AD=AO71 429 TOR INC LOS ANGELES Ca F/6 20/3
PSEUDOSYMMETRIC EIGENMODE EXPANSION FOR THE MAGNETIC FIELD INTE==ETC(U)
JUN 79 M 1 SANCERr A D VARVATSIS: S SIEGEL F29601-78'C-009B
UNCLASSIFIED AFWL =TR=78-172

... E

(nn

,?ﬁ




I2 £ g

I“ll Tl '“' ol ‘
s ||l||

L2 s

L}

MICROCOPY RESOLUTION TEST C
quﬂn BUREAU OF STANDARDS-1963-f.




5
3
<

3

W—

AFWL-TR-78-172

ﬂﬂmg'/ AFWL-TR-

H LL 78-172

PSEUDOSYMMETRIC EIGENMODE EXPANSION FOK1
THE MAGNETIC FIELD INTEGRAL EQUATION
AND SEM CONSEQUENCES

Maurice |. Sancer
A. D. Varvatsis
Scott Siegel

WAO71429

TDR, Inc.
Marina del Rey, CA 90291 -

June 1979

Final Report |

Approved for public release; distribution unlimited.

This research was sponsored by the the Defense Nuciear Agency
under Subtask R99QNXEB200, Work Unit 71, Work Unit Title:
Hardness Surveillance

— e e o - ———

DOG FILE copy

Prepared for

Director ¢ DD C

DEFENSE NUCLEAR AGENCY

AL RAIT=Y
Washington, DC 20305 Eo
5 JUL 18 1979 J
/ AIR FORCE WEAPONS LABORATORY GV &l
Y Air Force Systems Command A

Kirtland Air Force Base, NM 87117

| 9 07 17 911

) : PR e i '\;‘-:.4




AFWL-TR-78-172 5

This final report was prepared by TDR Incorporated, Marina del Rey,
California, under Contract F29601-78-C-0098, Job Order WDNE3206 with the Air
Force Weapons Laboratory, Kirtland Air Force Base, New Mexico. Captain Howard T
G. Hudson (ELTI) was the Laboratory Project Officer-in-Charge. 3

When US Government draw1n$s, specifications, or other data are used for any
purpose other than a definitely related Government procurement operation, the
Government thereby incurs no responsibility nor any obligation whatsoever, and
the fact that the Government may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other data, is not to be regarded
by implication or otherwise, as in any manner 1icensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use,
or sell any patented invention that may in any way be related thereto.

This report has been authored by a contractor of the United States Government.
Accordingly, the United States Government retains a nonexclusive, royalty-free
1icense to publish or reproduce the material contained herein, or allow others
to do so, for the United States Government purposes.

This report has been reviewed by the Office of Information (0I) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it
will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

s/ b Do

HOWARD G. HUDSON
Captain, USAF
Project Officer

FOR THE COMMANDER

A byl o ot

ief, Technology Branch Colonel, USAF
Chief, Electromagnetics Division

DO NOT RETURN THIS COPY. RETAIN OR DESTROY.




UNCLASSTFIED gL ¥

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

QY REPORT DOCUMENTATION PAGE e TROCTIONE ¥

2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED

Final fep’.‘toé 7

GNETIC ELD" EGRAL EQ TION AND SEM
NSEQUENCESe = =

7. AUTHOR(s)

:z:::;z,:gifm- ottt /O gl =

EUDOSYMMETRIC EIGENMODE EXPANSION FOR m?

8. CONTRACT OR GRANT NUMBER(s)
"L

). PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROG—E&AV”IOERLKE.JS:‘TT;URMGJECJ TASK
TOR, Inc. 62704H - DNA
P. 0. Box 9695 — 64747F - AFUL
Manima—det—Rey; CA 90291 L oo 4,,_;[&7_41_4 WDNE 3206

1. CONTROLLING OFFICE NAME AND ADDRESS
Director £ a i : |}] Jung=3979

Defense Nuclear Agency 51 &= @ . .
Washington, DC 20305 58

74, MONITORING AGENCY NAME & ADDRESS(/{ different fromn Controlling Office) | 15. SECURITY CLASS. (of this report)

Air Force Weapons Laboratory (ELTI)
Kirtland Afr Force Base, NM 87117 UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

BY5Tp —  (RQALE.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Qo | |

18. SUPPLEMENTARY NOTES

This, yesearch was sponsored by the Defense Nuclear Agency under Subtask
R99QNXEB200, Work Unit 71, Work Unit Title: Hardness Surveillance

19. KEY YJORDS (Continue on reverse side if necessary and identify by block number)

Electromagnetic Scattering Eigenmode Expansion Method
Perfectly Conducting Rodies Singularity Expansion Method
Perfectly Conducting Sphere SEM Patch Zoning

Magnetic Field Integral Equation

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

An eigenmode expansion for the magnetic field integral equation (MFIE) is
derived which eliminates the requirement that an adjoint solution be explicitly
sought. Instead, an orthogonality relation is derived which only involves the

‘ 1?enmodes of the original MFIE operator. To promote confidence in the

E validity of the resulting expansion, two analyses based on this expansion are

4 presented which Tead to known results. First, the expansion is applied to the
problem of determining the surface current density induced on a perfect\y._xiézgggvp

sy

(over)

DD ,"on'7s 1473  eoiTion oF 1 NGV 6815 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ('hon Data Entered)

Sy N

.u:wn




_UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20, ABSTRACT (Cont'd)

conducting sphere by a plane wave and the known solution for this problem is
duplicated by the expansion. The second analysis shows that for a general
perfectly conducting body, the eigenmode expansion coefficient numerator
evaluated at the purely imaginary frequency corresponding to an interior reso-
nance is zero. This result is necessary in order to relate the eigenmode

expansion to SEM.G;\___\

Viewing the SEM as a change of representation of the eigenmode expansion
intended to facilitate the inverse Laplace transform of that expansion and
taking advantage of our detailed sphere calculations, we obtained an important
SEM result. We found that MFIE class 2 coupling coefficients give the wrong
answer for the sphere. This result caused us to examine class 2 coupling
coefficients corresponding to the electric field integro-differential equation
(EFIDE). We examined the symmetric eigenmode expansion corresponding to that
equation and found that EFIDE class 2 coupling coefficients also give the wrong
answer for the sphere. This detailed examination of the sphere solution led us
to postulate a set of SEM assumptions that have potential application to a
general class of closed surfaces and at the same time are consistent with the
sphere solution. Finally, we present numerical results that utilize our
pseudosymmetric expansion and 11lustrate the capability of determining SEM
quantities by patch zoning the MFIE.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




