AD=AD71 432

YALE UNIV NEW HAVEN CONN DEPT OF COMPUTER SCIENCE F/76 5/2

SKIMMING STORIES IN REAL TIME: AN EXPERIMENT IN INTEGRATED UNDE==ETC(U)
MAY 79 6 F DEJONG NOOO14=75=C=1111
UNCLASSIFIED RR=158

o3
kel

— e —— —

NL

||
1
I
.
i

o

J
I
I

rFEFFEERE

EEEE

FEFE

L e

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A J

-

BA071432

DOC FILE COPY,

Skimming Stories in Resl Time:
An Experiment in Integrated Understanding

May 1979
Research Report #158

Gerald Francis DelJong II

"/DDC

a¥ir |

DISTRIBUTION STATEMENT A ,U JUL 19 1979 U ;
Approved for public release; 0 ‘
Disibution Unlimited oo

YALE UNIVERSITY »
DEPARTMENT OF COMPUTER SCIENCE

oo 79 07 158 005 y

This work was presented to the Graduate School of Yale University in

candidacy for the degree of Doctor of Philosophy.

. Aceession For

| NTIS Giwil
DDC TAB
Unannounced

Justification

. . cmp———

!
! By
gm?igg;lbutionl“

| __Axailahility Code
{Avalland/or
nist special

Q

Skimming Stories in Real Time:
An Experiment in Integrated Understanding

May 1979
Research Report #158

Gerald Francis DeJong II

This work was supported in part by the Advanced Research Projects Agency
of the Department of Defense and monitored by the Office of Naval Research

under contract N00014-75-C~1111. DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

(c) Copyright by Gerald Francis Dedong II 1979

ALL RIGHTS RESERVED

AR
%

‘3_-,:'5 #_b'?',’\ R
o

. nzf.

— bvan il i

.
rl

4o

-'.{

LR i)
i

S gV

bl

wu e S TYPE OF REPORT & PERICL LCVERED
@ .

A S
CECUTITY CLASEIZATION OF Tris PAGE ‘Whe, Liata Fntecr d)

REPORT DOCUMENTATION PAGE apr il ORTRLCTIONS
' REVCRYT NUMBEK j‘.‘ GOVY ACCESSION NC | 3. RECIPIENT'S CATALLG NUMBER

‘ Skimming Stories in Real Time:

F 4 Ph.D Thesis
An Experiment in Integrated Understanding »/

€ PERFCURMING ORG. REPORT NUMBER

s = N
N A A RA B AL gt

L YO T T P ———— 0 NTRACT OR GRAN® NUMBER's,
‘m Gerald Francis/DeJongJII < i iy
had o e NPPP14-75-C-1111
9 PERFORM'NG ORGANIZATION NAME ANC ADDRESS 10. PROGRAM E“LIN[NYV, .ﬂuQ.Jt!.C’?, TASK
Yale University-Department of Computer Sciemce _| ARE"® WORKUNITRY

10 Hillhouse Avenue
New Haven, Connecticut 06520

1Y CONTROLLING OFFICE NAME AND ADDRESS 12, PORT DATE o
Advanced Research Projects Agency .412 ZMa; zé 2:
1400 Wilson Boulevard -

| Arlington, Virginia 22200 =
& MONITORING ASENCY NAME 8 ADORESS(it J:tterent from Controlling Oftice

1S, SECULRITY CLASS. (of th.e rep>rt)
Office of Naval Research

Information Systems Program (‘ ,L 2)38 | /V unclassified
Arlington, Virginia 22217 \ ’: & al

T8a DECL ASSIFICATION DOWNGRADING
a3 SCHEDULE

16 DISTRIBUTION STATEMENT (of thie Re; r:)

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Distribution of this report is unlimited

17 DISTRIBUTION STATEMENT (of the abatract entered in Blozk 20, tf dilferent from Report)
TATEMENT (of the -

B

- // g F
kR is’g_, 1 Reseap i Pe B\/'._, /
R S ‘
18 SUPPLEMENTARY NOTES
19 KEY WORDS (Continue on reverase eide il necessary and Identily by block number)
Artificial Intelligence Parsing Reading
Natural Language Knowledge-based systems Automatic summarizatior
Semantics Inference
Conceptual Dependency Skim

20. ABSTARACT (Continue on reverse side It necessary and identify by block number)

— This dissertation describes a new method of automated text analysis.
FRUMP (Fast Reading Understanding and Memory Program) is a working natural
language processing system that has been implemented to demonstrate the
viability of this new approach. The system skims news stories directly from
the United Press International news wire and produces a summary of what it
understands. FRUMP is able to correctly process news articles it has n

before seen. <— M 7 AA ﬁ u

DD ,53%; 1473 coimion oF 1 wov ¢8 15 oRsOLETE
$/N 0102-LF-014.6¢01

.

SECURITY (L ASSIFICAYICN OF ThIS PAGE Whan liata Futered)

The process of interpreting input text words can be greatly simplified

if it is viewed as one component of a highly integrated understanding process.

In FRUMP the text analyzer is embedded in a predictive understander. This
embedded in a predictive understander. This embedding is the key to FRUMP's
robustness. FRUMP's integration makes all of the world knowledge and top-
down predictions of the understander available to the text analyzer. FRUMP
uses a data construct called a sketchy script to store its world knowledge.

There is one sketchy script for each real world “situation" FRUMP knows about.

The system uses this knowledge to make predictions about what might happen
next in a given situation. FRUMP continually jumps to conclusions about what
the text means and generates predictions about what might occur next. The
text analysis process than is reduced to finding a reading of the text that
satisfies these predictions. The process of locking for readings in the text
is much simpler than the process of generating a conceptual structure from an

arbitrary input. Thus there is no need in FRUMP for an extremely powerful
English parser.

Given a new input FRUMP must be able to decide which of its sketchy
scripts contains the knowledge needed to process the input. This is the
process of "script selection" which is a major problem for an approach such
as FRUMP's. A workable solution to the script selection problem must be
computationally manageable. The process must not be significantly slowed
down by the addition of more world knowledge in the form of more sketchy
scripts. That is, the computational complexity of script selection must not
depend significantly on the mmber of scripts in the system. Furthermore, the
script selection process must often be completely bottom-up; most news
stories cannot be anticipated before they are seen. Yet during this process,
the FRUMP text analyzer must still be supplied with adequate top-down
guidance. This problem is addressed and a general solution for FRUMP's
purposes is given.

et
SECURITY CLASSIFICATION OF“THIS PAGE Whon Date Bntered)

-- OFFICIAL DISTIRUBTION LIST

Defense Documentafion Center
Cameron Station
Alexandria, Virginia 22314

Office of Naval Research
Information Systems Program
Code 437

Arlington, Virginia 22217

Advanced Research Projects Agency
Cybernetics Technology Office
1400 Wilson Boulevard

Arlington, Virginia 22209

Office of Naval Research
Branch Office - Boston

495 Summer Street

Boston, Massachusetts 02210

Office of Naval Research
Branch Office - Chicago
536 South Clark Street
Chicago, Illinois 60615

Office of Naval Research
Branch Office - Pasadena
1030 East Green Street
Pasadena, California 91106

Mr. Steven Wong

Administrative Contracting Officer
New York Area Office

715 Broadway - 5th Floor

New York, New York 10003

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D.C. 20375

Dr. A.L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps
Code RD-1

Washington, D.C. 20380

Office of Naval Research
Code U55
Arlington, Virginia 22217

12

copies

copies

copies

copy

copy

copy

copy

copies

copy

copy

R S

Office of Naval Research
Code 458
Arlington, Virginia 222117

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200

San Diego, California 92152

Mr. E.H. Gleissner

Naval Ship Research and Development
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper

NAICOM/MIS Planning Board

Office of the Chief of Naval Operations
Washington, D.C. 20350

Mr. Kin B. Thoapson

Technical Director

Information Systems Division

OP=-91T

Office of the Chief of Naval Operations
Washington, D.C. 20350

Advanced Research Project Agency
Information Processing Techniques
1400 Wilson Boulevard

Arlington, Virginia 22209

Professor Omar Wing

Columbia University in the City of New York
Department of Electrical Engineering and
Computer Science

New York, New York 10027

Office of Naval Research
Assistant Chief for Technology
Code 200

Arlington, Virginia 22217

Captain Richard L. Martin, USN
Commanding Officer

USS Francis Marion (LPA-249)
FPO New York 09501

Major J.P. Pennell
Headquarters, Marine Corp.
(Attn: Code CCA-40)
Washington, D.C. 20380

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

IRy

ABSTRACT

Skimming Stories in Real Time:
An Experiment in Integrated Understanding

Gerald Francis DedJong II

This dissertation describes a new metnod of automated
text analysis. FRUMP (Fast Reading Understanding and Memory
Program) is a working natural language processing system
that has been implemented to demonstrate the viability of
this new approach. The system skims news stories directly
from the United Press International news wire and produces a
summary of what it understands. FRUMP is able to correctly
process news articles it has never before seen.

The process of interpreting input text words can be
greatly simplified if it is viewed as one component of a
highly integrated understanding process. In FRUMP the text
analyzer is embedded in a predictive understander. This
embedding is the key to FRUMP's robustness. FRUMP's
integration makes all of the world knowledge and top-down
predictions of the understander available to the text
analyzer. FRUMP uses a data construct called a sketchy
Script to store its world knowledge. There is one sketchy
script for each real world "situation" FRUMP knows about.
The system uses this knowledge to make predictions about
what might happen next in a given situation. FRUMP
continually jumps to conclusions about what the text wmeans
and generates predictions about what might occur next. The
text analysis process then is reduced to finding a reading
of the text that satisfies these predictions. The process
of looking for readings in the text is much simpler than the
process of generating a conceptual structure from an
arbitrary input. Thus there is no need in FRUMP for an
extremely powerful English parser.

Given a new input FRUMP must be able to decide which of
its sketchy scripts contains the knowledge needed to process
the input. This is the process of "script selection" which
is a major problem for an approach such as FRUMP's. A
workable solution to the script selection problem must be
computationally manageable. The process must not be
significantly slowed down by the addition of more world
knowledge in the form of more sketchy scripts. That is, the
computational complexity of script selection must not depend
significantly on the number of scripts in the system.
Furthermore, the script selection process must often be
completely bottom-up; most news stories cannot be

e, i - i - U I N ————
» — -

anticipated before they are seen. Yet during this process,
the FRUMP text analyzer must still be supplied with adequate
top-down guidance. This problem is addressed and a general
solution for FRUMP's purposes is given.

g

PREFACE

Science fiction writers have long anticipated machines
that could converse fluently in natural 1language. The
advent of the computer seemed to many to herald the
realization of that dream. Yet computer analysis of natural
language texts remains an elusive goal. This is not from
lack of effort. Much money and effort was spent in the
early days of computers on automatic translation between
natural languages. The outcome was the rezlization that
translation required understanding, and understanding was
very difficult indeed for a computer.

In recent years artificial intelligence has directly
addressed the problem of automated text analysis. However,
very few systems have worked at all well. In the few that
have, natural language analysis is used as a very
specialized front end to a very specialized system. These
systems are not easily extendible to other than their
specialized inputs.

By far the more common system is one which explores the
possibilities of natural language analysis in a toy system.
These systems can correctly process few inputs other than
the examples for which they were built. Some work on only
one or two particular sentences. The claim, whetliier stated
or implied, is then made that while only a preliminary
version has been implemented a real working system is now
Just a matter of adding more vocabulary items and perhaps
more world knowledge. None of these systems has ever been
extended to the point of being practical. They remain
signposts pointing along research directions never again
followed.

This dissertation proposes yet another research
direction. However, it is different from its predecessors
in two ways. First, it recognizes the non-extensibility of
previous systems as a theoretical rather than a practical
problem and addresses that problem. Second, the
"preliminary” implementation given, though still limited in
many ways, can correctly process a much broader class of
real world inputs than previous systems.

The extensibility problem is addressed by a radical
reorganization of the natural language system. The process
of interpreting words is completely integrated with the

ke,

process of "understanding” the concepts presented in the
text.

FRUMP, the computer implementation of the approach,
receives its input from the UPI news wire. The system quite
routinely is able to "understand" completely new text inputs
and construct reasonable summaries of them.

ACKNOWLEDGMENTS

One day the acid test of an natural language
Ph.D. project will be whether or not it can write an
acceptable dissertation for its designer. Sadly, that day
has not yet arrived and so I had to struggle through myself.
However, it would have been quite impossible without the
help of the following people.

I am deeply indebted to my advisor, Professor Roger
Schank. He remained confident of the eventual outcome of my
research even when I had grave doubts. He has had a
profound influence not only on my research but on my entire
view of the world. His originality and imagination will
long be an inspiration for me.

I also owe much to Professor .Drew McDermott for
encouraging me when I needed it most. He served on my
committee and was instrumental, along with professor Gene
Charniak, in helping me form my ideas on script selection.
Professor McDermott and Professor David Barstow, who also
read a draft of this dissertation, provided extremely useful
comments.

Professor Wendy Lehnert served cn my committee and read
several drafts. Her insightful comments helped immensely in
the preparation of this thesis.

Professor Jaime Carbonell, Professor Richard
Cullingford, Jim Hendler, Professor Alan Perlis, Dr. Chris
Riesbeck, and Mallory Selfridge read drafts. Mike Lebowitz
and Ann Drinan also read chapters. Their comments helped me
organize the final version.

I wish to thank Jim Hendler who did much of the FRUMP
programming during the hectic period of my dissertation
writing, Rod McGuire who wrote the natural language
generator, and the rest of the FRUMP group: Natalie Dehn,
Glenn Edelson, Bill Ferguson, Anne Hafer, Lewis Johnson, and
Steven Slade. Jaime Carbonell, Mike Dyer, Anne Hafer, and
Lewis Johnson also contributed to the current generator.

I would like to thank Walter Stutzman who wrote the
software interface to the UPI wire and Bob Tuttle who built
the interface hardware. I would also like to thank United
Press International, in particular Mr. Bob Woodsum and
Mr. James Buckner, for making the news wire available to

- Vi =

FRUMP .

Finally, I would certainly be remiss not to acknowledge
the stimulating atmosphere provided by the rest of the
students and faculty both in artificial intelligence and
psychology here at Yale.

TABLE OF CONTENTS

Apstract

Preface. . ¢ v e oov s
Acknowledgements . . .
Table of Contents . .
List of Tables
List of Illustrations

e ® o o o
.
e o o o
e o o o
.
.
e« o o o
e o o o o
.
e o o o
e o o o
.
e o o o

CHAPTER 1: INTRODUCTION TO FRUMP

What Is FRUMP?
Problems with Previous Systems S
What is Needed to Solve These Problems?
FRUMP Overview G e e et e e
1.4.1 The Structure within the
SUBSTANTIATOR . .« . ¢« ¢« ¢ ¢« « « &
Communication Between Modules . . .

- d d b
a8 g
EWN =

1.4.2
1.4.3 Pragmatic Predictions Vs.

Local Semantic Constraints. . . .
1.4.4 The FRUMP Method Compared

to Generate and Test.
1.5 Benefits Derived from Sketchy Scripts .
1.5.1 Constraining Inferences PR
1.5.2 Guiding the Parser
Situations Sketchy Scripts Can Represent
A Sketchy Script
What Sketchy Scripts Can't Do
1.8.1 Variable Element Articles . . .
1.8.2 Articles that Appeal to Emotions
1.8.3 Argumentation Articles
1.9 Examples
Y10 Conolusion . v & o & w 4pw o

1.6
1.7
1.8

2.1 Introduction B A e T L R
2.2 Requirements of a Solution S e e
2.2.1 Script Selection Cannot Rely

on Top Down Knowledge Alone . . .
2.2.2 Time Efficiency of Selection . . .
2.2.3 Information Efficiency of Selection

2.3 Solutions Used by Other Script-Like Systems

2.4 The Three Kinds of Text Clues to

e o o o s o

CHAPTER 2: THE PROBLEM OF SKETCHY SCRIPT SELECTION

e o o o o e o

an Article's TOPIC « « ¢ « ¢ ¢ ¢ ¢ ¢ o o &

- viii -

e o o o o e o

iv
vi

viii

xi

xii

o N =

29
3

31
31
2
2

37

2.5 Overview of FRUMP's Three

Sketchy Seript Selection Methods

2.5.
2.5.
2.5.

CHAPTER 3: FRUMP'S SCRIPT SELECTION ALGORITHMS

Explicit Reference Activation
2 Implicit Reference Activations
3 opvent Induced Activatjon

F4V Intvoduotion o o i vl e e e e s e e e e
3.2 Explicit Reference Activation ke doteieieli R e

3.2.1 Mis-Activations E TR s CF ke i R e g
3.3 Implicit Reference Activation
3.3.1 1Is Implicit Reference
Activation Really Necessary?
3.3.2 Issue Skeletons Coa i
3.4 Event Induced Activation oA e
3.4.1 Bottom Up Problems
3.4.2 FRUMP's Solution T .
3.4.3 Matching Key Requests e he. ok ST
3.4.3.1 Conceptual Dependency . . o
3.4.3.2 Two Sketchy Seript Initiator

Discrimination Trees

3.4.4 How SSIDT's Eliminate the Need

for a Powerful Parser « . . .

3.4.5 An Example of Event
Induced Activation
3.4.6 Complexity of Event

Induced Activation

CHAPTER 4: PREDICTING CONSTRAINTS

1 Introduction ST e e et S
2 Kinds of Understander Predictions —
3 Predictions from Issue Skeletons Wb
4 Predicting Conceptualizations
.5 Predicting Characteristics of
6

1

8

e o o o

Possible Role Fillers « . « .
Predicting One Explicit Role Filler . . .
Predicting Several Explicit Role Fillers

CHAPTER 5: SUBSTANTIATING CONSTRAINTS

5.1 Introduction A T e

5.2 The Conceptualization Inferencer

5.3 The Text Analyzer &
3.1 FRUMP's Dictionary
2 FRUMP's Permanent Token Memory
3 FRUMP's Parsing Rules N e i
y
>

e o o o
o o o o
s & & &

Syntax . . ¢ s ¢ 6 0 s 06 6
Anaphoric Reference o ¥ W e

Conclusion SRR R s R LRI SR

39
4o
41

43

il
by
45
46

46
u8
51
51
53

55
56
60
61
65

67
67
68
T4

80

90
91

92
93
94
97
101
102
14
121

5.3.6 Looking at More Than

One Word at a Timeé . « .« « « s« o o o & 125
5.4 The Role Inferencer ; . « % & 120
5.5 The Selection Procedure ¢« « « ¢« « o « « 131
5.6 An Example i e e e & 133
CHAPTER 6: PREDICTOR/SUBSTANTIATOR INTERACTION
6.1 Introduction S e R e R 139
6.2 The Sketchy Scripts Involved . . ¢ o w . e a RO
6.3 An Annotated FRUMP Run SRR Nl P o =i 13
CHAPTER T: ANNOTATED FRUMP OUTPUT
T.1 Introduction PRl o SO e e ek e T R PPN | |
T.2 The SCOTMeN . v o o i o viwim @ & v w s % we 158
7.3 A Day in the Life of FRUMP « . 189
7.4 FRUMP's Knowledge Base T T s A b, Ll PSR
CHAPTER 8: EXTENDING THE PREDICTOR: ORGANIZING SKETCHY SCRIPTS3
8.1 Introduction A e R T e g ey e e [T
8.2 1Issue Skeletons i e e Y96
| 8.3 What Makes Up an Issue Skeleton 198
| 8.3.1 Kindsof Nodes & ey L e Ty ek A
1 8.3.2 Types of Links within
| Issue Skeletons . . . « « ¢ « ¢ « « & . « 199
‘ 8.4 Diffcrences Between Issue
1 Skeletons and Sketchy Seripts. . . o« e 200
L 8.5 Sketchy Script Constraints at
l Issue Skeleton Nodes & o5 e 202
{ 8.6 1Issue Skeletons that Share Sketchy Scripts . . . 203
) 8.7 How Variable Element
| Stories Can Be Processed , e o o 204
S0 DMREAEEIR o5 5 0.5 v 6 % We w s e
cu‘ PTER 9 : cmcwslou L] . . L] . . L] 208
APPENDIX - - L] - - . . L . . L] L] L] . . - . . e 2 1 2
BIBLIWR‘PHY . - - . - - L] L] L] . L] - L] L] L] . L] L L] L] 2 . 216

LIST OF TABLES

CHAPTER 7
T.1 Analysis of the FRUMP run « 190
T-@AMTRIE BY JOFPIPE . ¢ o + < & v o s » s 5 & 5.4 2 » 500
TaJ COE B0 TPOOE . s o i nx 0 b % 54w s s s e TN
7.4 Script Selection Confusion Matrix 192

- Xxi -

e

3.
3.

1

2

LIST OF ILLUSTRATIONS

CHAPTER 1

The Block Diagram of a Conventional
Natural Language System

The Block Diagram of FRUMP

The Structure of the SUBSTANTIATOR . . .

CHAPTER 3
Sketchy Script Initiator Discrimination
Iree for Actlions . . o'c s 5 o s o & o

Sketchy Script Initiator Discrimination
Iree for States . & . %5 ¢ o v o .« % @

CHAPTER U4

The Natural Disaster Issue Skeleton . .

An Instantiated Natural Disaster Issue
SEELEEON ¢ el ere e e e e e
The Structure of a Multi-Track

Sketahy Seript o ¢ o v i s m ¥ v o

CHAPTER 6

The Crime Issue Skeleton « . .

CHAPTER 8

The Natural Disaster Issue Skeleton . .
The Hospitalization Issue Skeleton . . .

The Labor Negotiation Issue Skeleton . .
Issue Skeleton for International
AQPORERHIES . . i i v e v Ao e

- xii -

.
o o o
oW

. 1“8

. 197
. 200
. 201

. 205

TT—

R SPE ST v .

CHAPTER 1

INTRODUCTION TO FRUMP

1.1 What Is FRUMP?

FRUMP (Fast Reading Understanding and Memory Program)
is a computer program that skims newspaper articles. FRUMP
was designed to test a new theory of natural language
processing. The emphasis in this new approach is the
production of a robust system capable of processing a broad
domain of input texts.

The main idea behind FRUMP is to integrate the parsing
process with the rest of the understanding process. In
FRUMP, the parser is not artificially separated from the
inferencing process. This integration enables FRUMP to take
advantage of the rich background knowledge that is necessary
for both the parsing and inference processes. Thus FRUMP
analyzes text using pragmatic expectations as well as
syntactic and semantic ones.

FRUMP's domain is newspaper stories and, unlike most
natural language systems, it routinely works on input
neither it nor its programmers have ever seen before. It
reads and "understands" actual text directly from the UPI
news wire. When FRUMP "“understands"™ a story, it builds a
conceptual meaning representation from the input text. A
natural language generation program then produces summaries
from this conceptual structure in English, French, Spanish,
Russian, and Chinese. FRUMP skims text rather than reading
it for detail, and extracts only the most important
information from a news article. It processes only what it
believes to be the most important points in a story. The

result is a very fast and efficient program which can easily
process stories faster than they arrive from the news wire.

FRUMP is a script-based understander (Schank & Abelson
[(1977), Cullingford [1978]). It understands by identifying
the scripts applicable to the input article and then
bringing to bear all of its world knowledge about those
situations.

FRUMP uses data constructs called sketchy scripts to
store its knowledge about the world. Each sketchy script is
the repository for the knowledge FRUMP has about what can
occur in a given situation. When FRUMP realizes it is
reading a story about a particular situation, it applies
knowledge from the relevant sketchy script in order to
predict what events are likely to occur.

We define the wunderstanding of a text to be the
creation of an unambiguous, conceptual representation of
that text. The representation must be free of any surface
lexical items and must include the events and causal
relations implied by the text whether or not they are
explicitly stated. As we will see, FRUMP's sketchy scripts
play a central role in the understanding process.

1.2 Problems with Previous Systems

Most previous natural language understanding programs
have been made up of at least two separate subsystems (for
example, see Cullingford (1978], Parkinson et al. [1976],
Riesbeck & Schank [1976), Wilks {[1973), and Woods &
Nash-Webber [1972]). A parser subsystem analyzes the input
natural language text into some intermediate form. The
intermediate representations range from surface
representations such as case grammars (Simmons ([1973],
Heidorn {1975], and Woods & Kaplan [1971])) and annotated
surface structures (Marcus [1977]) to representations
involving conceptual primitives (Riesbeck [1975] and Lehnert
& Burstein (1979]). An inferencer subsystem then builds a
representation of the meaning of the input text. This
involves incorporating the parser output into the meaning
representation, inferring any missing events, and supplying
the causal connections between the events.

A

¢
TEXT «ee-- > PARSER |--- INTERMEDIATE ---->| INFERENCER

BLOCK DIAGRAM OF A CONVENTIONAL NATURAL LANGUAGE SYSTEM

— - - - -

H H REPRESENTATION H
-------- - H
------?-------
v
CAUSALLY
CONNECTED
CONCEPTUAL
STRUCTURE
figure 1.1

Most natural language programs include various other
subsystems as well such as a question answerer or a
summarizer. However, these are used to demonstrate
understanding and do not affect the understanding process.

Whatever the form of the intermediate representation,
its purpose is always the same: to insulate the inferencer
from the capriciousness of natural language. However, in
all of these systems one gets the feeling that there are
actually two parsers: the one everyone admits to having
which produces the intermediate representation, and second
one hidden in the "inferencer" which parses the output of
the first parser to decide what it really means.

There is reason to believe that the separation of the
parsing process from the inferencing process represents a
fundamental flaw in these systems. Such separation impairs
communication between the modules and places severe
requirements on the parser. In FRUMP there is no
intermediate representation and no parser artificially
separated from the rest of the system. Instead, FRUMP's
text analyzer produces representations that fit directly
into its sketchy scripts. However, FRUMP is a modular
system. Any reasonable sized artificial intelligence system
must be modular to be comprehensible. However,
modularization should not make the task at hand more
difficult. The FRUMP system is broken into modules along a
more natural division such that no intermediate
representation is needed.

Not all previous systems disallow communication from
the inferencer to the parser. Systems proposed by Marcus
and Winograd permit communication both ways between the

e M B il e i

modules.

In SHRDLU (Winograd [1972]) a systemic grammar is used
to parse the input. The systemic grammar is a type of
syntactic grammar. However, Winograd permits the grammar
rules to call semantic interpretation functions. When a
syntactic entity (e.g., a noun phrase) is parsed it can be
immediately analyzed by the semantic interpreter. If the
semantic interpreter cannot make sense of it, the phrase can
be re-parsed. However, semantic processing is still
motivated by syntactic analysis.

Marcus {1977] also took this position in his parser.
He envisions communication between his syntactic analyzer
and proposed semantic and pragmatic modules. However, he
emphasizes that these modules are called only at the request
of the syntactic analyzer. So again semantic and pragmatic
processing are motivated by syntactic analysis.

Even though systems like Winograd's and Marcus's permit
more communication between the parser and inferencer during
processing, it is the wrong kind of communication. Semantic
analysis is still done only after syntactic analysis.
Semantic context is not used to provide the parser with
information that can help it along. Rather it is done only
at the request of the syntactic module after a certain
amount of processing. Both systems defer semantic analysis
until syntactic processing indicates that it is appropriate.
In Winograd's SHRDLU this is done when a syntactic entity
has been found; in Marcus's when his syntax analyzer
reaches a choice point.

The SOPHIE system (Brown & Burton [1975]) also allows
semantic and pragmatic information to influence parsing.
SOPHIE uses a "semantic grammar"™ (Burton [1976]) to analyze
natural language input. The rules in the semantic grammar
try to recognize entities with certain semantic properties
rather than syntactic ones. This is done by incorporating
much of the world knowledge of the domain into the grammar
rules. A very robust and successful system results which
can handle inputs with deletions, ellipses, and anaphoric
referents. However, the pricé paid by the semantic grammar
approach is to make the language analyzer extremely domain
dependent. The parser is closely tied to a very constrained
micro-world. Extensive re-writing of the grammar would be
necessary to change domains. While the resulting system is
very impressive, the paradigm is so confining in terms of
its natural language capabilities that it is questionable
what the system has to say about natural language processing
.in general.

r——

L .

i —

1.3 What is Needed to Solve These Problems?

Recently inferencers have become more and more
predictive in nature. Compare, for example, the bottom up
MARGIE inferencer (Rieger [1975]) to the SAM script applier
(Cullingford [1978]) or consider the top down approach taken
by the HEARSAY I system (Reddy et al. [1973]) It has become
increasingly clear that an inferencer must know what kinds
of inputs to expect in order to make sense of them. The
existence of so many "frame-like" systems illustrates this
(Bobrow et al. [1977], Charniak [1977], Cullingford [1978],
Goldstein & Roberts [1977], Wilensky [1978]). While a frame
is a very broad concept, all frame-like systems have one
thing in common: they are largely top down processors.
That is, to facilitate the wunderstanding process they
predict what inputs will look like before they are seen.

And yet, in natural language processing, there has been
little attempt to take advantage of the inferencer's
predictions when parsing natural language text. The
conventional design of natural language systems makes
effective communication between the inferencer and the
parser extremely difficult.

To illustrate how inferencer predictions can be helpful
in parsing consider the following example. Suppose the
system has processed the following two sentences:

John had a copy of Crime and Punishment.
Bill wanted the book very much.

At this point a predictive understander such as Wilensky's
PAM [1978] will have formulated the expectation that Bill
will try to acquire the book. Now suppose that the next
input sentence is "He. took it." If the parser has been
told about the prediction, it might be made to interpret the
sentence correctly by recognizing that there is a meaning of
the sentence that matches an outstanding prediction.
However, if the parser must interpret the sentence with no
help from the inferencer's predictions the task |is
impossible. Depending on the context, the sentence "He took
it" can have many different meanings:

Mary told John it was time for his medicine. He
took it.

The batter prepared for the pitch. He took it
(low and outside).

John saw that Bill's bishop was en prise. He
took it.

-

Bill gave John some very sound advice. He took
it.

