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SECTION I
INTRODUCTION AND SUMMARY

The original objective of this study was to determine
whether quantities required by suggested singularity expansion
method (SEM) expansions could be obtained through numerical pro-
cedures that include patch zoning the magnetic field integral

• equation (MFIE). We found that this could be accomplished at
the expense of very lengthy computer runs. Furthermore, we
were motivated to study the underlying theory of SEM by the fact
that there was more than one suggested SEM expansion.

The predominant effort to provide a theoretical basis

for SEM has been directed toward the problem of determining

the current density induced on a perfectly conducting closed

surface by an incident electromagnetic wave (i.e., the EMP
external interaction problem). This problem is treated by

studying equations that result from taking the Laplace

transform of Maxwell’s equations. This is the problem area

• that we also address in our study of SEM theory. The approach

we took was to study the relationship between eigenmode

expansion method (EEM) solutions and SEM expansions.

We begin our effort by studying the EEM as applied to the

MFIE. The reason for this is that EEM and SEM can be

related and EEM does not suffer from the same uncertainty as

does SEM. This is the case since EEM has been studied as a

special case of the spectral theory of operators. This does

not imply that EEM should replace SEM, because the suggested
SEM expansions have certain advantages over EEM expansion.

The ability to relate EEM to SEM was facilitated by

recognizing that it was possible to use special properties

of the MFIE in order to operationally simplify and interpret

the standard EEM expansion. Specifically, the standard EEM

3
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expansion requires that eigenmodes of both the MFIE operator
as well as its adjoint be determined since the MFIE operator

is not self adjoint. The special properties of the MFIE

operator allow exactly the same EEM expansion to be obtained
as the described standard solution by utilizing only the
eigenmodes of the original MFIE operator. Because the MFIE

operator is not self adjoint and we are still able to obtain
an EEM expansion that requires only the eigenmodes of the
original MFIE operator , we term the expansion obtained, a $1
pseudosymmetric eigenmode expansion for the MFIE. The pro-
cedure for grouping and then utilizing these eigenmodes are,
however , considerably different from the procedure that would
be employed for a symmetric operator. The standard EEM
solution and the pseudosymmetric EEM solution are always
termwise identical if explicitly evaluated . In fact, the