CONTENTS
Page
I. Introduction 3
| II. Pseudosymmetric Eigenmode solution to the Magnetic
-g Field Integral Equation 9
R 3 III. Consistency of Zero Residue at Interior Resonances 1
3 and the Pseudosymmetric Eigenmode Solution 5
% IV. MP'IE Pseudosymmetric Eigenmode Solution to the
E 3 Sphere 18
| 3 »
, »
§ f V. SEM Coupling Coefficients for the Spherc Via the
§ : Pseudosymmetric Eigenmode Solution to the MFIE 25
% . VIi. Eigenmode Solution to the Electric Field
- Interodifferential Equation 32
i {
1 . VII. A Set of Assumptions for the Generalization of
| i the SEM Sphere Solution to an Arbitrarily Shaped
b ' Conducting Body 37
% t VIII. Numerical Determination of Pole Locations and
| { Eigenfunctions for the Sphere 44
|
Appendix A. Proof of Equation (14) 49
Appendix B. Proof that 51
> = AL J .
= 3 % o -
N; dA,/dy ﬁs[gl (n ¥ )]
References 53
"Agcession For
= NTIS GRA&I
i DDC TAB
\ Unannounced
} Justiiication
{ :
{ By
-Distrivutient
4
i ! vrilﬁfxiifyizfde;
i vallaud/or
? 172 f ‘ special
1
* 3 -




by R w3 Savr s

. N

&
'
&

B e T R T e, e —-.—,.-,-—.—\,m'

S ——_ S R 300

SECTION I
INTRODUCTION AND SUMMARY

The original objective of this study was to determine
whether quantities required by suggested singularity expansion
method (SEM) expansions could be obtained through numerical pro-
cedures that include patch zoning the magnetic field integral
equation (MFIE). We found that this could be accomplished at
the expense of very lengthy computer runs. Furthermore, we
were motivated to study the underlying theory of SEM by the fact
that there was more than one suggested SEM expansion.

The predominant effort to provide a theoretical basis
for SEM has been directed toward the problem of determining
the current density induced on a perfectly conducting closed
surface by an incident electromagnetic wave (i.e., the EMP
external interaction problem). This problem is treated by
studying equations that result from taking the Laplace
transform of Maxwell's equations. This is the problem area
that we also address in our study of SEM theory. The approach
we took was to study the relationship between eigenmode
expansion method (EEM) solutions and SEM expansions.

We begin our effort by studying the EEM as applied to the
MFIE. The reason for this is that EEM and SEM can be
related and EEM does not suffer from the same uncertainty as
does SEM. This is the case since EEM has been studied as a
special case of the spectral theory of operators. This does
not imply that EEM should replace SEM, because the suggested
SEM expansions have certain advantages over EEM expansion.

The ability to relate EEM to SEM was facilitated by
recognizing that it was possible to use special properties
of the MFIE in order to operationally simplify and interpret
the standard EEM expansion. Specifically, the standard EEM




expansion requires that eigenmodes of both the MFIE operator

as well as its adjoint be determined since the MFIE operator
is not self adjoint. The special properties of the MFIE
operator allow exactly the same EEM expansion to be obtained
as the described standard solution by utilizing only the
eigenmodes of the original MFIE operator. Because the MFIE
operator is not self adjoint and we are still able to obtain
an EEM expansion that requires only the eigenmodes of the

S e U it B3 o A R D 2 N Vi

original MFIE operator, we term the expansion obtained, a
pseudosymmetric eigenmode expansion for the MFIE. The pro-
cedure for grouping and then utilizing these eigenmodes are,
f | however, considerably different from the procedure that would
' be employed for a symmetric operator. The standard EEM
solution and the pseudosymmetric EEM solution are always
termwise identical if explicitly evaluated. In fact, the
eigenmodes used in both EEM expansions are theoretically

identical, independent of evaluation. It is the expansion

coefficients that are operationally different (i.e., different
representations of the same quantities). It is this difference
that allows the pseudosymmetric representation to more readily

yield a result that is necessary to relate EEM to SEM. }

three important classes of quantities that are required by

In order to discuss this result, we will describe the }

any of the suggested SEM expansions. They are the natural

frequencies, the natural modes, and the coupling coefficients. ﬁf

The natural frequencies are the values of the complex
Laplace frequency, Yy, for which the eigenvalues of the MFIE
operator, Ai’ is zero. The natural modes are the EEM

eigenmodes evaluated at the natural frequencies. The

question of just what is a coupling coefficient is an open
question that will shortly be addressed in more detail. The
necessary SEM result is related to the fact that Ai has zeros
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corresponding to both the interior, Yij' and the exterior,
Yige closed surface problem and }; always appears in the denom-

inator of either form of the EEM expansion coefficients. It is
essential for SEM purposes that the potential singularity in

the EEM expansion coefficient at Yij be eliminated from the
final expansion. The pseudosymmetric representation of the
expansion coefficient is such that the numerator in that
representation is readily shown to vanish at the Yij thus
permitting a cancellation of the unwanted singularity and

this is the described necessary result. Marin and Latham

(ref. 1) in their SEM investigation also addressed the interior
resonance issue and obtained the same result.

We now address the coupling coefficient issue according
to the principle that EEM expansions and SEM expansions should
be identical in the Laplace complex frequency domain. The
fact that we are eventually interested in the time domain
response corresponding to the inverse Laplace transforms,
provides no theoretical justification for two different
complex frequency domain solutions of the same induced
surface current density. There is essentially a one to one
correspondence between transform pairs (i.e., the real
function of time and its Laplace transform). The inverse
transform of a given Laplace transform function can result
in time functions that differ only on a set of measure zero
in the time domain (e.g., to correspond to the uncertainty
of the function value at a jump discontinuity). Two
different Laplace transform functions must necessarily result
in two different inverse Laplace transform time signals.

1. Marin, L. and R. W. Latham, Analytical Properties of the
Field Scattered by a Perfectly Conducting Finite Body,
Interaction Note 92, Air Force Weapons Laboratory, 1972.
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This leads to two questions that must be addressed concerning
the relationship between the EEM expansion and suggested SEM
expansions. Are they identical? If not, is the difference
significant?

