
I AO AO7 L 032 TALE LRI IV PEW HAVEN COI*4 DEPT O~ COMPUTER SCIENCE F/S 5/2
SKIPS I NS STORIES IN REAL T IME AN EXPERIMENT IN INTESRATED t$ID E—ETC(U)
NAY 79 S F D&IONS N00010—7S—C—1113

UNCLASSIFIED mR—Ill
CF3

-

I p_
I

__

N! NI1!19hIP! N_
_ _ _

I __ _ _ _
I

_
__

Niiiif t_N
_ •

. IIIO i.O~~LL
_ _

LL 12 2

1. 1 L

11111’ .25 IIIII~ ~~

MICROCOPY RESOLUTION TEST CHART
NAIIONA L BUR IAU OF STANDARDS-196 3-A

a

LEVEUt~

I

Skiianing Stories in Real Time:
An Experiment in Integrated Understanding

May 1979

Research Repor t #158

Gerald Francis DeJong II

C-,

r~~m~~~ON STATEMENT A
Approv.d for public r.1.oas~ I fl L_~ i i_,,—r.,_rJ U ID~stzjbua~~ Unlimited U ULb~~LSU U L~L)
YALE UNIVERSITY D

DEPARTM ENT OF COMPUTE R SCIEN CEL r _ ~~-~
7~ _~~~ ~~~~~~~~~~~~~~~~~

~~~~~~~~~



This work was presented to the Graduate School of Yale University in

candidacy for the degree of Doctor of Philosophy .

esseton For
NTIS W~1ni~ I

~DDC TA)
Unannounced
Justifice~tion~~_ —

By_____________

~~~~~~~~~~~~~~~~~~~~~
Avail ~wd/or

:~t special

_ _ _ _

Skinuning Stories in Real Time:
An Experiment in Integrated Understanding

May 1979

Research Repor t #158

Gerald Francis DeJong II
o D C

This work was supported in part by the Advanced Research Projects Agency
of the Department of Defense and monitored by the Office of Naval Resear ch
under contract N00014-75-C-ll1l. [DmThrn’~ oN STATEMENT ATI

I ~~~~~~~ for public relenas 1
I Pletribudon Unlimited

‘
S

—

(c) Copyright by Gerald Francis DeJorig II 1979

ALL. RIGHTS RESERVED


~~~~~~~

r ~~~~~~ ,r t ~~~~ i’ A~~~ IS? ~.. i,e,e I n,.~ . .I~

REPORT DOCUMEPITATION PAGE BE~~~ORE COMPL~~TI~~G F(~~R M
K I A D  INSTR 1~CTIO~~~S

~~ ~~‘“ ‘~~‘~~~~~~~~~ ‘ j .~ 
GOVT AC C ESS IO N NC 3 PEC1P~ LNY S C A T A ~.Cc~ N~~~ BE~~

#158 5 - -

— _____________________________________

S tyPE 0, NEPOPt $ P(PICC c~vERE0

Skimming Stories In Real Time : ‘ Ph.D Thesis
An Experiment in Integrated Understanding 

~~~~ *EPo P~ N~J M S E P

1 A . t w O P
— — __—*—.—-•‘~~~~~~~~~~~~~~~~~ “~ ~~~~~~~~~~~~~~~ C’ O P G P A N N UN S £ Pie,

_

/~ppN 14-75-C-llll

PEPr0*M ~ .G OP~~A N I Z A t uO N N A M E *~c ao~ p~ss IO P P Q G P A M £I EMCIdT. OJEC~ ¶AS ~
Yale University—Department of Computer Science. .

.f

A PE. a P O RK U N I T P.UM •ER$

10 Hillhouse Avenue
New Haven , Connecticut 06520

I I CO PC O F F I C E N A M E A N D ADCPES S Ii
_______L~~At ~E

—
Advanced Research Projects Agency 2’
1400 Wilson Boulevard
Arlinaton. VirginIa 22209 220

I uO~i i l O R I J a c , *~~(‘.C~ N A M E A A D C ’ P E S S (I i 1 tet.,~; item CoaftnUin ~ Ol l ic. IS . SCC i~A I tY CL. 055. (01 f f i I ~eç~”i .

Off ice of Naval Research
unclass i fledInformation Systems Program

Arling ton , Virg inia 22217 T. orc *551 F, CATI ~~c utouL.r

1$ DIS’PISU ’ION ~~~*‘T~~M€.4 t (09 hSl Re; t:;

r~~~
0N STATEMENT ADistribution of this report is unlimited

App~oved for public rel.s..; I
~ istributj o~ Unlimited I

t7 ~~~~~~~~~~~~~~ ~~~~~L(” IN. lb.Uact .ntet.d in lIe,k 20, Ii diU.,ont I,.. R. .,f)

~~~~~~ ~~~~~~~~~II  SU PPL.EMENtAP’V NOTES

~~ 5 KEY PONDS (Conifflu. on ,.r.,.. .Sd. Il n~cllsl~y •d Sd.miSiy by block ni sb..)

Artif icial Intelligence Parsing Reading
f
~ 

Natural Language Knowledge—based systems Automatic summarizatio
Semantics Inference
Conceptual Dependency Skim

~~~~~This dissertation describes a new method of automated text analysis.
*0 A I ST RACT ‘ConUma. I•V•P •~ .Sd. H n.c...vp wd td.nIU~’ by SilA& P,~~$.I)

language processing system that has been implemented to demonstrate the
viability of this new approach. The system skims news stories directly from
the United Press International news wire and produces a s*mmary of what it
understands . FRUMP is able to correctly process news articles it has never‘[D

FRu MP (Fast Reading Understanding and Memory Program) is a working natural

before seen . ~
(4L/~7 /~kjJj1.

~~GNM
I JAN ~~ 1473 EDItION O~ NOv AS is oeao~tti

$ k4 0I02.LP.O%4.beOl
~Y u i ?Y £k AIA.PICATiO~ OF tHIS PL~~R f~~~~~ Do~~ l0t.?. ~ -

~ L (L J N T ’~ .. ,. 4 ’ ,F ~ C A I C N ,,r T . , I 5 P A C I N?,.,. i ’t.t~ ~~~~~~~~~~~

The process of interpreting input text words can be greatly simplified
if it is viewed as one component of a highly integrated understanding process.
In FRUMP the text analyzer is embedded in a predictive understander . This
embedded in a predictive understander. This embedding is the key to FRUMP’s
robustness. FRUMP ’s integration makes all of the world knowledge and top-
down predictions of the understander available to the text analyzer. FRUMP
uses a data construct called a sketchy script to store its world knowledge.
There is one sketchy script for each rea’ world “situation” FRUMP knows about.
The system uses this knowledge to make predictions about what might happen
next in a given situation. FRUMP continually jumps to conclusions about what

• I the text means and generates predictions about what might occur next. The
text analysis process than is reduced to finding a reading of the text that
satisfies these predictions. The process of looking for readings in the text
is much simpler than the process of generating a conceptual structure from an
arb itrary input. Thus there is no need in FRUMP for an extremely powerful
English parser.

Given a new input FRUMP must be able to decide which of its sketchy
scripts contains the knowledge needed to process the input. This is the
process of ~‘scr ipt selection” which is a major problem for an approach such
as FRUMP ’s. A workable solution to the script selection problem must be
computationally manageable. The process must not be significantly slowed
down by the addition of more world knowledge in the form of more sketchy
scripts. That is, the computational complexity of script selection must not
depend significantly on the rumber of scripts in the system. Furthermore , the
script selection process must often be completely bottom—up ; most news
stories cannot be anticipated before they are seen. Yet during this process ,
the FRUMP text analyzer must still be supplied with adequate top—down
guidance. This problem is addressed and a general solution for FRUMP ’s
purposes is given.

:L~J

— -— -

_ _ _ _
_ _ _ _ _ _

—— OFFICIAL DISTIRUBTION LIST —-

Defense Documentation Center 12 copies
Cameron Station
Alexandria , Virginia 2231~i

Offi ce of Naval Research 2 copies
Information Systems Program
Code ~l37
Arlington , Virginia 222 17

Adv anced Research Pro j ects Agency 3 copies
Cybernetics Technology Office
1~ OO Wilson Boulevard
Arl ington , VirginLa 22209

Office of Naval Research 1 copy
Branc h Office — Boston
~l95 Summer Street
Boston , Massachusetts 02210

Office of Naval Research 1 copy
Branc h Office - Chicago
536 South Clark Street
Chicago , IllinoIs 60615

Offi ce of Naval Research 1 copy
Branch Office — Pasadena
1030 East Green Street
Pasadena , California 91106

Mr. Steven Won; I copy
Ada~nistrative Contracting OfficerNew York Area Office
715 Broadway — 5th Floor
New York , New York 10003

Naval Research Laboratory 6 COPiSS
Technical Information Division
Code 2627
Washington , D.C. 20375

Dr. A.L. Slafkosky 1 copy
Scientific Advisor
Comsand ant of the Marine Corps
Code RD-i
Washingto n , D.C. 20380

Office of Naval Research 1 copy
Code ~$55
Arlington , Virginia 22217

—— 2 ——

OffIce of Naval Research 1 copy
Code 1458
Arlington , VirgInIa 22217

Na val Electronics Laboratory Center 1 copy
Advanced Soft ware Technology DivisIon
Code 5200
San Diego , California 92152

Mr. E.H. Gl elssner 1 copy
Naval Ship Research and Development
Computation and Mathematics Departmen t
Bethesda , Maryland 200814

CaptaIn Grace M. Hopper 1 copy
NAICOM/MIS Planning Board
Office of the ChIef of Naval Operations
WashIngton , D.C. 20350

Mr. K~n B. Thompson 1 copy
TechnIcal DIrector
Information Systems DIvision
OP—9 1 T
Office of the Chief of Naval OperatIons
WashIngton , D.C. 20350

Advanced Research Project Agency 1 copy
Information ProcessIng Techniques
1400 WIlson Boulevar d
Arlington , VIrgInIa 22209

Professor Omar WIng 1 copy
ColumbIa UnIversity in the City of New York
Department of Elec trIcal EngIneering and
Computer ScIence
New York , New York 10027

OffIce of Naval Research 1 copy
Assistant Chief for Technology
Code 200
Arlington , Virginia 22217

Captain Richard L . Martin , USN 1 copy
Cot~~anding Officer
USS Francis Marion (LPA — 24 9)
FPO New York 09501

Major J.P. Pennell 1 copy
Headquarters , Marine Corp .
(Attn : Code CCA—J$0)
WashIngton , D.C . 20380

ABSTRACT

Skimming Stories in Real Time:
An Experiment in Integrated Understand ing

Gerald Francis Dejong II

This dissertation describes a new metnod o~ automated
text analysis. FRUMP (Fast Reading Understanding and Memory
Program) is a working natural language processing system
that has been implemented to demonstrate the viabil i ty of
this new approach. The system skims news stories directly
from the United Press International news wire and produces a
summary of what it understands. FRUMP is able to correctly
process news art icles it has never before seen .

The process of interpreting input text words can be
greatly simplified if it is viewed as one component of a
highly integrated understanding process. In FRUMP the text
analyzer is embedded in a predictive understander . This
embedding is the key to FRUMP ’s robustness. FRUMP ’s
Integration makes all of the world knowledge and top—down
predictions of the understander available to the text
analyzer. FRUMP uses a data construct called a sketcfly
scrint to store its world knowledge. There is one sketchy
script for each real world “situation” FRUMP knows about .
The system uses this knowledge to make predictions about
what might happen next In a given situation. FRUMP
continually jumps to conclusions about what the text means
and generates pred~ctions about what might occur next . The
text analysts process then is reduced to finding a reading
of the text that satisfies these predictions. The process
of looking for readings in the text is much simpler than the
process of generating a conceptual structure from an
arbitrary input. Thus there is no need in FRUMP for an
extremely powerful English parser.

Given a new input FRUMP must be able to decide which of
its sketchy scripts contains the knowledge needed to process
the input . This is the process of “script selection” which
is a major problem for an approach such as FRUMP ’s. A
workable solution to the script selection problem must be
computationally manageable. The process must not be
signi ficantly slowed down by the addition of more world
knowledge in the form of more sketchy scripts. That is , the
computational oomp] exIty of script selection must not depend
significantly on the n~~ber of scripts in the system .
Furthermore , the script selection process must often be
completely bottom—up ; most news stories cannot be

c

anticipated before they are seen. Yet during this process,
the FRUMP text analyzer must still be supplied with adequate
top—down guidance. This problem is addressed and a general
solution for FRUMP ’s purposes is given .

(

PREFACE

Science fiction writers have long ant ic ipated machines
that could converse fluently in natural language. The
advent of the computer seemed to many to herald the
realization of that dream . Yet computer analysis of natural
language texts remains an elusive goal. This is not from
lack of effort. Much money and effort was spent in the
early days of computers on automatic translation between
natural languages. The outcome was the real i zation that
translation required understanding , and understanding was
very difficult indeed for a computer .

In recent years artificial intelligence has directly
addressed the problem of automated text analysis. However ,
very few systems have worked at all well. In the few that
have , natural language analysis is used as a very
specialized front end to a very specialized system . These
systems are not easily extendible to other than their
specialized inputs.

By far the more common system is one which explores the
possibilities of natural language analysis in a toy system .
These systems can correctly process few inputs other than
the examples for which they were built. Some work on only
one or two particular sentences. The claim , ~.het 1~er stated
or impl ied , is then made that while only a preliminary
version has been implemented a real working system is now
just a matter of adding more vocabulary items and perhaps
more world knowledge. None of these systems has ever been
extended to the point of being practical. They remain
signposts pointing along research directions never again
followed .

This dissertation proposes yet another research
direction. However , it is different from its predecessors
in two ways . First , it recognizes the non—extensibility of
previous systems as a theoretical rather than a practical
problem and addresses that problem. Second , the
“preliminary” implementation given , though still limited In
many ways, can correctly process a much broader class of
real world inputs than previous systems.

The extensibility problem Is addressed by a radical
I reorganization of the natural language system . The process

of interpreting words is completely integrated with the

— i v —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



process of “understand ing” the concepts presented in the
text .

FRUMP , the computer implementation of the approach,
receives its input from the UPI news wire . The system quite
rout inely is able to “understand” completely new text inputs
and construct reasonable summaries of them .

I 1~



ACKNOWLEtGM ENTS

One day the ac id test of an natural language
Ph.D. project will be whether or not it can write an
acceptable dissertation for its designer . Sadly, t hat day
has not yet arrived and so I had to struggle through myself.
However , it would have been quite impossible without the
help of the following people.

I am deeply indebted to my advisor , Professor Roger
Schank. Fie remained confident of the eventual outcome of my
research even when I had grave doub~s. He has had a
profound influence not only on my research but on my entire
view of the world. His originali ty and imagination will
long be an inspiration for me.

I also owe much to Professor Drew McDermott for
encouraging me when I needed it most . He served on my
committee and was instrumental , along with professor Gene
Charn iak , in helping me form my Ideas on script selection.
Professor McDermott and Professor David Barstow, who also
read a draft  of th is dissertat ion , provided extremely useful
comments.

Professor Wendy Lehnert served cn my committee and read
several drafts. Her insightful comments helped immensely in
the preparation of this thesis.

Professor Jaime Carbonell , Professor R ichard
Cullingford , Jim Hendler , Professor Alan Perlis, Dr. Chris
Riesbeck , and Mallory Selfridge read drafts. Mike Lebowitz
and Ann Drinan also read chapters. Their comments helped me
organize the final version.

I wish to thank Jim Hendler who did much of the FRUMP
programming during the hectic period of my dissertation
writing , Rod MoGuire who wrote the natural language
generator , and the rest of the FRUMP group: Natalie Dehn ,
Glenn Edel son , Bill Ferguson , Anne Hafer , Lewi s Johnson , and
Steven S] ade. Jaime Carbonell , Mike Dyer , Anne Hafer , and
Lewis Johnson also contributed to the current generator.

I would like to thank Walter Stutzman who wrote the
software interface to the UPI wire and Bob Tuttle who built
the interface hardware. I would also like to thank United
Press International , in particular Mr. Bob Wood sum and
Mr. James Buckner, for making the news wire available to

— vi —

_ _  _ _ _



FRUMP.

Finally , I would cer tainly be remiss not to acknowledge
the stimulating atmosphere provided by the rest of the
students and faculty both in artificial intelligence and
psychology here at Yale.



TABLE OF CONTENTS

Abstract
Prefac e iv
Acknowl edgements v i
Table of Contents viii
List of Tables xi
List of Illustrations xii

CHAPTER 1 : INTRODUCTION TO FRUMP

1.1 What Is FRUMP? 1
1.2 Problems with Previous Systems 2
1.3 What is Needed to Solve These Problems’ 5
1.11 FRUMP Overview 6

1.4.1 The Structure within the
SUBSTANTIATOR 8

1.4 .2 Communication Between Modules 10
1.14.3 Pragmatic Predictions Vs.

Local Semantic Constraints 11
1.4 .4 The FRUMP Method Compared

to Generate and Test 13
1.5 Benefits Derived from Sketchy Scripts 13

1.5.1 Constraining Inferences 14
1.5.2 Guiding the Parser 16

1.6 Situations Sketchy Scripts Can Represent .   17
1.7 A Sketchy Script 19
1.8 What Sketchy Scripts Can ’t Do 21

1.8.1 Variable Element Articles 21
1.8.2 Articles that Appeal to Emotions 22
1.8.3 Arg~asentation Articles 23

1.9 Examples 24
1.10 Conclusion 27

CHAPTER 2: THE PROBLEM OF SKETCHY SCRIPT SELECTION

2.1 Introduction 29
2.2 Requirements of a Solution 31

2.2.1 Script Selection Cannot Rely
on Top Down Knowledge Alone 31

2.2.2 Time Efficiency of Selection 31
2.2.3 Information Efficiency of Selection . .   32

2.3 Solutions Used by Other Script—Like Systems   32
2. 11 The Three Kinds of Text Clues to

an Artiole ’s T o pto 37

— viii —



2.5 Overview of FRUMP ’ s Three
Sketchy Script Selection Methods 39

2.5.1 Explicit Reference Activation 110
2.5.2 Implicit Reference Activations 41
2.5.3 ~~‘nt Induced Activation 113

CHAPTER 3: FRUMP’S SCRIPT SELECTION ALGORITHMS

3.1 Introduction 441
3.2 Explicit Reference Activation 1411

3.2.1 Mis—ActIvations 145
3.3 Implicit Reference Activation 1e6

3.3.1 Is Implicit Reference
Activation Really Necessary’  146

3.3.2 Issue Skeletons loB
3.4 Event Induced Activation 51

3.4.1 Bottom Up Problems 51
3.4.2 FRUMP ’s Solution 53
3.44.3 Matching Key Requests 511

3.4.3.1 Conceptual Dependency 55
3.4.3.2 Two Sketchy Script Initiator

Discrimination Trees 56
3.4.4 How SSIDT’s Eliminate the Need

for a Powerful Parser 60
3.4 .5 An Example of Event

Induced Activation 61
3.4.6 Complexity of Event

Induced Activation 65

CHAPTE R 4 : PREDICTING CONSTRAINTS

14.1 Introduction 67
14.2 Kinds of Understander Predictions 67
14.3 Predictions from Issue Skeletons 68
4 .4 Predicting Conceptualizations 714
14.5 Predicting Characteristics of

Possible Role Fillers 80
4 .6 Predicting One Explicit Role Filler 86
ll~~7 Predicting Several Explicit Role Fillers .  . 90
14.8 Conclusion . 91

CHA PTER 5: SUBSTANTIATING CONSTRAINTS
5.1 Introduction 92
5.2 The Conceptualization Inferencer 93
5.3 The Text Analyzer . .  . . . . .  .  .  .  944

5.3.1 FRUMP ’s Dictionary .  97
5.3.2 FRUMP ’s Permanent Token Memory .  .  .  101
5.3.3 FRUMP’ s Parsing Rules . . .  .  .  .  102
5.3.14 Syntax . . . . .  111$
5.3.5 Anaphorio Reference . . . .  121

— ix —

I — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. .. -

~~~~~~~~~~


5.3.6 Looking at More Than
One Word at a Time 125

5.4 The Role Inferencer 126
5.5 The Selection Procedure 131
5.6 An Example 133

CHAPTER 6: PREDICTOR/SUBSTANTIATOR INTERACTION

6.1 Introduction 139
6.2 The Sketchy Scripts Involved 1110
6.3 An Annotated FRUMP Run 1143

CHAPTER 7: ANNOTAT ED FRUMP OUT PUT

7.1 Introduction 157
7.2 The Stories 158
7.3 A Day in the Life of FRUMP 189
7. 14 FRUMP ’ s Knowl edge Base 192

CHA PTER 8: EXTENDING THE PREDICTOR : ORGANIZING SKETCHY SCRIPTS

8.1 Introduction 19~4
8.2 Issue Skeletons 196
8.3 What Makes Up an Issue Skeleton 198

8.3.1 Kinds of Nodes 199
8.3.2 Types of Links within

Issue Skeletons 199
8.14 Diffrrences Between Issue

Skeletons and Sketchy Scripts 201
8.5 Sketchy Script Constraints at

Issue Skeleton Nodes 202
8.6 Issue Skeletons that Share Sketchy Scripts . 203
8.7 How Variable Element

Stories Can Be Processed 2014
8.8 Conclusion 206

CHAPTER 9: CONCLUSION 208

APPENDI X . . . 212

BIBLIOGRAPHY 216

LIST OF TABLES

CHAPTER 7

7.1 Analysis of the FRUMP run 190
7.2 Analysis by Script 190
7.3 Cause of Errors 191
7.11 Script Selection Confusion Matrix . 192

-x i -

i— -~

LIST OF ILLUSTRATIONS

CHAPTER 1

1.1 The Block Diagram of a Conventional
Natural Language System 3

1.2 The Block Diagram of FRUMP 7
1.3 The Structure of the SUBSTANTIATOR 8

CHA PTER 3

3.1 Sketchy Script Initiator Discrimination
Tree for Actions 57

3.2 Sketchy Script Initiator Discrimination
Tree for States 59

CHAPTER 14

14.1 The Natural Disaster Issue Skeleton 68
44 .2 An Instantiated Natural Disaster Issue

Skeleton 70
14.3 The Structure of a Multi—Track

Sketohy Script 79

CHAPTER 6

6.1 The Crime Issue Skeleton 1148

CHAPTER 8

8.1 The Natural Disaster Issue Skeleton 197
8.2 The Hospitalization Issue Skeleton 200
8.3 The Labor Negotiation Issue Skeleton . 201
8.1i Issue Skeleton for International

Agreements 205

— xii —

CHAPTER 1

INTRODUCTION TO FRUMP

—

1.1 What Is FRUMP?

FRUMP (Fast Reading Understanding and Memory Program)
is a computer program that skims newspaper articles. FRUMP
was designed to test a new theory of natural language
processing . The emphasis in this new approach is the
production of a robust system capable of processing a broad
domain of input texts.

The main idea behind FRUMP is to integrate the parsing
process with the rest of the understanding process . In
FR UMP , the parser is not artificially separated from the
inferenc ing process . This integration enables FRUMP to take
advantage of the rich backgroun d knowledge that is necessary
for both the parsing and inference processes. Thus FRUMP
analyzes text using pragmatic expectations as well as
syntactic and semantic ones.

FRUMP ’s domain is newspaper stories and, unlike most
natural language systems, it routinely works on input
neither it nor its programmers have ever seen before . It
reads and “understands” actual text directly from the UPI
news wire. When FRUMP “understands” a story , it builds a
conceptual meaning representation from the input text. A
natural language generation program then produces summaries
from this conceptual structure in English, French, Spanish,
Russian , and chinese . FRUMP skims text rather than read ing
it for detail , and extracts only the most important
information from a news article. It processes only what it
believes to be the most important points in a story. The
result is a very fast and efficient program which can •asily
process stories faster than they arrive from the news wire.

- 1 -

-

2

FRUMP is a script—based understander (Sehank & Abelson
(1977], Cullingford (1978]). It understands by identifying
the scripts applicable to the input article and then
bringing to bear all of its world knowledge about those
situations.

FRUMP uses data constructs called sketchy scriots to
store its knowledge about the world. Each sketchy script is
the repository for the knowledge FRUMP has about what can
occur in a given situation . When FRUMP realizes it is
reading a story about a particular situation, it applies
knowledge from the relevant sketchy script in order to
predict what events are likely to occur.

We define the understanding of a text to be the
creation of an unambiguous, conceptual representation of
that text. The representation must be free of any surface
lexical items and must include the events and causal
relations implied by the text whether or not they are
explicitly stated. As we will see, FRUMP’s sketchy scripts
play a central role in the understanding process.

1.2 Problems with Previous Systems

Most previous natural language understanding programs
have been made up of at least two separate subsystems (for
example , see Cullingford (1978], Parkinson et al. (1976],
Riesbeck & Schank (1976], Wilks (1973), and Woods &
Nash—Webber (1972]). A marser subsystem analyzes the input
natural language text into some intermediate form. The
intermediate representations range from surface
representations such as case grammars (Simmons (1973],
Heidorn (1975], and Woods & Kaplan (1971)) and annotated
surface structures (Marcus (1977]) to representations
involving conceptual primitives (Riesbeck (1975] and Lehnert
& Burstein C 197 9]) . An inferencer subsystem then builds a
representation of the meaning of the input text . This
involves incorporating the parser output into the meaning
representation , inferring any missing events , and supplying
the causal connections between the events.

_ _ _ _ _ _

I

3

BLOCK DIAGRAM OF A CONVENTIONAL NATURAL LANGUAGE SYSTEM

I
——

I
I I

I I I I
I I I I

TEXT > PARSER 1 ——— INTERMEDIATE ————> INFERENCER I
I REPRESENTA T ION I

CAUSALLY
CONNECTED
CONCEPT UAL
STRUCTURE

figure 1.1

Most natural language programs include various other
subsystems as well such as a question answerer or a
summarizer. However , these are used to demonstrate
understanding and do not affect the understanding process .

Whatever the form of the intermediate representation,
its purpose is always the same: to insulate the inferencer
from the capriciousness of natural language. However, in
all of these systems one gets the feeling that there are
actually two parsers: the one everyone admits to having
which produces the intermediate representation , and second
one hidden in the “infereneer” which parses the output of
the first parser to decide what it really means.

There is reason to believe that the separation of the
parsing process from the inferencing process represents a
fundamental flaw in these systems. Such separation impairs
communication between the modules and places severe
requirements on the parser. In FRUMP there is no
intermediate representation and no parser artificially
separated from the rest of the system. Instead , FRUMP’s
text analyzer produces representations that fit directly
into its sketchy scripts. However, FRUMP is a modular
system. Any reasonable sized artificial intelligence system
must be modular to be comprehensible. However ,
modularization should not sake the task at hand more
difficult. Th• FRUMP system ii broken into modules along a
more natural division such that no intermediate
representation is needed .

Not all previous systems disallow comm unication from
the inferenoer to the parser. Systems proposed by Marcus
and Winograd permit communication both ways between the

- - — - p ~~~~~~~~~~~~~~~~~~~~~~~~~~
—

*4

modules.

In SHRDL.U (Winograd (1972]) a systemic grammar is used
to parse the input . The systemic grammar is a type of
syntactic grammar. However, Winograd permits the grammar
rules to call semantic interpretation functions. When a
syntactic entity (e.g., a noun phrase) is parsed it can be
immediately analyzed by the semantic interpreter. If the
semantic interpreter cannot make sense of it , the phrase can
be re—parsed . However, semantic processing is still
motivated by syntactic analysis.

Marcus (1977) also took this position in his parser.
He envisions communication between his syntactic analyzer
and proposed semantic and pragmatic modules. However, he
emphasi zes that these modules are called only at the request
of the syntactic analyzer. So again semantic and pragmatic
processing are motivated by syntactic analysis.

Even though systems like Winograd’s and Marcus’s permit
more communication between the parser and inferencer during
processing , it is the wrong kind of communication. Semantic
analysis is still done only after syntactic analysis.
Semantic context is not used to provide the parser with
information that can help it along. Rather it is done only
at the request of the syntactic module after a certain
amount of processing. Both systems defer semantic analysis
until syntactic processing indicates that it is appropriate.
In Winograd’s SHRDLU this is done when a syntactic entity
has been found; in Marcus’s when his syntax analyzer
reaches a choice point.

The SOPHIE system (Brown & Burton (1975)) also allows
semantic and pragmatic information to influence parsing.
SOPHIE uses a “semantic grammar” (Burton (1976]) to analyze
naturil language Input . The rules in the semantic grammar
try to recognize entities with certain semantic properties
rather than syntactic ones. This is done by incorporating
much of the world knowledge of the domain into the grammar
rules. A very robust and successful system results which
can handle inputs with deletions, ellipses, and anaphoric
referents. However, the price paid by the semantic grammar
approach is to sake the language analyzer extremely domain
dependent. The parser is closely tied to a very constrained
micro—world. Extensive re—writing of the grammar would be
necessary to change domains. While the resulting system is
very ituipressive, the paradigm is so confining in terms of
its natural language capabilities that it is questionable
what the system has to say about natural language processing
in general .

_ _ _ _ _

5

1.3 What is Needed to Solve These Problems?

Recently inferencers have become more and more
predictive in nature. Compare, for example , the bottom up
MARGIE inferencer (Rieger (1975]) to the SAM script applier
(Cullingford (1978]) or consider the top down approach taken
by the HEARSAY I system (Reddy et al. (1973]) It has become
increasingly clear that an inferencer must know what kinds
of inputs to expect in order to make sense of them. The
existence of so many “frame—like” systems illustrates this
(Bobrow et al. (1977), Charniak (1977), Culling?ord (1978),
Goldstein & Roberts (1977], Wi].ensky (1978]). While a frame
is a very broad concept, all frame-like systems have one
thing in common : they are largely top down processors.
That is, to facilitate the understanding process they
predict what inputs will look like before they are seen.

And yet, in natural language processing, there has been
little attempt to take advantage of the inferencer’s
predictions when parsing natural language text. The
conventional design of natural language systems makes
effective communication between the inferenoer and the
parser extremely d i f f icul t .

To illustrate how inferencer predictions can be helpful
in parsing consider the following example. Suppose the
system has processed the following two sentences:

John had a copy of Crime
~~~~~~~ 

Punishm ent.
Bill wanted the book very much.

At this point a predictive understander such as Wilensky’s
PAM (1978] will have formulated the expectation that Bill
will try to acquire the book. Now suppose that the next
input sentence is “He. took it.” If the parser has been
told about the prediction, it might be made to interpret the
sentence correctly by recognizing that there is a meaning of
the sentence that matohes an out standing prediction .
However , if the parser must interpret the sentence with no
help from the inferencer ’s predictions the task is
impossible. Depending on the context , the sentence “He took
it” can have many different meanings:

Mary told John it was time for his medicine . He
took it.

The batter prepared for the pitch . He took it
(low and outside) .

John saw that Bill’s bishop was en prise . He
took it.



6

Bill gave John some very Sound advice. He took
it.

Thus communication between the parser and inferdncer
facilitates the processing of each new input sentence.
Without that communication , the sentence cannot be
semantically interpreted by the parser alone.

In systems with syntactically oriented front ends, the
problem does not arise at this point in the processing.
Syntactically, the sentence “He took it” is unambiguous. It
is the meaning that is unclear. Their solution is to
produce only a syntactic parse and let some later semantic
process assign the meaning. However, these systems suffer
when semantics is necessary to prefer a syntactic par se as
is often the case for prepositional phrase attachment. The
sentence “Bil l hit the boy with a broken leg” is ambiguous
on both the syntactic and semantic levels: the boy could
have a broken leg or Bill could be using a broken leg as a
club . The former reading is clearly preferred to the latter
on semantic grounds. However, a purely syntactic parser
does not have access to this information and therefore
cannot eliminate the need to produce other syntactic parses.

Whether the parser produces a meaning representation or
a simple syntactic parse tree , the process often requires
information available only at the semantic or pragmatic
level. The solution to the problems of previous systems,
then, is to make this higher level knowledge available to
the parser.

1.~4 FRUMP Overview

The FRUMP system has two main modules . However , it is
not divided in the normal way into a parser and inferencer.
One module makes predictions about what might happen next
and the second module finds evidence for these predictions
and fleshes them out. These modules are in constant
communication with each other.

The first module, the PREDICTOR, predicts conceptual
constraints on what might happen next. It does not predict
individual words but rather conceptual items which may be
realized in the tezt.in any one of many different wordings.
Entire conceptualizations as well as small pieces of a
conceptualization can be predicted .

The second module, the SUBSTANTIATOR, tries to verify
the predictions made by the PREDICTOR. Verification can be
done either by finding a text input that matches a



prediction , or by deriving the prediction from what has
al ready been understood via an inference routine . This
module is called the SUBSTANTIATOR because its job is to
find evidence which gives substance to the predictions.

BLOCK DIAGRAM OF FRUMP

I I ~. I
I I ~ I

1 PREDICTOR 1 > SUBSTANTIATOR I
Current (———— I constraints I / 1 predicted
Context ——— — > 1 on input I I constraints

I I I I
I I I I
I I~~ I
I I I
I I~~~ I
I I ~ I

Engl ish
Text

figure 1.2

The conceptual structure built by the PREDICTOR is
called the current uontext.

During normal processing, FRUMP’ s text analysis is
driven by what the PREDICTOR anticipates rather than by the
input text. There is no conventionai parser which produces
conceptualizations when it is presented with an input
sentence. Rather, the input text is analyzed only when the
PREDICTOR wants a specific piece of information and the
SUBSTANTIATOR has decided that the missing information might
be foun d in the text. The text is only examined a l i t t le
bit at a time , and then only to verify specific predictions.
As the text is 

- 
analyzed , the PREDICTOR revises its

predictions. Thus the SUBSTANTIATOR always operates in the
most complete and constrained context that the PREDICTOR can
provide. There is no parsing process which must form a
complete representation for a text sentence at once without
help.

The predictions that drive the SUBSTANTIATOR are
derived from FRUMP’ s sketchy scripts. Initially, of course,
there will be no sketchy script. That is, when FRUMP begins
reading a new article, there will be no current context.
Thus , the problem of script selection presents special
problems. The way FRUMP’s processing gets started will be
discussed at length in chapter 3.



V
8

1 .*4.1 The Structure within the SUBSTANTIATOR

Based on what has been understood , the PREDICTOR makes
predictions about what might happen next. The SUBSTANTIATOR
is then asked to verify these predictions. There are
several methods that can be used in verifying predictions.
One method of verifying a pred iction is to look at the text.
However , there must be other verification procedures as
well. A prediction might not be verifiable from the input
text alone. For example , consider the sentence

Vance flew to South Africa.

The PREDICTOR might ask the SUBSTANTIATOR to find where
Vance left from , and predict that it will be a country. In
this case the prediction cannot be substantiated from the
text. An inference is necessary. The applicable inference
rule is “If you don’t know otherwise, assume a traveler left
his home.” The inference rule can look up the home country
of Vance and fill the prediction. Thus inferericers can also
serve as verification procedures. In fact from the point of
view of the PREDICTOR inferencing and parsing are identical
processes. The PREDICTOR cares only which predictions are
verified and with what certainty. It does not need to know
whether the verification was done from the examination of
the text or by inference.

ThE STRUCTURE OF THE SUBSTANTIATOR

English
Text

V

Text I
/—> I Analyze r I
/
/

ISUBSTANTIATOR /
I ~~xzr) Selection <——I 1 Conceptual— 1

(PREDICTOR ) I Routine 1< > ization 1
I <zz~:I <—— \ I In ferencer

... ____ 

\ —> I  CD Role
I Inferenoer

figure 1.3



9

Figure 1.3 shows the sub—modul es that make up the
SUBSTANTIATOR . The SUBSTANTIATOR has three sub—modules that
actually satisfy predictions and a mechanism to select which
sub—module to use for which prediction .

The conceptualization inferencer makes script related
inferences about entire meaning representation. FRUMP’s
meaning representations are represented as
conceptualizations in Schank’s conceptual dependency
notation (Schank (1972)). Conceptualization inferences are
triggered by the other events built from the text. For
example , after FRUMP processes the sentence

The U.S. broke diplomatic ties with Guinea.

the Qonceptualization inferencer infers that Guinea broke
ties wIth~the U.S~~as well.

The CD (conceptual dependency) Role Inferencer manages
the inference rules that can add a piece of a
conceptualization. As discussed previously, FRUMP must be
able to infer that unless contradicted , a person traveling
to a location has come from his home. These kinds of
inferences are organized and applied by the CD Role
Inferenoer. The Role inferencer has the task of efficiently
locating the applicable inference rules and testing them.
The major differences between the two inferenoers is that
the first (the conceptualization inferencer) is script based
and infers an entire conceptualization at once. The second
( the CD role inferencer) infers only part of a
conceptualization at a time and is script independent.

The text analyzer behaves very much the same as the CD
Role Inferencer . It adds requested pieces of
conceptualizations. The difference is that the text
analyzer adds conceptual structure by examining the text.
For example , consider the following sentence:

Begin flew to the U.S.

After “Begin flew” has been nrocessed, the PREDICTOR asks
that the destination be added to the structure built. The
text analyzer examines the input and fills the destination
with “U.S. ” The major difference , as far as the selection
mechanism is concerned , is that the text analyzer is more
reliable. If both the Role Inferencer and Text Analyser are
able to add the same conceptual structure , it is better to
use the text analyzer . An inference is a good guess based
on context. However , if something is found in the text , it
is almost certainly correct. Thus the text analyzer is
treated as an “inferenoer of first resort.” Only if the
text analyzer fails will the CD Role Inferencer be used .

4 
- 

_ ,  _ _ _  _



/

10

The SUBSTANTIATOR selection routine chooses the rule
that can satisfy the prediction most certainly without
exceeding a cost threshold. The cost threshold is set by a
parameter to FRUMP . In general the more expensive the
procedure , the more certain will be the answer . Thus by
setting the cost threshold low , a very fast but uncertain
representation of the text is constructed. If the threshold
is set higher , a more certain representation will be built
but using more processing time. The cost threshold can
therefore be used to control FRUMP’s rate of skimming. This
will be discussed in some detail in chapter 5.

1.ZL2 Communication Between Modules

There are three possible outcomes from the satisfying
procedure: 1) the predicted constraint might be satisfied .
For example , the PREDICTOR might ask the SUBSTANTIATOR to
find a country and the SUBSTANTIATOR finds
“England.” “England” can be considered to be a country . 2)
the constraint might fail to be satisfied in such a way that
indicates that the prediction is incorrect , For example , the
PREDICTOR might ask the SUBSTANTIATOR to find a person and
the SUBSTANTIATOR finds “England.” “England” cannot be
considered to be a person. 3) the constraint could simply
be unsatisfied. For example, the PREDICTOR might ask the
SUBSTANTIATOR to find a person and the SUBSTANTIATOR finds
nothing . Each of these possibilities will now be discussed .

If the predicted constraint is satisfied , the PREDICTOR
is informed of the success and modifies the current context
to include the new information. This often results in a
further prediction which is then treated the same way .

If evidence is found that contradicts the prediction ,
the PREDICTOR is also informed . The PREDICTOR then attempts
to account for the failure by reinterpreting the data that
led to the prediction. This can result in the modification
of the current context and the formul ation of other
predictions .

Finally, if the constraint could not be satisfied by
the selected rule but there are other rules that bid on
satisfying the prediction , the other rules are tried . If no
other rule has bid , the PREDICTOR is inform ed that the
prediction was wrong. The PREDICTOR then reassesses the
situation as in the previous case.

Notice once again that the PREDICTO R is not told which
rule satisfied or rejec ted the prediction. It is not even
told whether the satisfact ion or rejection was due to the
text analyser or an inference. It does not matter to the



11

PREDICTOR; the PREDICTOR merely makes predictions and
reassesses them if they fail .  Thus to the PREDICTOR there
is no difference between the text anal yzer and the
inferencers. They are both only verification routines. In
practice, parsing rules are often tried first . This is
because they tend to be more certain of their results.
Inferences by their very nature are uncertain . However, the
system treats the text analyzer as j ust another way to
verify predictions.

1.1$.3 Pragmatic Predictions Vs. Local Semantic Constraints

In a conventional modular system the parser must build
a conceptual representation of the input using only
syntactic and local semantic constraints. Local semantic
constraints are constraints provided by word senses on how
other words can relate to it. For example , one sense of the
verb “jump” must have an animate agent. With an integrated
system , the PREDICTOR can add global constraints. These
global constraints arise from previously set up context.

To demonstrate how the PREDICTOR ’s global constraints
can aid in the parsing process consider the following story :

There was renewed fighting today between
Israeli and Syrian forces . Syrian soldiers
fired mortars at Israeli positions in the
Golan Heights.

Suppose our understander is reading this story about a
military engagement between two countries. In FRUMP’s
terms, this means the sketchy script $FIGHTING has been
selected to understand the story. (Throughout this
dissertation a word in r~apitsls preceded by a “ $“ will
indicate a script) . Selecting $FIGHTING requires ( among
other things) identifying the countries or factions
involved . The current øontext therefore includes the
identities of the countries. In read ing the third sentence ,
the word “fired” is encountered. The word “fire ,” even when
known to be a transit tvs verb , has several meaning s. It
might mean ‘shoot” but it might also mean “put pottery into
a kiln” or ‘terminate ..ployment’. Furthermore, the
meaning cannot be decided fro. syntactic cuss alone :
“Syrian s fired mortars at Israeli positions,’ “Bill fired
clay pots at 300 digress,’ and ‘The boss fired John at three
this afternoon ’ all are synta ctically very similar .



12

In the context of a story about a battle , the word
“fire” ought to be interpreted as “shoot .’ The PREDICTOR
predicts that there will be acts of shooting in the text.
“Fire” is interpreted as ‘shoot” because in doing so a
prediction is verified . Words are interpreted so as to
fulfil l  these expectations.

In addition , once the correc t word sense of “fire” is
selected , the PREDICTOR can still make predictions useful to
text analysis. The “ shoot” sense of “fire” requires a
per son as the instigator of the shooting and will be
satisfied with any physical object as the thing being sh3t
at. These are constraints that the text analyzer itself can
generate . However , they are very loose constraints; they
must be loose for this sense of ‘fire’ to handle sentences
like

John fired his 22 at the tin can .

as well as

Syrians fired on Israeli positions in the
Golan Heights.

In fact , to be really general , the constraints of the
instigator of the shooting ought to be relaxed even further .
A chimpanzee , for example , might be taught to fire a gun.
Thus the constraint on the agent of the shooting ought to be
reduced from a person to a higher animate . This means that
only a very weak prediction can be made fr om the “shoot”
word sense of ‘fire .’

While there are constraints made by the word sense on
what can occur in the rest of the conceptualization , they
are very general and of limited use. The system would do
much better by allowing the understander to communicate its
more constrained predictions to help in interpreting the
text .

Once “fired’ baa been resolved to “shoot ,” the
PREDICTOR can predict that the instigators of the shooting
will be military personnel of one or the other of the
warring countries, or one of their allies. This prediction
can be made because this information is part of the sketchy
script used to process stories about countries fighting.
This constraint is much more specific than just requiring a
higher animate . The PREDICTOR can al so predict that the
thing being shot at will be a possession , and very likely a
military one , of the warring country not doing the shooting.
In processing the word ‘fired” in the above story , the
system can predict that either Israel or Syria will fill the



13

ACTOR slot of the conceptualization that represents the
shooting.

This is a much tighter prediction than the one
available from the word sense of “fired .” A more
constrained prediction means the text analyzer will not have
to do very much to interpret the text. An expectation for
the correct interpretation has already been established .
These detailed predictions are based on world knowledge. In
FRUMP the PREDICTOR ’s knowledge of how the world behaves is
made available to the SUBSTANTIATOR in the form of its
predictions.