eigenmodes used in both EEM expansions are theoretically
identical, independent of evaluation. It is the expansion
coefficients that are operationally different (i.e., d i f f e rent
representations of the same quantities). It is this difference
that allows the pseudosymmetric representation to more readily

-
~~~~~~~ yield a result that is necess ary to relate EEM to SEM.

I -

In order to d iscuss this result, we will describe the
three important classes of quantities that are required by
any of the suggested SEM expansions. They are the natural
frequencies, the natural modes , and the coupling coefficients.
The natural frequencies are the values of the complex
Lap lace frequency, y, for which the eigenvalues of the MFIE
operator , X~~, is zero. The natural modes are the EEM
eigenmodes evaluated at the natural frequencies. The
ques tion of j ust what is a coupling coefficient is an open
question that will shortly be addressed in ~nore detail. The
necessary SEM result is related to the fact that ha~ ~~ros

• 

-

~
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corresponding to both the interior, y~~
, and the exterior ,

closed surface problem and )~ always appears in the denom-

¶ inator of either form of the EEM expansion coefficients. It is
essential for SEM purposes that the potential singularity in

~• the EEM expansion coefficient at be eliminated from the
j final expansion. The pseudosymmetric representation of the

j  expansion coefficient is such that the numerator in that

representation is readily shown to vanish at the thus

permitting a cancellation of the unwanted singularity and

this is the described necessary result. Man n and Latham

(ref. 1) in their SEM investigation also addressed the interior

resonance issue and obtained the same result.

We now address the coupling coefficient issue according

to the principle that EEM expansions and SEM expansions should

be identical in the Laplace complex frequency domain. The

fact that we are eventually interested in the time domain

j response corresponding to the inverse Laplace transforms,

provides no theoretical justification for two different

complex frequency domain solutions of the s’ime induced

surface current density. There is essentially a one to one

correspondence between transform pairs (i.e., the real

function of time and its Laplace transform). The inverse

transform of a given Laplace transform function can result

in time functions that differ only on a set of measure zero

c in the time domain (e.g., to correspond to the uncertainty

of the function value at a jump discontinuity). Two

different Laplace transform functions must necessarily result
in two different inverse Laplace transform time signals.

I
f 

1. Man n, L. and R. W. Latham, Analytical Properties of the

Field Scattered by a Perfectly Conducting Finite Body,

Interaction Note 92, Air Force Weapons Laboratory, 1972.

_ _ _ _  _ _  ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



This leads to two questions that must be addressed concerning

the relationship between the EEM expansion and suggested SEM

expansions. Are they identical? If not, is the difference
significant?

This effort is primarily directed toward the first

question. We address this question by obtaining explicit

EEM results and SEM results for the case where the closed

surface is a sphere. These explicit results for EEM are

obtained by using the pseudosymrnetric expansion coefficient.
The SEM representations explicitly evaluated are those

employing class 1 and class 2 coupling coefficients. Obtain-

ing the EEM results was facilitated by employing the explicit
eigenmodes and eigenvalues for the sphere problem presented

by Man n (ref. 2). The benefits of the pseudosymmetric

expansion coefficient representation became apparen t in this
sphere calculation as it allowed us to use only a limited
portion of the detailed sphere results obtained by Man n

(ref. 2). The resulting pseudosyminetnic EEM expansion was

in exact agreement with known sphere results. Specif ical ly,
it duplicated the standard Mie solution and Baum ’s original
SEN results (ref. 3). This duplication of results can only be
seen after each representation is rearranged , but it is only
rearrangement that should be permitted in the theoretical com—
panison of solutions. The agreement of the pseudosyrrunetric

EEM solution accomplished two purposes. It promoted confidence

in the pseudosyinmetric EEM theory. Secondly , it enabled a

2. Man n, L., Natural-Mode, Representation of Transient

Scattering from Rotationally Symmetric, Perfectly Conduct-

ing Bodies and Numerical Results for a Prolate Spheroid,

Interaction Note 119, Air Force Weapons Laboratory , 1972.
3. Baum , C. E., On the Singularity Expansion Method for the
Solution of Electromagnetic Interaction Problems, Interaction

Note 88, Air Force Weapons Laboratory , 1971.

6
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direct evaluation of SEM class 1 and class 2 coupling co-

• efficients (according to their pseudosymmetric description).
We found class 1 to yield an exact rearrangement of the known
solution while class 2 led to an erroneous expansion. To

• conclude that the class expansion is erroneous, we argue that
each sum, corresponding to the SEM expansion employing either
class 1 on class 2 coupling coefficients, must necessarily
yield different results in the limit as more terms are added.
This can be concluded without even examining the limiting

process since each class of coupling coefficients leads to
a termwise di f ferent  expansion coefficient multiplying the
exact same linearly independent function. (See end of section V.)

Having found that class 2 coupling coefficients based
on the MFIE gave theoretically incorrect results, we decided

¶ to examine coupling coefficients for the sphere problem based

on the electric field integro-differential equation (EFIDE).

Again we found class 1 to yield an exact rearrangement of the

• known solution while class 2 led to an erroneous expansion.

Our investigation of the sphere problem allowed us to arrive

at a set of SEN assumptions, to be further investigated ,

that are applicable to a general class of closed surfaces

and are not in conflict with the known sphere solution.

At this point we can conclude that SEM expansions based
on class 2 coupling coefficients are not identical with EEM

expansions while SEM expansions employing class 1 coupling

coefficients are not in conflict with the general assumptions

that we have identified . The question of whether the theo-

retical error caused by employing class 2 coupling coefficients

is significant was not specifically addressed in this report.

In relation to this issue, it is known that the basic SEM

representation is of questionable value for high frequencies !

early times. This early time concern is further enhanced

because the time dependent behavior of each term, resulting
I

from the inverse Laplace transform of an SEM expansion

• - S 
‘~~~~—~~~~~~ : - ~~ _ - .1
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employing class 1 coupling coefficients , would exhibit a

propagating turn on time faster th~ -~ the speed of light.

Whether this deficiency is important is related to whether

for these early times the total SEM expansion is of utility .

A possible rationale for using the theoretically wrong

class 2 coupling coefficients is that they do not result in

• this termwise propagation speed problem. As a consequence

the corresponding SEM expansions have the potential to yield

better approximations for early time applications than theo-

retically correct expansions. The works of Tesche (ref. 4)

and Man n (ref. 2) were not specifically directed at this

issue; however, they provide some evidence that SEM expansions

utilizing class 2 coupling coefficients potentially can yield

meaningful time domain solutions. Both references considered

time domain solutions for the total current induced on an
object, a thin wire in (ref. 4) and a prolate spheroid in
(ref. 2). In either case they compared the time domain
solutions obtained by an alternate procedure to the solution
obtained by an SEM expansion employing class 2 coupling

coefficients and they obtained good agreement. At this point ,
the use of class 2 coupling coefficients should be viewed
as an empirical approximation

We view the status of SEM as providing suggested repre-
sentations having potential benefits to a variet.y of wave inter-
action applications as well as to electromagnecic pulse (EM?)
interaction problems; however , there is at present, insufficient
knowledge to decide a priori how well any suggested SEM expan-
sion represents even external interaction quantities.

4. Tesche, F. M., On the Singularity Expansion Method as
Applied to Electromagnetic Scattering from Thin Wires,
Interaction Note 102, Air Force Weapons Laboratory , 1972.

8
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SECTION II

PSEUDOSYMMETRIC EIGENMODE SOLU~~ON TO THE MAGNETIC

FIELD INTEGRAL EQUATION

I~t this section we derive an eigenfunction expansion solution

to the Magnetic Field Integral Equation (MFIE) by employing a

procedure that allows the determination of the expansion
coefficients without explicitly calculating the eigenfunctions

• of the adjoint operator . We call this solution the pseudo-

H symmetric eigenmode expansion for the MFIE.

We start with the MFIE for the exterior problem

J(r) - f ~ ( r) x [vG(r ~ r ’ )  x J(r t ) ]  dS’ = j~~
c(r) (1)

where J(r) is the induced surface current density on the perfectly

conducting surface 5 , £i(r) is the outward unit normal of S,
~~lf l C 

= ~~ ~ 1~
1•f lC 11iflC is the incident magnetic field and C is

the free space Green ’s function,

G(r,r’) = 
1 e ’