This effort is primarily directed toward the first
question. We address this question by obtaining explicit
EEM results and SEM results for the case where the closed
surface is a sphere. These explicit results for EEM are
obtained by using the pseudosymmetric expansion coefficient.
The SEM representations explicitly evaluated are those
employing class 1 and class 2 coupling coefficients. Obtain-
ing the EEM results was facilitated by employing the explicit
eigenmodes and eigenvalues for the sphere problem presented
by Marin (ref. 2). The benefits of the pseudosymmetric
expansion coefficient representation became apparent in this
sphere calculation as it allowed us to use only a limited
portion of the detailed sphere results obtained by Marin
(ref. 2). The resulting pseudosymmetric EEM expansion was
in exact agreement with known sphere results. Specifically,
it duplicated the standard Mie solution and Baum's original
SEM results (ref. 3). This duplication of results can only be
seen after each representation is rearranged, but it is only
rearrangement that should be permitted in the theoretical com-

parison of solutions. The agreement of the pseudosymmetric

EEM solution accomplished two purposes. It promoted confidence

in the pseudosymmetric EEM theory. Secondly, it enabled a

2. Marin, L., Natural-Mode, Representation of Transient
Scattering from Rotationally Symmetric, Perfectly Conduct-
ing Bodies and Numerical Results for a Prolate Spheroid,
Interaction Note 119, Air Force Weapons Laboratory, 1972.

3. Baum, C. E., On the Singularity Expansion Method for the

Solution of Electromagnetic Interaction Problems, Interaction

Note 88, Air Force Weapons Laboratory, 1971.
6
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direct evaluation of SEM class 1 and class 2 coupling co-
efficients (according to their pseudosymmetric description).
We found class 1 to yield an exact rearrangement of the known
solution while class 2 led to an erroneous expansion. To :
conclude that the class expansion is erroneous, we argue that
each sum, corresponding to the SEM expansion employing either
class 1 or class 2 coupling coefficients, must necessarily
yield different results in the limit as more terms are added.
This can be concluded without even examining the limiting

process since each class of coupling coefficients leads to
a termwise different expansion coefficient multiplying the
exact same linearly independent function. (See end of section V.)

Having found that class 2 coupling coefficients based

on the MFIE gave theoretically incorrect results, we decided
to examine coupling coefficients for the sphere problem based
on the electric field integro-differential equation (EFIDE).
Again we found class 1 to yield an exact rearrangement of the
known solution while class 2 led to an erroneous expansion.
Our investigation of the sphere problem allowed us to arrive
at a set of SEM assumptions, to be further investigated,

KU outtssas e ————

that are applicable to a general class of closed surfaces '
and are not in conflict with the known sphere solution. E

At this point we can conclude that SEM expansions based
on class 2 coupling coefficients are not identical with EEM
expansions while SEM expansions employing class 1 coupling
coefficients are not in conflict with the general assumptions
that we have identified. The question of whether the theo-
retical error caused by employing class 2 coupling coefficients
is significant was not specifically addressed in this report.
In relation to this issue, it is known that the basic SEM
representation is of questionable value for high frequencies/
early times. This early time concern is further enhanced
because the time dependent behavior of each term, resulting
from the inverse Laplace transform of an SEM expansion

7
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employing class 1 coupling coefficients, would exhibit a
propagating turn on time faster than the speed of light.
Whether this deficiency is important is related to whether
for these early times the total SEM expansion is of utility.

A possible rationale for using the theoretically wrong
class 2 coupling coefficients is that they do not result in
this termwise propagation speed problem. As a consequence
the corresponding SEM expansions have the potential to yield
better approximations for early time applications than theo-
retically correct expansions. The works of Tesche (ref. 4)
and Marin (ref. 2) were not specifically directed at this
issue; however, they provide some evidence that SEM expansions
utilizing class 2 coupling coefficients potentially can yield
meaningful time domain solutions. Both references considered
time domain solutions for the total current induced on an
object, a thin wire in (ref. 4) and a prolate spheroid in
(ref. 2). 1In either case they compared the time domain
solutions obtained by an alternate procedure to the solution
obtained by an SEM expansion employing class 2 coupling
coefficients and they obtained good agreement. At this point,
the use of class 2 coupling coefficients should be viewed
as an empirical approximation.

We view the status of SEM as providing suggested repre-
sentations having potential benefits to a variety of wave inter-
action applications as well as to electromagnetic pulse (EMP)
interaction problems; however, there is at present, insufficient
knowledge to decide a priori how well any suggested SEM expan-
sion represents even external interaction gquantities.

4. Tesche, F. M., On the Singularity Expansion Method as

Applied to Electromagnetic Scattering from Thin Wires,

Interaction Note 102, Air Force Weapons Laboratory, 1972.
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SECTION II

PSEUDOSYMMETRIC EIGENMODE SOLUTTON TO THE MAGNETIC
FIELD INTEGRAL EQUATION

In this section we derive an eigenfunction expansion solution
to the Magnetic Field Integral Equation (MFIE) by employing a
procedure that allows the determination of the expansion
coefficients without explicitly calculating the eigenfunctions
of the adjoint operator. We call this solution the pseudo-
symmetric eigenmode expansion for the MFIE.

We start with the MFIE for the exterior problem

%g(g - [ﬁ(g) x [VG(_{.E') x g(g')] as' = 3" (x) (1)
S

where J(r) is the induced surface current density on the perfectly
conducting surface S, ﬁ(g) is the outward unit normal of S,

5 i A E}nc’ #'"C is the incident magnetic field and G is

the free space Green's function,

@3 = g3 (2)

with

EN
131
N
]
o

(3)

where I is the identity operator. The solution to equation (2) is

given by 9
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73, = M3, (5)

The expansion coefficients a; involve an inner product for ginc
and the eigenfunctions of the adjoint operator.vﬁ. As we
mentioned in the beginning of the section we need not determine
these eigenfunctions explicitly because we can employ the pseudo-
symmetric method which we will now outline. We begin by defining
operators M and Q through

(6)
ML

©O
]

where f is a surface vector. Noting that M2

leads to the following property

£=fxnxf=-f

M= Al (7)

Next we operate on equation (5) with M and obtain the eigenvalue
equation

BES, ¥ A
(8)
MZ=1M-0Q
gt

In conjunction with equation (8) we define the adjoint equation

e

10
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where (Myﬂfy M obey the usual adjointness relationship

(£,Ag) = (a'f,q) (10)

with an inner product defined as

*
(a,b) =fe * b ds

S

With the aid of equations (8), (9), and (10) we can derive the
relationship

1 J

*
O = A7) (E5M3y) = 0 (11)