The selected word sense of ‘fire” contains as part of
its definition that in its transitive form the syntactic
subject will be the agent. In Conceptual Dependency terms
this is the ACTOR role. Thus the SUBSTANTIATOR looks in the
text where it expects to find the syntactic subject of
“fired” and try to interpret the text it finds there as a
reference to Israel, Syria, or one of their allies.

~~~~ The FRUMP Method Compared to Generate and Test

At this point the reader might be under the impression
that FRUMP uses the “generate and test” paradigm (Newell
(1973)) . Indeed Prediction and Substantiation bears some
resemblance to “generate and test.” In both instances, a
prediction is made which is used to motivate further
processing . The difference is that in ‘generate and test”
the precise solution is generated. In FRUMP the predictions
are only constraints on what might be found. They are
seldom precise specifications about what will be found. In
FRUMP there is no concept of ‘testing.” The predictions
are not evaluated to a binary ‘yes , it works” or ‘no , it
doesn’t work.” Rather the predictions are used to guide
interpretation. The text analyzer prefers meanings of
ambiguous words and phrases that satisfy predicted
constraints. In ‘generate and test” the test is not allowed
to modify the generated hypothesis. In FRUMP , however , the
SUBSTANTIATOR fleshes out and gives substance to the
predictions.

1.5 Benefits Derived from Sketchy Scripts

FRUMP ’ s sketchy scripts help the text understanding
process in two ways. First , they guide the inference
process by eliminating irrelevant inferences. Only those
inferences which are consistent with the script predictions
are made. Second , top down script predictions can help in

correctly interpreting ambiguous words and phrases. Word
meanings are selected which are closest in meaning to the
predictions. These two aids to understanding are discussed
further in the next two sub—sections.

1.5.1 Constraining Inferences

To illustrate the problem of constraining inferences,
consider the following text fragments:

1) John carefully aimed his kn ife at Mary
and let it fly. Blood gushed to the
floor .

2) John threw the knife at Mary with all
his might. Blood gushed to the floor.

Both of these fragments require the reader to supply a
missing event. To account for the second sentence in each
case we must assume that the knife hit Mary. Without that
missing event , the other events have no apparent causal
connection. Producing inferences is essential if a causally
connected representation is to be built. The process of
supplying data which though missing is implied by a text is
called inference zeneration.

Inference generation is an extremely difficult process.
It can be simplified somewhat by representing events in a
language free form . If the inference rules are triggered by
English words , then there must be separate rules of
inference in the two fragments above . One rule must be
triggered by the phrase “let it (the knife) fly” and the
other by “threw the knife.” In both oases the rules must
infer that the knife will hit something . However , if the
inference rules are stated in terms of the meaning of the
sentences instead of actual English words then the
interencer does not need separate rules for ‘let the knife
fly” and “throw the knife .’ Instead it can have one rule
that if an object is moving towards another , they might
collide . This one rule can then be applied to a far more
general class of events which , incidentally, includes any
English paraphrase of ‘John threw a knife at Nary .’ The
rule is triggered by the language free meaning of the
sentence , and all paraphrases must by definition have a very
similar meaning .

Even with rules based on meaning, however, infer’enoing
is a difficult process. In any situation there may be many
inference rules that apply. Ensuring that the system makes
the correct inferences while avoiding the irrelevant ones is

- -
- -

15

a difficult task in any natural language system.

Rieger (1975] originally postulated a general inference
mechanism that generated results and reasons for each input
concept . His inferencer then made a second set of
inferences from the first , a third from the second , and so
on. Each new set of inferences was fed back into the
inferencer in order to make the new inferences. Around each
input conceptualization there was an expanding sphere of
inferences . Eventually the spheres in the inference space
about any two inputs might intersect. That is, a common
inference might be generated from the two different inputs.
Only then were the relations between the original inputs
understood , for only then was there an intervening set of
events and causations that could lead logically from one
input to the next. Rieger termed this process of connecting
input concepts “knitting”.

The problem with Rieger’s solution is that the
inferencer must make many irrelevant inferences. Consider
again one of the above text fr agments:

John threw the knife at Mary with all
his might . Blood gushed to the fl oor .

To connect these two sentences a Rieger—like inference
process must have the following rules: 1) an objec t thrown
at a target can come in physical contact with the target and
apply a force to it; 2) When an objec t applies a force to
another and is free to move , depending on the properties of
the two objects either one or both can shatter, one can
penetrate the other, there can be an elastic collision ,
etc.; 3) When living flesh is penetrated by a foreign
object a wound is formed which often bleeds; 1$) Unsupported
obj ects fall toward the ground .

From these rules , the infereneer can guess at the
intervening events beginning with the knife coming into
contact with Mary. The problem is that there is no way to
assure that only the inferences required for this causal
connection are made. Rieger ’s method was to generate as
many plausible inferences as possible. This would include
irrel evant facts suob as “John no longer has the knife ,”
which would in turn produce a whole chain of other
irrelevant facts. There would also probably be an inference
rule such as: when someone expends energy, he becomes
tired . The inferenoer might follow this line to eventually
predict that John will go to sleep , which has little to do
with our original input . There are many such plausible
inference lines the system could follow which have no chance
of connecting up tho inputs. However in Risger’s scheme ,
inferences are not assumed to be irrelevant until some other

16

inference line connects the inputs by knit t ing . It would
seem that this unconstrained inferencing is combinatorially
untenable.

The SAM system (Cullingford C 1978]) solved the problem
of unconstrained inferencing by postulating large chunks of
ready—made inferences called scrints. Each script contained
causally connected events that might occur in a particular
situation. When the system determined that the text was
about a particular situation, it made the inferences
dictated by tP~5 script.

There were several problems with the SAM system .
First, it did not propose a general solution to the problem
of script selection. SAM worked well with a half dozen
scripts, but the script selection time was linear in the
number of scripts in the system. SAM would have been
overwhelmed with the hundreds of scripts necessary to
understand all the different situations that arise in
English texts. SAM also tried to understand stories in
detail. It had to account for every event in the input.
This alone is not a problem , but it meant that the scripts
had to be large and detailed . It also meant that if a story
occurred in a way different from the way the script allowed ,
the story coul d not be understood . Thus the system was
quite fragile. Finally SAM was very slow in its processing.
It could take up to a quarter of an hour on a DEC KA 1O to
process a one paragraph story .

1.5.2 Guiding the Parser

Both Rieger ’s inferencer and Cullingford’ s script
applier needed input in unambiguous conceptual form. That
is , the natural language input had to be parsed before the
processes oould function. In both systems the inference or
understanding phase was preoeded by a separate parsing
phase.

Rieger ’s inferencer was able , to give the parser very
little help in translating the natural language input into
its conceptual representation . It was of assistance only
when the parser asked a specific question about memory .
Cullingford ’s script applier did a little better but its
help was limited to instructing the parser to prefer certain
word meanings while certain scripts were active . For
example , in most situations the noun “check” means “ba nk
draft. ’ In a restaurant , though , it can also mean “charge
for service.” The ‘bank draft ” meaning was the preferred
meaning in the parser . However , if the input was known to
be about a restaurant (i.e., the restaurant script were
active) the sense that means ‘charge for service” was

4

17

preferred in the parser. So in the context of a restaurant ,
the “charge for service” sense would be tried first whenever
the word ‘check” was encountered . When the restaurant
script was activated , the script applier instructed the
parser to do this.

In an ideal system (and one might imagine in the human
system) the understander can predict what conceptual inputs
are likely to occur in a situation (as the SAM system does).
The parser ought to be able to take advantage of those
predictions. Much effort in parsing is spent in selecting
the correct interpretation of ambiguous words. If the
parser is given no clues from the understander about what
might happen next , as in the SAM system, disambiguation must
be done on the basis of other words in the immediate
context.

Top down predictions can be of particular help in
processing pronouns. If a pronoun is encountered at a point
where a specific object has been predicted, the pronoun can
be resolved to be the predicted object. SAM’s scripts
provioed the information necessary to resolve pronoun s in
this manner. However , due to the non—integrated approach ,
this knowledge was not available to the parser. In these
cases the parser output contained an ambiguous referent like
(HUMAN GENDER MALE). The script applier would then have to
establish the correct referent later.

1.6 Situations Sketchy Scripts Can Represent

A sketchy script contains the most important
information shared by all articles about a particular topic.
This information includes events that are likely to occur ,
probable reasons for and results of those events , and
constraints on the identity of and relation between
characters . Of course , there are constraints on the kind s
of topics that can be represented by sketchy scripts.
Sketchy scripts can only represent stylized situations,
(i.e., situations in which the important events happen
nearly the same way in every article describing that
situation) . These constraints are due to the fact that all
of the important events in the situation must be anticipated
by the sketchy script .

To skim a stor y successfully a system must grasp the
important facts presented . Sketchy scripts are used to
guide skieming . Eac h sketchy script supplies the important
common information about a particular topic. Thus , before
FRUMP can understand a story about a particular topic , a
sketohy script must be written for that topic. The sketchy
script specifies what FRUMP is to look for when processing a

18

story about that topic.

Human readers seem to take advantage of shared
info rmation in processing texts describing stylized
situations (Bransford & Franks (197 1]) . For example ,
consider the following paragraphs from the beginning of a
news article.

McKe nzie , Tenn . April 30 — A
businessman’s family made a plea from
their front porch today for the safe
return of their 18 year old daughter ,
the apparent victim of a kidnapping .

Jodie Elizabeth Gaines was last
seen by her parents , Mr. and Mrs. Ben
Gaines , on Friday evening when she left
to spend the weekend with a cousin.

Ludie Gaines said that she received
a telephone cal l yesterday morn ing from
a man demanding $250 ,000 for her
daughter ’s safe return . There has been
no word since , she said.

Once a reader has identified the topic as a stylized
situation , in this case a kidnapping , he can do two things:
First , he can make predictions about what will happen in the
remainder of the story , and second , he can know what parts
of the story are important and how they relate.

This is also the way FRUMP works . For each stylized
situation , FRUM P has a sketchy script . The sketchy script s
are mad e up of requests. Each request is the conceptual
representation of an expected event . FRUMP has a sketchy
script for kidnappings . It contains requests which encode
the following expected events:

1) The kidnappers will probably communicate
a ransom demand to the family, company,
or government of the person kidnapped .

2) The local police , FBI or other police
agencies might be called in.

3) The ran som demand might be met .

1$) If the ran som is met , predict that tho
kidnapped person will probably be
released but might continue to be held
or be killed .

19

5) If the ransom demand is not met , predic t
that the person will probably be held
longer or killed but might be released .

6) The kidnappers might be apprehended .

7) If the kidnappers are caught, predict a
court case trying them for kidnapping .

In addition to these facts , the reader knows that the
important points in a kidnapping are the identity of the
kid nappers , the iden t i ty of the kidnapped person , the
identity of the group or person to whom the ransom demand
was made and the nature of the ransom demand .

This is also the technique used in FRUMP. Once FRUMP
has identified the situation (sketchy script) described by a
text , it can read the text looking only for instances of the
facts that the sketchy script predicts, much as a person
might . Any part of the input text that FRUMP cannot
interpret as one of its predicted events is simply ignored.

The identities of the participants in the sketchy
script are scriot variables. In understanding a text, FRUMP
both tries to find instances of the predicted facts and to
bind the script variables to the identities given in the
text.

1.7 A Sketchy Script

The following is FRUMP’s sketchy script for
demonstrations. It is made up of the events that are likely
in a demonstration . The $DEMONSTRATION requests are:

Request 1:
The demonstrators arrive at the demonstration
location.

Request 2:
The demonstrators march.

Request 3:
Police arrive on the scene .

Request ~:The demonstrators communicate with the target
of the demonstration .

Request 5:
The demonstrators attack the target of the

20

demonstration.

Request 6 :
The demonstrators attack the the police.

In FRUMP these requests are stated in terms of conceptual
dependency (Schank (1972)) . Script variables appear in the
requests as conceptual dependency role fillers. These are
preceded by a ‘&“ . The conceptual dependency
representations for the requests are:

Request 1:

&DEM ONSTRA TORS <:> PTRANS <—o-. &DEM ON STRAT ORS <—

———> &DEMO—LOCATION

Request 2:
—— —< &LOCA TI ON 1

&DEMONSTRATORS <=> PT RANS <~o~ &DEMON STRATORS <—

inst. -—-> &LOCATION2

$ WALK

Request 3:
————— < &STATION

&POLICE <=> PTRAN S <—0— &POLICE (-d

—— -- -> &DEMO—L OCAT ION

Request ~:
---——< &DEM ONSTRATORS

&DEMONSTRATORS <=> IITRANS <—mo— &VIEWS <-

— — ———) &TARGET

Request 5:
—--< &DEMONSTRATORS

&DEMONSTRATORS <z> PROPEL <—— 0— &PROJECTILES <— —

——— > &TA RGET

Req uest 6 :
. .-< &DEMONSTRATORS

&DEM ONSTRATORS <:> PROPEL <——o— &PROJECTILE3 <—:

& POLICE

For each request there are also 1) semantic constraints on
script variables (for example , that the demonstrators must be
human) ; 2) constraints between script variables (for example,
in the DEPORT script the country responsible for the
deportation must be the same as the country the deported person
leaves) ; 3) causation relations to other request s and
references to other sketchy scripts (for example, any deaths in
a vehicle accident are due to the crash event) .

1.8 What Sketchy Scripts Can’t Do

As was mentioned before, there are news stories for which
no sketchy script can be written. These are stories for which
we cannot anticipate what important events might occur . To
illustrate limitations to the script approach we will now
consider three types of stories FRUMP cannot handle: Variable
Element Articles , Human Interest Articles, and Argumentation
Articles.

1.8.1 Variable Element Articles

The first type contains stories which do describe stylized
situations but where at least one important part of the
situation is not predictable. We call these variable element
articles. An example of a variable element article is a story
about the legislature voting on a bill. Legislative
proceedings are very stylized; everything happens in a
prescribed order. Members endorse or denounce the bill under
consideration , a vote is taken , and the bill is either ratified
or killed .

Legislatures , however , concern themselves with very
diverse topics. They can pass bills on anything from defense
treaties to the maximum allowable number of rat hairs in a 16
ounce jar of peanut butter . It is not possible to predict what
a bill is about from just the knowledge that the article
describes legislative actions. And yet , the topic of the bill
is the single most important point in the story. The identity
of the bill’s topic is the variable element in legislative

22

articles. Sketchy scripts alone can not be used to
satisfactorily understand articles about legislative actions.
However, as we will see in chapter 8 these types of stories are
understandable by FRUMP through the use other data constructs
called Issue Skeletons.

1. 8.2 Articles that Appeal to Emotions

Articles that derive their importance from the emotional
impact they have on the reader al so cannot be handled by
sketchy scripts. To understand why these articles do not lend
themselves to sketchy script understanding we must back up for
a moment .

Sketchy scripts provide a way to factor out what is common
to a class of news articles. For sketchy script understanding
of a situation to be successful, this common information must
contain what is important in the article. If an article relies
on something not part of this common information for its
intere~tingness, sketchy scripts cannot help in it’s
understanding .

There are man y human interest type stories that depend on
emotional appeal to generate interest in the reader . For
example , consithr this gem which appeared in the February 16 ,
1978 New York Times :

Madison , Wis. — In the life of 31
year old Hero Zzyzzx , the telephone is both
travail and blessing .

Mr. Zzyzzx says that he gets too many
calls , at all hour s, from drunks , children ,
insomniacs and j okers .

But once in a while he gets one from
‘an interesting young lady, ” and that is
why he does not obtain an unlisted number.

Mr. Zzyzzx , whose name is pronounced
‘Zizzicks ,” is the last person listed in
the Madison telephone book .

Hero Zzyzzx is his real name , he said ,
a blend of Finnish, Lithuanian, Russian,
French, German and central European family
backgrounds. His fatbe?’ , Xerxes Zzyzzx ,
was a sailor who named his son after Hero ,
the man pictured on Players cigarette
packs.

23

Despite the hassles, Mr. Zzyzzx said
there are benefits to having the last name
in the telephone book. “Once in a while
you get a pleasant chat with somebody,” he
said. “ In fact , the best calls come from
young ladies. I’ve met a number of them
for drinks .”

In human interest stories the important events are those
that have an emotional effect on the reader. In this example
the most interesting point is Mr. Zzyzzx’s unique way of
meeting young ladies, although the fact that Mr. Zzyzzx’s
fathers name is Xerxes is also particularly memorable. Perhaps
it is the alliteration. At any rate, in order for a system to
understand these stories it must have information about
emotions of people and exactly what elicits them . This is, to
say tne least , very complicated and beyond what sketchy scripts
were designed to handle.

1.8.3 Argumentation Articles

There is another class of articles that script processors
cannot understand . These are articles that argue an issue . In
an argument about an event , even an event which is part of a
stylized situation, the argument often hinges on an obscure
detail that only happened to occur in the particular event
being discussed. FRUMP’s scripts cannot help to understand
these details. Sketchy scripts can only help with the
important stylized information about a situation. Following an
argument also often requires complete understanding of
intricate cause and effect relations. Sketchy scripts,
however , help in understanding only the most direct cause and
effect relations , only those which are included in the stylized
part of a situat ion .

Editorials are a good example of such articles. They
often endorse a specific policy or action and try to give a
persuasive argument why. To properly understand an editorial
requires identifying the policy or action , deciding if the
article is for or against it, and picking up the reasons given.
Even when the subjec t of the editorial is part of a stylized

‘situation, sketchy scripts are not flexible enough to
understand the point of editorials.

For example , in a recent editorial the New York Times
exhorted the New York transit workers union members to ratify a
new contract. The reasons were that the city would lose tax
revenues if the union went out on strike because many other
commercial activities would have to slow down. They also
argued that rejection by the transit workers would encourage

2;

other unions to make greater demand s to the city when their
contracts expired . This, given New York’s current fiscal
state, is something New York could not afford, and the transit
union ought to be responsible enough to realize that .

Now , of cour se , there could be a sketchy script for
rat i fying contracts. It would include knowledge such as the
new monetary terms of the contract and perhaps some of the
major fringe benefits , whether the union voted to accept or
reject the proposal and by how much. If they voted to reject
it there is a good chance they will go on strike so FRUMP
should load the sketchy script for labor strikes, etc.

This is all common knowledge which is legitimate to look
for in any story about contract settlements with unions.
However, it has nothing to do with following the arguments in
the editorial . The reasons given in the editorial are well
beyond the scope of this common information.

The argument about setting a bad precedent and appealing
to the union member’s sense of responsibility is not particular
to labor disputes. This is an arguing technique of branding
the opponent with an unflattering label (irresponsible) and
hoping his better judgement will accept the label and recant .
There are complex questions here that have to do with
individuals and organizations thinking they deserve at least as
much as their peers and whether or not that is irresponsibly
selfish . This knowledge is concerned with motivations and
emotions of people. It is not characteristic of labor disputes
alone and therefore does not belong in the labor dispute
sketchy script.

The most convincing arguments are nearly always novel .
People are seldom convinced by rehashing old information.
Rather they must be shown an undesirable ramification not
previously anticipated .

1.9 Examples

These examples show some of FRUMP ’s capabilities. FRUMP
is a fully implem ented system . The same version of the system
can process all of the examples shown here and in the remainder
of this dissertation .

The following story was taken from the New York Times . It
demonstrates FRUMP’s ability to understand the main thrust of a
news story while ignoring the less important details.

H. ~:‘~~
‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



25

INPUT :

WASHINGTON , MARCH 15 —THE STATE DEPARTMENT ANNOUNCED TODAY
THE SUSPENSION OF DIPLOMATIC RELATIONS WITH EQUATORIAL GUINEA .
THE ANNOUNCEMENT CAME FIVE DAYS AFTER THE DEPARTM ENT RECEIVED A
MESSAGE F ROM THE FOREIGN MIN ISTER OF THE W EST AFRICAN COUNTR Y

- SAYING TH AT HIS GOVERNMENT HAD DECLARED TWO UNI TED STATES
DIPLOMATS PERSONA NON GRATA .

THE TWO ARE AMBASSADO R HERBERT J. SPIRO AND CONSUL
WILLIAM C. MITHOEFER J R . ,  BOTH STATIONED IN NEIGHBORIN G
CAMEROON BUT ALSO ACCREDITED TO EQUATORIAL GUINEA .

ROBERT L. FUN SETH , STATE DEPARTMENT SPOKESMAN , SAID MR.
SPIRO AND MR. MITHOEF ER SPENT FIVE DAYS IN EQUATORIAL GUINEA
EARLIER THIS MONTH AND WERE GIVEN “A WARM RECEPTION .”

BUT AT THE CONCLUSION OF THE IR VISIT , MR. FUNSETH SAID ,
EQUATORIAL GUINEA’S ACTING CHIEF OF PROTOCOL HANDED THEM A
FIVE—PAGE LETTER THAT CAST “UNWARRANTED AND INSULTING SLURS” ON
80T13 DIPLOMATS.

SELECTED SKETCHY SCRIPT $BREAK-RELATIONS

CPU TIME FOR UNDERSTANDING = 2515 MILLISECONDS

ENGLISH SUMMARY :
THE US STATE DEPARTMENT AND GUINEA HAVE BROKEN DIPLOMATIC
RELATIONS.

FRENC H SUMMAR Y :
LE DEPARTEME N T D’ETAT DES ETATS—UNIS ET LA GUINEE ONT COUPE
LEURS R ELATIONS DIPLOI4ATIQUES.

CHIN ESE SUMMARY :
MEEIGWO GWOWUHYUANN GEN JIINAHYAH DUANNJYUELE WAYJIAU GUANSHIH.

SPANISH SUMMARY:
EL DEPART AMENTO DE RELACIONES EXTERIORES DE LOS EE UU Y GUINE A
CORTARON SUS RELACIONES DIPLOMATICAS.

This story is particularly short and so took less than
three CPU seconds to process. FRUMP understood that the
diplomatic link from the U. S. to Guinea was ended , and it
inferred that the link from Guinea to the U. S. was ended as
well. The resul t of processing the article is a conceptual
representation. Because the meaning representation is language
free, it is as easy to generate other natural languages as
English.



26

INP UT:

MOUNT VERNON , ILL , (UPI) — A SMALL EARTH QUAKE SHOOK
SEVERAL SOUTHERN ILLINOIS COUNTIES MONDAY NIGHT, THE NATIONAL
EARTHQUAKE INFORMATION SERVICE IN GOLDEN , COLO., REPORTED.

SPOKESMAN DON FINLEY SAID THE QUAKE MEASURED 3.2 ON THE
R ICHTER SCALE , “PROBABLY NOT ENOUGH TO DO ANY DAMAGE OR CAUSE
ANY INJURIES. ” THE QUAKE OCCURRED ABOUT 7:~ 8 P.M. CST AND WAS
CENTERED ABOUT 30 MILES EAST OF MOUNT VERNON , FINLEY SAID. IT
WAS FELT IN RICHLAND , CLAY , JASPER, EFFINGTON AND MA RION
COUNTIES.

SMALL EARTH QUAKES ARE COMMON IN THE AREA , FINLEY SAID.

SELECTED SKETCHY SCRIPT $EARTHQUAKE

CPU TIME FOR UNDERSTANDING = 3O~O MILLISECONDS

ENGLISH SUMMARY:
THERE WAS AN EARTH QUAKE IN ILLINOIS WITH A 3.1999 RICHTER
SCALE READING .

This story took just over three CPU seconds to process .
This story illustrates why the entire story must be skimmed .
The structure of news articles is such that often a FRUMP —l ike
summary can be produced by simply parroting back the first
sentence. This story illustrates why that is not always
acceptable. Here the information about the strength of the
earthquake would be lost . News articles are often written in a
style different from most other texts. There has been some
work done in classifying these styles (Eisenstadt (1975]).
FRUMP was designed not as a news report processor but as a
general text processor whose domain happened to be news
reports. To demonstrate the general applicability of FRUMP’s
understanding the program does not rely heavily on knowl edge
about the structure of news articles not shared by other texts.
The only aspect of FRUMP’s processing that is at all dependent
on the structure of the input text is in identifying the
initial sketchy script . This identification must be done in
the first paragraph. Due to the style of most news articles,
this is not a serious constraint. The selection process is the
subjec t of chapter 3.



27

INPUT:

TH E CHILEAN GOVERNMENT HAS SEIZED OPERATI ONAL AND
FINANCIAL CONTROL OF THE U. S. INTEREST IN THE EL TENIENTE
MINING COMPANY , ONE OF THE THREE BIG COPPER ENTERPRISES HERE.
WHEN THE KENNECOTT COPPER COMPANY , THE OWNERS , SOLD A 51 PER

— CENT INTEREST IN TH E COMPANY TO THE CH ILEAN STA TE COPP E R
CORPORATION IN 1967 IT RETAINED A CONTRACT TO MANAGE THE MINE.
ROBERT HALDEMAN , EXECUTIVE VICE PRESIDENT OF EL TENIENTE , SAID
THE CONTRACT HAD BEEN “IMPAIRED” BY THE LATEST GOVERNMENT
ACTION . AFTER A MEETING WITH COMPANY OFFICIALS AT THE MINE
SITE NEAR HERE , HOWEVER , HE SAID THAT HE HAD INSTRUCTED THEM TO
COOPERATE WITH EIGHT ADMINISTRATORS THAT THE CHILEAN GOVERNMENT
HAD APPOINTED TO CONTROL ALL ASPECTS OF THE COMPANY’S
OPERATIONS .

SELECTED SKETCHY SCRIPT $NATIONALIZE

CPU TIME FOR UNDERSTANDING = 3q57 MILLISECONDS

ENGLISH SUMMARY :
CHILE HAS NATIONALIZED AN AMERICAN MINE.

This story illustrates FRUMP ’s ability to identify a
sketchy script . The system does not rely on “ke y word s” to
select a script. Instead scripts are selected on a conceptual
basis. In this story , which is about a nationalization , The
$NATIONALIZE sketchy script is selected by the presence of a
conceptualization representing the abstract transfer of
economic control of an industry from one country to another.
Thus FRUMP does not require a semantically rich “key word” like
“nationalize” to select the nationalization script. Any
English paraphrase of the nationalization conceptualization
will do. Here “ seized operational and financial control”
builds a conceptualization representing abstract transfer of
economic control . The script selection process will be
discussed in detail in chapter 3.

1.10 Conclusion

Once FRUMP knows that it is reading a story describing a
situation for which it has a sketchy script , it can retrieve
the relevant predictions by loading in the corresponding
script . These predictions will then be used to help to
understand the text.

Integrating understander predictions with parsing enables
FRUMP to be an efficient and robust system . FRUMP is a system
that understands input stories it has not been tuned for . It

• 

_ ______  _________  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



/

28

processes an average story in typically 10 to 20 seconds of CPU
time on a Digital Equipment Corporation PDP 20/50. Provided
FRUMP has a well written sketchy script for an article it has
an 80% to 90% chance of correctly picking up info rmation from
the story , and it often understands everything important fr om
the article. FRUMP currently has 48 sketchy scripts. With
these scripts it can on a typical day correctly process about
10% of the UPI wire stories. However , only about hal f of the
UPI wire is theoretically processable with a script applier .
The remainder of the stories are not scripty. Thus with 48
scripts FRUMP is achieving about a f i f t h of its theoretical
limits. There are three main reasons for FRUM P missing the
other 40% of the script UPI stories. These are , in decreasing
order of importance, 1) lack of the necessary script , 2)
undefined vocabular y word s, and 3) an unknown or complex
sentence structure used in the story.

_ _ _ __ _ _  
_ _ _ _ _ _ _L



CHAPTER 2

THE PROBLEM OF SKETCHY SCRIPT SELECTION

2.1 Introduction

When FRUMP begins reading an article, it has no
context. Thus the first order of business is to establish a
current context . A context is established by selecting a
sketchy script to be used in understanding an article. This
chapter explores some of the problems that. arise in script

• selection and outlines FRUMP’s procedures for selecting
sketchy scripts.

Recall that FRUMP has one sketchy script for each news
situation . The sketchy script for a situation organizes all
of FRUMP ’s knowledge about that situation . The tonic of a
news article is the situation which it describes. For
example, a story might describe an earthquake or the
invasion of one country by another . For FRUMP to understand
a news article, it must have a sketchy script corresponding
to the topic of that news article. Of cour se , an article
may refer to several situations. That is, it may have
several different topics. A story describing an invasion

• might also mention negotiations for a cease fire. In this
case FRUMP must be able to identify each of the necessary
sketchy scripts. However, FRUMP initially looks for only
one sketchy script to activate .

In trying to identify the initial sketchy script for an
article, FRUMP confines its attention to the first
paragraph. If after looking through the first paragraph
FRUMP cannot choose a sketchy script , it gives up trying to
understand the article. The topic of a well written news
article is often given in the first sentence , and if FRUMP
has not identified it. in the first paragraph , the
appropriate sketohy script is probably missing from FRUMP ’s
repertoire . Rejecting the article at this point prevents

— 29—

_ _  

-

. i~~.



30

misclassifying the topic from extraneou? material deep in
the article.

Once FRUMP has selected a sketchy script to understand
an ar ticle , that sketchy script is activated. Activating a
sketchy script means that the normal events that occur in
the corresponding situation will be predicted by the
PREDICTOR . Thus the SUBSTANTIATOR tries to find instances
in the text of the conceptualizations predicted by the
currently active scripts. FRUMP uses the first paragraph to
activate a sketchy script which then makes predictions about
what will occur in the rest of the story .

However , the problem of selecting sketchy scripts
persists throughout an article. Often articles mention
several different situations. Even after an initial sketchy
script is selected , FRUMP must be able to call in new
sketchy scripts. For example , consider the following
art icle:

The New Haven Board of Education
refused today to accept the agreement
proposed yesterday by the teachers
union . The rejection spawned an
immediate citywide strike by the
teachers who have been working for the
past month without a contract.

The first part of this story is about labor negotiations, so
that sketchy script should be activated. However, the end
of the story mentions a strike. That is a different sketchy
script and if FRUMP is to be able to understand the
reference to a strike , it must activate the strike sketchy
script as well. In this story, and many others like it ,
FRUMP must have several sketchy scripts active at the same
time . Thus FRUMP must know how sketchy script situations
norm ally interact and when to activate a new sketchy script ,
even if another sketchy script is already active.

The number of stylized situations described by news
stories is very large. Perhaps as many as several hundred
sketchy script s would be required to understand all of the
stylized news stories in an average newspaper . Given a
story, a script based understander must choose among all the
scripts it knows. Thus script selection is one of the major
problems that must be overoom e in building a working
script-based understander . Furthermore , the solution to the
script selection problem must be oosputational].y efficient .
The compl exity of the selection algorithm must not depend
strongly on the number of scripts in the system. Otherwise
the system will be unworkable when the hundreds of scripts
needed are available.



31

2.2 Requirements of a Solution

A valid solution to the script selection problem must
have several characteristics. Before discussing FRUMP’s or
various other approaches to solving the problem , we will
explore these required characteristics. This will help in
recognizing the strengths and limitations of FRUMP ’s
sol ution as well as explaining why solutions used by other
systems are insufficient for FRUMP .

2.2.1 Script Selection Cannot Rely on Top Down Knowledge Alone

Initial sketchy script selection must be bottom up.
Very few news events are predictable. The order they are
sent over a news wire service is even more random .
Therefore , FRUMP must not depend on having predictions about
what type of story will occur next. Furthermore , we want
FRUMP to be able to understand a significant part of a
typical newspaper . This will require a very large number of
sketchy scripts. Hence FRUMP cannot benefit as other Al
programs such as HARPY (Lowerre (1976)) from predicting all
possible inputs and then rejecting wrong guesses with a
matching process. There are just too many possible inputs.
Of course , we will not rule out the possibility of some
previous story setting up a context in which other story
types are expected . For example , if FRUMP is reading a
story about an earthquake it could well predict that it vii]
see facts about relief efforts. This is a different
situation and sj has its own sketchy script . FRUMP can , in
this case , predict that the sketchy script for relief
efforts will be relevant . However , FRUMP should not insist
on having such predictions to correctly choose the sketchy
script .

2.2 .2 Time Efficiency of Selection

• / The selection process must be reasonably fast . The
computer must be able to process stories in real time and
much processing must be spent in parsing the story and
instantiating the sketchy script . Only a small portion of
time should therefore be devoted to script selection.

This constraint is a major problem in view of the
potel)tially large number of sketchy scripts. If each
sketchy script must be examined for applicability when a
story is input, the script selection time will grow linearly
with the number of sketchy scripts in the system . The
complexity of the selection process should not depend
strongly on the number of sketchy scripts in the system . If

_____________



32

this is not so , FRUMP will become bogged down when we add
the several hundred sketchy scripts necessary for a truly
general system.

2.2.3 Information Efficiency of Selection

One way to implement any script selection method is to
have the system make two passes through the text: a script
selection pass and a script application pass. In the first
pass the system tries to identify the correct sketchy
script. After doing so, the system backs up to the
beginning of the story for the second pass. This time the
system looks for the important elements of the selected
sketchy script.

The problem with this method is that it throws away
info rmation . In selecting a sketchy script , some knowledge
is gained about the article being examined : fragments of
sentences will be parsed , certain script variables will be
identified and bound , etc . For example , if the input text
were “A bus struck a parked station wagon,” in selecting the
vehicle accident sketchy script, FRUMP would identify the
script variable for the vehicle involved as the “bus” and
object crashed into would be identified as the “station
wagon.” It is desirable to have the script selection process
coemunicate this information to the script instantiation
process . If the information is thrown away, the
instantiation process will have to re—derive facts already
understood about the article. The instantiation process
should not have to re—bind the vehicle to “ bus” and the
object to “station wagon .” The script instantiation, process
should be able to take advantage of any knowledge gained by
the script selection process .

2.3 Solutions Used by Other Script—Like Systems

The problem of identifying what top down knowl edge to
use is not peculiar to FRUMP . It extends to any system that
uses frame—like constructs (Minsky ( 1975]) to organize
knowledge. To use the knowledge contained in a particular
frame , that frame must be found and activated from among all
the frames in the system . Most advocates of frame—like
systems concede tha t there could be a very large number , of
such frames and frame .seiection has been a major stumbling
block in such systems. Yet there has been as yet no
satisfactory general solution.



33

Mi nsky recognized the problem in his well known paper
(Minsky (1975]) but had l i t tle to say about i ts solution
except that when an input cannot be accounted for by an
existing fr ame , a new fram e would have to be selected
largely by bottom up knowledge.

The SAM system (Schank (1975B)) is also a script based
understander . In SAM each script is marked with a list of
conceptualizations. These are conceptualizations which
often indicate that the particular script will be relevant.
For example , the conceptualizations attached to $RESTAURANT
are representations that mean “John was hungry” , or “J ohn
was going to a restaurant” , or “John decided he would go to
a restaurant” , etc. When one of these inputs is seen , the
script is activated . From then on , new input
conceptualizations are matched against script
conceptual izations .

There still exists the problem of matching the input
conceptualization against the list of initiating
conceptualizations. To make this matching process more
efficient the SAM system maintained a “ search li,t” of
scripts. The search list contained scripts which for one
reason or another had been predicted to be likely in this
story.

There were two ways scripts were added to the search
list . First , a currently active script could predict that
certain other scripts might occur with it. For example, if
the system knew it was reading a story about a visit to a
museum , it would add the washroom script and the restaurant
script to the search list since it knew visits to the
washroom and restaurant might occur within museums. The
second method added a script to the search list when an
objec t often relevant in that script was seen . These were
usually preferred script variable bindings for the script.
If an ambulance was seen in the input , for example , the
hospital script was added to the search list . From then on
the hospital script was checked to see if it could accoun t
for new input conceptualizations.

When a new input was seen , an attempt was made to find
a match for it in the currently active script . If no match
was found or no current script was active , the input was
matched against the initiating conceptual izations of eac h
script in the search list. If a match was found there , the
corresponding script was activated . If no match was foun d
the new input could still activate a script . The methods of
building the search list were not foolproof. It was quite
possible for a script to be referenced in a story without
having been implied by a previous script (method 1) and
without the mention of one of its preferred script variable
bindings (method 2). SAM, therefore, then had to match the



3I~

input against each of the init iat ing conceptualizations of
of each of the scripts it knew of which were not in the
search list . Thus in the worst case SAM had to examine each
of its scripts to see if it should be activated .

More recently, Lehnert ( unpublished) has suggested a
similar method of script activation which is expanded to
also allow certain references to settings or locations to
activate scripts. Her method also includes a system of
suppression devices which can override script activation .
For example , John being located at a restaurant would
activate the restaurant script because the setting of being
at a restaurant is so closely linked with that script .

However , these activation methods often propose
incorrect scripts. For example, a story might begin “An
ambulance was stolen from St. Raphaels hospital yesterday ,
New Haven police have reported .” This input should not
activate the hospital script in spite of the explicit
mention of both a hospital and an ambulance, both typical
role fillers in the hospital script . In Lehnert’ s proposed
method , suppression mechanisms would eliminate the proposed
scripts.

In FRUMP these extraneous scripts are never proposed in
the first place. Typical role fillers alone are not allowed
to activate scripts. Rather the corresponding script should
be activated only if the typical role filler is embedded in
an appropriate conceptual event. That is, only if it is
mentioned in one of a script ’s key requests.

Likewise , the story “Police interrupted a bank hold—up
at New Haven ’s First Federal Savings and Loan this morning .
The suspect , George Sebalto , fled into the McDonald ’ s
Restaurant across the street where he held 25 people hostage
for over four hours. ” should not activate the restaurant
script despite the proximity to the setting of Mc Donald’ s
Restaurant .

Lehnert’s system would allow such inputs to propose the
restaurant script . The proposal would be prevented from
actually activating the script by the suppression
mechanisms. However, this seems inefficient. Furthermore ,
her method still requires the possibility of triggering a
script from an entire event. For example, an input like
“Israeli aircraft attacked an Egyptian radar installation,”
can only activate the $FIGHTING script as an entire event.
“Egyptian radar installation” is not a setting which ought
to trigger the $FIGHTING script, nor can “Israeli aircraft”
alone be considered a typical role filler of that script.
It is only the information that the planes were attacking a
radar station which allows us to infer that they were even
military planes.



35

It seems that the need for these other activation
methods is obviated by the need to activate scripts from
certain events. Settings and typical role fillers should
only activate scripts in the context of certain specific
events. An ambulance , for example , should only activate the
hospital script if it is on its way to the scene of an
accident , or is returning to the hospital with an injured
person. Furthermore, triggering scripts only from entire
events rather than the other schemes eliminates many of the
misactivation problems that the other solutions suffer from.

In a recent paper Charniak (1978] proposed a partial
solution to the frame selection problem . The basic idea
behind his solution is that conceptual items will have two
types of frame indices attached to them. There will be an
action index under which the frames relevant to state
changes involving this item will be listed , and there will
be an object index which points to frames that are relevant
to a description of this conceptual item .

Given the input

Jack walked over to the phone . He had
to talk to Bill.

Charniak wanted to account not only for activation of the
telephoning frame but for the fact that most people tend to
assume Jac k is in a room , and many assume he is at home . To
do this Charniak proposed putting the telephoning fr ame
under the action index of telephone and the room frame under
the object index of telephone. This corresponds to saying
that a telephone is typically used for telephoning and that
telephones typically are found in rooms . To get that Jack
is at home , we need onl y mar k the room frame that the
default room is in a home.

Charniak admits difficulty with inputs such as

There were tim cans and streamers tied
to the car .

This unequivocally calls to mind the wedding frame but there
is no single concept in the sentence whose index ought to
include weddings. Charniak does not propose a definite
solution to this dilemm a but does suggest that it might be
solved by discrimination nets under the indices instead of
direct pointers to frames. “Streamers” , for example , could
have a set of context tests to see if they were tied to a
car along with tin cans. If so, the wedding frame is
appropriate. These tests , to be efficient , could be
organized into discrimination nets. As Charniak points out,
however , discrimination nets add to efficiency only if each
test results in ruling out more than one frame.



36

The GUS system developed at XEROX PARC ( Bobrow et al
1977) uses frames to carry on a dialogue to plan a i r l ine
trips . GUS ’ s frames are instances or prototypes. An
instance frame is a prototype frame wi th some of the slots
filled . They finesse the general problem of frame selection
by only ac t iva t ing new frames from currently active frames.
Thus they always require top down predictions about what
frame to activate next.

In i t ia l ly ,  a frame to carry on a dialogue about a t r ip
specification is loaded . The dialogue frame , as all frames ,
has slots to be filled and attached procedures to be used to
fill them. GUS’ s job is to fill the slots. The slots in
frames are of two types. One type is filled with actual
data and the other is filled with a pointer to another
frame. If a slot is to be filled with a pointer to another
frame, the prototype of that frame must be given along with
the slot. GUS must eventually fill these slots with
pointers to instance frames. The slot , however , must be
marked with the prototype frame that should be used . The
problem of selecting a prototype frame from bottom up

• information never arises.

The problem with the GUS method is that it is too
constraining . It must always be the case that the prototype
frame that is to fill a slot ( for those slots that must be
filled with frames) must be anticipated at the time the
frame is written . This method works well for domains such
as planning airplane trips where the facts that can be
discussed are severely limited . It also has the desirable
effect of helping to maintain the initiative in the
dialogue. However, in a system such as FRUMP where it is
impossible to anticipate the topic of the next story , a muc h
more general selection algorithm is required .

David Rumelhart (1975] is al so an advocate of
organizing top down knowledge about situations. His word
for the construct is schema. Schemata store knowledge about
generic events. The schemata , like sketchy scripts , are
used in understanding stories. Rumelhart ’ s schemata ,
compared to sketchy scripts , are more detailed . Another
difference is that there is no limit on how abstract an
event schemata can represent. Sketchy scripts represent
only well defined and rather rigid situations like an
earthquake or an election. Schemata are used to represent
things like “give” and “cause” as well. Rumelhart’s
schemata are hierarchically organized. Rumelhart does not
directly address the problem of schema selection .

An obvious approach to the frame selection problem when
dealing with natural language text is to tag certain word s
with the frames they typically describe . For example , the
word “blac kmail” might be tagged with the “blackmail



37

frame .”

When a word is seen that calls up one or more frames ,
the system could try to fill the “f rame slots” from other
words in the text .  In this way the representation is
augmented while the system reads the story .

The problem with this method of frame activation is
that there are times when a frame must be cal led up by a
combination of word s in the input rather than a single one .
For example , the sentence “The car hit a tree.” activates
the vehicle accident frame (or script or schema) . But none
of the words individually should be marked with vehicle
accident: none of the sentences “the car was washed ,” “John
hit Mary, ” or “the tree fell” should activate the earthquake
script . One might propose that either “car ” or “h it” or
“tree ” or all three are tagged with the vehicle accident
frame . But as the three sentences which do not activate the
vehicle accident frame are not extraordinary in any way,
there are man y such sentences which would mis— activate
frames. Furthermore , there are many such examples that
apparently require several word s to activate a frame. A
system that depended on thi s method alone woul d soon be
swamped with irrelevant active frames.

2. 1& The Three Kinds of Text Clue s to an Article ’s Topic

An article often requires the reader to be familiar
with the kind of event it describes. A reader who does not
know what goes on in political conventions and why, for
example , will have trouble understanding a news article
about one . The reader must be able to identify the
situation of such news articles before he can understand
them . Well written news articles describing stylized
events , therefore , always give very definite clues to what
the stylized situation is.

Hints given by an article as to what situational
knowledge is likely to be important in understanding can be
classified into three types. For each type FRUM P has a
method of selecting a sketchy script to activate . The
method FRUMP uses depends on exactly how the script is
referenced in the article being processed and on any
information currently present about the article.

The three article fragments below illustrate the
different ways an article can tell the reader that certain
situational knowledge will be necessary in understanding .
Each example tells the reader in a different way that the
article is about to describe a “police arrest” situation.
Thus the reader is informed that the information he has



38

about police arrests will probably be useful in further
understanding .

EXAMPLES:
1) John Doe was arrested last Saturday

morning after holding up the New Haven
Savings Bank.

2) A man entered the New Haven Savings Bank
bank about 10:00 am Saturday morning and
demanded that a teller fill a shopping
bag with money . According to witnesses ,
the suspect took the money to a parked
car and drove off . He was caught only
minutes later , however . John Doe is
being held at the police station in lieu
of $50 ,000 .

• 3) Police apprehended John Doe, a suspected
bank robber , in a drugstore in downtown
New Haven . Doe was taken to the New
Haven police station where he is being
held in lieu of $50 ,000 bond .

The first example explicit ly mentions that there is an
arrest situation being described . An explicit mention tells
the reader that a situation is important regardless of any
previous contextual knowledge the reader may have. Thus
explicit mention supplies bottom up information .

The second never says that an arrest occurred . Instead
it uses the ambiguous word “caught .” Yet every reader
immediately interprets “caught” as “apprehended .” This is
because the context set up by the previous sentences
indicates that a police arrest situation is likely. Here
the police situation is implicitly mentioned by the context
previously built up in the article. This is a top down
activation method . A previous context is used to activate
the arrest situation .

The third example tells the reader in a bottom up
fashion that a police arrest occurred . Individual events
from the police arrest situatior are given in such a way
that the reader is able to infer that the story is about an
arrest . The reader , of course , must realize that a police
arrest situation is being described to correctly understand
the story. By the time he has finished processing the
second sentence a reader must have inferred that an arrest
did take place. This inference could only be made if the
reader knows what typically goes on in police arrest
situations and oorreotly identifies this article as an
instance of one.



39

2.5 Overview of FRUMP ’ s Three Sketchy Script Selection Methods

FRUMP has three sketchy script selection algorithm s,
one for each type of text clue . In each of the above
examples FRUMP must. decide to activate the script for police
arrests , $ARREST. This script makes predictions about what
will be seen in an article describing a police arrest . The
$ARREST sketchy script contains requests for the following
events:

1) Police go to where the suspect is

2) There is optional fighting between the
suspect and police

3) The suspect is apprehended

~) The suspect is taken to a police station

5) The suspect is charged

6) The suspect is incarcerated or released on
bond

In the first example ,

1) John Doe was arrested last Saturday
morning after holding up the New Haven
Savings Bank.

the input mentions the arrest explicitly. This is called
activation by Exolicit Reference. In the second example,

2) A man entered the New Haven Savings Bank
bank about 10:30 am Saturday morning and
demanded that a teller fill a shopping
bag with money . According to witnesses ,
the suspect took the money to a parked
car and drove off .  He was caught only
minutes later , however . John Doe is
being held at the police station in lieu
of $50 ,000 .

the arrest sketchy script is activated by the robbery
script . The system must know that an arrest often follows a
robbery, which is explicitly mentioned . This is called
Imolicit Reference. The third example,

3) Police apprehended John Doe, a suspected
bank robber, in a drugstore in downtown
New Haven . Doe was taken to the New
Haven police station where he is being

• held in lieu of $50 ,000 bond .



gives only bottom up clues to the correct sketchy script .
It is never stated that the arrest script should be
activated , but only that certain events , which are part of
the arrest script , took place. Activating a sketchy script
from bottom up clues alone is called Event Induced
Activat ion.

2.5.1 Explicit Reference Activation

The first example is the easiest . It is an example of
script activation by explicit reference.

1) John Doe was arrested last Saturday
morning after holding up the New Haven
Savings Bank.

In an expl icit reference activation there is a word or
phrase which identifies the entire script that is to be
activated . The English word “arrest” has as one of its word
senses that it calls in the sketchy script $ARREST.

To be an explicit reference activation , there must be a
word or phrase in the text that refers to the entire script .
Refering to an event within a script is not an expl icit

• script reference even if its occurrenc e always indicates
that this script is appropriate . For example , consider the
two sentences below.

1) A Chevy van collided with a school bus
ful l of children .

2) There was an automobile accident
involving a school bus ful l of ohildrer
and a Chevy van.

The first sentence is not an explicit script reference.
It does call in the vehicle accident script but there is no
word or phrase such as “accident” which references that
script as a whole. Instead , it gives one of the events that
always occurs in a vehicle accident, namely the collision.

The second sentence , however , does activate the vehicle
accident sketchy script by explicit reference. In that
sentence , the phras “automobile accident” refers to the
vehicle accident as a whole. It does not say explicitly
that any events in the vehicle accident script took place ,
it says only that there was a vehicle accident in which the
scr ipt variables were a school bus and a Chevy van.



Explicit  reference activations cannot be done by key
words. A script is not activated when a particular word Is
seen , but when a word sense Is selected which has as its
meaning a reference to a sketchy script . In the sentence

There was an accident involving a car
- and an ambulance in downtown New Haven .

The vehicle accident sketchy sorb ’ is activated because the
correct word sense of “accident” in this context means
$VEHICLEACCIDENT. Thi s word sense can be decided upon
because the text says that a car and an ambulance (both
vehicles) were involved . In the sentence

Billy had to change his trousers because
he had an accident.

the vehicle accident sketchy script is not called up because
a diffe rent sense of the word “accident” must be used . Thus
individual words are not used to activate sketchy scripts
but individual word senses.

2.5.2 Implicit Reference Activations

Consider the second example:

2) A man entered the New Haven Savings Bank
bank about 10:00 am Saturday morning and
demanded that a teller fill a shopping
bag with money. According to witnesses,
the suspect took the money to a parked
car and drove off .  He was caught only
minutes later , however . John Doe is
being held at the police station in lieu
of $50 ,000 .

In this example the sentence “He was caught only
minutes later , however” , is extremely ambiguous out of
context. An understander must decide who “he ” refers to ,
correctly disambiguate “caught” , and infer who caught him.
On the basis of this example sentence alone it is impossible
to select the $ARREST sketchy script ; there is simply not
enough informat ion in the sentence.

This example demonstrates activation by implioit
reference. Sketchy scripts often occur in conjunction with
other sketchy scripts. In this example , we know that the
sketchy script $ROBBERY is often followed by $ARREST . A
sketchy script is activated by implicit reference when a
sketchy script that is known to often precede it is
activated . In the above example , $ROBBER Y is activated by

I — 
• 

•~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
. _ _  _ _ _ _ _ _ _



J42

explicit reference. FRUMP ’ s world knowledge includes the
fact that robberies often lead to arrests. Since causally
connected events are likely to be reported in the sane news
article , FRUMP activates the $ARREST sketchy script.

Activat io n by implic i t  reference is not often
absolutely necessary. There is usually some other way to
get around making the prediction about what script will
occur next.  Sup pose , for example , that the sentence “he was
caught only minutes later , however” were changed to “He was
charged with armed robbery.” Then the story could be
understood by recognizing the $ARREST sketchy script in a
bottom up fashion; the sketchy script is then selected
using event ind uced activation . The event of charging
someone with a crime strongly indicates that $ARREST is the
appropriate sketchy script for this situation.

However, even when the sketchy script might be
recognized without implicit reference, there are advantages
to having implicit  reference as a separate activation type .
For example , the word “charge” in the amended example is
ambiguous . “Charge with a crime ” has a very different
meaning (and therefore a different conceptual structure)
than “charge with electricity” or “charge with a
responsibility” or “charge” meaning to deman d payment . If
the sketchy script $ARREST were to be selected bottom up,
the word “charge” would first have to be disambiguated;
only “charge with a crime” should activate $ARREST.

With implicit reference activation the correct meaning
of “charged” can be selected immediately. If there were no
implicit reference activation , some process would have to
realize that there are several dictionary definitions for
“charge” , and , on the basis of what was found in the rest of
the sentence , choose one . In this case , “with armed
robbery ” st rongly suggests that “charge with a crime” is the
appropriate meaning .

If , however , the $ROBBE RY sketchy script is allowed by
implicit reference to activate $ARREST then $ARREST is
already active when the word “charge” is input . FRUMP can
use the fact that there is an active request looking for
“charge with a crime” to prefer that meaning of “charge”
iimnediately. In this case , the ambiguity of the word
“charge” is not noticed .

Furthermore , if the “charge wi th  a crime” meaning of
“charge” can be immediately selected, the system knows that
somewhere in the remainder of the sentence the actual crime
will 4 be specified . Thus using implicit reference in the
amended example , the system gets essentially for free the
disambiguation of the word “charge” and the top—down
prediction of how to process the crim e that will be



143

mentioned later in the sentence.

2.5.3 Event Ind uced Activation

The last example demonstrates event induced activation.
Here , the sketchy script is activated by bottom up clues
from the input text.

3) Police apprehended John Doe , a
suspected bank robber , in a drugstore in
downtown New Haven . Doe was taken to
the New Haven police station where he is
being held in lieu of $50 ,000 bond .

In this case , the event of the police apprehending a
suspected criminal is suff ic ient  for people to realize that
knowledge about arrests (i .e .  $bRREST) will be rel evant .
What does this mean in FRUMP terms? This means that the
event of the police apprehending a suspect is central enough
to the $ARREST sketchy script that when a conceptualization
for that event is seen , the $ARREST sketchy script should be
activated . We cal l the events which are central to a
sketchy script the ~~~ recuests of that sketchy script .
When a conceptualization is found that is a key request of a
sketchy script , that sketchy script is activated .

Thus event—induced activation involves building a
conceptualization and testing whether it is a key requect
for any sketchy script . The key request test must be done
by eff ic ient ly  searching through all sketchy scripts for
those in which the particular conceptualization is central
to the script. FRUMP must havc an efficient method for
event induced activation because it occurs so often in
everyday news articles. In the next chapter we will explore
all three activation methods in detail .



CHA PTER 3

FRUMP’S SCRIPT SELECTION ALGORITHMS

3.1 Introduction

In this chapter FRUMP ’ s selection algorithms will be
described in some detail .  A major part of the chapter is
devoted to event induced activation which is the hardest and
most interesting method of script selection . At first it
will be assumed that entire conceptualizations will be
supplied to the selection algorithms when needed . That is ,
it will be assum ed that a power ful enough parser exists so
that the selection algorithm need not concern itself with
the problem of mapping the natural language input into
conceptual dependency representations. This assumption is
far from reasonable; no such powerful parser exists in
FRUMP. In the final sections of this chapter it will be
shown how this assumption can be dropped.

3.2 Explicit Reference Activation

In English there are words whose meaning cannot be
captured in simple conceptual dependency representations.
These are words like “ accident” (as in auto accident),
“strike” (as in a labor strike) , and “invasion .” Each of
these words has a word sense which refers to an entire
stylized event sequence, not an individual event, state, or
state change. Thus they cannot have simple conceptual
dependency representations as their dictionary definitions.
FRUMP’s definition of these word senses includes a reference
to an entire sketchy script . When FRUMP chooses one of
the se word senses the text is making reference to an entire
sketchy script situation. Sometimes these references can be
anticipated . In these cases the current context built from
the text thus far can account for the reference to the

—



“5

sketchy script . If the current context cannot account for
the script reference , it means this is a new topic in the
article and FRUMP should activate the corresponding sketchy
script . These sketchy scripts are activated by explicit
reference.

What does it mean for a current context to “account
for ” the reference to another sketchy script? Consider the
two examples below.

1) There was an automobile accident at the
corner of Grove and Prospect Streets.

2) The National Safety Council released
fi gures today indicating that the chance
of dying in an automobile accident has
fallen dramatically the past year .

In the first example , assuming no currently active
sketchy scripts , the phrase “automobile accident” will
activate the sketchy script $VEH ICLE—ACC IDENT. In the
second example , “N ational Safety Council released figures”
will activate the script for government agency reports. One
of the important pieces of information in such stories is
the topic of the report . Thus there will be a request in
the active government report script looking for the report ’s
subject. This time when the referenc e to $VEH ICLE—ACC IDENT
is found , it will be interpreted as part of the report’s
subject. There is an active script that can account for the
script reference and so no sketchy script is activated .

3.2.1 Mis—Activations

However , suppose FRUM P does not have a sketchy script
for government agency reports. Then FRUMP will see
“automobile accident” as an explicit reference to the
vehicle accident sketchy script. FRUMP will then read the
rest of the story looking for events it considers likely in
vehicle accidents. This is a typical mis—activation of a
sketchy script .

There are two reasons why this kind of mis— activation
is tolerable. First , the failure to recognize the correct
sketchy script (in the above example) is due to a lack of
information , not a fault in FRUMP . Failures due to
insufficient script s or lack of vocabulary are not failures
of the control structure of FRUMP. Second , if the wrong
script is activated (in this case the vehicle accident
sketchy script), very likely nothing in it will be
satisfied . That is, nothing will be Instantiated . If no
sketchy script is instantiated by a certain article, it will



16

simply be ignored . Only if there happens to be somet’~ai ng
which instantiates the mis—activated script will the story
be misunderstood .

3.3 Implicit Reference Activation

There are many news stories which report several
different but strongly related situations. When the
relationship between the various situations is such that the
existence of one indicates the presence of others , the
others are activatc by implicit reference.

For example, if an article is found to report a flood
or volcano eruption or other natural disaster , there will
likely be relief aid from the Red Cross or other countries
which will also be reported . These are two completely
separate situations . In the disaster we expect to see one
set of facts reported (like the location , casualties,
estimates of dam age, etc.) and in the relief efforts we
expect to see another ( the form of the relief aid , how much
aid was extended , who it is from , etc.) .  Even though the
two situations are separate , the existence of the flood
strongly indicates that relief aid to the inundated country
will also be reported .

3.3 .1 Is Implicit Reference Activation Really Necessary?

It might be proposed that since the sketchy script for
relief aid is usually present in stories about floods and
must always be looked for in such articles , it ought to be
part of the flood sketchy script . This is undesirable for
two reasons. First , there are many other sketchy scripts
which , like $FL.OOD , ~~imply relief efforts. If the
information were to be stored in $FLOOD and not as a
separate sketchy script, it would have to be duplicated in
each of these other sketchy scripts as well. That is , the
knowledge in the relief sketchy script would hav e to be
included in $PL.OOD, $EARTHQUAKE , $TIDAL.WAVE , etc. Second,
there are articles which are entirely devoted to describing
the relief and rescue actions following a large natural
disaster . FRUMP must therefore be able to access the
information about relief efforts independent of the relief
effort’s cause .

Given that a separate sketchy script is needed for such
things , why not simply use one of the other activation
procedures? Consider the following fabricated newspaper
article:



147

John Doe was injured when the
motorcycle he was driving was run over
by a semi tractor trailer.
Miraculously, Doe was only slightly
injured . His condition was said to be
good but he will remain under
observation.

The last sentence can only be accounted for by the
hospital sketchy script. The “good condition” is
interpreted as the condition released by the hospital and
“remai n under observation ” means remain gj ~1~j hosnitalunder observation ~~ doctors. FRUMP must realize this if it
is to understand the article.

Perhaps , however , one of the other activation
procedures can be used to activate the hospital sketchy
script. There is no direct mention of hospital so $HOSPITAL
cannot be activated by explicit reference. However, maybe
event induced activation can help. In that case, there must
be some conceptualization that the sentence builds which can
activate the hospital sketchy script. It would seem that
the only concepts which might activate the sketchy script
are built from “good condition ” and “under observation”.
However, without the context set up by the vehicle accident
these seem insufficient. For example, consider the next
article:

With the All — Spinks fight
approaching , man y boxing experts
question Ali’s ability to go the
distance and are watching him closely.
No one in the All camp would officially
commen t on the veteran boxer ’s chances.
His condition was said to be good but he
will remain under observation.

This has the same final sentence as the previous
article but certainly does not activate the hospital sketchy
script . Nor is the hospital script called up and rejected.
Rather it never occurs to us that the hospital sketchy
script is relevant at all. The problem is that phrases like
“good condition” and “remain under observation” are simply
too general to be tied to a particular sketchy script.

Thus there must be a different activation method for
the motorcycle accident example. The activation must be
based largely on the context provided by the article. This
is exactly what implicit reference activation does. 



148

3 .3 .2 Issue Skeletons

Implicit reference activation and sketchy script
interaction are handled by issue Skeletons. The main
function of issue skeletons is to connect related stories.
However , they are also used for implici t  reference
activation. Issue skeletons will be discussed in detail in
chapt er 8. Here we will discuss them only to the extent
that they are used for script activation .

An issue skeleton is a data construct that organizes
events at a level higher than scripts. There are times when
understanding events as separate scripts is insufficient.
For example , suppose a set of articles reported a natural
disaster followed by a Red Cross relief effort. The
articles might be understood as instantiating two completely
separate scripts. One for the disaster and one for the
relief effort. However, this misses a very important fact.
The relief effort was initiated to help the disaster
victims. The system cannot be said to understand these
articles unless it knows that the relief effort  was a
response to the disaster . The disaster and relief efforts
are not two separate situatthns that have nothing to do with
each other. This information causally connecting sketchy
scripts is stored in an issue skeleton. Basically the
natural disaster issue skeleton says that disasters are
often followed by relief efforts so if a relief effort  is
seen in the same location and shortly after a natural
disaster , assume that the relief effort was initiated to
help victims of that disaster.

Anytime several news situations must be connected to be
understood , they form a ne~a is3.j.~~ Issue skeletons dictate
how news issues normally progress . There are many news
issues each requiring an issue skeleton. A war, for
example , is made up of battles , cease fi res , peace talks ,
and appeals to allies for help all interspersed . There must
be a separate sketchy script instantiated for each of these
individual situations. The situations must then be tied
together with an issue skeleton. Congressional action on a
particular bill must be represented with an issue skeleton.
The action is typically made up of a number of debates
followed by a vote. As another example , a political
campaign is made up of any number of campaign activities, a
convention , and a general election. There are many such
news issues.

Attached to each sketchy script is a list of the issue
skeletons in which it can appear. $STORM , $EARTHQUAKE ,
$FLOOD, etc. are all marked that they can initiate the
natural disaster issue skeleton. Thi~s when a flood sketchyscript is instantiated , a new natural disaster issue
skeleton is initiated. On the basis ~~f that initiated issue

~ 

—. . - - _ _ _ _ _



149

skeleton, FRUMP predicts that It might see secondary
di sasters like fires from broken gas mains and if the
disaster is sufficiently bad there will probably be relief
efforts. Since the predicted relief efforts correspond to a
specific sketchy script , the relief efforts sketchy script
is activated .

Whe n implicit ly referenced sketchy scripts interac t via
issue skeletons their respective script variables must match
in certain specifi able ways. In the case of a bank robbery ,
for example , the issue skeleton predicts an arrest situation
but it is understandable with the robbery only if the person
arrested in $ARREST is the same as the thief in $ROBBERY and
the crime he is charged with is robbing the bank. If these
constraints are not met then FRUMP has probably
misunderstood the story. This means the scripts fit
together in a more complicated way than FRUMP can
understand , and the implicit reference should be
disregarded . To illustrate the constraints on how
situations must conform consider the following two
variations of a story :

32 year old John Doe was killed in a
shooting in a downtown New Haven bar
yesterday. Witnesses said he had argued
with his brother Frank Doe who drew a
gun and fired seven times at point blank
range . New Haven police reportedly have
charged Celia Baker with first degree
murder .

32 year old John Doe was killed in a
shooting in a downtown New Haven bar
yesterday . Witnesses said he had argued
with his brother Frank Doe who drew a
gun and fired seven times at point blank
range. New Haven police reportedly have
charged Frank Doe with petty larceny.

These stories seem silly. The reason is that the
variables of the murder and arrest scripts do not match
properly. After read ing about the murder we expect to see
an arrest . However , we can predict who will be arrested and
why. If the script variables are to be conformable , the
shooting suspect must be the one arrested and be must be
charged with murder. In the first story, we expect to see
Frank Doe , not Celia Baker charged. The second story is
peculiar because the charge is “petty larceny” instead of
the expected “first degree murder .” “Celi a Baker” and
“petty larceny” grossly violate our expectations . These
expectations are important for FR UM P because they can be

~~—-.-. . ~~~ . - . ~~~----~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~ ~~~~ .-~ ~~~~~~~~~- - _ _ _ _ _ _


50

used to test whether FRUMP has understood the interaction
correctly. If they are not satisfied , the two sketchy
scripts very likely do not fit together the way FRUMP
assumed . A more powerfu l understander capable of
hypothe sizing complex causal interactions might be able to
make sense of the new situation by manufacturing some
bi zarre context. This is well beyond the capabilit ies of a
script applier such as FRUMP. To minimize the chance of
further misunderstanding the article , the best course for
FRUMP is to simply ignore the implicit reference.

In addition to constraining how interacting sketchy
scripts can share variables , issue skeletons can supply
default causation information . For example , consider the
following news story :

One of the worst blizzards in
history paralyzed New York City
yesterday . Drifts to six feet blocked
roads and kept schools closed for the
second day. Sub—zero temperatures , in
pl aces reaching twenty below , aggrav ated
already serious conditions.

There were scattered reports of
power outages , the worst in Brooklyn
where widespread looting and vandalism
were reported . Mayor Koch called on off
dut y policem en to return to their jobs
but has not yet asked the governor for
National Guard assistance.

In this story , a blizzard is reported to have caused a
blackout. There are separate sketchy scripts for blizzards
and blackouts. The first paragraph reports facts about the
blizzard and the second reports facts about the blackout .
However , it is nowhere explicitly stated that the blackout
was due to t.. blizzard. Instead it relies on the reader’s
knowledge that serious blizzards can cause blackouts. In
FRUMP thi s knowledge is supplied in a general way by an
issue skeleton . The issue skeleton provides the information
that natural disasters might cause other disasters.
$BLIZZARD is , of course , marked as a natural disaster . When
the blizzard sketchy script is instantiated , a natural
disaster issue skeleton is initiated. The natural disaster
issue skeleton contains the fact that natural disasters can
cause secondary or unnatural disasters. When “power
outages” is seen , FRUMP can interpret it as a secondary
disaster caused by the blizzard .

It is important to understand how the blizzard and
blackout are related . That is , some interscript causal
connections must be established . For this story , FRUMP can

51

make the causal inference via the natural disaster issue
skeleton . These causal inferences can al so only be mad e if
certain constraints between the script variables in the old
and new sketchy scripts are satisfied. In the case of
blizzards and blackout s, there is only one constraint on the
sketchy script variables: it must be the case that the
location of the defective electrical power equipm ent is at
or near the location of the blizzard (since no faulty
electrical power equipm ent is discussed , it can be assumed
to be at the location of the blackout). Only when this
constraint is satisfied can the implicit causal inference
that the blackout was caused by the blizzard be made and the
blackout incorporated into the natural disaster issue
skeleton . Again , if the oonstralnts are not satisfied , the
secondary disaster sketchy script is best ignored.

3.1$ Even t Ind uced Activation

As was pointed out before , the most common Indication
that a particular sketchy script should be active is the
presence of an event which is central to that sketchy
script . As this is the most common method , FRUMP must have
an efficient algorithm to deal with it. The time of the
algorithm should not increase greatly if FRUMP is given many
more scripts. That is , the time complexity of the event
induced activation algorithm should be less than linear in
the number of sketchy scripts the system has . In this
section we will first investigate some of the difficulties
with bottom up script activation . Then FRUMP ’ s algorithm
will be discussed .

3.14 .1 Bottom Up Probl ems

It is essential to be able to activate sketchy scripts
in some sort of bottom up fashion . As explained before ,
FRUMP cannot depend on having predictions about what kind of
news article is likely to occur next. Charniak (1978] in
discussing frame selection has suggested that conceptual
objects , states and actions have LOCATION and ACTION indices
attached to them . The LOCATION Index stores the frames for
where the concept is likely to occur and the ACTION index
stores frames in which the oonoept is often used . If a new
conceptual input cannot be incorporated into the currently
aotive frame, the frames under the components of the input
are xamined as candidates to activate .

This is sort of an advanoed conceptual version of the
system used by Rumelhart. However, there are concepts which
must activate sketchy scripts where it would be a mistake to

52

mark any of the component conceptual items with the sketchy
script. In a sense it is not the component concepts that
activate the Sketchy script but rather the particular
configuration of components. For example, the conceptual
representation for the sentence

The ground trembled.

contains the concept for “ground” or “ earth in a local
area ” , the concept for “motion ” and a modifier speci fying
that the motion is “cyclic ” .

It would be a mistake to tag any of these component
concepts with the sketchy script $EARTHQUAKE. The sentence

The ground was covered by fog .

also uses the concept of “earth in a local area” but should
not bother the system with calling in the sketchy script for
earthquakes. The sentence

John ’s hands trembled .

contains the concept for the same kind of motion but also
should not suggest loading the earthquake sketchy script .

In addition there is a hidden problem if we choose to
use the participants in the action to cal l in sketchy
script s (i .e. list *EARTH QUAKE under “earth”) . The problem
comes from the hierarchy of objec t concepts. Consider the
sentence

New York City shook yesterday .

Of course , we do not want to store $EARTH QUAKE directly
under the dictionary entry for New York City (because then
we would have to store it under Moscow , Topeka , Sioux Falls ,
Eastern Turkey, Carnes , etc.) . Instead $EARTH QUAKE should
be stored under “ground” and each of these entries will be
marked that they can be considered a “location”.
“Location”, in turn, is marked that it can be considered as
“ground” . This means that in the above example , the system
must retrieve the fact that New York City can be considered
a “loca tion ” , find that locations are “ground ” , and look
there for proposed sketchy scripts. However , there is no
reason , at this point to expect that “location” is the
important property of New York. New York City can also be
considered a city and so all of the sketchy scripts that are
proposed by “city” must be tried . New York is also a harbor
so all the sketchy scripts under “harbor” must be tried.
New York is also a... The series is endless. Yet all the
properties of New York City must be present because there
are oases where the system must have the information that

53

New York City is a city and a harbor and so forth .

Of course , one could argue that com ponent concept s
should cal l in many sketchy scripts and that it is just part
of the job of the system to weed out these irrelevant
sketchy scripts. This might be implemented with consistency
checks built in to each sketchy script. The earthquake
script , for example, could at activation time test to see
what was involved in the back and forth motion . Only if it
turned out to be ground or something firmly connected to the
ground would $EARTH QUAKE ultimately be added to the list of
active scripts.

However , activating a sketchy script , while not a
costly process , is not something that should be done
thousands of times while processing a story . Furthermore ,
the knowledge needed to rejec t a sketchy script would seem
to be the same knowledge needed to avoid proposing it in the
first place . With a little more clever organization, the
knowledge should be avai lable at the time it is needed .

3 .14.2 FRUMP ’ s Solution

In the previous section It was argued that event
induced activation depended not on single concepts present
in the input (like New York) but on complex concepts made up
of specific combinations of individual concepts (like ground
shaking).

These complex concepts are similar to major requests
from the sketchy scripts they activate. In each sketchy
script there are one or more requests which , if satisfied ,
strongly indicate that the particular sketchy script is
appropriate to use in understanding the current story.
These requests are called the sketchy script’s ~~~ reauests.For example the key request for the earthquake sketchy
script is the one that looks for a geographical location
undergoing back and forth motion. Each sketchy script can
be activated if one of its key requests is found.

The entire key request need not be seen. Rather only a
part of it is necessary to activate the sketohy script. For
example, the key request of the earthquake sketchy script
specifies not only the location and the fact that it is
•oving but how violently it is moving , the time of the
event , etc • Thea are things that can be present but are
not necessary. It. fact , the input need not specify a
location but only that ground is being shaken . Thus only a
simplified version of the entire request need be seen in
order to activate a sketchy script .

_ ____ __ I

51$

The simplified requests from a script that can activate
the script are called that script’s scriot initiators.
Script initiators are the minimus~ conceptual structure
necessary to activate sketchy scripts.

For example , the script initiator for the earthquake
sketchy soript specifies in conceptual terms that a
geological force is moving some ground and the motion is
cyclic. Often part of a script initiator must be inferred.
That a geological force is responsible for the motion must
be supplied by world knowledge in the sentence “New York
City shook yesterday.”

The key requests of all the sketohy scripts can be
collected into a long list. The list is made up of
conceptual dependency representations, and associated with
each is the sketchy script that it came from. The
associated sketchy script is the script that should be
activated if the representation is found in the input. This
list is considerably shorter than the total number of
requests in the system but is still very large. To select a
sketchy script the system must compare each new input
conceptualization to this list until a match is found . The
corresponding sketchy script will then be activated to
understand the story.

3.14.3 Matching Key Requests

The problem in event induced activation is finding some
way of organizing these key concepts so they can be matched
easily. The matching process must also be able to provide
the text analyzer with top down guidance in interpreting the
input.

From efficiency considerations, the complexity of the
matching method must be less than linear in the number of
sketchy scripts. No solution to the matching problem is
viable if the complexity of the algorithm is linear , even
with a smal l constant . FRUMP currently has 148 sketchy
scripts, but it would have to contain hundreds if It were to
process all articles about soripty situations. Thus the
selection time cannot be allowed to increase dramatically
with an increase in the number of scripts. If it does, the
whole approach to script selection will become unworkable.

This leaves us with two possibilities. The key
requests can be indexed by a hash coding technique, or by
disoriathation trees. All of the lees— than-linear search
techniques are variations on one or the other of these two
processes.

- - - -

55

The solution FRUMP uses is to organize these concepts
into discrimination trees. Sketchy script Initiator
discrimination trees (SSIDTs) both make searching the
concept space efficient and distribut e the matching process
throughout the tree . Spreading out the matching process is
useful because , as we shall see , the text analyzer can then
be driven by smal l changes in conceptual structure at the
decision points.

3.14.3.1 Conceptual Dependency —

Discrimination trees were chosen over hash coding in
the key request matching process because they enable the
process to give top—down guidance to the text analyzer. The
notion of lexical decomposition into primitives is essential
for the success of FRUMP’s matching algorithm. Since it is
so central to the script selection procedure , a brief review
of Conceptua l Dependency is given here . Readers already
familiar with Conceptual Dependency may wish to skip to the
next section.

All of FRUMP ’ s requests (and therefore sketchy script
initiators since they are partial requests) are stated in
terms of Conceptual Dependency. These conceptual structures
are made up of roles and role fillers. For example the
conceptual dependency structure for the English sentence

John went to New York.

is

(ACTOR JOHN

PTRANS

OBJEC T JOHN

TO NEWYORK)

The form of a conceptual dependency structure is

(raid role— fillerl role2 role— filler2 ...)

Thus in the above conceptual dependency structure
ACTOR , <s> OBJECT and TO are roles and JOHN , PTRANS, JOHN
and NEWYORK are their respective role fillers.

Conceptual dependency structures are divided into three
kinds of concepts: actions, states and state changes.
Actions are denoted by the presence of the <t> role, states
by the presence of the IS role and state chan ges by the

56

presence of the TOWARD role. The conceptualization above is
therefore an action type conceptual dependency.

3.14.3.2 Two Sketchy Script Initiator Discrimination Trees —

FRUMP has one sketchy script initiator discrimination
tree for each kind of conceptualization: there is an action
SSIDT which contains all the script initiators that are
conceptual dependency actions, a state SSIDT which contains
all the script initiators that are states and a etate change
SSIDT which contains all the script initIators that are
state changes. Thus if the input were the conceptualization
for “John went to New York”, FRUMP would lock through the
SSIDT for actions.

An SSIDT is an n—way branching discrimination tree .
That is , each node can have any number of arcs emanating
from it. At each node the filler of one conceptua l role of
a conceptualization is tested . Each arc leaving a deoision
node corresponds to a possible outcome of the test
performed . Each leaf of the SSIDT5 points to a sketchy
script which will be activated if it is reached. SSIDTs are
static structures — they are not changed during text
processing .

New input conceptualizations from the text are
submitted to the proper SSIDT (the action SSIDT for an
action concept , the state SSIDT for a state concept etc.).
If the tests performed on the submitted conceptualization
eventually reach a leaf node , the sketchy script at th at
leaf node is activated. If at any node there is no arc
which matches the role filler being tested , the
conceptualization cannot lead to a leaf and therefore cannot
activate a sketchy script so it is rejected.

_ _ _ _

57

SKETCHY SCRIPT INITIATOR DISCRIMINAT ION TREE FOR ACTIONS

node 1
(<s>) ... ———

• I I ~ I
I I~~~~ I

• I I
• I I

/ I
/

ATRANS MTRANS PROPEL PTRANS etc.
I I

• I S I
$ I I I

node 2
(OBJECT) —— —— ... —— ... etc .

/ I \
I I I
I S I

I I I
F I S

GROUND VEHICL E HUMA N MILITAR Y-UNIT
I

I I
I I

node 3 node 5
(ACTOR) (AC TOR)
/ \

/ /
/ /

EXPLOSIVE GEOLOGICAL POLITY MILITARY —UNIT
FORCE
/

/
I I

node 1$ node 6
(MANNER) (TO)

S I

POLITY
CYCLIC

node 7
* SCRIPT $EARTHQUAKE * (FROM)
‘REQUEST Ri

POLITY

• SCRIPT $FIGHTING •
• REQU EST R2 *
ace ci a as cc ii a a a see

figure 3.1

— i —

- -

58

Figure 3.1 shows the path through the action SSIDT to
activate the earthquake and fighting sketchy scripts. The
input conceptualization required to activate $EARTHQUAKE is

((ACTOR (GEOLOGICAL FORCE) <~> (PTRANS) OBJECT
(GROUND)) MANNER (C YCLIC))

Node 1 tests the filler of the (s> role. If it is
filled with PTRAN S , the next role tested is the OBJECT at
node 2. If the OBJEC T is GROUND , node 3 tests the ACTOR
role. If the ACTOR of the conceptualizat ion is a GEOLOGICAL
FORCE , we get to node 14. Finally if the MANNER role is
fi l led wit h CYCLIC , the leaf node pointing to the sketchy
script $EARTHQUAKE is found . $EARTH QUAKE is then activated,
and request Ri (which spawned the script initiator for this
path through the tree) is satisfied .

59

SKETCHY SCRIPT INITIATOR DISCRIMINATIO N TREE FOR STATES

node 1
(IS) ... ——

/ I
/ I

/
HEALTH CONCORD LINK etc.

S S S
S S

S I

node 2
(ACTOR)
/ \

/
/

/
POLITY H UMA N

node 3
(TIME)
/ \

/
/

TF TS

node 14
(WITH)

POLITY

node 5
(IS TYPE)

DIPLOMATIC

*5*Ii*S*Ii*Ii*IiiIiI *IOil11***1

• SCRIPT $ESTABLISH-RELATIONS •
• REQU EST Ri *

figure 3.2

60

The above diagram shows the STATE SSIDT. To arrive at
the leaf shown the following conceptualization must be
built:

((ACTOR (POLITY) IS (LINE TYPE (DIPLOMATIC))
WITH (POLITY) TIME (TS)))

The root node , node 1, tests the filler of the IS role.
This filler must be one of a number of states. If it is
filled with LINK , node 2 is examined next. It tests the
ACTOR role. The next node to be checked Depends on the
ACTOR filler . If the ACTOR is filled with something that j
can be considered a POLITY , node ~ will provide the next
test . In this way, all of the relevant role fillers can be
tested . The final resul t of these tests will establish
which sketchy script is the correct one indexed by the
conceptualization.

3.14. 14 How SSIDT’s Eliminate the Need for a Powerful Parser

The arrangement of key requests into a discrimination
tree in this way allows us to drop the requirement of having
a powerful parser. The PREDICTOR traverses an SSIDT in
identifying a sketchy script . At each node it predicts that
the role specified at that node will be filled with one of
the arc labels from that node. The prediction is then given
to the SU BSTANTIATOR. If SUBSTANTIATOR can indeed add the
desired conceptual structure, the corresponding arc is
traversed by the PREDICTOR. The PREDICTOR then makes a new
prediction based on the new node. Either the SUBSTANTIATOR
will be unable to substantiate a prediction or eventually
the PREDICTOR will arrive at a leaf node. If it arrives at
a leaf node, the sketchy script at that node is the
appropriate one to use.

Throughout the traversal process the SUBSTANTIATOR is
never asked to do more than augment the existing conceptual
structure in one of a number of predicted ways. This is a
far more constrained task than producing an entire
conceptualization at once. Thus the powerful parser
discussed before is not needed . The remainder of this
section discusses the SSIDT traversal operation in more
detail .

Initially there is no partial conceptualization to
augment. The SUBSTANTIATOR locks for any word that can
build a structure. When a word is found , its conceptual
structure is used as the partial conceptual ization. The
PREDICTOR examines the new partial conceptuali zation to
determ ine what kind of conceptual dependency representation

- - - - . - - ----~~ -- --- -- ----- --—- - --- -
~~~~~

