINUUM EQUATIONS

In this section we will derive, interpret, and present some special
solutions to the continuum equations for planar oscillations in the
FCC lattice. This limit can be expected to be valid whenever the •

excitations which the equations describe have wavelengths much lbnger
than the interatomic spacing. The purpose of obtaining and solving the
equations is to compare the results with those obtained previously for
the discrete lattice. As will be seen, the relatively simple continuum
equations predict results at least qualitatively similar to those
obtained in the last section.

A . Derivation of Continuum Equations for Planar Oscillations.

In order to make the calculations as simple as possible we will
assume that only nearest-neighbor interactions are significant. Includ-
ing more distant neighbors is not expected to affect qualitatively the
nature of the results. This is especially true for our case where the
anharinonicity factor is rather large. Furthermore, since we are
concerned only with planar oscillations, each atom in a plane normal
to the z direction will be assumed to have the same velocity and
displacement. The velocities and displacements may have a y component
(transverse) and a z component (longitudinal) but, for simplicity, the
x components have been set equal to zero throughout.

We are interested in solving Eq. (2.3), viz.,

[ ~~~~~~ ~~~j ~~~~ 
-RCA I r k a~~j 8 1-1)

r = 2 R A  ~ le ‘ ‘ -e 0 ‘

k,ci 0 )81

-+ 
(4.1)

r -r.

k,a j,8

in the limit in which the displacements of all particles from their
equilibrium positions are small. The sum over j and 8 now runs over the
twelve nearest neighbors to particle (k,a) which are shown in Figure 6.

- • 
For the case of planar oscillations, the displacement of particle

• (k,ct) from its equilibrium position is identical to the displacement of
the entire plane k from its equilibrium position. Therefore, we can
write

+ + +0 +0 * *r. -r = r. -r + s. - s (4.2)
j ,~~ k,a ~,$ k,a 

~ 
k
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where the superscript o denotes the position vector to the equilibrium -
~~~

position of the particle, and the vectors and are the displacements

of planes j and k, respectively, from their equilibrium positions. The
• position vectors joining the equilibrium site of atom (k,Iz) with those

of its twelve nearest neighbors are given in Table I.

If we now substitute Eq. (4.2) into Eq. (4.1), expand the resulting
equation, and retain only terms through second order in S, we obtain

= 4R2 

8~ j  [ , B , cs~ ~
2(
~~~8

_
~~~a
) 
~ ~~~~~ 

+

• (~~~~~ )] 2 }  (4.3)

I +2(
~j

_
~k
)(;

~,8
_;
~,a
). 

J~~k)]

TABLE I. Position Vectors from Lattice Site (k,a) to Neighboring

Lattice Sites. i , j ,  and k are unit vectors in the three
Cartesian directions.

Neighbor

1 l /2 1+l f2 j

2 l / 2 i -  l/2 j
3 -l/2i- l/2 j

4 —1/2 j + 1/2 j
- 

5 1/2 1 + 1/2 k

6 - l . / 2 j + 1/ 2 k
7 -l/2i +1 /2 k

- 8 1/2j+l /2 k

9 l / 2 i — l / 2 k

10 -l/2j-l/2 k

11 -1/21- 1/2 k

12 l /2j-l /2 k

~~~ I
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In deriving Eq. (4.3) we have noted that, for nearest-neighbor

interactions only, the lattice constant Re is given by ‘7.

We now perform the sum in Eq. (4.3) using the values of the equi-
librium position vectors given in Table I. After much tedious algebra,
we obtain the following equations for the transverse and longitudinal

displacements of the kth plane:

~ k~y 
= 4R2 

~ k+l+Sk_l 2Sk)y + (l-3R) [sk+l
_s
k y sk+l

_s
k Z

- 
k~l

_S
k)y~~k~l

_5
k)z] } (4.4)

~ k~z 
= 8R2 $ k+l~

Sk_l~
2Sk)z 

+ ~~
. (l-R) [(sk+l-sk)~ 

- (Sk l
_S
k)fl

+ ~-{l-3R) [Isk+l-sk~~ 
- (Sk l

_S
k)~~1}

In Eqs. (4.4), the subscripts y and z denote the components of the
• displacement in the y and z directions, respectively. Since we are

interested in the case in which the wavelength of the disturbance is

much larger than the lattice spacing , we can expand 
~k÷l 

and 
~k-l 

in

a Taylor series about 
~k 

with the result that

4~
.