For generality we assume that the eigenvalues are degenerate and
rewrite equation (1l1) as

ek e
(g = S (EgpoMI; ) =0 (12)

where %, m signify degeneracy. Using this one can show that

(13)

Nig %34 Spm

where the biorthogonality relationship for i = j, & # m is
obtained via a Gram-Schmidt biorthogonalization procedure. We are
now in a position to derive an important result by noting that

i 1

. v & *
Myt o= (% M - Q)r = % M' -Q = - N -9 (14)

(see appendix A) and invoking the first of equations (13) to rewrite

equation (9) as
n
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By first operating on equation (15) with M and then complex
conjugating the resulting equation, we obtain

1 ) * =, F
(3*1'55.9,‘ i By (182

where we have used equations (6) and (7). Equation (16) can be

rewritten as

i~ b *
S5t " 2ia (18)

where ¥ = I1/2 - L is the MFIE operator for the exterior problem.
Thus'J, . = g;l is an eigenfunction of the MFIE operator with an
eigenvalue 1 - A; where A, corresponds to J. . According to the
second of equations (13)

(Fyp/MT;0) as

]
m’\
|
. *

P
3
X
1<

|

3

S . (19)

W
1
ke
o
e}
1<
P
3
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3

and we define this integral form as a pseudo inner product

fij.z o | Seodthelt TS TR (20)
We now return to equation (2) to obtain the eigenfunction expansion

solution.

12




’ First, we expand J'"C in terms of the Jie

ine _
' Ly Z 2: Bin Zig (21)
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Taking the pseudo inner product of both sides of (21) and using

§
3
, .
; ? (20), we can determine the Bit's as
¢
-
% g inc (22)
2 F e 3 in
E Big = {250,373/,
E
| | By 8™ = fi, - B x 2 as
% =

If we now expand J as

‘l=22311‘1ﬂ
12

i

where

L e
V.

a0 ™ A3 L4y, (5) !

F
1’.—-—."

we can rewrite equation (2) as

e o Z; ajehy 3y = 317° = Z; Bie Iie
1
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and conclude that

ajp = Bip/M

Using equation (22) we obtain

inc}

T, M.
T £ By

as the pseudosymmetric eigenmode expansion solution to the MFIE
or equivalently to equation (2). The eigenmodes required by the
expansion are eigenmodes of the original operator ¢ taken in

pairs, one corresponding to the eigenvalue Ai and the other cor-
responding to the eigenvalue 1-Ai.

i e




SECTION III

CONSISTENCY OF ZERO RESIDUE AT INTERIOR RESONANCES AND THE
PSEUDOSYMMETRIC EIGENMODE SOLUTION

o A x S

In this section we show that the set of eigenmodes for the

: exterior problem is identical to the set of eigenmodes for the
interior problem, the eigenvalues Ai of the exterior eigenvalue
problem have zeros at the interior resonances (in addition to the
exterior resonances) and that the coefficients {iit’ginc} in the
pseudosymmetric eigenmode solution given by equation (24) are

) zero at these interior resonances. The last result is necessary

in order to relate the EEM to the SEM. Thus the eigenmode series

may be rearranged to be written as a singularity expansion (which

is a special case of the Mittag-Leffler theorem stated in section

V1II, equation (103)) which will not involve interior resonances since

the excitation coefficients {iit.ginc} will be shown to be zero.

We start by recalling equations (5), (16), (18) and the
eigenvalue equation for the interior problem.

» X I oy
Zy; = (:‘f i L)—l s (5)
2+ L)Tf =.3J (25)
=i i-i
s el L - S :

it S kil

where the superscript "I" denotes "interior." To simplify the
notation we will not supply a superscript "E" to exterior quanti-
ties and also ignore degeneracy because our results do not depend

D
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on degeneracy. The eigenvalue Ai in equation (5) is any eigen-
value of the exterior operator and either the J.'s or J,'s comprise
the entire set of eigenmodes of the exterior operator . Bearing
this in mind, a comparison of equations (25) and (26) shows that
the interior and exterior eigenvalues comprise the same set and
that the interior and exterior eigenfunctions comprise the same
set.

We now proceed to show that the excitation coefficient evalu-
ated at the interior resonances is zero. The interior resonances

Aij are solutions to the equation

and the corresponding interior natural modes satisfy equation (26)
with Ai = 0 or equivalently equation (25) with Ay =0

0 B S R

The solution to equation (27) can, using an appropriate normaliza-
tion, be given by

~ I % I

' X)

A i
= -n X Ei(Yij'E) y 2 ES (28)

where we have simply made the distinction

and n is the outward normal to S. The equation satisfied by
Ei(Yij'E)' where r € V and V is the interior region bounded

by S, is

16
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N x[v x gi(yij,g_)] - resS. (29b)

The excitation coefficient in equation (23) evaluated at Yij is

I | inc I . FyH.x P ipe, 1
{J; (i) g (Yij)} = fgi(vij) B X iyl O8

] J
S
A 13 inc, I
= [n'[ﬁi(Yij) x H (YlJ)] ds (30a)
S
x I
B {Yij} (30b)

I

In order to show that {Yij} = 0 we employ the following identity

v '[gi x (7 x Elnc) L Elnc x (V x Eiﬂ

il
o
.
X
<7
X
(o}

|
o]
Q
+
pou
<
N~
N
o]
[¥H
o}
Q
[ SS—

inc X .2
E [V L T (Yij) ﬂi] rev (31)

iy
lies out-

Since the source for the incident electric field Ein
side V and H, satisfies equation (29a), it follows that an
integral of the righthand side of equation (31) over V yields
zero. The volume integral of the lefthand side of equation (31)
can be converted to a surface integral using the divergence

theorem to obtain

f;" [Ei"(V"Einc)~§in°><(VxHi)]ds=o
s

: i i . :
Substituting the Maxwell equation V X Elnc = - yzog NC jinto this
relationship, we obtain

{Yij} =0
17

.




SECTION IV

MFIE PSEUDOSYMMETRIC EIGENMODE SOLUTION TO THE SPHERE

In this section we apply the pseudosymmetric eigenmode solution
developed in Section II to obtain the induced surface current on

the surface of a perfectly conducting sphere illuminated by a

plane wave that corresponds to the Laplace transform of a delta
function plane wave pulse. The pseudosymmetric approach produces

| the Mie solution in the form given by equation (B-68) in reference 3.

ARt L g s /W 80 W Sk *

We repeat here some of the equations in Section II needed
in this section.