Thus communication between the parser and inferencer
facilitates the processing of each new input sentence.
Without that communication, the sentence cannot be
semantically interpreted by the parser alone.

In systems with syntactically oriented front ends, the
problem does not arise at this point in the processing.
Syntactically, the sentence "He took it" is unambiguous. It
is the meaning that 1is unclear. Their solution is to
produce only a syntactic parse and let some later semantic
process assign the meaning. However, these systems suffer
when semantics is necessary to prefer a syntactic parse as
is often the case for prepositional phrase attachment. The
sentence "Bill hit the boy with a broken leg" is ambiguous
on both the syntactic and semantic levels: the boy could
have a broken leg or Bill could be using a broken leg as a
club. The former reading is clearly preferred to the latter
on semantic grounds. However, a purely syntactic parser
does not have access to this information and therefore
cannot eliminate the need to produce other syntactic parses.

Whether the parser produces a meaning representation or
a simple syntactic parse tree, the process often requires
information available only at the semantic or pragmatic
level. The solution to the problems of previous systems,
then, is to make this higher level knowledge available to
the parser.

1.4 FRUMP Overview

The FRUMP system has two main modules. However, it is
not divided in the normal way into a parser and inferencer.
One module makes predictions about what might happen next
and the second module finds evidence for these predictions
and fleshes them out. These modules are in constant
communication with each other.

The first module, the PREDICTOR, predicts conceptual
constraints on what might happen next. It does not predict
individual words but rather conceptual items which may be
realized in the text:in any one of many different wordings.
Entire conceptualizations as well as small pieces of a
conceptualization can be predicted.

The second module, the SUBSTANTIATOR, tries to verify
the predictions made by the PREDICTOR. Verification can be
done either by finding a text input that matches a

prediction, or by deriving the prediction from what has
already been understood via an inference routine. This
module is called the SUBSTANTIATOR because its job is to
find evidence which gives substance to the predictions.

BLOCK DIAGRAM OF FRUMP

' | \ '
H PREDICTOR e >{ SUBSTANTIATOR |
Current <----| constraints |e-ececccea-- /) predicted
Context ---=>! on input \ \ constraints |
' Y | 1
i R ' i
H A | H
H
English
Text
figure 1.2

The conceptual structure built by the PREDICTOR is
called the gurrent context.

During normal processing, FRUMP's text analysis is
driven by what the PREDICTOR anticipates rather than by the
input text. There is no conventional parser which produces
conceptualizations when it is presented with an input
sentence. Rather, the input text is analyzed ouly when the
PREDICTOR wants a specific piece of information and the
SUBSTANTIATOR has decided that the missing information might
be found in the text. The text is only examined a little
bit at a time, and then only to verify specific predictions.
As the text is analyzed, the PREDICTOR revises its
predictions. Thus the SUBSTANTIATOR always operates in the
most complete and constrained context that the PREDICTOR can
provide. There is no parsing process which must form a
complete representation for a text sentence at once without
help.

The predictions that drive the SUBSTANTIATOR are
derived from FRUMP's sketchy scripts. Initially, of course,
there will be no sketchy script. That is, when FRUMP begins
reading a new article, there will be no current context.
Thus, the problem of script selection presents special
problems. The way FRUMP's processing gets started will be
discussed at length in chapter 3.

Shdeatron.

1.4.1 The Structure within the SUBSTANTIATOR

Based on what has been understood, the PREDICTOR makes
predictions about what might happen next. The SUBSTANTIATOR
is then asked to verify these predictions. There are
several methods that can be used in verifying predictions.
One method of verifying a prediction is to look at the text.
However, there must be other verification procedures as
well. A prediction might not be verifiable from the input
text alone. For example, consider the sentence

Vance flew to South Africa.

The PREDICTOR might ask the SUBSTANTIATOR to find where
Vance 1left from, and predict that it will be a country. 1In
this case the prediction cannot be substantiated from the
text. An inference is necessary. The applicable inference
rule is "If you don't know otherwise, assume a traveler left
his home." The inference rule can look up the home country
of Vance and fill the prediction. Thus inferencers can also
serve as verification procedures. In fact from the point of
view of the PREDICTOR inferencing and parsing are identical
processes. The PREDICTOR cares only which predictions are
verified and with what certainty. It does not need to know
whether the verification was done from the examination of
the text or by inference.

THE STRUCTURE OF THE SUBSTANTIATOR

English
Text
]
]
v
| Text]
/=>} Analyzer |
S gt S N
e o S e o /
cee mmm- | SUBSTANTIATOR ! /
| ====>| Selection |[<--/ { Conceptual- |
(PREDICTOR) | ! Routine |{emeeee-a>} ization |
| &==z=z! 1<==\ | Inferencer |
cee mme= cemccncm———— ——— \ -
\
\
\-=>| CD Role H
| Inferencer |
figure 1.3

[m""ﬁ, .

Figure 1.3 shows the sub-modules that make up the
SUBSTANTIATOR. The SUBSTANTIATOR has three sub-modules that
actually satisfy predictions and a mechanism to select which
sub-module to use for which prediction.

The conceptualization inferencer makes script related
inferences about entire meaning representation. FRUMP's
meaning representations are represented as
conceptualizations in Schank's conceptual dependency
notation (Schank [1972]). Conceptualization inferences are
triggered by the other events built from the text. For
example, after FRUMP processes the sentence

The U.S. broke diplomatic ties with Guinea.

the conceptualization inferencer infers that Guinea broke
ties with the U.S. as well.

The CD (conceptual dependency) Role Inferencer manages
the inference rules that <can add a piece of a
conceptualization. As discussed previously, FRUMP must be
able to infer that unless contradicted, a person traveling
to a location has come from his home. These kinds of
inferences are organized and applied by the CD Role
Inferencer. The Role inferencer has the task of efficiently
locating the applicable inference rules and testing them.
The major differences between the two inferencers is that
the first (the conceptualization inferencer) is script based
and infers an entire conceptualization at once. The second
(the CD role inferencer) infers only part of a
conceptualization at a time and is script independent.

The text analyzer behaves very much the same as the CD
Role Inferencer. It adds requested pieces of
conceptualizations. The difference is that the text
analyzer adds conceptual structure by examining the text.
For example, consider the following sentence:

Begin flew to the U.S.

After "Begin flew" has been processed, the PREDICTOR asks
that the destination be added to the structure built. The
text analyzer examines the input and fills the destination
with "U.S." The major difference, as far as the selection
mechanism is concerned, is that the text analyzer is more
reliable. If both the Role Inferencer and Text Analyzer are
able to add the same conceptual structure, it is better to
use the text analyzer. An inference is a good guess based
on context. However, if something is found in the text, it
is almost certainly correct. Thus the text analyzer is
treated as an "inferencer of first resort." Only if the
text analyzer fails will the CD Role Inferencer be used.

et ol

10

The SUBSTANTIATOR selection routine chooses the rule
that can satisfy the prediction most certainly without
exceeding a cost threshold. The cost threshold is set by a
parameter to FRUMP. In general the more expensive the
procedure, the more certain will be the answer. Thus by
setting the cost threshold low, a very fast but uncertain
representation of the text is constructed. If the threshold
is set higher, a more certain representation will be built
but using more processing time. The cost threshold can
therefore be used to control FRUMP's rate of skimming. This
will be discussed in some detail in chapter 5.

1.4.2 Communication Between Modules

There are three possible outcomes from the satisfying
procedure: 1) the predicted constraint might be satisfied.
For example, the PREDICTOR might ask the SUBSTANTIATOR to
find a country and the SUBSTANTIATOR finds
"England." "England" can be considered to be a country. 2)
the constraint might fail to be satisfied in such a way that
indicates that the prediction is incorrect, For example, the
PREDICTOR might ask the SUBSTANTIATOR to find a person and
the SUBSTANTIATOR finds "England." "England" cannot be
considered to be a person. 3) the constraint could simply
be unsatisfied. For example, the PREDICTOR might ask the
SUBSTANTIATOR to find a person and the SUBSTANTIATOR finds
nothing. Each of these possibilities will now be discussed.

If the predicted constraint is satisfied, the PREDICTOR
is informed of the success and modifies the current context
to include the new information. This often results in a
further prediction which is then treated the same way.

If evidence is found that contradicts the prediction,
the PREDICTOR is also informed. The PREDICTOR then attempts
to account for the failure by reinterpreting the data that
led to the prediction. This can result in the modification
of the current context and the formulation of other
predictions.

Finally, if the constraint could not be satisfied by
the selected rule but there are other rules that bid on
satisfying the prediction, the other rules are tried. If no
other rule has bid, the PREDICTOR is informed that the
prediction was wrong. The PREDICTOR then reassesses the
situation as in the previous case.

Notice once again that the PREDICTOR is not told which
rule satisfied or rejected the prediction. It is not even
told whether the satisfaction or rejection was due to the
text analyzer or an inference. It does not matter to the

S,

1"

PREDICTOR; the PREDICTOR wmerely makes predictions and
reassesses them 1if they fajl. Thus to the PREDICTOR there
is ro difference between the text analyzer and the
inferencers. They are both only verification routines. 1In
practice, parsing rules are often tried first. This is
because they tend to be more certain of their results.
Inferences by their very nature are uncertain. However, the
system treats the text analyzer as just another way to
verify predictions.

1.4.3 Pragmatic Predictions Vs. Local Semantic Constraints

In a conventional modular system the parser must build
a conceptual representation of the input using only
syntactic and local semantic constraints. Local semantic
constraints are constraints provided by word senses on how
other words can relate to it. For example, one sense of the
verb "jump" must have an animate agent. With an integrated
system, the PREDICTOR can add global constraints. These
global constraints arise from previously set up context.

To demonstrate how the PREDICTOR's global constraints
can aid in the parsing process consider the following story:

There was renewed fighting today between
Israeli and Syrian forces. Syrian soldiers
fired mortars at 1Israeli positions in the
Golan Heights.

Suppose our understander is reading this story about a
military engagement between two countries. In FRUMP's
terms, this means the sketchy script $FIGHTING has been
selected- to understand the story. (Throughout this
dissertation a word in capitals preceded by a "$" will
indicate a script). Selecting $FIGHTING requires (among
other things) identifying the countries or factions
involved. The current context therefore includes the
identities of the countries. In reading the third sentence,
the word "fired" is encountered. The wcrd "fire," even when
known to be a transitive verdb, has several meanings. It
might mean "shoot" but it might also mean "put pottery into
a kiln" or "terminate employment®. Furthermore, the
meaning cannot be decided from syntactic cues alone:
"Syrians fired mortars at Isrseli positions,"™ "Bill fired
clay pots at 300 degrees,” and "The boss fired John at three
this afternoon" all are syntactically very similar.

— ok

-

12

In the context of a story about a battle, the word
"fire" ought tc be interpreted as "shoot." The PREDICTOR
predicts that there will be acts of shooting in the text.
"Fire" 1is interpreted as "shoot" because in doing so a
prediction is verified. Words are interpreted so as to
fulfill these expectations.

In addition, once the correct word sense of "fire" is
selected, the PREDICTOR can still make predictions useful to
text analysis. The "shoot" sense of "fire" requires a
person as the instigator of the shooting and will be
satisfied with any physical object as the thing being shot
at. These are constraints that the text analyzer itself can
generate. However, they are very loose constraints; they
must be loose for this sense of "fire" to handle sentences
like

John fired his 22 at the tin can.
as well as

Syrians fired on 1Israeli positions 1in the
Golan Heights.

In fact, to be really general, the constraints of the
instigator of the shooting ought to be relaxed even further.
A chimpanzee, for example, might be taught to fire a gun.
Thus the constraint on the agent of the shooting ought to be
reduced from a person to a higher animate. This means that
only a very weak prediction can be made from the "shoot"
word sense of "fire."

While there are constraints made by the word sense on
what can occur 1in the rest of the conceptualization, they
are very general and of limited use. The system would do
much better by allowing the understander to communicate its
more constrained predictions to help in interpreting the
text.

Once "fired" has been resolved to "shoot," the
PREDICTOR can predict that the instigators of the shooting
will be military personnel of one or the other of the
warring countries, or one of their allies. This prediction
can be made because this information is part of the sketchy
script used to process stories about countries fighting.
This constraint is much more specific than just requiring a
higher animate. The PREDICTOR can also predict that the
thing being shot at will be a possession, and very likely a
military one, of the warring country not doing the shooting.
In processing the word "fired" in the above story, the
system can predict that either Israel or Syria will fill the

13

ACTOR slot of the conceptualization that represents the
shooting.

This is a much tighter prediction than the one
available from the word sense of "fired." A more
constrained prediction means the text analyzer will not have
to do very much to interpret the text. An expectation for
the correct interpretation has already been established.
These detailed predictions are based on world knowledge. 1In
FRUMP the PREDICTOR's knowledge of how the world behaves is
made available to the SUBSTANTIATOR in the form of its
predictions.

The selected word sense of "fire" contains as part of
its definition that in its transitive form the syntactic
subject will be the agent. In Conceptual Dependency terms
this is the ACTOR role. Thus the SUBSTANTIATOR looks in the
text where it expects to find the syntactic subject of
"fired" and try to interpret the text it finds there as a
reference to Israel, Syria, or one of their allies.

1.4.4 The FRUMP Method Compared to Generate and Test

At this point the reader might be under the impression
that FRUMP uses the "generate and test" paradigm (Newell
(1973])). 1Indeed Prediction and Substantiation bears some
resemblance to "“generate and test." In both instances, a
prediction is made which is used to motivate further
processing. The difference is that in "generate and test"
the precise solution is generated. In FRUMP the predictions
are only constraints on what might be found. They are
seldom precise specifications about what will be found. In
FRUMP there 1is no concept of "testing." The predictions
are not evaluated to a binary "yes, it works" or "no, it
doesn't work." Rather the predictions are used to guide
interpretation. The text analyzer prefers meanings of
ambiguous words and phrases that satisfy predicted
constraints. In "generate and test" the test is not allowed
to modify the generated hypothesis. In FRUMP, however, the
SUBSTANTIATOR fleshes out and gilves substance to the
predictions.

1.5 Benefits Derived from Sketchy Scripts

FRUMP's sketchy scripts help the text understanding
process in two ways. First, they guide the inference
process by eliminating irrelevant inferences. Only those
inferences which are consistent with the script predictions
are made. Second, top down script predictions can help in

14

correctly interpreting ambiguous words and phrases. Word
meanings are selected which are closest in meaning to the
predictions. These two aids to understanding are discussed
further in the next two sub-sections.

1.5.1 Constraining Inferences

To illustrate the problem of constraining inferences,
consider the following text fragments:

1) John carefully aimed his knife at Mary
and 1let it fly. Blood gushed to the
floor.

2) John threw the knife at Mary with all
his might. Blood gushed to the floor.

Both of these fragments require the reader to supply a
missing event. To account for the second sentence in each
case we must assume that the knife hit Mary. Without that
missing event, the other events have no apparent causal
connection. Producing inferences is essential if a causally
connected representation is to be built. The process of
supplying data which though missing is implied by a text is
called inference generatjon.

Inference generation is an extremely difficult process.
It can be simplified somewhat by representing events in a
language free form. If the inference rules are triggered by
English words, then there must be separate rules of
inference in the two fragments above. One rule must be
triggered by the phrase "let it (the knife) fly" and the
other by "threw the knife." 1In both cases the rules must
infer that the knife will hit something. However, if the
inference rules are stated in terms of the meaning of the
sentences instead of actual English words then the
inferencer does not need separate rules for "let the knife
fly® and "throw the knife." 1Instead it can have one rule
that if an object is moving towards another, they might
collide. This one rule can then be applied to a far more
general class of events which, incidentally, includes any
English paraphrase of "John threw a knife at Mary." The
rule is triggered by the language free meaning of the
sentence, and all paraphrases must by definition have a very
similar meaning.

Even with rules based on meaning, however, inferencing
is a difficult process. 1In any situation there may be many
inference rules that apply. Ensuring that the system makes

the correct inferences while avoiding the irrelevant ones is

15

a difficult task in any natural language system.

Rieger (1975) originally postulated a general inference
mechanism that generated results and reasons for each input
concept . His inferencer then made a second set of
inferences from the first, a third from the second, and so
on. Each new set of inferences was fed back into the
inferencer in order to make the new inferences. Around each
input conceptualization there was an expanding sphere of
inferences. Eventually the spheres in the inference space
about any two inputs might intersect. That is, a common
inference might be generated from the two different inputs.
Only then were the relations between the original inputs
understood, for only then was there an intervening set of
events and causations that could lead 1logically from one
input to the next. Rieger termed this process of connecting
input concepts "knitting".

The problem with Rieger's solution is that the
inferencer must make many irrelevant inferences. Consider
again one of the above text fragments:

John threw the knife at Mary with all
his might. Blood gushed to the floor.

To connect these two sentences a Rieger-like inference
process must have the following rules: 1) an object thrown
at a target can come in physical contact with the target and
apply a force to it; 2) When an object applies a force to
another and is free to move, depending on the properties of
the two objects either one or both can shatter, one can
penetrate the other, there can be an elastic collision,
etc.; 3) When 1living flesh 1is penetrated by a foreign
object a wound is formed which often bleeds; 4) Unsupported
objects fall toward the ground.

From these rules, the inferencer can guess at the
intervening events beginning with the knife coming into
contact with Mary. The problem is that there is no way to
assure that only the inferences required for this causal
connection are made. Rieger's method was to generate as
many plausible inferences as possible. This would include
irrelevant facts such as "John no longer has the knife,"
which would in turn produce a whole chain of other
irrelevant facts. There would also probably be an inference
rule such as: when someone expends energy, he becomes
tired. The inferencer might follow this line to eventually
predict that John will go to sleep, which has little to do
with our original input. There are many such plausible
inference lines the system could follow which have no chance
of connecting up the inputs. However in Rieger's scheme,
inferences are not assumed to be irrelevant until some other

16

inference line connects the inputs by knitting. It would
seem that this unconstrained inferencing is combinatorially
untenable.

The SAM system (Cullingford {1978]) solved the problem
of unconstrained inferencing by postulating large chunks of
ready-made inferences called scripts. Each script contained
causally connected events that might occur in a particular
situation. When the system determined that the text was
about a particular situation, it made the inferences
dictated by the script.

There were several problems with the SAM system.
First, it did not propose a general solution to the problem
of script selection. SAM worked well with a half dozen
scripts, but the script selection time was linear in the
number of scripts in the system. SAM would have been
overwhelmed with the hundreds of scripts necessary to
understand all the different situations that arise in
English texts. SAM also tried to understand stories in
detail. It had to account for every event in the input.
This alone 1is not a problem, but it meant that the scripts
had to be large and detailed. It also meant that if a story
occurred in a way different from the way the script allowed,
the story could not be understood. Thus the system was
quite fragile. Finally SAM was very slow in its processing.
It could take up to a quarter of an hour on a DEC KA10 to
process a one paragraph story.

1.5.2 Guiding the Parser

Both Rieger's inferencer and Cullingford's script
applier needed input in unambiguous conceptual form. That
is, the natural language input had to be parsed before the
processes could function. 1In both systems the inference or
understanding phase was preceded by a separate parsing
phase.

Rieger's inferencer was able to give the parser very
little help in translating the natural language input into
its conceptual representation. It was of assistance only
when the parser asked a specific question about memory.
Cullingford's script applier did a 1ittle better but its
help was limited to instructing the parser to prefer certain
word meanings while certain scripts were active. For
example, in most situations the noun "check" means "bank
draft." In a restaurant, though, it can also mean "charge
for service." The "bank draft" meaning was the preferred
meaning in the parser. However, if the input was known to

be about a restaurant (i.e., the restaurant script were
active) the sense that means "charge for service" was

. .

'-xfg.mo\a‘r‘\ —

17

preferred in the parser. So in the context of a restaurant,
the "charge for service" sense would be tried first whenever
the word "check" was encountered. When the restaurant
script was activated, the script applier instructed the
parser to do this.

In an ideal system (and one might imagine in the human
system) the understander can predict what conceptual inputs
are likely to occur in a situation (as the SAM system does).
The parser ought to be able to take advantage of those
predictions. Much effort in parsing is spent in selecting
the correct interpretation of ambiguous words. If the
parser is given no clues from the understander about what
might happen next, as in the SAM system, disambiguation must
be done on the basis of other words in the i{mmediate
context.

Top down predictions can be of particular help in
processing pronouns. If a pronoun is encountered at a point
where a specific object has been predicted, the pronoun can
be resolved to be the predicted object. SAM's scripts
provided the information necessary to resolve pronouns in
this manner. However, due to the non-integrated approach,
this knowledge was not available to the parser. In these
cases the parser output contained an ambiguous referent like
(HUMAN GENDER MALE). The script applier would then have to
establish the correct referent later.

1.6 Situations Sketchy Scripts Can Represent

A sketchy script contains the most important
information shared by all articles about a particular topic.
This information includes events that are likely to occur,
probable reasons for and results of those events, and
constraints on the identity of and relation Dbetween
characters. Of course, there are constraints on the kinds
of topics that can be represented by sketchy scripts.
Sketchy scripts can only represent stylized situations,
(i.e., situations in which the important events happen
nearly the same way in every article describing that
situation). These constraints are due to the fact that all
of the important events in the situvation must be anticipated
by the sketchy script.

To skim a story successfully a system must grasp the
important facts presented. Sketchy scripts are used to
guide skimming. Each sketchy script supplies the important
common information about a particular topic. Thus, before
FRUMP can understand a story about a particular topic, a
sketchy script must be written for that topic. The sketchy
script specifies what FRUMP is to look for when processing a

e ——————

PRV S U—

18

story about that topic.

Human readers seem to take advantage of shared
information in processing texts describing stylized
situations (Bransford & Franks ([1971]). For example,
consider the following paragraphs from the beginning of a
news article.

McKenzie, Tenn. April 30 - A
businessman's family made a plea from
their front porch today for the safe
return of their 18 year old daughter,
the apparent victim of a kidnapping.

Jodie Elizabeth Gaines was last
seen by her parents, Mr. and Mrs. Ben
Gaines, on Friday evening when she 1left
to spend the weekend with a cousin.

Ludie Gaines said that she received
a telephone call yesterday morning from
a man demanding $250,000 for her
daughter's safe return. There has been
no word since, she said.

Once a reader has identified the topic as a stylized
situation, 1in this case a kidnapping, he can do two things:
First, he can make predictions about what will happen in the
remainder of the story, and second, he can know what parts
of the story are important and how they relate.

This is also the way FRUMP works. For each stylized
situation, FRUMP has a sketchy script. The sketchy scripts
are made up of prequests. Each request is the conceptual
representation of an expected event. FRUMP has a sketchy
script for kidnappings. It contains requests which encode
the following expected events:

1) The kidnappers will probably communicate
a ransom demand to the family, company,
or government of the person kidnapped.

2) The local police, FBI or other police
agencies might be called in.

3) The ransom demand might be met.

4) If the ransom is met, predict that the
kidnapped person will probably be
released but might continue to be held
or be killed.

19

5) If the ransom demand is not met, predict
that the person will probably be held
longer or killed but might be released.

6) The kidnappers might be apprehended.

7) If the kidnappers are caught, predict a
court case trying them for kidnapping.

In addition to these facts, the reader knows that the
important points in a kidnapping are the identity of the
kidnappers, the identity of the kidnapped person, the
identity of the group or person to whom the ransom demand
was made and the nature of the ransom demand.

This is also the technique used in FRUMP. Once FRUMP
has identified the situation (sketchy script) described by a
text, it can read the text looking only for instances of the
facts that the sketchy script predicts, much as a person
might. Any part of the input text that FRUMP cannot
interpret as one of its predicted events is simply ignored.

The identities of the participants in the sketchy
script are script varjables. In understanding a text, FRUMP
both tries to find instances of the predicted facts and to
bind the script variables to the identities given in the
text.

1.7 A Sketchy Script

The following is FRUMP's sketchy script for
demonstrations. It is made up of the events that are likely
in a demonstration. The $DEMONSTRATION requests are:

Request 1:
The demonstrators arrive at the demonstration

location.

Request 2:
The demonstrators march.

Request 3:
Police arrive on the scene.

Request 4:
The demonstrators communicate with the target
of the demonstration.

Request 5:
The demonstrators attack the target of the

20

demonstration.

Request 6:
The demonstrators attack the the police.

In FRUMP these requests are stated in terms of conceptual
dependency (Schank [1972]). Secript variables appear in the
requests as conceptual dependency role fillers. These are
preceded by a ng"., The conceptual dependency
representations for the requests are:

Request 1:
==l

&DEMONSTRATORS <=> PTRANS <-o- &DEMONSTRATORS <-|

©

-==> &DEMO-LOCATION

Request 2:
-==< &LOCATION1

&DEMONSTRATORS <=> PTRANS <-o- &DEMONSTRATORS <-|

L}
'

inst -==> &LOCATION2
(|

i
$WALK

Request 3:
=====< &STATION

&POLICE <=> PTRANS <-o0- &POLICE <-|

..... > &DEMO-LOCATION

Request 4:
..... < &DEMONSTRATORS

&DEMONSTRATORS <=> MTRANS <-mo- &VIEWS <-|

=====> &TARGET

Request 5:
-=--< &DEMONSTRATORS

&DEMONSTRATORS <=> PROPEL <--0- &PROJECTILES <-|

===> &TARGET

21

Request 6:

-==-< &DEMONSTRATORS
]

[}
&DEMONSTRATORS <=> PROPEL <--o0- &PROJECTILES <-|
]
'

--=> &POLICE

For each request there are also 1) semantic constraints on
script variables (for example, that the demonstrators must be
human); 2) constraints between script variables (for example,
in the DEPORT script the country responsible for the
deportation must be the same as the country the deported person
leaves); 3) causation relations to other requests and
references to other sketchy scripts (for example, any deaths in
a vehicle accident are due to the crash event).

1.8 Wnat Sketchy Seripts Can't Do

As was mentioned before, there are news stories for whizh
no sketchy script can be written. These are stories for which
we cannot anticipate what important events might occur. To
illustrate 1limitations to the script approach we will now
consider three types of stories FRUMP cannot handle: Variable
Element Articles, Human Interest Articles, and Argumentation
Articles.

1.8.1 Variable Element Articles

The first type contains stories which do describe stylized
situations but where at 1least one important part of the
situation is not predictable. We call these variable element
articles. An example of a variable element article is a story
about the 1legislature voting on a bill. Legislative
proceedings are very stylized; everything happens in a
prescribed order. Members endorse or denounce the bill under
consideration, a vote is taken, and the bill is either ratified
or killed.

Legislatures, however, concern themselves with very
diverse topics. They can pass bills on anything from defense
treaties to the maximum allowable number of rat hairs in a 16
ounce jar of peanut butter. It is not possible to predict what
a bill is about from Just the knowledge that the article
describes legislative actions. And yet, the topic of the bill
is the single most important point in the story. The identity
of the bill's topic is the variable element in legislative

PN

{ pihited

22

articles. Sketchy scripts alone can not be used to

satisfactorily understand articles about legislative actions.
However, as we will see in chapter 8 these types of stories are
understandable by FRUMP through the use other data constructs
called Issue Skeletons.

1.8.2 Articles that Appeal tc Emotions

- Articles that derive their importance from the emotional
impact they have on the reader also cannot be handled by
sketchy scripts. To understand why these articles do not 1lend
themselves to sketchy script understanding we must back up for
a moment.

Sketchy scripts provide a way to factor out what is common
to a class of news articles. For sketchy script understanding
of a situation to be successful, this common information must
contain what is important in the article. If an article relies
on something not part of this common information for its
interestingness, sketchy scripts cannot help in it's
understanding.

There are many human interest type stories that depend on
emotional appeal to generate interest in the reader. For
example, consider this gem which appeared in the February 16,
1978 New York Times:

Madison, Wis. - In the 1life of 31
year old Hero Zzyzzx, the telephone is both
travail and blessing.

Mr. Zzyzzx says that he gets too many
calls, at all hours, from drunks, children,
insomniacs and jokers.

But once in a while he gets one from
"an interesting young 1lady," and that is
why he does not obtain an unlisted number.

Mr. 2Zzyzzx, whose name is pronounced
"Zizzicks," 1is the 1last person listed in
the Madison telephone book.

Hero Zzyzzx is his real name, he said,
a blend of Finnish, Lithuanian, Russian,
French, German and central European family
backgrounds. His father, Xerxes Zzyzzx,
was a sailor who named his son after Hero,
the man pictured on Players cigarette
packs.

- iy

Ve

23

Despite the hassles, Mr. 2Zzyzzx said
there are benefits to having the last name
in the telephone book. "Once in a while
you get a pleasant chat with somebody," he
said. "In fact, the best calls come from
young ladies. I've met a number of them
for drinks."

In human interest stories the important events are those
that have an emotional effect on the reader. 1In this example
the most interesting point 1is Mr. Zzyzzx's unique way of
meeting young ladies, although the fact that Mr. Zzyzzx's
fathers name is Xerxes is also particularly memorable. Perhaps
it 1is the alliteration. At any rate, in order for a system to
understand these stories it must have information about
emotions of people and exactly what elicits them. This is, to
say the least, very complicated and beyond what sketchy scripts
were designed to handle.

1.8.3 Argumentation Articles

There is another class of articles that script processors
cannot understand. These are articles that argue an issue. 1In
an argument about an event, even an event which ia part of 1
stylized situation, the argument often hinges on an obscure
detail that only happened to occur in the particular event
being discussed. FRUMP's scripts cannot help to understand
these details. Sketchy scripts can only help with the
important stylized information about a situation. Following an
argument also often requires complete understanding of
intricate cause and effect relations. Sketchy scripts,
however, help in understanding only the most direct cause and
effect relations, only those which are included in the stylized
part of a situation.

Editorials are a good example of such articles. They
often endorse a specific policy or action and try to give a
persuasive argument why. To properly understand an editorial
requires 1identifying the policy or action, deciding if the
article is for or against it, and picking up the reasons given.
Even when the subject of the editorial is part of a stylized

‘situation, sketchy scripts are not flexible enough to

understand the point of editorials.