~ _~~~~ k l k ~~~l ~ k 1 
_ _ _

k±l k — — 3k + 2 3k2 
— 

~~~ 3k3 
+ .. . (4.5)

Substitution of Eq. (4.5) into Eqs. (4.4) then produces

a 2s a~s as a 2s 32s as
ar~ 

= 4R 2 

~ 

+ 12 3k4 
+ (l-3R) [_

~~ 3k2 
+ 

3k2 
(4.6a)

a s  l a s  a s  ~~ asz 2i z 1 z z z——-~- 8R I 
~~ ~lY 4 + 3(1-R) 2 51ZL 3 ~ ~k 3k

2 (4.6b)
a s a s

+ -
~~

- (l-3R) 
3k2 ~where we have now dropped t e subscript k. Terms through fourth order

have been retained in obtaining Eq. (4.6).
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Equations (4.6) describe the propagation of planar disturbances
in the FCC lattice in the continuum limit. Although the result has been
obtained for the Morse potential, a similar result can obviously be
obtained for any interatomic potential whose associated forces are
expanded to second order as in Eq. (4.3). If we neglect third- and
fourth-order terms (retain only the first term on the right-hand side
of the equations) we obtain simply the linear wave equations. Thus, the
longitudinal and transverse sound speeds are given in our normalization
by

C~~= 2 /~~R
and (4.7)

Ct =2R .

That the ratio of these two velocities is given by a can be inferred
from elastic-constant data and the well-known fact that for cubic

crystals 18

c I C  ~~l/2

~~ = ( ~~ .J- ) . (4.8)
t \ 44 /

The ratio of the elastic constants C11,C44 has been shown
17 to approach

• two in the limit of nearest-neighbor interactions only.

The more interesting effects in Eqs. (4.6), however, are contained
in the higher-order terms. The third-order terms represent, to lowest
order, the nonlinear effects of the potential whereas the fourth-order
terms (linear) account for the dispersive nature of the lattice. It is
also clear that if these higher-order terms are retained, Eq. (4.6) pre-
dicts that a transverse disturbance cannot propagate in the absence of
a longitudinal disturbance. Thus, setting S

~
=O in Eq. (4.6b) leads to

only trivial , nonoscillatory solutions for Sy• If, however, one sets

Sy=O~ a solution for Sz can be found from Eq. (4.6b). Our discrete-

• lattice results have verified this effect as we pointed out in Sec. III.
B. In that discussion we noted that displacing planes of atoms in the
transverse direction produced both longitudinal and transverse oscilla-
tions, but a displacement in the longitudinal direction produced only

• longitudinal oscillations.

18. W.P. Mason, “Acoustic Properties of Solids,” in American Institute
of Physics Handbook, edited by D.E. Gray (McGraw~I~i[l1, New York,1957) , p. 3-82.
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Equations (4.6) are obviously difficult to solve and we will , be
interested only in obtaining approximate special solutions. Our primary

— interest will be in using the equations to predict analytically the
longitudinal solitary-wave profile and in further studying the properties
of the coupled solitary waves discovered in Sec. III.

The equations can be somewhat simplified by noting that solitary 
U

waves represent steady, travelling—wave solutions to the equations of
motion. Thus, we assume solutions of the form

S =S(k -C-r ) = S (~)y >~ y (4 .9)
S~ = S~ (k~Ct) = S

~
(
~
)

where C is the propagation velocity of the resulting wave form, and
substitute into Eqs. (4.6). If we define the components of the planar
veloc ity as

as
at

(4.10)
U asz

V at

Eqs. (4.6) become

H u’1 = czu - 4Buv (4.lla)

= - 
~V~~-~~U

2 
. (4.llb)

The primes denote differentiation with respect to ~ and the constants
are defined as follows :

2 2
= 12CC /Ct

_ l )

8 = 3(3R-l)/C

2 2 (4.12)
y = 12(C /C~, -1)

6 = 18 (R-l)/C .

In the following two sections we obtain and discuss some solutions to
Eqs. (4.11).
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B. Longitudinal Solitary Waves.

The simplest solution of Eqs. (4.11) results whenever no transverse
disturbance exists so that u can be set equal to zero throughout. We
then have

= - . (4.13)

If Eq. (4.13) is multiplied by v’, it can be integrated twice provided
that we require that the function and its derivatives vanish at infinity.
Performing the calculation we find

v = ~~~- sech
2 c4 ~) . (4.14)

In obtaining Eq. (4.14) ~ have assumed y>O; the solution for y<O isoscillatory, does not vdxush at infinity, and will not be considered
here. Analytic approximations for solitary-wave profiles similar to

- 
U 

this result have been discussed in the literature19.

In order to compare the wave profile predicted by Eq. (4.14) with
our numerical data for the discrete lattice, we plotted the velocity-
time trajectory of a plane of atoms in the lattice as a solitary wave

• traversed it. The propagation velocity, C, of the solitary wave was
obtained from the computer data and substituted into Eqs. (4.12). The

-1 resulting constants were then used to calculate the profile in Eq. (4.14).
Results of the calculation are shown in Fig. 7 in which are plotted the
numerical and analytic wave profiles as a function of the parameter c/C.
The two profiles are in reasonably good agreement. We have also compared
a number of other profiles for both higher- and lower- amplitude solitary
waves. However, as the amplitude of the wave increases, its width
decreases. The discrepancy between analytic and numerical results then

• increases owing to the inadequacy of the continuum approximation .

C. Coupled Solitary Waves.

We now wish to determine whether we can predict from Eqs. (4.11) the
coupled longitudinal and transverse solitary waves observed previously.
We begin by obtaining an approximate analytic solution to the equations
valid in the limit u -

~- 0. The technique may be viewed as the first step
in an iterative procedure; in principle, it may be repeated as often as
desirable.

19. N.J. Zabusky, “A Synergetic Approach to Problems of Nonlinear
Dispersive Wave Propagation and Interaction,” in Nonlinear
Partial Differential Equations, edited by W.F. Ames (Academic ,
New York, l967),~p. 223.
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Equation (4.14) represents the solution of hq. (4.llb) for u0.
Substituting the result into Eq. (4.lla) we obtain an equation for the
first approximation to u, namely,

= au - 