---—-,
~~

- - - -



61

it is. The PREDICTOR selects the appropriate SSIDT for the
representation . If the partial conceptualization is an
action , the PREDICTOR selects the ACTION SSIDT . If the
conceptualization is a state , the PREDICTO R selects the
STATE SSIDT , and if it is a state chang e, the STATE—CHANGE
SSIDT.

At any point in the selection process the PREDICTOR
examines one node of the SSIDT . This is the aurrent ~~~~~~~~~~~

Initially the current node is the root node of the SSIDT .
The PREDICTOR asks the SUBSTANTIATOR to add the conceptual
role specified at the node and predicts that the filler will
match one of the arc labels emanating from the node.

For example , suppose the partial conceptualization
built were the action (< :> PTRANS ) . Then the PREDICTOR
would select the ACTION SSIDT and node 1 would become the
current node . The PREDICTOR would then follow the tree as
far as possible. Since the (:> role is alread y filled with
PTRANS , the predictor would make node 2 the current node.
It would then predict that the OBJECT role would be filled
with one of GROUND , VEHICLE , HUMAN , etc. The SUBSTANTIATOR
might fill the OBJECT role with , say, Los Angeles. The
PREDICTOR would- then interpret Los Angeles as a type of
GROUN D and follow the arc to node 3 and request that the
ACTOR role be filled .

The processing continues until a leaf of the SSIDT is
reached . At each leaf is a pointer to the sketchy script
that ought to be activated , and the request within the
sketchy script that the constructed conceptualization will
satisfy. This sketchy script is then activated . The
information gleaned from building the key request is
incorporated into the sketchy script .

3.14.5 An Example of Event Ind uced Activation

The following output illustrates FRUMP’s prooessing
during an event induced script activation. The input
sentence is “Israel has sent troops into Lebanon” . FRUMP
uses the action SSIDT given in figure 3.1 to activate the
sketchy script $FIGHTING. In the exasple below , the
computer output generated by FRUMP is on the left;
explanatory comments are on the right . The point to be
illustrated here is how the PREDICTOR uses the SSIDTs to
guide the SUBSTANTIATOR. The actual workings of both the
PREDICTOR and SUBSTANTIATOR are discussed in detail in the
next two chapters.



62

Input :

ISRAEL HAS SENT TROOPS INTO LEBANON.

COMPUTER OUTPUT CO*~ENTS

SUBSTANTIATOR: I
((< s> (‘PTRANS ’)) BUILT I SUBSTANTIATOR has found the
FROM WORDS (18) WORD word “SENT” which can build
SENSE SEND 1. I a conceptual structure . That

I structure is submitted to the
I ACTION Sketchy Script
I Initiator Discrimination Tree
I becaust~ it is a Conceptual

Dependency Action.

PRE DICTOR: I After selecting the ACTION
PREDICTING ROLE (OBJECT) I SSIDT , the PREDICTOR begins

WILL BE FILLED WITH AN I to follow its branches. It
ELEMENT FROM THE LIST I follows the PTRANS arc from
(‘GROUND ’ ‘VEHICLE’ I the node that tests the
‘HUMAN• •MILITARY—UNIT I filler of the <z> role ( node
•PHYSOBJ ’) I 1 in figure 3.1) . Now the

I PREDICTOR is at node 2 which
I tests the OBJECT role. The

PREDICTOR simply predicts the
I OBJECT will be filled with

one of the arc labels leading
I t. a deeper node. If the
1 OBJECT cannot be filled with
I one of these , the conceptual—
1 ization is of no interest to
I the PREDICTOR at this point
I since it cannot possibly be
I the key request of a sketchy
I script.

SUBSTANTIATOR: 1 The SUBSTANTIA TOR has decided
PREDICTING (OBJECT) IS I where in the sentence to look
VERB—OBJECT OF (SEND1 I for the filler of the OBJECT
Is NIL PAST) I role.

FOUND POSSIBLE I It looks there and find s the
(*MILITARY..4JNIT*) FROM I word “TROOPS” which can
WORDS (5) I indeed be interpreted as one

( OBJECT ) HAS BEEN FILLED 1 of the predicted fillers —
WITH (5TROOPS’) I MILITARY —UNIT.

PREDICTOR :
PREDICTING ROLE (ACTOR ) 1 The PREDICTOR follows the



63

WILL BE FILLED WITH AN I MILITARY—UNIT arc from node 2
ELEMENT FROM THE LIST I to node 5. Node 5 tests the
(‘POLITY’ I ACTOR role. The only arcs
‘MILITARY— UNIT’) 1 node 5 are labeled with

1 POLITY and MILITARY-UNIT.

SUBSTANTIAT OR :
PRE DICTING (ACTOR ) IS I Again the SUBSTANTIATOR
- 

SUBJECT OF (SEND1 14 NIL I decides where in the sentence
PAST ) 1 to look for the desired

I conceptual role.
FOUND POSSIBLE 1 In the position where it

(‘POLIT Y’) FROM WORD # (2) 1 expects to find the syntactic
( ACTOR ) HAS BEEN FILLED I subjec t of SEND , it finds

WITH (‘ISRAEL’) I “ISRAEL” which can be
I interpreted as a POLITY . Thus
I the POLITY arc from node 5 is
I followed.

PRED ICTOR:
PREDICTING ROLE (TO ) WILL I The PREDICTOR has now arrived

BE FILLED WITH AN ELEM ENT I at node 6 of the SSIDT . That
FROM THE LIST (‘POLITY’) I node tests the TO role. As

I the PREDICTOR traces deeper
I into the SSIDT , there are
I fewer arcs leading from each
1 node. As FRUM P fills out the
I conceptualization, there are
1 fewer and fewer key requests
I that it can partially match.
1 There is only one arc from
I node 6.

SUBSTANT IATOR :
WORDS (6) INTO CAN POSSIBLY The SUBSTANTIATOR decides

ADD (TO ) I that the TO role can be added
TENTATIVELY RESOLVING INTO 1 by the preposition INTO.

TO INTO2

PPEDICTINO (TO ) IS 1 It looks where it expects the
(PREP—OBJECT ) OF ( INTO2 1 object of the preposition to
6) Ibe ,

FOUND POSSIBLE (‘POLITY’) I and finds the word LEBANON
FROM WORDS (B) I which can be interpreted as a

(TO ) HAS BEEN FILLED WIT H I POLITY .
(‘LEBANON’)

PREDICTOR : I
PREDICTING ROLE ( FROM ) WILL I By following the POLITY arc

BE FILLED WITH AN ELEMENT I from node 6 , the PREDICTOR
FROM THE LIST (‘POLITY’) I arrives at node 7 of the

I SSIDT. This node tests the



618

I FROM role. The only arc
I leading from the node is
I labeled with POLITY . Thus the
I FROM role must be filled with
I a POLITY if a sketchy script
I is to be identified .

SUBSTANTIATOR :
TEXT ANALYZER UNABLE TO ADD The SUE~rANTIATOR is unableADD (FROM ) — CALLING I to add the FROM role from the

INFERENCE PROCEDURES 1 text. It therefore resorts to
I its inferencer .

I The SUBSTANTIATOR is able to
I infer that the FROM role can
I be filled with ISRAEL. The

INFERRING ( FROM ) IS I actual workings of the
( ‘ISRAEL ’ CERTAINTY (8)) I inferencer will be discussed

I in detail in chapter 5. For
I now it is sufficient to know
I that the FROM role was filled
I by the location connected
I the ACTOR role. This filler
I is given a certainty of 8 on
I a scale of 1 to 10 since the
1 infe.ence might be wrong.

PREDICTOR: I The POLITY arc is followed
SELECTED SKETCHY SCRIPT I from node 8. It leads to a

$FIGHTING I terminal node containing that
I points to a request within
1 the sketchy script $FIGHTING.
I The $FIGHTING script is then
I activated and request R2 is

satisfi ed .

So finally a sketchy script is identified . During the
process the SUBSTANTIATOR has always been given top—down
predictions to help in analyzing the text in spite of the
fact that there was no initial current context. The ACTION
Sketchy Script Initiator Discrimination Tree was used by the
PREDICTOR to lead the SUBSTANTIATOR through the process of
building up a conceptualization capable of activating &
sketchy script.

The conceptualization built by FRUMP is

( ACTOR ISRAEL
(s) PTRANS
OBJECT TROOPS
TO LEBANON



65

FROM ISRAEL)

Request R2 of $FIGHTING which the above
conceptualization matches is

(ACTOR POLITY
PTRANS

OBJECT MILITARY—UNIT
TO POLITY
FR OM POLITY)

In addition the sketchy script $FIGHTING imposes a
requirement that the filler of the TO role be different from
the filler of the ACTOR role. This is necessary to
eliminate the possibility of the script being called up when
MILITARY —UNITs are returning to their own country. This
test is , of course , satisfied for the conceptualization
built in above example.

3.18.6 Complexity of Event Induced Activation

The number of tests needed to activate a sketchy script
from a conceptualization is equal to the depth of its leaf.
The depth of the leaves is not related to the total number
of sketchy scripts in the system but rather the number of
conceptual roles in the key request conceptualization; only
in rare cases is a role filler examined more than once. The
number of sketchy scripts does, however, affect the
branching factor of the tree . However , the branching factor
is only logarithmic in the number of scripts. Furthermore ,
most of the work in selecting an arc is done in filling a
missing conceptual role not in selecting the arc once the
filler has been found. The matching process to select an
arc based on how the missing role was filled is very
inexpensive . Thus , the complexity of sketchy script
activation is logarithmic in the number of scripts in the
system and has a very small constant .

This method of script selection is very dependent on
having a primitive decomposition of word meanings. It is
absolutely essential that the process of matching a
conceptualization built from the tex t to the key requests be
Spread throughout the discrimination tree . Without that
property, the matching process would grow linearly with the
ni ber of key requests. This would spell ultimate disaster
for the entire system . FRUMP uses Conceptual Dependency
dsoc.position. Howev er , any other decomposition method of
similar representational power would also be adequate.



66

It is possible from the SSIDTs to understand why key
word systems work as well as they do. A semantically rich
word (whose meaning representation is very nearly an entire
conceptualization) can all alone arrive at or very near a
leaf node of the SSIDT all by itself. In a key word system ,
these semantically rich words are explicitly tagged with
situational specific information. This circumvents the need
for tracing through a structure like the SSIDT. However, in
key word systems, problems arise with words that have
several meanings and when there is no single semantically
rich key word . FRUMP ’ s SSIDTs are general enough that both
of these situations are easily hand led . Semantically rich
words are simply treated as any other word . The difference
is that they give a lot of information to the SSIDT so that
much progress can be made toward a leaf node .

j
---—



CHAPTER 18

PREDICTING CONSTR A INTS

18.1 Introduction

Once a script has been selected and a current context
has been established , the PREDICTOR can begin making its
predictions about what will occur next. This chapter
classifies the types of predictions that the PREDICTOR can
make and gives the rules for generating them . The next
chapter will discuss how the SUBSTANTIATOR services each
prediction .

18.2 Kinds of Understander Predictions

There are six broad categories of predictions the
PREDICTOR can make . This chapter will discuss how they
differ and situations in which each prediction type is made.

The PREDICTOR can predict:

1) a specific sketchy script

2) constraints on a sketchy script

3) one. or more particular conceptualizations

~) one or more general constraints on a
psrtioular role filler of a conceptualization

3) one precise filler for a role in a
conceptual izat ion

6) several precise role tillers for a role in
• conceptualization

— 67 —

~ ..  • - • - - • - •



68

15.3 Predictions from Issue Skeletons

Often a news article will refer to several related
sketchy script situations. Thus while processing a story
FRUMP must be able to realize that an additional sketchy

- script situation is being referred to by the text. When
this happens the new sketchy script must be activated to
enable FRUMP to process any events from that situation that
might be reported.

The PREDICTOR is able to anticipate the related sketchy
scripts of a news situation by means of issue skeletons.
This is implicit reference activation which was discussed in
chapter 3. Here we will outline at a lower level what
predictions are actually mad e during implicit reference
activation .

The natural disaster issue skeleton looks like this:

NATURAL DISASTER ISSUE SKELETON

disaster \ / !CASUALTY \
script / bundle

I /
( cause) >—> ( cause) ———< >—— (motivate)

I / / I
I / / I

V /
N2 > — — — — /  IDAMAGE V

.secondary bundle N5
disaster $RELIEF
scripts

figure 14.1

Ni , N2, N3, NIS, and N5 are nodes in the issue skeleton.
Sketchy scripts can be hooked to the nodes. There are
limitations at each node to what can be hooked there.

Node Ni is the node for the initial disaster. Any
instantiated disaster script can be hooked at that node.

Node N2 is the node for disasters brought on by the
first one. Any number of disaster scripts can be hooked -to
node N2. However , they must be secondary disasters, that
is, disasters which have causes. Natural disasters are not
acceptable. The issue skeleton links the initial disaster
script to the secondary disaster scripts with a “causes”
arrow. This indicates that the secondary disasters result
from the initial disaster.



69

Node N3 must be an instance of the casualty bundle
which is a type of request bundle. A reauest bundle is a
collection of conceptual requests similar to a sketchy
script . Requests are formed into bundles when that
collection of events occur in many different script
situations . For efficiency, rather than listing these
events once in each script , they are assembled into a unit.
Eac h script that requires these events includes a pointer to
the bundle. Thus each event of the bundle is stored only
once instead of once for each sketchy script in which it can
appear.

There is another reason for using bundles. When
several disasters strike the same location news articles do
not give separate casualty figures for each disaster.
Rather they give one figure for the number dead , one for
injured , and one for homeless . There is often no way to
apportion these numbers among the disasters. So instead of
connecting a casualty figure with each disaster sketchy
script , FRUMP must have a way to associate the figures with
the news issue as a whole. Therefore , instead of being
pointed to from the disaster sketchy scripts, the ICASUALTY
bundle is a node in the issue skeleton. It is often the
case that bundles are connected to issue skeletons rather
than directly to sketchy scripts. This will be discussed
further in chapter 8. To differentiate the names of request
bundles from sketchy scripts , the names of bundles are
preceded by “ I ”  whereas the iames of sketchy scripts are
preceded by “ $“ . Request bundles behave exactly as sketchy
script s except they do not directly correspond to a specific
real world situation.

The casualty bundle contains conceptualizations for the
number of people killed , the number of people injured , and
the number of people left homeless . Node N3 in the issue
skeleton represents the fact that the killed , injured , and
homeless are a result of the disaster represented at node
N i .

Node NIs has attached to it the bundle I DAMAGE , which is
l ike the casualty bundle but contains events related to

- property damage. The issue skeleton represents that the
bundle hooked to NIs i~ also caused by the disaster at Ni.

The final node N5 can only be hooked to an instance of
the sketchy script $RELIEF. This part of the issue skeleton
represents that the damage and personal iqjur y may motivate
instances of relief aid to the devastated location .

Thus issue skeletons provide a simple method of
representing the static relation between sketchy scripts in
a news issue.



70

When an article or set of articles which refer to
several related sketchy scripts is read , the internal
representation of the sketchy scripts must refl ect the
relation between them. The conceptual representation of
several related sketchy scripts is an instantiated issue
skeleton . In an instantiated issue skeleton instances of
sketchy scripts and request bundles are hooked to the nodes.

An instantiated natural disaster issue skeleton might
look like this:

AN INSTANTIATED NATURAL DISASTER ISSUE SKELETON

$EART H
QUAKE121 >—\ I—> ICASUALTY3O1 \

/
‘¼ / ‘¼
‘¼ / ‘¼(causes) >—> (causes) — < >— —
/ / 1

/ / 1
V / ‘¼— —> IDAMAGE2 1IL >—— / I

secondary (motivates)
disaster
scripts V

$RELIEF38
figure 15.2

Here $EARTHQUAKE121 is the particular instantiated
script which is the main disaster. For example,
$EARTHQUAKE121 might represent the earthquake that struck
southern Mexico on August 13, 1975. In this instantiated
issue skeleton there are no secondary disasters yet. The
instantiated damage bundle I CASUALTY3O 1 has been hooked to
node N3. !CASUALTY3O 1 contains the conceptual dependency
representations of the number killed, injured, and homeless
for $EARTHQUAKE121. If there were an instance of a
secondary disaster ICASUALTY3O 1 would reflect those casualty
figures as well. IDAMAGE2115 has been hooked to NIS. It is a
particular instance of the IDAMAGE request bundle.
$RELIEF3B , an instantiated relief sketchy script, has been
hooked to N5.

While reading news stories , FRUMP tries to build
instantiated issue skeletons. However, before an issue
skeleton can be instantiated, it must be initiated.
Initiating an issue skeleton means that the system has
decided that the input article is discussing the
corresponding news issue . From then on , the system tries to
hook instantiated sketchy scripts from the news article into



71

tha t issue skeletons This results in an instantiated issue
skeleton like the one described above.

The PREDICTOR initiates an issue skeleton when evidence
from the current context indicates that the issue skeleton
is appropriate. This evidence comes from sketchy scripts
activated by FRUMP ’s bottom—up activation procedures
discussed in chapter 3. Some sketchy scripts are marked to
indicate that they typically fit into a certain issue
skeleton. When one of these sketchy scripts is
instantiated , the corresponding issue skeleton must be
initiated .

PREDICTOR Rule 1
When a new sketchy script is instantiated that
cannot be used by the current context , and if
that sketchy script typically fits into a
particular issue skeleton , initiate that issue
skeleton.

This rule says that when a sketchy script is
instantiated which the PREDICTOR cannot incorporate into an
existing issue skeleton, it should check whether this
sketchy script can initiate an issue skeleton. If the newly
instantiated sketchy script can initiate an issue skeleton,
the PREDICTOR creates a token of that issue skeleton and
connects the new sketchy script to it.

For example , suppose there are no initiated issue
skeletons and FRUMP reads the following story :

A moderately strong earthquake struck the
southern Columbian city of Neiva early today,
killing at least 70 and injuring many more.
The Coluu.bian seismological station said the
quake hit at 3:22 A.M. and measured 7.5
degrees on the Richter scale. The epicenter
was 60 miles southwest of Bogota.

FRUMP ’s activation procedures will identify this story
as reporting an earthquake. That is,, the sketchy script
$EARTH QUAKE will be activated . As soon as any script
variable is bound (e.g., when FRUMP identities, say, the
location to be Neiva or southern Columbia) the script is
marked as instantiated . The PREDICTOR knows that
$EARTHQUAKE is a disaster sketohy script . Therefore , it
typically appears in the natural disaster issue skeleton.
Since there is no previous issue skeleton that might help
explain an earthquake in Columbia, rule 1 applies.



72

Therefore , the PREDICTOR makes a copy of the natural
disaster issue skeleton and connects the newly instantiated
earthquake sketchy script with it at node Ni.

Issue skeletons provide the PREDICTOR with a means of
anticipating sketchy scripts. Notice that in the
uninstantiated natural disaster issue skeleton $3, $15, and
$5 can onl y be hooked to specific sketchy scripts or request
bundles. N3 can only be matched by an instance of
I CASUALTY ; $15 can only be matched with an instance of
IDAMAGE; $5 can only be matched with an instance of
$RELIEF . These specific sketchy scripts and request bundles
ought to be expected once the issue skeleton is initiated.

PREDI CTOR Rule 2
When an issue skeleton is initiated , predict
(activate) the sketchy scripts and request
bundles explicitly required by that issue
skeleton .

Thi s rule is the underlying mechanism for implicit
reference activation described in chapter 3. The rule tells
the PREDICTOR to activate a sketchy script whenever a
context is built which requires that particular sketchy
script.

For example , once the issue skeleton is initiated for
the Neiva earthquake, the PREDICTOR activates the sketchy
script $RELIEF via rule 2. Thus FRUMP will be able to
process the story if it continues:

The United States announced that the army
would air lift foodstuffs and drinking water
to the devastated area.

$REL.IEF, which is already active, provides the correct
context in which to interpret the above sentence. If
$RELIEF were not active at this point, it would have to be
activated by FRUMP’s bottom up mechanisms before the air
lift event could be understood. However, rule 2 allows the
PREDICTOR to ii~~ediately select the appropriate sketchy
script-. The PREDICTOR can also hook the newl y instantiated
$RELIEF sketchy script into the correct issue skeleton as
well.

The previous discussion described how issue skeleton
nodes which required specific sketchy scripts could help the
PREDICTOR anticipate input events. However, nodes in an
instantiated issue skeleton can be satisfied even after the



73

article that initiated it has been finished . Later articles
can report on further developments of news issues.

After initiating an issue skeleton from a news article ,
FRUMP must continue to be on the lookout for sketchy scripts
to connect to this issue skeleton even after the initiating
article has been read . For example , shortly after read ing
about $EARTHQUAKE121 an article might be read which reports
fires from ruptured gas mains in the area of the earthquake,
FRUMP must be able to connect the fire to the instantiated
issue skeleton of figure 15.2. The instantiated fire script
must be hooked into node $2.

PREDICTOR Rule 3
When a sketchy script has been instantiated,
check it it satisfies a node in some existing
initiated 1ssue skeleton. If so , hook the
sketchy sc~ ipt into that issue skeleton.

This rule is equivalent to predicting that the script
situations required by an initiated issue skeleton are
likely. These predictions enable FRUMP to relate later news
articles to a previous news issue. Different nodes in the
same issue skeleton can often be satisfied by separate news
articles. For example , several days after the report of a
flood there may be a re~ort of a cholera epidemic . It is
important for the system to realize that the disease is a
secondary disaster of the flood .

If FRUMP does not anticipate the possibility of
secondary disasters from the flood, it will misinterpret the
cholera outbreak as a separate disaster. This will result
in two unconnected natural disaster i ssue skeletons: one
for the flood and one for the cholera.

FRUMP must somehow expect the cholera outbreak from the
flood article. The PREDICTOR is able to expect these events
by using rule 3. Whenever a sketchy script is instantiated,
it is tested against the outstanding requirements of the
currently initiated issue skeletons. The tests consist of
constraints on the type of sketchy script (e.g., for $2 it
has to be a secondary disaster ; for $5 it must be a $RELIEF
sketchy script) and on constraints on the script variables
(e.g., for 115 the relief must be sent to the same location
as was hit by the disaster).

The tests are evaluated whenever a sketchy script that
was initiated by either of the bottom up prooesses (explicit
reference or event induced activation) is instantiated . I?
• script matching all of a test’s requirements is found , the



715

PREDICTOR hooks that script into the appropriate issue
skeleton node. If the node requires only one script, then
the node is marked as satisfied and that test is removed so
no other sketchy scripts will be found. If, however , the
node can handle more than one script (as $2 in figure *.1),
the test is continued . Any further sketchy scripts that
satisfy the test are also hooked to that node.

Thus rules 1—3 enable the PREDICTOR to anticipate issue
skeletons and sketchy scripts associated with news issues.
Rule 1 tells the PREDICTOR how and when to initiate an issue
skeleton. Rule 2 enables the PREDICTOR to anticipate
specific sketchy script situations while processing the
story that initiated the news issue. Rule 3 allows the
PREDICTOR to correctly relate non— specific sketchy script
situations to the proper issue skeleton, and to correctly
hook script situations occurring in later news articles to
previous issue skeletons.

~~~ Predicting Conceptualizations

When the PREDICTOR decides from the current context
that a particular event , state , or state change will occur ,
it makes a specific prediction of that o~”noeptualization to
the SUBSTANTIATOR. A predicted conceptualization is a
conceptual dependency structure. In the structure the role
fillers might be specific tokens of objects or they might be
only type constraints on the ultimate filler of the role.
For example, the following CD structure might be predicted:

~~~~~~~~ ‘HUMAN

JOHN1 <=> ATRANS < o~ ‘PHYSOBJ’ .~~~

. .— —— <  JONN 1

This prediction tells the SUBSTANTIATOR to expect an
event of JOHN 1 giving sonething to someone. JOHN 1 is a
token of a spec itio person that FRUMP already knows about .

The SUBSTANTIATOR ’s job is then to find from the text
or infer a specific event which matches this prediction and
flesh out the CD structure as much as possible. That is, it
will try to find exactly what the physical object is and to



75

whom it is given .

Conceptualization predictions always come from sketchy
scripts or request bundles. Sketchy scripts contain all of
FRUMP’s knowledge about how the world behaves. It is this
knowledge that the PREDICTOR uses to predict likely
conceptualizations. There are three ways the PREDICTOR can
anticipate a conceptualization . For each way there is a
corresponding rule in the PREDICTOR.

PRED ICTOR Rule 14
When a sketchy script is activated , predict
the defaul t track conceptualizations in that
sketchy script .

This is what actually happens when a sketchy script is
activated. The rule instructs the PREDICTOR that the normal
events of a sketchy script should be predicted when the
sketchy script is identified.

For example, consider the following sentence:

The police arrested John Smith early today.

As discussed in chapter 3, the above input activates the
sketchy script $ARREST by explicit reference. Among the
usual events in $ARREST is the suspect being charged with a
crime . Using rule 15 the PREDICTOR predicts to the
SUBSTANTIATOR that a likely event is that John Smith will be
charged with a crime. These predictions are made in the
form of a conceptual dependency representation of an act,
state or state change. The SUBSTANTIATOR uses the
predictions to guide its text analyzing and inference
procedures.

PREDI CTOR Rule 5
When a sketchy script variable is bound, check
whether the binding can predict non—default
conceptualizations.

Some conceptualizations should be predicted only when
certain information is found to indicate that they are
likely. These are conceptualizations which can occur in the
script situation but do not occur often enough to justify
always predicting them . For example , one event that can
occur during earthquakes is the collapse of buildings. Even
though this is a common occurrence most earthquakes reported



76

are simply not violent enough to destroy buildings. the
PREDICTOR therefore only predicts destruction of buildings
if the current context indicates a strong earthquake.

To illustrate the rule, consider the following story:
L.

A 6.3 Richter scale earthquake struck the
southern Mexico city of Oaxaca today. Early
reports indicate that as many as 100 people
have died , many as the result of the collapse
of three high—rise apartment complexes. The
quake , which is said to be the strongest in 10
year s was felt as far north as Mexico City.

When FRUMP recognizes that this is a story about an
earthquake , it brings in the sketchy script $EARTHQUAKE.
This script contains the fact that the magnitude of the
quake will usually be given in the story. From rule 15, the
PREDICTOR then predicts that the text will mention the quake
magnitude.

Attached to the script variable for the quake magnitude
is the fact that if it is over 3 on the Richter scale or 2
on the Mercali scale there is the possibility of buildings
collapsing. This is , of course , a rather arbitrary
threshold but it is sufficiently low that smaller
earthquakes are not able to topple buildings. Thus when the
PREDICTOR is told that the quake magnitude is 6.3 it
predicts that there might be the destruction of buildings.
Of course, this prediction (like all predictions) might be
wrong. If, for example , there is no city near the
earthquake site, there will probably not be buildings
destroyed. The PREDICTOR still makes the prediction. If
there are no buildings at hand , that prediction will simply
not be verified .

The earthquake sketchy script predicts destroyed
buildings if the magnitude of the quake is high enough but
does not insist on there being buildings present . That is ,
the preconditions used to predict destroyed buildings are
incomplete. There is a reason for not performing exhaustive
tests before making predictions. Remember that the
PREDICTOR ’s job is only to provide guidance to the
SUBSTANTIAT OR. The PREDICTOR predicts likely events to help
channel the SUBSTANTIATOR ’s processing. The preconditions
that trigger the inference are decided upon when the sketchy
script is written . They are chosen to provide the most
guidance to the SUBSTANTIATOR with the least expense in
evaluating them . In the earthquake example , it is easy to
test whether the quake magnitude is over a certain
threshold. However, it can be difficult to justify that
there are buildi ngs around . If the stor y states only that

L _ _ _  - _ _ _ _ _ _ _



77

the quake occurred in northern Yugoslavia, for example, it
would be relatively expensive to decide whether or not there
are buildings near by.

Rule 5 represents a kind of inference. Instead of
inferring an event , FRUMP uses this rule to infer a
prediction from tests on script variables. There is a
problem if the event to be predicted is mentioned in the
text before the required script variables are satisfied.
For example, the above story might well have started

Three high—rise apartment complexes have
collapsed during an earthquake in the southern
Mexico city of Oaxaca today killing as many as
100 people. The quake, said to be the
strongest in 10 years , measured 6.3 on the
open ended Richter scale.

Rule 5 would not be applied until the second sentence.
By that time , the event of the buildings collapsing has
already been ignored. This rule buys efficiency but with a
concomitant danger of not predicting an event soon enough.
In cases where it is important not to miss an unusual event
in this way, the event must be made part of the sketchy
script . Then It will always be predicted , and it follows
that a prediction will then exist before the corresponding
event is seen in the text.

PREDICTOR Rule 6
When the presence of a predicted
conceptualization is verified , and that
conceptualization indicates which of several
tracks in the sketchy script should be
followed, predict the conceptualizations along
the selected track .

Cullingford (1978J discusses how certain parts of
soripty situations can progress in any of several different
ways. Each of the various possibilities is represented by a
different path through the script . These paths are called
tracks.

FRUMP makes use of tracks within its sketchy script s to
eliminate irrelevant predictions. Certain
conceptualizations are likely only along specific script
tracks. This rule states that these conceptualizations
should only be predicted when their respective tracks are



78

applicable.

The system efficiency is degraded by irrelevant
predictions. As we shall see in following sections the
SUBSTANTIATOR can satisfy a predicted conceptualization a

L. little at a time by a series of partial matches. Althougrz
irrelevant predictions from the PREDICTOR can never be
satisfied , the system must spend time processing partial
matches for them . The time spent deciding that a match is
not possible is wasted. Processing efficiency can thus be
increa’ed if the PREDICTOR can avoid making irrelevant and
unsat.sfiable predictions. Tracks within scripts provide an
efficient method of eliminating a large number of irrelevant
predictions .

To illustrate how tracks can be used to help control
predictions consider the following news article:

Iranian students marched down the streets of
Teheran to the royal residence yesterday
protesting the continued rule of the Shah.

Even though demonstrators can be injured while
demonstrating , FRUMP does not immediately predict that some
demonstrators will be injured. This even t is not part of
the normal demonstration sketchy script . It exists only
along the violent demonstration track of the script. Unless
the system has some reason to believe that it is following
the violent demonstration track of the sketchy script ,
injuries to demonstrators should not be predicted .

However, if the following sentence is next:
As the protesters neared the palace the crowd
began to hurl stones and fire bombs.

It is clear that the demonstration is following the violent
track. Once FRUMP has processed this second sentence it
predicts the other events along the violent demonstration
track: demonstrators may be arrested, police might fire at
them , and there may be injuries and deaths.

The remainder of this section will be devoted to
describing how sketchy scripts are organized into tracks and
how the PREDICTOR is able to decide that a particular track
is applicable.

The following diagram shows the structure of a
multi-track sketchy script:



F s D— A O71 ‘32 YAL E UN IV NEW HAVEN COMI DEPT OF co..uIcrn SCIENCE 
— 

F’S 5/3 1SSIIUUN4 STOflI ES IN REAL. TDC AN EXPERIMENT IN INTESRAT ED tNCteetTC(tl)
NAY 79 S P OCJONS N0001l—75—C—LI11

I UNCLASSIFIED NR—1U I

I NUN!!
______ I

U _ _flflEflE l

~~

E
I A!U!~I~iE RmflU_
I PIflODAUtU ON _ ‘



OhII I.O~~LL
L~~L

11111 ‘•‘ ~~

11111’ ~ IItI1~
.
~ ‘tIlII~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



p

79

The Structure of a Multi—Track Sketohy Script

* eventi

‘ event2

V 
>———

/ \
track 1 / \ track2 \ traok3
• event3 Udefault) \

I • event? event9
eventl$

* event8 • eventlO
event5

I II I I
event6 /

/ /
\ / / 

* eventil

figure 11.3

Each event is a conceptual dependency representation
corresponding to an important action, state, or state change
in the soript situation. In the situation G eaponding to
this sketchy script, events 1, 2, and 11 usually occur. In
addition, either events 3, k, 5, and 6 or events 7 and 8 or
events 9 and 10 will probably occur. However, if events 3,
II, 5, and 6 occur , events 7 and 8 will not occur etc.
Events 3—6 make up track 1, events 7 and 8 make up track 2,
and events 9 and 10 are track 3. Track 2 is the default
path. That is, events 7 and 8 occur more often than events
3—6 or 9 and 10.

In order to take advantage of the track structur e in
scripts , the PREDICTOR must be able to determine which track
is appropriate. It can then predict the conceptualizations
for the events along that track and avoid the predictions
along other competing tracks. To do this , the PREDICTOR
predicts the most important events along each of the various
traoks . It on of these is found in the input then the rest
of the events along that track are predicted and the events
that were predicted from other competing tracks are
‘unpredicted.’