~~~~~~~
1

— 

4ir — 
~~~

‘ I

We rewrite equation (1) as

q’j = (2)

with

(3)

where I is the identity operator. The solution to equation (2) is

given by

S. - 
. 

~. - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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I
J =

~~~~~
a
~
J
~ 

(4)

where

= A (5)

The expansion coeff icients a1 involve an inner product for
arid the eigenfunctions of the adjoint operator ¶/‘~~~. As we

mentioned in the beginning of the section we need not determine

these eigenfunctions explicitly because we can employ the pseudo-
symmetric method which we will now outline. We begin by defining

operators M and Q through

M f E n X f
(6)

Q E ML

where f is a surface vector. Noting that M2f = fi x n x f = —f

leads to the following property

2M = - I  (7)

Next we operate on equation (5) with M and obtain the eigenvalue
• equation

= A~MJ~
(8)

M.~~=~~~M - Q

In conjunction with equation (8) we define the adjoint equation

(M.~i’)tF~ = A~M~F~ (9)

10
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I
where (M.~/’) , M obey the usual ad jointness rela tionship

(f,Aa) = (A~f,~~) (10)

with an inner product defined as

(a b) = b d S

With the aid of equations ( 8 ) ,  ( 9 ) ,  and (10) we can derive the
relationship

( A .  - A ;
*)(p.,Mj.) = 0 (11)