~~~~~~~~ 

sech2 ~ u . (4.15)

Equation (4.15) is linear and second order and is similar to the time-
independent Schroedinger equation. Since cz)0, one expects20 that
bounded solutions exist only for certain discrete values of C and that
the corresponding functions u vanish at infinity.

To solve the equation we make the change of variable

y = sech 
~~~

— 
~~ (4.16)

and substitute into Eq. (4.15) to produce

y 2 (1-y 2) ~~~~~~~~ + y(l-2y 2) = ~u - !~1 y
2
u . (4.17)

We now assume that the solution to Eq. (4.17) can be represented in the
form of the series

m+2pU =  L u y , (4.18)
p=o P

where m is a positive number, and substitute into Eq. (4.17). Equating
coefficients of y2L in the resulting expression then yields the recursion
relation

Iy (m+2~—2)(m+2&—1)-24y8J6] UL 1 (4.19)
y(m÷2&) -4cz 

-

By assumption u0*0 and u~=O for n < 0 so that the denominator of
Eq. (4.19) must vanish for t=O. Thus, we obtain the eigenvalue equation

2

• (4.20)

20. A. Messiah, Q~antum Mechanics (Wiley, New York , 1966), Vol. 1,
Chap. 2.
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which becomes

C2 
= m

2-4 (4.21)
C2 m -8

after using Eqs. (4.12). This result indeed predicts that solutions to
Eq. (4.17) exist only for certain well-defined values of C. Furthermore,
if the series represented by Eq. (4.18) is to terminate, the numerator
of Eq. (4.19) must vanish for some value of 2. This condition implies

— 
— (42—3) + [l+l6(3R-l)/(R—l)] 1/2 4 222 , . )

where all constants have been expressed in terms of R. Of course, m
must be greater than zero in order for the solution to remain bounded at
infinity .

As a specific example, let us now evaluate the solution for the
case R=6.29. In that case, Eq. (4.22) predicts that the only solution

- 

- 
which leads to m>0 and y>0 occurs for 2=1 and m=3.2l. Substitution of
m into Eq. (4.21) then yields C=l.66C2 and, from this value of C, the

remaining constants can be calculated from Eq. (4.12). Only the zeroth
term then survives in the expansion of Eq. (4.18) and we have

u = u0 sech
3
~
21(2.3~). (4.23)

The corresponding expression for v, obtained from Eq. (4.14), is

v = 9.8 sech
2 (2.3F). (4.24)

In principle , Eq. (4.23) could now be used in Eq. (4.llb) to obtain a
second approximation to v.

It is important to emphasize that Eqs. (4.23) and (4.24) represent
only a rather crude approximation to Eq. (4.11) which can be expected
to be valid only as u tends to zero. The solution predicts, for instance,

- 
U that the amplitude of the longitudinal solitary wave in the coupled-wave

profile is identical to that for an isolated longitudinal wave having
the same value of C; actually the amplitude is diminished from that of
the isolated wave. Furthermore, the value of u0 cannot be obtained in

the lowest-order solutions to the equations and this parameter must be
fit to the data. Finally, the lowest-order approximation yields only
one acceptable eigenvalue and, thus, one solution to the equations.
Other solutions are, however , possible as u increases from zero and
these are no doubt predicted by higher-order approximations. Despite

- - 
these shortcomings, the analytic solution is nonetheless valuable
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because it does predict that coupled-wave solutions do exist and, as
we shall see, predicts the shapes of the wave profiles rather well for
u< <v .

Because of the limitations of the analytic solution we have also
obtained numerical solutions of Eqs. (4.11). Our efforts have been
confined to obtaining solutions which propagate in phase, that is, to
solutions which reach their maximum at the same value of ~~~. Only
solutions having this property have been observed in our studies of the
discrete-lattice equations. The numerical procedure was as follows:
A value for Vma was assumed (arbitrarily chosen at 1=O) and Umax
obtained from the differential equations. Specifically, if we multiply
Eq. (4.lla) by u1 , Eq. (4.llb) by 2v’, and add , the resulting expression
is in the form of an exact differential. Integrating and evaluating
the resulting equation at 1=0 yields

I 26v /3~~1lf2
I max Iu = v  i i . (4.25)max max cz/2_2$v

maxj

These values of u and v were used as initial conditions and amax max
fourth-crder RUnge-Kutta scheme employed to solve Eqs. (4.11). As
expected from the analytic result, the numerical solutions were found