For example, in a recent editorial the New York Times
exhorted the New York transit workers union members to ratify a
new contract. The reasons were that the city would lose tax
revenues if the union went out on strike because many other
commercial activities would have to slow down. They also
argued that rejection by the transit workers would encourage

PRPIPS ISR

24

other unions to make greater demands to the city when their
contracts expired. This, given New York's current fiscal

" state, is something New York could not afford, and the transit

union ought to be responsible enough to realize that.

Now, of course, there could be a sketchy script for
ratifying contracts. It would include knowledge such as the
new monetary terms of the contract and perhaps some of the
major fringe benefits, whether the union voted to accept or
reject the proposal and by how much. If they voted to reject
it there is a good chance they will go on strike so FRUMP
should load the sketchy script for labor strikes, etc.

This is all common knowledge which is legitimate to 1look
for in any story about contract settlements with unions.
However, it has nothing to do with following the arguments in
the editorial. The reasons given in the editorial are well
beyond the scope of this common information.

The argument about setting a bad precedent and appealing
to the union member's sense of responsibility is not particular
to labor disputes. This is an arguing technique of branding
the opponent with an unflattering label (irresponsible) and
hoping his better judgement will accept the label and recant.
There are complex questions here that have to do with
individuals and organizations thinking they deserve at least as
much as their peers and whether or not that is irresponsibly
selfish. This knowledge 1is concerned with motivations and
emotions of people. It is not characteristic of labor disputes
alone and therefore does not belong in the labor dispute
sketchy script.

The most convincing arguments are nearly always novel.
People are seldom convinced by rehashing old information.
Rather they must be shown an undesirable ramification not
previously anticipated.

1.9 Examples

These examples show some of FRUMP's capabilities. FRUMP
is a fully implemented system. The same version of the system
can process all of the examples shown here and in the remainder
of this dissertation.

The following story was taken from the New York Times. It
demonstrates FRUMP's ability to understand the main thrust of a
news story while ignoring the less important details.

25

INPUT:

WASHINGTON, MARCH 15 -THE STATE DEPARTMENT ANNOUNCED TODAY
THE SUSPENSION OF DIPLOMATIC RELATIONS WITH EQUATORIAL GUINEA.
THE ANNOUNCEMENT CAME FIVE DAYS AFTER THE DEPARTMENT RECEIVED A
MESSAGE FROM THE FOREIGN MINISTER OF THE WEST AFRICAN COUNTRY
SAYING THAT HIS GOVERNMENT HAD DECLARED TWO UNITED STATES
DIPLOMATS PERSONA NON GRATA.

THE TWO ARE AMBASSADOR HERBERT J. SPIRO AND CONSUL
WILLIAM C. MITHOEFER JR., BOTH STATIONED IN NEIGHBORING
CAMEROON BUT ALSO ACCREDITED TO EQUATORIAL GUINEA.

ROBERT L. FUNSETH, STATE DEPARTMENT SPOKESMAN, SAID MR.
SPIRO AND MR. MITHOEFER SPENT FIVE DAYS IN EQUATORIAL GUINEA
EARLIER THIS MONTH AND WERE GIVEN "A WARM RECEPTION."

BUT AT THE CONCLUSION OF THEIR VISIT, MR. FUNSETH SAID,
EQUATORIAL GUINEA'S ACTING CHIEF OF PROTOCOL HANDED THEM A
FIVE-PAGE LETTER THAT CAST "UNWARRANTED AND INSULTING SLURS" ON
BOTH DIPLOMATS.

SELECTED SKETCHY SCRIPT $BREAK-RELATIONS

CPU TIME FOR UNDERSTANDING = 2515 MILLISECONDS

ENGLISH SUMMARY:
THE US STATE DEPARTMENT AND GUINEA HAVE BROKEN DIPLOMATIC
RELATIONS.

FRENCH SUMMARY:
LE DEPARTEMENT D'ETAT DES ETATS-UNIS ET LA GUINEE ONT COUPE
LEURS RELATIONS DIPLOMATIQUES.

CHINESE SUMMARY:
MEEIGWO GWOWUHYUANN GEN JIINAHYAH DUANNJYUELE WAYJIAU GUANSHIH.

SPANISH SUMMARY:
EL DEPARTAMENTO DE RELACIONES EXTERIORES DE LOS EE UU Y GUINEA
CORTARON SUS RELACIONES DIPLOMATICAS.

This story is particularly short and so took 1less than
three CPU seconds to process. FRUMP understood that the
diplomatic link from the U. S. to Guinea was ended, and it
inferred that the link from Guinea to the U. S. was ended as
well. The result of processing the article is a conceptual
representation. Because the meaning representation is language
free, it is as easy to generate other natural languages as

English.

&) s s =
|
\

26

INPUT:

MOUNT VERNON, ILL, (UPI) - A SMALL EARTHQUAKE SHOOK
SEVERAL SOUTHERN ILLINOIS COUNTIES MONDAY NIGHT, THE NATIONAL
EARTHQUAKE INFORMATION SERVICE IN GOLDEN, COLO., REPORTED.

SPOKESMAN DON FINLEY SAID THE QUAKE MEASURED 3.2 ON THE
RICHTER SCALE, "PROBABLY NOT ENOUGH TO DO ANY DAMAGE OR CAUSE
ANY INJURIES." THE QUAKE OCCURRED ABOUT 7:48 P.M. CST AND WAS
CENTERED ABOUT 30 MILES EAST OF MOUNT VERNON, FINLEY SAID. IT
WAS FELT IN RICHLAND, CLAY, JASPER, EFFINGTON AND MARION
COUNTIES.

SMALL EARTHQUAKES ARE COMMON IN THE AREA, FINLEY SAID.
SELECTED SKETCHY SCRIPT $EARTHQUAKE

CPU TIME FOR UNDERSTANDING = 3040 MILLISECONDS

ENGLISH SUMMARY:
THERE WAS AN EARTHQUAKE IN ILLINOIS WITH A 3.1999 RICHTER
SCALE READING.

This story took just over three CPU seconds to process.
This story illustrates why the entire story must be skimmed.
The structure of news articles is such that often a FRUMP-like
summary can be produced by simply parroting back the first
sentence. This story illustrates why that is not always
acceptable. Here the information about the strength of the
earthquake would be lost. News articles are often written in a
style different from most other texts. There has been some
work done in classifying these styles (Eisenstadt [1975]).
FRUMP was designed not as a news report processor but as a
general text processor whose domain happened to be news
reports. To demonstrate the general applicability of FRUMP's
understanding the program does not rely heavily on knowledge
about the structure of news articles not shared by other texts.
The only aspect of FRUMP's processing that is at all dependent
on the structure of the input text 1is in identifying the
initial sketchy script. This identification must be done in
the first paragraph. Due to the style of most news articles,
this is not a serious constraint. The selection process is the
subject of chapter 3.

> P N——
—— g

e —. ————————

27

INPUT:

THE CHILEAN GOVERNMENT HAS SEIZED OPERATIONAL AND
FINANCIAL CONTROL OF THE U. S. INTEREST IN THE EL TENIENTE
MINING COMPANY, ONE OF THE THREE BIG COPPER ENTERPRISES HERE.
WHEN THE KENNECOTT COPPER COMPANY, THE OWNERS, SOLD A 51 PER
CENT INTEREST IN THE COMPANY TO THE CHILEAN STATE COPPER
CORPORATION IN 1967 IT RETAINED A CONTRACT TO MANAGE THE MINE.
ROBERT HALDEMAN, EXECUTIVE VICE PRESIDENT OF EL TENIENTE, SAID
THE CONTRACT HAD BEEN "IMPAIRED"™ BY THE LATEST GOVERNMENT
ACTION. AFTER A MEETING WITH COMPANY OFFICIALS AT THE MINE
SITE NEAR HERE, HOWEVER, HE SAID THAT HE HAD INSTRUCTED THEM TO
COOPERATE WITH EIGHT ADMINISTRATORS THAT THE CHILEAN GOVERNMENT
HAD APPOINTED TO CONTROL ALL ASPECTS OF THE COMPANY'S
OPERATIONS.

SELECTED SKETCHY SCRIPT $NATIONALIZE
CPU TIME FOR UNDERSTANDING = 3457 MILLISECONDS

ENGLISH SUMMARY:
CHILE HAS NATIONALIZED AN AMERICAN MINE.

This story 1illustrates FRUMP's ability to identify a
sketchy script. The system does not rely on "key words" to
select a script. Instead scripts are selected on a conceptual
basis. In this story, which is about a nationalization, The
$NATIONALIZE sketchy script is selected by the presence of a
conceptualization representing the abstract transfer of
economic control of an industry from one country to another.
Thus FRUMP does not require a semantically rich "key word" like
"nationalize" to select the nationalization script. Any
English paraphrase of the nationalization conceptualization
will do. Here "seized operational and financial control"
builds a conceptualization representing abstract transfer of
economic control. The script selection process will be
discussed in detail in chapter 3.

1.10 Conclusion

Once FRUMP knows that it is reading a story describing a
situation for which it has a sketchy script, it can retrieve
the relevant predictions by loading in the corresponding
script. These predictions will then be used to help to
understand the text.

Integrating understander predictions with parsing enables
FRUMP to be an efficient and robust system. FRUMP is a system
that understands input stories it has not been tuned for. It

28

processes an average story in typically 10 to 20 seconds of CPU
time on a Digital Equipment Corporation PDP 20/50. Provided
FRUMP has a well written sketchy script for an article it has
an 80% to 90% chance of correctly picking up information from
the story, and it often understands everything important from
the article. FRUMP currently has U8 sketchy scripts. With
these scripts it can on a typical day correctly process about
10% of the UPI wire stories. However, only about half of the
UPI wire is theoretically processable with a script applier.
The remainder of the stories are not scripty. Thus with 48
scripts FRUMP is achieving about a fifth of its theoretical
limits. There are three main reasons for FRUMP missing the
other U40% of the script UPI stories. These are, in decreasing
order of importance, 1) lack of the necessary script, 2)
undefined vocabulary words, and 3) an unknown or complex
sentence structure used in the story.

——

CHAPTER 2

THE PROBLEM OF SKETCHY SCRIPT SELECTION

2.1 Introduction

When FRUMP begins reading an article, it has no
context. Thus the first order of business is to establish a
current context. A context is established by selecting a
sketchy script to be used in understanding an article. This
chapter explores some of the problems that arise in script
selection and outlines FRUMP's procedures for selecting
sketchy scripts.

Recall that FRUMP has one sketchy script for each news
situation. The sketchy script for a situation organizes all
of FRUM?P's knowledge about that situation. The topic of a
news article is the situation which it describes. For
example, a story might describe an earthquake or the
invasion of one country by another. For FRUMP to understand
a news article, it must have a sketchy script corresponding
to the topic of that news article. Of course, an article
may refer to several situations. That is, it may have
several different topics. A story describing an invasion
might also mention negotiations for a cease fire. In this
case FRUMP must be able to identify each of the necessary
sketchy scripts. However, FRUMP initially 1looks for only
one sketchy script to activate.

In trying to identify the initial sketchy script for an
article, FRUMP confines its attention to the first
paragraph. If after looking through the first paragraph
FRUMP cannot choose a sketchy script, it gives up trying to
understand the article. The topic of a well written news
article is often given in the first sentence, and if FRUMP
has not identified it in the first paragraph, the

appropriate sketchy script is probably missing from FRUMP's
repertoire. Rejecting the article at this point prevents

-39 -

30

misclassifying the topic from extraneous material deep in
the article.

Once FRUMP has selected a sketchy script to understand
an article, that sketchy script is gctivated. Activating a
sketchy script means that the normal events that occur in
the corresponding situation will be predicted by the
PREDICTOR. Thus the SUBSTANTIATOR tries to find instances
in the text of the conceptualizations predicted by the
currently active scripts. FRUMP uses the first paragraph to
activate a sketchy script which then makes predictions about
what will occur in the rest of the story.

However, the problem of selecting sketchy scripts
persists throughout an article. Often articles mention
several different situations. Even after an initial sketchy
script is selected, FRUMP wmust be able to call in new
sketchy scripts. For example, consider the following
article:

The New Haven Board of Education
refused today to accept the agreement
proposed yesterday by the teachers
union. The rejection spawned an
immediate citywide strike by the
teachers who have been working for the
past month without a contract.

The first part of this story is about labor negotiations, so
that sketchy script should be activated. However, the end
of the story mentions a strike. That is a different sketchy
script and if FRUMP is to be able to understand the
reference to a strike, it must activate the strike sketchy
script as well. In this story, and many others like it,
FRUMP must have several sketchy scripts active at the same
time. Thus FRUMP must know how sketchy script situations
normally interact and when to activate a new sketchy script,
even if another sketchy script is already active.

The number of stylized situations described by news
stories is very large. Perhaps as many as several hundred
sketchy scripts would be required to understand all of the
stylized news stories in an average newspaper. Given a
story, a script based understander must choose among all the
scripts it knows. Thus script selection is one of the major
problems that must be overcome in building a working
script-based understander. Furthermore, the solution to the
script selection problem must be computationally efficient.
The complexity of the selection algorithm must not depend
strongly on the number of scripts in the system. Otherwise
the system will be unworkable when the hundreds of scripts
needed are available.

b

e

31

2.2 Requirements of a Solution

A valid solution to the script selection problem must
have several characteristics. Before discussing FRUMP's or
various other approaches to solving the problem, we will
explore these required characteristics. This will help in
recognizing the strengths and 1limitations of FRUMP's
solution as well as explaining why solutions used by other
systems are insufficient for FRUMP.

2.2.1 Script Selection Cannot Rely on Top Down Knowledge Alone

Initial sketchy script selection must be bottom up.
Very few news events are predictable. The order they are
sent over a news wire service is even more random.
Therefore, FRUMP must not depend on having predictions about
what type of story will occur next. Furthermore, we want
FRUMP to be able to understand a significant part of a
typical newspaper. This will require a very large number of
sketchy scripts. Hence FRUMP cannot benefit as other Al
programs such as HARPY (Lowerre [1976]) from predicting all
possible inputs and then rejecting wrong guesses with a
matching process. There are just too many possible inputs.
Of course, we will not rule out the possibility of some
previous story setting up a context in which other story
types are expected. For example, if FRUMP is reading a
story about an earthquake it could well predict that it will
see facts about relief efforts. This is a different
situation and s0 has its own sketchy script. FRUMP can, in
this case, predict that the sketchy script for relief
efforts will be relevant. However, FRUMP should not insist
on having such predictions to correctly choose the sketchy
script.

2.2.2 Time Efficiency of Selection

The selection process must be reasonably fast. The
computer must be able to process stories in real time and
much processing must be spent in parsing the story and
instantiating the sketchy script. Only a small portion of
time should therefore be devoted to script selection.

This constraint is a major problem in view of the
potentially large number of sketchy scripts. If each
sketchy script must be examined for applicability when a
story is input, the script selection time will grow linearly
with the number of sketchy scripts in the system. The
complexity of the selection process should not depend
strongly on the number of sketchy scripts in the system. If

32

this is not so, FRUMP will become bogged down when we add
the several hundred sketchy scripts necessary for a truly
general system.

2.2.3 1Information Efficiency of Selection

One way to implement any script selection method is to
have the system make two passes through the text: a script
selection pass and a script application pass. In the first
pass the system tries to identify the correct sketchy
script. After doing so, the system backs up to the
beginning of the story for the second pass. This time the
system looks for the important elements of the selected
sketchy script.

The problem with this method is that it throws away
information. In selecting a sketchy script, some knowledge
is gained about the article being examined: fragments of
sentences will be parsed, certain script variables will be
identified and bound, etc. For example, if the input text
were "A bus struck a parked station wagon," in selecting the
vehicle accident sketchy script, FRUMP would identify the
script variable for the vehicle involved as the "bus" and
object crashed into would be identified as the "station
wagon."” It is desirable to have the script selection process
communicate this information to the script instantiation
process. If the information is thrown away, the
instantiation process will have to re-derive facts already
understood about the article. The instantiation process
should not have to re-bind the vehicle to "bus" and the
object to "station wagon." The script instantiation, process
should be able to take advantage of any knowledge gained by
the script selection process.

.

2.3 Solutions Used by Other Script-Like Systems

The problem of identifying what top down knowledge to
use is not peculiar to FRUMP. It extends to any system that
uses frame-like constructs (Minsky (1975]) to organize
knowledge. To use the knowledge contained in a particular
frame, that frame must be found and activated from among all
the frames in the system. Most advocates of frame-like
systems concede that there could be a very large number of
such frames, and frame selection has been a major stumbling
block in such systems. Yet there has been as yet no
satisfactory general solution.

!

SRR SRS S E——

PO

g g PO P,

PSR —)

' &* e

33

Minsky recognized the problem in his well known paper
(Minsky (1975]) but had 1little to say about its solution
except that when an input cannot be accounted for by an
existing frame, a new frame would have to be selected
largely by bottom up knowledge.

The SAM system (Schank [1975B]) is also a script based
understander. In SAM each script is marked with a list of
conceptualizations. These are conceptualizations which
often indicate that the particular script will be relevant.
For example, the conceptualizations attached to $RESTAURANT
are representations that mean "John was hungry", or "John
was going to a restaurant", or "John decided he would go to
a restaurant", etc. When one of these inputs is seen, the

script is activated. From then on, new input
conceptualizations are matched against script
conceptualizations.

There still exists the problem of matching the input
conceptualization against the 1list of initiating
conceptualizations. To make this matching process more
efficient the SAM system wmaintained a "search list" of
scripts. The search list contained scripts which for one
reason or another had been predicted to be likely in this
story.

There were two ways scripts were added to the search
list. First, a currently active script could predict that
certain other scripts might occur with it. For example, if
the system knew it was reading a story about a visit to a
museum, it would add the washroom script and the restaurant
script to the search 1list since it knew visits to the
washroom and restaurant might occur within museums. The
second method added a script to the search list when an
object often relevant in that script was seen. These were
usually preferred script variable bindings for the script.
If an ambulance was seen in the input, for example, the
hospital script was added to the search list. From then on
the hospital script was checked to see if it could account
for new input conceptualizations.

When a new input was seen, an attempt was made to find
a match for it in the currently active script. If no match
was found or no current script was active, the input was
matched against the initiating conceptualizations of each
script in the search 1ist. If a match was found there, the
corresponding script was activated. If no match was found
the new input could still activate a script. The methods of
building the search list were not foolproof. It was quite
possible for a script to be referenced in a story without
having beén implied by a previous script (method 1) and
without the mention of one of its preferred script variable
bindings (method 2). SAM, therefore, then had to match the

a2 e

ST, S PR D Sem— SN S

34

input against each of the initiating conceptualizations of
of each of the scripts it knew of which were not in the
search list. Thus in the worst case SAM had to examine each
of its scripts to see if it should be activated.

More recently, Lehnert (unpublished) has suggested a
similar method of script activation which is expanded to
also allow certain references to settings or 1locations to
activate scripts. Her method also includes a system of
suppression devices which can override script activation.
For example, John being located at a restaurant would
activate the restaurant script because the setting of being
at a restaurant is so closely linked with that script.

However, these activation methods often propose
incorrect scripts. For example, a story might begin "An
ambulance was stolen from St. Raphaels hospital yesterday,
New Haven police have reported." This input should not
activate the hospital script in spite of the explicit
mention of both a hospital and an ambulance, both typical
role fillers in the hospital script. In Lehnert's proposed
method, suppression mechanisms would eliminate the proposed
scripts.

In FRUMP these extraneous scripts are never proposed in
the first place. Typical role fillers alone are not allowed
to activate scripts. Rather the corresponding script should
be activated only if the typical role filler is embedded in
an appropriate conceptual event. That is, only if it is
mentioned in one of a script's key requests.

Likewise, the story "Police interrupted a bank hold-up
at New Haven's First Federal Savings and Loan this morning.
The suspect, George Sebalto, fled into the McDonald's
Restaurant across the street where he held 25 people hostage
for over four hours." should not activate the restaurant
script despite the proximity to the setting of McDonald's
Restaurant.

Lehnert's system would allow such inputs to propose the
restaurant script. The proposal would be prevented from
actually activating the script by the suppression
mechanisms. However, this seems inefficient. Furthermore,
her method still requires the possibility of triggering a
script from an entire event. For example, an input like
"Israeli aircraft attacked an Egyptian radar installation,"
can only activate the $FIGHTING script as an entire event.
YEgyptian radar installation" is not a setting which ought
to trigger the $FIGHTING script, nor can "Israeli aircraft"
alone be considered a typical role filler of that script.
It is only the information that the planes were attacking a
radar station which allows us to infer that they were even
military planes.

-

35

It seems that the need for these other activation
methods 1is obviated by the need to activate scripts from
certain events. Settings and typical role fillers should
only activate scripts in the context of certain specific
events. An ambulance, for example, should only activate the
hospital script if it is on its way to the scene of an
accident, or is returning to the hospital with an injured
person. Furthermore, triggering scripts only from entire
events rather than the other schemes eliminates many of the
misactivation problems that the other solutions suffer from.

In a recent paper Charniak [1978] proposed a partial
solution to the frame selection problem. The basic idea
behind his solution is that conceptual items will have two
types of frame indices attached to them. There will be an
action index under which the frames relevant to state
changes involving this item will be listed, and there will
be an object index which points to frames that are relevant
to a description of this conceptual item.

Given the input

Jack walked over to the phone. He had
to talk to Bill.

Charniak wanted to account not only for activation of the
telephoning frame but for the fact that most people tend to
assume Jack is in a room, and many assume he is at home. To
do this Charniak proposed putting the telephoning frame
under the action index of telephone and the room frame under
the object index of telephone. This corresponds to saying
that a telephone is typically used for telephoning and that
telephones typically are found in rooms. To get that Jack
is at home, we need only mark the room frame that the
default room is in a home.

Charniak admits difficulty with inputs such as

There were tim cans and streamers tied
to the car.

This unequivocally calls to mind the wedding frame but there
is no single concept in the sentence whose index ought to
include weddings. Charniak does not propose a definite
solution to this dilemma but does suggest that it might be
solved by discrimination nets under the indices instead of
direct pointers to frames. "Streamers", for example, could
have a set of context tests to see if they were tied to a
car along with tin cans. If so, the wedding frame is
appropriate. These tests, to be efficient, could Dbe
organized into discrimination nets. As Charniak points out,
however, discrimination nets add to efficiency only if each
test results in ruling out more than one frame.

At ot s+~ e

~v

36

The GUS system developed at XEROX PARC (Bobrow et al
1977) wuses frames to carry on a dialogue to plan airline
trips. GUS's frames are instances or prototypes. An
instance frame 1is a prototype frame with some of the slots
filled. They finesse the general problem of frame selection
by only activating new frames from currently active frames.
Thus they always require top down predictions about what
frame to activate next.

Initially, a frame to carry on a dialogue about a trip
specification is loaded. The dialogue frame, as all frames,
has slots to be filled and attached procedures to be used to
fill them. GUS's Jjob is to fill the slots. The slots in
frames are of two types. One type is filled with actual
data and the other is filled with a pointer to another
frame. If a slot is to be filled with a pointer to another
frame, the prototype of that frame must be given along with
the slot. GUS wmust eventually fill these slots with
pointers to instance frames. The slot, however, must be
marked with the prototype frame that should be used. The
problem of selecting a prototype frame from bottom up
information never arises.

The problem with the GUS wmethod is that it is too
constraining. It must always be the case that the prototype
frame that is to fill a slot (for those slots that must be
filled with frames) must be anticipated at the time the
frame is written. This method works well for domains such
as planning airplane trips where the facts that can be
discussed are severely limited. It also has the desirable
effect of helping to maintain the initiative in the
dialogue. However, in a system such as FRUMP where it is
impossible to anticipate the topic of the next story, a much
more general selection algorithm is required.

David Rumelhart ([1975] is also an advocate of
organizing top down knowledge about situations. His word
for the construct is schema. Schemata store knowledge about
generic events. The schemata, 1like sketchy scripts, are
used in understanding stories. Rumelhart's schemata,
compared to sketchy scripts, are more detailed. Another
difference is that there is no 1limit on how abstract an
event schemata can represent. Sketchy scripts represent
only well defined and rather rigid situations 1like an
earthquake or an election. Schemata are used to represent
things 1like "give" and "cause" as well. Rumelhart's
schemata are hierarchically organized. Rumelhart does not
directly address the problem of schema selection.

An obvious approach to the frame selection problem when
dealing with natural language text is to tag certain words
with the frames they typically describe. For example, the
word "blackmail" might be tagged with the "blackmail

37

frame."

When a word is seen that calls up one or more frames,
the system could try to fill the "frame slots" from other
words in the text. In this way the representation is
augmented while the system reads the story.

The problem with this method of frame activation is
that there are times when a frame must be called up by a
combination of words in the input rather than a single one.
For example, the sentence "The car hit a tree." activates
the venicle accident frame (or script or schema). But none
of the words individually should be marked with vehicle
accident: none of the sentences "the car was washed," "John
hit Mary," or "the tree fell" should activate the earthquake
script. One might propose that either "car" or "hit" or
"tree" or all three are tagged with the vehicle accident
frame. But as the three sentences which do not activate the
vehicle accident frame are not extraordirary in any way,
there are many such sentences which would mis-activate
frames. Furthermore, there are many such examples that
apparently require several words to activate a frame. A
system that depended on this method alone would soon be
swamped with irrelevant active frames.

2.4 The Three Kinds of Text Clues to an Article's Topic

An article often requires the reader to be familiar
with the kind of event it describes. A reader who does not
know what goes on in political conventions and why, for
example, will have trouble understanding a news article
about one. The reader must be able to identify the
situation of such news articles before he can understand
them. Well written news articles describing stylized
events, therefore, always give very definite clues to what
the stylized situation is.

Hints given by an article as to what situational
knowledge is likely to be important in understanding can be
classified into three types. For each type FRUMP has a
method of selecting a sketchy script to activate. The
method FRUMP uses depends on exactly how the script is
referenced in the article being processed and on any
information currently present about the article.

The three article fragments below illustrate the
different ways an article can tell the reader that certain
situational knowledge will be necessary in understanding.
Each example tells the reader in a different way that the
article is about to describe a "police arrest" situation.
Thus the reader is informed that the information he has

38

about police arrests will probably be wuseful in further
understanding.

EXAMPLES:
1) John Doe was arrested last Saturday
morning after holding up the New Haven
Savings Bank.

2) A man entered the New Haven Savings Bank
bank about 10:00 am Saturday morning and
demanded that a teller fill a shopping
bag with money. Accerding to witnesses,
the suspect took the money to a parked
car and drove off. He was caught only
minutes later, however. John Doe 1is
being held at the police station in lieu
of $50,000.

3) Police apprehended John Doe, a suspected
bank robber, in a drugstore in downtown
New Haven. Doe was taken to the New
Haven police station where he is being
held in lieu of $50,000 bond.

The first example explicitly mentions that there is an
arrest situation being described. An explicit mention tells
the reader that a situation is important regardless of any
previous contextual knowledge the reader may have. Thus
explicit mention supplies bottom up information.

The second never says that an arrest occurred. Instead
it wuses the ambiguous word "caught." Yet every reader
immediately interprets "caught" as "apprehended." This is
because the context set up by the previous sentences
indicates that a pelice arrest situation is 1likely. Here
the police situation is implicitly mentioned by the context
previously built up in the article. This is a top down
activation method. A previous context is used to activate
the arrest situation.

The third example tells the reader in a bottom up
fashion that a police arrest occurred. Individual events
from the police arrest situatior are given in such a way
that the reader is able to infer that the story is about an
arrest. The reader, of course, must realize that a police
arrest situation is being described to correctly understand
the story. By the time he has finished processing the
second sentence a reader must have inferred that an arrest
did take place. This inference could only be made 1if the
reader knows what typically goes on in police arrest
situations and correctly identifies this article as an
instance of one.

VIN&W"»«:;;‘

39

2.5 Overview of FRUMP's Three Sketchy Script Selection Methods

FRUMP has three sketchy script selection algorithms,
one for each type of text clue. In each of the above
examples FRUMP must decide to activate the script for police
arrests, $ARREST. This script makes predictions about what
will be seen in an article describing a police arrest. The

$ARREST sketchy script contains requests for the following
events:

1) Police go to where the suspect is

2) There 1is optional fighting between the
suspect and police

3) The suspect is apprehended
4) The suspect is taken to a police station
5) The suspect is charged

6) The suspect is incarcerated or released on
bond

In the first example,

1) John Doe was arrested last Saturday
morning after holding up the New Haven
Savings Bank.

the input mentions the arrest explicitly. This 1is called
activation by Explicit Reference. In the second example,

2) A man entered the New Haven Savings Bank
bank about 10:00 am Saturday morning and
demanded that a teller fill a shopping
bag with money. According to witnesses,
the suspect took the money to a parked
car and drove off. He was caught only
minutes later, however. John Doe is
being held at the police station in lieu
of $50,000.

the arrest sketchy script is activated by the robbery
script. The system must know that an arrest often follows a
robbery, which is explicitly mentioned. This 1is called
Implicit Reference. The third example,

3) Police apprehended John Doe, a suspected
bank robber, in a drugstore in downtown
New Haven. Doe was taken to the New
Haven police station where he is being
held in lieu of $50,000 bond.

4o

gives only bottom up clues to the correct sketchy script.
It is never stated that the arrest script should be
activated, but only that certain events, which are part of
the arrest script, took place. Activating a sketchy script
from bottom up clues alone is called Event Induced
Activation.

2.5.1 Explicit Reference Activation

The first example is the easiest. It is an example of
script activation by explicit reference.

1) John Doe was arrested last Saturday
morning after holding up the New Haven
Savings Bank.

In an explicit reference activation there is a word or
phrase which identifies the entire script that is to be
activated. The English word "arrest" has as one of its word
senses that it calls in the sketchy script $ARREST.

To be an explicit reference activation, there must be a
word or phrase in the text that refers to the entire script.
Refering to an event within a script is not an explicit
script reference even if its occurrence always indicates
that this script is appropriate. For example, consider the
two sentences below.