The solution to the MFIE
Vol e (2)

is

1nc
o - T Wb 2

where |

$lsp = M3y (3) 1
e S e T (17) ¢
.‘ ~ a ~ ~ y
1 00 Tymt = fiin YRR 98 |
s
- L '
b | = Ni2 %15 %em Rasy .,
|
:
! ~ 1 ~ A inc 33
% {Eig'g.lnc} 2[‘-1-12 *nxJ ds (33) L

l 18
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Notice that the second index signifies degeneracy. For a sphere
(ref. 3)

gn,m,o(e'¢) ww k2, e
Qn,m,o(0:9) 0 = o,e (odd,even)
where
oY Y
T n,m,0 ~ 1 n,m,o -
a0l = = g, ks T e "
(34)
oY Y
Q (6,¢y _ 1 n,m,g 2 n,m,c
aaes T 8in © 20 e % 30 ol
The corresponding eigenvalues are given by (ref. 2)
AR = yai_(va) : vak_(ya)
n n n
(35)
Q e 7 ’
A, = [Yaln(va)] [Yakn(va)]
i€y
R
= 1
an,m,o )‘n Bn,m,c
(36)
- al
;Zgn,m,o An g-n,m,o

An interesting property for the sphere that will be used shortly
is

Q.m0 =% ™ Bm,o
(37)
Rymo = " g-n,m,a
19
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where ér z ﬁ. Next we observe that because of the Wronskian

relationship
tig @ [tk @] - k@ e @] = -
the following is true
1 g
+ xn =1 (38)

Thus according to equations (l17a) and (38)

.,~ el ot R ~ e Q~

Ry m,o = (l An) Rnmo = *n Znym,o 39
2 2 2 Q)~ s £

'wgn,n,o i (l A gn,n,o ‘n 9n,n,o (40)

Comparing equations (39) and (40) to equations (36) we conclude

that
n
3n,m,d Z E cm',o' g-n,m',o'

m'=0 o'=0,e

(41)

n
0. = R
‘Q‘nlmvo E Z dm'lo' -n,m',c"

m'=0 ¢'=0,e

We next show that the only nonzero coefficients in equation (41)
are c . and dm G This can be accomplished by first recalling
1

’
equations (18)

~ A AL R
fl-i‘-n,m,o (er % Bn,m",o") - Nn,m,o 6m,m" ds(J,o“
S

(42)

O,

~ . ~ & Q
_[—n,m,a (er . Qn,m",o") i Nn,m,o Gm.m" 60,0"
S

20
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which with the aid of equations (37) become

~ A R :
f&n'm'o gn'mll'on ds Nn'm’o Gm’mn 60'0n

S

/ (43)
g . e - Q

S ki Bn,m",O" ds = anl“ro 6mlm" 60'0‘,

Substituting equations (41) into equations (43) and employing the
orthogonality properties

> = & ' w a
/Bn,m',o' 5n,m",o" 98 /—Qn,m',o’ Q-n,m',o e

S S
(44)
= Mn,m"o“ ém“,m' 60",0'
given by equations (B-19) in reference 3, we obtain
g
cm",U" Mn,m",o" o Nn,m'o Gm'mn 60,°.n
(45)
& e
dm",o" Mn,m",o" b Nn'm'o 6m'mn 60’,0’"

which prove that only c and dm g are nonzero. Thus we can replace
’ ’

m,o
(41) by
Bn,m,o i dR =n,m,oC
(46)
Qn,m,o % dQ Bn,m,o

are arbitrary constants.

e Ng m,g (Which appear in expansion equation
’ ’ ’ 14 y

(23)) by invoking equations (45) and (46)

where dR, dQ

Next we calculate Nﬁ

21
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Nn,m,o ” cm,o n,m,c . dR n,m,o

. (47)
N2 = - =-d M
n,m,o m,0 n,m,0 Q "n,m,o

In order to calculate the expansion coefficients in equation (23)
we first recall equation (33) and employ equation (46)

~ ingc, _ [« LB inc
{Bn,m,o' - } ".lgﬁhnuo (o X 715} 4B
%r -degn,m’O : Elnc ds (48)
since
~ e s & e - odme . s oA o dne
e *d *9. re =N = =H L TR
and Q is a surface vector. Similarly,
'—n'm'o B
A
iney _ . wlne :
{Q-n,m,o' J ) = degn’m'o H ds (49)
The form of the incident magnetic field can be found by using
equations (B-55) and (B-58) in reference 3
. — e (1) b
ine o :
-I-{-p 5, Z Z z [Azln‘lm'lo'lp Rd-n',m',c'
n=1l m'=0 o'=e,0
= (1)
Al,n',m',o',p*Hn',m',c' it

where p = 2,3 represents the two possible polarization directions
defined in reference 3 and

22




(1)

P

Reg . W Tl il 3

Boom,o T 1,y Ry,m,o(8r) R
(1) ! in(Yr)
_N_nlmlo < n(n + l) _—Y-r——- ?-n,m,o(e’¢) > (5
Br in(Yrﬂ
. Yr gn,m,o(e'¢) )

En,m,o is the third vector spherical harmonic (the other two being

Q and R; see equations (B-1l), (B-12), and (B-13) in reference 3).
Employing the orthogonality properties among P, Q, and R

given by equations (B-18 and (B-19) in reference 3 and equations (50)

and (51), we can rewrite equations (48) and (49) as

» ; [Yai (Ya)]
R A o R S M LT R O
-n,m,0’ —p R "1l,n,m,0,p n,m,c yYa
(52)
~ iney _ . :
{gn,m,o' Qp L dQ A2,n,m,c,p Mn,m,o ln(Ya)

where a is the radius of the sphere. We are now in a position to
rewrite equation (23) in its final form by first recalling

equations (47) and (52)

S ——n e e

= n .
J (8,¢) = E E z: 21,n,m,0,p %R Mn,m,o[Yaln(Ya)] g
=p ’ = b
0 n

LREA

and using equation (35) to obtain

23




3,(0,0) =i§: Z | Minmo.p R g (008)

2 n,m
n=1 m=0 o=e,0 l(ya) kn(Ya)

A
2,n,m,0,p ' ;

— Q (53)
Ya[Ya kn(Ya)] _nrmco(e:¢)s

Equation (53) is identical to equation (B-68) in reference 3.