to diverge as ~~~~~~~ unless the appropriate value of C. found by trial

• and error, was used.

We have performed a number of numerical solutions of Eqs. (4.11)
in the manner discussed assuming various values of v . In no casemax
were we able to obtain convergent solutions for values of v lessmax
than or equal to the value predicted by the analytic technique in lowest
order , namely, v =9.8. The result suggests that there exists a threshold ,

occurring at the :igenvalue C=l.66C2, below which the coupled solitary

waves cannot propagate in phase. Unfortunately, the threshold is
sufficiently high that one cannot expect that the continuum equations are
a reasonable quantitative approximation to the discrete-lattice equations
and a direct comparison of the results is not possible. Nonetheless, it
is interesting that these equations predict both the existence of the —

coupled waves as well as the fact that they obey a threshold.

An example of a numerical solution is shown by the solid curve in - •

Figure 8. The solution was obtained by assuming a value of Vmax given

by 10.24 and was found to converge provided C was given by 29.9 or
1.68 C2. A plot of u obtained from the resulting solution is shown in
the lower half of the figure; umax was found to be approximately 1.5 U

as can be verified from Eq. (4.25).
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Figure 8. Comparison of numerical and analytic solutions of Eqs. (4.11).
The dashed line represents the analytic solution, the solid
line the numerical solution.
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Since ti is considerably less than v one expects that the analytic
solution represented by Eqs. (4.23) and (4.24) might well be a reasonable
approximation to the numcric.Ll result. This is in fact found to be the

• case as can be seen from the top graph in which the dashed curve repre-
sents the solution given by Eq. (4.24). Furthermore , when we set u0 in

Eq. (4.23) equal to 1.5 and :ittempted to plot the results on the lower
half of the graph along with the numerical solution for u, the graphs
were found to be coincident to within the accuracy with which we could
plot the data. Consequently, we conclude that the analytic solution is
a reasonable approximation t the coupled solitary-wave profile for
values of v near the threshold value of 9.8.max

Equations (4.11) merit i urther study. We have confined our attention
in this investigation only to solutions which have their maximum at the
same value of F . We have been unable to prove from the differential
equations, however, that all solutions which vanish at infinity have
this property. Thus, although we have not observed it in solutions to
the discrete-lattice equations , there remains the possibility that coupled
waves exist which propagate out of phase. It is interesting to note
that if such solutions exist they too obey a threshold effect, although
not necessarily the same one discussed previously. In fact, it is
shown in the Appendix that frr all bounded solutions to Eqs. (4.11),
C must obey the condition

2R 1/2
C >(-~-~) C9, . (4.26)

For R=6.29 , this yields C U-’ 1. 31C~ which is substanti a l l y  lower than
the value C > 1.66 C9, sugge ed for the in-phase solutions.

V. SU~14ARY AND CONCLUSIONS

We have undertaken both computer-molecular-dynamic as well as some
analytic studies of solitar> -wave propagation in the three-dimensional ,
FCC , Morse-potential lattice. It has been found that the lattice is
capable of supporting the propagation of solitary waves as in one-
dimension . The basic conclusions reached regarding the properties of
the solitary waves are as fu~ lows :

I. Longitudinal solitary waves are not stable to mutual
collisions , the degree of stability decreasing as the

• amplitude of the c lliding solitary waves increases. - 

-

Nevertheless , even in a mutual collision , which repre-
sents a rather strong longitudinal disturbance, the
solitary wave reta ns its integrity fairly well.
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H 2. The solitary waves are extremely stable to small, longi-
tudinal, planar oscillations.

3. Longitudinal solitary waves are not stable to small ,
transverse, planar oscillations. However, even in this
case, most of the energy associated with the initial
solitary wave remains localized in the form of a
coupled longitudinal and transverse solitary wave.