1) A Chevy van collided with a school bus
full of children.

2) There was an automobile accident
involving a school bus full of childrer
and a Chevy van.

The first sentence is not an explicit script reference.
It does call in the vehicle accident script but there is no
word or phrase such as "accident" which references that
script as a whole. Instead, it gives one of the events that
always occurs in a vehicle accident, namely the collision.

The second sentence, however, does activate the vehicle
accident sketchy script by explicit reference. In that
sentence, the phras "automobile accident" refers to the
vehicle accident as a whole. It does not say explicitly
that any events in the vehicle accident script took place,
it says only that there was a vehicle accident in which the
script variables were a school bus and a Chevy van.

41

Explicit reference activations cannot be done by key
words. A script is not activated when a particular word is
seen, but when a word sense is selected which has as its
meaning a reference to a sketchy script. In the sentence

There was an accident involving a car
and an ambulance in downtown New Haven.

The vehicle accident sketchy script is activated because the
correct word sense of "accident™ 3in this context means
$VEHICLEACCIDENT. This word sense can be decided upon
because the text says that a car and an ambulance (both
vehicles) were involved. In the sentence

Billy had to change his trousers because

he had an accident.

the venicle accident sketchy script is not called up because
a different sense of the word "accident" must be used. Thus
individual words are not used to activate sketchy scripts
but individual word senses.

2.5.2 Implicit Reference Activations
Consider the second example:

2) A man entered the New Haven Savings Bank
bank about 10:00 am Saturday morning and
demanded that a teller fill a shopping
bag with money. According to witnesses,
the suspect took the money to a parked
car and drove off. He was caught only
minutes later, however. John Doe is
being held at the police station in lieu
of $50,000.

In this example the sentence "He was caught only
minutes later, however". is extremely ambiguous out of
context. An understander must decide who "he" refers to,
correctly disambiguate "caught", and infer who caught him=.
On the basis of this example sentence alone it is impossible
to select the $ARREST sketchy script; there is simply not
enough information in the sentence.

This example demonstrates activation by implicit
reference. Sketchy scripts often occur in conjunction with
other sketchy scripts. In this example, we know that the
sketchy script $ROBBERY is often followed by $ARREST. A
sketchy script is activated by implicit reference when a

sketchy script that is known to often precede it 1is
activated. In the above example, $ROBBERY is activated by

e e S———— S —— -

42

explicit reference. FRUMP's world knowledge includes the
fact that robberies often lead to arrests. Since causally
connected events are likely to be reported in the same news
article, FRUMP activates the $ARREST sketchy script.

Activation by implicit reference is not often
absolutely necessary. There 1is usually some other way to
get around making the prediction about what script will
occur next. Suppose, for example, that the sentence "he was
caught only minutes later, however" were changed to "He was
charged with armed robbery." Then the story could be
understood by recognizing the $ARREST sketchy script in a
bottom up fashion; the sketchy script is then selected
using event induced activation. The event of charging
someone with a crime strongly indicates that $ARREST is the
appropriate sketchy script for this situation.

However, even when the sketchy script might Dbe
recognized without implicit reference, there are advantages
to having implicit reference as a separate activation type.
For example, the word "charge" in the amended example is
ambiguous. "Charge with a crime" has a very different
meaning (and therefore a different conceptual structure)
than "charge with electricity" or '"charge with a
responsibility" or '"charge" meaning to demand payment. If
the sketchy script $ARREST were to be selected bottom up,
the word "charge" would first have to be disambiguated;
only "charge with a crime" should activate $ARREST.

With implicit reference activation the correct meaning
of "charged" can be selected immediately. If there were no
implicit reference activation, some process would have to
realize that there are several dictionary definitions for
"charge", and, on the basis of what was found in the rest of
the sentence, choose one. In this case, "with armed
robbery" strongly suggests that "charge with a crime" is the
appropriate meaning.

If, however, the $ROBBERY sketchy script is allowed by
implicit reference to activate $ARREST then $ARREST is
already active when the word "charge" is input. FRUMP can
use the fact that there is an active request looking for
"charge with a crime" to prefer that meaning of "charge"
immediately. In this case, the ambiguity of the word
"charge" is not noticed.

Furthermore, if the "charge with a crime" meaning of
"charge" can be immediately selected, the system knows that
somewhere in the remainder of the sentence the actual crime
will? be specified. Thus using implicit reference in the
amended example, the system gets essentially for free the
disambiguation of the word "charge" and the top-down
prediction of how to process the crime that will be

ma

43

mentioned later in the sentence.

2.5.3 Event Induced Activation

The last example demonstrates event induced activation.
Here, the sketchy script 1is activated by bottom up clues
from the input text.

3) Police apprehended John Doe, a
suspected bank robber, in a drugstore in
downtown New Haven. Doe was taken to
the New Haven police station where he is
being held in lieu of $50,000 bond.

In this case, the event of the police apprehending a
suspected criminal is sufficient for people to realize that
knowledge about arrests (i.e. $ARREST) will be relevant.
What does this mean in FRUMP terms? This means that the
event of the police apprehending a suspect is central enough
to the $ARREST sketchy script that when a conceptualization
for that event is seen, the $ARREST sketchy script should be
activated. We call the events which are central to a
sketchy script the key requests of that sketchy script.
When a conceptualization is found that is a key request of a
sketchy script, that sketchy script is activated.

Thus event-induced activation involves building a
conceptualization and testing whether it is a key request
for any sketchy script. The key request test must be done
by efficiently searching through all sketchy scripts for
those in which the particular conceptualization is central
to the script. FRUMP must have an efficient method for
event induced activation because it occurs so often in
everyday news articles. In the next chapter we will explore
all three activation methods in detail.

CHAPTER 3

FRUMP'S SCRIPT SELECTION ALGORITHMS

3.1 Introduction

In this chapter FRUMP's selection algorithms will be
described in some detail. A major part of the chapter is
devoted to event induced activation which is the hardest and
most interesting method of script selection. At first it
will be assumed that entire conceptualizations will be
supplied to the selection algorithms when needed. That is,
it will be assumed that a powerful enough parser exists so
that the selection algorithm need not concern itself with
the problem of mapping the natural language input into
conceptual dependency representations. This assumption is
far from reasonable; no such powerful parser exists in
FRUMP. In the final sections of this chapter it will be
shown how this assumption can be dropped.

3.2 Explicit Reference Activation

In English there are words whose meaning cannot be
captured in simple conceptual dependency representations.
These are words 1like "accident" (as in auto accident),
"strike" (as in a labor strike), and "invasion." Each of
these words has a word sense which refers to an entire
stylized event sequence, not an individual event, state, or
state change. Thus they cannot have simple conceptual
dependency representations as their dictionary definitions.
FRUMP's definition of these word senses includes a reference
to an entire sketchy script. When FRUMP chooses one of
these word senses the text is making reference to an entire
sketchy script situation. Sometimes these references can be
anticipated. In these cases the current context built from
the text thus far can account for the reference to the

- 44 -

us

sketchy script. If the current context cannot account for
the script reference, it means this is a new topic in the
article and FRUMP should activate the corresponding sketchy
script. These sketchy scripts are activated by explicit
reference.

What does it mean for a current context to "account
for" the reference to another sketchy script? Consider the
two examples below.

1) There was an automobile accident at the
corner of Grove and Prospect Streets.

2) The National Safety Council released
figures today indicating that the chance
of dying in an automobile accident has
fallen dramatically the past year.

In the first example, assuming no currently active
sketchy scripts, the phrase "automobile accident" will
activate the sketchy script $VEHICLE-ACCIDENT. In the
second example, "National Safety Council released figures"
will activate the script for government agency reports. One
of the important pieces of information in such stories is
the topic of the report. Thus there will be a request in
the active government report script looking for the report's
subject. This time when the reference to $VEHICLE-ACCIDENT
is found, it will be interpreted as part of the report's
subject. There is an active script that can account for the
script reference and so no sketchy script is activated.

3.2.1 Mis-Activations

However, suppose FRUMP does not have a sketchy script
for government agency reports. Then FRUMP will see
"automobile accident"™ as an explicit reference to the
vehicle accident sketchy script. FRUMP will then read the
rest of the story looking for events it considers likely in
vehicle accidents. This 1is a typical mis-activation of a
sketchy script.

There are two reasons why this kind of mis-activation
is tolerable. First, the failure to recognize the correct
sketchy script (in the above example) is due to a lack of
information, not a fault in FRUMP. Failures due to
insufficient scripts or lack of vocabulary are not failures
of the control structure of FRUMP. Second, if the wrong
script is activated (in this case the vehicle accident
sketchy script), very likely nothing in it will be
satisfied. That is, nothing will be instantiated. If no
sketchy script is instantiated by a certain article, it will

) v ———
\

u6

simply be ignored. Only if there happens to be somethiing
which instantiates the mis-activated script will the story
be misunderstood.

3.3 Implicit Reference Activation

There are many news stories which report several
different but strongly related situations. When the
relationship between the various situations is such that the
existence of one 1indicates the presence of others, the
others are activate by implicit reference.

For example, if an article is found to report a flood
or volcano eruption or other natural disaster, there will
likely be relief aid from the Red Cross or other countries
which will also be reported. These are two completely
separate situations. In the disaster we expect to see one
set of facts reported (like the 1location, casualties,
estimates of damage, etc.) and in the relief efforts we
expect to see another (the form of the relief aid, how much
aid was extended, who it is from, etc.). Even though the
two situations are separate, the existence of the flood
strongly indicates that relief aid to the inundated country
will also be reported.

3.3.1 Is Implicit Reference Activation Really Necessary?

It might be proposed that since the sketchy script for
relief aid is wusually present in stories about floods and
must always be looked for in such articles, it ought to be
part of the flood sketchy script. This is undesirable for
two reasons. First, there are many other sketchy scripts
which, 1ike §$FLOOD, "\ imply relief efforts. If the
information were to be stored in $FLOOD and not as a
separate sketchy script, it would have to be duplicated in
each of these other sketchy scripts as well. That is, the
knowledge in the relief sketchy script would have to be
included in $FLOOD, $EARTHQUAKE, $TIDALWAVE, etc. Second,
there are articles which are entirely devoted to describing
the relief and rescue actions following a 1large natural
disaster. FRUMP must therefore be able to access the
information about relief efforts independent of the relief
effort's cause.

Given that a separate sketchy script is needed for such
things, why not simply use one of the other activation
procedures? Consider the following fabricated newspaper
article:

B S e N

47

John Doe was injured when the
motorcycle he was driving was run over
by a semi tractor trailer.
Miraculously, Doe was only slightly
injured. His condition was said to be
good but he will remain under
observation.

The last sentence can only be accounted for by the
hospital sketchy script. The "good condition" is
interpreted as the condition released by the hospital and
"remain under observation" means remain gt the hospital
under observation of doctors. FRUMP must realize this if it
is to understand the article.

Perhaps, however, one of the other activation
procedures can be used to activate the hospital sketchy
script. There is no direct mention of hospital so $HOSPITAL
cannot be activated by explicit reference. However, maybe
event incduced activation can help. In that case, there must
be some conceptualization that the sentence builds which can
activate the hospital sketchy script. It would seem that
the only concepts which might activate the sketchy script
are built from "good condition" and "under observation".
However, without the context set up by the vehicle accident
these seem insufficient. For example, consider the next
article:

With the Ali - Spinks fight
approaching, many boxing experts
question Ali's ability to go the
distance and are watching him closely.
No one in the Ali camp would officially
comment on the veteran boxer's chances.
His condition was said to be good but he
will remain under observation.

This has the same final sentence as the previous
article but certainly does not activate the hospital sketchy
script. Nor is the hospital script called up and rejected.
Rather it never occurs to us that the hospital sketchy
script is relevant at all. The problem is that phrases like
"good condition" and "remain under observation" are simply
too general to be tied to a particular sketchy script.

Thus there must be a different activation method for
the motorcycle accident example. The activation must be
based largely on the context provided by the article. This
is exactly what implicit reference activation does.

e

B T . S

48

3.3.2 1Issue Skeletons

Implicit reference activation and sketchy script
interaction are handled by JIssue Skeletons. The main
function of issue skeletons is to connect related stories.

However, they are also used for implicit reference
activation. 1Issue skeletons will be discussed in detail in
chapter 8. Here we will discuss them only to the extent

that they are used for script activation.

An issue skeleton is a data construct that organizes
events at a level higher than scripts. There are times when
understanding events as separate scripts is insufficient.
For example, suppose a set of articles reported a natural
disaster followed by a Red Cross relief effort. The
articles might be understood as instantiating two completely
separate scripts. One for the disaster and one for the
relief effort. However, this misses a very important fact.
The relief effort was initiated to help the disaster
victims. The system cannot be said to understand these
articles unless it knows that the relief effort was a
response to the disaster. The disaster and relief efforts
are not two separate situations that have nothing to do with
each other. This information causally connecting sketchy
scripts is stored in an issue skeleton. Basically the
natural disaster issue skeleton says that disasters are
often followed by relief efforts so if a relief effort is
seen in the same location and shortly after a natural
disaster, assume that the relief effort was initiated to
help victims of that disaster.

Anytime several news situations must be connected to be
understood, they form a pnews issye. Issue skeletons dictate
how news issues normally progress. There are many news
issues each requiring an issue skeleton. A war, for
example, is made up of battles, cease fires, peace talks,
and appeals to allies for help all interspersed. There must
be a separate sketchy script instantiated for each of these
individual situations. The situations must then be tied
together with an issue skeleton. Congressional action on a
particular bill must be represented with an issue skeleton.
The action is typically made up of a number of debates
followed by a vote. As another example, a political
campaign is made up of any number of campaign activities, a
convention, and a general election. There are many such
news issues.

Attached to each sketchy script is a list of the issue
skeletons in which it can appear. $STORM, $EARTHQUAKE,
$FLOOD, etc. are all marked that they can initiate the
natural disaster issue skeleton. Thus when a flood sketchy
script is instantiated, a new natural disaster issue
skeleton is initiated. On the basis »f that initiated issue

s

| .
<

— N

e

49

skeleton, FRUMP predicts that it might see secondary
disasters 1like fires from broken gas mains and if the
disaster is sufficiently bad there will probably be relief
efforts. Since the predicted relief efforts correspond to a
specific sketchy script, the relief efforts sketchy script
is activated.

When implicitly referenced sketchy scripts interact via
issue skeletons their respective script variables must match
in certain specifiable ways. In the case of a bank robbery,
for example, the issue skeleton predicts an arrest situation
but it is understandable with the robbery only if the person
arrested in $ARREST is the same as the thief in $ROBBERY and
the crime he is charged with is robbing the bank. If these
constraints are not met then FRUMP has probably
misunderstood the story. This means the scripts fit
together in a more complicated way than FRUMP can
understand, and the implicit reference should be
disregarded. To illustrate the constraints on how
situations must conform consider the following two
variations of a story:

32 year old John Doe was killed in a
shooting in a downtown New Haven bar
yesterday. Witnesses said he had argued
with his brother Frank Doe who drew a
gun and fired seven times at point blank
range. New Haven police reportedly have
charged Celia Baker with first degree
murder.

32 year old John Doe was killed in a
shooting in a downtown New Haven bar
yesterday. Witnesses said he had argued
with his brother Frank Doe who drew a
gun and fired seven times at point blank
range. New Haven police reportedly have
charged Frank Doe with petty larceny.

These stories seem silly. The reason is that the
variables of the murder and arrest scripts do not match
properly. After reading about the murder we expect to see
an arrest. However, we can predict who will be arrested and
why. If the script variables are to be conformable, the
shooting suspect must be the one arrested and he must be
charged with murder. In the first story, we expect to see
Frank Doe, not Celia Baker charged. The second story is
peculiar because the charge is "petty larceny" instead of
the expected "first degree murder." "Celia Baker" and
"petty larceny" grossly violate our expectations. These
expectations are important for FRUMP because they can be

| —— bt 5

50

used to test whether FRUMP has understood the interaction
correctly. If they are not satisfied, the two sketchy
scripts very likely do not fit together the way FRUMP
assumed. A more power ful understander capable of
hypothesizing complex causal interactions might be able to
make sense of the new situation by manufacturing some
bizarre context. This is well beyond the capabilities of a
script applier such as FRUMP. To minimize the chance of
further misunderstanding the article, the best course for
FRUMP is to simply ignore the implicit reference.

In addition to constraining how interacting sketchy
scripts can share variables, issue skeletons can supply
default causation information. For example, consider the
following news story:

One of the worst blizzards in
history paralyzed New York City
yesterday. Drifts to six feet blocked
roads and kept schools closed for the
second day. Sub-zero temperatures, in
places reaching twenty below, aggravated
already serious conditions.

There were scattered reports of
power outages, the worst in Brooklyn
where widespread looting and vandalism
were reported. Mayor Koch called on off
duty policemen to return to their jobs
but has not yet asked the governor for
National Guard assistance.

In this story, a blizzard is reported to have caused a
blackout . There are separate sketchy scripts for blizzards
and blackouts. The first paragraph reports facts about the
blizzard and the second reports facts about the blackout.
However, it is nowhere explicitly stated that the blackout
was due to t..- blizzard. 1Instead it relies on the reader's
knowledge that serious blizzards can cause blackouts. In
FRUMP this knowledge is supplied in a general way by an
issue skeleton. The issue skeleton provides the information
that natural disasters might cause other disasters.
$BLIZZARD is, of course, marked as a natural disaster. When
the blizzard sketchy script 1is instantiated, a natural
disaster issue skeleton is initiated. The natural disaster
issue skeleton contains the fact that natural disasters can
cause secondary or unnatural disasters. When "power
outages" is seen, FRUMP can interpret it as a secondary
disaster caused by the blizzard.

It is important to understand how the blizzard and
blackout are related. That 1is, some interscript causal
connections must be established. For this story, FRUMP can

oo o e
[Snsey. ¥

51

make the causal inference via the natural disaster issue
skeleton. These causal inferences can also only be made if
certain constraints between the script variables in the old
and new sketchy scripts are satisfied. In the case of
blizzards and blackouts, there is only one constraint on the
sketchy script variables: it must be the case that the
location of the defective electrical power equipment is at
or near the location of the blizzard (since no faulty
electrical power equipment is discussed, it can be assumed
to be at the location of the blackout). Only when this
constraint 1is satisfied can the implicit causal inference
that the blackout was caused by the blizzard be made and the
blackout incorporated into the natural disaster issue
skeleton. Again, if the constraints are not satisfied, the
secondary disaster sketchy script is best ignored.

3.4 Event Induced Activation

As was pointed out before, the most common indication
that a particular sketchy script should be active is the
presence of an event which is central to that sketchy
script. As this is the most common method, FRUMP must have
an efficient algorithm to deal with it. The time of the
algorithm should not increase greatly if FRUMP is given many
more scripts. That is, the time complexity of the event
induced activation algorithm should be less than linear in
the number of sketchy scripts the system has. In this
section we will first investigate some of the difficulties
with bottom up script activation. Then FRUMP's algorithm
will be discussed.

3.4.1 Bottom Up Problems

It is essential to be able to activate sketchy scripts
in some sort of bottom up fashion. As explained before,
FRUMP cannot depend on having predictions about what kind of
news article is 1likely to occur next. Charniak [(1978] in
discussing frame selection has suggested that conceptual
objects, states and actions have LOCATION and ACTION indices
attached to them. The LOCATION index stores the frames for
where the concept is likely to occur and the ACTION index
stores frames in which the concept is often used. If a new
conceptual input cannot be incorporated into the currently
active frame, the frames under the components of the input
arc examined as candidates to activate.

This is sort of an advanced conceptual version of the
system used by Rumelhart. However, there are concepts which
must activate sketchy scripts where it would be a mistake to

Fore

52

mark any of the component conceptual items with the sketchy
script. In a sense it is not the component concepts that
activate the sketchy script but rather the particular
configuration of components. For example, the conceptual
representation for the sentence

The ground trembled.

contains the concept for "ground” or "earth in a local
area®, the concept for "motion" and a modifier specifying
that the motion is "cyclic".

It would be a mistake to tag any of these component
concepts with the sketchy script $EARTHQUAKE. The sentence

The ground was covered by fog.

also uses the concept of "earth in a local area"™ but should
not bother the system with calling in the sketchy script for
earthquakes. The sentence

John's hands trembled.

contains the concept for the same kind of motion but also
should not suggest loading the earthquake sketchy script.

In addition there is a hidden problem if we choose to
use the participants in the action to call in sketchy
scripts (i.e. 1ist $EARTHQUAKE under "earth"). The problem
comes from the hierarchy of object concepts. Consider the
sentence

New York City shook yesterday.

Of course, we do not want to store $EARTHQUAKE directly
under the dictionary entry for New York City (because then
we would have to store it under Moscow, Topeka, Sioux Falls,
Eastern Turkey, Carnes, etc.). Instead $EARTHQUAKE should
be stored under "ground" and each of these entries will be
marked that they <can be —considered a "location".
"Location", in turn, is marked that it can be considered as
"ground”. This means that in the above example, the system
must retrieve the fact that New York City can be considered
a "location", find that 1locations are "ground", and look
there for proposed sketchy scripts. However, there is no
reason, at this point to expect that "location" is the
important property of New York. New York City can also be
considered a city and so all of the sketchy scripts that are
. proposed by "city" must be tried. New York is also a harbor
80 all the sketchy scripts under "harbor" must be tried.
New York is also a... The series is endless. Yet all the
properties of New York City must be present because there
are cases where the system must have the information that

<

53

New York City is a city and a harbor and so forth.

Of course, one could argue that component concepts
Should call in many sketchy scripts and that it is just part
of the job of the system to weed out these irrelevant
sketchy scripts. This might be implemented with consistency
checks built in to each sketchy script. The earthquake
script, for example, could at activation time test to see
what was involved in the back and forth motion. Only if it
turned out to be ground or something firmly connected to the
ground would $EARTHQUAKE ultimately be added to the 1ist of
active scripts.

However, activating a sketchy script, while not a
costly process, is not something that should be done
thousands of times while processing a story. Furthermore,
the knowledge needed to reject a sketchy script would seem
to be the same knowledge needed to avoid proposing it in the
first place. With a little more clever organization, the
knowledge should be available at the time it is needed.

3.4.2 FRUMP's Solution

In the previous section it was argued that event
induced activation depended not on single concepts present
in the input (like New York) but on complex concepts made up
of specific combinations of individual concepts (like ground
shaking).

These complex concepts are similar to major requests
from the sketchy scripts they activate. In each sketchy
script there are one or more requests which, if satisfied,
strongly indicate that the particular sketchy script is
appropriate to use in understanding the current story.
These requests are called the sketchy script's key requests.
For example the key request for the earthquake sketchy
script is the one that looks for a geographical location
undergoing back and forth motion. Each sketchy script can
be activated if one of its key requests is found.

The entire key request need not be seen. Rather only a
part of it is necessary to activate the sketchy script. For
example, the key request of the earthquake sketchy script
specifies not only the 1location and the fact that it is
moving but how violently it is moving, the time of the
event, etc. These are things that can be present but are
not necessary. Ir. fact, the input need not specify a
location but only that ground is being shaken. Thus only a
simplified version of the entire request need be seen in
order to activate a sketchy script.

54

The simplified requests from a script that can activate
the script are called that script's gscript initiators.
Script initiators are the minimum conceptual structure
necessary to activate sketchy scripts.

For example, the script initiator for the earthquake
sketchy script specifies in conceptual terms that a
geological force is moving some ground and the motion is
cyclic. Often part of a script initiator must be inferred.
That a geological force is responsible for the motion must
be supplied by world knowledge in the sentence "New York
City shook yesterday." Y

The key requests of all the sketchy scripts can be
collected into a 1long 1list, The 1list is made up of
conceptual dependency representations, and associated with
each is the sketchy script that it came from. The
associated sketchy script is the script that should be
activated if the representation is found in the input. This
list is considerably shorter than the total number of
requests in the system but is still very large. To select a
sketchy script the system must compare each new input
conceptualization to this list until a match is found. The
corresponding sketchy script will then be activated to
understand the story.

3.4.3 Matching Key Requests

The problem in event induced activation is finding some
way of organizing these key concepts so they can be matched
easily. The matching process must also be able to provide
the text analyzer with top down guidance in interpreting the
input.

From efficiency considerations, the complexity of the
matching method must be less than linear in the number of
sketchy scripts. No solution to the matching problem is
viable if the complexity of the algorithm is linear, even
with a small constant. FRUMP currently has U48 sketchy
scripts, but it would have to contain hundreds if it were to
process all articles about scripty situations. Thus the
selection time cannot be allowed to increase dramatically
with an increase in the number of scripts. If it does, the
whole approach to script selection will become unworkable.

This leaves us with two possibilities. The key
requests can be indexed by a hash coding technique, or by
discrimination trees. All of the less-than-linear search
techniques are variations on one or the cther of these two
processes.

55

The solution FRUMP uses is to organize these concepts
into discrimination trees. Sketchy script initiator
discrimination trees (SSIDTs) both make searching the
concept space efficient and distribute the matching process
throughout the tree. Spreading out the matching process is
useful because, as we shall see, the text analyzer can then
be driven by small changes in conceptual structure at the
decision points.

3.4.3.1 Conceptual Dependency -

Discrimination trees were chosen over hash coding in
the key request matching process because they enable the
process to give top-down guidance to the text analyzer. The
notion of lexical decomposition into primitives is essential
for the success of FRUMP's matching algorithm. Since it is
so central to the script selection procedure, a brief review
of Conceptual Dependency is given here. Readers already
familiar with Conceptual Dependency may wish to skip to the
next section.

All of FRUMP's requests (and therefore sketchy script
initiators since they are partial requests) are stated in
terms of Conceptual Dependency. These conceptual structures
are made up of roles and role fillers. For example the
conceptual dependency structure for the English sentence

John went to New York.
is

(ACTOR JOHN
<=> PTRANS
OBJECT JOHN
TO NEWYORK)
The form of a conceptual dependency structure is

(rolel role-filleri role2 role-filler2 ...)

Thus in the above conceptual dependency structure
ACTOR, <=>, OBJECT and TO are roles and JOHN, PTRANS, JOHN
and NEWYORK are their respective role fillers.

Conceptual dependency structures are divided into three
kinds of concepts: actions, states and state changes.

Actions are denoted by the presence of the <=> role, states
by the presence of the IS role and state changes by the

56

presence of the TOWARD role. The conceptualization above is
therefore an action type conceptual dependency.

3.4.3.2 Two Sketchy Script Initiator Discrimination Trees -

FRUMP has one sketchy script initiator discrimination
tree for each kind of conceptualization: there is an action
SSIDT which contains all the script initiators that are
conceptual dependency actions, a state SSIDT which contains
all the script initiators that are states and a state change
SSIDT which contains all the script initiators that are
state changes. Thus if the input were the conceptualization
for "John went to New York", FRUMP would look through the
SSIDT for actions.

An SSIDT is an n-way branching discrimination tree.
That 1is, each node can have any number of arcs emanating
from it. At each node the filler of one conceptual role of
a conceptualization is tested. Each arc leaving a decision
node corresponds to a possible outcome of the test
performed. Each leaf of the SSIDTs points to a sketchy
script which will be activated if it is reached. SSIDTs are
static structures - they are not changed during text
processing. :

New input conceptualizations from the text are
submitted to the proper SSIDT (the action SSIDT for an
action concept, the state SSIDT for a state concept etc.).
If the tests performed on the submitted conceptualization
eventually reach a leaf node, the sketchy script at that
leaf node 1is activated. If at any node there is no arc
which matches the role filler being tested, the
conceptualization cannot lead to a leaf and therefore cannot
activate a sketchy script so it is rejected.

NS MTRANS PROPEL PTRANS e
]

node 1
---------- m—e ({2)) mccccae ,,, ===
| / 1\ !
' /A H
| / ! \ \
H / ! \ !
ATRA 0 te.

'

'

node 2
(OBJECT) ==== ... =
/ |\
/ { \
/ H \
/ ! \
GROUND VEHICLE
/
/
node 3
(ACTOR)
7'\
/ \
/ \ /
EXPLOSIVE GEOLOGICAL POLITY
FORCE H
/ |
/ |
node 4 node 6
(MANNER) (TO)
' H
\ |
' POLITY
CYCLIC |
(]
---------;--.--:--..-- noée 7
® SCRIPT $EARTHQUAKE *® (FROM)
REQUEST R1 . !
CHSESERENNENNNNDNNNENE !

POLITY
]

57

SKETCHY SCRIPT INITIATOR DISCRIMINATION TREE FOR ACTIONS

cee ‘tco

HUMAN MILITARY-UNIT
]

]
node 5
(ACTOR)
7N\
/ \
\
MILITARY-UNIT

® SCRIPT $FIGHTING *®

® REQUEST R2 .
RERRNNNERRRRARRRRES

figure 3.1

. SR .

S———————

58

Figure 3.1 shows the path through the action SSIDT to
activate the earthquake and fighting sketchy scripts. The
input conceptualization required to activate $EARTHQUAKE is

((ACTOR (GEOLOGICAL FORCE) <=> (PTRANS) OBJECT
(GROUND)) MANNER (CYCLIC))

Node 1 tests the filler of the <s=> role. If it is
filled with PTRANS, the next role tested is the OBJECT at
node 2. If the OBJECT is GROUND, node 3 tests the ACTOR
role. If the ACTOR of the conceptualization is a GEOLOGICAL
FORCE, we get to node 4. Finally if the MANNER role 1is
filled with CYCLIC, the leaf node pointing to the sketchy
script $EARTHQUAKE is found. $EARTHQUAKE is then activated,
and request R1 (which spawned the script initiator for this
path through the tree) is satisfied.