80

In the script of figure 11.3 the events that are starred
are predicted when that sketchy script is activated. These
are the events predicted via rule 11. When this sketchy
script is activated all of the events along the default path
are predicted. In addition, the important events along the

L non—default paths are predicted. In figure 11.3 the
important events on the non—default path are events 3 and
10. One of the non—default, paths might correspond, for
example, to the event of fighting between demonstrators and
police in the demonstration sketchy script . If an important
non—default path event is found, the remaining events in
that path are predicted and the default path events are
unpredicted. In this example, if event 3 is f ound or
inferred, events 7, 8, and 10 will be unpredicted and events
11—6 will be predicted. Conversely, if a default path event
is found , all of the important predicted non-default path
events are unpredicted. Thus, if the prediction of either
event 7 or 8 is satisfied, events 3 and 10 are
‘unpredicted .”

In this way the system efficiency can be improved by
keeping the number of outstanding predictions to a minimum.
Since events in different competing tracks are mutually
exclusive , the PREDICTOR can use the track structure of
sketchy scripts to avoid predicting many irrelevant
conceptualizations.

11.5 Predicting Characteristics of Possible Role Fillers

Often the SUBSTANTIATOR will not be able to verify an
entire predicted conceptualization. Instead, the
SUBSTANTIATOR will report back to the PREDICTOR that it has
matched a part of a predicted conceptualization. If such a
partial match is found then the PREDICTOR has the
responsibility of leading the SUBSTANTIATOR through the rest
of the match.

PREDICTOR Rule 7
If the SUBSTANTIATOR returns a partial
conceptualization which matches exactly one
prediction , successively predict the remaining
roles and their fillsrs in the matched
conceptualization.

This rule says that when only one conceptualization is
partially matched , the PREDICTOR must conclude whether or
not an actual match exists. In appl ying rule 7 the
PREDICTOR makes a list of the remaining roles in the

—~ - - ________ -



81

predicted conceptualization and one by one predicts to the
SUBSTANTIATOR that each will exist in the conceptualization
being built and will be filled with something that matches
the filler in the predicted conceptualization. If the
SUBSTANTIATOR is able to verify each role and filler, the
predicted conceptualization is matched , and the PREDICTOR
adds the conceptualization built to the current context. If
not , the partial match was a fa lse alarm . The SUBSTANT IATOR
never adds something to a structure that contradicts a
prediction. The failure of a low level role prediction is
never caused by the SUBSTANTIATOR fleshing out the
conceptualization the wrong way for the prediction.

As an example of how rule 7 is applied , suppose the
following partial conceptualization has been built from the
word “took.”

<:> ATRANS

manner

FORCED

Further suppose that the only predicted conceptualization
that this might match is:

——— —— > COUNTR IA

COUNT RYA <:> ATRANS <—o— CONTROL.(BUSINESS)—— I
a a

manner type
I I < COUNTRTh

FORCED
ECONOMIC

This conceptualization is predicted in the sketchy
script $NATIONAL.IZE, the script used to process
international nationalizations. It represents the action of
one country taking economic control of a business from
another country. The partial conceptualization was offered
by the SUBSTANTIATOR as an attempt at matching this
prediction. It matches part of the prediction but the match
is far from complete. It is the PREDICTOR’s responsibility
to help the SUBSTANTIATOR flesh out the partial
conceptual ization. the PREDICTOR must determine if the
predicted oonosptualization is actually matched or not.



r —

82

One at a time , the PREDICTOR asks SUBSTANTIATE to add
the following roles and fillers to the built
conceptualization:

CD ROLE FILLED WITH
L.

ACTOR a country
OBJECT economic oontrol of a business
TO a country
FROM a country

Since the act role is already filled with ATRANS and
the MANNER role is already filled with FORCED, these are not
predicted. If the SUBSTANTIATOR is able to add each of the
desired roles, the PREDICTOR adds that prediction to -the
current context, indicating that it has been found in the
text. If, however , any predicted role could not be added by
the SUBSTANTIATOR, or if the SUBSTANTIATOR could not fill
the role with the desired role filler, the built
conceptualization does not match the prediction. In this
oase the prediction is not added to the current context but
remains so that it may be matched by later text.

The PREDICTOR ’ s responsibility can be complicated if
the partial conceptual structure built by the SUBSTANTIATOR
matches several predicted conceptualizations. In that case ,
the PREDICTOR must decide which of the partially matched
predictions is the correct one . This is done via rule 8.

PREDICTOR Rule 8
If the SUBST*NTIATOR returns a partial
conceptualization which might match several
predictions, predict a role that can
differentiate the predictions and a list of
possible fillers.

The rule says that if the SUBSTANTIATOR has built a
part ial conceptualization , and that partial
conceptualization matches several outstanding predictions,
the PREDICTOR should not predict a single role and fi ller as
dictated by rule 7. Instead , the PREDICTOR should choose a
role which has a different filler in each of the predicted
conceptualizations. This role is then predicted to the
SUBSTANTIATOR. The SUBSTANTIATOR is also given the list of
fi llers from the pred icted conceptualizations. The
SUBSTANTIA TOR then tries to fill the predicted role with an
element from the list. If the role can be added and filled ,
the only predicted conceptualization that might be matched



83

is the one whose role filler corresponds to the role filler
actually built by the SUBSTANTIATOR.

For example, the script for processing demonstrations
makes among its predictions the following: 

< L.OCATION1

DEMONSTRATORS <z> PTRANS <—o— DEMONSTRATORS —a

inst > LOCATION2

$ WALK

and

————— ( POLICE STATION

POLICE <:) PTRANS <—o— POLICE -1

————- > LOC (DEMONSTRATORS )

The first conceptualization predicts that the
demonstrators will march from one location to another. The
second says that police might arrive at the location of the
demonstrators.

The conceptual inferencer of the SUBSTANTIATOR may be
unable to verify either of these predictions in toto. If

V this is the case, then the SUBSTANTIATOR must rely on the CD
role inferenoer or text analyzer to match part of one of the
conceptualizations.

Suppose the text anal yzer has found a word that can
mean PTRANS. Then the SUBSTANTIATOR will inform the
PREDICTOR that it has built the following partial
conceptualization:

<s> PTRANS

This partial conceptualizations matches both of the
above predictions equally well. Rule 8 dictates that the
PREDICTOR must predict a role which can differentiate which
conceptualization is actually matched .

In this example, since the conceptualizations have
4 different ACTORS, that role can be used to differentiate

them. The PREDICTOR predicts that the ACTOR role will be
filled wi th either ‘demonstrators’ or “police.” It the

I 
_ _  

V ~ ‘ 2



811

SUBSTANTIATOR cannot fill the ACTOR role with either, then
neither àonceptualization can be matched. If the role can
be filled with “demonstrators” then the first might be
matched but certainly not the second . If “police” fills the
ACTOR role then the reverse is true.

Problems can arise when more than two predicted
conceptualizations are partially matched. If there are more
than two partially matched conceptualizations, there might
not be a single role which can be used to differentiate
among all of the conceptualizations at once. For example ,
suppose the PREDICTOR has predicted the following three
conceptualizations:

Prediction 1: ——— ( LOCATION1

DEMONSTRATORS <:> PTRANS <~o~ DEMONSTRATORS —

inst ———> LOCATION2

$ WALK

Prediction 2: ————< POLICE STATION

POLICE (=> PTRANS <-.o— POLICE — l 

> L.OC (DEMONSTRATION)

Prediction 3: ——( LOC (DEMONSTaATION)

POLICE <~> PTRANS (—c— DEMONSTRATORS —I

———> POLICE STATION *

The third conceptualization is the representation for
the event of police bringing demonstrators to the police
station. This might be predicted when FRUMP decides that
the demonstration is violent and there is a probability of
the demonstrators being arrested.

Recall that the conceptualization built by the
SUBSTANTIATOR so far is:

<s) PTRANS

V ~_*~ V — -V —~ —WV—- -.



85

No single role added to the conceptualization being
built will allow the PREDICTOR to distinguish which of the
three predicted conceptual izations is matched . In these
cases the PREDICTOR must differentiate among the predictions
in stages.

For these predictions, the PREDICTOR might first ask
the SUBSTANTIATOR to find the ACTOR role and predict that it
will be filled with either “police’ or “demonstrators.’ It
the SUBSTANTIATOR is able to add the ACTOR role and fill it
with ‘demonstrators’ then prediction (1) is the only viable
one. If, however , the SUBSTANTIATOR fills ACTOR with
“police” then either predictions (2) or (3) might be
matched. The PREDICTOR must then distinguish which, if
either, of these is actually matched. This is done by
predicting yet another role and list of fillers.

At this point the conceptualization built is:

POLICE <~> PTRANS

The two remaining viable predictions have different
OBJECT roles. If the OBJECT role were filled the PREDICTOR
could decide which conceptualization was actually matched.
Therefore, the PREDICTOR then asks the SUBSTANTIATOR to fill
the OBJECT role with either “police” or “demonstrators.”

If the SUBSTANTIATOR can build the OBJECT role and fill
it with ‘police’ then prediction (2) is the only viable one.
If the OBJECT role is filled with “demonstrators” then
prediction (3) is the only possible match.

Of course, once the PREDICTOR has narrowed the viable
predictions to one, rule 7 is applied to determine if the
match is complete.

As always, if the SUBSTANTIATOR is not able to build
the role at all, or if it can fill it only with something
that cannot be considered either “police’ or ‘demonstrators”
none of the predictions can match and the original
conceptualization built by the SUBSTANTIATOR

<z> PTRANS

has proved to be inapplicable. This might occur, for
example, if the article states that newsmen arrived on the
scene. Newsmen arriving cannot match any of the
predictions.

The process the SUBSTANTIATOR goes through when a list
of possible fillers is predicted for a conceptual dependency
role is discussed in detail in the next chapter .



86

Rules 7 and B are used by the PREDICTOR to lead the
SUBSTANTIATOR through a process of matching the
conceptualization being built to one or mok’e predicted
conceptualizations. This matching process is aimed at
transforming a partial match to a complete match. During
the matching process the SUBSTANTIATOR fleshes out the
conceptualization being built until the built
conceptualization either completely matches a prediction or
clearly cannot match a prediction. The fleshing out of the
conceptualization being built is guided by the PREDICTOR.
Rules 7 and 8 dictate how the PREDICTOR is to use sketchy
script constraints on role fillers of script requests.

11.6 Predicting One Explicit Role Filler

In the proper circumstances the PREDICTOR can do better
than to predict constraints on a role filler. If the role
filler to be predicted corresponds to a script variable that
has already been bound , the binding of that script variable
can be predicted in its place.

PREDICTOR Rule 9
If a role filler is predicted by rule 7, and
that role is filled by a previously bound
script variable, predict the more explicit
binding of the script variable instead of the
less specific filler constraint from the
predicted conceptualization.

This rule basically says that when the PREDICTOR is
predicting individual role fillers it should make the
tightest prediction possible.

For example , suppose FRUMP has read the beginning of a
story about Iran nationalizing American owned oil interests.
From the nationalize sketchy script the PREDICTOR makes the
prediction that there might be compensation made. Thus from
the generic sketchy script $NATIONALIZE , the PREDICTOR can
predict that there will be an ATRANS of a ney or other
compensation from one country to another or companies of
another. However , fro. the current contex t the PREDICTOR
can make the more explicit prediction that the ATRANS will
in fact be FROM Iran and TO America or American oil
companies.

These more explicit pr edictions can be of enormous help
to the text analyser , for example, in resolving anaphor io or
implied refere nces. Consider the following story: 

--- V~~~ --. . -V~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V-~~~~~~~~~~~~~ 

V 

_



87

Iran announced the nationalization of the
holdings of Shell and Mobil oil compan ies in
that country . For the property they were paid
$2 million in cash and $12 million in
government bonds.

The problem here is to figure out who ‘they’ refers to
in the second sentence. The word “paid” means that money or
other valuables were given by one participant to another .
Understanding this passage entails identifying who paid and
who was paid. One way to resolve these roles is to have
some memory/inference process notice that the conceptual
event of being paid for a possession implies that the
receiver of the money gave up the possession. Memory of
previously understood inputs could then be searched for an
instance of the candidates (Iran or Shell and Mobil) giving
up “property .” The nationalization event would be found .
From this a system could conclude that since Shell and Mobil
were the ones who gave up a possession in the past , they are
probably the ones receiving the payment.

FRUMP ’s approach is muc h simpler. the PREDI CTOR
predicts that there might be a compensation event in any
nationalization situation . The predicted event contains the
direction of the ATRANS: the recipient is the participant
whose property was nationalized ; the donor is the
participant who performed the nationalization. These
participants are script variables in the nationalization
sketchy script and were bound during processing of the first
sentence. The compensation event predicted by the PREDICTOR
is an ATRANS from Iran to Shell and Mobil. Thus when a
compensation input event is found to match the prediction
from the PREDICTOR , the preferred participants of the event
are already included. Since the text does not contradict
these predictions, they are used in the final
representation.

There are times when the PREDICTOR can anticipate
almost exactly what will fill a role. In these cases if the
prediction is explicit enough and strong enough the role
filler can simply be assumed .

PREDI CTOR Rule 10
If an explicit role filler is to be predicted
by rule 9, and there is previous information

V indicating that the prediction is correct ,
assume the prediction.

A 
_ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



88

This rule provides a method by which the PREDICTOR need
not bother the SUBSTANTIATOR with a request for a role
filler. It says that if the prediction is certain enough,
it can simply be assumed.

For example , consider the following story :

1) There was renewed fighting today between
V 

Israeli and Syrian forces. 2) Syria fired on
Israeli positions in the Golan Heights. 3)
Israel retaliated with strikes against Syrian
fuel dumps.

After reading sentences 1 & 2 a top down processor can
make some very certain and precise predictions while
interpreting the third sentence. For reasons explained in
the next chapter the first word that is examined by the text
analyzer section of SUBSTANTIATE is “retaliated .”
“Retaliated” builds a oonceptualization that means an
unspecified negative act occurred. However, the dictionary
entry also furnishes three other pieces of data.

a) It predicts that the ACTOR of the negative act
will be its syntactic subject and was the
recipient of a previous negative act.

b) The negative act itself might be found as an
instrumental — probably after the preposition
“by ” or “with.”

c) The recipient of the negative act might be
found as the object of the preposition
“against,” and will be the actor of the
prev ious negative act referred to in (a) .

The PREDICTOR is immediately given partial
conceptualizations as the text analyzer builds them. In V
this case, it is given the information in the dictionary
definition of “retaliate .” The system has already processed
sentences 1 and 2. Therefore it already knows about the
negative act of Syria against Israel . From this information
and the information fro. the ‘retaliate” dictionary
definition , the PREDICTOR can use rule 9 to predict that
Israel will be the ACTOR of the negative act .



89

This prediction is very certain. The dictionary
definition stated absolutely that the ACTOR would be the
recipient of a previous negative act, and the PREDICTOR
knows of only ne previous negative act: Syria firing on
Israel.

The prediction is also quite preci~.e. As discussed in
the previous section the PREDICTO R can predict the
constraint that whatever fills Vthe ACTOR role must be a
country. However, in this case the PREDICTOR has predicted
the actual country itself.

In a similar manner an explicit country can al so be
predicted for the recipient of the negative act. The system
knows that the recipient is the ACTOR of the previous
negative act. In this case it is Syria. Thus the PREDICTOR
can with some certainty predict that the recipient will be
Syria.

Rule 10 states that in oases such as these, the role
filling mechanisms need not be called at all. The PREDICTOR
all by itself can fill the ACTOR and recipient roles
correctly. The benefit is that the rest of the sentence
need not be processed at all. If the PREDICTOR is cintent
with interpreting this input as a negative act by israel
against Syria, the system can go on to process the next
phrase.

It is possible, however, that the PREDICTOR’s
assumptions will not be explicit enough to satisfy the
script requirements. The script, for example, might dictate
that it is important to find not only exactly what the
negative act is, but also exactly what military units of
Israel are the aggressors and what possession of Syria is

V the target. In this case, the text analyzer will have to
interpret parts of the rest of the sentence, but it can do
so more easily in the context of these precise predictions.

Suppose, for example, that sentence 3 read

3a) Israeli planes retaliated with strikes against
Syrian fuel dumps.

3b) Israel retaliated by launching aircraft
strikes against Syrian fuel dumps .

In these sentences specific military units are given as the
aggressors. If the script dictates that it is important to
know that the military units are in fact planes as opposed
to tanks or missiles, the PREDICTOR must make the
appropriate pred iction to the SUBSTANTIATOR so that the text



90

analyzer can be called . The text analyzer is told that it
is trying to find the aggressor and that it will be some
kind of military unit~. of Israel. From its knowledge of
English syntax and the data supplied by the word
‘retaliate,” the text analyzer has only a few places to
look. First, it might look at. the subject of “retaliated”
as in 3a. If it is not there, it is possible that the
military units might be specified in the more explicit
specification of the negative act as in 3b. In either case,
the role filling mechanisms treat the request according to
rules 7 and 9.

11.7 Predicting Several Explicit Role Fillers

Often information of the sort supplied by “retaliate”
in the previous example will not be present. In these cases
it is often impossible for the PREDICTOR to determine alone
which script variable corresponds to the desired role
filler. Suppose that in the prev ious example sentence 3 is
replaced by

3c) Israel attacked Syrian fuel dumps.

It is still important for the PREDICTOR to furnish the
best predictions possible for the SUBSTANTIATOR to use in
interpreting the input. In processing this sentence, the
system again will initially try to find a word that can
build a structure. The first such word in 3c is
“attacked.” The conceptualization built by “attacked”
partially matches a predicted conceptualization fro~n the
military fighting script. The script conceptualization is
looking for military units of countries doing negative
things to each other.

Before processing sentence 3c, the system already has
selected the script for military fighting and bound script
variables for the fighting countries to Israel and Syria.
That is, the PREDICTOR knows from the first two sentences
that the story is about military fighting and that the
countries involved are Israel and Syria.

Therefore the system can predict explicit countries for
the aggressor and recipient. However , the predictions
cannot be certain. The system can know only that the
aggressor is either Israel or Syria or an ally of either;
the same is true for the recipient. To find which is which,
the role filling mechanisms must be called .



91

PREDICTOR Rule 11
If a single explicit role filler cannot be
decided upon, predict that the role will be
filled from the list of possible explicit role
fillers.

This type of prediction is still very valuable to the
SUBSTANTIATOR. Instead of having to construct the role
filler for itself, it only has to find enough information in
the text to decide which among the predictions is being
referred to.

Suppose in processing sentence 3o the PREDICTOR wants
to find out who the recipient of the hostile act is. It
asks the SUBSTANTIATOR to fill the role corresponding to the
recipient with Israel, Syria, or an ally. The PREDICTOR can
make the prediction that it will be one of these from the
current context. It knows it is reading a story about
fighting involving Israel and Syria. Therefore, other
hostile acts will probably involve these countries.

The SUBSTANTIATOR determines that the recipient of the
negative act is Syria and the possessions being harmed are
fuel dumps. Now the PREDICTOR can predict that the
aggressor must be Israel or one of its allies.

11.8 Conclusion

Using these eleven heuristic rules and the script
activating procedures, the PREDICTOR is able to provide a
detailed context in which the SUBSTANTIATOR can interpret
the text. The predictions of the PREDICTOR can be made at
many different levels. If a higher level prediction of an
issue skeleton, sketchy script, or conceptualization cannot
be substantiated by the text analysis and inference
procedures in the SUBSTANTIATOR , they can be refined by the
PREDICTOR to lower levels. At the lowest level, small
pieces of conceptualizations are predicted. These low level
predictions eliminate the need for a powerful parser.
Instead of having to build an entire conceptualization at a
time, the SUBSTANTIATOR need only verify role fillers.
Furthermore , the refinement process insures that the
SUBSTANTIATOR will always have the most explicit predictions
avai lable. In the next chapter the methods the
SUBSTANTIATOP. uses to satisfy the PREDICTOR’s predicted
constraints will be outlined.

I I 
__________ ____________ 

_____________________________________________



CHA PTER 5

SUBSTANTIA TING CONSTR AIN TS

5.1 Introduction

It is SUBSTANTIATOR ’ s job to verify and give substance
to predictions of the PREDICTOR. There are two levels of
predictions. The PREDICTOR can ask that an existing

V conceptualization be augmented, or it can predict an entire
conceptualization.

When the PREDICTOR asks that a conceptualization be
augmented, the SUBSTANTIATOR tries to flesh out the
conceptualization in the desired way. The SUBSTANTIATOR can
augment a conceptualization in either of two ways: it can
examine the input text or it can infer conceptual roles.
The prediction of an entire conceptualization can only be
satisfied by an inference. The text analyzer must use a
stepwise process to satisfy a conceptualization.

The SUBSTANTIATOR has three sub—modules that build
conceptual structures: a text analyzer , a role inferencer ,
and a conceptualization inferencer. Two of the sub—mod ules,
the text analyzer and the role inferencer, are used to
augment exist ing conceptualizations. The third , the
conceptualization inferencer , is used to build an entire
conceptualization. A fourth sub—module interfaces these to
the PREDICTOR’s requests . This is the SUBSTANTIATOR
selection routine. It decides which module to use for which
requests. In this chapter I will first describe how each of

V the structure building modules works and then how the
selection routine chooses the correct module to substantiate V

a request .

- 

:

92 

_ _ _  
_ _ _ _ _ _ _ _ _



93

5.2 The Conceptualization Inferenoer

The conceptualization inferencer makes script related
V inferences about events implied by but missing from the

text. For example, consider the following input sentence:
(1) The United States opened an embassy inL Swaziland today.

This sentence implies much more than it literally
states. An embassy cannot be opened in a country unless the
two countries involved have previously recognized each other
diplomatically. Furthermore, it implies that a diplomatic
link between the two countries currently exists.

These are inferences from the input sentence. Even
though we can be very confident of these inferences if we
believe the input sentence, they arc not logically entailed
by it. V

Other situations will have other such inferences. For
example, the sentence

(2 ) The Police charged John Smith with armed
robbery.

implies that the police have already arrested John Smith.
Thus , if FRUMP is to understand stories about real world
situations , it must also be able to infer missing events
based on conventions of how the world works.

Each event in a sketchy script has pointers to the
events that can be inferred when that event is found. When
a conceptual structure is built from the text which matches
a sketchy script prediction , the conceptual inferencer
checks the script for any other script events that might be
assumed . If so , it satisfies those script events and adds
them to the current context.

Typically, these inferred events are connected by
causation and entailment relations. FRUMP’s world knowledge
about a situation, its sketohy script for that situation,
includes causation and entailment relations L other events
that make up the sketchy script . S~PSTANTIATOR ’s
conceptualization inferencer uses these entailment. relations
to infer other events when an event is found in the text.

For example , with respect to sentence (1), there are
two relevant events In FRUMP ’s sketchy script for diplomatic
recognition. There is an event that represents establishing
an embassy , and another event that represents two countries
being in a state of diplomatic relation. The first event
has an inference pointer to the second . Thus if the first
event (establishing an embassy) is satisfied , the second

_ _ _ _- -- -~~ - - V - - ~~ — V ~~~~~~~~~~ V



91

event (having diplomatic ties) will be inferred.

In general these inference pointers are
uni—directional. Opening an embassy, for example, implies
formal recognition, but recognition does not imply opening
an embassy. A country may possibly have just announced
recognition of another and not yet had time to open an
embassy. Another possibility is that ~ne or both of thecountries are too poor to maintain embassies in the other .
There are many countries that the U.S. recognizes that do
not have embassies here simply because it would be too much
of a financial burden. Sentence (2) also illustrates this
point. Even though in our judicial system a suspect is not
charged until he is arrested, he might well be arrested
without being charged.

This type of inference was a mainstay of the SAM system
( Cullingford ( 1978]) . SAM worked by finding a path through
the possible tracks of its scripts. It inferred events
along the path necessary to connect two known inputs. In
this way SAM demonstrated that scripts were a useful
construct in constraining the inference process. These
script inferences are less important for FRUMP because FRUMP
is not attempt to demonstrate the utility of scripts but
rather an attempt to integrate parsing w~tP’ the rest of the
understanding process. Script inferences have little to do
with the parsing process directly. The text analyzer and
the role inferencer are of more importance to the FRUMP
system . These will be discussed next .

5.3 The Text Analyzer

The text analyzer is the only module that looks at
actual English input. It looks at and interprets only one
word at a time with three exceptions which will be discussed
later.

The text analyzer does its processing only in response
to a prediction from the PREDICTOR. Even when FRUMP is
selecting an initial sketchy script for an article, the
PREDICTOR must help the text analyzer with prediotions by
means of the Sketchy Script Initiator Discrimination Trees
described in chapter 3. As was mentioned in the previous
chapter, the PREDICTOR usually anticipates constraints on
what might happen next rather than making explicit

V 

predictions about what must happen next • In general
PREDICTOR’s constraints become more specific as FRUMP builds
up more context for the article being processed . Specific
predictions are more useful than non—specific ones because
they provide more d irect ion and guidance to SUBSTANTIATOR.



Only predictions arising from rules 7,8,9, and 11 of
the PREDICTOR are candidates for being satisfied by the text
analyser.

The following list contains examples of the kinds ofL predictions that the selection mechanism might direct to theV text analyzer . Each prediction contains a conceptual role
and one or more fillers for that role. A prediction mayV specify a single filler or a list of possible fillers, any
one of which will be acceptable. Each of the predicted
fillers may be either general (a type of object) or specific
(the token of a certain object).

EXAMPLES OF ROLE PREDICTIONS

EXAMPLE 1: ROLE : ACTOR , PREDICTED FILLER: (COuNTRY)

The first prediction asks that the ACTOR role
be filled with some country . Any country will
do. This is a single general prediction.
This prediction might be made while
understanding an article about foreign aid.
One of the important facts in such stories is
the identity of the country giving the aid.
In conceptual dependency this would be the
ACTOR of an ATRANS. The constraint that it
must be a country comes from the international
aid script; this script is only concerned
with interactions between countries.

EXAMPLE 2: ROLE: ACTOR, PREDICTED FILLER: (CANADA)

The second is similar to the first but it
expects the filler to be a specific country
(Canada). Prediotion (2) is a single specific
prediction. This prediction would by made in
the same situations as Prediction (1) when the
PREDICTOR already has a hypothesis about the
country’s identity . For example , an article
might begin with “The Canadian legislature
passed a new foreign aid bill.” From this the
system can expect that the ACTOR of any ATRANS
of aid will be Canada.

V EXAMPLE 3: ROLE : OBJECT, PREDICTED FILLERS: (VIP
TROOPS
WEAPON )

Ii _ _  
_ _  

- _ _ _



96

Prediction 3 expects the OBJECT role to be
filled with something that can either be
considered as an important person, military
troops, or a kind of weapon. It is a multiple
prediction. This prediction could arise in an
article about fighting between two countries.
Suppose a PTRANS action (an action changing
the location of something) has been
constructed from the text . The PREDICTOR is
interested in three types of PTRANS actions in
fight ing : An important person going somewhere
for peace talks , troops invading or
withdrawing, and the PTRANS of weapons as in
bombings and shellings. The PREDICTOR would
make this prediction to differentiate which of
these important events the PTRANS found might
be. Of course, this test alone is not
suffic lent to decide which of the important
events is matched . Further predictions and
substantiations would have to be made to
insure that the conceptualization found
completely matches an expected event. This
prediction starts the matching process in the
right direction.

EXAM PLE 11: ROLE : TO , PREDICTED FILLERS: (SYRIA
EGYPT )

The fourth prediction wants the TO role to be
filled with either of two specific countries:
Syria or Egypt . This prediction might occur
in a story about fighting between Israel and
the Arab countries of Syria and Egypt . If an
instance of Israel launching long range
missiles has been constructed , the PREDICTOR
is able to utilize the context from what has
been understood thus far to predict that the
target (the TO role of the PTRANS of missiles)
will be either Syria or Egypt .

Each of these predictions asks that a particular role
be added to the current conceptualization being built.
Furthermore , each requires that the filler of the role have
a certain semantic property .

Upon being given a prediction like one of the above ,
the text analyzer exam ines the input text in an attem pt to
add the desired conceptual role to the conceptualization
being built and fill it with the desired conceptual object.
That ii, it looks for some word or phrase from the input
that can be interpreted as filling the desired role with one



97

of the desired role fillers . The tex t analyzer first tries
to decide where in the sentence to lock for the desired
filler. That is, it tries to find the location in the
surface sentence that corresponds to the desired conceptual
role. Sentence locations are the syntactic components of a
sentence like the subject of a particular verb in the
sentence , the object of a particular preposition, etc. Once
the text analyzer decides on a particular sentence location,
it looks in the neighborhood of that syntactic location for
something that can be interpreted as one of the desired
items. If a word is found that can be interpreted in that
way, it is used. For example , suppose FRUMP is reading a
story it knows to be about fighting and sees the input
“Israel sent the third army to Damascus.” After processing
“Israel sent,” suppose the conceptual representation built
is

(ACTOR ISRAEL <=> PTRANS)

At this point the PREDICTOR will ask that the OBJECT
role be tilled with either VIP, TROOPS, or WEAPON
(Prediction 3 above). The text analyzer will then decide
from the verb “sent” that the OBJECT filler can probably be
found in the location of the syntactic object of the verb .
The text analyzer will then look where it expects to find
the syntactic object of the verb and try to interpret what
it finds there as an instance of a VIP, TROOPS, or a WEAPON.
“The third army” is readily interpreted as a kind of TROOPS
so the prediction is satisfied. The rest of this section
discusses how the FRUMP text analyzer goes about its job.

5.3.1 FRUMP’s Dictionary

Each word in FRUMP’s dictionary can have any number of
word senses, although typically a word will not have more
than two or three . There are two types of word senses:
1)Structure Adding Word Senses, and 2) Role Filling Word
Senses. These will be described next.

Part of the definition of Structure Adding Word Senses
is that they can build a conceptual dependency structure.
For example, the word “go” has a sense which means “change
location.” This sense of “go” builds the structure

((a) PTRANS)

A Structure Adding Word Sense can supply filled conceptual
dependenc y roles. In this case the (a) role is filled with
PTRANS .



98

Words that contribut e to the underlying action , state ,
or state change have Structure Adding Word Senses. For
example , “shout ,” “hi t ,” and “throw” al l have Structure
Adding Word Senses. Their word senses build respectively an
MTRANS structure, a PROPEL structure , and a PTRANS
structure. Often verbs will have Structure Adding Word
Senses. However some non—verb s such as “eruption” and
“storm” have Structure Adding Word Senses as well.

Structure Adding Word Senses can also indicate where
other role fillers will be found . Again consider the word
“go. ” The Structure Adding Word Sense of “go” builds the V

(a) role which it fills with PTRANS. It. also contains the
information that the conceptual ACTOR and the conceptual
OBJEC T are the same. That is the thing causing the change
in location (the ACTOR ) and the thing undergoing the change
in location ( the OBJECT) are the same. Furthermore, the
filler of these roles must be animate. The sentence “The
table went.” is not meaningful with this verb sense of “go.”
but “John went .” is. Finally, a Structure Adding Word Sense
can indicate where the new role fillers might be found in
relation to the current word.

In the case of “go” the filler of the ACTOR and OBJECT
roles can be found in the location of the syntactic subject
of the verb. Multiple conceptual roles can be filled from
the same syntactic location in the sentence, as in this case
where both the ACTOR and OBJECT are filled with the subject.
Furthermore , a word sense can add several new roles from
different locations in the sentence. If the word sense had
information on where , say, the TO role could be found, that
could be incorporated just as the ACTOR and OBJECT roles
were.

Some Structure Adding Word Senses do not both build
structures and indicate where other role fillers might be
found . For example , a word sense of “earthquake” builds the
following structure:

((a> PTRANS

ACTOR GEOLOGICAL—FORCE

OBJECT GROUN D

MA NNER CYCLIC)

This word sense does not have any information about where
other roles might be found in the sentence. Verbs can
indicate where certain conceptual role fillers will
typically be found . For example , the word sense of “go”
discussed above contains the information that the filler for

/
- ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ V



99

the ACTOR and OBJECT roles will be found as the verb’ s
syntactic subject. Nouns, like earthquake, do not make such
syntactic predictions. On the other hand the word “last,”
in its verb sense as in “the storm lasted three days,” does
not itself build a structure but can indicate where a new
role filler may be found; the conceptual role DURATI ON can
be filled with what ii found in the syntactic position of
the object of the verb. 

-

The following are three examples of Structur e Adding
Word Senses.

GO1: 
V

Part Of Speech: VERB

Conceptualization Built: ((a> PTRANS)

New Role Locations: ((ACTOR) (OBJECT))
Semantic Constraint: ANIMATE
Syntactic Location: SUBJECT

GOl is one of the word senses of the English
verb “go.” It builds the conceptual
structure ((a> PTRANS). The New Role
Locations of this word sense indicate that the
conceptual roles ACTOR ~nd OBJECT may be found
as the SUBJECT of this verb . There is also a
constraint that the SUBJECT must be animate.

QUAKE 1 :
Part Of Speech: NOUN

Conceptualization Built: ( ACTOR GEOLOGIC—FORCE
<a> PTRANS
OBJECT GROUND
MA NNER CYCLIC)

The second, QUAKE1, is the word sense for the 
V

lexicai item “EARTHQUAKE.” It builds a
structure but cannot add new roles.

LAST2:
Part Of Speech: VERB 

V

V 

- 
New Role Locations: (DURATION)

Semantic Constraint: TIME—LENGTH
Syntactic Location: VERB—OBJECT)

- _ _  _



100

The third word sense is LAST2 , which is the
verb sense of the word “LAST .” It contains
information where the new role ( DURATION )
might be found but builds nothing itself.

Thus each Structure Adding Word Sense In FRUMP’s
dictionar y must have a part of speech which indicates how
this word sense must be used in the sentence. In addition ,
it can have a conceptual structure which is its meaning . It
can also have information about the location in the sentence
where other role fillers might be found .

The second type of word sense , the Role Filling Word
Sense, resolves directly to a conceptual token. A
conceptual token is denoted by a word of all capitals with
asterisks on either side. From now on we will adhere to the
asterisk convention for naming memory tokens. The primitive
acts are permanent memory tokens. Thus from now on PTRANS
will be ‘PTRANS’, ATRANS will be ‘ATRAN S’, etc. A
conceptual token in FRUMP’s memory is the location of V

information about an object. For example, the only word
sense of the lexical item “France” resolves to ‘FRANCE’.
‘FRANCE’ is the conceptual token where all of FRUMP’s
information about France is stored (e.g. that it is a
country). All Role Filling Word Senses also contain their
part of speech. As will be seen later, part of speech
properties are used by the text analyzer to find syntactic
locations in a sentence. An example of a Role Filling Word
Sense is FRANCE1:

FRANCE 1:.
Part Of Speech: NOUN

Conceptual Entry: ‘FRANCE’

Role Filling Word Senses are much simpler than Structure
Adding Word Senses. Role Filling Senses need only indicate
the part of speech and the conceptual item to which the word
sense resolves . A Struc ture Adding Sense, on the other
hand , must indicate the conceptual structure that is to be
built (which can be quite complicated) and the locations of
a number of new roles that the word sense can add.

It was mentioned before that words can have any n~~ber
of word senses. Associated with each lexical item in

V FRUMP ’s dictionary is a list of possible word senses for
this word . The word senses in this list can be either
Structure Adding or Role Filling. For example , the lexical
item “BOMB” has two word senses as far as FRUMP is
concerned. The first, BOMB1, is a Role Filling Sense. It

- 

resolves to the conceptual token ‘BOMB’ which is known 

~~~~~


101

a type of weapon. In this sense “BOMB” is a noun. The
second sense , BOMB2 , is a verb. It builds a
conceptualization that means BOMB1s are being dropped .

Unlike other parsers developed at Yale (Riesbeck &
Schank [1976] and Gershman [1979]) FRUMP does not have any
explicit “script—specific” extensions to its vocabulary.
These other parsers reorganized the dictionary depending on
what script was active. This enabled their parsers, for
example , to try the correct word sense of “order” first when
the restaurant script was active. Instead of preferring
word senses on the basis of which scripts are active, FRUMP
prefers one word sense over another on the basis of its
top—down predictions. The “ask waitress for” sense of
“order” is not selected first by FRUM P in restaurant stories
because the restaurant script is active but because that
word sense fits one of the predicted events — namely
MTRANSing one’s desire for food to the waitress.

In a way this is a generalization of the dictionary
reorganization performed by the other parsers. Dictionary
reorganization is helpful because the events corresponding
to certain word senses are more likely in one particular
script than another. That is, the events corresponding to
these word senses are implicitly predicted by the parser
when the script is activated . These implicit predictions
are made at the time the script is activated . In FRUMP,
nowever , predictions are made and refined continually. Thus
a word sense is disambiguated on the basis of the context at
the time the word is seen.

5.3.2 FRUMP’s Permanent Token Memory

As mentioned previously, the text analyzer only
examines words in the context of one or more predictions of
what will be found. However, these predictions are often
very general. As explained in the previous chapter the
PREDICTOR will often only be able to predict characteristics
of the desired role filler. The text analyzer must be able
to know when it has found something that satisfies the
prediction. For example , the PREDICTOR may want a role
filled with ‘VEHICLE’. The conceptual token for any kind of
vehicle will do. If the text analyzer finds the word
“Chevy,” it must know that it has succeeded. Thus it must
know that a Chevy is a type of vehicle. The text analyzer
must include a general mechanism for answering the question
“can the lexical item X be interpreted as a conceptual token
I?”. This capability is provided by the organization of
FRUMP’ s permanent token memory.

V - - - -

102

FRUMP ’s permanent conceptual tokens (like ‘CHEVY ’,
‘BOMB’, and ‘VEHICLE’) are organized hierarchically. For
the most part the tokens are arranged in an ISA hierarchy ,
which has been well described in the literature (Quillian
(1968) , Raphael (1968) , Scragg (1976], and Simmons (1973]) .
Thus ‘CHEVY’ ISA ‘AUTOMOBILE’ which ISA ‘VEHICLE’ which in
turn ISA ‘PHYSOBJ’.

When the text analyzer is asked to find a ‘VEHICLE’ , it
looks at the words in the sentence location where it expects
to find the vehicle for a word with a Role Filling Word
Sense that resolves to something that can be considered a
‘VEHICLE ’ . Eac h word sense mus t be checked to see if it can
inherit the ‘VEHICLE ’ token via its ISA link. However , this
is a very easy test and very little computation is expended
checking Irrelevant words.

If such a word sense is found , its conceptual token is
used to satisfy the prediction. For example , if the text
analyzer were asked to fill the conceptual role OBJECT with
‘VEHICLE’, and the word found at the expected sentence
location were “Ch evy , ” the text analyzer would add the
following struct ure to the current conceptualization being
built~:

OBJECT ‘CHEVY’

5.3.3 FRUMP’ s Parsing Rules

The text analyzer contains four rules that enable it to
interpret the input . Recall that when the SUBSTANTIATOR
selection mechanism asks the text analyzer to fill a role ,
the text analyzer is given the name of the role to be filled
along with constraints on what might fill it. Each rul e
states a strategy for adding a new role to the current
conceptualization. The four rules are also rated as to how
certain it is that the answer each produces, if it produces
one at all , will oe correct . There is also a cost estimate
of the computing resources needed to apply the rule.

Rule 1:
Find a Structure Adding Word Sense that has
been previously processed and can predict the
syntactic location of the desired role.
Certainty a 10
C o s t a l -

-I

103

This rule states that one way to add a role is by
having an already processed word sense that can suggest
where the desired role might be found . For example , suppose
FRUMP is processing the sentence

John went to Boston.

and has already chosen the word sense 001 for the word
“went.” The conceptualization built thus far will be the
conceptualization that 001 builds:

<:> ‘PTRANS’

Now suppose that the PREDICTOR asks that the ACTOR role be
filled with something that can be considered a kind of
‘HUMAN ’ , and the selection mechanism decides that the text
analyzer should try to add the role. Recall that the word
sense of 001 looks like this:

001: V

Part Of Speech: VERB

Conceptualization Built: (<=> ‘PTRANS’)

New Role Locations: ((ACTOR) (OBJECT))
Semantic Constraint : ‘ANIMATE ’
Syntactic Location: SUBJECT

When the request for a ‘HUMAN ’ in the ACTOR role is given to
the text analyzer, it looks through the word senses that
have already been processed in building the current

V

conceptualization. If one of them has an ACTOR as a New
Role Location, then this rule is applicable. In our
example , 001 can say where the ACTOR role will be found :
001 thinks it will be in the syntactic subject of the verb.
However , to be valid for this reading of the word “go ,” the
subject must be a type of ‘AN IMA TE’.

The text analyzer first checks that the predicted
filler is consistent with what the word sense needs. Here ,
the predicted filler is ‘HUMAN ’ and 001 needs ‘A NIMATE’.
Since ‘HU MAN ’ inherits the ‘AN IMATE ’ token , everything is
fine . If the predicted filler did not inherit the semantic
constraint fr om the word sense , then this word sense would
not be able to fill the prediction .

Next , the text analyzer goes to where it expects to
find the subject of “go” and finds “John .” “John ” is in
FRUMP ’s dictionary as a masculine first name . As such , it
is known to refer to a ‘HUMAN’ male whose first name is
“John .” Thus , a filler has been found that satisfies the
semantic prediction. The text analyzer then creates a new
token for this particular John , and adds the new token to

-- ~V~~V ~~~ V

V

H
1O~4

the current conceptualization as the filler of the both the
ACTOR and OBJECT roles. The current conceptualization has

V been au~~ented to this:

(ACTOR JOHN1
L

<:> ‘PTRANS’

OBJECT JORN1)

This rule is marked with a certainty of 10 on a scale
from 1 to 10. This scale does not represent the expected
certainty of success in applying the rule. Rather, it is a
conditional certainty. Given that the rule produces an
acceptable filler, the certainty indicates how likely it is
to be the correct filler for the role. For this rule the
certainty is 10 , the highest, because this rule can succeed
only if two constraints are met. First, the text analyzer
must predict the correct location in the sentence of the
desired role. Second , the text analyzer must find something
in that location that satisfies both the requirements of the
word sense that predicted the location and the semantic
constraints on the filler from PREDICTOR’s prediction. In
general, parsing rules tend to be very certain compared to
inference rules. Later when the role inferencer is
discussed it will be seen that roles can often be filled
with less certainty .

The certainty of a role filler is attached to it in the
conceptualization. This way if a more certain filler is
later found for that role the previous one can be replaced.

The cost of applying a rule is a normal ized estimation
of the computation required to apply that rules. The cost is
an integer greater or equal to 1. A higher number indicates
more computing resources will probably be spent in applying
the rule. The cost is used by the selection mechanism which
will be discussed later. The cost of this rule is 1 because
it is not very expensive to apply compared to the other
rules.

Rule 2:
Find a previously unprocessed word within the
current phrase that has a word sense that can
build the desired role and filler.
Certainty = 10
Cost = 2

105

This rule gives another way to add a desired role to
the current conceptualization. It says that the text ~analyzer can add a role and filler to a conceptualization by ‘

\
finding a Structure Adding Word Sense that includes the
desired role and filler as part of the conceptualization f~~~~~~~~ V~~~~~~~~~~

builds.

For example , consider the sentence V

Israel released a statem,nt condetnning Egypt’ s
peace plan .

This input~m~~ht be seen in an article about a news
conference p~t — a head of state. The sketchy script for these
news o~mf~rences inc ludes among its important events
rep~~~intations for the following two events: one country
.saying something good about another country , and one country

~~~~~~~ saying something bad about another country . The
representations for these events are:

(ACTOR ‘COUNTRY’

<=> ‘MTRANS’

MOBJECT ‘CONCEPTS’

TYPE ‘APPR OVING’

TOPIC ‘CD’ -
~~~~~~

FROM ‘COUNTRY’)

and

(ACTOR ‘COUNTRY’

‘MTRANS’

MOBJECT ‘CONCEPTS’

TYPE ‘CRITICAL’

TOPIC ‘CD’

FROM ‘COUNTRY ’)

Something must be said about the MOBJECT TYPE roles here .
In the course of its processing, it is necessary for FRUMP
to characterize the conceptualization used to fill the
MOBJECT TOPIC role. These characterizations are often
provided by an inference rule. That is , FRUMP must infer

______ ____

106

that a particular event is unfriendly to a certain country.
However , the characterizations can on occasion also be
provided directly from the text. Since these
characterizations might be examined more than once, it is
inefficient to have to re—infe r them whenever they are
needed . So instead , FRUMP incorporates them into the
representation.

After “released a statement” has been processed , the
PREDICTOR will ask that the MOBJECT TYPE role be filled with
either ‘CRITICAL’ or ‘APP ROVING’ so that it can select which
of the two above representations is to be satisfied.

After “released a statement” has been processed, the
current conceptualization is:

(<:> ‘MTRANS’

MOBJECT ‘CONCEPTS’)

Now the text analyzer is asked to fill the MOBJECT TYPE
role with either ‘CRITICAL’ or ‘APPROVING’. None of the
processed words can successfully tell the text analyzer
where the MOBJECT TYPE role will be found in the sentence;
rule 1 cannot be used so rule 2 is tried . Rule 2 tells the
text analyzer that some other word might be found which
includes the desired role in the conceptualization it
builds.

In fact, such a word is present in the input. One of
the word senses of “condemning” is that it is the gerund
form of the verb “condemn.” “Condemn” has CONDEMN1 as a
Structure Adding Word Sense:

CONDEMN 1:
Part Of Speech: VERB

Structure Built: ((a> ‘MTRANS’
MOBJECT ‘CONCEPTS’

TYPE ‘CRITICAL’)

New Role Locations: (MOBJECT TOPIC)

Semantic Constraint ‘ACTION ’

Syntactic Location VERB OBJECT

Thus ~ONDEMN1 can fil l the MOBJECT TYPE role with
‘CRITICAL’ .

-
- ~~~~~ V • ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

7

107

To apply rule 2 the text analyzer first looks through
the sentence for an input word that can be interpreted in a
way to add the desired role. The word “condemning” is able
to add the MOBJECT TYPE by interpreting it as CONDEMN1.
However , the role cannot be added yet. The reason is that
there could be confl icts in interpreting “condemning ” in
this way . For example, if CONDEMN1 built ‘PTRANS’ in the
<=> role instead of ‘MTRANS ’ it would be unacceptable as a
reading for “condemning” because it would conflict with the
current conceptualization built thus far. Thus the text
analyzer must ohe~k t.hat the structure built by the new word
sense does not conflict with the structure that already
exists. There must also be a low level syntactic check that
the word falls within the phrase that built the original
conceptualization.

After the conceptualization built by the new word sense
has been found not to conflict with the current
conceptualization , and the syntactic check has been passed ,
the new role filler can be added to the current
conceptualization. At this time, any other roles present in
the word sense conceptualization are also added to the
current conceptualization .

Since CONDEMN1 passes both the conceptual match and the
syntactic check, the conceptualization it builds is added to
the current conceptualization. The current
conceptualization now looks like this:

(<=> ‘MTRANS’

MOBJECT ‘CONCEPTS’

TYPE ‘CRITICAL’)

Rule 2 has a certainty of 10 because rather stringent
conceptual and semantic tests must be passed before the rule
succeeds. Not only must a word have a read ing which can
build the desired role and filler , but the rest of the
structure built must be consonant with the existing
conceptual structure . Furthermore, a syntactic test must
justify that the word found can legitimately be part of the
phrase that built the existing conceptual structure .

The cost of applying this rul e is given a rating of 2.
This is an ad hoc and somewhat arbitrary indication of how
expensive the rule is compared to other rules. It is more
costly than rule 1 because it entails searching through the
text for the a desired word • In rule 1 there was a
prediction of where the desired word would be found in the
sentence. No suoh prediction is made in rule 2.

V V V ~~~~~~~~~~~~~~~~~~~~~~~~~

108

Ru le 3:
Find a previously unprocessed word which has a
word sense that can add the desired role as
one of its new roles.
Certainty = 10

- C o s t = 3

This rule provides a method to add a role filler event
if the previous two rules fail. If no previously processed
word can predict where the filler is, and no unprocessed
word can build the filler, this rule says that there might
be an unprocessed word that can predict the location of the
filler.

For example, consider the following sentence:

Vance met with Gromyko to discuss SALT.

This sentence describes an event in the sketchy script
$VIP—MEET. The representation for that event is:

(ACTOR ‘GROUP’
MEMBER ‘VIP’

<:> •MTRANS’

MOBJECT ‘CONCEPTS’
TOPIC ‘CD’ involving

countries of ‘VIP’

FROt.1’ ‘GROUP’
MEMBER ‘VIP’

TO ‘GROUP’
MEMBER ‘VIP’)

This conceptual ization says to expect a mental transfer of
concepts among a group of VIPs concerning some conceptual
structure . Part of this predicted event will be built from
the phrase “Vance met with Gromyko”. After processing
“Vance met with Gromyko,” the current conceptualization will
look like this:

(AC TOR ‘GROUP’
MEMBER (‘VANCE ’ ‘GROMYKO’)

<a> ‘MTRANS’

MOBJECT ‘CONCEPTS’

FROM ‘GROUP’
t~~4BER (‘VANCE’ ‘GROMYKO’)

_ _

_ _ _
- - - V -

- .
—

-
~
-

109

TO ‘GROUP’
MEMBER (‘VANCE’ ‘GROMYKO’))

This conceptualization matches the predicted
- conceptualization except that the MOBJECT TOPIC role is

missing. At this point the PREDICTOR will ask that the
MOBJECT TOPIC be filled with a conceptualization involving
the U.S. and Russia. It predicts that the U.S. and Russia
will be involved because those are the countries that the
VIP’s represent.

The following is the word sense of “met” that has been
assigned by the text analyzer:

• MEET1:
Part Of Speech: VERB

Structure Built: (<=> ‘MTRANS’
MOBJECT ‘CONCEPTS’)

New Role Locations: (MOBJECT TOPIC)
Semantic Constraint: •CD~
Syntactic Location: (PREP—OBJECT about)

New Role Locations: ((ACTOR) (TO) (FROM))
Semantic Constraint: (‘GROUP’

MEMBER ‘HUMAN’)
Syntactic Location: ((SUBJECT)

(PREP—OBJECT with))

The current oonceptualization has been built from the
V

structure MEET 1 builds and by applying rule 1 to add the
ACTOR , TO, and FROM roles from where MEET1 predicted them.

MEET1 also predicts where the MOBJECT TOPIC role will
be found . It predicts it will be the object of the
preposition “about.” The word sense must have this
information if the text analyzer is to process a sentence

V like “Vance met with Gromyko about SALT.” However, in our
V

example sentence, there is no preposition “about.” Thus the
MOBJECT TOPIC role cannot be filled by rule 1. Nor can rule
2 help; no text wor d can directly build the MOBJECT TOPIC
role.

Instead , rule 3 is applied. Rule 3 says to find
another word in the sentence that has a word sense that can
predict where the desired filler will be. The word
“discuss” is found. “Discuss” has a word sense DISCUSS1
which looks like this:

7

110

DISCUSS 1:
Part Of Speech: VERB

Structur e Built: (< = > ‘MTRANS’
MOBJECT ‘CONCEPTS’)

New Role Locations: (MOBJECT TOPIC)
Semantic Constraint: ‘CD’
Syntactic Location: VERB—OBJECT

New Role Locations: ((ACTOR) (TO) (FROM))
Semantic Constraint: (‘GROUP’

MEMBER ‘HUMAN’)
Syntactic Location: ((SUBJECT) (PREP—OBJECT with))

DISCUSS1 looks very much like MEET1 except it predicts
that the MOBJECT TOPIC role will be found as its syntactic
object. Before thi~~prediotion can be used, however , the
text analyzer must make sure that DISCUSS1 can pass the same
semantic and syntactic constraints as were needed in rule 2.
That is, the conceptual structure built by the word sense
must not conflict with the conceptual structure already
present in the current conceptual ization . Furthermore , the
new word must be in the same syntactic phrase as the words
that built the current conceptualization.

In our example, DISCUSS1 passes both of these tests.
The conceptualization built by the word sense is the same as
the conceptualization built initially by “met ,” and the word
“discuss” is in the same phrase as “met.” Thus the text
analyzer knows to look in the object of the verb “discuss”
for the filler of the MOBJECT TOPIC role. It also expects
that the filler will be a conceptualization involving Russia
and the U.S. This is from PREDICTOR’s original prediction.