4. Solitary waves appear to be more stable to random
thermal oscillations than to coherent planar
oscillations, although it is difficult to determine
this conclusively from computer simulations.

• Our calculations suggest that, for a variety of perturbations ,
the energy initially associated with a solitary wave tends to remain
localized within the wave, although there may be an exchange of energy

• between longitudinal and transverse oscillations. Therefore, despite
the absence of total stability of the solitary waves, they may none-
theless be important in three-dimensional energy-transport problems.
For instance, computer simulations have shown that solitary waves are
generated whenever a solid is subjected to shock compression and they
will , no doubt, be generated in other nonequilibriuni problems as well.
Their fair degree of stability, then, insures that solitary waves will

U substantially affect, at least initially, both the relaxation time and
the manner in which thermal equilibrium is re-established after a
disturbance. Furthermore, for systems of realistic dimensions which

U are initially in thermal equilibrium, the solitary waves are likely to
be more stable than the calculations reported here suggest because of
the absence of coherent, planar oscillations in the background.

U 
• Many problems of importance to ballistics research require an

understanding of the manner in which energy is transported in solids.
For example, models for the initiation of explosives or for the defor-
mation of materials under impulsive loads must incorporate some assump-
tions regarding the nature of the energy transfer and relaxation pro-
cesses which occur following a disturbance. If these processes in
real , impure crystals are, in fact, dominated by solitary-wave be-
havior, then it will become necessary to include the effects of the
solitary waves in the models. For instance, solitary waves may sig-
nificantly affect the rate of chemical reactions behind a shock wave

• since the velocity distribution function is highly non-Maxwellian in
a region where solitary waves are propagating. Consequently, future

U research should be directed towards determining the extent to which I
solitary waves persist in more realistic (e.g., impure) crystals and
assessing qualitatively their effect on the macroscopic properties
of the lattice. Eventually, it would be desirable to develop a
methodology for incorporating detailed, quantitative studies of solitary-
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wave behavior into the macroscopic description of energy transfer in
real solids. This goa l , however, will require a significant advance
of the state-of-the-art both in computer-molecular-dynamic techniques
and in our knowledge of atomic and molecular interactions.
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APPENDIX

The purpose of this appendix is to prove that for solutions of
Eqs. (4.11) which vanish at infinity, the eigenvalues obey a threshold
condition. That is, we demonstrate that for solutions of the equations
to exist we must have

C / 2  > . (A. l)

Consider Eqs. (4.11), viz.,

u1’ ~~c zu - 4 B u v (A. 2)

v”~~~~y v -~~~V -B u ,

If the solution for u is to vanish at infinity, then it must have a
maximum in a region where u is positive and/or a minimum in a region
where u is negative. The final result is independent of which of
these situations exists, so let us assume that u has a maximum value
u~ at ~~ = ~~~~~ , and that u*>O. Furthermore, let us denote the value of
v at ~ by v*. ~f u is to be a maximum at ~~ = ~~~~~, its second derivative
evaluated at F~ must be negative. Consequently, from Eq. (A.2) we have

(~
_4Bv*)u* < 0 (A.3)

and, since u~ > 0,

v* >~~~ . (A.4)

If we multiply the first of Eqs. (A.2) by u’ and the second by 2v’,
U add , and integrate, we obtain —

l/2(u’ )2 + (v’ )2 = + ‘yv2 - ~~
- 6v3 - 28u2v~O . (A.S)

We now apply relation (A.5) at ~ = ~ to produce

1/2 (ct_4Bv*)u*2 + v*2(y_2/36v *) > 0 (A.6)

Equations (A.4) and (A.6) imply that v* must obey the relation

< ~A 7v 2s~
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In order for a solution to exist, then, we must have that

~~~~~ 

<~~~~~~~~~~ . (A.8)

H Expressing the constants in terms of C and R [see Eqs. (4.12)] yields
f inally

C 1 2  > . (A.9)

- - 4’-
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