S

59

SKETCHY SCRIPT INITIATOR DISCRIMINATION TREE FOR STATES

node 1
(IS) =meccccee- ces ==
/ N\ |
/ | \ !
/ \ |
/ \ H
t

! H
! !
!

node 2

(ACTOR)

]
'
:
HEALTH CONCORD LINK etc.
]
:
]

/ \
/ \
POLITY HUMAN
]

|}
|
[}
node 3
(TIME)
/e
/ \
/ \
TF TS
H
|
node U
(WITH)
H
H
H
POLITY
|
|
node 5
(Is ?!PB)
b
|
DIPLOMATIC
llllll!lll!lllii!lllll!lll!ll!l
® SCRIPT $ESTABLISH-RELATIONS ®

. REQUEST R1 e
SERENENERNETEENRRNNRNERERNRNENS

figure 3.2

Aok

L.

e — —

60

The above diagram shows the STATE SSIDT. To arrive at
the leaf shown the following conceptualization must be
built:

(CACTOR (POLITY) IS (LINK TYPE (DIPLOMATIC))
WITH (POLITY) TIME (TS)))

The root node, node 1, tests the filler of the IS role.
This filler must be one of a number of states. If it is
filled with LINK, node 2 is examined next. It tests the
ACTOR role. The next node to be checked Depends on the
ACTOR filler. If the ACTOR is filled with something that
can be considered a POLITY, node 4 will provide the next
test. In this way, all of the relevant role fillers can be
tested. The final result of these tests will establish
which sketchy script is the correct one indexed by the
conceptualization.

3.4.4 How SSIDT's Eliminate the Need for a Powerful Parser

The arrangement of key requests into a discrimination
tree in this way allows us to drop the requirement of having
a powerful parser. The PREDICTOR traverses an SSIDT in
identifying a sketchy script. At each node it predicts that
the role specified at that node will be filled with one of
the arc labels from that node. The prediction is then given
to the SUBSTANTIATOR. If SUBSTANTIATOR can indeed add the
desired conceptual structure, the corresponding arc 1is
traversed by the PREDICTOR. The PREDICTOR then makes a new
prediction based on the new node. Either the SUBSTANTIATOR
will be unable to substantiate a prediction or eventually
the PREDICTOR will arrive at a leaf node. If it arrives at
a leaf node, the sketchy script at that node is the
appropriate one to use.

Throughout the traversal process the SUBSTANTIATOR is
never asked to do more than augment the existing conceptual
structure in one of a number of predicted ways. This is a
far more <constrained task than producing an entire
conceptualization at once. Thus the powerful parser
discussed before is not needed. The remainder of this
section discusses the SSIDT traversal operation in more
detail.

Initially there is no partial conceptualization to
augment. The SUBSTANTIATOR 1looks for any word that can

build a structure. When a word is found, its conceptual
structure is used as the partial conceptualization. The
PREDICTOR examines the new partial conceptualization to
determine what kind of conceptual dependency representation

e —— R— — n—

R e

~,

61

it is. The PREDICTOR selects the appropriate SSIDT for the
representation. If the partial conceptualization is an
action, the PREDICTOR selects the ACTION SSIDT. If the
conceptualization is =a state, the PREDICTOR selects the
STATE SSIDT, and if it is a state change, the STATE-CHANGE
SSIDT.

At any point in the selection process the PREDICTOR
examines one node of the SSIDT. This is the gcurrent pnode.
Initially the current node is the root node of the SSIDT.
The PREDICTOR asks the SUBSTANTIATOR to add the conceptual
role specified at the node and predicts that the filler will
match one of the arc labels emanating from the node.

For example, suppose the partial conceptualization
built were the action (<=> PTRANS). Then the PREDICTOR
would select the ACTION SSIDT and node 1 would become the
current node. The PREDICTOR would then follow the tree as
far as possible. Since the <z> role is already filled with
PTRANS, the predictor would make node 2 the current node.
It would then predict that the OBJECT role would be filled
with one of GROUND, VEHICLE, HUMAN, etc. The SUBSTANTIATOR
might fill the OBJECT role with, say, Los Angeles. The
PREDICTOR would then interpret Los Angeles as a type of
GROUND and follow the arc to node 3 and request that the
ACTOR role be filled.

The processing continues until a leaf of the SSIDT is
reached. At each 1leaf is a pointer to the sketchy script
that ought to be activated, and the request within the
sketchy script that the constructed conceptualization will
satisfy. This sketchy script 1is then activated. The
information gleaned from building the key request is
incorporated into the sketchy script.

3.4.5 An Example of Event Induced Activation

The following output illustrates FRUMP's processing
during an event induced script activation. The input
sentence is "Israel has sent troops into Lebanon". FRUMP
uses the action SSIDT given in figure 3.1 to activate the
sketchy script $FIGHTING. In the example below, the
computer output generated by FRUMP is on the left;
explanatory comments are on the right. The point to be
illustrated here is how the PREDICTOR uses the SSIDTs to
guide the SUBSTANTIATOR. The actual workings of both the
PREDICTOR and SUBSTANTIATOR are discussed in detail in the
next two chapters.

Input:

62

ISRAEL HAS SENT TROOPS INTO LEBANON.

COMPUTER OUTPUT

SUBSTANTIATOR:
((<=> (®PTRANS®)) BUILT
FROM WORD# (4) WORD
SENSE SEND1.

PREDICTOR:

PREDICTING ROLE (OBJECT)
WILL BE FILLED WITH AN
ELEMENT FROM THE LIST
(*GROUND®* ®VEHICLE®
®HUMAN® ®MILITARY-UNIT®
#PHYSOBJ#*)

SUBSTANTIATOR:
PREDICTING (OBJECT) IS
VERB-OBJECT OF (SEND1
4 NIL PAST)

FOUND POSSIBLE
(*MILITARY-UNIT®) FROM
WORD# (5)

(OBJECT) HAS BEEN FILLED
WITH (®TROOPS*)

PREDICTOR:
PREDICTING ROLE (ACTOR)

- G . e S s G I T . S . S . . W . G T S E— G P e e A e SIS R G e W B e G - e - -

COMMENTS

SUBSTANTIATOR has found the
word "SENT” which can build

a conceptual structure. That
structure is submitted to the
ACTION Sketchy Seript
Initiator Discrimination Tree
because it is a Conceptual
Dependency Action.

After selecting the ACTION
SSIDT, the PREDICTOR begins
to follow its branches. It
follows the PTRANS arc from
the node that tests the
filler of the <=> role (node
1 in figure 3.1). Now the
PREDICTOR is at node 2 which
tests the OBJECT role. The
PREDICTOR simply predicts the
OBJECT will be filled with
one of the arc labels leading
to a deeper node. If the
OBJECT cannot be filled with
one of these, the conceptual-
ization is of no interest to
the PREDICTOR at this point
since it cannot possibly be
the key request of a sketchy
script.

The SUBSTANTIATOR has decided
where in the sentence to look
for the filler of the OBJECT

role.

It looks there and finds the
word "TROOPS" which can
indeed be interpreted as one
of the predicted fillers -
MILITARY-UNIT.

The PREDICTOR follows the

B —

———— e

WILL BE FILLED WITH AN

ELEMENT FROM THE LIST
(*POLITY®
®MILITARY-UNIT®)

SUBSTANTIATOR:
PREDICTING (ACTOR) IS
~ SUBJECT OF (SEND1 4 NIL
PAST)

FOUND POSSIBLE
(*POLITY®) FROM WORD# (2)
(ACTOR) HAS BEEN FILLED
WITH (®ISRAEL®)

PREDICTOR:
PREDICTING ROLE (TO) WILL
BE FILLED WITH AN ELEMENT|
FROM THE LIST (®POLITY®) |

:
]
i
:
i
;
:
|

SUBSTANTIATOR:
WORD# (6) INTO CAN POSSIBLY
ADD (TO)
TENTATIVELY RESOLVING INTO
TO INTO2

PPEDICTING (TO) IS
(PREP-OBJECT) OF (INTO2
6)

FOUND POSSIBLE (®POLITY®)
FROM WORD# (8)

(TO) HAS BEEN FILLED WITH
(®LEBANON®)

PREDICTOR:
PREDICTING ROLE (FROM) WILL|
BE FILLED WITH AN ELEMENT|
FROM THE LIST (®*POLITY®) |

]

63

MILITARY-UNIT arc from node 2
to node 5. Node 5 tests the
ACTOR role. The only arcs
node 5 are labeled with
POLITY and MILITARY-UNIT.

Again the SUBSTANTIATOR
decides where in the sentence
to look for the desired
conceptual role.

In the position where it
expects to find the syntactic
subject of SEND, it finds
"ISRAEL" which can be
interpreted as a POLITY. Thus
the POLITY arc from node 5 is
followed.

The PREDICTOR has now arrived
at node 6 of the SSIDT. That
node tests the TO role. As
the PREDICTOR traces deeper
into the SSIDT, there are
fewer arcs leading from each
node. As FRUMP fills out the
conceptualization, there are
fewer and fewer key requests
that it can partially match.
There is only one arc from
node 6.

The SUBSTANTIATOR decides
that the TO role can be added
by the preposition INTO.

It looks where it expects the
object of the preposition to
be,

and finds the word LEBANON
which can be interpreted as a
POLITY.

By following the POLITY arc
from node 6, the PREDICTOR
arrives at node 7 of the

SSIDT. This node tests the

SUBSTANTIATOR:
TEXT ANALYZER UNABLE TO ADD
ADD (FROM) - CALLING
INFERENCE PROCEDURES

INFERRING (FROM) IS
(®*ISRAEL* CERTAINTY (8))

PREDICTOR:
SELECTED SKETCHY SCRIPT
$FIGHTING

- - e e e . A W W G - e W - - . T W W e e e e W e W e e - -

64

FROM role. The only arc
leading from the node is
labeled with POLITY. Thus the
FROM role must be filled with
a POLITY if a sketchy script
is to be identified.

The SUBSTANTIATOR is urable
to add the FROM role from the
text. It therefore resorts to
its inferencer.

The SUBSTANTIATOR is able to
infer that the FROM role can
be filled with ISRAEL. The
actual workings of the
inferencer will be discussed
in detail in chapter 5. For
now it is sufficient to know
that the FROM role was filled
by the location connected
the ACTOR role. This filler
is given a certainty of 8 on
a scale of 1 to 10 since the
infe. ence might be wrong.

The POLITY arc is followed
from node 8. It leads to a
terminal node containing that
points to a request within
the sketchy script $FIGHTING.
The $FIGHTING script is then
activated and request R2 is
satisfi=d.

So finally a sketch
process the SUBSTANTIA
predictions to help in a
fact that there was no
Sketchy Script Initiator
PREDICTOR to 1lead the
building up a conceptua
sketchy script.

The conceptualizati

(ACTOR
<=>
OBJECT
TO

y script is identified. During the
TOR has always been given top-down
nalyzing the text in spite of the
initial current context. The ACTION
Discrimination Tree was used by the
SUBSTANTIATOR through the process of
lization capable of activating =

on built by FRUMP is

ISRAEL
PTRANS
TROOPS
LEBANON

65

FROM ISRAEL)

Request R2 of $FIGHTING which the above
conceptualization matches is

(ACTOR POLITY
<=> PTRANS
OBJECT MILITARY-UNIT
TO POLITY
FROM POLITY)

In addition the sketchy script $FIGHTING imposes a
requirement that the filler of the TO role be different from
the filler of the ACTOR role. This is necessary to
eliminate the possibility of the script being called up when
MILITARY-UNITs are returning to their own country. This
test is, of course, satisfied for the conceptualization
built in above example.

3.4.6 Complexity of Event Induced Activation

The number of tests needed to activate a sketchy script
from a conceptualization is equal to the depth of its leaf.
The depth of the leaves is not related to the total number
of sketchy scripts in the system but rather the number of
conceptual roles in the key request conceptualization; only
in rare cases is a role filler examined more than once. The
number of sketchy scripts does, however, affect the
branching factor of the tree. However, the branching factor
is only logarithmic in the number of scripts. Furthermore,
most of the work in selecting an arc is done in filling a
missing conceptual role not in selecting the arc once the
filler has been found. The matching process to select an
arc based on how the missing role was filled is very
inexpensive. Thus, the complexity of sketchy script
activation is logarithmic in the number of scripts in the
system and has a very small constant.

This method of script selection is very dependent on
having a primitive decomposition of word meanings. It is
absolutely essential that the process of matching a
conceptualization built from the text to the key requests be
spread throughout the discrimination tree. Without that
property, the matching process would grow linearly with the
number of key requests. This would spell ultimate disaster
for the entire system. FRUMP uses Conceptual Dependency
decomposition. However, any other decomposition method of
similar representational power would also be adequate.

SRSTRENTRE———————

66

It is possible from the SSIDTs to understand why key
word systems work as well as they do. A semantically rich
word (whose meaning representation is very nearly an entire
conceptualization) can all alone arrive at or very near a
leaf rnode of the SSIDT all by itself. In a key word system,
these semantically rich words are explicitly tagged with
situational specific information. This circumvents the need
for tracing through a structure like the SSIDT. However, in
key word systems, problems arjise with words that have
several meanings and when there is no single semantically
rich key word. FRUMP's SSIDTs are general enough that both
of these situations are easily handled. Semantically rich
words are simply treated as any other word. The difference
is that they give a lot of information to the SSIDT so that
much progress can be made toward a leaf node.

——— A — -

CHAPTER 4

PREDICTING CONSTRAINTS

4.1 Introduction

Once a script has been selected and a current context
has been established, the PREDICTOR can begin making its
predictions about what will occur next. This chapter
classifies the types of predictions that the PREDICTOR can
make and gives the rules for generating them. The next
chapter will discuss how the SUBSTANTIATOR services each
prediction.

4.2 Kinds of Understander Predictions
There are six broad categories of predictions the
PREDICTOR can make. This chapter will discuss how they
differ and situations in which each prediction type is made.
The PREDICTOR can predict:
1) a specific sketchy script
2) constraints on a sketchy script

3) on: or more particular conceptualizations

4) one or more general constraints on a
particular role filler of a conceptualization

5) one precise filler for a role in a
conceptualization

6) several precise role fillers for a role in
a conceptualization

- 67 -

68

4.3 Predictions from Issue Skeletons

Often a news article will refer to several related
sketchy script situations. Thus while processing a story
FRUMP must be able to realize that an additional sketchy
- script situation is being referred to by the text. When
this happens the new sketchy script must be activated to
enable FRUMP to process any events from that situation that
might be reported.

-

The PREDICTOR is able to anticipate the related sketchy
scripts of a news situation by means of issue skeletons.
This is implicit reference activation which was discussed in
chapter 3. Here we will outline at a lower level what
predictions are actually made during implicit reference
activation.

The natural disaster issue skeleton looks like this:

NATURAL DISASTER ISSUE SKELETON

N1 decea\ /==> N3 dee==\
disaster \ / MCASUALTY \
script \ / bundle \
i \ / \
(cause) >=> (cause) ===< >== (motivate)
' / \ / H
H / \ / '
v / \==> Ni§ decc=/ b
N2 deeee/ IDAMAGE v
secondary bundle N5
disaster $RELIEF
scripts
figure 4.1

N1, N2, N3, N4, and N5 are nodes in the issue skeleton.
Sketchy scripts can be hooked to the nodes. There are
limitations at each node to what can be hooked there.

Node N1 is the node for the initial disaster. Any
instantiated disaster script can be hooked at that node.

Node N2 is the node for disasters brought on by the
first one. Any number of disaster scripts can be hooked to
node N2. However, they must be secondary disasters, that
is, disasters which have causes. Natural disasters are not
acceptable. The issue skeleton links the initial disaster
script to the secondary disaster scripts with a "causes"
arrow. This indicates that the secondary disasters result
from the initial disaster.

69

Node N3 must be an instance of the casualty bundle
which is a type of request bundle. A reguest bundle is a
collection of conceptual requests similar to a sketchy
script. Requests are formed into bundles when that
collection of events occur in many different script
situations. For efficiency, rather than 1listing these
events once in each script, they are assembled into a unit.
Each script that requires these events includes a pointer to
the bundle. Thus each event of the bundle is stored only
once instead of once for each sketchy script in which it can
appear.

There is another reason for using bundles. When
several disasters strike the same location news articles do
not give separate casualty figures for each disaster.
Rather they give one figure for the number dead, one for
injured, and one for homeless. There is often no way to
apportion these numbers among the disasters. So instead of
connecting a casualty figure with each disaster sketchy
script, FRUMP must have a way to associate the figures with
the news issue as a whole. Therefore, instead of being
pointed to from the disaster sketchy scripts, the !CASUALTY
bundle is a node in the issue skeleton. It is often the
case that bundles are connected to issue skeletons rather
than directly to sketchy scripts. This will be discussed
further in chapter 8. To differentiate the names of request
bundles from sketchy scripts, the names of bundles are
preceded by "!" whereas the names of sketchy scripts are
preceded by "$". Request bundles behave exactly as sketchy
scripts except they do not directly correspond to a specific
real world situation.

The casualty bundle contains conceptualizations for the
number of people killed, the number of people injured, and
the number of people left homeless. Node N3 in the issue
skeleton represents the fact that the killed, injured, and
homeless are a result of the disaster represented at node
N1.

Node N4 has attached to it the bundle IDAMAGE, which is
like the casualty bundle but contains events related to

-property damage. The issue skeleton represents that the

bundle hooked to NU is also caused by the disaster at N1.

The final node N5 can only be hooked to an instance of
the sketchy script $RELIEF. This part of the issue skeleton
represents that the damage and personal injury may motivate
instances of relief aid to the devastated location.

Thus issue skeletons provide a simple method of
representing the static relation between sketchy scripts in
a news issue.

70

When an article or set of articles which refer to
several related sketchy scripts is read, the internal
representation of the sketchy scripts must reflect the
relation between them. The conceptual representation of
several related sketchy scripts is an instantiated issue
skeleton. In an instantiated issue skeleton instances of
sketchy scripts and request bundles are hooked to the nodes.

An instantiated natural disaster issue skeleton might
look like this:

AN INSTANTIATED NATURAL DISASTER ISSUE SKELETON

$EARTH
QUAKE121 >=\ /<> 1CASUALTY301 \

H \ / \

i \ / \

1 \ / \
(causes) >=> (causes) -< p T

' / \ / |

| / \ /e

v / \=~> IDAMAGE214 >--/ H

N2 deee=/ H
secondary (motivates)
disaster H
scripts v

$RELIEF38
figure 4.2

Here $EARTHQUAKE121 is the particular instantiated
seript which is the main disaster. For example,
$EARTHQUAKE121 might represent the earthquake that struck
southern Mexico on August 13, 1975. In this instantiated
issue skeleton there are no secondary disasters yet. The
instantiated damage bundle 1CASUALTY301 has been hooked to
node N3. ICASUALTY301 contains the conceptual dependency
representations of the number killed, injured, and homeless
for $EARTHQUAKE121. If there were an instance of a
secondary disaster !CASUALTY301 would reflect those casualty
figures as well. IDAMAGE214 has been hooked to N4. It is a
particular 1instance of the [IDAMAGE request bundle.
$RELIEF38, an instantiated relief sketchy script, has been
hooked to N5.

While reading news stories, FRUMP tries to build
instantiated issue skeletons. However, before an issue
skeleton can be instantiated, it must be jinitiated.
Initiating an issue skeleton means that the system has
decided that the input article is discussing the
corresponding news issue. From then on, the system tries to
hook instantiated sketchy scripts from the news article into

L e

T

that issue skeleton. This results in an instantiated issue
skeleton like the one described above.

The PREDICTOR injtiates an issue skeleton when evidence
from the current context indicates that the issue skeleton
is appropriate. This evidence comes from sketchy scripts
activated by FRUMP's Dbottom-up activation procedures
discussed in chapter 3. Some sketchy scripts are marked to
indicate that they typically fit into a certain issue
skeleton. When one of these sketchy scripts is

instantiated, the corresponding issue skeleton must be
initiated.

PREDICTOR Rule 1
When a new sketchy script is instantiated that
cannot be used by the current context, and if
that sketchy script typically fits into a

particular issue skeleton, initiate that issue
skeleton.

This rule says that when a sketchy script is
instantiated which the PREDICTOR cannot incorporate into an
existing 1issue skeleton, it should check whether this
sketchy script can initiate an issue skeleton. If the newly
instantiated sketchy script can initiate an issue skeleton,
the PREDICTOR creates a token of that issue skeleton and
connects the new sketchy script to it.

For example, suppose there are no initiated issue
skeletons and FRUMP reads the following story:

A moderately strong earthquake struck the
southern Columbian city of Neiva early today,
killing at least 70 and injuring many more.
The Columbian seismological station said the
quake hit at 3:22 A.M. and measured 7.5
degrees on the Richter scale. The epicenter
was 60 miles southwest of Bogota.

FRUMP's activation procedures will identify this story
as reporting an earthquake. That is, the sketchy script
$EARTHQUAKE will be activated. As soon as any script
variable is bound (e.g., when FRUMP identifies, say, the
location to be Neiva or southern Columbia) the script is
marked as instantiated. The PREDICTOR knows that
$EARTHQUAKE is a disaster sketchy script. Therefore, it
typically appears in the natural disaster issue skeleton.
Since there is no previous issue skeleton that might help
explain an earthquake in Columbja, rule 1 applies.

W s

| or——

72

Therefore, the PREDICTOR makes a copy of the natural
disaster issue skeleton and connects the newly instantiated
earthquake sketchy script with it at aode N1.

Issue skeletons provide the PREDICTOR with a means of
anticipating sketchy scripts. Notice that in the
uninstantiated natural disaster issue skeleton N3, N4, and
N5 can only be hooked to specific sketchy scripts or request
bundles. N3 can only be matched by an instance of
ICASUALTY; N4 can only be matched with an instance of
IDAMAGE; N5 can only be matched with an instance of
$RELIEF. These specific sketchy scripts and request bundles
ought to be expected once the issue skeleton is initiated.

PREDICTOR Rule 2
When an issue skeleton is initiated, predict
(activate) the sketchy scripts and request
bundles explicitly required by that issue
skeleton.

This rule is the underlying mechanism for implicit
reference activation described in chapter 3. The rule tells
the PREDICTOR to activate a sketchy script whenever a
context is built which requires that particular sketchy
script.

For example, once the issue skeleton is initiated for
the Neiva earthquake, the PREDICTOR activates the sketchy
script $RELIEF via rule 2. Thus FRUMP will be able to
process the story if it continues:

The United States announced that the army
would air 1lift foodstuffs and drinking water
to the devastated area.

$RELIEF, which is already active, provides the correct
context in which to interpret the above sentence. If
$RELIEF were not active at this point, it would have to be
activated by FRUMP's bottom up mechanisms before the air
1ift event could be understood. However, rule 2 allows the
PREDICTOR to immediately select the appropriate sketchy
script. The PREDICTOR can also hook the newly instantiated
$RELIEF sketchy script into the correct issue skeleton as
well.

The previous discussion described how issue skeleton
nodes which required specific sketchy scripts could help the
PREDICTOR anticipate input events. However, nodes in an
instantiated issue skeleton can be satisfied even after the

—————————

13

article that initiated it has been finished. Later articles
can report on further developments of news issues.

After initiating an issue skeleton from a news article,
FRUMP must continue to be on the lookout for sketchy scripts
to connect to this issue skeleton even after the initiating
article has been read. For example, shortly after reading
about $EARTHQUAKE121 an article might be read which reports
fires from ruptured gas wmains in the area of the earthquake,
FRUMP must be able to connect the fire to the instantiated

issue skeleton of figure 4.2. The instantiated fire script
must be hooked into node N2.

PREDICTOR Rule 3
When a sketchy script has been instantiated,
check if it satisfies a node in some existing
initiated issue skeleton. If so, hook the
sketchy sc: ipt into that issue skeleton.

This rule is equivalent to predicting that the script
situations required by an initiated issue skeleton are
likely. These predictions enable FRUMP to relate later news
articles to a previous news issue. Different nodes in the
same issue skeleton can often be satisfied by separate news
articles. For example, several days after the report of a
flood there may be a report of a cholera epidemic. It is
important for the system to realize that the disease is a
secondary disaster of the flood.

If FRUMP does not anticipate the possibility of
secondary disasters from the flood, it will misinterpret the
cholera outbreak as a separate disaster. This will result
in two wunconnected natural disaster issue skeletons: one
for the flood and one for the cholera.

FRUMP must somehow expect the cholera outbreak from the
flood article. The PREDICTOR is able to expect these events
by using rule 3. Whenever a sketchy script is instantiated,
it is tested against the outstanding requirements of the
currently initiated issue skeletons. The tests consist of
constraints on the type of sketchy script (e.g., for N2 it
has to be a secondary disaster; for N5 it must be a $RELIEF
sketchy script) and on constraints on the script variables
(e.g., for N5 the relief must be sent to the same location
as was hit by the disaster).

The tests are evaluated whenever a sketchy script that
was initiated by either of the bottom up processes (explicit
reference or event induced activation) is instantiated. If
a script matching all of a test's requirements is found, the

P
s

e A —

IE————-

T4

PREDICTOR hooks that script into the appropriate issue
skeleton node. If the node requires only one script, then
the node is marked as satisfied and that test is removed so
no other sketchy scripts will be found. If, however, the
node can handle more than one script (as N2 in figure 4.1),
the test 1is continued. Any further sketchy scripts that
satisfy the test are also hooked to that node.

Thus rules 1-3 enable the PREDICTOR to anticipate issue
skeletons and sketchy scripts associated with news issues.
Rule 1 tells the PREDICTOR how and when to initiate an issue
skeleton. Rule 2 enables the PREDICTOR to anticipate
specific sketchy script situations while processing the
story that initiated the news 1issue. Rule 3 allows the
PREDICTOR to correctly relate non-specific sketchy script
situations to the proper issue skeleton, and to correctly
hook script situations occurring in later news articles to
previous issue skeletons.

4.4 Predicting Conceptualizations

When the PREDICTOR decides from the current context
that a particular event, state, or state change will occur,
it makes a specific prediction of that conceptualization to
the SUBSTANTIATOR. A predicted conceptualization is a
conceptual dependency structure. In the structure the role
fillers might be specific tokens of objects or they might be
only type constraints on the ultimate filler of the role.
For example, the following CD structure might be predicted:

====> SHUMAN®

JOHN1 <=> ATRANS <-o- ®PHYSOBJ*® -

o==el JOHN1

This prediction tells the SUBSTANTIATOR to expect an
event of JOHN1 giving something to someone. JOHN1 is a
token of a specific person that FRUMP already knows about.

The SUBSTANTIATOR's job is then to find from the text
or infer a specific event which matches this prediction and
flesh out the CD structure as much as possible. That is, it
will ¢try to find exactly what the physical object is and to

e — -

T P N - R

e

|
!
|
|
|
§
|

75

whom it is given.

Conceptualization predictions always come from sketchy
scripts or request bundles. Sketchy scripts contain all of
FRUMP's knowledge about how the world behaves. It is this
knowledge that the PREDICTOR uses to predict 1likely
conceptualizations. There are three ways the PREDICTOR can
anticipate a conceptualization. For each way there is a
corresponding rule in the PREDICTOR.

PREDICTOR Rule 4
When a sketchy script is activated, predict
the default track conceptualizations in that
sketchy script.

This is what actually happens when a sketchy script is
activated. The rule instructs the PREDICTOR that the normal
events of a sketchy script should be predicted when the
sketchy script is identified.

For example, consider the following sentence:
The police arrested John Smith early today.

As discussed in chapter 3, the above input activates the
sketchy script $ARREST by explicit reference. Among the
usual events in $ARREST is the suspect being charged with a
crime. Using rule 4 the PREDICTOR predicts to the
SUBSTANTIATOR that a likely event is that John Smith will be
charged with a crime. These predictions are made in the
form of a conceptual dependency representation of an act,
state or state change. The SUBSTANTIATOR uses the
predictions to guide its text analyzing and inference
procedures.

PREDICTOR Rule 5
When a sketchy script variable is bound, check
whether the binding can predict non-default
conceptualizations.

Some conceptualizations should be predicted only when
certain information is found to indicate that they are
likely. These are conceptualizations which can occur in the
script situation but do not occur often enough to justify
always predicting them. For example, one event that can
occur during earthquakes is the collapse of buildings. Even
though this is a common occurrence most earthquakes reported

I ——

76

are simply not violent enough to destroy buildings. the
PREDICTOR therefore only predicts destruction of buildings
if the current context indicates a strong earthquake.

To illustrate the rule, consider the following story:

A 6.3 Richter scale earthquake struck the
southern Mexico city of Oaxaca today. Early
reports indicate that as many as 100 people
have died, many as the result of the collapse
of three high-rise apartment complexes. The
quake, which is said to be the strongest in 10
years was felt as far north as Mexico City.

When FRUMP recognizes that this is a story about an
earthquake, it brings in the sketchy script $EARTHQUAKE.
This script contains the fact that the magnitude of the
quake will usually be given in the story. From rule 4, the
PREDICTOR then predicts that the text will mention the quake
magnitude.

Attached to the script variable for the quake magnitude
is the fact that if it is over 3 on the Richter scale or 2
on the Mercali scale there is the possibility of buildings
collapsing. This is, of course, a rather arbitrary
threshold but it is sufficiently 1low that smaller
earthquakes are not able to topple buildings. Thus when the
PREDICTOR is told that the quake magnitude is 6.3 it
predicts that there might be the destruction of buildings.
Of course, this prediction (like all predictions) might be
wrong. If, for example, there is no city near the
earthquake site, there will probably not be buildings
destroyed. The PREDICTOR still makes the prediction. If
there are no buildings at hand, that prediction will simply
not be verified.

The earthquake sketchy script predicts destroyed
buildings if the magnitude of the quake is high enough but
does not insist on there being buildings present. That {is,
the preconditions used to predict destroyed buildings are
incomplete. There is a reason for not performing exhaustive
tests before making predictions. Remember that the
PREDICTOR's Jjob is only to provide guidance to the
SUBSTANTIATOR. The PREDICTOR predicts likely events to help
channel the SUBSTANTIATOR's processing. The preconditions
that trigger the inference are decided upon when the sketchy
script is written. They are chosen to provide the most
guidance to the SUBSTANTIATOR with the least expense in
evaluating them. In the earthquake example, it is easy to
test whether the quake magnitude is over a certain
threshold. However, it can be difficult to Justify that
there are buildings around. If the story states only that

17

the quake occurred in northern Yugoslavia, for example, it
would be relatively expensive to decide whether or not there
are buildings near by.