In the location of the syntactic object of the verb
“discuss,” the text analyzer finds “SALT.” “SALT” is in
FRUMP ’s dictionary and has a Role Filling Word Sense SALT2 .
SALT2 resolves to the conceptual token ‘SALT—TREATY’ which
is a type of ‘AGREEMENT ’ and involves Russia and the U.S.
Thus, in the word “SALT ,” the text analyzer finds just what
the PREDICTOR wanted as a filler of the MOBJECT TOPIC role.
The role is then added to the ourrent conceptualization to
make:

11 1

(ACTOR ‘GROUP’
MEMBER (‘VANCE’ ‘GROMYKO’)

‘MTRANS’

MOBJECT ‘CONCEPTS’
TOPIC ‘SALT—TREATY’

FROM ‘GROUP’
MEMBER (‘VANCE’ ‘GROMYKO’)

TO ‘GROUP’
MEMBER (‘VANCE’ ‘GROMYKO’))

The certainty of this rule is 10. If this rule
produces the filler of a desired role, that tiller must have
been found in the predicted syntactic location .
Furthermore , the word sense that predicted where the role
would be found must have built a structure consonant with
the existing structure and must have occurred in the same
syntactic phrase.

The expected cost of the third rule is 3. It is more
expensive to apply this rule than either rule I or rule 2
because it requires looking at the text twice. The text V

must be searched once looking for the unprocessed word whose
word sense can predict the location of the desired filler,
and once to actually find the filler.

Rule ~4:Find a word regardless of any syntactic
considerations that has the desired semantic
properties.
Certainty : 3
Cost = 1

This rule provides a quick and dirty, though uncertain,
way to guess at a role filler if the text analyzer oannot
make sense of the syntax of the input sentence. Essentially
it says “never mind about syntax , find any word that can
resolve to a token that satisfies the semantic constraint of
the PREDICTOR.” Rule ~ê allows the text analyzer to produce
a guess at an interpretation of a text even if all its other
rules fail.

For example, suppose FRUMP is given the following
V sentence:

Israel and Egypt reached an agreement today on
V

a new treaty .

L _ _ _ _ _ _ _

~~~~~~~~

VV _ __

~~~~~~~~~~~~~~~~

___________ _ _ _ _ _

_________________ L

~

112

But suppose that “reached” is not in FRUMP’s vocabulary.

Rule ~e will allow the text analyzer to correctly
process the

sentence even though it no longer makes sense syntactically .

To FRUMP the sentence now will look like the following:

Israel and Egypt XXXXXXX an agreement today on
a new treaty.

Of course, FRUMP still must know the word “agreement.”
FRUMP’s dictionary definition of “agreement” states that it
is the nominalized form of the verb sense AGREE1. The fact
that it is a nominalized verb tells the text analyzer two
things: 1) the word behaves syntactically as a noun (which

is unimportant for this example) and 2) that the new role
predictions concerning the SUBJECT and VERB—OBJECT locations
of the phrase are no longer meaningful. The word sense

AGREE 1 looks like this:

AGREE 1:
Part Of Speech: VERB

Conceptualization Built: (<=> ‘MTRANS’
MOBJECT ‘CONCEPTS’

TYPE ‘APPR OVING’

New Role Locations: ((ACTOR) (FROM) (TO))
Semantic Constraint: ‘ANIMATE’
Syntactic Location: ((SUBJECT)

(PREP—OBJECT with))

New Role Locations: (MOBJECT TOPIC)
Semantic Constraint: ‘CD’
Syntactic Location: ((PREP—OBJECT on)

(PREP—OBJECT about))

For the nominalized verb “agreement” everything in the

dictionary definition for AGREE1 is valid except the

prediction that the ACTOR, TO, and FROM roles will be found

in the syntactic subject location.

The input sentence might be seen in the context of a

story about negotiations. FRUMP has a sketchy script,
V

$NEGOTIATION, for that situation. The representation of the

expected event that the input text must match is the

following:

(ACTOR ‘GROUP’
MEMBER (‘COUNTRY’)

<a> ‘MTRANS’

113

MOBJECT ‘CONCEPTS’
TYPE ‘APPROVING ’
TOPIC ‘CD’

FROM ‘GROUP’
MEMBER (‘COUNTRY ’)

TO ‘GROUP’
MEMBER (‘COUNTRY’))

This says that a group of countries all approve of a
particular topic .

After the word “agreement” has been processed, the
current conceptualization is the conceptualization built by
AGREE 1:

((=> ‘MTRANS’

MOBJECT ‘CONCEPTS’
TYPE ‘APPR OVING’)

The problem that parsing rule 14 will help to solve is
finding the countries to fill the ACTOR , TO, and FROM roles.
AGREE 1 predicts that these roles might be filled by the
object of the preposition “with.” However, there is no
“with” in the example input. The prediction that the roles
will be found in the syntactic subject location are, of
course, not useful since AGREE1 came from a nominalized
verb.

If FRUMP knew the word “reached ,” it could be used to
predict that its syntactic subject would be the countries.
However, since the word is not known , the text analyzer can
have no way of predicting the syntactic location of the
countries involved .

At some point in the processing, the PREDICTOR will ask
that the ACTOR role be filled with a group of countries.
This prediction comes directly from the negotiations script.
The script event dictates that the ACTOR must be filled with
a group of countries. When this prediction is given to the
text analyzer, it tries rules 1 — 3. They all fail since no
word in the input can successfully predict the syntactic
location of the ACTOR role. Rule 14 is then tried. It
simply looks for a group of countries in any syntactic
position. The only group of countries in the sentence is
from the string “Israel and Egypt.” Parse rule II says to
take these countries and add them to the current
conceptualization in the ACTOR role but with a low
certainty. AGREE1 contains the information that the ACTOR , V

TO, and FROM roles all have the same filler . Thus , after
parse rule 1~ is tried , the current conceptualization looks

-. —- -- --- -- ~~~~V --- ~~~ V _ _ _ _ _ -~~~~~~~

1114

like this:

(ACTOR ‘GROUP’
MEMBER (‘ISRAEL’ ‘EGYPT’)

<=> ‘MTRANS’

MOBJECT ‘CONCEPTS’
TYPE ‘APPR OVING’

FROM ‘GROUP’
MEMBER (‘ISRAEL’ ‘EGYPT’)

V TO ‘GROUP’
MEMBER (‘ISRAEL’ •EGYPT’)) V

The MOBJECT TOPIC role is added in the normal way via rule 1
and AGREE1. Since the word “treaty” is specified as the
object of the preposition “on,” the prediction of AGREE1 of
the syntactic location of MOBJECT TOPIC role is still
usable.

Rule 14 has a low certainty of 3 because there is no
syntactic evidence for adding the role. It is added only on
semantic grounds. The certainty is attached to each of the
roles added . Thus from parse rule 14 , the ACTOR , TO, and
FROM roles all have a certainty of 3. In this way, if a
role can be added later with a higher certainty (either by
another parse rule or an inference rule) the new filler can
be used to replace the less certain old one.

The cost of rule 14 is very low. It is given a cost of
1 ~~~~~~ comparatively little work need be done to apply the
rule. There is no syntactic work at all. The only
processing needed is to find a word or phrase in the
sentence with the desired semantic property.

5.3. 14 Syntax

FRUMP ’s understanding is primarily driven by semantic
considerations. Syntactic information is, however , used by
the text analyzer to provide clues about where in a sentence
a desired conceptual role filler might be found. That is,
it mediates between conceptual roles and sentence locations.
In this way syntax can limit searching through the text.
If , for example, the text analyzer has decided that the role
filler it is trying to add will be found in the syntactic
subject, it need only consider nouns in front of the verb as
candidates. Since this greatly reduces the number of words
to be considered, the process is made more efficient.

115

Consider , for example , how the following sentence would
be processed without syntactic information:

Israel invaded Egypt.

The word “ invaded ” will build some structure enabling the
PREDICTOR to request that the ACTOR role be filled with a
country. Without syntactic information, the text analyzer
will not be able to predict that the ACTOR will be found in
the subject location. In fact, “the subject location ” will
have no meaning . There are two countries mentioned in the
sentence: Israel and Egypt . Without further information,
there is no way to prefer one over the other as the filler
of the ACTOR role.

With syntactic knowledge, however , the ambiguity
disappears. The text analyzer can make the prediction that
the ACTOR role will be found as the subject of the verb . It
also knows that the subject is a noun in front of the verb.

V This information allows the text analyzer to use “Israel” as
the word that fills the ACTOR role.

The text analyzer has a very incomplete knowledge of
synt ax . It knows about the subject—verb—object construction
of English sentences , it knows roughly where to look in the
sentence for various syntactic locations, and it knows that
complex sentences can be built up fr om simple clauses.

Having only incomplete syntactic knowledge is ,
surprisingly, an advantage for FRUMP. The alternative is to
give FRUMP an explicit grammar like many other natural
language systems (Marcus (1977], Winograd (1972], and Woods
& Kaplan (1971]). There are two disadvantages to having
such a grammar. First , the grammar would have to be very
complicated if it were to account for a large part of
English. This would make processing much less efficient.
Second , English has eluded every attempt at constructing a
rigorous grammar for it. No matter how complicated the
gramm ar , there would be large classes of English sentences
that could not be parsed . Thus an explicit grammar is

V

overly constraining.

The text analyzer has 9 syntactic rules which enable it
to find the correct sentence locations in the text that
correspond to syntactic labels (e.g. SUBJECT, OBJECT OF
PREPOSITION, etc.). The first 14 rules tell the text
analyzer where to find the syntactic labels. The last 5
indicate how the sentence structure is changed by passive
and nominalized verbs. V

Syntax Rule 1:
V

The SUBJECT of a verb is a noun preceding the
verb which is not immediately preceded by a

116

preposition .

This rule enables the text analyzer to locate the
syntactic subject of a verb. The text analyzer can only
reject as candidates for the subject nouns that are
immediately preceded by a preposition, like “to John.”
This is because any unknown or unprocessed intervening words
might terminate the prepositional phrase, for example, “To
the zebra John gave an apple.” If the rule did not include
“immediately preceded” and the word “zebra” were unknown,
the rule would not allow “John” to be the subject of the
sentence since it would be treated as the object of the
preposition. This rule, like all of FRUMP’s syntax rules ,
is only a heuristic. As such it should help processing
where possible, but it need not always work. There is room
for improvement in all of FRUMP’s syntax rules. However , in
their current form they are quite adequate for their job.

The syntax rules should never prevent the correct
interpretation of the text. Stated in the way it is, rule 1
lets too much through. However, the system can survive this
deficiency. Incorrect possibilities might be ruled out on
semantic grounds. If, on the other hand , the rule
eliminated at this low level the actual subj ect of certain
sentences, the system could never recover. Articles,
howev er , are not included as separators so in the phrase “to
the boy,” the word “boy” could not be the subject.

To illustrate this rul e , consider the sentence

The boy went.

Suppose that the only processing done so far is to resolve
the word “went” to the word sense 001. Now suppose the
PREDICTOR requests that the conceptual ACTOR role be filled
with something that can be considered a ‘HUMAN’. The word
sense 001 contains the information that the conceptual ACTOR
role will be found in the syntactic subjec t of the verb .
This rule enables the text analyzer to find the approximate
location in the sentence of the desired word. The text
analyzer looks backwards from the verb “went” for a noun
that is not immediately preceded by a preposition. The word
“boy” , which has a word sense that satisfies these syntaotic
constraints , is found. The text analyzer then checks
whether that word sense satisfies the semantic requirements
(i.e. that it can be a type of ‘HUMAN’) . It does and so
‘BOY’, the conceptual referent of the selected word sense of
“boy” is used to fill the ACTOR role.

Syntax Rule 2:
The VERB—OBJECT of a verb is a noun following
the verb which is not immediately preceded by

j

_ _ _ _ _ _ _ _

_ _ _
_ _ _

I
- - —

117

a preposition .

The text analyzer does not distinguish between direct
and indirect verb objects. Both of these syntactic types
are considered VERB—OBJECTs.

The reason for not differentiating between direct and
indirect objects is that the indirect object location is not
well defined until the direct object of the verb has been
found . The indirect object is a noun which is not the
object of a preposition whose location is between the verb
and the direct object. Since the location of the indirect
object depends on the location of the direc t objec t , it
cannot be determined until the direct object has been
resolved .

Thi s is a problem , since the location of the direct
object is not resolved until it is used to substantiate a
prediction from PREDICTOR . Thus the indirect object
location is not well defined until some prediction is filled
using the direct object. To use the indirect object
location the text analyzer must have previously used the
direct object location. That is, the prediction using the
syntactic direct object must be made before the prediction
using the indirect object. This is too confining a
constraint to place on the PREDICTOR. Instead , the text
analyzer simply distinguish between the direct and indirect
objects as in terms of sentence location.

This means that there are some sentences FRUMP cannot
in principle process (i.e. those with semantically similar
direct and indirect objects). However, this has not proved
to be a serious constraint to FRUMP ’s perform ance. If it
becomes a problem in some future domain , syntax rule 2 will
have to be improved . This will be an added inconvenience to
the PREDICTOR but is not at all impossible. As yet ,
however , the expected benefit is not worth the expense .

Syntax Ru le 3:
The PREP—OBJECT of a preposition is a noun
following the preposition with no intervening
prepositions.

This rule enables the text analyzer to find objects of
prepositions. Consider the sentence

An automobile crashed into a billboard.

The word “billboard” must be added to the conceptualization
being built. In this sentence the selected word sense of
“crashed” builds a *pft~pg~~• Further processing results in

18

the ACTOR role being filled with ‘AUTOMOBILE’. Using the
vehicle accident sketchy script, the PREDICTOR requests that
the conceptual OBJECT be filled with some kind of ‘PHYSOBJ’.
The selected word sense of “crashed” contains the prediction
that the conceptual OBJECT of the ‘PROPEL’ will be found as
the PREP—OBJECT of “into.” This rule tells the text
analyzer how to find the PREP—OBJECT of “into .” It says to
look after the preposition for a noun. In this case the
text analyzer finds the word “billboard” which can be
considered a kind of ‘PRYSOBJ’ and so is added to the
conceptual i zation as the filler of the OBJECT role.

Syntax Rule 14:
The MODIFIER of a noun is a noun or adjective
preceding the dominating noun .

This rule enables the text analyzer to find information
typically found as a modifier . For example, consider the
sentence

England seized an Icelandic trawler.

This sentence must be represented as a change of possession
from Iceland to England . That is , it will be an ‘AT RANS ’
with the conceptual FROM role filled with ‘ICELAND ’ . The
sentence does not explicitly say from whom the trawler was
taken. Rather it specifies the owner of the trawler. To
fill. in the FROM role with ‘ICELAND’ FRUMP must know that a
change in possession of an object is FROM its previous
owner. Furthermore , the text analyzer knows that ownership
is typi cally specified in English by a possessive adjective
modifying the owned noun . This syntax rule enables the text
analyzer to find that Iceland is the owner of the trawler.
The seize sketchy script requires a ‘COUNTRY ’ to fill the
FROM role. FRUMP figures out that the FROM role will be
filled with the owner of the trawler. The PREDICTOR then
asks that owner of the trawler be found with the constraint
that it must be a country. The text analyzer can use this
syntax rule to look backwards from the word “trawler” until
it finds a country that can be interpreted as the owner. It
finds “Icelandic” which is then used to fill the desired
role.

Syntax Rule 5:
When the past participle of a verb is found
and the verb is preceded by a form of the verb
“to be ,” assume the verb is passive.

This rule is simply the way FRUMP recognizes passive
verbs. It is necessary to recognize passives because the
syntactic locations of SUBJECT and VERB—OBJECT are altered .

/

119

The next two rules indicate to FRUMP how these locations are
changed.

Syntax Rule 6:
Whe n looking for the SUBJECT of a passive

— verb , look instead for the PREP—OBJECT of
“by .”

Syntax Rule 7:
When looking for the VERB—OBJECT of a passive
verb, first look in the SUBJECT locations. If
no word can be found with the desired
properties, look in the VERB—OBJECT location.

Rules 6 and 7 tell the text analyzer how to modify
where it looks in a phrase if the verb is passive. The
passive rul e is that one of the objects of the verb (either
direct or indirect) becomes the subject , and the subject
optionally becomes the object of the preposition “by .”

Nothing special has to be done to handle the fact that
the subject is ontionallv moved to the object of “by.” If
no satisfactory object of the preposition “by” is found, the
text analyzer will simply fail to add the role. The filler
will then have to be found by other means.

Rule 7 specifies how the VERB—OBJECT is changed. In
English, there are two possible ways to form the passive.
In one , the direct object of the verb is moved to the
subject position. For example,

1) John gave Mary the present.

can become

2) The present was given Mary by John.

The second way is to move the indirect object to the subject
position. In this case sentence (1) becomes

3) Mary was given the present by John.

The result of these two ways to form the passive is that
when the text analyzer is looking for VERB-OBJECT of a
passive phrase, it might either be found in the SUBJECT
location or the VERB—OBJECT location. Thus Rule 7 must
check both places.

Syntax Rule 8
When looking for the SUBJECT of a gerund or
nominalized verb , look instead for the
PREP—OBJECT of “by.” V

L _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _


120

Syntax Rule 9
V When looking for the VERB—OBJECT of a gerund

V or nominal ized verb , look instead for the
PREP-OBJ ECT of “of. ”

L
A nominalized verb is a verb made into a noun ,

typically by adding the ending “tion.” For example, the
verb “nationalize” may be transformed into the noun
“nationalization.” The word sense for “nationalize” is:

V NATIONALIZE 1
Part Of Speech: VERB

Conceptualization Built: (<:> ‘ATRANS’
OBJECT ‘CONT’
TYPE ‘ECONOMIC’)

New Role Locations: ((ACTOR) (TO))
Semantic Constraint: ‘POLITY’
Syntactic Location: SUBJECT

(OBJEC T)
Semantic Constraint : ‘SPEC— INDUSTRY ’
Syntactic Location: VERB—OBJECT

The words “nationalize” and “nationalization” have very
similar meanings. FRUMP does not have morphological
decom position rules. However it is very useful to be able
to use the meaning of the verb as the meaning of the noun.
This way there will be no need to duplicate most of the
dictionary information. The nominalized definition can
simply have a pointer to the verb definition together with
the information that it is used as a noun. However, some of
the new role locations of the noun’s word sense are
different from the verb’s word sense. For example , as a
verb “nationalize” can be used as follows :

Uganda nationalized a French company .

However , the noun “nationalization” can express the same
information as

The nationalization of a French company by
Uganda...

Rules 8 and 9 permit the text analyzer to make this
transformation. The word sense of “nationalization” can now
simply be a pointer to the word sense for the verb
“nationalize” together with an indication that the verb has
been nominalized:

Vt

/

121

NATIONALIZATION 1:
Part Of Speech: NOUN

Root: / (NOMINALIZE NATIONALIZE1)

The definition of “nationalization” is then very much more
compact than it would be if all of the information were to
be duplicated from the “nationalize” entry.

Thus, instead of an explicit grammar, FRUMP relies on
its top—down predictions and a set of simple heuristic rules
about English syntax. These rules are far from a complete
specification of English syntax and will occasionally make
mistaken predictions about where in the sentence to look.
However , FRUMP’s incomplete knowledge of syntax allows the
advantages of constraining the search for desired words and
el iminating certain semantic ambiguities. Since all of the
processing is prediction driven, the text analyzer retains a
flexibility beyond any practical syntactic grammar. The
text analyzer’s syntactic knowledge finds the general
sentence location of the desired word while the semantic
predictions determine exactly which word and word sense will
be used.

In summary, FRUMP has nine syntactic rules. Ultimately
more will probably be needed if FRUMP i~ extended to do moredetailed processing. However, FRUMP’s syntactic heuristiee
so far are quite adequate. The text analyzer uses its
syntactic knowledge to constrain where to look in a text
phrase for a desired conceptual item . That is, once the
text analyzer is asked to fill a conceptual role, it applies
its syntactic rules to determine where in the input it ought
to look for the word that will provide the role filler. The
syntax rules are only applied when needed. The system does
not do a syntactic parse of each input sentence. Instead it
builds only as much of a syntactic parse tree as it needs to
build the conceptual representation of the sentence. The
parse tree is augmented under the direction of the
conceptual processing.

5.3.5 Anaphoric Reference

FRUMP ’s top-down orientation allows the text analyzer
to resolve a large class of pronominal references easily.
Recall from the discussion of the PREDICTOR that its
predictions are constantly revised to be the tightest , sost
accurate possible . At times the PREDICTOR oan anticipate
the precise filler of a desired role. Th&t is, instead of
predicting that the ACTOR role will be filled with just

122

‘COUNTRY’, it can predict that the country will be ‘FRANCE ’ .
This type of prediction comes from PREDICTOR rule 9.

Recall that PREDICTOR rule 9 is:

PREDI CTOR rule 9
If a role filler is predicted , and that role
is filled by a previously bound script
variable , predict the more explicit binding of
the script variable instead of the less
specific filler constraint from the predicted
conceptualization.

This kind of prediction makes resolving a pronoun
particularly easy . The text analyzer responds to this type
of prediction in the normal way. It looks in the syntactic
location for something that will resolve to the predicted
token (e.g. a word that can mean ‘FRANCE’). If it finds a
pronoun that does not conflict with properties of the
predicted token, the predicted token is used to fill the
role.

Of course, there is the possibility that the pronoun
will conflict with properties of the predicted conceptual
item . For example, if ‘JOHN’ were predicted and the pronoun
“she” found in the text . In these oases , the text anal yzer .
must look for some other word that has a reading
corresponding to ‘JOHN’. If such a word is found, the
corresponding conceptual item is added to the current
conceptualization. If not, then the text analyzer can not
add the desired role, and it informs the selection mechaniam
of that fact so that another method might be tried.

Recall from the previous chapter that PREDICTOR rule 11
is:

Rule 11
If a single explicit role filler cannot be
decided upon , predict that the role will be
filled from the list of possible explicit role
fillers.

There is the possibility that PREDI CTOR used rule 11 instead
of rule 9 to make the prediction. Rule 11 predicts a list

V of explicit items that might be the role filler . For
exam ple , the text analyzer might be asked to till the ACTOR
role with one of the elements of the hit (‘JOHN’ •BIL.L.’
‘MA R Y’) . Now, if a pronoun is found in the expected

123

syntactic location, there could be trouble. If the pronoun
“she” is found everything is fine because the properties of
“she” conflict with all of the predicted fillers except
‘MARY’. However , if the pronoun “he” is found, it could
match either ‘JOHN’ or ‘BILL’.

When several predicted items all match a pronoun, the
text analyzer resorts to syntax. Obviously, world knowledge
cannot be used at this point to disambiguate the pronoun.
If there were any semantic reason why one of the items ought
not match the pronoun, the PREDICTOR would not have included
it in the first place. The only alternative is the use of
syntactic knowledge.

The text analyzer currently has only one syntactic rule
to aid in disambiguating pronouns:

Syntax Rule 10
prefer a referent if it appeared in the same
syntactic location of the previous clause.

To illustrate this rule, consider the following
sentences:

President Carter met today with Vice Premier
Teng. He proposed a trade agreement between
China and the U.S.

It is quite clear that Carter is the one who made the
proposal. However, there is no world knowledge that could
disambiguate the pronoun “he” in favor of “Carter.” A
visiting diplomat is as likely to make a proposal as is the
host diplomat . The pronoun “he” is the syntactic subject.
“Carter” is the preferred referent simply because “Carter”
also appeared as the syntactic subject of the previous
sentence.

Of course, this syntactic rule alone is not sufficient
to handle all of the semantically ambiguous pronouns that
could occur. However, if it were a problem it would be easy
to add more such syntactic rules. Semantically ambiguous
pronouns are not very common. If there is any question as
to the correct referent, the writer of the news story will
not use a pronoun. Of the semantically ambiguous pronouns,
this single syntactic rule is able to resolve a large number
of them . There is little need for more sophisticated
syntactic rules here .

Deic tic references are widely used in news stories to
refer to dateline information. For exemple, consider the
beginning of a news story:

a
_ _ _ _ _______

1 2~

Chtaura, Lebanon, Oct. 8 — Syrian, Lebanese
and Palestinian representatives will meet here
tomorrow to discuss the withdrawal of
Palestinian forces.

In this story “here ” and “tomorrow ” must be interpreted with
- respect to the dateline information. “Here” must resolve to

Chtaura, Lebanon, and “tomorrow” must resolve to October 9,
1975.

These deictic references are relatively straightforward
to handle. FRUMP processes the dateline information in the
header of UPI stories. This establishes both the time and
the place where the story originated. Time and place
pronouns encountered with no explicit conceptual prediction
are interpreted as referring to this dateline information.
The dictionary definition for relative pronouns like
“tomorrow,” include how they modify the referent (e.g.
“tomorrow” is the referent date plus one day).

In FRUMP’s method of processing, pronouns are not a
problem . In fact, they are an advantage. Pronouns improve
processing efficiency because they eliminate an inheritance
check that would otherwise be performed. In many systems
pronouns are handled differently than other processing .
When a pronoun is encountered , a special routine is called
to find a referent for it (although Charniak argued in his
dissertation (1972] against this technique).

In FRUMP , however, due to the nature of its processing,
referents are predicted in the same top—down manner as

V everything else. When a pronoun is encountered , under
normal circumstances, FRUM P’s PREDICTOR will already have
anticipated an explicit filler for the desired role.

For example , consider the pronoun occurring in the
second sentence of the following input:

Uganda nationalized an Exxon oil refinery. It
was paid $1.2 million in compensation.

After processing the first sentence, FRUMP will realize that
this is a story about one country nationalizing a company of
another. The first sentence builds a meaning representation
in which there is a forced ‘ATRANS’ of an oil refinery. The
ACTOR is ‘UGANDA’, the oonoeptual referent for
“Uganda.” The FROM role is filled with ‘EXXON’, the
conceptual referent for the word “Exxon.” These fillers
are bound to script variables for the entity taking the
industry and the entity giving it up, respectively. In the
second sentenoe, FRUMP will build the structure

C C:> (‘ATRANS’)

125

OBJECT (‘MONEY’)
AMOUNT (1200000)
UNIT (‘DOLLAR’))

from the phrase “paid $1.2 million.” At some point the
PREDICTOR will ask that the TO role be filled.

The PREDICTOR can immediately predict that the filler
of the TO role will be ‘EXX ON’. This is done because the
only script event that the above partial conceptualization
matches is the one for giving compensation to the previous
owner of the nationalized industry. Furthermore, the script
variable for the entity that gave up control of the industry
has already been bound to ‘EXXON’ from processing the
previous sentence. If this conceptualization is indeed to
match the predicted event of paying compensation, the only
possible filler of the TO role is ‘EXX ON’. ‘EXXON’ is
predicted to be the filler of the 10 role by PREDICTOR rule
9 which states that the binding of a script variable should
be predicted if it is known .

The SUBSTANTIATOR selection mechanism calls the text
analyzer to fill the TO role with something that can be
considered ‘EXXON’. The text analyzer predicts that the TO
role will be filled with the syntactic subject (using syntax
rule 7 since the verb is passive). In the syntactic subject
location the text analyzer finds the pronoun “it.” Since
a single explicit filler has been predicted with which this
pronoun does not conflict, the predicted filler is assumed .

A pronoun in the predicted syntactic location
eliminates the need for an inheritance match to be
performed. It says basically “never mind the further
processing you would do if there were a real word here, the
prediction you have is the correct one provided it matches
in gender and number.” If in the above example, “the Exxon
Corporation” were found instead of “it ,” the text analyzer
would have to justify that “the Exxon Corporation” could
indeed be considered to refer to ‘EXX ON’. Although in this
case the justification would be quite easy, it would involve
some work, and in general could involve a good deal of
inheritance matching. Thus, using FRUMP type parsing,
pronouns make text interpretation more efficient rather than
causing problems.

5.3.6 Looking at More Than One Word at a Time

At the beginning of this section it was stated that the
text analyzer looks at only one word at a time with three
exceptions. The exceptions are 1) passives, 2) phrases, and
3) composites.

126

Passives are straight forwa’d to handle. When the text
analyzer uses a word that might be the past participle of a
verb , it looks to see if it is preceded by a form of the
verb “to be.” If so, FRUMP assumes it is passive. In
processing that word, however, the text analyzer needed to
look for the auxiliary “to be.”

Phrases are groups of words that have a special meaning
only in conjunction with each other. Phrases are either
idiomatic constructions or, as is more often the case in
FRUMP , multi—word names like “the United States.” There is
a dictionary entry for each phrase. The dictionary entry of
the phrase is added as a word sense to any one of the words
in the phrase (usually the rarest word). The dictionary
entry includes instructions on how to justify that the rest
of the phrase is present. For example, one of the senses of
the word “united” says “if I’m capitalized and I am followed
by the word “states” also capitalized then I can resolve to
‘USA’ When the text analyzer wants to use a phrase
definition , it must first justify that the rest of the
phrase is indeed present.

Composites are permanent memory tokens for which there
is no single lexical realization. For example, there is a
node ‘QUAKE—MAGNITUDE’ which is used to bind thr &MAGNITUDE
variable in the earthquake script. The ‘QUAKE—MA GNITUDE’
memory pointer is composed of two parts: 1) a
‘QUAKE—SCALE’, and 2) a number . Examples of possible
‘QUAKE—MA GN ITUDE’s might be a Richter scale reading of ~~~~~
or a Mercali scale reading of 3 .7. In both cases it is
composed of a scale and a level reading on that scale. Thus
when the text analyzer is asked to find a composite memory
token, it must build it up from its pieces. In recognizing
a composite memory token then, the text analyzer must
examine several words.

5.11 The Role Inferencer

The role inferenoer is the final SUBSTANTIATOR
subsystem that can build conceptual structures. Like the V

text analyzer, it cannot respond to predictions of entire
conceptualizations. Rather it operates on one role at a
time.

The role inferencer is composed of a large number of
inference rules. Each inference rule contains three parts:
the role it can add , conditions on when it applies, and a
specification of the filler that can be added . In addition,
each inference rule has a certainty and a cost specification
similar to the parsing rules. The oertainty, again,
indicates how sure the system can be of a result produced by

127

this rule. The cost is an estimation of the expense of
applyi ng the rule.

Since there are many inference rules, there must be an
efficient method of indexing them. Inference rules are
organized by the primitive acts or states of the
conceptualization, and within each primitive act or state by
the roles that they can fill. Thus, all the rules that can
add the conceptual role OBJECT to an ‘ATRAN S’
conceptualization are listed together, all the rules that
can add the role ‘ACTOR’ to a ‘PTRANS’ conceptualization are
listed together, etc. These groups of inferences are sorted
high to low by their certainties. This makes the selection
procedure more efficient.

V For example , even though there are many inference rules
in the FRUMP role inferencer, there are only five that might
be applicable to inferring the FROM role of ‘ATRANS’ acts.
Since the role inferencer always knows the act of the
conceptualization it is augmenting, and it is told the role
that the PREDICTOR wants filled , it can immediately retrieve
the possibly relevant inference rules. If it is trying to
infer the FROM role of an ‘ATRA NS’, it can immediately
narrow the relevant inference rules to these five.
Furthermore , since these five rules are sorted by certainty,
it can easily try the most certain rules first.

The conditions of when a rule can apply are a series of
tests to be applied to other role fillers of the
conceptualization. For example, there is a rule to infer
that when planes crash, they usually crash into the ground.
This rule is indexed by the primitive act ‘PROPEL’, and the

V

conceptual role OBJECT because it can fill the OBJECT role
of ‘PROPEL’ conceptualizations. The rule is:

Primitive Act: ‘PROPEL’

Desired Role: (OBJECT)

Inferable Filler: ‘GROUND’

Tests: (ACTOR) filled with ‘AIRCRAFT’
(MANNER) filled with •VIOL.ENT’

This rule states that the OBJECT of a ‘PROPEL’ may be filled
with ‘GROUND’ if the filler of the ACTOR role can inherit
‘AIR CRAFT’ and the MANNER can inherit ‘VIOLENT’.

Of course, not all violent propels of an aircraft need
be to the ground. A plane can, for exemple, crash into
another plane or a building. However, if either of these
are the case , the object crashed into must be explicitly
mentioned in the text. It is the job of the selection

128

procedure to insure that an inference such as this is not
made when there is contrary information in the text.

The oertainty of an inference reflects how sure it is
of the filler it produces. The certainty of the above
inference is 8 on a scale of 1 to 10.

The cost of applying an inference rule is dynamically
computed. It is twice the nimiber of unfilled roles that
must be examined to apply the rule plus one. This cost
function normalizes the cost of an inference to the cost of
applying a parsing rule. The average cost of a parsing rule
is 2. Thus assuming the parser was able to fill the needed
roles, the average cost of filling the roles would be twice
the number of missing roles. One is added to account for
the cost of manipulating the inference rule. Thus the
maximum coat of applying the “crash into ground” rule is 5.
This is the cost if neither the ACTOR or the MANNER rule is
present in the conceptualization when the OBJECT role is
desired by PREDICTOR. The minimum cost is one if both the
ACTOR and MANNER roles are already filled in.

The inference rules may call the SUBSTANTIATOR with
predictions of their own. This is done if a desired role is
missing from a conceptualization. To illustrate this, we
will discuss how FRUMP processes the following sentence in
the context of the script $VEHICLE—ACCIDENT:

A jet crashed .

The word “crashed” builds the structure

((:> ‘PROPEL’

MANNER ‘VIOLENT’)

Furthermore, it predicts that the ACTOR will be found in the
syntactic subject and that the OBJECT will be found as the
object of the preposition “into.”

The relevant event in the vehicle accident sketchy
script is the following:

(ACTOR ‘VEHICLE’

‘PROPEL’

OBJECT ‘PHYSOBJ’

MANNER ‘VIOLENT’)

Now suppose PREDICTOR wants the OBJECT filled in next. On

I

-
-~~~~~~~~~~~~~~~~~~~~~~~ ~~~V

129

the basis of the sketchy script, it will predict that the
filler will be some kind of ‘PHYSOBJ’. The SUBSTANTIATOR
selection procedure will first ask the parser to fill the
role. The parser will fail. Exactly why it is called first
and why it does not employ parse rule 11 (the one that will
take anything) to fill the OBJECT role with ‘JET’ will be
discussed in the next section. For now, it is sufficient to
know that the parser was called and failed.

The inference rules are tried next. The primitive act
of the current conceptualization is ‘PROPEL’; the desired
role is OBJECT. Thus the “crash into ground” inference will
be among them . From the group of inferences found , the
viable inferences are collected . These are the inferences
which have a chance at supplying the desired information and
whose test conditions are not violated by roles present in
the current conceptualization. Our “crash into ground”
inference is a viable inference. The filler it can add ,
‘GROUND’, is indeed a kind of ‘PHYSOBJ’ (so it has a chance
of adding the desired filler), and the only non—missing test
role (MANNER) is satisfied (filled with ‘VIOLENT’). At this
point in the processing the cost of applying this inference
rul e is 3. There is one unfilled role (the ACTOR) which
needs to be tested.

The role inferenoer is allowed to recursively call the
SUBSTANTIATOR to fill missing roles that must be tested. In
our example , the role inferencer now calls SUBSTANT IATOR to
fill the ACTOR with a kind of ‘AIRCRAFT’. SUBSTLNTIAIQR
again tries the parser first. Via parse rule 1 , it finds
the word “jet” in the predicted subject location. “Jet”
indeed can be interpreted as a kind of ‘AIRCRAFT’ so ‘JET’
is added to the current conceptualization which now looks
like this:

L (ACTOR ‘JET’

‘PROPEL’

MANNER ‘VIOLENT’)

Now all of the constraint tests of the inference rule
are satisfied. The inference rule fills the role OBJECT
with ‘GROUND’ making the following conceptualization:

t (ACTOR ‘JET’

‘PROPEL’ V

OBJECT ‘GROUND’

MANNER ‘VIOLENT’)

J. ~~~~~~~~~ - - — - ________________________ V~~~~~~ • ______ - ~~ — -~~ — —

130

This conceptualization matches the predicted sketchy
script event, which PREDICTOR now marks as having been
satisfied.

There is another type of inference rule which varies
slightly from the form of the “crash into ground” inference.
The “crash into, ground” inference always supplies the same
filler (i.e. ‘ground’). The other type of inferences add ,
as their fillers, parts of other role fillers in the
conceptualization. For example, this sentence:

Vance left for Italy.

should build the following conceptualization:

(ACTOR ‘VANCE’

<=> ‘PTRANS’

OBJECT ‘VANCE’

FROM ‘USA’

TO ‘ITALY’)

The problem is that the sentence does not mention the
U.S. at all. Nonetheless, the FROM role ought to be filled
with ‘USA’. This is done by the second type of inference
rule. The inference rule relevant here is

Primitive Act: ‘PTRANS’

Desired Role: (FROM)

Inferable Filler: NATIONALITY—OF (ACTOR)

Tests: (ACTOR) filled with a ‘HUMAN’
(TO) filled with a ‘COUNTRY’ not

NAT IONALITY—OF (ACTOR)

The inference rule needed here states that if a person is
‘PTRANS’ed to a country, assume he started out at his home
country unless he is going to his home country. The
certainty of this rule is 6; it can be overwritten
relatively easily. A different more certain inference rule
would have been used if the system had known that Vance was
previously in England. V

Thus, FRUMP ’s role inferenoer provides a method of
satisfying the needs of PREDICTOR even though the
information is not explicitly present in the text. FRUMP
has approximately 50 such inference rules. They vary

- --

~

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V



131

greatly in the generality. The inference “if a plane
crashes into something, the something is probably the
gro und” is very specific in its applicability. Most of the
rules are more general. For example , there is an inference
rule that says “the FROM role of an ATRANS can be filled
with the previous owner of the object.” That is, when
something changes ownership, the entity giving up ownership
is the old owner. We expect that there will be many more
inference rules added to the system.

5.5 The Selection Procedure

This section describes how the SUBSTANTIATOR decides
which of its structure building techniques to use for a
given prediction .

Use of the conceptualization inferencer is
straightforward . Recall that the conceptualization
inferenoer makes script—related inferences. When the
PREDICTOR satisfies a predicted event, the selection process
notifies the conceptualization inferenoer . The inferencer
then examines that sketchy script event. As described
previously, if the script indicates that it must lead to, or
must have been preceded by another script event , that event
is inferred .

Managing the two role— filling routines, the parser and
the role inferencer, is a bit more involved. Recall that
each parsing rule and each inference rule has both a
certainty and a cost associated with it.

The selection mechanism’s job is to fill the desired
role as certainly as possible without exceeding a
predetermined cost . The maximum cost permitted is a
parameter in the selection routine. Any rule that exceeds
the cost parameter is not used by SUBSTANTIATOR. Thus with
a higher cost parameter, more parsing and inference rules
are available to substantiate predictions. When these more
costly rules are available, FRUMP achieves a deeper and more
certain but slower understanding of the text. Conversely,
when the maximum cost is low, FRUMP does very fast but
superficial processing.

The selection of the “best” rule is reasonably
efficient. Recall that the role inference rules are
organized by the primitive act of the conceptualization and
within primitive acts by the role they fill. Furthermore,
the inferences that fill the same role for the same
primitive act are in order of decreasing certainty. The
selection mechanism can efficiently find the inference rules
that might add a certain role to a certain

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - V _ _ _

~

V

~~

_

~~~~~~~~~ 

- -



132

conceptualization . Then the most certain inference rul e is
the first on the list. There is a static list of the
parsing rules In decreasing ~ertainty as well.

The best role—adding rule is then selected by a simple
sort—merge technique . The cost of the more certain rule at
the front of both lists is computed . If it is above the
threshold , that rule is discarded . If not, that rule is
applied . If the rule succeeds, the selection routine passes
this information along to the PREDICTOR. In this way all of
the applicable rules will be tested. If none can fill the
role with the desired filler, the PREDICTOR is informed that
its prediction must be wrong. In either case, PREDICTOR can
then revise its predictions as described in chapter 11. We
can now understand the SUBSTANTIATOR’s behavior in the
example the last section “The jet crashed.” The
SUBSTANTIATOR called the text analyzer to fill OBJECT role
because the parse rules seemed the most promising (they had
the highest certainties). Parse rule 11, which would have
filled the role with ‘JET’ was not tried because its
certainty is less than the certainty of the inference rule
that was used to fill the OBJECT role. Had the inference
rule failed to fill the role, parse rule 11 might well have
been tried .

Norman and Bobrow [1975) have proposed a slightly
different and more general kind of resource limited
processing. They advocate a method of processing which
makes an initial guess at the solution to a task as quickly
as possible. Further processing is then devoted to refifimg
thi~ guess. In this way the best guess at the solution is
always maintained . Processing continues until a given
allotment of a resource i~ exhausted at which time the
result is taken to be the current “best” solution.

This scheme is particularly well suited when a process
is given a fixed amount of some resource. However , such is
not the case for FRUMP. Instead, it is more desirable to be
able to tell FRUMP to speed up or slow down without regard
to the absolute amount of any processing resource used.
FRUMP can then dynamically adjust its skimming rate to the
rate at which the input text is being presented. When the
input text is arriving faster than FRUMP is processing it,
the cost threshold is lowered to speed up processing. When
FRUMP is ahead of the input, it raises the threshold to
obtain a more certain and complete understanding.

There has recently been some psychological research
into hum an skimming under time constraints by Kir~’sch &
t4asson (personal communication). They identify macro— and
micro-propositions in the text. Macro—propositions are
propositions which are central to the story .
Micro—propositions correspond to less central facts. Their



133

initial results indicate that constraining processing time
degrades comprehension of both macro— and micro— propositions
quite uniformly.

In their terminology, FRUMP ’ s sketchy scripts are
comprised almost entirely of macro—propositions (i.e. events
which are central to the script situation). Thus, the
initial findings have no direct relevance to FRUMP’s
processing. What would be relevant is a quantitative
specifi cation of how comprehension of mac ro—propositions
alone is degraded with processing constraints.

5.6 An Example

The following annotated example of FRUMP processing an
input sentence illustrates the SUBSTANTIATOR’s text analyzer
and role inferencer processing , and demonstrates the
intimate interaction between the PREDICTOR and the
SUBSTANTIATOR . The input text sentence is:

UGANDA TOOK FORMAL CONTROL OF AN AMERICAN OIL
REF INERY .

Before this sentence was seen , PREDICTOR had al ready
identified a sketchy script which predicted several
conceptualizations. Among them is the following: V

(ACTOR (‘POLITY’)

(‘ATRANS’)

MANNER (‘FORCED ’)

- OBJECT (‘CONT’)
TYPE (‘ECONOMIC ’)
PART (‘SPEC—INDUSTRY ’)

TO (‘POLITY ’)

FROM (‘POLITY’))

This is a conceptual dependency representation for the
event of one country taking economic control of a specific
industry from another. It is this prediction that FRUM P
must match with the input . On the left below is the
computer output generated during processing. Each output is
prefac ed with which module it came from . On the right are
explanatory coements on the processing that resulted in the
output message. It should be noted in reference to word



- ~V~ V_ — —

13~i

numbers that the computer begins numbering the input words
from zero.

Input :

UGANDA TODAY TOOK FORMAL CONTROL OF AN AMERICAN OIL REFINERY.

COMPUTER OUTPUT COMMENTS

SUBSTANTIATOR:
((<s> (‘ATRANS’) MANNER SUBSTANTIATOR looks for any
(‘FORCED’))) BUILT FROM I word sense that could build
WORD# (2)  WORD SENSE I a structure that partially
TAKE 1 PARTIALLY MATCHES matches a predicted concept.
A PREDICTION. I It found the word “took” with

a word sense TOOK1 which
matches a prediction.

PREDICTOR :
PREDIC TING ROLE ( ACTOR ) PREDICTOR examines the
WILL BE FILLED WITH I partial conceptualization and
AN ELEMENT FROM THE LIST predicts that the ACTOR role
(‘POLITY ’) must be filled with a

‘POL ITY’. The ACTOR of each
I prediction that could
possibly be matched is filled

I with ‘POLITY’. Thus if this
I structure is going to mato~—-one of them , it must also
have a ‘POLITY’ ACTOR.

SUBSTANT IATOR :
PREDICTING (ACTOR ) IS Using its syntactic knowledge

SUBJECT OF (TAKE 1 2 NIL I SUBSTANTIATOR determines that
PAST) the ACTOR will probably be

found as the subject of the
verb “took” from parse rule 1

FOUND POSSIBLE (‘POLITY’) Indeed, a ‘POLITY’ was found
FROM WORD# (0) UGANDA where the syntactic subject

(ACTOR) HAS BEEN FILLED was expected. Therefore itV 
WITH (‘UGANDg’) must be the oonoeptual ACTOR.

(TO) HAS BEEN FILLED WITH The TO role is also filled
V (‘UGANDA ’) 1 wIth the same ‘POLITY’
V 

because the verb sense TAKE 1
I contains the information that
I its ACTOR and TO role fillers

V 1 are the same.

V ~~~~~~~~~~~~~~ ~~~~~~~~~ 

I 

/
V - - - - - - 

- - ~ V
~~~~~~~~~~~~~~~~

V
W~~~~~~~

_
~~

-

135

PREDICTOR : I
PREDICTING ROLE (OBJECT) I There are several predicted

WILL BE FILLED WITH AN I conceptualizations that the
ELEMENT FROM THE LIST 1 partial conceptualization
(‘P055’ ‘CONT’) I under construction can match.

I Some of them are abstract
1 transfers of POSSession ,
I others of CONTrol. Thus, to
I differentiate which
1 prediction the text might
I satisfy, PREDICTOR asks that
1 the OBJECT be filled with
I either ‘POSS’ or ‘cONT’.

SUBSTANT1ATOR:
PREDICTING (OBJECT) IS I SUBSTANTIATOR has used its

VERB—OBJECT OF (TAKE 1 2 I syntactic knowledge to decide
NIL PAST) 1 that if the onoeptual OBJECT

I is specified in the text it
I will be the object of the
I verb “took” — parse rule 1

again.

FOUND POSSIBLE (‘ABSTRACT’)I At word number II,
FROM WORD# (II) 1 SUBSTANTIATOR found what it

(OBJECT) HAS BEEN FILLED was looking for : a word that
(‘CONT’) 1 means ‘CONT’.

PREDICTOR:
PREDICTING ROLE (OBJECT I Again PREDICTOR is trying to

PART) WILL. BE FILLED WITH I differentiate between several
AN ELEMENT FROM THE LIST 1 viable predictions . The
(‘HUMAN’ ‘SPEC—INDUSTRY’)I (OBJECT PART) must be tilled

I with either a h~~an or a
I specific industry.

SUBSTANTIA TOR: I
WORD# (5) OF CAN POSSIBLY I SUBSTANTIATOR found a

ADD (OBJECT PART) I preposition which it thinks
TENTATIVELY RESOLVING OF TOI can provide the desired

OF1 I information. This is from
parse rule 3.

PREDICTING (OBJEC T PART) ISI Here it is looking for the
V PREP-OBJECT OF (OF 1 5) 1 object of the preposition

I “of” at word 5.

FOUND POSSIBLE (‘INDUSTRY’)I As the objec t of the
FROM WORD# (9) 1 preposition SUBSTANTIATE

(OBJECT PART) HAS BEEN I found “refinery” which it V

FILLED WITH (‘REF INERY ’) I knows is a kind of industry.

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -

PREDICTING (OBJECT PART I To be a specific industry,
CLASS) IS MODIFIER OF 1 the kind of refinery must be
(REFINERY1 9) 1 determined. It decides that

FOUND POSSIBLE (‘PRODUCT’-) I the kind of refinery, if
FROM WORD# (8) 1 present, will probably be an

(OBJECT PART CLASS) HAS 1 adj ective modifier of
BEEN FILLED WITH (‘OIL’) I “refinery” at word 9. It

I finds “OIL” at word 8.

PREDICTOR : I
PREDICTING ROLE (OBJECT I The PREDICTOR has by now

TYPE) WILL BE FILLED WITH : narrowed down the number of
AN ELEMENT FROM THE LIST I viable predicted
(‘ECONOM IC’) 1 conceptualizations to one .

I That one requires that the
I type of control taken over
I the industry be economic.

SUBSTANTIATOR: I
PREDIC TING (OBJECT TYPE) ISI SUBSTANTIATOR dec ides that

MODIFIER I if the OBJECT TYPE role is
LOOKING FOR MODIFIER OF I present in the text it will
(CONT1 ~ê 10) I be as an adjective modifier

TEXT ANALYZER UNABLE TO I of word ~ “control” as in
FIND MODIFIER I “took economic control.”

1 However,the input phrase
I does not say “economic
I control” so the text
I analyzer cannot add the
I OBJECT TYPE role.

TRY ING INFERENCE RULE I SUBSTANTIATE decides to try
INFERENCER ASKS SLOT I to infer the desired role
(OBJECT BE FILLED WITH I tiller. It finds an inference
(‘CONT’) I rule that can add ‘ECONOMIC’

(OBJECT) ALREADY FILLED I in the OBJECT TYPE role of
WITH (‘CONT ’) I ‘ATRANS’ acts provided

INFERENCER ASKS SLOT I certain conditions are met.
(OBJECT PART) BE FILLED I Inference rules are indexed
WITH ‘INDUSTRY ’ I by the conceptual act, and

(OBJECT PART) ALREADY I the role they add.
FILLED WITH (‘REF INERY ’) I Thus they

ALL TESTS FOR INFERENCE ARE I can be found efficiently.
TRUE—-- INFERRING (OBJECT I The conditions r.quired by
TYPE) IS (‘ECONOMIC’) I this rule include that

(OBJECT TYPE) HAS SEEN I control of an industry be
FILLED WITH (‘ECON OMIC’ I changing hands. If that is
~~RTAINTY (7)) I true, then the control is

I probably of type ‘ECONOMIC’.

PREDICTOR: - I
PREDICTING ROLE (FROM) WILL. 1 Finally PREDICTOR requests

- -

137

BE FILLED WITH AN ELEMENT I that the FROM role be filled
FROM LIST (‘POLITY’) 1 with a ‘POLITY’.

SUBSTANTIATOR: I
TEXT ANALYZER UNABLE TO ADD However , SUBSTANTIATOR cannot
(FROM) — CALLING I add the FROM role using the
INFERENCE PROCEDURES text .

TRYING INFERENCE RULE I An inference rule is found
INFERENCER ASKS SLOT I which says that for abstract

(OBJECT PART OWNER) BE I transfers the entity giving
FILLED WITH ‘POLITY’ I up the object is probably the

I same as the current owner of
I the object. Thus the problem
I has been reduced to finding
I the OBJECT PART OWNER.

FILLER MISSING — I
SUBSTANTIATOR CALLED I

PREDICTING (OBJECT PART I SUBSTANTIATOR has decided
OWNER) IS MODIFIER OF 1 that if the owner Is
WORD# (9) 1 specified in the text it is

LOOKING FOR MODIFIER OF I probably an adjective
(REFINERY1 9) I modifier of “refinery” at

FOUND POSSIBLE (‘AN IMATE ’) I word 9. And indeed the owner
FROM WORM (7) 1 is found to be the US.

(OBJEC T PART OWNER) HAS I
BEEN FILLED WITH (‘USA’) I

ALL TESTS FOR INFERENCE ARE I The inference is made.
TRUE—-INFERRING (FROM) I
IS (‘USA’ CERTAINTY (9)) 1

PREDICTOR : I
PREDICTED CONCEPTUALIZAT ION I And finally the predicted
SATISFIED: I conceptualization has been
(((:> (‘ATRANS’) I fleshed out.

MANNER (‘FORCED ’))
ACTOR (‘UGANDA’)
TO (‘UGANDA’)
OBJECT (‘cOsT’

TYPE (‘ECONOMIC’ CERTAINTY (7))
PART (‘REFINERY’)

TYPE (‘OIL’)
OWNER (‘USA’)

FROM (‘USA’ CER TAINTY (9))))

The conceptualization produced contains the information
that the industry changing hands is an oil refinery of the
United States, that the country taking it is Uganda , and
that the country giving it up is the United States. All of

~1

138

this was built in a very purposeful manner. The text was
never examined without knowing what conceptual structure was
to be built and approximately where in the text it would be
found .