For generality we assume that the eigenvalues are degenerate and
rewrite equation (11) as

.‘.*(A
~ 

— A ’. ) (~ jg# M~2.j~ ) = 0 (12)

}

where ~~ , in signify degeneracy . Using this one can show that

A . = A .
1 1 

(13)
(~ jp~iM~!j~) ~~~ ~j i ~~m

where the biorthogonality relationship for i = j ,  £ ~ in is
• r
• obtained via a Gram-Schmidt biorthogonalization procedure. We are

now in a position to derive an important result by noting that

t 1 t 1 ~ 1 *(M.~’) = M - Q) = M ’ - Q = - N - Q (14)

(see appendix A) and invoking the first of equations (13) to rewrite

equation (9) as

U

-I 

~~ ________ i _____

~~~~~~~~~ 
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(
... . N — *) = —A ~ MF~~ (15)

By first operating on equation (15) with M and then complex

conjugating the resulting equation, we obtain

(
~
. + L)F.~ = A

1 
F~~ (16)

where we have used equations (6) and (7). Equation (16) can be

rewritten as

= (1 - A j )
~~j L (17)

(18)

where~~/’ = 1/2 - L is the MFIE operator for the exterior problem.

Thus : Fi.~ 
is an eigenfunctiori of the MFIE operator with an

eigenvalue 1 - X~ where X~ corresponds ~~ ~~
. According to the

second of equations (13)

(F..2,,MJi~~
) = J~;R. ~ ~ ~ im dS

~~

= j~.L • x dS = ~~~ äj~ ~em 
(19)

and we define this integral form as a pseudo inner product

jL’~ im~ ~~~ ~ ~ ~im dS = 
~~~ 

IS~ j (20)

We now return to equation (2) to obtain the eigenfunction expansion

solution .
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i
First, we expand J3

~~ in terms of the

= ~~~ B~~ ~it (21)
i z

Taking the pseudo inner product of both sides of (21) and using
(20), we can determine the (31~~’s as

B = {3i~~~~
inc},N (22)

{~~1,J
inc} =f

~~ 
. n x J 1flC dS (23)

If we now expand J as
~~
. 

~~~~
.

J =E~~~~~
ajt Jjt 

-

where

= X
i ~~~~~~~~~ 

(5)

we can rewrite equation (2) as

) 23 = a . e  A ~ = 
3.lflC 

= 
~

i~~~ i L

‘‘3

_ _ - 
- 

~~~
- -- ___- - 

;;. ~~~~~~~~•
-
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and conclude that

ajL

Using equation (22) we obtain

inc
= E 

~~~ N A  
(24)

i ~ iR. i

as the pseudosymmetric eigenmode expansion solution to the MFIE

or equivalently to equation (2). The eigentnodes required by the

expansion are eigenmodes of the original operator .~F taken in
pairs , one corresponding to the eigenvalue X~ and the other cor-
responding to the eigenvalue 1—A t

.

ii
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SECTION III

CONSISTENCY OF ZERO RESIDUE AT INTERIOR RESONANCES AND THE
PSEUDOSYMMETRIC EIGENMODE SOLUTION

‘S

• In this section we show that the set of eigenmodes for the
exterior problem is identical to the set of eigenmodes for the
interior problem, the eigenvalues X~ of the exterior eigenvalue
problem have zeros at the ~n.tek.Lo4 resonances (in addition to the

:-• exterior resonances) and that the coefficients {Jie,J~
flc) in the

pseudosymmetric eigenmode solution given by equation (24) are

zero at these interior resonances. The last result is necessary
I in order to relate the EEM to the SEM. Thus the eigenmode series

may be rearranged to be written as a singularity expansion (which

i.s a special case of the Mittag—Leffler theorem stated in section

VII , equation ( 103)) which will not involve interior resonances since
- ì the excitation coefficients {~ie~

lnlc} will be shown to be zero.

We start by recalling equations (5), (16), (18) and the
eigenvalue equation for the interior problem.

— L)J~ = ~~~~ (5)

~...: c
S (

~ 
+ L)J~ = A~J~ (25)

(4 + L)J~ = A~ J~ (26)

where the superscript “I” denotes “interior.” To simplify the
notation we will not supply a superscript “E” to exterior quanti-
ties and also ignore degeneracy because our results do not depend

)

15

p 
_________________-— ~~~~~~ -‘ — 

S 
5 - ~~~~~~~~~-~~

-- 

-~~~

5