SECTION V

SEM COUPLING COEFFICIENTS FOR THE SPHERE VIA THE PSEUDOSYMMETRIC

EIGENMODE SOLUTION TO THE MFIE

We first examine Class 1 coupling coefficients with q = 1

corresponding to the TM modes R -
—n’m'c

this coupling coefficient has the form

In appendix B we show that

~ inc
R(1) - (YR ni-Y)cto‘{Bh,m,c’ g-p }I
n ' (Y) £ e 'nv (54)
B/’ mo.p 52 o[ |

n,m,o n e -

Y Yn,n'
where to = -a/c. From the previous section we recall equations
(52), (47) and (35)

g ' vai (Ya)]
~ incy . [ Al
{Bn,m,o' gp o l,n,m,0,p e Mn,m,o Ya (53)
R & :
Nn,m,o = dR Mn,m,d (independent of Yy) (56)
AR = |yai (va) ' ya k_(yva) (57)
n n n
Recalling that for g = 1 modes [Ya k (Ya)] _.R = 0 we have
' n Y—Yn,n'
R 3 . -
[dkn/dY]Y=Yr1? S {a[Yaln(Ya)] [Ya kn(Ya)]
’
+ i k R
a[Yaln(Ya)] [Ya n(Ya)] }Y=Yn,n'
= i 4 k 1N R
a{[yaln(Ya)] [va n(Ya']}Y=Yn,n' (58)




In view of equations (55), (56), and (58), equation (54) gives

R -
R(1) (Yn n' Y)Cto Al,n,m,o,p/a

= ’

nn’n|,m'°'p(y) e ’
Ya[va kn(Ya)] ‘o
T

(59)

G P T A i SRR A KA

Following equation (B-76) in reference 3 in conjunction with

equation (B-74) we find

2 S =ya
(vya) kn(Ya) = e Cl'n(Ya) (60)

Noting that

{[(Ya)2 kn‘(Ya)],} Y=YR : =

n,n n,n'

|
——
<
o))
o
o]
<
o
+
<
1]
<
o))
=
=]
g
&
—_
N~
-

t R 1 4 1
lya[ya kn(ya)]'$




Combining equations (59) and (6l) we obtain

R -
R(1) (y) e(Yn,n' Y)Cto Al,n,m,o,p/a
n,n',m,O,p Y -YR 'a

n,n [ g
e C (Ya)]
e Y=Y

A1,n,m,0,p"2 P g
[Cl'n(va)]

Y=Yn’n|

since to = -a/c.

Employing equation (B-82) in reference 3 in conjunction with
equation (B-98) we finally obtain

R(1)

A 1
Bentmpl T8 TG s (63)

l,n,n',m,0,p

Recalling that y = s/c we understand that the coupling coefficient
given by equation (63) is identical to the one that can be identi-

fied in equation (B-97) in reference 3 for q = 1.

Following the same procedure as above we obtain

Q
n,n',m,o0,p

= e 1
n (y) = e - (64)

2,n,n',m,0,p

Thus Class 1 coefficients give the correct result for the sphere,
i.e., equation (B-97) in reference 3. For Class 2 the defining
relationship for q = 1 is

~ inc
R(2) o e
nn,n',m,O:P(Y) 5 NR dAR/d (65)
n,m,c[ n Y] Y=YR
; n,n'
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Taking into account the manipulations that led to equation (63)
we can rewrite equation (65) as

B i i

R : ¢
(R(2) il eYn,n'a - [Yaln(Ya)] /ya
' g [ -
n,n',m,0,p c 1,n,n',m,0,p {[}ain(ya)] /Ya} i
Y=Yn’n|
(66)
and similarly for q = 2
Q .
nQ(2) Gy L g D iy (ya) o
n,n‘,m,o,p C zln'n'lmlolp i (VQ a)
n., 'n,n"
Comparing these expressions with (63) and (64) we conclude that
Class 2 does not give the correct answer for the sphere. (See end

of this section.) Specifically let us consider q = 2, n = 1,

n' = 1 and set YQ

n,n’' = Yl . We have

’ Ya -yva
i (ya) = Soshlya) _ sinh(ya) _ e T 1 T ( & j;)
1 Ya 2 2ya Ya 2ya Ya
(va)
(68)
To Laplace invert the form containing the Class 1 coupling
coefficient for n = 1, n' = 1, we write
i LTS L I L SO Shicanka Y 1 Y (69)
f { s = 4 —_— = e
: ! C 2 2 g Yl 2
|
|
- i \ i
where C2 = CZ,n,n',m,o,p with n =1, n' = 1. We also invert the

termn =1, n' = 1 with the Class 2 coupling coefficient by
considering the expression




e . B et S AR i ki T xS

yia i
N B o 1 -yl e Feiypee
c lnlyla) 2ya yal y = Y, 2ya \° ya) Y - Yl’

Now we can write

(z__l_)__l___lf(a*l'l-a”l‘1+Y1)
LY ol 3 @]
Y Y Y Yl Yl Y Yl Y Yz
(2+_1_) 1 LaYl+l_aYl+l_Y_1)
Y Y2 Y Y1 Yi Y Yy Y 2

and equation (70) can be rewritten as

c, e¥l2 Y,c(t+a/c)
T(2) = 5% BaYl - 1l)e + 1 + cht}u(t + a/c)
2y;a in(Yla) ;

Y,c(t-a/c)
+ [(aYl + 1l)e -1 - ylct]u(t - a/c)
ch(t+a/c)
C,e Y,a
= —%— [ayl - el u(t +a/c) + (ay; + 1)
Zyla in(yla)
e u(t - a/c) + (1 + ylct)(u(t + a/c) - u(t - a/cn]

(71)

For -a/c < t < a/c equation (71) is different from equation (69).
However, for t > a/c equation (71) can be reduced to

v,c(t+a/c)
& 1
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and Class 2 gives the correct answer only for t > a/c, i.e.,

after the wavefront has passed the sphere. Notice that the previous
result is valid for a delta function incident plane wave. For an
incident wave with a different functional dependence say

EofE = él-r/c) u(t - él-r/c) the response is split into the object
response and waveform response, i.e.,

X -1
Top = D, Ep(Sg) Ng(8) vy () (s = 5y)
o

(72)

yo=if
P 2
Jup = z n,(s) v, (x) e (73)

Q

From equation (72) we see that Class 2 will again give the correct
object response only for t > a/c. However, the waveform response
will be wrong for all times since from equation (73) we have to
convolve £~ o h (s)/s - s ﬂ with % 1'(f (s) - f (s )) and

21 vl(s)ﬂs - s ﬂ is correct for t > a/c only.