L. It seems as though a lot of work has been done to
arrive at the correct parse of the sentence. Indeed ,
PREDICTOR and SUBSTANTIATOR each had to produce a large

- number of sub—results. However, each of these sub-results
- was achieved very efficiently. Very little work had to be
- done for any of them. The overall process is made much

easier and more efficient from the exchange of information
between PREDICTOR and SUBSTANTIATOR.

t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~ -~~~~~~~- ~~~~~~~~~~~~~~~~
VV

~~~ 
-
~~~~~~~~~~~~~~~



CHAPTER 6

PREDICTOR /SUBSTANTIATOR INTERACTION

6.1 Introduction

Now that the operations of the PREDICTOR and
SUBSTANTIATOR have been discussed in detail, we will examine
their interaction during FRUMP’s processing of a news story.
The system focuses its attention on building one conceptual V

structure at a time. In general, the PREDICTOR asks the 
V

SUBSTANTIATOR to add some piece of conceptual structure to
the existing conceptualization. The actual prediction is
based on what has been built up previously in processing the
conceptualization and other conceptualizations from the
input. The SUBSTANTIATOR then tries to add something to the
current conceptualization that will satisfy the PREDICTOR.
Based on the actions of the SUBSTANTIATOR, the PREDICTOR
reassesses the context and make s another prediction. In
this way, the text is always interpreted against a
background of expectations supplied from knowledge of the

4 - world.

We will discuss the processing of the following
article:

New York, May 30 —— A federal grand jury
yesterday charged Luis Serez with first degree
murder in connection with the May 16 slaying
of a New York City po.ice officer. Officer
Fred rick Govel was allegedly shot by Serez
when he attempted to quell a barroom disput e

V 
in a lower Manhattan tavern . Mter the
shooting Serez escaped through an alley
se rvice entrance .

— 139 —



140

Police apprehended Serez last Thursday
when he succumbed to a police ruse and ran out
of his West 19th Street apartment building
into the hands of waiting detectives. A
police detective reportedly phoned Serez
saying “Some guy said call this ni~ ber and say
the police are on the way to get you,” and
then hung up. Within moments Serez came
running out of the building.

This article is largely from a front page New York
Times news story. However, it has been shortened
considerably and altered somewhat in order to illustrate
several additional processing points. The original story
reported only the arrest, not an indictment.

FRUMP decided that the story described facts
preliminary to a trial. It therefore used the sketchy
script $COURT by event induced activation. In processing
the story, the sketchy scripts $MURDER and SARREST were also
instantiated . These scripts were activated by implicit
reference via an issue skeleton as discussed in chapter 3.
Issue skeletons will be denoted by a word in capital letters
preceded by “ %“ . The issue skeleton relevant to this story
is %CRIME.

6.2 The Sketchy Scripts Involved

The scripts involved in understanding this story are
$COURT, $MURDER, and $ARREST. Before observing FRUMP
processing the story, we will briefly examine the relevant
conceptualizations from tht three sketchy scripts $CRIME,
$MURDER, and SARREST.

The first sketchy script is $COURT. The
conceptualization that will be matched in this script
represents the indictment. The corresponding conceptual
dependency representation is:

(ACTOR

<—> *MTRM4S*

MOBJECT ‘ACClJSAflON’
SUSPECT
CRThfE *CRINE*

FROM *CpJJ~~ Jjj 1(y*

TO *H~3)4~J~*)



141

This says that a grand jury is communicating charges to the
suspect of a crime. “Indictment” is only the first
conceptualization of $COURT. The sketchy script has many
other conceptualizations in it as well. However, this is
the only representation that is relevant to the example
story.

It should be noted that the *}j~J~4~~* in the MOBJECT
SUSPECT role and the *H1J ?4J .J~* in the TO role must be the
same . This is not explicitly ind icated in the above
representation , but the constraint is present in the sketchy
script from the fact that they are bound to the same script
variable.

The next relevant sketchy script is $MURDER. It
contains conceptualizations that represent the usual ways to
murder someone, and whether or not the victim died. There
are two conceptualizations important for the example story.
They are:

(ACTOR

*pROPE L*

OBJECT *BULLET*

FROM *GUN*

TO *}flJ~~N*)

This is the conceptual representation for the action of
shooting at someone. The next conceptualization represents
the fact that someone has died: V

(ACTOR

IS *HE~~TH*
VAL —10 )

In addition to the representations, there exists
knowledge about which roles must be coreferent (the person
dying must be the person shot). There is also knowledge
about causal connections between conceptualizations (the
person died because he was shot).

The sketchy script $MURDER is used for processing
attempted murders as well as successful ones. Thus this
predicted event need not always be found or inferred in a
story. In processing the example story, FRUMP satisfied
both of the above events.



1 ~42

The next two conceptualizations represent the relevant
facts in the sketchy script $ARREST:

(ACTOR ‘POLICE’

<:> ‘ATR ANS’

OBJ ECT ‘CONT’
TYPE ‘SOCIAL’
PART ‘HUMAN ’

FROM ‘HU MAN’ V

TO ‘POLICE’) 
-

This is the conceptual representation of arresting a person.
An arrest is an abstract transfer of social control of a
person from himself to the police. There is an additional
constraint that the OBJECT PART filler and the filler of the
FROM role be the same ‘HUMAN ’ . Again this is supplied by
the fact that the two fillers must be bound to the same

V V script variable. Finally in the arrest sketchy script, the
police might charge the suspect. The representation of this
is the following:

( ACTOR ‘POLICE’

‘MTRANS ’

[4OBJECT ‘ACCUSATION’
SUSPECT ‘HUMAN ’
CRIME ‘CRIME’

FROM ‘POLICE’

TO ‘HUMAN ’)

The representation of “charging” is very similar to the
representation for “indicting” that was used in $COURT. The
difference is that to be an indictment, the charge must be
made by a grand jury, while in the arrest script, police
bring the charges.

Now that we have examined the relevant conceptual
representations, we are ready to consider FRUMP’s
processing. The remainder of the chapter will be devoted to
explaining how FRUMP finds instances of these conceptual
representations in the example story.



1 ~3

6.3 An Annotated FRUMP Run

During our disc ussion of FRUMP ’ s processing of this
story we will use the convention of placing the computer
input and output in capital letters and the comments in
lower case . Each of the FRUMP processing messages is
prefaced by the module that generated it.

INPUT:

NEW YORK , MAY 30 -- A FEDERAL GRAND JURY
YESTERDAY CHARGED LUIS SEREZ WITH FIRST DEGREE
MURDER IN CONNECTION WITH THE MAY 16 SLAYING
OF A NEW YORK CITY POLICE OFFICER. OFFICER
FREDRICK GOVEL WAS ALLEGEDLY SHOT BY SEREZ
WHE N HE ATTEMPTED TO QUELL A BARROOM DISPUTE
IN A LOWER MANHATTAN TAVERN . AFTER THE
SHOOTING SEREZ ESCAPED THROUGH AN ALLEY
SERVICE ENTRANCE.

POLICE APPREHENDED SEREZ LAST THURSDAY
WHEN HE SUCCUMBED TO A POLICE RUSE AND RAN OUT
OF HIS WEST 19TH STREET APARTMENT BUILDING
INTO THE HANDS OF WAITING DETECTIVES . A
POLICE DETECTIVE REPORTEDLY PHONED SEREZ
SAYING “SOME GUY SAID CALL THIS NUMBER AND SAY
THE POLICE ARE ON THE WAY TO GET YOU.” AND
THEN HUNG UP. WITHIN MOMENTS SEREZ CAME
RUNNING OUT OF THE BUILDING.

SUBSTANTIATOR:
SEARCHING FOR A STRUCTURE BUILDING WORD

((<:> (‘MTRANS’) MOBJECT (‘ACCUSATION’))) BUILT FROM
WORM ( 15) CHARGED

PREDICTOR :
PREDICTING ROLE (<x >)  WILL BE FILLED WITH AN ELEMENT
FROM THE LIST (‘ATRANS’ ‘PROPEL’ ‘PTRANS’ ‘MTRANS’)

(<:>) ALREADY FILLED WITH ‘I4TRANS’

At this point FRUMP ii trying to figure out what
sketchy script , if any, is appropriate to use in
understanding the story. To start things off , the
SUBSTANTIAT OR asks th. text analyzer to build anything it
can .

The text analyzer finds .~be first word that has a
Structure Building Word Sansi. This word is “charge” which
has a word sense CHARGE 1 that builds an ‘MTRAN S’ of an
‘ACCUSATION’. It was accidental that the correct word sense

_ • 

V



1j ~

of “ charge” was chosen first. FRUMP might as easily have
resolved “charge” to “dem and payment” or “violently
attack.” However, these woul d have been rejected very
quickly by later predictions. Had it resolved the word in a
different way no later predictions would be satisfiable from

V the input .

The word “charged” is the fifteenth word . This is
stored by the text analyzer for future reference. In
FRUMP ’S word numbering scheme , punctuation and
capitalization are represented explicitly in the text and
therefore are numbered as well.

Once some structure has been built, the PREDICTOR asks
that the action role (in CD the <:> role) be filled and
predicts that it will be filled with one of a list of
pr1miti~,e acts. This step is necessary for the PREDICTOR to
begin traversing the Sketchy Script Indicator Discrimination
Tree described in chapter 3. The primitive acts in the list
are the combined different acts that appear in ~~~ reauests
of all of the sketchy scripts in the system. Recall that a
key request is a conceptualization that indicates a
particular sketchy script situation is being described.

The predicted role already has been filled with one of
the desired items (‘MTRANS’).

PREDICTOR :
PREDICTING ROLE (ACTOR ) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘HUMAN’ ‘POLITY’ ‘POLICE’ --

‘GRANDtJURY’ ‘ANIMATE ’ ‘AUTHORITIES ’)

SUBSTANTIAT OR:
PREDICTING (ACTOR) IS SUBJECT OF (CHARGE 1 15 NIL PAST)-

FOUND POSSIBLE ( ‘GRAND—JURY ’) FROM WORD# ( 13) JURY

The PREDICTOR follows the ‘MTRANS’ arc to the next node
in the sketchy script discrimination tree. The next node
tests the ACTOR role. Again there is a list of possible
fillers, any one of which will permit the structure being
built  as a viable key request .

The SUBSTANTIATOR selects parse rule 1 because there is
a word that has been processed which can predict the
syntactic location of the conoeptual ACTOR filler. CHARGE1
predicts that its syntactic subject will be the conceptual
ACTOR. The text analyzer scans for the syntaotio subject
and finds the word ‘jury.” The lexical item “j ury” has
several word senses one of which is a phrase word sense .
Phrase 

V 
word senses were discussed in chapter 5. The phrase



/

1 ~5

of this word sense requires the word “jury” to be preceded
by the word “grand .” If this is the case, it can resolve to
a word sense, GRANDJURY1 , which has as its conceptual entry
‘GRAND—JURY ’ . Since “grand” does precede “jur y, ” and
‘GRAND—JURY ’ matches at least one of the predicted items,
“jury” is resolved to GRANDJURY1.

(SUBSTANT IATOR: )
( ACTOR ) HAS BEEN FILLED WITH ( ‘GRAND—JURY ’)
( FROM ) HAS BEEN FILLED WIT H ( ‘GRAND—JURY ’ )

The word sense CHARGE1 contains the information that
the entity doing the charging is both the filler of the
ACTOR role and the filler of the FROM role in the underlying
conceptualization . Therefore , they are both filled .

PREDICTOR :
PREDICTING ROLE ( MOBJECT ) WILL BE FILLED WITH AN
ELEMENT FROM LIST (‘ACCUSATION’)

(MOBJECT) ALREADY FILLED WITH (‘ACCUSATION’)

The PREDICTOR now asks that the MOBJECT be filled with
something that can be considered an ‘ACCUSATION’. However ,
the MOBJECT role is already filled with ‘ACCUSATION’ from
the structure built by CHARGE1. Therefore, the
SUBSTANTIATOR need not be called .

At this point we will make a slight digression to
discuss a problem that might occur. The SUBSTANTIATOR
filled the ACTOR role with ‘GRAND—JURY’ on the assumption
that the conceptual referent for the word “jury” should be
interpreted as ‘GRAND—JURY’. It need not be interpreted
that way. The ‘GRAND—JURY’ built from the word “jury” can
match several items in the list of predicted fillers. It
can match ‘HUMAN’, ‘GRAND—JURY’ , and ‘ANIMATE’ Thus the
filler of the ACTOR role can be considered a ‘HUMAN’ or an
‘ANIMATE’ as well. However, the SUBSTANTIATOR used the
tightest match. ‘GRAND—JURY’ built ~y the text analyzer canindeed be considered ‘ANIMA TE’, but several levels of
hierarchical inheritance must be followed to match it. On
the other hand , the predicted conceptual entity ‘GRAND—JURY’
matches immediately. The SUBSTANTIATOR always tries the
closest match first. The interpretation can, however , later
be altered . If, for example, the correct interpretation
were ‘ANIMATE’ the SUBSTANTIATOR could reinterpret elements
of the conceptualization built. Thus the system can recc.ver
from errors of this kind .

After noticing the MOBJECT is filled with ‘ACCUSATION’ ,
FRUM P has narrowed the number of viable key requests to two,
both of which are in the sketchy script $COURT . The two



1 J16

possible matches are representations of the grand jury
indicting a person and the grand jur y acquitting a person .

PREDICTOR :
PREDI CTIN G ROLE (MODE) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘POS’ ‘NEG’)

SUBSTANTIATOB :
TEXT ANALYZER UNABLE TO ADD ( MODE ) — CALLING

INFERENCE PROCEDURES

TRYING INFERENCE RULE
ALL TESTS FOR INFERENCE ARE TRUE —— INFERRING
(MODE) IS (‘POS’ CERTAINTY (8))

With this prediction, PREDICTOR is trying to
differentiate between the two viable key conceptualizations
corresponding to a grand jury indicting a person and failing
to indict him . The difference is that the MODE role is
filled with ‘POS’ in one and ‘NEG’ in the other. No parsing
rule was able to add the desired role filler so the role
inferencer was called . There is an inference rule that
permits filling the MODE role with ‘POS’. The certainty of
this rule is 8. Since it is less certain than the parsing
rules, it will not be used unless the parsing rules fail.
In effect, the rule says that if tt~ text analyzer cannot
justify filling the MODE role with anything else, assume
that it is filled with ‘POS’.

PREDICTOR :
PREDICTING ROLE (MOBJECT SUSPECT) WILL BE FILLED

WITH AN ELEMENT FROM THE LIST (‘HUMAN’)

Finally, the PREDICTOR requests that the MOBJECT
SUSPECT role be filled with a ‘HUMAN’. This is the final
role needed to match the conceptualization built from the
input to a key conceptualization of the $COURT sketchy
script . -

SUBSTANTIATOR:
V PREDICTING ( MOBJECT SUSPECT) IS THE VERB—OBJECT

OF (CHARGE1 15 NIL PAST)

FOUND POSSIBLE (‘NAME’) FROM WORM (19) SEREZ
ADDING ‘NAME’ WORD SENSE TO LEXICAL ITEM SEREZ
(MOBJECT SUSPECT) HAS BEEN FILLED WITH (HU M1 )
(TO) HAS BEEN FILLED WITH (HUM1)



114 7

The SUBSTANTIATOR applies parse rule I which predicts
the MOBJECT SUSPECT will be found as the syntactic
VERB—OBJECT. In the position of the syntactic object of the
verb , the text analyzer finds what can be interpreted as a
person’s name. The text analyzer has heuristics about what
a name looks like . For example , it must be capitalized , it
may begin with a title or a known first name, etc. The text
analyzer also knows that when looking for a ‘HUMAN’ it ~ 5
sufficient to find a name. Thus “Luis Serez ” is interpreted
as the name of the ‘HUMAN’ being looked for. At this point ,
a word sense , HUM 1 , is created and added as a word sense of
the last name found , “Serez. ” This word sense has a
conceptual entry which is a ‘HUMAN ’ and has the first name
of LUIS and the last name of SEREZ.

PREDICTOR:
SELECTED SKETCHY SCRIPT $COURT VIA REQUEST Hi

RELEVANT ISSUE SKELETONS ARE (%CRIME )
SCRIPT CANNOT BE INCORPORATED INTO PREVIOUS ISSUE

SKELETONS

CREATING NEW SKETCHY SCRIPT SCO
CREATING NEW ISSUE SKELETON ISO

The PREDICTOR has now identified the sketchy script $COURT.
It also looks for any existing %CRIME issue skeleton. Since
none is found , it creates a new one.

At this point the conceptualization built is:

(ACTOR ‘GRAND—JURY’

‘MTRANS’

MOBJECT ‘ACCUSATION ’
SUSPECT HUM 1

FROM ‘GRAND-JURY’

TO • HUM 1

MODE ‘POS’

This is the minimum conceptual structure needed to
index the $COURT sketchy script . It must be specified by a
person when the script is written. The court sketchy soript
can appear in two issue skeletons: %CRIME and SCIVIL—SUIT.
However , the conceptualization just built is incompatible
with %CIVIL—SUIT. There is no indictment in a civil suit. 

V

However, it fits well with %CRIME. Therefore, the issue
skeleton SCRIME is selected . The PREDICTOR looks for

- 

V



1148

previous %CRIME issue skeletons which this story might
update . When it finds none , it creates new instances of the
%CRIME issue skeleton and $COURT sketchy script.

The %CRIME issue skeleton looks like this:

THE CRIME ISSUE SKELETON

I——> N14

/ criminal
/ sentence

Ni--- motivate —-.> N2 — — — enable —— ) N3 — situation
crime $AEREST $COU RT \

situations
\——> N5

$RELEASE

figure 6. 1

Recall from chapter 3 that sketchy scripts related to
the issue skeleton are activated when it is initiated . This
is activation by implicit reference. Therefore, the sketchy
scripts $ARREST and $RELEASE will be activated in addition
to SCOURT . Furthermore, there is an empty slot for the
crime situation. The PREDICTOR will try to fit future
instantiated sketchy scripts that can be considered “crime
situations” ( such as $KIDNAP and $MURDER ) into this issue
skeleton. The same will be done for “criminal sentence
situations.” This is the way FRUMP identifies the expected ,
but missing , cr ime.

Before FRUMP tries to find instances of the new
predicted events, it tries to fill out the current
indictmen t prediction as much as possible. It continues to
predict missing roles in the conceptualization. The
difference is that now the predictions are based on what was
found in the $COURT sketchy script.

PREDICTOR :
PREDI CTING ROLE (TIME) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘TIME’)

SUBSTANTIATOR:
FOUND POSSIBLE (‘TIME’) FROM WORD# (114) YESTERDAY
(TIME) HAS BEEN FILLED WIT H (TIM 1)

V •VV_ •_ ~ ~~
_ V~~ - .. V _ __  —

-~



1149

The text analyzer found the word “yesterday” and
created a conceptual item TIM1 for it. The only word sense
of “yesterday” builds a time which is one day before the
current date.  The current date is initially set to the
dateline date. Thus TIM1 refers to May 29 and the current
year .

V SUBSTANTIATOR :
PREDICTING (MOBJECT CRIME) IS WITH PREP—OBJECT OF
(CHARGE1 15 NIL PAST)

FOUND POSSIBLE (‘CRIME’) FROM WORDS (23) MURDER

(MOBJECT) HAS BEEN FILLED WITH ($MURDER )

The SUBSTANTIATOR decides to use the text analyzer to
fill the MOBJECT role. The text analyzer uses parse rule 1
to predict that filler of the MOBJECT role will be found as
the object of the preposition “with.” The text analyzer
looks where it expects the object of the preposition “with”
and finds the word “murder. ” The word “murder” has a word
sense that resolves to a reference to the sketchy script
$MURDER . The sketchy script $MURDER is labeled with the
fact that it can be considered a ‘CRIME’.

Thus the script at node Ni of the %CRIME issue skeleton
F is constrained to be the sketchy script $MURDER. Therefore,

by implicit reference, that sketchy script is activated .
Now the PREDICTOR is looking for the events in the sketchy
scripts $MURDER , $ARREST , and $COURT. In addition, FRUMP
will attempt to hook any criminal sentence sketchy script
into this issue skeleton as well.

Also the indictment conceptualization in $COURT is
complete. It looks like this:

(ACTOR ‘GRAND—JURY’

‘MTRANS’

MOBJECT ‘ACCUSATION’
SUSPECT HUM1
CRIME $MURDER

FROM ‘GRAND—JURY’

TO HUM1)

L 

~~~~~~ 

_ _ _ _ _ _ _

__

150

PREDICTOR will ask SUBSTANTIATOR to build any
conceptual structure that might match one of the
predictions.

SUBSTANTIATOR :
SEARCHING FOR A STRUCTURE BUILDING WORD

((TOWARD (‘HEALTH’ VAL (-10)))) BUILT FROM WORDS
(31) SLAYING

PREDICTOR :
PREDI CTING ROLE (TOWARD) WILL BE FILLED WITH AN

ELEMENT FROM THE LIST (‘PHYSTATE ’ ‘HEALTH ’)
(TOWARD) ALREADY FILLED WITH ‘HEALTH’

The SUBSTANTIATOR finds the lexical item “slaying”
which can build a state change. The PREDICTO R is only
interested in certain state changes. One state change that
is likely, given the current context , is a change in health .
The PREDICTOR then notices that ‘HEALTH’ already fills the
TOWARD role.

PREDICTOR :
PREDICTIN G ROLE (ACTOR) WILL BE FILLED WITH AN

ELEMENT FR OM THE LIST (‘HUMAN ’)

V SUBSTANTIATO R :
PREDICTING (ACTOR) IS VERB—OBJECT OF (SLAY1 31 GEE NIL)

FOUND POSSIBLE (‘HU MAN’) FROM WORDS (140) OFFICER
(ACTOR) HAS BEEN FILLED WITH (HU M2)

The PREDICTOR can only use this state change if the
ACTOR is filled with a ‘HUMAN’ . Therefore , it predicts that
the ACTOR rol e will be filled with a ‘HUMAN ’ . The
SUBSTANTIATOR predicts that the desired item will be found
as the VERB—OBJECT of “slaying.” Since “slaying” is a
gerund , syntax rule 9 dictates that the desired item will
probably be the object of the preposition “of.” The
SUBSTANTIATOR finds the word “officer” which has a phrase
word sense “police officer.” The phrase word sense of
“officer” is similar to the phrase word sense used for
“grand jury.” This phrase word sense of “officer” resolves
to ‘POLICEMAN’ which is an occupation . The text analyzer

~iow5 that occupations are often used to refer to a person
with that occupation. A new conceptual entity HUM2 is
created . It has ‘HUMAN ’ as its conceptual referent and also
contains the fact that the occupation of the ‘HUMAN’ is a
policeman.

151

PREDICrO R :
PREDICTING ROLE (TOWARD VAL) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘ITO’ —10)

(TOWARD VAL) ALREADY FILLED WITH (—10)

Finally, the PREDICTOR must differentiate between the
$MURDER predictions of someone dying and ju st being injured .
In an attempted murder, for example , the victim does not die
but might be injured . However, the (TOWARD VA!..) role is
already filled with —10.

The conceptualization built now matches a predicted
conceptualization, that of a person dying . Just as before
there are optional roles. These need not be filled in order
to match the predicted conceptua11~~~ion. They do, however ,
represent information that is imp ar t ~ to find from the
text. The PREDICTOR now tries to ~~~ tiese optional role.

PREDICTOR:
PREDICTING ROLE (TIME) WIL L. BE FILLED WITH AN

ELEMEN T FROM THE LIST (‘TIME’)

SUBSTANTIATOR :
FOUND POSSIBLE (‘TIME’) FROM WORDS (29) MAY

(TIME) HAS BEEN FILLED WITH (TIM2)

The optional role TIME was predicted . SUBSTANTIATOR
found a possible time from the word “May.” A new token TIM2
was created to represent the time of the event. TIM2
contains the date May 16 , 1979. ‘TIME’ is a composite role
filler which has parts of a year, a month , a day, and a
daytime . When such a composite is predicted, SUBSTANTIAT OR
tries to build all of its parts. In this example, the text
analyzer was able to add the month and the day. The year
was added by an inference rule that supplies the current
year.

Now this predicted conceptualization is complete and
FRUMP is ready to build another one.

SUBSTANTIATOR :
SEAR CHING FOR A STRU CTURE BUILDING WORD

((<=> (‘PROPEL’) OBJECT (‘BULLET’) FROM (‘GUN’)))
V BUILT FROM WORDS (51) SHOT

PREDICTOR :

152

PREDICTING ROLE (< :>) WILL BE FILLED WITH AN
ELEMENT FR OM THE LIST (‘ATRANS ’ ‘PROPEL ’
‘PTRANS’ ‘MTRANS’)

((=>) ALREADY FILLED WITH ‘PROPEL ’

PREDICTING ROLE (ACTOR) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘HUMAN ’ ‘POLICE ’)

SUB STANTIATOR:
PREDICTING (ACTOR) IS SUBJECT OF (SH0OT1 51 PASS PAST)

FOUND POSSIBLE (‘HUMAN ’) FROM WORDS (514) SEREZ
(ACTOR) HAS BEEN FILLED WITH (HUM1)

Now the PREDICTOR has built the conceptualization of a
‘PROPEL’ with the ACTOR filled by HUM1 , “Serez.” The text
analyzer knows that “ shot” is passive and so applies syntax
rule 6. It therefore looks at the objec t of the preposition V

“by” instead of the syntactic subjec t for a ‘HUMAN ’ . HUM 1 V
is found as a word sense of “Serez.” Recall that when
FRUMP first recognized the name, it created the conceptual
token HUt4 1 for it which was then added to the word senses of
“Serez.”

PREDICTOR :
PREDICTING ROLE (OBJECT) WILL BE FILLED WITH AN

ELEM ENT FROM THE LIST (‘PHYSOBJ ’ ‘KNIFE’
‘BULLET’ ‘AXE’)

(OBJECT) ALREADY FILLED WITH (‘BULLET ’)

PREDICTING ROLE (FROM) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘GUN’) V

(FRoM) ALREADY FILLED WITH (‘GUN’)

PREDICTING ROLE (TO) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (HUM2)

SUBSTANTIATOR :
PREDICTING (TO) IS VERB—OBJECT OF

(SHOOT 1 51 PASS PAST)

POUND POSSIBLE (HU142) FROM WORDS (148) GOVEL
(TO) HAS BEEN FILLED WITH (BUM2)

The text analyzer finds a possible name with the title
“officer” where it expects to find HUM2. Recall that HUM2
is a ‘HUMAN’ with the occupation of ‘POLICEMAN’. Since the
title officer does not conflict with this occupation, and

- — —a

153

since HUM2 does not yet have an sssigned nam e , the name
found is merged into the created token HUM2.

At this point the PREDICTOR has built a
conceptualization that matches the predicted event of a
shooting as the cause of the death. Therefore, that event
in the sketchy script $MURDER is satisfied. Finally the
PREDICTOR tries to add the optional role TIME. However,
this fails.

Now the PREDICTOR has finished its processing of this
phrase. Once again it asks the SUBSTANTIATOR to build any
partial conceptualization it can . The PREDICTOR will then
try to fill out the partial conceptualization to satisfy
another script conceptualization. The SUBSTANTIATOR looks
for a structure building word. There are several structure
words such as “quell,” “dispute ,” etc. However, none of
these are in phrases that can satisfy any script events.
Each is rejected after minimal processing. That is, after
it is given each of these partial conceptualizations , the
PREDICTOR makes other predictions to augment them so as to
match a script event. The SUBSTANTIATOR is unable to
satisfy any of these predictions .

The next interesting structure building word that is
found is “apprehended” in the second paragraph .

V

SUBSTANTIA TOR:
SEARCHING FOR STRUCTURE BUILDING WORDS
BUILT ((< = > (‘A TRANS ’) OBJECT

(‘CONT’ TYPE (‘SOCIAL’)))) FROM WORDS
(86) APPREHENDED

PREDICTOR :
PREDIC TING ROLE (< :>) WILL BE FILLED WITH AN

ELEMENT FROM THE LIST (‘ATRANS ’ ‘PROPEL ’
‘PTRANS ’ ‘MTRANS ’)

(<=>) ALREADY FILLED WITH (‘ATRANS’)

PREDICTING ROLE (ACTOR) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘POLICE’)

SUBSTANTIA TOR :
PREDICTING (ACTOR) IS SUBJECT OF

V (APPREHEND1 86 NIL PAST)

FOUND POSSIBLE (‘POLICE’) FROM WORDS (85) POLICE
(ACTOR) HAS BEEN FILLED WIT H (‘POLICE’)
(TO) HAS BEEN FILLED WITH (‘POLICE’)

1514

PREDICTOR :
PREDIC TING ROLE (OBJECT) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘OONT’)

(OBJECT) ALREADY FIL LED WITH (‘CONT’)

V PREDICTING ROLE (TO) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘POLICE’)

(TO) ALREADY FILLED FILLED WITH (‘POLICE’)

PR EDICTING ROLE (FROM) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (HUM 1)

SUBSTANTIATOR:
PREDICT ING (FROM) IS VERB—OBJECT OF

(APP R EHEND 1 86 NIL. PAST)

FOUND POSSIBLE (HUM 1) FROM WORDS (88) SEREZ
(FROM) HAS BEEN FILLED WITH (HUM1)
(OBJECT PART) HAS BEEN FILLED WITH (HUM1)

P REDICTOR :
PR EDICTING ROLE (OBJECT TYPE) WILL BE FILLED WITH

AN ELEMENT FROM THE LIST (‘SOCIAL’)
(OBJECT TYPE) ALREADY FILLED WITH (‘SOCIAL’)

PREDICTING ROLE (TIME) WILL BE FILLED WITH AN
ELEMENT FROM THE LIST (‘TIME’)

SU BSTANTIATOR :
FOUND POSSIBLE (‘TIME’) FROM WORDS (91) THURSDAY
(TIME) HAS BEEN FILLED WIT H (TIM3)

PREDICTOR:
SCRIPT EVENT SATISFIED

SUBSTANTIATOR :
INFERRING SCRIPT EVENT ((ACTOR (‘POLICE’) <=> (‘MTRANS’)

MOBJECT (‘ACCUSATION ’ SUSPECT (HUM 1) CRIME ($MU R DE R))
FROM (‘POLICE’) TO (HUNt)))

V

Here, FRUMP satisfies the conceptualization for the
police arresting the suspect. A script inference from that
event is that the police charge the suspect. The
conceptualization inferencer of the SUBSTANTIATOR infers
that event when the arrest event has been built.

_ _ _ _ _ _ _ _ _

V

- V ~~~

V
~~~~~~~~~V V



155

The final representation built for this story consists
of an instance of the %CRIME issue skeleton and three
instantiated sketchy scripts , $MURDER , $ARREST , and $COURT :

CONCEPTUAL STRUCTURE BUILT

%CRIMEOO1: ,..> N14
/ criminal

/ sentence
Ni—— motivate ——— > N2 ——— enable —— > N3 — situation

$MURDEROO 1 $ARRESTOO 1 $COURTOO 1 \ V

$RELEASE

$t4URDEROO 1:
( ACTOR HUM 1

‘PROPEL ’
OBJEC T ‘BULLET’
FROM ‘GUN’
TO HUM2) -

(ACTO R HUM2
IS ‘HEALTH ’

VAL — 10 )

$ARRESTOO 1:
( ACTOR ‘POLICE’
<:> ‘ATRANS’
OBJECT ‘CONT’

TYPE ‘SOCIAL’
PA R T HUM1

FROM HUM1
TO ‘POLICE’
TIME TIM3)

(ACTOR ‘POLICE’
‘MTRANS’

MOBJECT ‘ACCUSATION ’ V

SUSPECT HUM1
CRIME $MURDER

FROM ‘POLICE’
TO HUM1)

-~ - ~~~ V V - V - - - VV ~~ -~ - - - - -~~ - . V - - -V - V __________



156

$COURT OO 1:
(ACTOR ‘GRAND—JURY’

‘MTRANS’
MOBJECT ‘ACCUSATION ’
SUSPECT HUM1
CRIME ‘CRIME’

FROM ‘GRAND—JURY’
TO HUM1
MODE ‘POS’
TIME TIt41)

ENGLISH Si.M4ARY:

LUIS SEREZ MURDE RED FREDRIC GOVEL. POLICE A RRESTED
HIM ON MAY 22, 1975 AND CHARGED HIM WITH MURDER. HE WAS V

INDICTED FOR MURDER ON MAY 29, 1975. 

- — ~~~~~~~~----—.~~~~~~~~ — —V - - - —~~~~~~~



CHAPTER 7

ANNOTATED FR UMP OUTPUT

7.1 Introduction

This chapter contains fourteen different UPI stories
and an explanation of FRUMP’s processing of them . These are
actual stories collected from the UPI wire between June 20,
1978 and March 15, 1979. With the exception of the second
time FRUMP processed the fifth, eleventh, and thirteenth
stories , neither the FRUMP program nor the stories were
altered in any way .

Even though the texts are completely in upper - 

~~ase ,
FRUMP can tell which words are capitalized . The raw text
input contains coded info’mat ion that enables FRUMP to
determine capitalized words.

V Only English is produced by the generator FRUMP used in
processing these stories. There are other generators with
which FRUMP can be run that generate Spanish, Chinese, and
French. Some examples of these were shown in chapter 1.
However, those generators are less robust V and consequently
have very little chance of producing correct natural
language out put s from novel inputs.

These stories were chosen to illustrate the processing
that FRUMP does and some problems that arise when FRUMP
deals with new input.

Just before the suemary of each story FRUMP prints the
processing time taken for that text. FRUMP runs on a DEC
PDP 20/50 with 256K words of real memory.

V 

— 157 —



158

7.2 The Stories

UPI Story 1 , December 5, 1978
INPUT:

CAIRO , EGYPT (UPI )—EGYPT TODAY ANNOUNCED IT WAS
BREAKING OFF DIPLOMATIC RELATIONS WITH BULGARIA .

THE MOVE WAS ANNOUNCED IN A FOREIGN MINISTRY STATEMENT.
IT CAME AFTER BULGARIA RETALIATED AGAINST A POLICE RAID ON
ITS EMBASSY IN CAIRO BY ORDERIN G THE EGYPTIAN AMBASSADOR AND
HIS STAFF TO LEAVE WITHIN THREE DAYS AND RECALLING ITS OWN
DIPLOMATIC LEGATION .

SELECTED SKETCHY SCRIPT $BREAK—RELATIONS

BINDINGS (&SIDE 1 SV155 &SIDE2 SV156 &LEVEL
SV1 57)

REQUESTS (Ri RQ8O R2 RQ81)
INSTANCE $BREAK—RELAT IONS

REQUESTS:
RQBO

SATISFIED = T
((ACTOR &SIDE1 IS (‘LINK’ TYPE (‘DIPLOMATIC’)
LEVEL &LEVEL.) WITH &SIDE2) MODE (‘TF’))

RQ81
SATISFIED : INFERRED

((ACTOR &SIDE2 IS (‘LINK’ TYPE (‘DIPLOMATIC’) ---—- - -

LEVEL &LEVEL ) WITH &SIDE 1) MODE (‘TF’))

SV155
WORD# (68)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘EGYPT ’)

SV156
WORDS (79)
CERTAINTY (10)
TYPE (‘POLITY’)

• COWENT ( ‘BULGARIA0)
SV 157

WORDS (0)
CERTAINTY (14)
TYPE (‘DPL-LEVEL’)
CONENT (‘AMBASSADORIAL’)

CPU TIME FOR UNDERSTANDIN G 353 1 MILLISECONDS

ENGLISH SUP*IARY:
THE ARAB REPUBLIC OF EGYPT ENDED DIPLOMATIC RELATI ONS

-



F’

159

WITH BULGARIA .

When FRUMP is finished , it prints out the instantiated
sketchy script as a closure. To find the filler of the
conceptual role in one of the conceptualizations, one must
find the script variable that fills the role in the list of
BINDINGS. The GENSYMed atom following the script variable
in the BINDINGS list is the memory node created for the
filler. These nodes are printed along with their propsrties
after the conceptualizations. For example, the filler of
the ACTOR role in the first conceptualization is the script
variable &SIDE1. The identifier that follows &SIDE1 in the
BINDINGS list is SV155. The properties of SV155 are that it
comes from word 68, “Egypt ,” the script variable is bound
with a certainty of 10 (very certain), it is a type of
POLITY , and it resolves to the permanent memory token
‘EGYPT ’ , where FRUMP’ s static knowledge about that country
is stored .

The word numbering seems to be off because each UPI
story is preceded by a header, composed largely of special
symbols. Eac h header contains the date and time of
transmission of the story, the reporting point, the
reporter’s name, a story identifier, etc. This is totally
ignored by FRUMP except for the the headline information
(the reporting point and the date).

This story states that Egypt ended diplomatic relations
with Bulgaria. FRUMP represents one country having
diplomatic relations with another as a state existing
between them (a DIPLOMATIC LINK from one to the other). The
breaking of relations is represented as the termination of
the state. This is represented by MODE (‘TP’), the Time of
Finishing of the state.

FRUMP built a conceptua l representation of Egypt ending
relations with Bulgaria. It also inferred, via its
conceptualization inferencer, that Bulgaria also ended
diplomatic relations with Egypt. The CD Role Inferencer of
the SUBSTANTIATOR supplied the inference that the DIPLOMATIC
LINK was at the AMBASSADORIAL level. The Role Inferencer
contains a rule that the default level of diplomatic
relations is ambassadorial. That is, if no level could be
found (e.g. consular) then assume ambassadorial level.
Notice that the certainty of this script variable binding is
only ‘4 while the others are 10.

FRUMP selected the sketchy script $BREAK—RELATIONS by
Event Induced Activation. The script was selected on the
basis of a couceptualization built. There is no single word
contained in this article that can legitimately be marked as
referring to the script for breaking relations. Neither the



— — - -

160

word “broke” nor the phrase “broke off” should have a word
sense specific to countries breaking relations. There are
simply too many different  situations at this level of
specificity where “broke” can be used . The same is true for
“ relations ,” and , to a lesser extent , for “diplomatic .”

Nor should the entire phrase “broke off diplomatic
relations” be tagged with $BREAK—RELATIONS. There are too
many such phrases. The article might have stated the event
as “broke formal relations,” “ended diplomatic ties,”
“terminated formal relations,” etc. It is infeasible to
anticipate them al l .

Instead , FRUMP uses more general definitions of the
words (e .g .  “broke ” has a sense that means “ending a
state”). As explained in chapter 3 an entire
conceptualization built from the text is used to activate a
sketchy script . This script is activated by a
conceptualization representing the time of ending of a
DIPL OMATIC LINK state between two countries.

It should be pointed out that FRUMP did not resolve the
prcnoun “it.” The version of the program that processed
this story did not treat anaphora. Rather it found the word
“Eg ypt” before the verb “break” where it expected the
subj ect to be.

UPI Story 2, February 5, 1979
INPUT :

NAIROBI , KENYA (UPI ) -UGANDAN AUTHORITIES HAVE ARRESTED
SABOTEURS SENT IN FROM TANZANIA WHO EXPLODED BOMBS THA T
BLACKED OUT MANY PARTS OF THE CAPITAL OF KAMPALA AND
DISRUPTED RADIO AND TELEVISION SERVICES , UGANDAN RADIO SAID
MONDAY . V

THE UGANDA BROADCAST GAVE NO NAMES OR NUMBERS, BUT SAID
THEY WERE SUBVERSIVE ELEMENTS SENT IN BY TANZANIAN PRESIDENT
JULIUS NY ERERE AND UGANDAN EXILES LIVING IN TANZANIA.

AN OFFICIAL AT THE SUDANESE EMBASSY , SPEAKING BY
TELEPHONE FROM KAMPALA , SAID PEOPLE IN THE CITY WERE GOING
ABOUT THEIR BUSINESS AS USUAL, BUT THAT PARTS OF THE CITY
WERE WITHOUT POWER .

SELECTED SKETCHY SCRIPT $AR REST

SCO
BINDINGS (&SIDE 1 SV15’4 &PERSON SV155)
REQUESTS (Ri RQ79)
INSTANCE $ARREST

REQUESTS:



161

RQ79
SATISFIED = T

((ACTOR &SIDE1 <~> (‘ATRANS’) OBJECT (‘CONT’ TYPE
(‘SOCIAL’) PART &PERSON) TO &SIDE1 FROM &SIDE2))

V 
SV15I$

WORDS (29)
CERTAINTY (10) V

TYPE (‘POLITY’)
CONENT (‘UGANDA’)

SV155
WORDS (33)
CERTAINTY (10)
TYPE (‘HUMAN’)
CONENTCONEMOD ‘UNSPEC’
TYPE (‘SABOTEUR’)
CONEHEAD ‘SABOTEUR’
COMPOSITE AMOUNT
CONENT (COMPO)

CPU TIME FOR UNDERSTANDING = 146314 MILLISECONDS

ENGLISH SUMMARY :
UGANDA HAS ARRESTED SABOTEURS.

At this point, FRUMP did not have a sketchy script to
process terrorist acts. It did , however, have a sketchy
script to process arrests. Since there an arrest reported
of the terrorists, FRUMP picked out that interpretation of
the text.

The only facts that FRUMP could understand from this
story are the identities of the authorities and the fact
that they arrested saboteurs. FRUMP missed the nationality
of the saboteurs. This is because the nationality is not
explicitly stated . Rather it is an inference from the fact
that the saboteurs were “SENT IN FROM TANZANIA .’~ Tounderstand that phrase, FRUMP must be able to predict that
the event representing the saboteurs change in location is
important in this situation. Of course, that event is not
important in this situation. Rather it is important in the
sketchy script to process terrorist acts. If FRUMP had such
a script while reading the article, that script could have
provided the information necessary for FRUMP to discover the
saboteurs nationality.



162

DPI Story 3, March 15, 1979
INPUT:

JERUSALEM (UPI)—DEFENSE MINISTER EZER WEIZMAN FLEW TO
THE UNITED STATES TODAY TO PIN DOWN AMERI CAN PROMISES
ACCOMPANYING THE EGYPT—ISRAEL PEACE TREATY , BUT ACKNOWLEDGED
THE PACT IS BUT THE FIRST STEP TOWARD A REAL PEACE.

“THERE ’S NO DOUBT THAT WE HAVE MANY , MANY PROBLEMS ON
THE WAY TO A LIFE TOGETHER WITH OUR NEIGHBORS,” WEIZMAN TOLD
REPORTERS AT BEN GURION AIRPORT AS HE LEFT FOR WASHINGTON .

“BUT FIRST OF ALL, WE HAVE AN OPPORTUNITY THAT WE HAVE
BEEN DREAMING OF FOR MANY YEARS-TO FIND A COMMON LANGUAGE
WITH THE EGYPTIANS. AND THAT IN ITSELF IS NOT EASY,” THE
DEFENSE MINISTER SAID .

WEIZM AN WAS TO CONCLUDE AGREEMENTS WITH WASHINGTON ON
THE MILITARY ANNEX TO THE PROPOSED TREATY AND FOR LONGTERM
ARMS SUPPLIES TO ISRAEL AND FINANCIAL AID FOR PULLIN G ITS
ARMY OUT OF THE SINAI AND REDEPLOYING IT IN THE NEGEV.

THE COST OF THE AID HAS BEEN ESTIMATED AT $14 BILLION TO
$5 bILLION BY SEN. HOWARD BAKER , R—TENN., THOUGH SOME
ISRAELI SOURCES HAVE PEGGED THE DIRECT AND INDIRE CT IMPACT
OF THE AID PACKAGE AT UP TO $10 BILLION.

ThE ISRAELI DEFENSE MINISTER SAID BE WOULD ALSO BE
MEETING WITH EGYPTIAN DEFENSE MINISTER KAMEL HASSAN ALl TO
SETTLE OUTSTANDING PROBLEM S ON THE MILITARY ANNEX TO THE
PEA CE TREATY .

ASKED IF PROBLEMS REMAINED ON THE ANNEX , WEIZMAN SAID
“THERE ARE NO PROBLEMS. THERE ARE TECHNICAL DETAILS, SOME
SMALLER, SOME LARGER” INVOLVING THE ISRAELI MILITARY
WITHDRAWAL FROM THE SINAI.

FOREIGN MINISTER MOSHE DAYAN, WHO WAS ORIGINALLY
SCHEDULED TO ACCOMPANY WEIZMAN TO WASHINGTON, CANCELED OUT
AT THE LAST MOMENT BUT MAY RUSH OVER IF HIS PRESENCE IS
REQUIRED , OFFICIAL SOURCES SAID. WEIZMAN WAS EXPECTED TO
WRA P UP HIS MISSION BEFORE SUNDAY , WHEN PRIME MINISTER
MENACHEM BEGIN HAS SAID HIS CABINET WILL VOTE ON THE TREATY
TEXT . THE TREATY WILL THEN GO TO THE PARLIAMENT , PROBABLY
SUNDAY OR MONDAY .

UNOFFICIAL SURVEYS INDI CATED WEDNESDAY THAT PARLIA MENT
WILL. ENDORSE THE TREATY BY A TWOTHIRDS MAJORITY , WITH
OPPOSITION LIKELY ONLY FROM THE COMMUNISTS AND HAWK S WITHIN
BEGIN’S OWN LIKUD BLOC AND ITS MAJOR COALIATION PARTNER , THE
NATIONAL RELIGIOUS PARTY.

SELECTED SKETCHY SCRIPT $MEET



163

BINDINGS
(&HEAD1 G01468 &HEAD2 GO’469 &TOPIC G01470 &DEST G01471

&ORIG G01472 &TIME G01473 &HEAD3 G0147’$ &HEAD I4 GO’475
&HEAD5 G0476)

REQUESTS (R i  G01465 R2 G01466 R3 G01467 )
INSTANCE $MEET -

REQUESTS:
G01465
SATISFIED = T

((<:> ($MEET MEETER &HEAD1 MEETEE &HEAD2 MTOPIC &TOPIC))
LOC &DEST TIME &TIME )

G01466
SATISFIED = T

((ACTOR &HEAD3 <=> (‘PTRANS’) OBJECT &HEAD3 TO &DEST
FROM &ORIG) MODE (‘POS’) TIME &TIME)

GO14 68
WORDS (277)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘ISRAEL’)

G01469
WORDS (288)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘EGYPT’)

G01470
G01471

WORDS (145)
V CERTAINTY (10)

TYPE (‘LOC—DEF’)
CONENT (‘USA’)

G01472
WOR DS (0)
CERTAINTY (7)
TYPE (‘LOC—DEF’)
CONENT (‘ISRAEL’)

GO~473
G014714

WOR DS (‘$2 )
CERTAINTY (10)
TYPE (‘PERSON—FRAME’)
CONENT ‘WEI ZMAN’
REPRE SENT (GO’468)

G0’$75
G0’$76

CPU TIME FOR UNDER STANDING z 6173 MILLISECONDS



16’s

ENGLISH SUMMARY:
EZER WEIZMAN HAS GONE FROM ISRAEL TO THE UNITED

STATES FOR A MEETING BETWEEN ISRAEL AND EGYPT.

FRUMP missed the emphasis of this story. Weizaan went
to the United States primarily to discuss the American role
in Mid—East peace plans. However, as reported in paragraph
six he also met with an Egyptian representative:

THE ISRAELI DEFENSE MIN ISTER SAID HE WOULD ALSO BE
MEETING WITH EGYPTIAN DEFENSE MINISTER KAMEL HASSAN ALl TO
SETTLE OUTSTANDING PROBLEMS ON THE MILITARY ANNEX TO THE
PEACE TREATY .

This is the meeting that FRUMP picked up on. Since
FRUMP missed the main point of the visit , it elevated the
meeting with the Egyptian representative to the reason for
the trip.

FRUMP did not understand “American promises” as the
motivation behind the trip because FRUMP’s current knowledge
about peace treaties does not allow for third party
mediators. The only way a country can relate to a peace
treaty , as far as FRUMP is concerned , is by signing it or
rejecting it .

It would be easy to add the fact that third party
negotiators might exist in peace negotiations and that the
principals might consult with them. It would , however, be
very difficult for FRUMP to understand how the third party
mediators interact and influence negotiations (i.e. what
promises are likely to be made). This is due to limitations
on the representational power of sketchy scripts. The
behavior of mediators is not rigidly defined . They do what
they perceive to be necessary to achieve peace. Their
actions are highly dependent on each particular conflict
situation . Since they are not stylized , these actions do
not lend themselves well to script representation. Thus
FRUMP might be modified to understand that Weizman came to
discuss U.S. assurances. It would be difficult for FRUM P
to understand exactly what assurances were discussed.

Notice that FRUMP inferred that Weizman came from
Israel. This is not stated in the text. One of FRUMP’s
inference rules (in the CD Role Inferencer) states that the
default place to start a trip from is ones home. In
conceptual dependency terms this says that the FROM role of
a PTRANS act may be filled with the home of the OBJECT
filler if that information is available and the FROM role
cannot be filled via a more certain rule.



165

UPI Story 14, December 5, 1978
INPUT :

COLORADO (UPI —RESCUERS ON SNOWCATS PUSHED THROUGH
FIVE—FOOT SNOWDRIFTS TO REACH THE WRECKAGE OF A TWINENGINE
ROCKY MOUNTAIN AIRWAYS PLANE THAT CRASHED IN COLORADO’S
RUGGED BUFFALO PASS. AUTHORITIES REPORTED ONE PERSON HAD
BEEN KILLED BUT THAT 21 OTHERS ABOARD SURVIVED. AMBULANCES
WERE ORDERED TO REMOVE THEM FROM THE WILDERNESS.

SELECTED SKETCHY SCRIPT $VEHICLE—ACCIDE N T

BUNDLE (BN 1)
BINDINGS (&OBJ1 SVI6IS &OBJ2 SV165 &LOC SV166)
REQUESTS (RO RQ87 Ri RQ88 )
INSTANCE $VEHICLE—ACCIDENT

REQUESTS:
RQ88

SATISFIED = T
((ACTOR &OBJ1 <=> (‘PROPEL’) OBJECT &OBJ2) LOC &LOC
MANNER (‘VIOLENT’))

SV16IS
WORDS (69)
CERTAINTY (10)
TYPE (‘VEHICLE’)
CONENT (‘PLANE’) V

SV165
WORDS (0)
CERTAINTY (6)
TYPE (‘PHYSOBJ’)
CONENT (‘GROUND’)

Svi 66
WORDS (71$)
CERTAINTY (10)
TYPE (‘L.OC—DEF’)
CONENT (‘COLORADO’)

“BUNDLES:
BN 1

BINDINGS
(&DEADGRP SV167 &HURTGRP SV168 &MISSINGGRP SV169)

REQUESTS (Hi RQ89 R2 RQ9O R3 RQ91)
INSTANCE I CASUALTY

REQUESTS:
RQ89

SATISFIED ~ T
((ACTOR &DEA DGRP IS (‘HEALTH’ VA!.. (—10))))

SV167
WORDS (87)
CERTAINTY (10)



_____ __ Ii 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

166

TYPE (‘HUMAN ’)
AMOUNT 1
CONENT (COMPO)

sv168
SV169

CPU TIME FOR UNDERSTANDING 21470 MILLISECONDS

ENGLISH SUMMARY:
A VEHICLE ACCIDENT OCCURRED IN COLORADO. A PLANE HIT

THE GROUND. 1 PERSON DIED.

This story describes a plane crash in which one person
was killed . The day this story was read FRUMP was not
working with its standard English generator (the module that
produces the English summaries from the conceptual
representations). Instead it had a earlier simpler
generator. Wh~ .e the summary lacks something in literary
style, it does illustrate very well the underlying
conceptual representation. In a vehicle accident, two of
the important facts are the identities of the vehicle and
physical object with which it collided. In this story, the
vehicle is a plane and the physical object i~ the ground.
FRUMP had to infer that the plane struck the ground. It was
not stated in the text. The input only said that a plane
crashed ; it did not state into what . There is an inference
rule in the CD Role Inferencer that states if an aircraft
PROPELs something VIOLENTly, the objec t PROPEL.ed is probably
the ground. Notice that the script variable for the object
PROPELed is bound to ground with only certainty 6.

This story also illustrates another point. It has
probably occurred to the - reader that if we were actually
interested in producing summaries of stories for their own
sake , rather than using summ aries as a vehicle to study
natural language, an approach might be simply to parrot back
the first sentence of a news article. In this case we would
get the bombastic summary:

RESCUERS ON SNOWCATS PUSHED THROUGH FIVE—FOOT
SNOWDRIFTS TO REACH THE WRECKAGE OF A TWINENGINE ROCKY
MOUNTAIN AIRWAYS PLANE THAT CRASHED IN COLORADO’S RUGGED
BUFFALO PASS.