~~~~~
- ; - J

~~~~~~~~~~~~~~
I - -



_ _  
5 -i

on degeneracy. The eigenvalue X~ in equation (5) is any eigen-
value of the exterior operator and either the J~ ’s or J

~
’s comprise

the entire set of eigenmodes of the exterior operator~~. Bearing

this in mind, a comparison of equations (25) and (26) shows that
the interior and exterior eigenvalues comprise the same set and
that the interior and exterior eigenfunctions comprise the same

set.

We now proceed to show that the excitation coefficient evalu-
ated at the interior resonances is zero. The interior resonances

are solutions to the equation

= 0

and the corresponding interior natural modes satisfy equation (26)
with A~ = 0 or equivalently equation (25) with A 1 = 0.

f/”(Y~~ ) ~5’.(y 1
.)  = 0 (27)

The solution to equation (27) can , using an appropriate normaliza-
tion, be given by

I I ‘I

~i~~ij’~~ 
= n~ H ( y . . , r)

• )
= x } 3 . ( y’.,r) , r ~ S (28 )

where we have simply made the distinction

A A 4

and ri is the outward normal to S. The equation satisfied by
• 

(~~~ ‘~)‘ 
where r E V and V is the interior region bounded

by S, is
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— U

F

VxV x 
~~~(‘r~~~~~

) + (~~~~2 ~~~~~~~~~~ = 0 e V (29a)

- 

~i 
x [ v  x 

~~~~~~~~~~ 
= 0 , c S . (29b)

- 
The excitation coefficient in equation (23) evaluated at is

~~~~~~~ Jinc ( I )} = 
f 3~ (~’ ) • fl X J

1flC (y~~~~) dS

= J~.[H.(i’.) x Hinc (Y 1 )]dS (30a)
S

(30b)

In order to show that {y~~} = 0 we’employ the following identity

I 

• [
~

. x (V x Ei~
C) — Einc X (V x H i ) j

ii.[v x ~ x + (y ’ )
2 Emnc

]

— Einc . [v ~ v x + ~~1~~~2 

~~
] r c V (31)

I Since the source for the incident electric field Ej~~ lies out-
side V and H. satisfies equation (29a), it follows that an
integral of the righthand side of equation (31) over V yields
zero. The volume integral of the lefthand side of equation (31)
can be converted to a surface integral using the divergence
theorem to obtain

f~ . ~ x (v  Einc) — (v  x H.)] dS = 0

Substituting the Maxwell equation V x Einc = - YZ H~~C into this
relationship, we obtain

H (r~~} = 0  S

.1 17
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SECTION IV

MFIE PSEUDOSYMMETRIC EIGENMODE SOLUTION TO THE SPHERE

In this section we apply the pseudosyinmetric eigenmode solution
developed in Section II to obtain the induced surface current on
the surface of a perfectly conducting sphere illuminated by a
plane wave that corresponds to the Laplace transform of a delta
function plane wave pulse. The pseudosymmetric approach produces
the Mie solution in the form given by equation (B-68) in reference 3.