Rule 5 represents a kind of inference. Instead of
inferring an event, FRUMP uses this rule to infer a
prediction from tests on script variables. There 1is a
problem if the event to be predicted is mentioned in the
text before the required script variables are satisfied.
For example, the above story might well have started

Three high-rise apartment complexes have
collapsed during an earthquake in the southern
Mexico city of Oaxaca today killing as many as
100 people. The quake, said to be the
strongest in 10 years, measured 6.3 on the
open ended Richter scale.

Rule 5 would not be applied until the second sentence.
By that time, the event of the buildings collapsing has
already been ignored. This rule buys efficiency but with a
concomitant danger of not predicting an event soon enough.
In cases where it is important not to miss an unusual event
in this way, the event must be made part of the sketchy
script. Then it will always be predicted, and it follows
that a prediction will then exist before the corresponding
event is seen in the text.

PREDICTOR Rule 6
When the presence of a predicted
conceptualization is verified, and that
conceptualization indicates which of several
tracks in the sketchy script should be
followed, predict the conceptualizations along
the selected track.

Cullingford (1978) discusses how certain parts of
scripty situations can progress in any of several different
ways. Each of the various possibilities is represented by a
different path through the script. These paths are called
tracks.

FRUMP makes use of tracks within its sketchy scripts to
eliminate irrelevant predictions. Certain
conceptualizations are likely only along specific script
tracks. This rule states that these conceptualizations
should only be predicted when their respective tracks are

————————— 2 T Y

78

applicable.

The system efficiency is degraded by irrelevant
predictions. As we shall see 1in following sections the
SUBSTANTIATOR can satisfy a predicted conceptualization a
little at a time by a series of partial matches. Althougn
irrelevant predictions from the PREDICTOR can never be
satisfied, the system must spend time processing partial
matches for them. The time spent deciding that a match is
not possible 1is wasted. Processing efficiency can thus be
increased if the PREDICTOR can avoid making irrelevant and
unsat.sfiable predictions. Tracks within scripts provide an
efficient method of eliminating a large number of irrelevant
predictions.

To illustrate how tracks can be used to help control
predictions consider the following news article:
Iranian students marched down the streets of
Teheran to the royal residence yesterday
protesting the continued rule of the Shah.

Even though demonstrators can be injured while
demonstrating, FRUMP does not immediately predict that some
demonstrators will be injured. This event is not part of
the normal demonstration sketchy script. It exists only
along the violent demonstration track of the script. Unless
the system has some reason to believe that it is following
the violent demonstration track of the sketchy script,
injuries to demonstrators should not be predicted.

However, if the following sentence is next:
As the protesters neared the palace the crowd
began to hurl stones and fire bombs.

It is clear that the demonstration is following the violent
track. Once FRUMP has processed this second sentence it
predicts the other events along the violent demonstration
track: demonstrators may be arrested, police might fire at
them, and there may be injuries and deaths.

The remainder of this section will be devoted to
describing how sketchy scripts are organized into tracks and
how the PREDICTOR is able to decide that a particular track
is applicable.

The following diagram shows the structure of a
multi-track sketchy script:

AD=AO71 432 YALE UNIV NEW HAVEN CONN DEPT OF COMPUTER SCIENCE F/6 8/2
SKIMMING STORIES IN REAL TIME: AN EXPERIMENT IN ::;g::l;ggcu’ffrETC{U)

UNCLASSIFIED

10 B w

— R
™

fles = g

L
o

Ni2S s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

79

The Structure of a Multi-Track Sketchy Script

& event1
H
& event2
|
v
PATT TT T P
£HE N\ \
track1 / \ track2 \ track3
® event3 {(default) \
H ® event? event9
eventl ! H
1 # event8 # event10
event5 H !
H !
eventb H /
\ / /
\ / /
A VT S

v
& event11

figure 4.3

Each event is a conceptual dependency representation
corresponding to an important action, state, or state change
in the script situation. 1In the situation corresponding to
this sketchy script, events 1, 2, and 11 usually occur. In
addition, either events 3, 4, 5, and 6 or events 7 and 8 or
events 9 and 10 will probably occur. However, if events 3,
4, 5, and 6 occur, events 7 and 8 will not occur etec.
Events 3-6 make up track 1, events 7 and 8 make up track 2,
and events 9 and 10 are track 3. Track 2 is the default
path. That is, events 7 and 8 occur more often than events
3-6 or 9 and 10. ‘

In order to take advantage of the track structure in
scripts, the PREDICTOR must be able to determine which track
is appropriate. It can then predict the conceptualizations
for the events along that track and avoid the predictions
along other competing tracks. To do this, the PREDICTOR
predicts the most important events along each of the various
tracks. If one of these is found in the input then the rest
of the events along that track are predicted and the events
that were predicted from other competing tracks are
"unpredicted.”

e

80

In the script of figure 4.3 the events that are starred
are predicted when that sketchy script is activated. These
are the events predicted via rule 4. When this sketchy
script is activated all of the events along the default path
are predicted. In addition, the important events along the
non-default paths are predicted. In figure 4.3 the
important events on the non-default path are events 3 and
10. One of the non-default paths might correspond, for
example, to the event of fighting between demonstraters and
police in the demonstration sketchy script. If an important
non-default path event is found, the remaining events in
that path are predicted and the default path events are
unpredicted. In this example, if event 3 is fcund or
inferred, events 7, 8, and 10 will be unpredicted and events
4-6 will be predicted. Conversely, if a default path event
is found, all of the important predicted non-default path
events are unpredicted. Thus, if the prediction of either
event 7 or 8 is satisfied, events 3 and 10 are
"unpredicted."

In this way the system efficiency can be improved by
keeping the number of outstanding predictions to a minimum.
Since events in different competing tracks are mutually
exclusive, the PREDICTOR can use the track structure of
sketchy scripts to avoid predicting many irrelevant
conceptualizations.

4.5 Predicting Characteristics of Possible Role Fillers

Often the SUBSTANTIATOR will not be able to verify an
entire predicted conceptualization. Instead, the
SUBSTANTIATOR will report back to the PREDICTOR that it has
matched a part of a predicted conceptualization. If such a
partial match is found then the PREDICTOR has the
responsibility of leading the SUBSTANTIATOR through the rest
of the match.

PREDICTOR Rule 7
If the SUBSTANTIATOR returns a partial
conceptualization which matches exactly one
prediction, successively predict the remaining
roles and their fillers in the matched
conceptualization.

This rule says that when only one conceptualization is
partially wmatched, the PREDICTOR must conclude whether or
not an actual match exists. In applying rule 7 the
PREDICTOR makes a 1list of the remaining roles in the

81

predicted conceptualization and one by one predicts to the
SUBSTANTIATOR that each will exist in the conceptualization
being built and will be filled with something that matches
the filler in the predicted conceptualization. If the
SUBSTANTIATOR is able to verify each role and filler, the
predicted conceptualization is matched, and the PREDICTOR
adds the conceptualization built to the current context. If
not, the partial match was a false alarm. The SUBSTANTIATOR
never adds something to a structure that contradicts a
prediction. The failure of a low level role prediction is
never caused by the SUBSTANTIATOR fleshing out the
conceptualization the wrong way for the prediction.

As an example of how rule 7 is applied, suppose the
following partial conceptualization has been built from the
word "“took."

<=> ATRANS

manner
]

]
FORCED

Further suppose that the only predicted conceptualization
that this might match is:

=====> COUNTRYA

]
]
i
COUNTRYA <=> ATRANS <-o- CONTROL(BUSINESS)--|

manner type
' i ====={ COUNTRYB
FORCED \
ECONOMIC

This conceptualization is predicted in the sketchy
script $NATIONALIZE, the script wused to process
international nationalizations. It represents the action of
one country taking economic control of a business from
another country. The partial conceptualization was offered
by the SUBSTANTIATOR as an attempt at matching this
prediction. It matches part of the prediction but the match
is far from complete. It is the PREDICTOR's responsibility
to help the SUBSTANTIATOR flesh out the partial
conceptualization. the PREDICTOR must determine if the
predicted conceptualization is actually matched or not.

82

One at a time, the PREDICTOR asks SUBSTANTIATE to add
the following roles and fillers to the built
conceptualization:

CD ROLE FILLED WITH

ACTOR a country

OBJECT economic control of a business
TO a country

FROM a country

Since the act role is already filled with ATRANS and
the MANNER role is already filled with FORCED, these are not
predicted. If the SUBSTANTIATOR is able to add each of the
desired roles, the PREDICTOR adds that prediction to the
current context, indicating that it has been found in the
text. If, however, any predicted role could not be added by
the SUBSTANTIATOR, or if the SUBSTANTIATOR could not fill
the role with the desired role filler, the built
conceptualization does not match the prediction. In this
case the prediction is not added to the current context but
remains so that it may be matched by later text.

The PREDICTOR's responsibility can be complicated if
the partial conceptual structure built by the SUBSTANTIATOR
matches several predicted conceptualizations. In that case,
the PREDICTOR must decide which of the partially matched
predictions is the correct one. This is done via rule 8.

PREDICTOR Rule 8 ;
If the SUBSTANTIATOR returns a partial
conceptualization which might match several
predictions, vpredict a role that can
differentiate the predictions and a list of
possible fillers.

The rule says that if the SUBSTANTIATOR has built a
partial conceptualization, and that partial
conceptualization matches several outstanding predictions,
the PREDICTOR should not predict a single role and filler as
dictated by rule 7. Instead, the PREDICTOR should choose a
role which has a different filler in each of the predicted
conceptualizations. This role is then predicted to the
SUBSTANTIATOR. The SUBSTANTIATOR is also given the list of
fillers from the predicted conceptualizations. The
SUBSTANTIATOR then tries to fill the predicted role with an
element from the list. If the role can be added and filled,
the only predicted conceptualization that might be matched

e L

83

is the one whose role filler corresponds to the role filler
actually built by the SUBSTANTIATOR.

For example, the script for processing demonstrations
makes among its predictions the following:

=====< LOCATION1
DEMONSTRATORS <=> PT§ANS <-0- DEMONSTRATORS -:
inst 1----) LOCATION2
QH:LK

and

«====¢ POLICE STATION

POLICE <=> PTRANS <-o0- POLICE -|

~====> LOC (DEMONSTRATORS)

The first conceptualization predicts that the
demonstrators will march from one location to another. The
second says that police might arrive at the location of the
demonstrators.

The conceptual inferencer of the SUBSTANTIATOR may be
unable to verify either of these predictions in toto. If
this is the case, then the SUBSTANTIATOR must rely on the CD
role inferencer or text analyzer to match part of one of the
conceptualizations.

Suppose the text analyzer has found a word that can
mean PTRANS. Then the SUBSTANTIATOR will inform the
PREDICTOR that it has built the following partial
conceptualization:

<=> PTRANS

This partial conceptualizations matches both of the
above predictions equally well. Rule 8 dictates that the
PREDICTOR must predict a role which can differentiate which
conceptualization is actually matched.

In this example, since the conceptualizations have
different ACTORS, that role can be used to differentiate
them. The PREDICTOR predicts that the ACTOR role will be
filled with either “demonstrators™ or “police.® If the

-t

b ———— e e g

84

SUBSTANTIATOR cannot fill the ACTOR role with either, then
neither conceptualization can be matched. If the role can
be filled with "demonstrators"™ then the first might be
matched but certainly not the second. If "police" fills the
ACTOR role then the reverse is true.

Problems can arise when more than two predicted
conceptualizations are partially matched. If there are more
than two partially matched conceptualizations, there might
not be a single role which can be used to differentiate
among all of the conceptualizations at once. For example,
suppose the PREDICTOR has predicted the following three
conceptualizations:

Prediction 1: ===<{ LOCATION1

DEMONSTRATORS <=> PTRANS <-o0- DEMONSTRATORS -|

i
inst =-==> LOCATION2
|

]
$WALK

Prediction 2: wee=={ POLICE STATION

POLICE <=> PTRANS <-o- POLICE -|

====~> LOC (DEMONSTRATION)

Prediction 3: ~==< LOC (DEMONSTRATION)
H 4
POLICE <=> PTRANS <-o- DEMONSTRATORS -|
|
===> POLICE STATION

The third conceptualization is the representation for
the event of police bringing demonstrators to the police
station. This might be predicted when FRUMP decides that
the demonstration is violent and there is a probability of
the demonstrators being arrested.

Recall that the conceptualization built by the
SUBSTANTIATOR so far is:

<=> PTRANS

Ghids.

L .

85

No single role added to the conceptualization being
built will allow the PREDICTOR to distinguish which of the
three predicted conceptualizations is matched. In these
cases the PREDICTOR must differentiate among the predictions
in stages.

For these predictions, the PREDICTOR mizht first ask
the SUBSTANTIATOR to find the ACTOR role and predict that it
will be filled with either "police" or "demonstrators." If
the SUBSTANTIATOR is able to add the ACTOR role and fill it
with "demonstrators" then prediction (1) is the only viable
one. If, however, the SUBSTANTIATOR fills ACTOR with
"police" then either predictions (2) or (3) might be
matched. The PREDICTOR must then distinguish which, if
either, of these is actually matched. This is done by
predicting yet another role and list of fillers.

At this point the conceptualization built is:

POLICE <=> PTRANS

The two remaining viable predictions have different
OBJECT roles. If the OBJECT role were filled the PREDICTOR
could decide which conceptualization was actually matched.
Therefore, the PREDICTOR then asks the SUBSTANTIATOR to fill
the OBJECT role with either "police" or "demonstrators."

If the SUBSTANTIATOR can build the OBJECT role and fill
it with "police" then prediction (2) is the only viable one.
If the OBJECT role is filled with "demonstrators"™ then
prediction (3) is the only possible match.

Of course, once the PREDICTOR has narrowed the viable
predictions to one, rule 7 is applied to determine if the
match is complete.

As always, if the SUBSTANTIATOR is not able to build
the role at all, or if it can fill it only with something
that cannot be considered either "police" or "demonstrators"
none of the predictions can match and the original
conceptualization built by the SUBSTANTIATOR

<=> PTRANS

has proved to be inapplicable. This might occur, for
example, if the article states that newsmen arrived on the
scene. Newsmen arriving cannot match any of the
predictions.

The process the SUBSTANTIATOR goes through when a list
of possible fillers is predicted for a conceptual dependency
role is discussed in detail in the next chapter.

86

Rules 7 and 8 are used by the PREDICTOR to lead the
SUBSTANTIATOR through a process of matching the
conceptualization being built to one or more predicted
conceptualizations. This matching process is aimed at
transforming a partial match to a complete match. During
the matching process the SUBSTANTIATOR fleshes out the
conceptualization being built until the built
conceptualization either completely matches a prediction or
clearly cannot match a prediction. The fleshing out of the
conceptualization being built 4is guided by the PREDICTOR.
Rules 7 and 8 dictate how the PREDICTOR is to use sketchy
script constraints on role fillers of script requests.

4.6 Predicting One Explicit Role Filler

In the proper circumstances the PREDICTOR can do better
than to predict constraints on a role filler. If the role
filler to be predicted corresponds to a script variable that
has already been bound, the binding of that script variable
can be predicted in its place.

PREDICTOR Rule 9
If a role filler is predicted by rule 7, and
that role is filled by a previously bound
script variable, predict the more explicit
binding of the script variable instead of the
less specific filler constraint from the
predicted conceptualization.

This rule basically says that when the PREDICTOR is
predicting individual role fillers it should make the
tightest prediction possible.

For example, suppose FRUMP has read the beginning of a
story about Iran nationalizing American owned oil interests.
From the nationalize sketchy script the PREDICTOR makes the
prediction that there might be compensation made. Thus from
the generic sketchy script $NATIONALIZE, the PREDICTOR can
predict that there will be an ATRANS of money or other
compensation from one country to another or companies of
another. However, from the current context the PREDICTOR
can sake the more explicit prediction that the ATRANS will
in fact be FROM Iran and TO America or American oil
companies.

These more explicit predictions can be of enormous help
to the text analyzer, for example, in resolving anaphoric or
implied references. Consider the following story:

-

L W

87

Iran announced the nationalization of the
holdings of Shell and Mobil oil companies in
that country. For the property they were paid
$2 million in cash and $12 million in
government bonds.

The problem here is to figure out who "they" refers to
in the second sentence. The word "paid" means that money or
other valuables were given by one participant to another.
Understanding this passage entails identifying who paid and
who was paid. One way to resolve these roles is to have
some memory/inference process notice that the conceptual
event of being paid for a possession implies that the
receiver of the money gave up the possession. Memory of
previously understood inputs could then be searched for an
instance of the candidates (Iran or Shell and Mobil) giving
up "property." The nationalization event would be found.
From this a system could conclude that sirce Shell and Mobil
were the ones who gave up a possession in the past, they are
probably the ones receiving the payment.

FRUMP's approach is much simpler. the PREDICTOR
predicts that there might be a compensation event in any
nationalization situation. The predicted event contains the
direction of the ATRANS: the recipient is the participant
whose property was nationalized; the donor is the
participant who performed the nationalization. These
participants are script variables in the nationalization
sketchy script and were bound during processing of the first
sentence. The compensation event predicted by the PREDICTOR
is an ATRANS from Iran to Shell and Mobil. Thus when a
compensation input event is found to match the prediction
from the PREDICTOR, the preferred participants of the event
are already included. Since the text does not contradict
these predictions, they are used in the final
representation.

There are times when the PREDICTOR can anticipate
almost exactly what will fill a role. In these cases if the
prediction is explicit enough and strong enough the role
filler can simply be assumed.

PREDICTOR Rule 10
If an explicit role filler is to be predicted
by rule 9, and there is previous information
indicating that the prediction is correct,
assume the prediction.

- PSRN ——

L W

88

This rule provides a method by which the PREDICTOR need
not bother the SUBSTANTIATOR with a request for a role
filler. It says that if the prediction is certain enough,
it can simply be assumed.

For example, consider the following story:

1) There was renewed fighting today between
Israeli and Syrian forces. 2) Syria fired on
Israeli positions in the Golan Heights. 3)
Israel retaliated with strikes against Syrian
fuel dumps.

After reading sentences 1 & 2 a top down processor can
make some very certain and precise predictions while
interpreting the third sentence. For reasons explained in
the next chapter the first word that is examined by the text
analyzer section of SUBSTANTIATE is "retaliated."
"Retaliated" builds a conceptualization that means an
unspecified negative act occurred. However, the dictionary
entry also furnishes three other pieces of data.

a) It predicts that the ACTOR of the negative act
will be its syntactic subject and was the
recipient of a previous negative act.

b) The negative act itself might be found as an
instrumental - probably after the preposition
"by" or "with."

¢) The recipient of the negative act might be
found as the object of the preposition
"against," and will be the actor of the
previous negative act referred to in (a).

The PREDICTOR is immediately given partial
conceptualizations as the text analyzer builds them. 1In
this case, it is given the information in the dictionary
definition of "retaliate." The system has already processed
sentences 1 and 2. Therefore it already knows about the
negative act of Syria against Israel. From this information
and the information from the T"retaliate" dictionary
definition, the PREDICTOR c¢an use rule 9 to predict that
Israel will be the ACTOR of the negative act.

B bk

L e

89

This prediction is very certain. The dictionary
definition stated absolutely that the ACTOR would be the
recipient of a previous negative act, and the PREDICTOR
knows of only <une previous negative act: Syria firing on
Israel.

The prediction is also quite precise. As discussed 1in
the previous section the PREDICTOR can predict the
constraint that whatever fills the ACTOR role must be a
country. However, in this case the PREDICTOR has predicted
the actual country itself.

In a similar manner an explicit country can also be
predicted for the recipient of the negative act. The system
knows that the recipient is the ACTOR of the previous
negative act. 1In this case it is Syria. Thus the PREDICTOR
can with some certainty predict that the recipient will be
Syria.

Rule 10 states that in cases such as these, the role
filling mechanisms need not be called at all. The PREDICTOR
all by itself can fill the ACTOR and recipient roles
correctly. The benefit is that the rest of the sentence
need not be processed at all. If the PREDICTOR is ccntent
with interpreting this input as a negative act by lsrael
against Syria, the system can go on to process the next
phrase.

It 1is possible, however, that the PREDICTOR's
assumptions will not be explicit enough to satisfy the
script requirements. The script, for example, might dictate
that it is important to find not only exactly what the
negative act is, but also exactly what military units of
Israel are the aggressors and what possession of Syria is
the target. In this case, the text analyzer will have to
interpret parts of the rest of the sentence, but it can do
so more easily in the context of these precise predictions.

Suppose, for example, that sentence 3 read

3a) Israeli planes retaliated with strikes against
Syrian fuel dumps.

3b) Israel retaliated by launching aircraft
strikes against Syrian fuel dumps.

In these sentences specific military units are given as the
aggressors. If the script dictates that it is important to
know that the military units are in fact planes as opposed
to tanks or missiles, the PREDICTOR must make the
appropriate prediction to the SUBSTANTIATOR so that the text

90

analyzer can be called. The text analyzer is told that it
is trying to find the aggressor and that it will be some
kind of mwmilitary unit. of Israel. From its knowledge of
English syntax and the data supplied by the word
"retaliate,"” the text analyzer has only a few places to
look. First, it might look at the subject of "retaliated"
as in 3a. If it is not there, it is possible that the
military units might be specified in the more explicit
specification of the negative act as in 3b. In either case,
the role filling mechanisms treat the request according to
rules 7 and 9.

4.7 Predicting Several Explicit Role Fillers

Often information of the sort supplied by "retaliate"
in the previous example will not be present. In these cases
it is often impossible for the PREDICTOR to determine alone
which script variable corresponds to the desired role
filler. Suppose that in the previous example sentence 3 is
replaced by

3c¢) Israel attacked Syrian fuel dumps.

It is still important for the PREDICTOR to furnish the
best predictions possible for the SUBSTANTIATOR to use in
interpreting the input. In processing this sentence, the
system again will initially try to find a word that can
build a structure. The first such word in 3¢ is
"attacked." The conceptualization built by "attacked"
partially matches a predicted conceptualization from the
military fighting script. The script conceptualization is
looking for military units of countries doing negative
things to each other.

Before processing sentence 3c, the system already has
selected the script for military fighting and bound script
variables for the fighting countries to 1Israel and Syria.
That is, the PREDICTOR knows from the first two sentences
that the story is about military fighting and that the
countries involved are Israel and Syria.

Therefore the system can predict explicit countries for
the aggressor and recipient. However, the predictions
cannot be certain. The system can know only that the
aggressor is either Israel or Syria or an ally of either;
the same is true for the recipient. To find which is which,
the role filling mechanisms must be called.

it ity

R g i

G ———

91

PREDICTOR Rule 11
If a single explicit role filler cannot be
decided upon, predict that the role will be
filled from the list of possible explicit rcle
fillers.

This type of prediction is still very valuable to the
SUBSTANTIATOR. Instead of having to construct the role
filler for itself, it only has to find enough information in
the text to decide which among the predictions is being
referred to.

Suppose in processing sentence 3¢ the PREDICTOR wants
to find out who the recipient of the hostile act is. It
asks the SUBSTANTIATOR to fill the role corresponding to the
recipient with Israel, Syria, or an ally. The PREDICTOR can
make the prediction that it will be one of these from the
current context. It knows it is reading a story about
fighting involving 1Israel and Syria. Therefore, other
hostile acts will probably involve these countries.

The SUBSTANTIATOR determines that the recipient of the
negative act is Syria and the possessions being harmed are
fuel dumps. Now the PREDICTOR can predict that the
aggressor wmust be Israel or one of its allies.

4.8 Conclusion

Using these eleven heuristic rules and the script
activating procedures, the PREDICTOR is able to provide a
detailed context in which the SUBSTANTIATOR can interpret
the text. The predictions of the PREDICTOR can be made at
many different levels. If a higher level prediction of an
issue skeleton, sketchy script, or conceptualization cannot
be substantiated by the text analysis and inference
procedures in the SUBSTANTIATOR, they can be refined by the
PREDICTOR to lower levels. At the 1lowest level, small
pieces of conceptualizations are predicted. These low level
predictions eliminate the need for a powerful parser.
Instead of having to build an entire conceptualization at a
time, the SUBSTANTIATOR need only verify role fillers.
Furthermore, the refinement process insures that the
SUBSTANTIATOR will always have the most explicit predictions
available. In the next chapter the methods the
SUBSTANTIATOR uses to satisfy the PREDICTOR's predicted
constraints will be cutlined.

CHAPTER 5

SUBSTANTIATING CONSTRAINTS

5.1 Introduction

It is SUBSTANTIATOR's job to verify and give substance
to predictions of the PREDICTOR. There are two levels of
predictions. The PREDICTOR can ask that an existing
conceptualization be augmented, or it can predict an entire
conceptualization.

When the PREDICTOR asks that a conceptualization be
augmented, the SUBSTANTIATOR tries to flesh out the
conceptualization in the desired way. The SUBSTANTIATOR can
augment a conceptualization in either of two ways: it can
examine the input text or it can infer conceptual roles.
The prediction of an entire conceptualization can only be
satisfied by an inference. The text analyzer must use a
stepwise process to satisfy a conceptualization.

The SUBSTANTIATOR has three sub-modules that build
conceptual structures: a text analyzer, a role inferencer,
and a conceptualization inferencer. Two of the sub-modules,
the text analyzer and the role inferencer, are used to
augment existing conceptualizations. The third, the
conceptualization inferencer, is used to build an entire
conceptualization. A fourth sub-module interfaces these to
the PREDICTOR's requests. This is the SUBSTANTIATOR
selection routine. It decides which module to use for which
requests. In this chapter I will first describe how each of
the struciure building modules works and then how the
selection routine chooses the correct module to substantiate
a request.

-92-

e WW,»W.WJ g s

=

93

5.2 The Conceptualization Inferencer

The conceptualization inferencer makes script related
inferences about events implied by but missing from the
text. For example, consider the following input sentence:

(1) The United States opened an embassy in
Swaziland today.

This sentence implies wmuch more than it 1literally
states. An embassy cannot be opened in a country unless the
two countries involved have previously recognized each other
diplomatically. Furthermore, it implies that a diplomatic
link between the two countries currently exists.

These are inferences from the input sentence. Even
though we can be very confident of these inferences if we
believe the input sentence, they are not logically entailed
by it.

Other situations will have other such inferences. For
example, the sentence
(2) The Police charged John Smith with armed
robbery.

implies that the police have already arrested John Saith.
Thus, if FRUMP is to understand stories about real world
situations, it must also be able to infer missing events
based on conventions of how the world works.

Each event in a sketchy script has pointers to the
events that can be inferred when that event is found. When
a conceptual structure is built from the text which matches
a sketchy script prediction, the conceptual inferencer
checks the script for any other script events that might be
assumed. If so, it satisfies those script events and adds
them to the current context.

Typically, these inferred events are connected by
causation and entailment relations. FRUMP's world knowledge
about a situation, its sketchy script for that situation,
includes causation and entailment relations t¢ other events
that make up the sketchy script. SUBSTANTIATOR'S
conceptualization inferencer uses these entailment relations
to infer other events when an event is found in the text.

For example, with respect to sentence (1), there are
two relevant events in FRUMP's sketchy script for diplomatic
recognition. There is an event that represents establishing
an embassy, and another event that represents two countries
being in a state of diplomatic relation. The first event
has an inference pointer to the second. Thus if the first
event (establishing an embassy) {s satisfied, the second

94

event (having diplomatic ties) will be inferred.

In general these inference pointers are
uni-directional. Opening an embassy, for example, implies
formal recognition, but recognition does not imply opening
an embassy. A country may possibly have just announced
recognition of another and not yet had time to open an
embassy. Another possibility is that one or both of the
countries are too poor to maintain embassies in the other.
There are many countries that the U.S. recognizes that do
not have embassies here simply because it would be too much
of a financial burden. Sentence (2) also illustrates this
point. Even though in our judicial system a suspect is not
charged until he is arrested, he might well be arrested
without being charged.

This type of inference was a mainstay of the SAM system
(Cullingford ([1978]). SAM worked by finding a path through
the possible tracks of its scripts. It inferred events
along the path necessary to connect two known inputs. 1In
this way SAM demonstrated that scripts were a useful
construct in constraining the inference process. These
script inferences are less important for FRUMP because FRUMP
is not attempt to demonstrate the utility of scripts but
rather an attempt to integrate parsing with the rest of the
understanding process. Script inferences have little to do
with the parsing process directly. The text analyzer and
the role inferencer are of more importance to the FRUMP
system. These will be discussed next.

5.3 The Text Analyzer

The text analyzer is the only module that 1looks at
actual English input. It looks at and interprets only one
word at a time with three exceptions which will be discussed
later.

The text analyzer does its processing only in response
to a prediction from the PREDICTOR. Even when FRUMP is
selecting an initial sketchy script for an article, the
PREDICTOR must help the text analyzer with predictions by
means of the Sketchy Script Initiator Discrimination Trees
described in chapter 3. As was mentioned in the previous
chapter, the PREDICTOR usually anticipates constraints on
wvhat might happen next rather than making explicit
predictions about what must happen next. In general
PREDICTOR's constraints become more specific as FRUMP builds
up more context for the article being processed. Specific
predictions are more useful than non-specific ones because
they provide more direction and guidance to SUBSTANTIATOR.

|

l M‘wi*w By N g R i

~v

95

Only predictions arising from rules 7,8,9, and 11 of
the PREDICTOR are candidates for being satisfied by the text
analyzer.

The following list contains examples of the kinds of
predictions that the selection mechanism might direct to the
text analyzer. Each prediction contains a conceptual role
and one or more fillers for that role. A prediction may
specify a single filler or a 1ist of possible fillers, any
one of which will be acceptable. Each of the predicted
fillers may be either general (a type of object) or specific
(the token of a certain object).