Thi s “ summary” leaves out the fact that anyone was kill ed
and includes much irrelevant informat ion such as the snow
drifts were five— feet deep.

-

167

UPI Story 5, November 17, 1978
INPUT:

MOSCOW (UP I)— SOVIET PRESIDENT LEONID BREZHNEV TOLD A
GROUP OF VISITING U. S. SENATORS FRIDAY THAT THE SOVIET
UN ION HAD ONCE “TESTED BUT NEVER STARTED PRODUCTION ” OF A
NEUTRON BOMB , BUT ONE SENATOR SAID HE DID NOT CONSIDE R THE
STATEMENT “A SERIOUS MATTER.” -

SEN. SAM NUNN , D—GA , WHO ATTENDED THE SESSION WITH
BREZHNEV , COMMENTED ON THE NEUTRON BOMB STATEMENT TO
REPORTERS AFTERW ARD:

“THE WHOLE THING ABOUT WHETHER THEY tESTED ONE AND
WHETHER THEY MIGHT HAVE THE CAPABILIT Y OF ONE IS NOT A VERY
IMPORTANT FACTOR. IN SOME WAYS I WOULD FEEL MORE

V COMFORTABLE IF THE SOVIETS HAD HEPTRON WEAPONS RATHER THAN
THE MONSTER THEY CALL TACTICAL NUCLEAR WEAPONS.”

NEUTRON BOMBS WOULD BE USED LOCALLY FOR DEFENSE ,
PR IMARILY AGAINS T A TANK ATTACK, AND ARE NOT CONSIDERED
LONG—RANGE STRATEGIC WEAPONS.

SEN. ABRAHAM RIBICOFF, R—CONN 1 HEAD OF THE AMERICAN
DELEGATION, SAID THE 65—MINUTE SESSION WITH BREZHNEV WAS A
90—DE GREE SHIFT FROM THE SHARP EXCHANGES BETWEEN THE
SENATORS AND SOVIET PREMIER ALEXEI KOSYGIN ON THURSDAY.

SELECTED SKETCHY SCRIPT $FIGHTING

BIN DINGS
(&SIDEO sv163 &SIDE1 SV16IS &SIDE2 SV165 &SIDE3 SV166
&SIDE’s sV167 &SIDE5 SV168 &LSIDE SV169 &WSIDE SV17O)

REQUESTS CR0 RQ8’S Ri RQ85 R2 RQ86 R3 RQ87)
INST A NCE $FIGHTING

REQU ESTS :
RQ86

SATISFIED = T
((ACTOR (‘BOMBER ’ PART &SIDEI$) <s> (‘PTRANS’)
OBJECT (‘BOMB’)) LOC &SIDE5)

SV1 63
SV16’s
SV165
SV166
3V167

WORDS (28)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘USSR’)

SY1 68
WORDS (7)

- V ___—

~~~~

-“— - . - - - - .---- - - . -~

168

CERTAINTY (3)
TYPE (‘POLITY’)
CONENT (‘USSR’)

SV1 69
SV17O

CPU TIME FOR UNDERSTANDING = 7887 MILLISECONDS

ENGLISH SUMMARY:
RUSSIAN BOMBERS HAVE ATTACKED RUSSIA.

There are a number of things wrong with FRUMP’s
understanding of this story. This is not a story about a
war; it is about a bomb test. FRUMP decided there were
bombers that dropped a bomb on Russia. It did this by
interpreting the word “bomb” in the first sentence as a verb
rather than a noun. Notice that while FRUMP is quite sure
that Russia is the country that exploded the bomb , it is not
so sure (certainty 3) that Russia is the target. That
script variable was satisfied by parse rule 14. Recall that
parse rule 1$ does not require any syntactic confirmation for
interpreting the text. It relies only on semantic
properties of the words.

The reason FRUMP did not correctly understand this
story is that it did not have the proper sketchy script.
FRUMP built a conceptualization that was very close to the
correct one. After all , a bomb was exploded (although it
was more likely an underground explosion rather than dropped
by bombers). When this story was processed, FRUMP had only
one script that could account for bombings: the sketchy
script to process war stories. FRUMP did not know that
bombs could be exploded for other reasons (e.g. as a test of
a weapon). This script was added along with the required
vocabulary and FRUMP was asked to process the story again:

UPI Story 5, Version 2
INPUT :

MOSCOW (UPI )—SOVIET PRESIDENT LEONID BREZHNEV TOLD A
GROUP OF VISITING U. S. SENATORS FRIDAY THAT THE SOVIET
UNION HAD ONCE “TESTED BUT NEVER STARTED PRODUCTION ” OF A
NEUT RON BOMB , BUT ONE SENATOR SAID HE DID NOT CONSIDER THE
STATEMENT “A SERIOUS MATTER .”

SEN. SAM NUNN, D—GA , WHO ATTENDED THE SESSION WITH
BREZHNEV , COMMENTED ON THE NEUTRON BOMB STATEMENT TO
REPORTERS AFTERWARD:



_ _ _ _ _ _  V - ~~~~~~~~~ 
V

169

“THE WHOLE THING ABOUT WHETHER THEY TESTED ONE AND
WHETHER THEY MIGHT HAVE THE CAPABILITY OF ONE IS NOT A VERY
IMPORTANT FACTOR. IN SOME WAYS I WOULD FEEL MORE
COMFORTABLE IF THE SOVIETS HAD NEUTRON WEAPONS RATHER THAN
THE MONSTER THEY CALL TACTICAL NUCLEAR WEAPONS.”

NEUTRON BOMBS WOULD BE USED LOCALLY FOR DEFENSE ,
PRIMARILY AGAINST A TANK ATTACK , AND ARE NOT CONSIDERED
LONG-RANGE STRATEGIC WEAPONS. -

SEN. ABRAHAM RIBICOFF, R—CONN , HEAD OF THE AMERICAN
DELEGATION , SAID THE 65—MINUTE SESSION WITH BREZHNEV WAS A
90-DEGREE SHIFT FROM THE SHARP EXCHANGES BETWEEN THE

V SENATORS AND SOVIET PREMIER ALEXEI KOSYGIN ON THURSDAY.

SELECTED SKETCHY SCRIPT $COMMENT

BINDIN GS
(&SPEAKER SV17O &BRUNT SV171 &TOPIC SV172 &RECIP SV173)

REQUESTS (Ri RQ86)
INSTANCE SCOMMENT

REQUESTS:
RQ86

SATISFIED = T
((ACTOR &SPEAKER <=> (‘MTRANS’) MOBJECT (‘CONCEPT ’
ACTION &TOPIC TYPE (‘UNSPEC’) ABOUT &BRUNT)
TO &RECIP) MANNER (‘UNSPEC’))

SV17O
WORDS (13)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘BREZHNEV’)

SV1 7 1
SV172

TYPE (‘CD’)
CONENT((<=>($TEST ACTOR (‘USSR’ CERTAINTY (10)

WORDS (28)) OBJECT (‘BOMB’ CERTAINTY (10)
WORDS ( 14 14 ))))

SV173
WORDS (19) V

CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘USA’)

CPU TIME FOR UNDERSTANDING = 9531 MILLISECONDS

ENGLISH SUMMARY :
LEONID BREZHNEV TOLD THE UNITED STATES THAT RUSSIA

HAS TESTED A BOMB.



170

Here, FRUMP correctly understood the “bombing” as a
weapons test. FRUM P now correctly identifies the verb of
the phrase as “tested .” “Bomb” is then interpreted as a
noun rather than a verb .

UPI Story 6, March 15, 1979
INPUT :

ISRAELI—OCCUPIED WEST BANK (UPI)-ISRAELI SOLDIERS FIRED
AT ROCK— THROWING PALESTINIANS PROTESTING THE
EGYPTIAN—ISRAELI PEACE TREATY THURSDAY, KILLING A YOUNG MAN
AND A TEEN-AGED GIRL AND WOUNDING A THIRD YOUTH.

IN THE MOST VIOLENT DAY OF PROTESTS YET IN THE OCCUPIED
WEST BANK , SOLDIERS ALSO USED TEAR GAS AND FORCE TO DISPERSE
DEMONSTRATORS IN EAST JERUSALEM , HEBRON , BETHLEHEM AND THE
LARGELY CHRISTIAN SUBURB OF BElT JALLAH , AS WELL AS JERICHO ,
RAMALLAH AND NEARBY REFUGEE CAMPS.

MILITARY SOURCES SAID THE SHOOTING AT HA LHUL BEGAN WHEN
A CROWD OF 600 HIGH SCHOOL STUDENTS AND ADULTS SURGED ONTO
THE MAIN ROAD LINKING HEBRON AND IJERUSALEM . THEY STONED A
SQUAD OF EIGHT ISRAELI SOLDIERS AND A CAR CARRYING FOUR
CIVILIANS.

AN OFFICIAL ARMY ~TATEMENT REPORTED THE SOLDIERS “WERE
CAUGHT IN A VIOLENT DISTURBANCE.” IT SAID BOTH CIVILIANS AND
SOLDIERS FIRED WEAPONS , BUT DID NOT SAY WHO SHOT FIRST .

MAYOR MUHAMAD MILHAM SAID THE DEAD WERE NASRI HANANI ,
21 A LABORER , AND RABA SHALAL.DE , 17 A HIGH SCHOOL STUDENT.

SELECTED SKETCHY SCRIPT $DEMONSTRATIO N

BINDINGS
(&SIDE1 G0711 &SIDE2 G0712 &OBJ G0713 &PLCE1 G07114
&PLCE2 G0715 &NAT1 GO7i6 &INVOLVE G0717 &EVENT 00718
&COUNTRY 00719 &VICTIM G0720 &LOC G0721 &ACTION 00722)

REQUESTS
(RO G07O5 El G0706 R2 GO707 R3 00708 R14 G07O9 R6 00710)

INSTANCE $DEMONST RATION
REQUESTS:
00708
SATISFIED = T

((ACTOR &SIDE1 NAT &NAT1 <:> (‘MTRANS’) MOBJECT
(‘CONCEPT’ ACTION &ACTION TYPE (‘DISSENT ’))))

00711
WORDS (147)



171

CERTAINTY (10)
TYPE (‘HUMAN’)
CONENT (‘PALESTINIAN’)
AM OUNT (G0699 )

00712
G07i3
007114
00715 

V

G07 16
WORDS (0)
CERTAINTY (6)
TYPE (‘POLITY’)
CONENT (‘ISRAEL’)

G07 17
007 18
G0719
00720 -

G0721
GO722

CPU TIME FOR UNDERSTANDING = 72146 MILLISECONDS

ENGLISH SUMMARY:
ISRAELI PALESTINIANS HAVE VOICED DISSENT.

FRUMP correctly classified story 6 as a demonstration
story. However, it missed the casualties. Notice that the
nationality of the demonstrators is bound to Israel with
only a certainty of 6. This is because the nationality had
to be inferred from the location. FRUMP’s CD Role

- 

- 
Inferencer has a rule that if someone’s nationality is
needed and cannot be filled by a higer certainty process,
his nationality is probably the same as the country of his

V location.

UPI Story 7, November 15, 1978
INPUT :

V 

NEW YORK (UPI)—MARGARET MEAD, ONE OF THE NATION’S MOST
FAMOUS ANTHROPOLOGISTS ‘~ND SOCIAL CRITICS , DIED WEDNESDAY OF
CANCER AT THE AGE OF 76. DR. MEAD, WHO KNEW SHE WAS DYING,
KEPT TO HER BUSY SCHEDULE OF RESEARCH AND WRITING UNTIL SHE
WA S HOSPITALIZED SIX WEEKS AGO AT NEW YORK HOSPITAL.

A PRIVATE FUNERAL SERVICE AND BURiAL WAS BEING ARRANGED
IN BUCXINGHAM , PA. 

~~~~~~~ . • V  ~~~~~~ _ _ _ _


172

THE 5-FOOT-2—INCH ANTHROPOLOGIST WAS A CLASSIC EXAMPLE
OF FEMALE LIBERATION YEARS BEFORE THE TERM BECAME POPULAR.
HER YEAR S OF RESEARCH WIT H PRIMITIVE AND SOPHISTICATED
CULTURES CONVINCED HER THA T MODERN SOCIETY MUST CURB ITS
AGG RESS IONS.

IN AN INTERVIEW EARLIER THIS YEAR SHE SAID CHILDREN
WERE THE KEY TO THE UNITED STATES ‘FUTURE— “WE HAVE TO LEARN
HOW TO LIVE WITHOUT VIOLENCE AND GREED.”

SELECTED SKETCHY SCRIPT $DEATH

BINDINGS (&LOC SV157 &STIFF SV158)
REQUESTS (Ri RQ81)
INSTANCE $DEATH

REQUESTS:
RQ8 1

SATISFIED = T
((ACTOR &STIFF IS (‘HEALTH’ VAL (— 10))) LOC &LOC)

SV157
SV158

WORDS (37)
CERTAINTY (10)
TYPE (‘H(JMAN—DEF’)
CONENTSEX (FEMALE)
NAME (MEA D—O)
FNAME (MARGARET)
LNAME (MEAD)

CPU TIME FOR UNDERSTANDING 51439 MILLISECON DS

ENGLISH SUMMARY:
MARGARET MEAD DIED.

This story appeared on November 15, 1978. It
illustrates FRUMP’s ability to create a memory token for a
person it does not know. Before FRUMP read this story it
did not have “Margaret Mead” in its dictionary. It is
impractical to attempt to anticipate every important
person’s name. Instead, we have given FRUMP heuristics on
how to recognize people’s names. When it has a top down
prediction that an individual person (rather than a group)
will be found at a specific location in the input , FRUMP
will accept unknown text as a person ’s name if its
heuristics are satisfied . Basically FRUMP’ s heuristics are
that a name is a list of capitalized words perhaps with
initials int.rsp. rs.d at the beginning and middle and
optionally preceded by a title or occupation. FRUMP also
haC a list at typical first names in English. This list is

173

used to guess at the gender of the person. This is how
FRUMP determined that Margaret Mead was a female.

When it recognizes a name, FRUMP creates a permanent
memory token for the person where all the knowledge learned
about that person is stored . In this example, the memory
token created is MEAD—O . The information under MEAD—0
includes that it represents a definite person, the person is
female with a first name of Margaret and a last nam e of
Mead. If FRUMP had known the word “Anthropologist,” it
would have understood and stored away her oceupation as
well. FRUMP understood this story with $DEATH , the sketchy
script to process obituaries. At the time this story was
processed $DEATH did not contain the information that the
person ’s age is important. Therefore, FRUMP could not add
the information that she was 76.

tp 8 UPI Story 8, March 27, 1979
INPUT :

CLEVELAND (UPI) —EVER SINCE THE DAWN OF PANTYHOSE ON THE
“UNMENTIONABLE” MARKET KILLED HER BUSINESS, GIRDLE DESIGNER
PAUL A BLATT HAS BEEN SCHEMIN G TO MAKE A COMEBACK . THE
78-YEAR —OLD WOMAN IS ATTEMPTING TO DESIGN A GIRDLE THA T
WON ’T SLIP AND SLIDE AND CAN BE WORN OVER PANTYHOSE. “SUCH
A GIRDLE COULD REVITALIZE BUSINESSS THAT HAS BEEN LOST TO
THE PANTYHOSE ,” SAID MRS. BLATT, HOLDER OF 52 PATENTS FOR
HER CREATIONS—INCLUDING MATERNITY PANTIES , NO—CHAFE PANTIES
AND GARTER BELTS.

AT ONE TIME , THE ACCLAIMED AUTHORITY ON MATERNITY
LINGERIE AND COMFORT GARMENTS , SAID SHE WAS KNOWN AS “THE
EXPECTANT MOTHER ’S BEST FRIEND .”

ALTHOUGH SHE NEVER HAD CHILDREN OF HER OWN , SHE STUDIED
THE DISCOMFORTS OF CHILDBEARING AND , WITH THE HELP OF
DOCTORS WHO APPROVED HER WORK , DESIGNED MATERNITY GARMENTS.

BUT HER BUSINESS , NU VOGUE CREATIONS, HAS NEVER HAD IT
SO BAD.

IN 37 YEARS , SHE BUILT UP A CLIENTELE FROM HER DOWNT OWN
SHOP WHICH ONCE INCLUDED SPECIALT Y SHOPS ACROSS THE COUNTRY
AND CUSTOMERS IN HONG KONG , EUROPE AND SOUTH AMERICA. BUT
MACHINES IN HER SHOP WHICH ONCE HUMMED AS 15 WOMEN SEWED
GIRDLES AND OTHER “UNMENTIONABLES” NOW ARE SILENT.

“MY SISTER LOANED ME A PORTABLE SEWING MACHINE AND I
HAD TO SCRAPE UP $50 TO TO START A CHECKING ACCOUNT,” SHE
REMINISCED. “I HAD DIFFICULTY IN HEARING , I WAS TIMID AND I
HATED SELLING , BUT I WAS FORCED TO MAKE A LIVING , SO I KEPT
PLUGGING AWAY. ”

1714

MRS. BLATT STILL COMES TO HER SHOP DAILY TO HELP HER
TWO EMPLOYEES FILL ORDERS. SHE HOPES FOR THE DAY WHEN
GIRDLES WILL COME BACK IN STYLE.

SELECTED SKETCHY SCRIPT $DEATH

00889
BINDINGS (&LOC G0891 &STIFF G0892)
REQUESTS (El G089O)
INSTANCE $DEATH

REQUESTS:
GO890

SATISFIED = T
((ACTOR &STIFF IS (‘HEALTH’ VAL (— 10))) L.OC &LOC)

00891
G0892

WORDS (50)
CERTAINTY (10)
TYPE (‘HUMAN—DEF’)
CONENTSEX (FEMALE)
NAME (BLATT—O)
FNAME (PAULA)
LNAME (BLATT)

CPU TIME FOR UNDEBSTANDING 3287 MILLISECONDS

ENGLISH SUMMARY:
PAULA BUTT HAS BEEN KILLED.

FRUMP completely misunderstood this story. It saw only
the English input “ XXXX KILLED XXXX PAULA BLATT.” Since it
could not interpret any of the intervening words, FRUMP
thought it was about a woman dying.

This illustrates a very troublesome kind of error from
which FRUMP suffers. To understand this story correctly
FRUMP must be able to reject this interpretation. This
interpretation can be eliminated by either of two methods:
1) give FRUMP the correct script so it will process the
story correctly thus eliminating the false alarm 2) reject
this interpretation on syntactic grounds — after all “PAULA
BUTT” is not the object of the verb “KILLED,” “BUSINESS”
is.

This story cannot be fixed by adding a sketchy script
to FRUMP’s repertoire. If the story is interesting, it is
because it portrays a likable old woman in a rags—to—riches
story. Perhaps it is also interesting because the idea of
mentioning wom ens’ “UNMENTIONABLES” seems humorous in our
culture . At any rate the important points that ought to

*0—ADYt ~32

-.
TAL E IR41V NEW HAVEN COI*d DEPT OF COieuttm SCIENCE ,, . en N
SKI MM ING STORIES IN REAL TIlE: AN EXPERIMENT IN INTEGRATED tRlb(e~ftC(U)
MAY 79 S F DEJONS N000fl—75—C—titi

UNCLASSIFIED RR 1U

~

HAUBI EDflflR9QEIS ’
~flIfl flfl~

)~4R .

/
I

III ll I.O~~L~~
_ _ _

L ~ 2.2
L L ~~~

11111 ‘• ‘ IL

liii!’ .25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAROS-1963-A

175

show up in a summary are not of a scripty nature. The
events described in this story are not easily anticipatable
by a person writing the script.

However , rejecting the interpretation on syntactic
grounds is not the answer either. If FRUMP were to perform
a syntactic parse of the input prior to understanding, it
would become very similar to many previous natural language
systems . The whole point of FR UM P is to integrate the text
analysis process with understanding .

What is the correct solution? FRUMP must not do an
initial syntactic parse, and its script applier cannot
provide the proper predictions to process the story. The
correct solution would seem to be to augment FRUMP ’s
PREDICTOR so it could make more than just scripty
predictions. The flaw is not in FRUMP’s organization. The
flaw is relying on a script applier to reject this
interpretation. Since a script applier cannot understand
the correct interpretation of the article, it cannot reject
the current interpretation. However, this is not to say
that predictive understanders in general are incapable of
processing this story; only script appliers are. A more
flexible type of predictive understander, such as Wilensky’s
plan applier (Wilensky (1978]), might well be capable of
making the required predictions to guide parsing. Currently
the plan applier is not nearly robust enough for FRUMP’s
purposes. Presumably one day the problems prohibiting a
robust plan applier will be solved. Until then we must be
content for FRUM P to mis—process these kinds of stories.

UPI Story 9, February 16, 1979
INPUT:

WASHINGTON (UPI)—THE UNITED STATES FORMALLY RECOGNIZED
THE AYATOLLAH RUHOLLAH KHOMEINI’S GOVERNMENT FRIDAY AND
WARNED MOSCOW TO STOP SPREADING “FALSE ACCOUNTS OF
U. S. ACTIONS” IN IRAN .

THE TWIN MOVES CAME ON THE EVE OF U. S. ATTEMPTS TO
AIRLIFT UP TO 5,000 AMERICANS OUT OF IRAN WITHOUT BLOODSHED ,
AN OPERATION THA T WILL REQUIRE THE SUPPORT AND PROTECTION OF
THE REVOLUTIONARY ISLAMIC GOVERNMENT.

STATE DEPARTMENT OFFICIALS SAID AMBASSADO R WILLIAM
SULLIVAN , WHOSE EMBASSY WAS SACKED BY LEFTIST GUERRILLAS
WEDNESDA Y , DELIVERED THE TEHRAN GOVERNMENT A NOTE EXTENDING
IT FORMAL U. S. DI PLOMATIC RECOGNITION .

THAT STEP SNAPPED AMERICA ’S LAST OFFICIAL LINK WITH THE
DYNASTY OF THE EXILED SHAH MOHAPI1ED REZA PAHLAVI—A PRIME
U. S. ALLY FOR NEARLY *0 YEA RS.

176

SELECTED SKETCHY SCRIPT $ESTABLISH—RELATIONS

SC 1 ~ BINDINGS (&SIDE1 5V207 &SIDE2 SV208 &LEVEL. SV209)
REQUESTS (Ri RQ1O~ R2 RQ1O5 R3 RQ1O6 R~ RQ1O7)INSTANCE $ESTABLISH-RELATION S

REQUESTS:
RQ1O~SATISFIED = T

((ACTOR &SIDE1 <=> (‘INVOKE’) MEANS (‘LINK’ TYPE
(‘DIPLOMATIC’) LEVEL &LEVEL) WITH &SIDE2) MODE (‘POS’))

RQ1O5
SATISFIED = INFERRED

((ACTOR &SIDE1 IS (‘LINK’ TYPE (‘DIPLOMATIC’)
LEVEL &LEVEL) WITH &SIDE2) TIME (‘TS’))

RQ1O6
SATISFIED = INFERRED

((ACTOR &SIDE2 IS (‘LINK’ TYPE (‘DIPLOMATIC’)
LEVEL &LEVEL) WITH &SIDE1) TIME (‘TS’))

SV207
WORD# (37)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘USA’)

SV208
WORD# (76)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘KHOMENI’)

SV2O 9
WORD# (0)
CERTAINTY (Z~)
TYPE (‘DPL-LEVEL’)
CONENT (‘AMBASSADORIAL’)

CPU TIME FOR UNDERS TAN DING = 5855 MILLISECONDS

ENGLISH SU*IARY:
THE UNITED STATES AND IRAN HAVE ESTABLISHED DIPLOMATIC

TIES.

This story and the next one illustrate the advantages
activating sketchy scripts from concepts rather than key
words. Both of the stories are about diplomatic
recognition . This story contains the word “RECOGNIZE ” which
might be used as a key word. However, this is not possible
in the next story .

177

UPI Story 10, February 16 , 1979
IN PUT:

WASHINGTON (UP I)—THE UNITED STATES IS READY TO R ESUME
FULL DIPLOMATIC RELATIONS WITH IRAQ , THE STATE DEPARTMENT
SAID TODAY .

IRAQ HAS BEEN IN THE FOREF RONT OF RADICAL ARAB NATIONS
OPPOSED TO ISRAEL.

TODAY’S STATEMENT CAME IN RESPONSE TO OVERTURES FROM
THE BAGHDAD GOVERNMENT , WHICH SAID IT WAS INTERESTED IN
IMPROVING THE LEVEL OF RELATIONS WITH WASHINGTON.

BOTH COUNTRIES HAVE “INTERESTS SECTIONS” IN THE OTHER’S
CAPITAL , BUT THEY HAVE NOT EXCHANGED AMBASSADORS SINCE IRAQ
BROKE OFF RELATIONS IN 1967 DURING THE SIX—DAY MIDDLE EAST
WAR.

“THE UNITED STATES IS READY TO RESUME FULL DIPLOMATIC
RELATIONS WIT H IRAQ, ” SAID DEPARTMENT SPOKESMAN TOM R ESTON .

THE UNITED STATES HAS 15 PEOPLE STATIONED IN BAGHDAD
AND OPERATIN G OUT OF THE BELGIAN EMBASSY THERE. IRAQ HAS 10
PEOPLE STATIONED IN WASHINGTON , WORKIN G IN THE INDIAN
EMBASSY .

~)ISCUSSIONS ABOUT RESTORING FULL RELATIONS HAVE BEEN
GOING ON SPORADICALLY SINCE 1975 BUT THE IRAQIS BROKE OFF
THE TALKS SEVERAL TIMES , APPARENTLY IN PROTEST OVER THE
U. 5. MEDIATION ROLE IN THE MIDDLE EAST .

SELECTED SKETCHY SCRIPT $ESTABLISH—EELATIONS

Scil
BINDINGS (&SIDE1 SV186 &SIDE2 3V187 &LEVEL sv188)
REQUESTS (Ri RQ9I4 R2 RQ95 R3 RQ96 R~ RQ97)
INSTANCE $ESTABLISH—RELATIONS

REQUESTS:
RQ9k
SATISFIED = INFERRED

((ACTOR &SIDE1 (z> (‘INVOKE’) MEANS (‘LINK’ TYPE
(‘DIPLOMATIC’) LEVEL &LEVEL) WITH &SIDE2) MODE (‘POS’))

RQ95
SATISFIED ~ T

((ACTOR &SIDE 1 IS (‘LINK’ TYPE (‘DIPLOMATIC’)
LEVEL &LEVEL) WITH &SIDE2) TIME (‘TS’))

RQ96
SATISFIED s INFERRED

((ACTOR &SIDE2 IS (‘LINK ’ TYPE (‘DIPLOMATIC’)
LEVEL &LEVEL) WITH &SIDE1) TIME (‘TS’))

SV186

178

WORD# (27)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘USA’)

SV187
WORD# (*1)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘IRAQ’)

SV188
WORD# (0)
CERTAINTY (*)
TYPE (‘DPL—LEVEL’)
CON ENT (‘AMBASSADORIAL’)

CPU TIME FOR UNDERSTANDING 6639 MILLISECONDS

ENGLISH SUMMARY :
THE UNITED STATES AND IRAQ HAVE ESTABLISHED DIPLOMATIC

TIES.

This is a prime example of event induced script
activation. In the absence of a semantically rich word like
“RECOGNIZE” FRUMP must build up a conceptualization from
individual words to activate a sketchy script. Here the
words “ RESUME DIPLOMATIC RELATIONS” build the structure
which activates the sketchy script $ESTABLISH-RELATIONS .

The same concept is built for each of the two previous
stories. The difference is that in the first one the bulk
of the concept was built from the semantically rich word
“RECOGNIZE.” In the second story an entire English phrase
~ad to be analyzed in order to build the concept.

It should be pointed out that FRUMP did not decide that
the ties were on the ambassadorial level from the word
“FULL.” Rather “AMBASSADORIAL” was supplied by an
inference rule.

UPI Story 11 , March 26, 1979
INPUT :

JERUSALEM (UPI)—A BOMB EXPLODED IN THE WALLED OLD CITY
OF JERUSALEM MONDAY JUST ABOUT THE SAME TIME THE LEADE RS OF
EGYPT AND ISRAEL SIGNED A PEACE TREATY IN WASHINGTON.

A POLICE SPOKESWOMAN SAID THERE WER E “SOME” CASUALTIES
BUT NO FURTHER DETAILS WERE IPV’IEDIATELY AVAILABLE.

~~~~~~~~~~~ .~~~ :1.:.. . : ~~~~~~~~~~~



179

THE BOMBING CAME DESPITE INCREASED SECURITY PRECAUTIONS
BY ISRAELI ARMY TROOPS AND BORDER GUARDS AGAINST POSSSIBLE
ATTACKS BY ARABS OPPOSED TO THE TREATY .

BUT ARABS IN THE WEST BANK AND GAZA STRIP DECLARED
MONDAY A DAY OF MOURNIN G, SHUTTING THEIR SHOPS FROM NABLUS
TO GAZA TO PROTEST WHAT THEY SEE AS A BETRAYAL OF THEIR
CAUSE.

SELECTED SKETCHY SCRIPT $AGREE

G05113
BINDINGS (&SIDE 1 G051$5 &SIDE2 G05*6

&AGREEMENT G05*7)
REQUESTS (Hi Gos~s*)
INSTANCE $AGREE

REQUESTS:
GO51~1
SATISFIED : T

((ACTOR &SIDE1 <:> (‘HTRANS’) MOBJECT (‘CONCEPT’
TYPE (‘AGREE ING’) ABOUT &AGREEMEN T) TO &SIDE2))

GO5~I5 WORD# (75)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT(’EGYPT’ ‘ISRAEL’)

(‘EGYPT’ ‘ISRAEL’)
(‘ANIMATE’)

G05’16
WORD# (75)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT(’EGYPT’ ‘ISRAEL’)

(‘EGYPT’ ‘ISRAEL’)
(‘ANIMATE’)

G051$7
WORD# (79)
CERTAINTY (10)
TYPE (‘MOBJECT’)
CONENT (‘TREATY’)

CPU TIME FOR UNDERSTANDING • 2763 MILLISECONDS

ENGLISH SUT44ARY:
EGYPT AND ISRAEL HAVE AGREED TO A TREATY .



180

FRUMP missed the point of this story. It did not have
a sketchy script to process terrorist bombings. However, it
does have one for signing treaties.

UPI Story 11 , Version 2
IN PUT :

JERUSALEM (UPI)—A BOMB EXPLODED iN THE WALLED OLD CITY
OF JERUSALEM MONDAY JUST ABOUT THE SAME TIME THE LEADE RS OF
EGYPT AND ISRAEL SIGNED A PEACE TREATY IN WASHINGTON.

A POLICE SPOKESWOMA N SAID THERE WERE “SOME” CASUALTIES
BUT NO FURTHER DETAILS WER E IPIIEDIATELY AVAILABLE .

THE BOMBING CAME DESPITE INCREASED SECURITY PRECAUTIONS
BY ISRAELI ARMY TROOPS AND BORDE R GUARDS AGAINST POSSSIBLE
ATTACKS BY ARABS OPPOSED TO THE TREATY .

BUT ARABS IN THE WEST BANK AND GAZA STRIP DECLARED
MONDAY A DAY OF MOURNING , SHUTTING THEIR SHOPS FROM NABLUS
TO GAZA TO PROTEST WHA T THEY SEE AS A BETRAYAL . OF THEIR
CAUSE .

SELECTED SKETCHY SCRIPT $EXPLOSION

SCO
BUNDLE (BNO )
BINDINGS (&OBJ SV163 &LOC SV161~)
REQUESTS (Ri  RQ81 )
INSTANCE $EXPLOSION

REQUESTS:
RQ81
SATISFIED = T

((ACTOR (‘EXPLOSION’) <~> (‘PROPEL’) OBJECT &OBJ)
LOC &LOC)

SV1 63
SV1 6i4

WORD# (60)
CERTAINTY (10)
TYP E (‘LOC—DEF’)
CONENT (‘JERUSALEM’)

“BUNDLES:
BNO

BINDIN GS
(&DEADGRP SV165 &HURTGRP SV 166 &MISSINGGRP SV167)

REQUESTS (R i  RQ85 R2 RQ86 R3 RQ87)
INSTANCE I CASUALTY

REQUESTS:
RQ86
SATISFIED • T

((ACTOR &HURTGRP IS (‘HEALTH’ VAL (— 3))))



181

SV1 65
SV 166

AMOUNT (‘UNSPEC’)
TYPE (‘HUMAN’)
CONENT (‘HUMAN’)

SV167

CPU TIME FOR UNDERSTANDING = 5250 MILLISECONDS

ENGLISH SUMMARY:
AN EXPLOSION IN JERUSALEM HAS INJURED SEVERAL PEOPLE.

The appropriate sketchy script was added together with
several new vocabulary words and the same story was
processed again. This time FRUMP correctly classified the
story and understood the important fact that some people
were injured .

UPI Story 12, March 26, 1979
IN PUT:

MIAMI (UPI)—U . S. SURGEON GENERAL JULIUS RICHMOND MET
MONDAY FOR THREE HOURS IN HAVANA WITH CUBA’S PUBLIC HEALTH
MINISTER , DR. JOSE GUITIERREZ MUNIZ , HAVANA RADIO ANNOUNCED.

THE 7 P. M. BROADCAST, MONITORED IN MIAMI , SAID
RICHMOND , ALSO ASSISTANT SECRETARY FOR HEALT H IN THE
DEPARTMENT OF HEALTH , EDUCATION AND WELFARE , WAS ACCOMPANIED
TO THE MEETING BY “MEMBERS OF THE U. S. DELEGATION WHO
AR RIVED IN CUBA A FEW HOURS AGO.”

(AN HEW SPOKESMAN IN WASHINGTON SAID RICHMOND WENT TO
HAVANA TO “LOOK AT THE HEALTH CARE DELIVERY SYSTEM IN CUBA .”
THE SPOKESMAN SAID RICHMOND IS EXPECTED TO RETURN TO
WASHINGTON FRIDAY. )

THE CUBAN DELEGATION INCLUDED VICE MINISTERS OF THE
PUBLIC HEALTH DEPARTMENT ALONG WITH “ALL MEMBERS OF THE
COUNCIL OF THE MINISTRY OF PUBLIC HEALTH ,” THE BROA DCAST
SAID.

HAVAN A RADIO SAID NUNI Z DELIVER ED A “BROA D EXPLANATION
OF HEALTH SERVICES IN CUBA , THEIR ORGANIZATION , PRINCIPAL
PROBLEMS AND PROSPECTIVE SOLUTIONS .”

IT QUOTED RICII4CND AS PRAISING CUBANS FOR THE “WARM
WELCOME RECEIVED” BY THE U. S. DELEGATION .

SELECTED SKETCHY SCRIPT $MUT

-_

_ _ _ _ _ _ _



182

G0831$
BINDINGS

(&HEAD1 G0838 &HEAD2 G0839 &TOPIC GO8~O &DEST G081~1&ORIG G08132 &TIME G08’s3 &HEAD3 G081$~$ &HEADI$ 008115
&HEAD5 008116)

REQUESTS (Ri G0835 R2 G0836 R3 00837)
INSTANCE $MEET

REQUESTS:
00835
SATISFIED = T

((<z> ($MEET MEETER &HEAD 1 MEETEE &HEAD2
MTOPIC &TOPIC)) LOC &DEST TIME &TIME )

G0838
WORD# (28)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘USA’)

G0839
WORD# (50)
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘CUBA’)

G08110
00841
G0842
008113
0081411
G08145
G081$6

CPU TIME FOR UNDERSTANDING • 51303 MILLISECONDS

ENGLISH SUMMARY :
THE UNITED STATES HAS MET WITH CUBA .

While this is a very superficial sunmary, it is
adequate for the purpose the meeting script was designed
for . One of the anticipated applications of FRUMP is as
part of a system to predict world crises tram newspaper
stories. It has been shown (NoClelland (1969]) that a
statistical index can be computed between pairs of countries
which correlates well with crisis situations between those
countries . The stat istioal index is a function of recent
actions between the t.wo countries as reported in the world
pres s.

McClellsnd has developed a scheme for coding ~~ws
articles designed to captur e the relevant information . Each
oode repr esents a particular interaction between countries.

___________________________________ 

______
_______ 

C



183

The codes are classified as friendly or unfriendly. To take
two extremes, giving aid is a friendly act while bombing is
a hostile act. Basically the idea is that a crisis is
unlikely to occur between two countries soon after a large
number of friendly acts. However , the occurrence of
unfriendly acts between two countries might lead to a crisis
situation.

FRUMP’s role in this is to automate the process of
assigning codes to news articles. This has been the
motivation for giving FRUMP most of the particular sketchy
scripts it has and accounts for the heavy bias toward
scripts for dealing with international events.

The sketchy script $MEETING was designed to understand
the information necessary for producing the appropriate
crisis code. This includes identifying the countries
involved and that a meeting took place. Thus the above
suanary captures all the information necessary for the
correct code generation.

UPI Story 13, March 15, 1979
IN PUT :

NAIR OBI , KENYA (UPI)—ARAB STATES HAVE PLEDGED $13
MILLION TO HELP PRESIDENT IDI AMIN BATTLE AN INVASION FROM
TANZANIA , WHICH AMIN IS CONFIDENT OF CRUSHING BECAUSE “GOD
IS ON THE SIDE OF UGANDA .”

THE UGANDAN ARMY IS “WILLING TO FIGHT TO THE LAST MAN ,”
AMIN SAID WEDNESDAY IN APPEA LING FOR HELP FROM FOUR ARAB
MIN ISTER S GA iHERED IN THE UGANDA N CAPITAL OF KAMPALA FOR A
MEETING OF THE ISLAMIC DEVELOPMENT BANE.

IN A CONCILIATORY GESTURE , THE UGAN DAN LEADE R ALSO SAID
HE WAS WILLIN G TO HOLD PEACE TALKS WITH TANZANIAN PRESIDENT
JULIUS NIERERE AND VOWED HIS TROOPS WILL NOT INVADE “ONE
INCH” OF TANZANIAN SOIL.

TANZANIAN GOVERNMENT SOURCES HAVE ALREADY REJECTED
SUGGESTIONS FOR A FACE—TO—FACE MEETING BETWEEN THE
UNPREDI CTABLE AMIN AND NYE RERE , WHO HAS VOWED TO OUST THE
UGANDAN LEADER.

THE ENVOYS FROM SAUDI ARABIA , THE UNITED ARAB EMIRATES,
ABU DHABI AND LIBYA , WHICH ALREADY SENT 1,000 AND PLANELOADS
OF MILITARY EQUIPMENT TO UGANDA , AGREED TO GIVE AMIN , WHO IS
NOW A MOSLEM, $14 MILLION IN AID.

AMIN ’S APPEALS COINCIDED WITH REPORTS BY UGANDAN EXILES
THAT THE INVADERS HAD DEFEATED PALESTINIAN—LED UGANDA N UNITS
IN THE LATEST FIGHTING IN CLASHES NEAR THE TOWN OF LUKAYA,



1811

65 MILES SOUTH OF KAMPALA .

THE SOURCES SAID THE UGAN DANS RETREAT ED AFTER SUFFER ING
HEAVY CASUALTIES. WOUNDED SOLDIERS WERE JAMMING KAMPALA
HOSPITALS AND OTHERS WERE EVACUATED BY MILITARY AIR CRAFT TO
LIBYA FOR TREATM ENT , THE SOURCES SAID.

AMIN TOLD THE ARAB MINISTERS HE WAS CONFIDENT HIS ARMY
WAS CA PABLE OF “CONTAINING ” THE INVASION AND OUSTING THE
ATTACKERS FROM THE LARG E AR EA OF SOUTHERN UGANDA THEY OCCUP Y
BECAUSE “GOD IS ON THE SIDE OF UGANDA .”

BUT HE ALSO SAID THE INVADIN G FORCE OUTNUMBERED HIS OWN
ARMY BY A 3—TO — 1 MARGIN AND WAS COMPOSED OF SOME “50 ,000 .”

WESTERN MILITARY SOURCES SAID THE INVASION FORCE
NUMBERED LITTLE MOR E THAN 14,000 MOST OF THEM REGULAR TR OOPS
FROM THE TANZANIAN ARMY BUT ALSO INCLUDING ANTI —AMIN UGANDAN
EXILE GUERRILLAS.

SELECTED SKETCHY SCRIPT $FIGHTING
G0506

BUNDLE (G0521)
BINDINGS

(&SIDEO 00511 &SIDE1 00512 &SIDE2 G0513 &SIDE3 005114
&SIDEII 00515 &SIDE5 G0516 &LSIDE 00517 &WSIDE 00518)

REQUESTS (RO 00507 Ri 00508 R2 00509
R3 00510)

INSTANCE $WAR
REQUESTS:
00508

SATISFIED = T
((ACTOR &SIDE2 <z> (‘PTRANS’) OBJECT (‘TROOPS’)
TO &SIDE3))

00511
00512
G05 13

WOR D# (51 )
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘AM IN’)

G05 114
WOR D# (57 )
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘TANZANIA’)

00515
005 i 6
00517
00518

“BUNDLES:

____________  I 
—



185

G052 1
BINDINGS

( &DEADGRP 00525 &HURTGRP G0526 aIIISSINGGRP G0527 )
REQUESTS (R i  00522 R2 G0523 R3 G05214)
INSTANCE CASUALTY

REQUESTS:
00523

SATISFIED = T
((ACTOR &HURTGRP IS (‘HEALTH’ VAL (— 3 )) ) )

G0525
G0526

WORD# (3314)
CERTAINTY (10)
TYPE (‘HU MAN’)
CONENT’UNSPEC’

(‘SOLDIER’)
‘SOLDIER’
AMOUNT
(G052O)

CPU TIME FOR UNDERSTANDING = 7575 MILLISECONDS

ENGLISH SUMMARY:
IDI AMIN HAS SENT TROOPS INTO TANZANIA . SOLDIERS

HAVE BEEN INJURED.

FRUMP completely misunderstood this story . The
vocabulary word “PLEDGED” was not yet in the dictionary when
FRUMP processed this story the first time. The word was
added and the story was skimmed again.

UPI Story 13, Version 2
INPUT :

NAIROB I , KENYA (UP I )— ARA B STATES HA VE PLEDGED $11
MILLION TO HELP PRESIDENT IDI AMIN BATTLE AN INVASION FROM
TANZANIA , WHICH AMIN IS CONFIDENT OF CRUSHING BECAUSE “GOD
IS ON THE SIDE OF UGANDA .”

THE UGANDAN ARMY IS “WILLING TO FIGHT TO THE LAST MAN ,”
MUM SAID WEDNESDAY IN APPEALING FOR HELP FROM FOUR ARAB
MINISTERS GATHERED IN THE UGANDAN CAPITAL OF KAMPA LA FOR A
MEETING OF THE ISLAMIC DEVELOPMENT BANK .

IN A CONCILIATORY GESTURE , THE UGANDAN LEADER ALSO SAID
HE WAS WILLING TO HOLD PEACE TALKS WITH TANZANIAN PRESIDENT
JULIUS NYERER E AND VOWED HIS TROOPS WILL NOT INVADE “ONE
INCH” OF TANZANIAN SOIL.

J .



/

186

TANZANIAN GOVERNMENT SOURCES HAVE ALREADY REJECTED
SUGGESTIONS FOR A FACE—TO—FACE MEETING BETWEEN THE
UNP REDICTABLE AMIN AND NYERERE , WHO HAS VOWED TO OUST THE
UGANDAN LEADER.

THE ENVOYS FROM SAUDI ARABIA , THE UNITED ARA B EMIRATES,
ABU DHABI AND LIBYA , WHICH ALREADY SENT 1,000 AND PLANELOADS
OF MILITARY EQUIPMENT TO UGANDA , AGREED TO GIVE AMIN , WHO IS
NOW A MOSLEM, $13 MILLION IN AID .

AMIN ’S APPEALS COINCIDED WIT H REPORTS BY UGANDAN EXILES
THAT THE INVADERS HAD DEFEATED PALESTINIAN —LED UGANDAN UNITS
IN THE LATEST FIGHTING IN CLASHES NEAR THE TOWN OF LUKAYA ,
65 MILES SOUTH OF KAMPALA .

THE SOURCES SAID THE UGANDANS RETREATED AFTER SUFFERING
HEAVY CASUALTIES. WOUNDED SOLDIERS WERE JAMMING KAMPALA
HOSPITALS AND OTHERS WERE EVACUATED BY MILITARY AIRCRAFT TO
LIBYA FOR TREATMEN T , THE SOURCES SAID .

ANN TOLD THE ARAB MINISTERS HE WAS CONFIDENT HIS ARMY
WAS CAPABLE OF “ CONTAINING ” THE INVASION AND OUSTING THE
ATTACKER S FROM THE LARGE AREA OF SOUTHERN UGANDA THEY OCCUPY
BECAUSE “GOD IS ON THE SIDE OF UGANDA .”

BUT HE ALSO SAID THE IN VAD ING FORCE OUTNUMBERED HIS OWN
ARMY BY A 3—TO — 1 MARGIN AND WAS COMPOSED OF SOME “50,000.”

WESTERN MILITARY SOURCES SAID THE INVASION FORCE
NUMBERED LITTLE MORE THAN 14,000 MOST OF THEM REGULAR TROOPS
FROM THE TANZANIAN ARMY BUT ALSO INCLUDING ANTI—AMIN UGANDAN
EXILE GUERRILLAS .

SELECTED SKETCHY SCRIPT $GIVE—AID

BINDINGS (&DONOR SV161 &RECIP SV162
&AID SV163)

REQUESTS (Ri RQ83 R2 R Q814)
INSTANCE $01 YE—AID

REQUESTS:
RQ83

SATISFIED : T
((ACTOR &DONOR (z> (‘ATRANS ’) OBJECT &AID FROM
&DONOR TO &RECIP) MANNER (‘WILLING’))

SY 161
WORD# (37 )
CERTAINTY (10)
TYPE (‘POLITY’)
CONENT (‘ARAB-NATIONS’)

SV 162
WORDS (51)



187

CERTAINTY ( 10)
TYPE (‘POLITY’)
CONENT (‘AI4IN’)

sYl 63
WORD# (141)
CERTAINTY (10)
TYPE (‘DOLLAR—VALUE’)
CONENTCOHEMOD • 11000000

CONEHEAD • ‘DOLLAR’
TYPE z (‘DOLLAR—VALUE’)
COMPOSITE • AMOUNT
REMPROP • T
CONENT z (cOMPOSO)

CPU TIME FOR UNDERSTANDIN G = 6273 MILLISECONDS

ENGLISH SUPIIARY:
ARAB NATIONS HAVE GIVEN IDI AMIN 13000000 DOLLARS IN

AID.

With the new word, FRUMP selected the correct sketchy
script and picked up the amount of aid.

UPI Story 114 , June 20 , 1978
INPUT :

A SHARP EARTH TREMOR TUESDAY SHOOK BUILDINGS IN GREECE
AND SENT PEOPLE FLEEING IN PANIC FROM THEIR HOUSES, POLICE
SAID.

THE FULL EXTENT OF THE DAMAGE WAS NOT IMMEDIATELY
KNOWN , BUT POLICE REPORTED THAT THREE PEOPLE HAD BEEN
INJURED IN THE QUAKE.

THERE WAS NO IMMEDIATE REPORT FROM ATHENS OBSERVATORY
AS TO THE INTENSITY OF THE TREMOR BUT THE UNIVERSITY OF
CALIFORNIA SEISMOGRAPHIC STATION IN BERKELEY SAID THE QUAKE
MEASURED 6.3 ON THE OPEN—END RICHTER SCALE.

THE CALIFORNIA LABORATORY PINPOINTED THE EPICENTER SOME
60 MILES SOUTH OF SOFIA , BULGARIA , AND 200 MILES NORTH OF
ATHENS IN THE BORDER REGION BETWEEN GREECE, YUGOSLAVIA AND
BULGARIA.

SELECTED SKETCHY SCRIPT $EARTHQUAKE

BLRIDLIE (Bil l BN2)
BINDINGS

(&LOC SV3O &MA G SV31 &TIME SV32 &DURATION SV33)
REQUESTS (El RQ1II)
INSTANCE $EARTH QUAKE



— - -  —

H
188

REQUESTS:
RQ1 11

((ACTOR (‘GEO—FORCE’) <=> (‘PTRANS’) OBJECT &LOC ) MANNER
(‘CYCLIC’) MAGNITUDE AMA G TIME &TIME DURATION &DURATION)

SV3O
CERTAINTY (10)
TYPE (‘LOCATION’)
CONENT (‘GREECE’)

SV31
CERTAINTY (10)
READING (6.3000000)
SCALE (‘RICHTERSCALE’)
TYPE (‘QUAKEMAG’)
CONENT (‘QUAKEMAG’)

SV32
SV3 3

“BUNDLES:
BN 1

BINDINGS (&VALUE SV314)
REQUESTS (Ri RQ15)
INSTANCE I DAMAGE

REQUESTS:
RQ1 5

((ACTOR (‘PROPERTY’ VAL &VALUE) IS (‘PSTATE’ VAL (— 3 ) ) ) )

SV31$
BN2

BINDINGS (&DEADGRP SV35 &HURTGRP SV36)
REQUESTS (R i RQ16 R2 RQ1T)
INSTANCE ~CASUALTY

REQUESTS:
RQ1 6

((ACTOR &DEADGRP IS (‘HEALTH’ VAL (—10))))
RQ1 7

((ACTOR &HURTGRP IS (‘HEALTH’ VAL (— 3 )) ) )

SV35
5V36

CERTAINTY (10)
AMOU NT (3)
UNIT (‘PERSON’)
TYPE (‘HUMAN-GROUP’)
CONENT (‘HUMAN-GROUP’)

CPU TIME FOR UNDERSTANDING • 590~$ MILLISECONDS

ENGLISH SUPI4ARY :
THERE WAS AN EARTH QUAKE IN GRE EC E WHICH MEASURED 6.300

ON THE RICHTER SCALE. 3 PEOPLE WERE HURT.



189

Story 11$ again demonstrate s that the first sentence of
a news article canno t rel iably be used as an adequate
suemar y of the article. The first sentenc e of this story
mentions that there was an earthquake in Greece but does not
give the Richter scal e l.,.l or the num ber of people killed.
Obviously an adequate s~~~sry ought to contain that
infor mation .

7.3 A Day in the Life of FR UMP

On April 5, 1979 FRUMP was run continuously on UPI wire
input for 21$ hour e. During this time 368 stories appeared
on the wire . Of the~s 100 were not actual news articles and
1147 were not acripty news articles. Thus there were 121
news stories that could in principle be under stood by a
script type approach such as FRUMP ’s. In fac t , FRUMP had
correct sketchy scripts for 29 of the articles of which ii
were processed correctly. As pointed out in chapter 1, on
the average , 50% of the stories on the UPI wire are ecripty,
and FRUMP generally processes about 10% correctly. Here
FRUMP correctly processed only about 3% of the total number
of stories correctly. This is due to the comparatively
small number of scripty stories on April 5. Only about one
third of total number of stories were ecripty compared to
the normal 50%. Furthermore, the distribution of scripty
si tuations was such that FRUMP’s sketchy scripts accounted
for less than a quarter of the ecripty stories. This figure
is usually close to 30%. Taking these facts into account,
FRUMP did quite well. It understood approximately 38% of
the stories for which it had a sketchy script.

The following tables summarize the results from that
day.

_ _  _ _  _  _ _ _ _ _ _ _ _  _



190

ANAL YSIS OF THE FRUMP RUN

L : STORIES UNDERSTOOD CORRECTLY i i
STORIES UNDERSTOOD ALMOST CORRECTLY 2 1

I (INCORRECT SCRIPT VARIABLE BINDING)
STORIES IGNORED 13

(CORRECT SCRIPT PRESENT BUT NOT IDENTIFIED)
I STORIES MISUNDERSTOOD 8
1 (INCORRECT SCRIPT USED — CORRECT SCRIPT MISSING)
STORIES MISUNDERSTOOD 1 1
(INCORRECT SCRIPT USED — CORRECT SCRIPT PRESENT )

I TOTAL STORIES FOR WHICH SCRIPTS EXIST 29
TOTAL STORIES FOR WHICH CORRECT SCRIPT WAS SELECTED 13 1

Table 7.1

ANA LYSIS BY SCRIPT

CORRECT f WRONG BINDING IGNORED FALSE ALA RM I
I I I I I
$FIGHT 3 $MEET 2 $FIRE 1$ $MEET 2
$COI4IENT 3 $MEET 2 1 $REJECT 2 1
$THREAT 2 $FIGHT 2 $THRE&T 1
$DEATH 2 $DEATH 2 I $DEATH 1
$VEHAC 1 $VEHAC 2 I $PROPOSE 1

I $ACCUSE 1 $PROTEST 1
$FIGHT 1 1

I I I I I
I I I I I

Table 7.2

This table shows how individual sketchy scripts
performed . The “WRONG BINDING” column indicates stories for
which FRUMP selected the correct sketchy script but )
misunderstood information in the article. The “IGNORED”
column contains stories that FRUMP did not process in spite
of having the correct sketchy script . The “FALSE ALARM ”
column contains stories that FRUMP thought it understood but
in fact did not .



191

CAUSE OF ERR ORS

1 MISSING VOCABULARY ii 1
L I MISSING SCRIPT 9 1

I COMPL EX SYNTAX 2 1
1 INCORRECTLY WRITTEN SCRIPT 1
1 PROBLEM RECOGNIZING NAME GROUP 1 1

Table 7.3

Tabla 7.3 shows the cause of the errors for the
non—correct entries in table 7.2. The primary difficulty is
vocabulary. The second most important reason for errors is
lack of the correct script. Seven of the stories that
appear in the “FALSE ALARM ” category of table 7.2 woul d have
been processed correctly if FRUMP had the appropriate
sketchy script. For these, FRUMP’s vocabulary would
probably have to be augmented as well. Two stories were
missed because FRUMP ’s knowledge of syntax was insufficient.
One story was missed because the writer of the $MEET sketchy
script neglected to include relevant information. Another
story about a meeting was processed wrong because FRUMP did
not correctly identify the members of a group of people.



192

SCRIPT SELECTION CONFUSION MATRIX

SCRIPT FRUMP SELECTED

A B C D E F G H I TOTAL 
+———+———+-——+——-+———+-——+———+-——+———+ 

A $THREAT 1 2 1 I 1 1 I 1 1 1 2
C +———+———+-——+———+———+———+———+——— +———+— 

O B $FIGHT 1 1 3 1  I I 1 1 2 1 5
R + — — —+— — — + — — —+ — — — + — — — + — — —+— — — +— — — +— — — +  

R C $COMMENT I 1 1 3 1  1 1 1 I I 3
E  +— —— + -— — +— — — +— — —+ -— — +— — — +— — — + -— — + - —_ + —  

C D $DEATH I 1 1 1 2 :  1 I I 1 2 1 1 4
T — + ---+ - — -+ - — —+ ——— +— — —+— — —+— — —+—__ +_ —_ +  

E $VEHAC I 1 I I l l  I 2 1 1
S  + — — — + — — — + — — — + — — - + - — — + — — - +— — -+ - — —+— — — +  

C F $MEET I I 1 1 1  1 1 2 1  1 1 2 1 5
H +——— +———+———+———+———+——— +———+— —— +_ —_ + 

I G $FIR E 1 1 1 1 1 1 1 1 1 1 3 1 1 $
P +— — — +— — — + — — — + — — — + —  — — + — — — + — — — + — — — + — — — +  

T H OTHER 1 1 1 2 1  1 1 1 1 3  
+———+-——+———+———+———+-- -+—-—+——-+—-—+— 

I M S S I N G I 1 I 1  1 1 1 : 2 : 1 1 1 : 1 9  
+——— +———+———+——— +———+———+———+———+———+ 

TOTAL 3 1 14 6 1 3 1 1 1 14 1 0 1 14 113 I 38 
+———+——— +—- .— +———+———+———+———+———+———+— 

A B C D E F G H I

Table 7. 1$

Table 7.1$ is a confusion matrix for script selection .
Entries on the left side indicate the correct classification
of stories . Thus there were 2 actual stories about one
country threatening another , 5 stories about two countries
fighting , etc . Th• columns indicate the way FRUMP
classified the stories. FRUMP thought there were 3 threaten
stories , 1$ fighting stories , etc . The numbers along the
principle diagonal are stories for which FRUMP selected the
correct sketchy script .

7. 1$ FRUMP ’s Knowledge Base

FRUMP currently has 148 sketchy scripts in its
repertoire. They are:

— 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



193

$ACCEPT—BID $ACCUSE $AGREE
$APPROVAL $ARREST $ASSAULT
$ASYLUM $BLOCKADE $BREAK—

NEGOTIATIONS
$BREAK $COPtIENT $DEATH

RELAT IONS
$DEMAN D $DEMONSTRATION $DENY
$DEPORT $DETAIN $EARTHQUAKE
$ELECTION $ESTABLISH— $ESTABLISH—

NEGOTIATIONS RELATIONS
$EXPEL $EXPLOSION $FIGHTING
$FIND-ASSET $GIVE—AID $HOSPITAL
$KIDNAP $MEE T $MOBILIZATION
$NATIONALIZE $NO—AGREEMENT $POSTPONE
$PRICE—INCREASE $PROPOSE $PROPOSE2
$PROTEST $REDUCE—AID $REJECT
$SEIZURE $SPILL $STORH
$STR IKE $STRUCTURE—F IRE $TERROR
$THREATEN $VEHICLE- $WEAPONS-TEST

ACCIDENT

FRUMP’s present vocabulary is approximately 1100 words.
This is relatively small and it accounts for the most
important reason for missing stories in the April 5 run . As
table 7.3 shows, 11 stories were missed or incorrectly
processed due to insufficient vocabulary. The number of
stories correctly processed would be doubled but for
vocabulary problems.

There are no insurmountable problems associated with
increasing FRUMP’s vocabulary. As we saw in chapter 5 the
dictionary definition of a single word is quite simple and
therefore uses very little storage. Furthermore, FRUMP’s
efficiency is not compromised by increased vocabulary. None
of FRUMP’ a processing is sensitive to the size of its
vocabulary . Thus the largest obstacle to greater success
for the system is the effort required to add four or five
thousand more vocabulary items.



CHA PTER 8

EXTENDING THE PREDICTOR: ORGANIZING SKETCHY SCRIPTS

8.1 Introduction

Often understanding an article solely in terms of its
relevant scripts is insufficient for producing an acceptable
summary. Rather, the situations that make up the article
must be related to each other and to scripty situations from
previous articles. Consider the following first paragraphs
of two New York Times articles:

1) The State Department released a statement
today that certain economic sanctions against
Cuba would be lifted — among them the 12—year
old ban on exports to Cuba by foreign
subsidiaries of American companies. However,
the State Departmen t spokesman said that the
embargo on direct trade between Cuba and the
United States remained in force.

2) In a two hour news conference Premier Fidel
Castro tonight praised the decision of the
United Stat•s to permit increased trad e with
Cuba.

The only sketchy script identifiable in the first
article is the script to handle announcements of
organizations, $ANNOUNCE. The important items in $ANNOUNCE
are the identity of the organization making the
announc ement, the identity of the person representing the
organization who acts as the spokesman, and what was
announced. FRUMP understands this story as the United
States State Department announcing improved economic
relations with Cuba.

- 191$ - /



195

The appropriate sketchy script in the second story is
$PRESS—CONFERENCE; the story is about a press conference
situation. The press conference sketchy script tries to
identify who ii holding the conference and what he said.
FRUMP ’s final representation of the second story is an
MTRANS by Castro that he approves of an action by the United
States , and that action is the improved economic relations
with Cuba.

These two articles relate strongly to each other . Any
person reading them both realizes that the action by the
United States reported in the first article is the action
that was praised by Cuba in the second. FRUMP must also
connect the two instantiated sketchy scripts for these
articles. Relating the representations of different news
events has two advantages: 1) it allows FRUMP to construct
a more complete and accurate summar y and 2) it makes FRUMP’s
processing more efficient and robust.

The best summaries of later articles often use
information from former articles. A good summary of the
second article is “In a press conference Castro said he
approved of the announcement of the U.S. State Department
to relax economic sanctions against Cuba.” This summary
includes the information from the second artic’e that Castro
praised the U.S. and information from the first article
that the action being praised is lifting economic sanctions
by the State Department. In order to construct a summary
such as this the two articles must somehow be related within
FRUMP’s memory. If they are not related , the summary of the
second article can include only the less accurate phrase
“improved economic relations” rather than the more explicit
“reduced economic sanctions.” The more explicit information
exists only in the representation of the first article.
Thus relating the articles in multi—article news events is
important for summarization.

Connecting articles about related news topics in
FRUMP’ a memory can also make FRUMP’ s processi ng more robust.
Suppose that for some reason FRUMP were unable to understand
the action for which Castro praised the U.S. in the second
story . This could happen it FRUMP did not know one of the
important words or phrases or it ths article specified the
action using an odd or complicated sentence structure or it
an important input word were misspelled. If no attempt is
made to connect it with the previous story , FRUMP will
understand it only as “Castro prai.ed the U.S. ” That is alec
the best s~~~ary that can be produced . If , howevsr , FRUMP
ii able to connect the representation of the second story
with the first via the infer ence that the action for ~~ich
Castro praised the U.S. ii probably the action announced by
the State Department . This the representation of the second
story will be complete and the system will still he able to

— — .  —



196

provide the summary “In a press conference Castro said he
approved of the announcement of the U.S. State Department
to relax economic sanctions against Cuba .” The required
inference can be made by appeal ing to information about
situations in which countries “praise” each other , and on
information about embargoes.

Furthermore, if FRUMP is able to connect the
instantiated sketchy script of a story to previous related
articles before it has finished processing the story, the
information from the previous articles can often be used to
make processing the current story more efficient. For
example, FRUMP is able to connect the story about Castro’ a
press conference with the previously processed story about
the State Department’s announcement before it has discovered
why Castro is praising the U.S. This enables FRUMP to make
a very strong and explicit prediction about what the
praising is likely to be about. As we saw in chapters 1$ and
5 FRUMP’s processing is most efficient when it is able to
make very explicit predictions.

Thus FRUMP can benefit rrom connecting related news
articles in its memory. Two problems remain: exactly what
is the organizing structure, and how can FRUMP recognize
that a particular news situation fits in one of these
structures?

8.2 Issue Skeletons

A ~ew issue is a large news event encompassing more
than one script situation. For example, a disagreement
between countries might result in dissolution of diplomatic
ties , border incidents, and eventually an all—out war. Each
of these items is a news situation in itself, and therefore ,
each has its own sketchy script. However, they must be
considered together to be recognized as a reasonable way for
a shooting war to start. Another exemple is a political
campaign. It consists of an announcement of candidacy, a
number of campaign activities such as giving speeches, a
convention , mor e camp aign activities , and an election . Each
of these components are sketchy script situations as well.
However , a larger news issue unfolds when they are related
to each other. The events surrounding a crime comprise a
news issue: the crime is committed, a suspect is arrested ,
and a trial i• convened . Each of these is a sketchy script
situation in its own right but together they form a news
issue • Most scripty news articles report situations that
are actually part of a lar ger news issue .



197

An i~~i~ skeleton is the data structure which specifies
to FRUMP how a news issue normally progresses. It does this
by specifying what script situations are likely, in what
order to expect them, and how each follows from the last.
Consider, for example, the natural disaster issue skeleton
discussed briefly in chapter 1$~

NATURAL DISASTER ISSUE SKELETON

Ni >———— \
disaster \ / I CASUALTY \
script ~ bundle

I /
(cause) >—> (cause) ———< >—— (motivate)

1 / /
I / / 1
V / \__> Nle > /
N2 )————/ 1 DAMAGE V

secondary bundle N5
disaster $RELIEF
scripts

figure 8.1

Issue skeletons are made up of nodes and directed links
between the nodes. In computer science terms it is an
acyclic directed graph . In the natural disaster issue
skeleton in figure 8.1 there are five such nodes . Each node
of an issue skeleton can be attached to one or, in some
cases, several instantiated sketchy scripts. At each node
are constraints as to what sketchy script or class of
sketchy scripts can be hooked to it. The links between the
nodes indicate how the script situations at the different
nodes are related . For example , nodes Ni and N2 are
connected by a “cause” link which indicates an unknown
causal relation . This link in figure 8.1 means that the
original disaster can lead to other disasters through some
perhaps complex and , to FRUMP , unanalyzed causal connection.
Nodes 1(3 and 1(i$ are connected by a “motivate” link to node
15. Nodes 1(3 and 11$ represent the human casualties and
property damage fro. the combined disasters. The link
indicates that the casualties and property damage can
motivate some other actor to give relief aid to the stricken
area. That is, some other actor might instantiate the
sketchy script $RELIEP with the recipient being the same
location as in the disaster sketchy scripts.

Figure 8.1 says that a natural disaster news issue is
(am tar as FR UMP is concerned) an original disaster which
can cause a number of secondary disasters , human casualties,

H .
~~
-.