We conclude this section by answering the following question.
What if, despite the fact that Class 1 and Class 2 coupling co-
efficients are different, the corresponding infinite sums produce
identical responses? The answer is that this is impossible. To
show this, we recall the orthogonality properties of the ga's
(an0 nmo)’ i.e., equations (B-19) in reference 3 (which, inciden-
tally, show the linear independence of the Xa S as we mentioned in

the introduction) and notice that if the responses were identical
we would have

An

24 s I
) Y-Ynnn
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where Ann n'M, 0. is the difference between the Class 1 and

’ ’ ’
Class 2 coupling coefficients. In particular, for g = 1

(an0 functions) and n = 1, we have n' = 0; i.e., there is only
5 . : ' G 7
one pole and it lies on the real axis. Thus Anl,O,m,o,p = 0.
This is impossible as we have shown, and consequently the two

sums must be different.
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SECTION VI

| EIGENMODE SOLUTION TO THE ELECTRIC FIELD
INTERODIFFERENTIAL EQUATION

The Electric Field Integrodifferential Equation (EFIDE) for
scattering from perfectly conducting bodies can be cast into the

il oS b Ao e o

following operator form (ref. 2)

and Etnc is the tangential (= it.g}nc) component of the incident

electric field. It can be shown that the following relationship

fg-g-bds=f(g-a_)~gds (75)

S S

is true

Thus if we define a complex inner product

(£,9) = fﬁ*- g ds
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‘.lv

e

In order to utilize equation (76) in the derivation of the eigenmode
solution to equation (74) we define the eigenvalue equafions

Andie ™% g (77)
1 7 s
2 T8 P e Sy (78)
and one can show that
LI
i T % 1
(79)
fJ“-J ds =N, §,. 6 ’
—i =jm g 743 T fm
S

(a,2 - b) = (Z '~ a,b)
we understand that
zf = g%
We can now rewrite equation (78) as
* G R e
& " diy ™%y i
or
+* £ [ %
'8 "Fiiy
i.e.,
1- e *
Sig * Sy (80)
33




Thus in view of equations (79) and (80) the eigenmode solution
to equation (74) is

* inc
3 (Jigr E¢p )
el T A (81)
[o] 2 1 ol
where
* inc inc
(g B ) dir "5 88
S

(82)

As an example for equation (81) we consider the case of a sphere.
From reference 2 we have

3
1

1'2' e s o g 20 I
n : (83)
o,e (odd, even)’

gl’l,m,O'
den =

=if
o

- ,m,O

[[ I N

i.e., Z has the same eigenfunctions as the MFIE operator % . The
corresponding eigenvalues are (ref.2)

— [Yain(Ya)] [Ya kn(va)]

= -[Yain(va)]' [Ya kn(va)]' e

S0 B

and from eguation (44)

., =M = R
le n,m,do -n,m,c -n,m,oc

|
|
0

das
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The incident electric field §lnc has the form (equation (B59) in
ref.2) :

o n

Einc 5 Z Z Z [Al,n,m,o,p -b—dri}r)n,o(yg

n=1 m=0 o=e,0

(1)
2 Azrn:m,O,P Iln,m,o(YE)] (86)

(1) g : :
Mn,m,o and gn,m,o are given by equation (51) and the A's
by equation (B-58) in reference 3. By using the orthogonality
relationships given by equations (B-11), (B-12), and (B-13) in

reference 3 in conjunction with equation (86) we find

where

-1, * inc -1

i = inc
%5 Cnmpr B 1 F 8, (Bn,m,o' Sy
= 1, (vya) My 5.0 Al,n,m,o,p (87a)
=1, % Tncy: =] ok inc
26 (gn,m,o’ By (gn,m,o' e
[Yain(va)]
= - M A
Ya n,m,0 2,n,m,0,pP
(87b)
where M are given by equation (85). Employing equations (87)

n,m,o
and (84) we can rewrite equation (81) as




o n x
Al,n,m,o,p ln(Ya) Mn,m,o R

z : 2 : z : : -n,m,0

n=1 m=1 o=0,e n,m,c[yaln(yaq [Ya kn(yaﬂ

1<
"

1 Az’n,m’c’p{[yaln(ya)] /Ya} Mn:mlo
: 3 £ =n,m,d
Mn’m'o[valn(\ra)] [Ya kn(Ya)] 2

n

b Z 2 A
| Z l,n,m,O,p R o Azlnlmlolp

2 n,m,o ’ =n,m,0
n=1l m=1 o=o0,e (va) kn(Ya) ya[ya kn(ya)]

(88)

Equation (88) as expected, is identical to equation (53) obtained
via the pseudosymmetric eigenmode expansion for the Magnetic Field
Integral Equation.

We conclude this section by noting two important factors;
(a) if we examine the coupling coefficients for the sphere we
can follow a procedure similar to the one employed in & .ction IV
and arrive at formulas that are identical to the ones in section 1V,
i.e., draw_the same conclusions and (b) the excitation coefficient
(QZ’ Z;l Etnc
employing a procedure similar to the one in section III of the

MFIE.

) can be shown to vanish at the interior resonances by




SECTION VII

A SET OF ASSUMPTIONS FOR THE GENERALIZATION OF THE SEM SPHERE
SOLUTION TO AN ARBITRARILY SHAPED CONDUCTING BODY

In this section we cast the eigenmode solution (to either the
MFIE or EFIDE) for electromagnetic scattering from an arbitrarily
shaped perfectly conducting body into a form that represents a
generalization to the SEM sphere solution. Certain assumptions
are made along the way that are motivated by the known sphere
solution and the procedure leads to an SEM representation that
involves Class 1 coupling coefficients with no additional entire
function. If the same procedure is applied to the sphere, no
assumptions are necessary, and one is inexorably led to the

SEM solution with Class 1 coupling coefficients with no entire
function to be added.

We begin with the eigenmode solution:

b.
Jlz,Y) =Zl_l 3, (89a)
1

=i
o

where b; = (J;, 3'"}/N, for the MFIE (eq. 23) and b, = (I}, 2
g:‘__nc)/Ni for the EFIDE (eq. 8l). The eigenvalues and eigen-
functions are determined by solving the appropriate eigenvalue
problems. It has been shown in reference 1l that for an incident

delta function plane wave pulse (in the time domain) J(zr,y)

is a meromorphic function of y, i.e., in any finite region of the
complex y-planc J(r,y) has a finite number of pole singularities.