EXAMPLES OF ROLE PREDICTIONS

EXAMPLE 1: ROLE: ACTOR, PREDICTED FILLER: (COUNTRY)

The first prediction asks that the ACTOR role
be filled with some country. Any country will
do. This is a single general prediction.
This prediction might be made while
understanding an article about foreizn aid.
One of the important facts in such stories is
the identity of the country giving the aid.
In conceptual dependency this would be the
ACTOR of an ATRANS. The constraint that it
must be a country comes from the international
aid script; this script is only concerned
with interactions between countries.

EXAMPLE 2: ROLE: ACTOR, PREDICTED FILLER: (CANADA)

The second is similar to the first but it
expects the filler to be a specific country
(Canada). Prediction (2) is a single specific
prediction. This prediction would by made in
the same situations as Prediction (1) when the
PREDICTOR already has a hypothesis about the
country's identity. For example, an article
might begin with "The Canadian legislature
passed a new foreign aid bill." From this the
system can expect that the ACTOR of any ATRANS
of aid will be Canada.

EXAMPLE 3: ROLE: OBJECT, PREDICTED FILLERS: (VIP
TROOPS
WEAPON)

96

Prediction 3 expects the OBJECT role to be
filled with something that can either be
considered as an important person, military
troops, or a kind of weapon. It is a multiple
prediction. This prediction could arise in an
article about fighting between two countries.
Suppose a PTRANS action (an action changing
the location of something) has been
constructed from the text. The PREDICTOR is
interested in three types of PTRANS actions in
fighting: An important person going somewhere
for peace talks, troops invading or
withdrawing, and the PTRANS of weapons as 1in
bombings and shellings. The PREDICTOR would
make this prediction to differentiate which of
these important events the PTRANS found might
be. Of course, this test alone is not
sufficient to decide which of the important
events is matched. Further predictions and
substantiations would have to be made to
insure that the conceptualization found
completely matches an expected event. This
prediction starts the matching process in the
right direction.

EXAMPLE 4: ROLE: TO, PREDICTED FILLERS: (SYRIA
EGYPT)

The fourth prediction wants the TO role to be
filled with either of two specific countries:
Syria or Egypt. This prediction might occur
in a story about fighting between Israel and
the Arab countries of Syria and Egypt. If an
instance of Israel launching 1long range
missiles has been constructed, the PREDICTOR
is able to utilize the context from what has
been understood thus far to predict that the
target (the TO role of the PTRANS of missiles)
will be either Syria or Egypt.

Each of these predictions asks that a particular role
be added to the current conceptualization being built.
Furthermore, each requires that the filler of the role have
a certain semantic property.

Upon being given a prediction like one of the above,
the text analyzer examines the input text in an attempt to
add the desired conceptual role to the conceptualization
being built and fill it with the desired conceptual object.
That is, it looks for some word or phrase from the input
that can be interpreted as filling the desired role with one

|

97

of the desired role fillers. The text analyzer first tries
to decide where in the sentence to look for the desired
filler. That is, it tries to find the 1location in the
surface sentence that corresponds to the desired conceptual
role. Sentence locations are the syntactic components of a
sentence like the subject of a particular verb in the
sentence, the object of a particular preposition, etc. Once
the text analyzer decides on a particular sentence location,
it looks in the neighborhood of that syntactic location for
something that can be interpreted as one of the desired
items. If a word is found that can be interpreted in that
way, it 4is wused. For example, suppose FRUMP is reading a
story it knows to be about fighting and sees the input
"Israel sent the third army to Damascus.” After processing
"Israel sent," suppose the conceptual representation built
is

(ACTOR ISRAEL <=> PTRANS)

At this point the PREDICTOR will ask that the OBJECT
role be filled with either VIP, TROOPS, or WEAPON
(Prediction 3 above). The text analyzer will then decide
from the verb "sent" that the OBJECT filler can probably be
found in the location of the syntactic object of the verb.
The text analyzer will then look where it expects to find
the syntactic object of the verdb and try to interpret what
it finds there as an instance of a VIP, TROOPS, or a WEAPON.
"The third army" is readily interpreted as a kind of TROOPS
so the prediction is satisfied. The rest of this section
discusses how the FRUMP text analyzer goes about its job.

5.3.1 FRUMP's Dictionary

Each word in FRUMP's dictionary can have any number of
word senses, although typically a word will not have more
than two or three. There are two types of word senses:
1)Structure Adding Word Senses, and 2) Role Filling Word
Senses. These will be described next.

Part of the definition of Structure Adding Word Senses
is that they can build a conceptual dependency structure.
For example, the word "go" has a sense which means "change
location.”™ This sense of "go" builds the structure

(<=> PTRANS)
A Structure Adding Word Sense can supply filled conceptual

dependency roles. In this case the <=> role is filled with
PTRANS.

Par

Sh

98

Words that contribute to the underlying action, state,
or state change have Structure Adding Word Senses. For
example, “shout,"™ "hit," and "throw" all have Structure
Adding Word Senses. Their word senses build respectively an
MTRANS structure, a PROPEL structure, and a PTRANS
structure. Often verbs will have Structure Adding Word
Senses. However some non-verbs such as "eruption" and
"storm" have Structure Adding Word Senses as well.

Structure Adding Word Senses can also indicate where
other role fillers will be found. Again consider the word
"go." The Structure Adding Word Sense of "go" builds the
<=> role which it fills with PTRANS. It also contains the
information that the conceptual ACTOR and the conceptual
OBJECT are the same. That is the thing causing the change
in location (the ACTOR) and the thing undergoing the change
in 1location (the OBJECT) are the same. Furthermore, the
filler of these roles must be animate. The sentence "The
table went." is not meaningful with this verd sense of "go."
but "John went." is. Finally, a Structure Adding Word Sense
can indicate where the new role fillers might be found in
relation to the current word.

In the case of "go" the filler of the ACTOR and OBJECT
roles can be found in the location of the syntactic subject
of the verb. Multiple conceptual roles can be filled from
the same syntactic location in the sentence, as in this case
where both the ACTOR and OBJECT are filled with the subject.
Furthermore, a word sense can add several new roles from
different locations in the sentence. If the word sense had
information on where, say, the TO role could be found, that
could be incorporated just as the ACTOR and OBJECT roles
were.

Some Structure Adding Word Senses do not both build
structures and indicate where other role fillers might be
found. For example, a word sense of "earthquake" builds the
following structure:

(<=> PTRANS

ACTOR GEOLOGICAL-FORCE

OBJECT GROUND

MANNER CYCLIC)
This word sense does not have any information about where
other roles might be found in the sentence. Verbs can
indicate where certain conceptual role fillers will

typically be found. For example, the word sense of "go"
discussed above contains the information that the filler for

T Pepe—

Ak

99

the ACTOR and OBJECT roles will be found as the verb's
syntactic subject. Nouns, like earthquake, do not make such
syntactic predictions. On the other hand the word "last,"
in its verb sense as in “"the storm lasted three days," does
not itself build a structure but can indicate where a new
role filler may be found; the conceptual role DURATION can
be filled with what is found in the syntactic position of
the object of the verb.

The following are three examples of Structure Adding
Word Senses.

GO1:
Part Of Speech: VERB
Conceptualization Built: (<=> PTRANS)
New Role Locations: ((ACTOR) (OBJECT))
Semantic Constraint: ANIMATE
Syntactic Location: SUBJECT
GO1 is one of the word senses of the English
verb "go." It builds the conceptual
structure (<=> PTRANS). The New Role
Locations of this word sense indicate that the
conceptual roles ACTOR and OBJECT may be found
as the SUBJECT of this verb. There is also a
constraint that the SUBJECT must be animate.
QUAKE1:
Part Of Speech: NOUN
Conceptualization Built: (ACTOR GEOLOGIC-FORCE
<=> PTRANS
OBJECT GROUND
MANNER CYCLIC)
The second, QUAKE1, is the word sense for the
lexical item "EARTHQUAKE." It builds a
structure but cannot add new roles.
LAST2:
Part Of Speech: VERB
New Role Locations: (DURATION)

Semantic Constraint: TIME-LENGTH
Syntactic Location: VERB-OBJECT)

b PP

100

The third word sense is LAST2, which is the
verb sense of the word "LAST." It contains
information where the new role (DURATION)
might be found but builds nothing itseif.

Thus each Structure Adding Word Sense in FRUMP's
dictionary must have a part of speech which indicates how
this word sense must be used in the sentence. In addition,
it can have a conceptual structure which is its meaning. It
can also have information about the location in the sentence
where other role fillers might be found.

The second type of word sense, the Role Filling VWord
Sense, resolves directly ¢to a conceptual token. A
conceptual token is denoted by a word of all capitals with
asterisks on either side. From now on we will adhere to the
asterisk convention for naming memory tokens. The primitive
acts are permanent memory tokens. Thus from now on PTRANS
will be ®PTRANS®, ATRANS will be ®ATRANS®, etc. A
conceptual token in FRUMP's memory is the 1location of
information about an object. For example, the only word
sense of the 1lexical item "France" resolves to ®FRANCE®.
SFRANCE® is the conceptual token where all of FRUMP's
information about France is stored (e.g. that it is a
country). All Role Filling Word Senses also contain their
part of speech. As will be seen later, part of speech
properties are used by the text analyzer to find syntactic
locations in a sentence. An example of a Role Filling Word
Sense is FRANCE1:

FRANCE1:
Part Of Speech: NOUN

Conceptual Entry: SFRANCE®

Role Filling Word Senses are much simpler than Structure
Adding Word Senses. Role Filling Senses need only indicate
the part of speech and the conceptual item to which the word
sense resolves. A Structure Adding Sense, on the other
hand, must indicate the conceptual structure that is to be
built (which can be quite complicated) and the locations of
a number of new roles that the word sense can add.

It was mentioned before that words can have any number
of word senses. Associated with each 1lexical item in
FRUMP's dictionary is a list of possible word senses for
this word, The word senses in this list can be either
Structure Adding or Role Filling. For example, the 1lexical
item "BOMB"” has two word senses as far as FRUMP is
concerned. The first, BOMB1, is a Role Filling Sense. It
resolves to the conceptual token ®BOMB* which is known to be

T ——————
v—————

ot e 0 T 0 e T ‘iww -

.. S

[E

101

a type of weapon. In this sense "BOMB" is a noun. The
second sense, BOMB2, is a verb. It builds a
conceptualization that means *BOMB®*s are being dropped.

Unlike other parsers developed at Yale (Riesbeck &
Schank [1976] and Gershman [1979])) FRUMP does not have any
explicit "script-specific" extensions to its vocabulary.
These other parsers reorganized the dictionary depending on
what script was active. This enabled their parsers, for
example, to try the correct word sense of "order" first when
the restaurant script was active. Instead of preferring
word senses on the basis of which scripts are active, FRUMP
prefers one word sense over another on the basis of its
top-down predictions. The "ask waitress for" sense of
"order" is not selected first by FRUMP in restaurant stories
because the restaurant script is active but because that
word sense fits one of the predicted events - namely
MTRANSing one's desire for food to the waitress.

In a way this is a generalization of the dictionary
reorganization performed by the other parsers. Dictionary
reorganization is helpful because the events corresponding
to certain word senses are more likely in one particular
script than another. That is, the events corresponding to
these word senses are implicitly predicted by the parser
when the script is activated. These implicit predictions
are made at the time the script is activated. In FRUMP,
however, predictions are made and refined continually. Tiaus
a word sense is disambiguated on the basis of the context at
the time the word is seen.

5.3.2 FRUMP's Permanent Token Memory

As mentioned previously, the text analyzer only
examines words in the context of one or more predictions of
what will be found. However, these predictions are often
very general. As explained in the previous chapter the
PREDICTOR will often only be able to predict characteristics
of the desired role filler. The text analyzer must be able
to know when it has found something that satisfies the
prediction. For example, the PREDICTOR may want a role
filled with ®VEHICLE®, The conceptual token for any kind of
vehicle will do. If the text analyzer finds the word
"Chevy," it must know that it has succeeded. Thus it must
know that a Chevy is a type of vehicle. The text analyzer
must include a general mechanism for answering the question
"can the lexical item X be interpreted as a conceptual token
Y?". This capability is provided by the organization of
FRUMP's permanent token memory.

ot

- PN

102

FRUMP's permanent conceptual tokens (like ®CHEVY®,
#BOMB*, and ®VEHICLE®) are organized hierarchically. For
the most part the tokens are arranged in an ISA hierarchy,
which has been well described in the literature (Quillian
[(1968]), Raphael [1968], Scragg ([1976], and Simmons ([1973]).
Thus #CHEVY® ISA ®AUTOMOBILE®* which ISA ®VEHICLE®* which in
turn ISA ®PHYSOBJ®.

When the text analyzer is asked to find a ®VEHICLE®, it
looks at the words in the sentence location where it expects
to find the vehicle for a word with a Role Filling Word
Sense that resolves to something that can be considered a
#VEHICLE*. Each word sense must be checked to see if it can
inherit the ®VEHICLE® token via its ISA link. However, this
is a very easy test and very little computation is expended
checking irrelevant words.

If such a word sense is found, its conceptual token is
used to satisfy the prediction. For example, if the text
analyzer were asked to fill the conceptual role OBJECT with
®VEHICLE®*, and the word found at the expected sentence
location were "Chevy," the text analyzer would add the
following structure to the current conceptualization being
built:

OBJECT #CHEVY#®

5.3.3 FRUMP's Parsing Rules

The text analyzer contains four rules that enable it to
interpret the input. Recall that when the SUBSTANTIATOR
selection mechanism asks the text analyzer to fill a role,
the text analyzer is given the name of the role to be filled
along with constraints on what might fill it. Each rule
states a strategy for adding a new role to the current
conceptualization. The four rules are also rated as to how
certain it is that the answer each produces, if it produces
one at all, will be correct. There is also a cost estimate
of the computing resources needed to apply the rule.

Rule 1:
Find a Structure Adding Word Sense that has
been previously processed and can predict the
syntactic location of the desired role.
Certainty = 10
Cost = 1 ,

S s

hom

103

This rule states that one way to add a role is by
having an already processed word sense that can suggest
where the desired role might be found. For example, suppose
FRUMP is processing the sentence

John went to Boston.

and has already chosen the word sense GO1 for the word
"went." The conceptualization built thus far will be the
conceptualization that GO1 builds:

<=> ®PTRANS*

Now suppose that the PREDICTOR asks that the ACTOR role be
filled with something that can be considered a kind of
®#HUMAN® , and the selection mechanism decides that the text
analyzer should try to add the role. Recall that the word
sense of GO1 looks like this:

GO1: e
Part Of Speech: VERB
Conceptualization Built: (<=> ®PTRANS®)
New Role Locations: ((ACTOR) (OBJECT))
Semantic Constraint: ®ANIMATE®
Syntactic Location: SUBJECT

When the request for a ®*HUMAN® in the ACTOR role is given to
the text analyzer, it 1looks through the word senses that
have already been processed in building the current
conceptualization. If one of them has an ACTOR as a New
Role Location, then this rule is applicable. In our
example, GO1 can say where the ACTOR role will be found:
GO1 thinks it will be in the syntactic subject of the verb.
However, to be valid for this reading of the word "go," the
subject must be a type of ®ANIMATE®.

The text analyzer first checks that the predicted
filler is consistent with what the word sense needs. Here,
the predicted filler is ®HUMAN®* and GO1 needs ®ANIMATE®.
Since ®#HUMAN®* inherits the ®ANIMATE®* token, everything is
fine. If the predicted filler did not inherit the semantic
constraint from the word sense, then this word sense would
not be able to fill the prediction.

Next, the text analyzer goes to where it expects to
find the subject of "go" and finds "John." "John" is in
FRUMP's dictionary as a masculine first name. As such, it
is known to refer to a ®HUMAN® male whose first name is
"John.” Thus, a filler has been found that satisfies the
semantic prediction. The text analyzer then creates a new
token for this particular John, and adds the new token to

W

-

104

the current conceptualization as the filler of the both the
ACTOR and OBJECT roles. The current conceptualization has
been augmented to this:

(ACTOR JOHN1
<=> #PTRANS*®

OBJECT JOHN1)

This rule is marked with a certainty of 10 on a scale
from 1 to 10. This scale does not represent the expected
certainty of success in applying the rule. Rather, it is a
conditional certainty. Given that the rule produces an
acceptable filler, the certainty indicates how likely it is
to be the correct filler for the role. For this rule the
certainty is 10, the highest, because this rule can succeed
only if two constraints are met. First, the text analyzer
must predict the correct location in the sentence of the
desired role. Second, the text analyzer must find something
in that location that satisfies both the requirements of the
word sense that predicted the 1location and the semantic
constraints on the filler from PREDICTOR's prediction. In
general, parsing rules tend to be very certain compared to
inference rules. Later when the role inferencer is
discussed it will be seen that roles can often be filled
with less certainty.

The certainty of a role filler is attached to it in the
conceptualization. This way if a more certain filler is
later found for that role the previous one can be replaced.

The cost of applying a rule is a normalized estimation
of the computation required to apply that rule. The cost is
an integer greater or equal to 1. A higher number indicates
more computing resources will probably be spent in applying
the rule. The cost is used by the selection mechanism which
will be discussed later. The cost of this rule is 1 because
it is not very expensive to apply compared to the other
rules.

Rule 2:
Find a previously unprocessed word within the
current phrase that has a word sense that can
build the desired role and filler.
Certainty = 10
Cost = 2

R A

105

This rule gives another way to add a desired role to
the current conceptualization. It says that the text
analyzer can add a role and filler to a conceptualization by ™
finding a Structure Adding Word Sense that includes the £
desired role and filler as part of the conceptualization it~
builds. %

For example, consider the sentence -
Israel released a statement condemning Egypt's
peace plan. LT

—
-

-

s
This inpug,aféht be seen in an article about a news
conference ofa head of state. The sketchy script for these
news quférences includes among its important events
representations for the following two events: one country
_saying something good about another country, and one country
//// saying something bad about another country. The
i representations for these events are:

(ACTOR SCOUNTRY®
{=> #MTRANS®

MOBJECT % CONCEPTS*

TYPE ®APPROVING®
TOPIC &Cp# T
FROM #COUNTRY®)
and
(ACTOR ®COUNTRY*®
<=> ®MTRANS#®

MOBJECT ®CONCEPTS*

TIPE ®CRITICAL®
TOPIC &Cp#
FROM #COUNTRY®)

Something must be said about the MOBJECT TYPE roles here.
In the course of its processing, it is necessary for FRUMP
to characterize the conceptualization used to fill the
MOBJECT TOPIC role. These characterizations are often
provided by an inference rule. That is, FRUMP must infer

106

that a particular event is unfriendly to a certain country.
However, the characterizations can on occasion also be
provided directly from the text. Since these
characterizations might be examined more than once, it is
inefficient to have -to re-infer them whenever they are
needed. So instead, FRUMP incorporates them into the
representation.

After "released a statement” has been processed, the
PREDICTOR will ask that the MOBJECT TYPE role be filled with
either #CRITICAL® or ®APPROVING®* so that it can select which
of the two above representations is to be satisfied.

After "released a statement" has been processed, the
current conceptualization is:

(<=> ®MTRANS®

MOBJECT ®CONCEPTS®)

Now the text analyzer is asked to fill the MOBJECT TYPE
role with either ®CRITICAL* or ®APPROVING*. None of the
processed words can successfully tell the text analyzer
where the MOBJECT TYPE role will be found in the sentence;
rule 1 cannot be used so rule 2 is tried. Rule 2 tells the
text analyzer that some other word might be found which
includes the desired role in the conceptualization it
builds.

In fact, such a word is present in the input. One of
the word senses of "condemning" is that it is the gerund
form of the verb "condemn." "Condemn" has CONDEMN1 as a
Structure Adding Word Sense:

CONDEMN1:
Part Of Speech: VERB
Structure Built: (<=> SMTRANS®
MOBJECT ®CONCEPTS®*
TYPE SCRITICAL®)
New Role Locations: (MOBJECT TOPIC)
Semantic Constraint SACTION®
Syntactic Location VERB OBJECT

Thus CONDEMN1 can fill the MOBJECT TYPE role with
®CRITICAL®.

RS

107

To apply rule 2 the text analyzer first 1looks through
the sentence for an input word that can be interpreted in a
way to add the desired role. The word "condemning" is able
to add the MOBJECT TYPE by interpreting it as CONDEMN1.
However, the role cannot be added yet. The reason is that
there could be conflicts in interpreting "condemning" in
this way. For example, if CONDEMN1 built #PTRANS®* in the
<=> role instead of ®MTRANS®* it would be unacceptable as a
reading for "condemning" because it would conflict with the
current conceptualization built thus far. Thus the text
analyzer must check “hat the structure built by the new word
sense does not conflict with the structure that already
exists. There must also be a low level syntactic check that
the word falls within the phrase that built the original
conceptualization.

After the conceptualization built by the new word sense
has been found not to —conflict with the current
conceptualization, and the syntactic check has been passed,
the new role filler can be added to the current
conceptualization. At this time, any other roles present in
the word sense conceptualization are also added to the
current conceptualization.

Since CONDEMN1 passes both the conceptual match and the
syntactic check, the conceptualization it builds is added to
the current conceptualization. The current
conceptualization now looks like this:

(<=> #MTRANS®

MOBJECT ®CONCEPTS*®

TYPE ®CRITICAL®)

Rule 2 has a certainty of 10 because rather stringent
conceptual and semantic tests must be passed before the rule
succeeds. Not only must a word have a reading which can
build the desired role and filler, but the rest of the
structure built must be consonant with the existing
conceptual structure. Furthermore, a syntactic test must
justify that the word found can legitimately be part of the
phrase that built the existing conceptual structure.

The cost of applying this rule is given a rating of 2.
This is an ad hoc and somewhat arbitrary indication of how
expensive the rule is compared to other rules. It is more
costly than rule 1 because it entails searching through the
text for the a desired word. In rule 1 there was a
prediction of where the desired word would be found in the
sentence. No such prediction is made in rule 2.

VA o <

108

Rule 3:
Find a previously unprocessed word which has a
word sense that can add the desired role as
one of its new roles.
Certainty = 10
Cost = 3

This rule provides a method to add a role filler event
if the previous two rules fail. If no previously processed
word can predict where the filler is, and no unprocessed
word can build the filler, this rule says that there might
be an unprocessed word that can predict the location of the
filler.

For example, consider the following sentence:
Vance met with Gromyko to discuss SALT.

This sentence describes an event in the sketchy script
$VIP-MEET. The representation for that event is:

(ACTOR SGROUP®
MEMBER syIp#
<=> SMTRANS#
MOBJECT ®CONCEPTS*®
TOPIC #CD* jnvolving
countries of ®#VIp%
FROM #GROUP*
MEMBER syIp®
TO SGROUP*®
MEMBER SVIPH®)

This conceptualization says to expect a mental transfer of
concepts among a group of VIPs concerning some conceptual
structure. Part of this predicted event will be built from
the phrase "Vance met with Gromyko". After processing
"Vance met with Gromyko," the current conceptualization will
look like this:

(ACTOR $GROUP#®
MEMBER (®VANCE® S®GROMYKO®)
<=> SMTRANS®
MOBJECT ®CONCEPTS*
FROM SGROUP®
MEMBER (®VANCE® ®GROMYKO®)

LR LV

109

TO #GROUP®
MEMBER (#VANCE® #*GROMYKO*))

This conceptualization matches the predicted
conceptualization except that the MOBJECT TOPIC role is
missing. At this point the PREDICTOR will ask that the
MOBJECT TOPIC be filled with a conceptualization involving
the U.S. and Russia. It predicts that the U.S. and Russia
will be involved because those are the countries that the
VIP's represent.

The following is the word sense of "met" that has been
assigned by the text analyzer:

MEET1:
Part Of Speech: VERB
Structure Built: (<=> SMTRANS*®
MOBJECT ®CONCEPTSH%)
New Role Locations: (MOBJECT TOPIC)
Semantic Constraint: sCp#
Syntactic Location: (PREP-OBJECT about)
New Role Locations: ((ACTOR) (TO) (FROM))

Semantic Constraint: (*GROUP*®
MEMBER ®HUMAN#)
Syntactic Location: ((SUBJECT)

(PREP-OBJECT with))

The current conceptualization has been built from the
structure MEET1 builds and by applying rule 1 to add the
ACTOR, TO, and FROM roles from where MEET1 predicted them.

MEET1 also predicts where the MOBJECT TOPIC role will
be found. It predicts it will be the object of the
preposition "about." The word sense must have this
information if the text analyzer is to process a sentence
like "Vance met with Gromyko about SALT." However, in our
example sentence, there is no preposition "about." Thus the
MOBJECT TOPIC role cannot be filled by rule 1. Nor can rule
2 help; no text word can directly build the MOBJECT TOPIC
role.

Instead, rule 3 is applied. Rule 3 says to find
another word in the sentence that has a word sense that can
predict where the desired filler will be. The word
"discuss" is found. "Discuss" has a word sense DISCUSS1
which looks like this:

~w

110

DISCUSS1:
Part Of Speech: VERB
Structure Built: (<=> SMTRANS#
MOBJECT ®CONCEPTS®)

New Role Locations: (MOBJECT TOPIC)
Semantic Constraint: sCp®
Syntactic Location: VERB-OBJECT

New Role Locations: ((ACTOR) (TO) (FROM))

Semantic Constraint: (*GROUP®
MEMBER #HUMAN®)
Syntactic Location: ((SUBJECT) (PREP-OBJECT with))

DISCUSS1 looks very much like MEET1 except it predicts
that the MOBJECT TOPIC role will be found as its syntactic
object. Before this prediction can be wused, however, the
text analyzer must make sure that DISCUSS1 can pass the same
semantic and syntactic constraints as were needed in rule 2.
That is, the conceptual structure built by the word sense
must not conflict with the conceptual structure already
present in the current conceptualization. Furthermore, the
new word must be in the same syntactic phrase as the words
that built the current conceptualization.

In our example, DISCUSS1 passes both of these tests.
The conceptualization built by the word sense is the same as
the conceptualization built initially by "met," and the word
"discuss" is in the same phrase as "met." Thus the text
analyzer knows to look in the object of the verb "“discuss"
for the filler of the MOBJECT TOPIC role. It also expects
that the filler will be a conceptualization involving Russia
and the U.S. This is from PREDICTOR's original prediction.

In the location of the syntactic object of the verb
"discuss," the text analyzer finds "SALT." "SALT" is in
FRUMP's dictionary and has a Role Filling Word Sense SALT2.
SALT2 resolves to the conceptual token ®SALT-TREATY® which
is a type of ®AGREEMENT*®* and involves Russia and the U.S.
Thus, in the word "SALT," the text analyzer finds just what
the PREDICTOR wanted as a filler of the MOBJECT TOPIC role.
The role is then added to the current conceptualization to
make :

mm

(ACTOR SGROUP®

MEMBER (#VANCE* ®GROMYKO*)
<=> ®MTRANS®
MOBJECT #CONCEPTS*

TOPIC ®SALT-TREATY®
FROM ®GROUP®

MEMBER (®VANCE® ®GROMYKO®)
TO SGROUP®

MEMBER (®*VANCE® ®GROMYKO®))

The certainty of this rule is 10. If this rule
produces the filler of a desired role, that filler must have
been found in the predicted syntactic location.
Furthermore, the word sense that predicted where the role
would be found must have built a structure consonant with
the existing structure and must have occurred in the same
syntactic phrase.

The expected cost of the third rule is 3. It is more
expensive to apply this rule than either rule 1 or rule 2
because it requires looking at the text twice. The text
must be searched once looking for the unprocessed word whose
word sense can predict the location of the desired filler,
and once to actually find the filler. e

Rule 4:
Find a word regardless of any syntactic
considerations that has the desired semantic
properties.
Certainty = 3
Cost = 1

This rule provides a quick and dirty, though uncertain,
way to guess at a role filler if the text analyzer cannot
make sense of the syntax of the input sentence. Essentially
it says "never mind about syntax, find any word that can
resolve to a token that satisfies the semantic constraint of
the PREDICTOR." Rule 4 allows the text analyzer to produce
a guess at an interpretation of a text even if all its other
rules fail.

For example, suppose FRUMP is given the following
sentence:

Israel and Egypt reached an agreement today on
a new treaty.

112

But suppose that "reached" is not in FRUMP's vocabulary.
Rule 4 will allow the text analyzer to correctly process the
sentence even though it no longer makes sense syntactically.
To FRUMP the sentence now will look like the following:

Israel and Egypt XXXXXXX an agreement today on
a new treaty.

Of course, FRUMP still must know the word *agreement .”
FRUMP's dictionary definition of "agreement" states that it
is the nominalized form of the verb sense AGREE1. The fact
that it is a nominalized verb tells the text analyzer two
things: 1) the word behaves syntactically as a noun (which
is unimportant for this example) and 2) that the new role
predictions concerning the SUBJECT and VERB-OBJECT locations
of the phrase are no longer meaningful. The word sense
AGREE1 looks like this:

AGREE1:
Part Of Speech: VERB
Conceptualization Built: (<=> SMTRANS®
MOBJECT #CONCEPTS*®
TYPE # APPROVING*
New Role Locations: ((ACTOR) (FROM) (TO))
Semantic Constraint: #ANIMATE®
Syntactic Location: ((SUBJECT)
(PREP-OBJECT with))
New Role Locations: (MOBJECT TOPIC)
Semantic Constraint: sCD*
Syntactic Location: ((PREP-OBJECT on)

(PREP-OBJECT about))

For the nominalized verb "agreement” everything in the
dictionary definition for AGREE1 is valid except the
prediction that the ACTOR, TO, and FROM roles will be found
in the syntactic subject location.

The input sentence might be seen in the context of a
story about negotiations. FRUMP has a sketchy seript,
$NEGOTIATION, for that situation. The representation of the
expected event that the input text must match is the
following:

(ACTOR SGROUP®
MEMBER (®COUNTRY®)
<=> SMTRANS®

00 i e D w2

|

113

MOBJECT #CONCEPTS®
TYPE ®APPROVING*®
TOPIC #Cp#

FROM #GROUP®
MEMBER (®COUNTRY#®)

TO #GROUP *

MEMBER (®COUNTRY®))

This says that a group of countries all approve of a
particular topic.