~~~~~~
_

_ _ _ _ _ _ _

198

and property damage. Further, the casualties and property
dasag. cs.~ then motivate relief efforts to the affected
area.

As an aside , a secondary disaster is a class of sketchy
script situations. A sketchy script for a disaster
situation which can conceivably have a non—natural cause is
labeled a secondary disaster sketchy script. This
classification is necessary if FRUMP is to decide which is
the . original disaster. A forest fire is classified as a
secondary disaster since it might be started by an arsonist
or ruptured gas main. However , since an earthquake or storm
can only be attributed to “acts of God ,” they are not
secondary disasters. Being marked as a secondary disaster
does not eliminate the possibility of an instance of the
sketchy script being the original disaster of a natural
disaster issue skeleton. That is, it does not prevent the
sketchy script from being hooked to node Ni; it merely
indicates that this script could conceivably be hooked to
node N2. Thus the sketchy script for forest fires might be
an original or secondary disaster . It can be connected to
either Ni or N2. However , earthquakes , as far as FRUMP is
concerned , cannot be the result of other disaster
situations. The earthquake sketchy script can only be
connected to Ni , not N2.

Although most of FRUMP’s issue skeletons are similar to
the natural disaster issue skeleton in complexity . However ,
some are very much more complex. The level of complexity of
an issue skeleton is determined by how muc h we want FRUMP to
find out about about instances of that news issue. If it is
important for FRUMP to understand many details about a news
issue and if those details are usually reported , the issue
skeleton for that news issue will be complicated. If, on
the other hand , it is not important or not possible for
FRUMP to pick up many different facts about a news issue ,
the issue skeleton will be relatively simple.

8.3 What Makes Up an Issue Skeleton

There are two kinds of nodes and three kinds of links
possible in an issue skeleton. These will be discussed
next.

199

8.3.1 Kinds of Nodes

Nodes can be either single script instance nodes or
multiple instance nodes. This simply indicates the number
of different instantiated sketchy scripts that can be
attached to the node. An example of a single instance node
is Ni in figure 8.1. There can be only one initial natural
disaster in the natural disaster issue skeleton. Thus node
Ni might be connected to an instantiated storm sketchy
script or an instantiated earthquake sketchy script or an
instantiated forest fire sketchy script etc. But it can be
only one .

Node N2, on the other hand , is a multiple instance
node. Any number of instances of secondary disasters can be
attached to that node. Thus a storm might cause instances
of flooding and power outages and highway accidents etc .
For each secondary disaster there is an instantiated sketchy
script and they are all connected to N2.

All nodes , whether they are connected to single
instances or multiple instances, have conditions on what
kind of situation can be attached to them . These conditions
consist of constraints on what kind of generic script can be
attached and constraints on the script variables of the
attached sketchy scripts.

8.3.2 Types of Links within Issue Skeletons

There are three types of links permitted between
sketchy scripts in issue skeletons: “cause ,” “enable,” and
“motivate.” Such a link indicates how one script situation
follows from another.

There has been no attempt made to construct a detailed
representation for all the ways scripts interact. Instead.
of a large number of precise links we have identified a few
general ones. A detailed analysis of links between scripts
is neither necessary nor desirable for a system like FRUMP.
Since FRUMP skims stories rather than reading them in
detail , it often misses less important details of stories.
It is just these details that are required to differentiate
among exact links . Therefore to consider how scripts can be
connected in a detailed way is inappropriate.

The “cause” link indicates that one sketchy script
situation somehow was responsible for a second by primarily
physical means . For example , nodes Ni and N2 in figure 8.1
are connected by a “cause” link. This ind icatss that the
secondary disaster situations at N2 follow from th, script
situation at Ni . Of course , the actual causative relation

200

is very complex and depends heavily on the actual sketchy
soript s involved . That is , the low—level events necessary
for an earthquake to cause an avalanche are very different
from the low level events by which a storm causes flooding .
However , to the level of detail of FRUMP’s understanding,
fine grained links are unnecessary.

The second kind of link is the “enable” link. It
indicates that one script situation provides the necessary
preconditions for another one . For example , the
hospitalization issue skeleton looks like this:

THE HOSPITALIZATION ISSUE SKELETON

----> h 3
/ $OBITUARY

cause
/

Ni enable ———— > N2 —————— e
$HOSPITAL hospital
ADMISSION activity enable

situations \ — — — — > lIe
$HOSPITAL

RELEASE
figure 8.2

Here Ni is a single instance node and 12 is a multiple
instance node. “Hospital activity situations” is a class of
sketchy scripts such as $SURGERY which are typically done at
hospitals. Node Ni is connected to node N2 by an “enable”
link because the most important function of the script
situation at Ni is to provide a precondition for the
situations at node N2. The “e” at the branch from 12
indicates that the links to N3 and lIe are exclusive. That
is, either one can be taken but not both. This is different
from the multiple links from nodes in the natural disaster
issue skeleton. There the original disaster could possibly
cause secondary disasters, casualties, and property damage.

The third kind of link is “motivate.” It is used to
indicate that a situation has resulted in a sentient actor
initiating another situation. This is illustrated by the
issue skeleton for labor negotiations. Here, a negotiation
sketchy script is started over a labor dispute. The
negotiations script can motivate a strike (if it ends
unsuccessfully) or enable a vote on the new contract (it it
is successful).

201

THE LABOR NEGOTIATIONS ISSUE SKELETON

)

/ > N 2 —\
motivate $STRIKE \

/ node Ni
/ of another

Ni———— >—e >— motivate —— > instance
$NEGOTIATE / of LABOR lEG.

topic: enable / ISSUE SKELETON
labor
dispute $VOTE

figure 8.3

If there is a strike it can in turn motivate the
disputing parties to negotiate further, and the cycle can
repeat . If the negotiations succeed , there can be a vote.
If the vote is favorable, then the issue skeleton is
complete . If the vote fails , it can motivate further
negotiations. Again a detailed analysis of the relation
between scripts connected with “motivate” is very complex.
However , for FRUMP’s purposes , “motivate” is sufficient .

8.11 Differences Between Issue Skeletons and Sketchy Scripts

By now it should be apparent that an issue skeleton’s
purpose is to impose a structure on collections of sketchy
scripts. However , since structure is also permitted within
a sketchy script (in terms of its tracks) this raises the
question as to what determines that a certain structure is
given by an issue skeleton rather than a sketchy script?

The answer is partly dictated by storage etticiency.
Consider the ramifications of storing the %NATURAL—DISASTER
structure at the script level . Every instance of a possible
natural disaster (e.g. earthquake , flood , tornado ,
hurricane, etc.) would include the structure now in the
natural disaster issue skeleton . That is , each would have
predictions about relief efforts, casualty, and damage
events. This information would be duplicated in the system
ones for every natural disaster situation.

L - . . . _________
_ _ _ _ _ _ _

202

More important to the distinction between issue
skeletons and sketchy scripts is the fact that sketchy
script s represent small well defined specific situations
while issue skeletons represent relations between these
situations. Issue skeletons provide a generative nature to
FRUMP’s representational abilities that it would otherwise
lack. With issue skeletons it is not necessary to
explicitly anticipate all possible relationships that might
exist between individual script situations. It is
sufficient to label a script as a “secondary disaster,” for
example rather than explicitly including its situational
knowledge in every script with which it might conceivably
interact. The label permits this script to behave in a
number of interesting ways (e.g. that its cause can be
inferred to be a “natural disaster” sketchy script situation
and that when summarizing either the causing disaster or
secondary disaster, reference should be made to the other,
etc). By using small sketchy scripts to represent
situations, and issue skeletons to represent interactions
between these sketchy scripts, it is possible for FRUMP to
build large complicated representations out of individually
simple pieces. Without something like issue skeletons this
would not be possible. All of the possible interactions of
each individual script with each other script would have to
be explicitly stated .

8.5 Sketchy Script Constraints at Issue Skeleton Nodes

At each node in an issue skeleton there are constraints
on what sketchy scripts can be used. These constraints
dictate whether or not a particular instantiated sketchy
script can be connected to a given issue skeleton. The
constraints are of two types: static and dynamic.

Static constraints do not depend on the particular
instances of sketchy scripts. Rather they constrain the
kind of sketchy script that is acceptable at a node. For
example, the labor negotiations issue skeleton (figure 8.3)
only permits $STRIKE sketchy scripts to be hooked to node
1(2. An instance of a vehicle accident would not be
acceptable. Thus the static constraints at N2 specify the
generic sketchy scripts that will be permitted.

Dynamic constraints test script variable bindings. For
example , node Ni in figure 8.3 represents negotiations
between labor and management . It would not be acceptable to
include a negotiation sketchy script in which the topic
being negotiated was a peace treaty between two countries.
Dynamic constraints eliminate this possibility by dictating
acceptability requirements for script variable bind ings.
Dynamic constraints also are used to insure consistency

p

203

among instances of sketchy scripts in an issue skeleton . A
new instance of $VOTE ought not be connected to node 1(3 if
the union voting i~ different than the union participating
in the negotiation of node NI. Ther. is a dynamic
constraint that tests whether the two unions are the same.
If they are not, the $VOTE sketchy script is not attached to
node 1(3. The new instance of $VOTE is connected only if
there are no constraint violations.

Issue Skeleton constraints can be looked at as a kind
of inference mechanism. It ~ newl y instantiated sketchy
script satisfies all of the constraints at a particular
issue skeleton node, the situation represented by the new
sketchy script is inferred to be part of the same news issue
that the issue skeleton represents. For example, suppose a
natural disaster issue skeleton has been built from one or
more stories reporting a severe earthquake in Malaysia. The
issue skeleton includes an earthquake sketchy script and a
casualty bundle. Now suppose a new story is being read that
FRUMP decides via one of its script selection procedures is
an instance of $REL.IEF, the sketchy script for relief
efforts. If the relief efforts are directed to Malaysia and
shortly after the earthquake, it is very likely that these
efforts belong to the same news issue . The issue skeleton
constraints provide FRUMP a mechanism for evaluating when to
connect a new sketchy script to an existing issue skeleton.
If all of the constraint tests are true , FRUMP infers that
the sketchy script belongs in the issue skeleton.

8.6 Issue Skeletons that Share Sketchy Scripts

There are times when an instantiated sketchy script can
be part of more than one news issue. In these cases the
instantiated script must appear in multiple issue skeletons.
The final conceptual representation is then several issue
skeletons connected by a common instantiated sketchy script.
For example, consider the following news story:

A United Airlines jetliner en route to
Miami was hijacked today by two gunmen who
threatened to blow up the plane in flight.
The gunmen, reportedly members of an
underground organization seeking independence
f or Puerto Rico , ordered the release of three
“political prisoners ” being held in Florida
jails and demanded to be taken to Cuba .
However , on landi ng in Havana, they were
arrested and charged with hijacking.
Officials there said they would be prosecuted
“to the fullest extent possible.”

d
~~~~~~ 

L.



2011

This story about a gunman hijacking a plane fits nto
both the crime issue skeleton and the terrorist issue
skeleton . Both issue skeletons must be used if FRUMP is to
understand all it can about the story. FRUMP must identify
the crime issue skeleton if it is to understand the
hijackers being arrested and charged . It must identify the
terrorist issue skeleton in order to realize that demanding
the release of prisoners is important. Thus issue skeletons
can interact by sharing instantiated sketchy scripts. When
they do, it is important for FRUMP to initiate all the
appropriate issue skeletons if it is to correctly understand
all of the important facts.

This has implications for the summarization of a news
event as well. A complete summary of this internal
structure requires summaries of both issue skeletons. A
summary of the above article must contain that there was a
hijacking, that the hijackers made demands to the U.S., that
the plane landed in Cuba, and that the hijackers were
arrested . Such a summary requires information from both of
the issue skeletons: the demands of the hijackers can be
processed only with the terrorist issue skeleton while the
arrest can only be handled by the crime issue skeleton.

8.7 How Variable Element Stories Can Be Processed

In chapter 1 it was stated that certain types of
stories could not be processed by scripts, but that one of
these types, the variable element story, could be processed
with the help of other data structures. The data structure
necessary is the issue skeleton.

A variable element story is one in which even though
the events are stylized, FRUMP requires predictions that
cannot be anticipated by the sketchy script. For example,
consider the following stories:

President Carter today signed a mutual
defense treaty with most of the NATO countries
in which the European countries, notably West
Germany, agree to assume a larger percentage
of the maintenance Costs.

and

The United States Senate this morni ng
after very little debate approved the NATO
treaty , already signed by j immy Carter , that
reduces the proportion of NATO ’s expenses
contributed by the U.S. _ 

__

I



205

The fi rst story is about a substantive international
agreement. FRUMP has a script for that. The sketchy script
dictates that it is important to find the kind of treaty and
with whom the treaty is made.The first story therefore can
be processed with scripts.

L
The second story, however , is about an action by the

Senate. This is also a well defined sketchy script
situation. However, one of the important points that must
be included in the final representation if FRUMP is to
understand a story about Senate action is what was voted on.
Here , the script is of no use. There is no useful
characterization of what the Senate can and cannot vote on.
There are simply too many possible topics. Therefore ,
PREDICT cannot anticipate the topic of the Senate action
which might then be communicated to SUBSTANTIATE to aid in
the process of text analysis.

The script alone cannot help PREDICT anticipate the
topic of the Senate action but the context set up by the
first story can. The issue skeleton for treaties looks like
this:

ISSUE SKELETON FOR INTERNATIONAL AGRE~ 4ENTS

Ni —— enable ———> 1(2 ——— enable ————> 1(3
$NEGOTIATE $SIGN Legislative

Action

figure 8.11

Remember that there are constraints at the nodes of
issue skeletons. One of the dynamic constraints on the
sketchy script for the legislative action at 13 is that the
topic voted on must be the treaty signed at 12. Since the
script variable for the treaty is already bound by the first
story to “a mutual defense treaty with NATO countries,” this
information is available during processing of the second
story. Therefore , FRUMP can make a prediction about what
the legislative action will be based on the issue skeleton.
Of course, this may not be the only issue skeleton that
requires a legislative action sketchy script. Suppose, for
example, Carter had recently also signed a trade agreement
with Japan . Therefore , FRUMP cannot know immediately which
issue skeleton the current legislative action belongs with.
However, this is exactly the problem that was addressed in
sec 11.6 of chapter 11 in the discussion about predicting
several explicit role tillers. In the case of the treaty
stories, PREDICTOR tells SUBSTAITIATOR to add the topic of



the legislative action to the internal representation and
predicts that it will be either an economic treaty with
Japan or a defense treaty with NATO. Given this choice, it
is not difficult for the text analyzer to realize that the
treaty referred to by the phrase “the NATO treaty” is the
latter alternative. Thus issue skeletons can provide
certain predictive information of a kind that can inherently
not be given by a script.

8.8 Conclusion

Issue skeletons are more than just a higher level of
sketchy scripts. They provide for a general level of script
interaction which would otherwise be missing . Each issue
skeleton dictates in a general way how classes of sketchy
script s fit together. Thus issue skeletons permit FRUMP ’s
sketchy scripts to be used as building blocks from which
more complicated representational structures can be built.
Issue skeletons can connect representational structures in
two ways.

First , different stories can use the same type of issue
skeleton to connect different sketchy scripts. For example,
the natural disaster issue skeleton provides the information
necessary to link an earthquake in Brazil with buildings
collapsing there. The natural disaster issue skeleton also
gives the information connecting a severe flood in Austria
and Red Cross relief efforts to that country. The important
point is that the information is specified in the issue
skeleton at a general level. It can then apply equally well
to any disaster situation.

The second way issue skeletons can tie representational
structures together is by shared sketchy scripts. Several
different instances of issue skeletons can incorporate the
same sketchy script or request bundle. For example, imagine
a story reporting that both an earthquake and a flood struck
Italy. In that case there will probably be only one
casualty figure . The article is unlikely to state how many
people were killed due to the flood and how many due to the
earthquake. Rather there will be only one number
representing casualties from both disasters. Indeed, it is
quite likely that the division between the disasters is
impossible. In a case such as this , FRUMP will generate one
issue skeleton for each disaster . However , the issue
skeletons will share the same casualty bundle.

Thue issue skeletons can organize sketchy script
interaction. This organization reflects the intrinsic
organization of news issues. That is, the natural disaster
issue skeleton rel ates disasters with relief efforts, for



207

example , because relief efforts are often related to real
world disasters.

Because issue skeletons are still in the development
stage , there are still problems to be worked out . The most
important one is that there is currently no way to
deactivate a viable issue skeleton . An issue skeleton must
be kept around for a “reasonable” length of time after it is
created in order to correctly process any articles that
update its news issue. The problem is determining the time
period after which it will be deactivated whether or not it
has satisfied all of its nodes. If such deactivations are
not allowed , the number of active issue skeletons might grow
unboundedly. The effects of a flood (with potential
secondary disasters such as cholera) may linger for weeks
whereas a story describing an airplane crash will seldom be
updated more than several days afterward. These problems
will be delt with but as yet no solution has been
implemented.

An issue skeleton is a useful data structure
complementary to sketchy scripts. Issue skeletons can be
used to connect in a’ coherent fashion the internal
representations of related news stories. This is important
not only for understanding but for generating summaries as
well. Issue skeletons enable FRUMP to process a class of
stories which would otherwise be missed.

‘



CHA PTER 9

I
CONCLUSION

In this dissertation we explored the possibility of
making pragmatic knowledge available to the text analyzer of
a natural language processing system. The result is a
system in which text analysis is highly integrated with the
rest of the understanding process. We saw that an
integrated system could indeed be constructed, and we
demonstrated that the approach yields high returns in terms
of processing efficiency and robustness.

The method of organizing such an integrated natural
language processing system was outlined in chapter 1.
Instead of the usual syntax , semantics , and pragmatic
modules, the new organization is compo sed of a prediction
module and a substantiation module. In this parad igm , the
process of understanding natural language consists of
generating hypotheses about what the text might mean and
then finding a reading of the text that satisfies
hypothesized constraints. The underlying virtue of this top
down approach is that text analysis is almost always guided.
Thus the text analyzer can be much simpler than in earlier
systems. Initiating the top down understanding process was
the subject of chapters 2 and 3 which discussed the problem
of script selection.

A program (FRUMP) has been written using the new system
organization. Th. system has access to the UPI news wire
which supplies it with a constant stream of English text.
Since FRUMP usually processe s an aver age story in less than
20 seconds of CPU tise on a DEC PDP 20/50 , while UPI
articles arrive at an average rate of one every 5 to 7
minutes, the system has no trouble staying ahead of the
wire.

There are currently ~8 sketchy scripts in FRUMP ’s
repertoire . While still all compared to the number
required to understand every scripty story on the UPI wire ,



209

thi s does demonstrate that FRUMP is not inextricably tied to
a particular micro—world. It also demonstrates that FRUMP
can effectively choose among 118 scripts , at least .
Furthermore , it was shown that the performance of the script
selection algorithms is not significantly degraded by the
addition of more scripts.

Other researchers have advocated text analysis using
“meaning” information in addition to syntactic information
(for example, Gershman (1979], Riesbeck & Schank ( 1976],
Wilks (1973]). These systems, however , did not incorporate
meaning predictions from pragmatic sources; they employed
only semantic predictions.

SOPHIE , developed by Brown & Burton (1975], makes
pragmatic information available to an integrated parser.
However , the semantic grammar used by SOPHIE requires the
input domain to be highly constrained . A semantic grammar
is an augmented transition network except that the
non—terminal s are conceptual rather than syntactic items.
Because the SOPHIE parser was integrated , it achieved both
efficiency and robustness but at the expense of flexibility:
SOPHIE’s parser can only deal with inputs concerning trouble
shooting a Heathkit IP—28 power supply. To add a new
domain, a new semantic grammar must be written.

More recently, Carbonell (1979] added an integrated
text analy zer to his POLITICS program. His system operates
on several different domains concerni ng political events.
The major difference between the POLITICS and FRUMP approach
to integrated parsing is one of modularity. Carbonell
argues against the division of natural language systems into
a syntax module, a semantics module, and a pragmatics
module. On that basis he advocates a completely non—modular
system. In FRUMP, on the other hand, modularity plays a
crucial role. FRUMP shares POLITIC ’s rejection of separate
syntax , semantics, and pragmat tea modules • However , rather
than rejecting modularity altogether , FRUMP is an attempt to
identify a more natural system decomposition. The FRUMP
mod ules were described in detail in chapters 11 and 5.
Modularization in FRUMP is important for two reasons .
First, without it , managing a system the size of FRUMP would
be nearly impossible. Second, it is difficult to discuss a
system’s contribution to a process model of understanding
natural language without modularization.

Th re are two main limitations on FRUMP ’s language
processing ability and two critic i s  that might be made of
the approach . We will now explore the validity of these and
see how ipplicabis they are to the FRUMP implementation and ,
more generally, to the FRUMP approach . 

a ~~~~~~~~~~~~~~~~~~~~~



210

Limitation 1: FRUMP is only able to process
script—based stories.

This limitation is traceable to FRUMP’s PREDICTOR
module. FRUMP uses a script applier as its predictive
underatander. Thus it is capable of processing only
script—based stories . A script applier was chosen for FRUMP
because it is better understood than other predictive
understarzders while still being applicable to an interesting
set of input domains. While a script applier is an
essential part of the implementation of FRUMP, the approach
to integrated parsing does not require a script applier. No
other predictive understander was used in FRUMP ’s
implementation because no available version of other
predictive understanders could produce the robust constraint
predictions that the FRUMP approach requires.

Limitation 2: FRUMP is not capable of detailed
understanding, only skimming.

Again this limitation is due to FRUMP’s PREDICTOR
module . FRUMP ’s processing is only as robust as the input
constraints it generates. It is therefore iaperattv~ for
the PREDICTOR to be robust. While a script applier is the
most reliable and best understood prediction generator
available, it is still too fragile to adequately test the
idea of integrated text analysis. Any benefits of supplying
pragmatic knowledge to the text analyzer are eliminated if
the predictive understander is unable to supply pragmatic
constraints. Therefore FRUMP uses a simplified script
applier which makes fewer predictions but makes them
consistently.

This limitation is also applicable only to the
implementation of FRUMP , not the approach. When more
sophisticated predictive understanders (e.g., Wilensky’a
Plan Applier (1978] and Carbonell’s TR IAD ( 1979]) are
extended to many more domains , they can be used to
supplement the script applier’ a prag mat ic constraints.

Critici 1: FRUMP is too top down

The pr.dominant processing in FRUMP is top down, but
this an advantage rather than a disadvantage. For the most
part FRUMP predicts only constraints, not explicit concepts.
The point of integrated text analysis is that these top down
constraints are nearly always available.

Furthermore, FRUMP ii not always top down: selecting a
sketchy script and initial analysis of a new phrase are
oftsn completely bottom up • The system does not make
predictions but waits to see what the txt analyser can
construct.

~

- -

~

-

~

- . - - - ~~~~~~~~~ -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



211

Criticism 2: FRUMP is not psychologically plausible.

The primary objection to FRUMP as a possible
psychological model is the fact that its reading is not
strictly left to right . Instead , it looks for a structure
building word which is then used to guide further
processing. However , there is some psychological evidence
that fast human readers classify sentence types before
analyzing the constituent words (Bower (1970]).
Furthermore, there is ample evidence of retrograde eye
movements in humans during skimming (Cunitz & Steinman
(1969) and Tinker (19581) al though not as much as FRUMP
currently does. FRUMP can easily be made to eliminate most
of its implausible scanning by giving it a short term memory
in which to store recently—looked—at words. However ,
psychological validity was not a major consideration in
FRUMP ’s design. In any case , Al programs are interesting
from a psychological point of view only when psychological
analogies naturally fall out, not when they are built in.

Because FRUMP is robust, its performance on real world
input can be evaluated. FRUMP typically understands between
8% and 12% of the stories from the UPI wire, although on an
anomalous news day it can do much better or much worse.
Since only about 50% of the UPI stories are understandable
using the paradigm of a script applier , FRUMP is running at
about 20% of the theoretical limit . The major reasons for
missing the remaining scripty stories are : 1) lack of the
correct sketchy script, 2) missing vocabulary words, and 3)
use of unfamiliar sentence structures. Fixing the more
important problems , the lack of script s and vocabulary,
poses no theoretical problems. While sentence structure
problems might be theoretical, in the past they have not
caused major rewrites in FRUMP. Problems thus f a r  have been
solved by modest improvements to FRUMP ’s syntactic
heuristics. Thus the FRUMP experiment has been a success .
The program is more robust on a wider range of input domains
than any previous natural language system.

_ _  _ _ _ _ _  _  

S



APPENDIX

THE INTERNAL VERSION OF THE FIGHTIN G SKETCHY SCRIPT

(
( CLASS SCRIPT )
(SVARIABLES &SIDEO &SIDE1 &LOC &PROP)
(BUNDLE ~CASUALTY DAMAGE)
(SINITIATORS RO Ri R2 R3 R11)
(ACTIVE RO Ri R2 R3 R11 R5 R6 R7 R8)
I
(RO
((<=>($FIGHTING SIDEO &SIDEO SIDE1 &SIDE1)) LOC &LOC)

(SIN IT
((< :> SIDEO) ‘POLITY’)
((<=> SIDE1) ‘POLITY’)
((LOC) NIL )

)

(SVARS
(&SIDEO (<=> SIDEO) ‘POLITY’)
(&SIDE1 (<:) SIDE1) ‘POLITY’)
(&LOC (L.OC) ‘LOCATION’))

(CONSTRAINTS
(DIFFERENT (<=> SIDE1) (<:> SIDEO))

)
]

(R i
((AC TOR &SIDEO <=> (‘PTRANS ’) OBJECT (‘TROOPS’) TO &SIDE 1 ))

( SINIT
((ACTOR) ‘POLITY’)
((TO ) ‘POLITY’)

)

(SVARS
(&SIDEO (ACTOR ) ‘POLITY’)
(&SIDE1 (TO) ‘POLITY’)

)
( CONSTRAINTS

(DIFFERENT ( ACTOR) (TO))
)
(CA USALS

(INFER RO)
( CANCAUSE R6 R7)

)
I

~~~~~~~
112

~~

_ - .__--
_ _

213

(R2
((ACTOR &SIDE1 <z) (‘PTRANS’) OBJECT (‘TROOPS’) TO &SIDEO))

(SINIT
((ACTOR) ‘POLITY’)
((TO) ‘POLITY’)

)

(SVARS
(&SIDE 1 (ACTOR) ‘POLITY’)
(&SIDEO (TO) ‘POLITY’)

)
(CONSTRAINTS

(DIFFERENT (ACTOR) (TO))
)
(CAUSALS

(INFER RO)
(CANCAUSE R 5 R8)

)
I

(R3
((ACTOR &SIDEO <z> (‘PTRANS’) OBJECT (‘BOMB’) TO &SIDE1))

(SINIT
((ACTOR PART) ‘POLITY’)
((TO) ‘POLITY’)

)
(SVARS
(&SIDEO (ACTOR PART) ‘POLITY’)
(&SIDE 1 (TO) ‘POLITY’)

)
(CONSTRA INTS

(DIFFERENT (ACTOR PART) (TO))
)
(CAUSA LS
(INFER RO)
(CANCAUSE R6 R7)

—)
I

C R14
((ACTOR &SIDE1 (~> (‘PTRANS’) OBJECT (‘BOMB’) TO &SIDEO))

(SINIT
((ACTOR PART) ‘POLITY’)

I A ((TO) ‘POLITY’)
If

(SVARS
(ISIDE 1 (ACTOR PART) ‘POLITY’)
(&SIDEO (TO) ‘POLITY’)

)

&

2114

(CONSTRAINTS
(DIFFERENT (ACTOR PART) (TO))

)
(CAUSALS

(INFER RO)
L (CANCAUSE R5 RB)

)
I
(R5
((ACTOR &SIDEO <=> (‘MTRANS ’) MOBJECT (‘CONCEPT’
TYPE (‘SURRENDER’)) TO &SIDE1))

(SINIT
((ACTOR) ‘POLITY’)
((TO) NIL)

)
(SVARS
(&SIDEO (ACTOR) ‘POLITY’)
(&SIDE 1 (TO) ‘POLITY’)

)
(CONSTRAINTS

(DIFFERENT (ACTOR) (TO))

[R6
((ACTOR &SIDE1 <=> (‘MTRANS’) MOBJECT (‘CONCEPT’
TYPE (‘SURRENDER’)) TO &SIDEO))

(SINIT
((ACTOR) ‘POLITY’)
((TO) NIL)

)
(SVARS
(&SIDE 1 (ACTOR) ‘POLITY’)
(&SIDEO (TO) ‘POLITY’)

)
(CONSTRAINTS

(DIFFERENT (ACTOR) (TO))
)
I
(R7
((CON ((ACTOR &SIDEO <s> (‘DO’)))

CAUSE
((ACTOR (&PROP PART &SIDEI) IS (‘PSTATE’ VAL. (—10))))

))

(SINIT
((CON ACTOR) ‘POLITY’)
((CAUSE ACTOR) ‘MILITARY—VALUE ’)
((CAUSE ACTOR PART) ‘POLITY’)

) -:

(SVARS

_______—
~~~~— - —-—-~~~.



215

(&SIDEO (CON ACTOR) ‘POLITY’)
(&PROP (CAUSE ACTOR) ‘MILITARY—VALUE’)
(&SIDE1 (CAUSE ACTOR PART) ‘POLITY’)

)
I
(RB
((CON ((ACTOR &SIDE1 <=> (‘DO’)))
CAUSE

((ACTOR (&PROP PART &SIDEO) IS (‘PST ATE’ VAL (— 1 0 ) ) ) )

(SINIT
((CON ACTOR) ‘POLITY’)
((CAUSE ACTOR) 1~ILITARY-VALUE’)((CAUSE ACTOR PART) ‘POLITY’)

)

(SVARS
(&SIDE1 (CON ACTOR) ‘POLITY’)
(&PROP (CAUSE ACTOR) ‘MILITARY—VALUE’)
(&SIDEO (CAUSE ACTOR PART) ‘POLITY’)

)
I

The top line indicates that this structure is a script
rather than a request bundle or issue skeleton. The second$ S—expression gives the script variables that appear in this
script . The third list are the request bundles that can
appear with this sketchy script. The last two lines of the
heading are respectively the list of key requests, that is,
the conceptualizations allowed to trigger the script, and
the number of initially active requests. This script is
mad e up of nine requests (RO — RB). Each has an SINIT, an
SVARS , and a CONSTRAINTS property which dictate matching
requirements for the role fillers. These requirements are
the basis of the predicted constraints made by the PREDICTOR
during understanding.



/

BIBLIOGRAPHY

1. Bobrow, D. and Collins, A., (1975). Reoresentation and
Understandin2, Academic Press, New York.

2. Bobrow , D. G., Kaplan , R. N . ,  Kay , N., Norman , D. A.,
Thompson , H., and Winograd, T. (1977). GUS , a fram e
driven dialog system. Artificial rntelliaence,
Vol . 8, No. 1.

3. Bower, T. G. R. (1970). Reading by eye. In H. Levin
and J. William s (Eds.) , Basic Studies g~ Readina,
Basic Books Inc., New York.

14. Bransford, J. and Franks , J. (1971). The abstraction of
linguistic ideas. Coanitive Psvcholoav, Vol. 2,
pp. 331—350 .

5. Brown, J. S., and Burton , R. B. (1975). Multiple
representations of knowledge for tutorial reasoning.
In D. Bobrow and A. Collins (Eds.), Reoresentation
~~g Dnd rstandinz, Academic Press, New York.

6. Burton , I. 1. (1976). Semantic gra ar : an engineering
technique for constructing natural language
siderstanding systems. 88W Report 3q53, ICAI Report
3. Bolt Bsranek and Ne~san Inc., Boston.

7. C*arniak, 1. (1972) . Towsrd a model of childrens story
comprehension. AITI—266 , Artificial Intelligence
Laboratory, MIT, Cambridge, MA.

8. Charniak, I. end Wilks , Y. (1976). Comnutational
Sam it tea, North—Holland, Amsterdam .

9. Charniak, 1. (1977). £ framed PAINTING: the
rep rea sntat ion of a common sense knowledge fr agment .
Camnitive ~~j i~~i, Vol . 1 No. ~

10. charniak, 1. (1978). With * spoon in hand this must be
the eating frame. Theoretical Issues in Natural
Language Processing - 2. D. Waltz , General Q~airman .
Universit y of Illinois , Urbana , IL.

11. Cullingford , B. (1978). Script application : computer
w derstanding of newspaper stories . Ph.D. Thesis ,
Yale Un~1versity , New Haven , CT. Computer Science
Department Research Report 116.— 216 —

- - - -. - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ -


b

217

12. Cunits , R. and Steinman, B. (1969). Comparisons of
saccadic eye movements during fixation and reading.
Vision Research 9, pp. 683—693 .

13. DeJong , G. (1977) . Skimming newspaper stories by
L computer . Yale Computer Science Department Research

Report 1014 , New Haven , CT.

114. Eisenstadt, N. (1976). Processing newspaper stories:
some thought s on fighting and stylistics.
Proceedings of the Second AISB Summer Conference ,
Edinburgh.

15. Gershman , A. (1979). Knowledge—based parsing.
Ph.D. Thesis , Yale University, New Haven , CT.

16. Goldstein, I. and Roberts , B. B. (1977). NUDGE, a
knowledge—based scheduling program. Proceedings of
the Fifth International Joint Conference on
Artificial Intelligence, Cambridge, MA.

17. Heidorn , G .E. (1975). Augmented phrase structure
grammars. Theoretical Issues in Natural Language
Processing Workshop. B. Schank and B. Nash-Weber,
General Chairmen. Cambridge, MA.

18. Kaplan , B. m . (1971). Augmented transition networks as
psychological models of sentence comprehension.
Proceedings of the Second International Joint
Conference on Artificial Intelligence, London.

19. Lehnert, W. (unpublished). Script selection.
Unpublished manuscript.

20. Lehnert, U. (1978). Representing physical objects in
memory. Yale Computer Science Department Research
Report 131. New Haven , CT.

21. Lehnert , V. and Burstein, N. (1979). The role of
object primitives in natural language processing .
Submitted to the Sixth International Joint Conference
on Artificial Intell igence. Tokyo.

22. Lesser , B., Fenne ll , B., Erman , L , and Reddy,
D. R. (19711). Organization of the HEARSAY II speech
understanding system . IEEE Symposium on Speech
Recognition . L. Erman (Ed.) , Carnegie—Mellon
University, Pittsburgh.

23. Lowsrre, 8. (1976). The HARP! speech recognition
system. Ph.D. Thesis, Carnegie—Mellon University,
Pittsburgh.

_ _ _ _ _ _ _
_____________________________ ________

218

214. Marcus, N. (1977). A theory of syntactic recognition
for natural language . Ph.D. Thesis , MIT , Cambridge ,
MA.

25. McClelland, charles A. (1969). International
interaction analyses in the predictive mode. World
Event/Interaction Survey Technical Report 3.
University of Southern California, Los Angles.

26. Minsky , H. (1968). Semantic Information Processina,
MIT Press , Cambridge , MA.

27. Minsky , H. (1975). A framework for representing
knowledge . In P. Winston , (Ed.) , ~~ Psvcholoav ~L
Comouter Vision, McGraw-Hill, New York .

28. Newell, A. (1973). Artificial intelligence and the
concept of mind. In R. C. Schank and K. N. Colby
(Eds.) , Computer Models Q.~ Thouaht fld~ Lanauaae,U. H. Freeman and Co., San Francisco.

29. Norman , D. A. and Bobrow, D. G. (1975). On
data—limited and resource—limited processes.
Cognitive Psvcholoav, Vol. 7, pp. 1111~611.

30. Parkinson , B., Colby, N., and Faught , U. (1976).
Conversational language comprehension using
integrated pattern—matching and limited parsing.
Technical Report , UCLA Psychiatry Department , Los
Angles, CA.

31. Quillian , N . B. (1968). Semantic memory. In N . Minsky
(Ed.), Semantic Information Processina, MIT Press ,
Cambridge , MA.

32. Raphael , B. (1968). SIR: semantic information
retrieval. In N. Minsky (Ed.), Semantic Information 4
Processina, MIT Press, Cambridge, MA.

33. Reddy, D. R., Erman , B., Fennel , B., and Neely,
B. (1973). The HRA RSA! speech understanding system:
an ex ple of the recognition process. Third
International Joint Conference on Artificial
Intelligence, Stanford , CA.

31$. Rieger , C. (1975) . Conceptual memory. In B. Schank
(Ed.) , Conceptual Information ~~~~~~~~~~ North
Holland , Amsterdam.

35. Riesbeck, C. K. (1975). Conceptual analysis. In
B. Schank (Ed.), Conceptual Information ~~~~~~~~~~North Holland , Amsterdam.

219

36. Riesbeck, C. K. and Schank , B. C. (1976).
Comprehension by computer: expectation—based
analysis of sentences in context. Yale Computer
Science Department Research Report 78, New Haven , CT.

37. Rumel hart , D. (1975). Notes on a schema for stories.
In D. Bobrow and A. Collins (Eds.) , Representation
lag Understandina . Academic Press , New York .

38. Schank , R. C. (1972). Conceptual dependency: a theory
of natural language understanding . Coanitive
PsvcholoLv, 3, pp. 552—631.

39. Schank , R. C. and Colby, K. H. (1973) Comouter Models
~~ Thought ~~ Lanaua~e. U. H. Freeman and Co., San
Francisco.

140. Schank , B. C. (1975A). Conceotual Information
Processina. North Holland, Amsterdam.

ill . Schank , B. C. and Yale A. I . Pro3ect (1975B). SAM: a
story understander. Yale Computer Science Department
Research Report 143, New Haven CT.

142. Schank , R. C. and Abelson , R. P. (1977). Scripts,
Plans, Goal s, and Understandina. Lawrence Eribaum
Press , Hillsdale, NJ.

133. Schank, R. and DeJong , G. (in press) Purposive
understanding . In B. Meltzer and D. Michie (Eds.) ,
Machine Intelliaence 9, Edinburgh University Press ,
Edinburgh .

1$14~ Scragg , G. (1976) . Semantic nets as memory models. In
E. Charniak and Y. Wilks (Eds.), Comoutational
Semant tea, North—Holland, Amsterdam.

115. Simmons, B. F. (1973). semantic networks: their
computation and use for understanding English
sentences. In B. C. Schank and K. N. Colby
(Eds.),Camouter Models Q,t Thou&ht and Lanauaae,
V. H. Freeman and Co., San Francisco.

136. Tinker, N. A. (1958). Recent studies of eye movements
in reading. Ps~rcholoaical Bulletin 55, pp. 300—307.

117. Wilka, Y. (1973). An artificial intelligence approach
to machine translation. In R. C. Schank and K. Colby
(Us.) , ~~~puter Models ~Z Thouaht ~~~ Lanmuaae.
V. H. Freeman and Co., San Francisco .

118. Wilensky, B. (1978). Understandi ng goal—base d stories.
Ph .D. Thesis , Yale University, New Haven , CT.
Computer Science Department Research Report 1110.

—— .-- - - --— - - - .—-- — - -—.---—----—------

220

139. Winograd , T. (1972) . Understandina Natural Lanauaae.
Academic Press , New York .

50. Winston, P. (1975). I~~ Psvcholoav g.~ Comouter Vision,McGraw-Hill, New York.

51. Woods, W. A. and Kaplan, B. N. (1971). The lunar
sciences natural language information system. BBN
Report 2265. Bolt Beranek and Newm an Inc .
Cambridge , MA.

52. Woods , V. A. end Nash—Vebber , 8. (1972) . The lunar
sciences natural language information system: final
report . BBN Report 2378. Bolt Beranek and Newman
Inc. Cambridge, MA.

H’
H -,