The pole locations correspond to the exterior and interior resonances
of the body and can be determined by setting Ai(y) = 0. Recall that
nur incident wave in the time domain is a delta function plane wave

il e,

kel




pulse, i.e., the incident fields have no singularities in the

s . ol MBS 5 T el

finite y-plane. 1In section III we showed that the excitation
coefficient {Qi, g}nc} is zero at the interior resonances Y.

i i)
and in section V1 we mentioned that we can similarly prove that
% A -
(S5 Zol §1nc) is also zero at Yij' This leads us to one of the

assumptions necessary for our generalization; it is that J(r,y)
can be written as

§ - J(r,y) = :E:'Li(g,y) (89b)

where s is a unit surface vector and the Li(g,y) are meromorphic
functions of y. At this point, it is appropriate to relate equa- 4
tion (89b) to the Mittag-Leffler theorem (see refs. 5 and 6). This -

theorem is used to derive a general representation for meromorphic

functions in terms of an infinite sum in which poles are explicitly
represented. After we obtain more explicit representations for the

Li(g,y), we will show that equation (89b) does not violate this i
theorem. Because the excitation coefficients are zero at Yij’ at
this point we assume that the Li(E’Y) are such that their only singu-
larities in the finite y-plane are poles located only at exterior 4

resonances. Notice that to each subscript i corresponds a set of

exterior resonances Yij'
Equation (89b) is exact for the sphere as we can see by invoking
equations (34), (35), and (52) for the MFIE and equations (83), (84),
and (87) for the EFIDE. Next we invoke a corollary to the Weierstrass
theorem concerning the representation of an entire function which

| states that "every function which is meromorphic in the whole

5. Carrier, G., M. Krook and C. Pearson, Functions of a Complex
Variable, McGraw-Hill, New York, 1966.

6. Ahlfors, L., Complex Analysis, McGraw-Hill, New York, Second
Edition, 1966.

e e
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finite plane is the quotient of two entire functions" (sce for
example, ref. 6). Thus

£, (£,7) ~
L;(r,y) = —§;T7T_ (99)

and the zeroes of gi(y) correspond to the poles of Li' Equation
(90) 1is also true for the sphere. We now assume that both fi
and 9; have a finite number of zeroes for each i and consequently
being entire functions they must have the form (ref.6)

fl(E'Y) = i =
(91)
g; () = e

where Fi, Gi are entire functions and Qi' Pi polynomials. Guided
by the sphere solution we assume that Fi'is a function of y only
and that the degree of Q is lower than the degree of P in order
to be able to obtain a partial fraction expansion of the desired

form. With the aid of equations (91) we can rewrite equation
(90) as

Li(EoY) = e 1 Tl(Y_) (92)

where we have defined ¢i = Fi - Gi.' Again equation (92) is exactly
true for the sphere. The explicit form for a sphere can be obtained
by invoking equations (B-74), (B-75), and {B-76) in reference 3. Thus
¢, (¥) = Ya and by noting that 0; (r,v) = M, () (; . Qi) where J; is

] S .
either Ro,m,o Qn,m,o we obtain

39
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M (v) + (ya)™?

Pi(y) + Polynomial of nth degfée i

LB
PG —

We will now assume that Pi(Y) has simple zeroes (true for the
sphere) and set
bi - ot WED oy 3V D3 g |
) MR Rt S & el A JZI ¥ Tiad i
From equation (93) one obtains
B lre ) 8 ¢ 300000
Ai' i eyl —1 1) e"bi(Yij) (94)
J [d).i/dv]
e
and equation (89a) can be rewritten as
N(i)
TREDD SN =05 (viz) _Pil¥ig) g3 (Evs5)
e . : dxlﬁY] s 25 Yl]
J = 1 Y-Yij
(95)

é

For the sphere ¢(Y) = ay and consequently equation (95) shows
that an appropriate rearrangement of the eigenmode solution (89%a)

inexorably leads to an SEM expansion with Class 1 coupling
coefficients. In order to determine the form of the entire function

¢i(y) for a general body we consider the inverse Laplace transform
i and we close in the left half-plane for times t > ts and in the

right half-plane for t < to where ts is the instant at which the
incident wavefront first hits the scattering body. All the poles

e e

are located in the left half-plane and for t < to we should obtain
J(r,t) = 0, i.e., the integral on the large semicircle, Rey>o, should
approach zero as its radius approaches infinity. The integrand

of interest has the form

B
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e

y $; (Y)+yct

3 Py w B : (96)

? ¥ = ey |
g with Re Ty ® 0. Consequently we require that ‘
Re[¢i(Y) +vcr] <0 (97)

for all y along the semicircle. Let us now define Wi(y) by the
equation

¥ (Y) = 6, (y) -yce + yect b,

Sl o o s T

(o)

For t < to condition (97) can be rewritten

Re ¥, (y) < le| cRe v . (98)

Recalling that Re y < |y| we can cast inequality (98) into the
form

v ()
Re ST < |e (99)

with € being an arbitrarily small finite value. Recalling that
¢i(Y) is an entire function one would be tempted to expand it
in a McLaurin series based on the argument that equation (99) is

only required to be true on a finite semicircle at this stage of
the analysis and argue that equation (99) could only be satisfied

RS s o o

if ¢, (y) = constant with all remaining coefficients in the series |
necessarily equal to zero. We have not satisfied ourselves with | 5
this argument; however, we are willing to conjecture that wi(y)

= constant in view of the fact that any polynomial representation

for wi(y) can be shown to reduce to a constant. Making this

conjecture, it follows that

R
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Oi(Y) = -yct, + constant (100)

Such a choice of course allows us to close in the left-hand plane
for t > to since the requirement

-

Re Y, (y) < -ecRe y = ec|Re v|, (Re Yy < 0, € > 0)

is then satisfied for large |y| with Re y > 0.
Assuming that ¢,(y) is given by equation (100) then ¢,(y) -

¢i(yij)= (y i3 - Y)to and equation (95) is an SE!M solution with Class 1

coupling coefficients. Rewriting equation (95) after making
this substitution and using equation (89), one obtains

. cy4(0)
s+ J(z,v) = E(Y) Z (101a)

where

o (101b)

R (101c)
j [dki/dy]
Y=y

Combining the two indices (i and j) into the index "n," we can
write equation (101) as

C
s + J(r,v) = E(Y) Z - (102)

and this form is convenient for a discussion of the relationship
between meromorphic functions and pole series expansions. A
consequence of the Mittag-Leffler theorem is that the most general
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infinite pole series representation of a meromorphic function
m(y) is

m = 2 [eple25) - ]+ mim (103)

n=1

where Pn and Sn are finite degree polynomials not necessarily of
degree n and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>