After the word "agreement" has been processed, the
current conceptualization is the conceptualization built by
AGREE1:

(<=> SMTRANS#®

MOBJECT ®CONCEPTS®*
TYPE ®APPROVINGH®)

The problem that parsing rule 4 will help to solve is
finding the countries to fill the ACTOR, TO, and FROM roles.
AGREE1 predicts that these roles might be filled by the
object of the preposition "with." However, there is no
"with" in the example input. The prediction that the roles
will be found in the syntactic subject location are, of
course, not useful since AGREE1 came from a nominalized
verb.

If FRUMP knew the word "reached," it could be used to
predict that its syntactic subject would be the countries.
However, since the word is not known, the text analyzer can
have no way of predicting the syntactic location of the
countries involved.

At some point in the processing, the PREDICTOR will ask
that the ACTOR role be filled with a group of countries.
This prediction comes directly from the negotiations script.
The script event dictates that the ACTOR must be filled with
a group of countries. When this prediction is given to the
text analyzer, it tries rules 1 - 3. They all fail since no
word in the input can successfully predict the syntactic
location of the ACTOR role. Rule U4 is then tried. It
simply looks for a group of countries in any syntactic
position. The only group of countries in the sentence is
from the string "Israel and Egypt." Parse rule 4 says to
take these <countries and add them to the current
conceptualization in the ACTOR role but with a 1low
certainty. AGREE1 contains the information that the ACTOR,
TO, and FROM roles all have the same filler. Thus, after
parse rule U4 is tried, the current conceptualization looks

- O i

L .

114

like this:
(ACTOR ®GROUP#*
MEMBER (®*ISRAEL® ®EGYPTH)
<=> SMTRANS#
MOBJECT ®CONCEPTS*®
TYPE ®APPROVINGH®
FROM SGROUP®
MEMBER (®*ISRAEL® ®EGYPTH)
TO SGROUP#®
MEMBER (®ISRAEL® BEGYPTH))

The MOBJECT TOPIC role is added in the normal way via rule 1
and AGREE1. Since the word "treaty" is specified as the
object of the preposition "on," the prediction of AGREE1 of
the syntactic 1location of MOBJECT TOPIC role is still
usable.

Rule 4 has a low certainty of 3 because there is no
syntactic evidence for adding the role. It is added only on
semantic grounds. The certainty is attached to each of the
roles added. Thus from parse rule 4, the ACTOR, TO, and
FROM roles all have a certainty of 3. In this way, if a
role can be added later with a higher certainty (either by
another parse rule or an inference rule) the new filler can
be used to replace the less certain old one.

The cost of rule 4 is very low. It is given a cost of
1 since comparatively little work need be done to apply the
rule. There 1is no syntactic work at all. The only
processing needed is to find a word or phrase in the
sentence with the desired semantic property.

5.3.4 Syntax

FRUMP's understanding is primarily driven by semantic
considerations. Syntactic information is, however, used by
the text analyzer to provide clues about where in a sentence
a desired conceptual role filler might be found. That is,
it mediates between conceptual roles and sentence locations.
In this way syntax can limit searching through the text.
If, for example, the text analyzer has decided that the role
filler it is trying to add will be found in the syntactic
subject, it need only consider nouns in front of the verb as
candidates. Since this greatly reduces the number of words
to be considered, the process is made more efficient.

L .

115

Consider, for example, how the following sentence would
be processed without syntactic information:

Israel invaded Egypt.

The word "invaded" will build some structure enabling the
PREDICTOR to request that the ACTOR role be filled with a
country. Without syntactic information, the text analyzer
will not be able to predict that the ACTOR will be found in
the subject location. In fact, "the subject location" will
have no meaning. There are two countries mentioned in the
sentence: 1Israel and Egypt. Without further information,
there is no way to prefer one over the other as the filler
of the ACTOR role.

With syntactic knowledge, however, the ambiguity
disappears. The text analyzer can make the prediction that
the ACTOR role will be found as the subject of the verb. It
also knows that the subject is a noun in front of the verb.

"This information allows the text analyzer to use "Israel" as

the word that fills the ACTOR role.

The text analyzer has a very incomplete knowledge of
syntax. It knows about the subject-verb-object construction
of English sentences, it knows roughly where to look in the
sentence for various syntactic locations, and it knows that
complex sentences can be built up from simple clauses.

Having only incomplete syntactic knowledge 1is,
surprisingly, an advantage for FRUMP. The alternative is to
give FRUMP an explicit grammar 1like many other natural
language systems (Marcus [1977], Winograd [1972], and Woods
& Kaplan [1971]). There are two disadvantages to having
such a grammar. First, the grammar would have to be very
complicated if it were to account for a large part of
English. This would make processing much less efficient.
Second, English has eluded every attempt at constructing a
rigorous grammar for it. No matter how complicated the
grammar, there would be large classes of English sentences
that could not be parsed. Thus an explicit grammar is
overly constraining.

The text analyzer has 9 syntactic rules which enable it
to find the correct sentence 1locations in the text that
correspond to syntactic 1labels (e.g. SUBJECT, OBJECT OF
PREPOSITION, etc.). The first U4 rules tell the text
analyzer where to find the syntactic 1labels. The 1last 5
indicate how the sentence structure is changed by passive
and nominalized verbs.

Syntax Rule 1:
The SUBJECT of a verb is a noun preceding the
verb which is not immediately preceded by a

[

e d e

116

preposition.

This rule enables the text analyzer to 1locate the
syntactic subject of a verb. The text analyzer can only
reject as candidates for the subject nouns that are
immediately preceded by a preposition, like "to John."”
This is because any unknown or unprocessed intervening words
might terminate the prepositional phrase, for example, "To
the zebra John gave an apple." If the rule did not include
"immediately preceded" and the word "zebra" were unknown,
the rule would not allow "John" to be the subject of the
sentence since it would be treated as the object of the
preposition. This rule, like all of FRUMP's syntax rules,
is only a heuristic. As such it should help processing
where possible, but it need not always work. There is room
for improvement in all of FRUMP's syntax rules. However, in
their current form they are quite adequate for their job.

The syntax rules should never prevent the correct
interpretation of the text. Stated in the way it is, rule 1
lets too much through. However, the system can survive this
deficiency. Incorrect possibilities might be ruled out on
semantic grounds. If, on the other hand, the rule
eliminated at this low level the actual subject of certain
sentences, the system could never recover. Articles,
however, are not included as separators so in the phrase "to
the boy," the word "boy" could not be the subject.

To illustrate this rule, consider the sentence
The boy went.

Suppose that the only processing done so far is to resolve
the word "went"™ to the word sense GO1. Now suppose the
PREDICTOR requests that the conceptual ACTOR role be filled
with something that can be considered a ®HUMAN®*. The word
sense GO1 contains the information that the conceptual ACTOR
role will be found in the syntactic subject of the verb.
This rule enables the text analyzer to find the approximate
location in the sentence of the desired word. The text
analyzer looks backwards from the verb "went" for a noun
that is not immediately preceded by a preposition. The word
"boy", which has a word sense that satisfies these syntactic
constraints, is found. The text analyzer then checks
whether that word sense satisfies the semantic requirements
(i.e. that it can be a type of ®HUMAN®)., It does and so
8BOY#®#, the conceptual referent of the selected word sense of
"boy" is used to fill the ACTOR role.

Syntax Rule 2:
The VERB-OBJECT of a verb is a noun following
the verb which is not immediately preceded by

i g A i

L .

17

a preposition.

The text analyzer does not distinguish between direct
and indirect verb objects. Both of these syntactic types
are considered VERB-OBJECTs.

The reason for not differentiating between direct and
indirect objects is that the indirect object location is not
well defined until the direct object of the verb has been
found. The indirect object is a noun which is not the
object of a preposition whose location is between the verd
and the direct object. Since the location of the indirect
object depends on the location of the direct object, it
cannot be determined until the direct object has been
resolved.

This is a problem, since the 1location of the direct
object is not resolved until it is used to substantiate a
prediction from PREDICTOR. Thus the indirect object
location is not well defined until some prediction is filled
using the direct object. To use the indirect object
location the text analyzer must have previously used the
direct object location. That is, the prediction using the
syntactic direct object must be made before the prediction
using the indirect object. This 1is too confining a
constraint to place on the PREDICTOR. Instead, the text
analyzer simply distinguish between the direct and indirect
objects as in terms of sentence location.

This means that there are some sentences FRUMP cannot
in principle process (i.e. those with semantically similar
direct and indirect objects). However, this has not proved
to be a serious constraint to FRUMP's performance. If it
becomes a problem in some future domain, syntax rule 2 will
have to be improved. This will be an added inconvenience to
the PREDICTOR but is not at all impossible. As yet,
however, the expected benefit is not worth the expense.

Syntax Rule 3:
The PREP-OBJECT of a preposition is a noun
following the preposition with no intervening
prepositions.

This rule enables the text analyzer to find objects of
prepositions. Consider the sentence

An automobile crashed into a billboard.

The word "billboard" must be added to the conceptualization

being built. In this sentence the selected word sense of
"crashed" bujilds a ®*PROPEL®. Further processing results in

118

the ACTOR role being filled with ®AUTOMOBILE®. Using the
vehicle accident sketchy script, the PREDICTOR requests that
the conceptual OBJECT be filled with some kind of #PHYSOBJ®.
The selected word sense of "crashed" contains the prediction
that the conceptual OBJECT of the #PROPEL® will be found as
the PREP-OBJECT of "into." This rule tells the text
analyzer how to find the PREP-OBJECT of "into." It says to
look after the preposition for a noun. In this case the
text analyzer finds the word "billboard" which can be
considered a kind of ®#PHYSOBJ®* and so is added to the
conceptualization as the filler of the OBJECT role.

Syntax Rule U4:
The MODIFIER of a noun is a noun or adjective
preceding the dominating noun.

This rule enables the text analyzer to find information
typically found as a modifier. For example, consider the
sentence

England seized an Icelandic trawler.

This sentence must be represented as a change of possession
from Iceland to England. That is, it will be an ®ATRANS*
with the conceptual FROM role filled with ®ICELAND*. The
sentence does not explicitly say from whom the trawler was
taken. Rather it specifies the owner of the trawler. To
fill in the FROM role with ®*ICELAND* FRUMP must know that a
change in possession of an object is FROM its previous
owner, Furthermore, the text analyzer knows that ownership
is typically specified in English by a possessive adjective
modifying the owned noun. This syntax rule enables the text
analyzer to find that Iceland is the owner of the trawler.
The seize sketchy script requires a ®COUNTRY* to fill the
FROM role. FRUMP figures out that the FROM role will be
filled with the owner of the trawler. The PREDICTOR then
asks that owner of the trawler be found with the constraint
that it must be a country. The text analyzer can use this
syntax rule to look backwards from the word "trawler" until
it finds a country that can be interpreted as the owner. It
finds "Icelandic™ which is then used to fill the desired
role.

Syntax Rule 5:
When the past participle of a verb is found
and the verb is preceded by a form of the verb
"to be," assume the verb is passive.

This rule is simply the way FRUMP recognizes passive
verbs, It 1is necessary to recognize passives because the
syntactic locations of SUBJECT and VERB-OBJECT are altered.

N S T Y MR

119

The next two rules indicate to FRUMP how these locations are
changed.

Syntax Rule 6:
When looking for the SUBJECT of a passive
verb, look instead for the PREP-OBJECT of
"bY'"

Syntax Rule T7:
When looking for the VERB-OBJECT of a passive
verb, first look in the SUBJECT locations. 1If
no word can be found with the desired
properties, look in the VERB-OBJECT location.

Rules 6 and 7 tell the text analyzer how to modify
where it 1looks in a phrase if the verb is passive. The
passive rule is that one of the objects of the verb (either
direct or indirect) becomes the subject, and the subject
optionally becomes the object of the preposition "by."

Nothing special has to be done to handle the fact that
the subject is optionally moved to the object of "by." 1If
no satisfactory object of the preposition "by" is found, the
text analyzer will simply fail to add the role. The filler
will then have to be found by other means.

Rule 7 specifies how the VERB-OBJECT is changed. In
English, there are two possible ways to form the passive.
In one, the direct object of the verdb is moved to the
subject position. For example,

1) John gave Mary the present.
can become
2) The present was given Mary by John.

The second way is to move the indirect object to the subject
position. In this case sentence (1) becomes

3) Mary was given the present by John.

The result of these two ways to form the passive is that
when the text analyzer is 1looking for VERB-OBJECT of a
passive phrase, it might either be found in the SUBJECT
location or the VERB-OBJECT location. Thus Rule 7 must
check both places.

Syntax Rule 8
When looking for the SUBJECT of a gerund or
nominalized verb, look instead for the
PREP-OBJECT of "by."

S -

=

r

120

Syntax Rule 9
When looking for the VERB-OBJECT of a gerund
or nominalized verb, 1look instead for the
PREP-OBJECT of "of."

A nominalized verb is a verb made into a noun,
typically by adding the ending "tion." For example, the
verb "nationalize" may be transformed into the noun
"nationalization."” The word sense for "nationalize” is:

*

NATIONALIZE1
Part Of Speech: VERB
Conceptualization Built: (<=> SATRANS®
OBJECT SCONT®
TYPE SECONOMICH®)
New Role Locations: (CACTOR) (TO))
Semantic Constraint: SPOLITY®
Syntactic Location: SUBJECT
(OBJECT)
Semantic Constraint: $SPEC~INDUSTRY®
Syntactic Location: VERB-OBJECT

The words "nationalize" and "nationalization"™ have very
similar meanings. FRUMP does not have morphological
decomposition rules. However it is very useful to be able
to use the meaning of the verb as the meaning of the noun.
This way there will be no need to duplicate most of the
dictionary information. The nominalized definition can
simply have a pointer to the verb definition together with
the information that it is used as a noun. However, some of
the new role 1locations of the noun's word sense are
different from the verb's word sense. For example, as a
verb "nationalize" can be used as follows:

Uganda nationalized a French company.

However, the noun "nationalization" can express the same
information as

The nationalization of a French company by
Uganda...

Rules 8 and 9 permit the text analyzer to make this
transformation. The word sense of "nationalization" can now
simply be a pointer to the word sense for the verd
"nationalize" together with an indication that the verb has
been nominalized:

i R EeLe

bR 7

~w

121

NATIONALIZATION1:
Part Of Speech: NOUN
Root : / (NOMINALIZE NATIONALIZE1)

The definition of "nationalization" is then very much more
compact than it would be if all of the information were to
be duplicated from the "nationalize" entry.

Thus, instead of an explicit grammar, FRUMP relies on
its top-down predictions and a set of simple heuristic rules
about English syntax. These rules are far from a complete
specification of English syntax and will occasionally make
mistaken predictions about where in the sentence to look.
However, FRUMP's incomplete knowledge of syntax allows the
advantages of constraining the search for desired words and
eliminating certain semantic ambiguities. Since all of the
processing is prediction driven, the text analyzer retains a
flexibility beyond any practical syntactic grammar. The
text analyzer's syntactic knowledge finds the general
sentence location of the desired word while the semantic
predictions determine exactly which word and word sense will
be used.

In summary, FRUMP has nine syntactic rules. Ultimately
more will probably be needed if FRUMP is extended to do more
detailed processing. However, FRUMP's syntactic heuristies-
so far are quite adequate. The text analyzer uses its
syntactic knowledge to constrain where to look in a text
phrase for a desired conceptual item. That is, once the
text analyzer is asked to fill a conceptual role, it applies
its syntactic rules to determine where in the input it ought
to look for the word that will provide the role filler. The
syntax rules are only.applied when needed. The system does
not do a syntactic parse of each input sentence. Instead it
builds only as much of a syntactic parse tree as it needs to
build the conceptual representation of the sentence. The
parse tree is augmented under the direction of the
conceptual processing.

5.3.5 Anaphoric Reference

FRUMP's top-down orientation allows the text analyzer
to resolve a large class of pronominal references easily.
Recall from the discussion of the PREDICTOR that its
predictions are constantly revised to be the tightest, most
accurate possible. At times the PREDICTOR can anticipate
the precise filler of a desired role. That is, instead of
predicting that the ACTOR role will be filled with Jjust

122

®COUNTRY®*, it can predict that the country will be ®FRANCE®.
This type of prediction comes from PREDICTOR rule 9.

Recall that PREDICTOR rule 9 is:

PREDICTOR rule 9
If a role filler is predicted, and that role
is filled by a previously bound script
variable, predict the more explicit binding of
the script variable instead of the less
specific filler constraint from the predicted
conceptualization.

This kind of prediction makes resolving a pronoun
particularly easy. The text analyzer responds to this type
of prediction in the normal way. It looks in the syntactic
location for something that will resolve to the predicted
token (e.g. a word that can mean ®FRANCE®). 1If it finds a
pronoun that does not conflict with properties of the
predicted token, the predicted token is used to fill the
role.

Of course, there is the possibility that the pronoun
will conflict with properties of the predicted conceptual
item. For example, if #JOHN®* were predicted and the pronoun

"she" found in the text. In these cases, the text analyzer

must look for some other word that has a reading
corresponding to ®JOHN®. If such a word is found, the
corresponding conceptual item is added to the current
conceptualization. If not, then the text analyzer can not
add the desired role, and it informs the selection mechanism
of that fact so that another method might be tried.

Recall from the previous chapter that PREDICTOR rule 11
is:

Rule 11
If a single explicit role filler cannot be
decided upon, predict that the role will be
filled from the 1ist of possible explicit role
fillers.

There is the possibility that PREDICTOR used rule 11 instead
of rule 9 to make the prediction. Rule 11 predicts a 1list
of explicit items that might be the role filler. For
example, the text analyzer might be asked to fill the ACTOR
role with one of the elements of the 1list (®JOHN® ®BILL®
®MARY®), Now, if a pronoun is found in the expected

WA= bay

™

123

syntactic location, there could be trouble. If the pronoun
"she" 1is found everything is fine because the properties of
"she" conflict with all of the predicted fillers except
®MARY®, However, if the pronoun "he" is found, it could
match either ®JOHN® or ®BILL®*.

When several predicted items all match a pronoun, the
text analyzer resorts to syntax. Obviously, world knowledge
cannot be used at this point to disambiguate the pronoun.
If there were any semantic reason why one of the items ought
not match the pronoun, the PREDICTOR would not have included
it in the first place. The only alternative is the use of
syntactic knowledge.

The text analyzer currently has only one syntactic rule
to aid in disambiguating pronouns:

Syntax Rule 10
prefer a referent if it appeared in the same
syntactic location of the previous clause.

To illustrate this rule, consider the following
sentences:

President Carter met today with Vice Premier
Teng. He proposed a trade agreement between
China and the U.S.

It is quite clear that Carter is the one who made the
proposal. However, there is no world knowledge that could
disambiguate the pronoun "he" in favor of "Carter." A
visiting diplomat is as likely to make a proposal as is the
host diplomat. The pronoun "he" is the syntactic subject.
"Carter" is the preferred referent simply because "Carter"
also appeared as the syntactic subject of the previous
sentence.

Of course, this syntactic rule alone is not sufficient
to handle all of the semantically ambiguous pronouns that
could occur. However, if it were a problem it would be easy
to add more such syntactic rules. Semantically ambiguous
pronouns are not very common, If there is any question as
to the correct referent, the writer of the news story will
not use a pronoun. Of the semantically ambiguous pronouns,
this single syntactic rule is able to resolve a large number
of them. There is 1ittle need for more sophisticated
syntactic rules here.

Deictic references are widely used in news stories to
refer to dateline information. For example, consider the
beginning of a news story:

A A v

124

Chtaura, Lebanon, Oct. 8 - Syrian, Lebanese
and Palestinian representatives will meet here
tomorrow to discuss the withdrawal of
Palestinian forces.

In this story "here" and "tomorrow" must be interpreted with
respect to the dateline information. "Here" must resolve to
Chtaura, Lebanon, and "tomorrow" must resolve to October 9,
1975.

These deictic references are relatively straightforward
to handle. FRUMP processes the dateline information in the
header of UPI stories. This establishes both the time and
the place where the story originated. Time and place
pronouns encountered with no explicit conceptual prediction
are interpreted as referring to this dateline information.
The dictionary definition for relative pronouns like
"tomorrow," include how they modify the referent (e.g.
"tomorrow" is the referent date plus one day).

In FRUMP's method of processing, pronouns are not a
problem. In fact, they are an advantage. Pronouns improve
processing efficiency because they eliminate an inheritance
check that would otherwise be performed. In many systems
pronouns are handled differently than other processing.
When a pronoun is encountered, a special routine is called
to find a referent for it (although Charniak argued in his
dissertation [1972] against this technique).

In FRUMP, however, due to the nature of its processing,
referents are predicted in the same top-down manner as
everything else. When a pronoun is encountered, under
normal circumstances, FRUMP's PREDICTOR will already have
anticipated an explicit filler for the desired role.

For example, consider the pronoun occurring in the
second sentence of the following input:

Uganda nationalized an Exxon oil refinery. It
was paid $1.2 million in compensation.

After processing the first sentence, FRUMP will realize that
this is a story about one country nationalizing a company of
another. The first sentence builds a meaning representation
in which there is a forced ®ATRANS®* of an oil refinery. The
ACTOR is ®UGANDA®, the conceptual referent for
"Uganda." The FROM role is filled with ®EXXON®, the
conceptual referent for the word "Exxon." These fillers
are bound to script variables for the entity taking the
industry and the entity giving it up, respectively. In the
second sentence, FRUMP will build the structure

(<=> (®*ATRANS®)

125

OBJECT (*MONEY®)
AMOUNT (1200000)
UNIT (*DOLLAR®))

from the phrase "paid $1.2 million." At some point the
PREDICTOR will ask that the TO role be filled.

The PREDICTOR can immediately predict that the filler
of the TO role will be ®EXXON®, This is done because the
only script event that the above partial conceptualization
matches is the one for giving compensation to the previous
owner of the nationalized industry. Furthermore, the script
variable for the entity that gave up control of the industry
has already been bound to ®EXXON®* from processing the
previous sentence. If this conceptualization is indeed to
match the predicted event of paying compensation, the only
possible filler of the TO role is ®EXXON®, ®EXXON®* is
predicted to be the filler of the TO role by PREDICTOR rule
9 which states that the binding of a script variable should
be predicted if it is known.

The SUBSTANTIATOR selection mechanism calls the text
analyzer to fill the TO role with something that can be
considered ®EXXON®*. The text analyzer predicts that the TO
role will be filled with the syntactic subject (using syntax
rule 7 since the verb is passive). In the syntactic subject
location the text analyzer finds the pronoun "it." Since
a single explicit filler has been predicted with which this
pronoun does not conflict, the predicted filler is assumed.

A pronoun in the ©predicted syntactic location
eliminates the need for an inheritance match to be
performed. It says basically "never mind the further
processing you would do if there were a real word here, the
prediction you have is the correct one provided it matches
in gender and number." If in the above example, "the Exxon
Corporation" were found instead of "it," the text analyzer
would have to Jjustify that "the Exxon Corporation" could
indeed be considered to refer to ®EXXON®. Although in this
case the justification would be quite easy, it would involve
some work, and in general could involve a good deal of
inheritance matching. Thus, using FRUMP type parsing,
pronouns make text interpretation more efficient rather than
causing problems.

5.3.6 Looking at More Than One Word at a Time

At the beginning of this section it was stated that the
text analyzer 1looks at only one word at a time with three
exceptions. The exceptions are 1) passives, 2) phrases, and
3) composites.

126

Passives are straight forwa~d to handle. When the text
analyzer uses a word that might be the past participle of a
verb, it looks to see if it is preceded by a form of the
verb "to be." If so, FRUMP assumes it is passive. In
processing that word, however, the text analyzer needed to
look for the auxiliary "to be."

Phrases are groups of words that have a special meaning
only in conjunction with each other. Phrases are either
idiomatic constructions or, as is more often the case 1in
FRUMP, multi-word names like "the United States." There is
a dictionary entry for each phrase. The dictionary entry of
the phrase is added as a word sense to any one of the words
in the phrase (usually the rarest word). The dictionary
entry includes instructions on how to justify that the rest
of the phrase is present. For example, one of the senses of
the word "united" says "if I'm capitalized and I am followed
by the word "states" also capitalized then I can resolve to
®USA®, When the text analyzer wants to use a phrase
definition, it must first Jjustify that the rest of the
phrase is indeed present.

Composites are permanent memory tokens for which there
is no single lexical realization. For example, there is a
node ®QUAKE-MAGNITUDE® which is used to bind the &MAGNITUDE
variable in the earthquake script. The ®*QUAKE-MAGNITUDE®
memory pointer is composed of two parts: 1) a
#QUAKE-SCALE®*, and 2) a number. Examples of possible
®QUAKE-MAGNITUDE®*s might be a Richter scale reading of 4.4,
or a Mercali scale reading of 3.7. In both cases it is
composed of a scale and a level reading on that scale. Thus
when the text analyzer is asked to find a composite memory
token, it must build it up from its pieces. In recognizing
a composite memory token then, the text analyzer must
examine several words.

5.4 The Role Infereneerv

The role inferencer is the final SUBSTANTIATOR
subsystem that can build conceptual structures. Like the
text analyzer, it cannot respond to predictions of entire
conceptualizations. Rather it operates on one role at a
time.

The role inferencer is composed of a large number of
inference rules. Each inference rule contains three parts:
the role it can add, conditions on when it applies, and a
specification of the filler that can be added. In addition,
each inference rule has a certainty and a cost specification
similar to the parsing rules. The certainty, again,
indicates how sure the system can be of a result produced by

SN

127

this rule. The cost is an estimation of the expense of
applying the rule.

Since there are many inference rules, there must be an
efficient method of indexing them. Inference rules are
organized by the primitive acts or states of the
conceptualization, and within each primitive act or state by
the roles that they can fill. Thus, all the rules that can
add the conceptual role OBJECT to an ®ATRANS®
conceptualization are listed together, all the rules that
can add the role ¥ACTOR® to a ®*PTRANS*® conceptualization are
listed together, etc. These groups of inferences are sorted
high to low by their certainties. This makes the selection
procedure more efficient.

For example, even though there are many inference rules
in the FRUMP role inferencer, there are only five that might
be applicable to inferring the FROM role of ®ATRANS® acts.
Since the role inferencer always knows the act of the
conceptualization it is augmenting, and it is told the role
that the PREDICTOR wants filled, it can immediately retrieve
the possibly relevant inference rules. If it is trying to
infer the FROM role of an ®ATRANS®*, it can immediately
narrow the relevant inference rules to these five.
Furthermore, since these five rules are sorted by certainty,
it can easily try the most certain rules first.

The conditions of when a rule can apply are a series of
tests to be applied to other role fillers of the
conceptualization. For example, there is a rule to infer
that when planes crash, they usually crash into the ground.
This rule is indexed by the primitive act ®PROPEL®*, and the
conceptual role OBJECT because it can fill the OBJECT role
of ®PROPEL* conceptualizations. The rule is:

Primitive Act: ®PROPEL*®
Desired Role: (OBJECT)
Inferable Filler: #GROUND#
Tests: (ACTOR) filled with ®AIRCRAFT®

(MANNER) filled with ®VIOLENT®

This rule states that the OBJECT of a ®PROPEL® may be filled
with S®GROUND®* if the filler of the ACTOR role can inherit
SAIRCRAFT®* and the MANNER can inherit ®VIOLENT®.

Of course, not all violent propels of an aircraft need
be to the ground. A plane can, for example, crash into
another plane or a building. However, if either of these
are the case, the object crashed into must be explicitly
mentioned in the text. It is the Jjob of the selection

il ot - A

128

procedure to insure that an inference such as this is not
made when there is contrary information in the text.

The certainty of an inference reflects how sure it is
of the filler it produces. The certainty of the above
inference is 8 on a scale of 1 to 10.

The cost of applying an inference rule is dynamically
computed. It is twice the number of unfilled roles that
must be examined to apply the rule plus one. This cost
function normalizes the cost of an inference to the cost of
applying a parsing rule. The average cost of a parsing rule
is 2. Thus assuming the parser was able to fill the needed
roles, the average cost of filling the roles would be twice
the number of missing roles. One is added to account for
the cost of manipulating the inference rule. Thus the
maximum cost of applying the "crash into ground" rule is 5.
This is the cost if neither the ACTOR or the MANNER rule is
present in the conceptualization when the OBJECT role is
desired by PREDICTOR. The minimum cost is one if both the
ACTOR and MANNER roles are already filled in.

The inference rules may call the SUBSTANTIATOR with
predictions of their own. This is done if a desired role is
missing from a conceptualization. To illustrate this, we
will discuss how FRUMP processes the following sentence in
the context of the script $VEHICLE-ACCIDENT:

A jet crashed.

The word "crashed" builds the structure
(<=> SPROPEL®
MANNER ®VIOLENT®)
Furthermore, it predicts that the ACTOR will be found in the
syntactic subject and that the OBJECT will be found as the
object of the preposition "into."

The relevant event in the vehicle accident sketchy
script is the following:

(ACTOR ®VEHICLE®
<=> S*PROPEL®

OBJECT ®PHYSOBJ®
MANNER ®VIOLENT®)

Now suppose PREDICTOR wants the OBJECT filled in next. On

129

the basis of the sketchy script, it will predict that the
filler will be some kind of ®#PHYSOBJ®, The SUBSTANTIATOR
selection procedure will first ask the parser to fill the
role. The parser will fail. Exactly why it is called first
and why it does not employ parse rule 4 (the one that will
take anything) to fill the OBJECT role with #JET®# will be
discussed in the next section. For now, it is sufficient to
know that the parser was called and failed.

The inference rules are tried next. The primitive act
of the current conceptualization is #PROPEL®; the desired
role is OBJECT. Thus the "crash into ground" inference will
be among them. From the group of inference<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>