We repeat here some of the equations in Section II needed

in this section.

a The solution to the MFIE

= 3
iflC (2)

is
—. inc

= 

~~~ 
(23)

where

i~ 
= A~J~~

= (1 — A j)~
’
jL (17) 1

iZ’~~jm~ ~ . x dS

S

= N IL ~ij ~Lm (18)

~~~~~~~~ 

, J
iflC } = J ~ iL ~ 

x dS

Ii
~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ ~~~~~~. 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Notice that the second index signifies degeneracy. For a sphere
(ref. 3)

n = 1,2,
i n < n
a = o,e (odd ,even)

where

~ n ,m ,a (0 ,~~ 
= — 

n ,m ,a 
+ 

~ 
~~n ,m ,a

( 3 4 )

= Si~ e + ~~n ,m ,a 
~

The corresponding eigenvalues are given by (ref. 2)

= 
[~
ai (Ya)]’ ~Yak~~ Ya]

(35)
= 
[~ai~~~a] [Yak (Ya ]’

i.e.,

~
‘
~n,m,ci 

= A~ ~n,m,a

(36)
= A ~~Q‘—n,m,a n —n,m ,a

An interesting property for the sphere that will be used shortly
‘1 iS

~ n ,m ,a = er 
x 

~n ,m ,a
(37)

~n ,m ,a = er x 
~n m a

19
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_ _  S _ S .-
.

where 
~r 

E ~~~. Next we observe that because of the Wronskian

relationship

~i (~) {ck~ (c)]’ 
- ck~ (c) [ci s c] ’  = -1

the following is true 
S

X~~~+ X ~~ = l  (38)

Thus according to equations (l7a) and (38)

= — A~~) ~ n ,m, a = A~ !n ,m ,a (39 )

-~ I Q \~~.
= ~l — A~~) ~n ,n , a  = A~ ~~~~~~~ 

(4 0)

Comparing equations (39) and (40) to equations (36) we conclude

that

= ~~~~~~ 2.n,m t ,a~
m ’=O a’=o,e

(41)

= c-’ v’ d—n ,m ,a L.j L.~ m ’ ,a ’ —n,m ’,a ’
m ’=O a ’=o,e

We next show that the only nonzero coefficients in equation (41)

are c and d . This can be accomplished by first recalling

equations

~ dS = N
~ ,m,a ~m ,m ” ~a,o”

(42 )

f~n,m,a ‘~~ r ~ ~n,m” ,a”~ 
dS = N

~ ,m,a 
6m,m” ‘5ci ,ci”

20

_ _ __ _ _ _  _ _ _ _ _ _ _  _ _ _  

Si 
~~~~~ ~~~~~~~~~~~~~~~



S 

which with the aid of equations (37) become

I.
I
) I_ _  R

J_n ,m,~ ~n ,m ” ,a ” dS = 
~~~~~ 

6m,m” 6a,a’~S

(43)

f~n , m,a 
~n,m” ,a” dS = 

~~~~~~~ 
S
m,m a* ~~~~~

3
Substituting equations (41) into equations (43) and employing the
orthogonality properties

f~n,m ’,a’ ~~~~~~~~ 
dS = 
J~n,m ’,a ’ ~n,m ”,a” dS

(44)
= M 

~ ~ 6 , 6n,m a m”,m a ,c ’

given by equations (B-19) in reference 3, we obtain

C
m sI ,a I~ 

Mn m ” a ” = N~~,m ,a 6m ,m ” 6a ,a ”
• (45)

d M — -Ne 6 6
S 

, a ” 
— n ,m , a m , ni” a , S

which prove that only C
~~~,0 

and dm,a are nonzero. Thus we can replace
• (41)by

~ n ,m ,a = dR ~n ,m ,a
(46)

2n,m,cy 
= dQ ~~~m,a

where dR, dQ are arbitrary constants.

Next we calculate 
~~~~~~ 

N
~~m o  (which appear in expansion equation

(23)) by invoking equations (45) and (46)

21 
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I

N
~ ,m ,a 

= C
m ,a Mn, m a  = dR Mn m o

(47)
- -d M - -d Mn ,xn ,a m , a n ,m , a — Q n,m ,a

In order to calculate the expansion coefficients in equation (23)
we first recall equation (33) and employ equation (46)

~~n,m ,a’ 
3inc

1 = 

f~n,m,a ~~r 
x Jinc) dS

= _d
RfQn,m,a 

. dS (48)

since

and Q is a surface vector. Similarly ,n,m ,a

3inc } = _d
QJ~n,m a  

. 
~~~~ dS (49)

The form of the incident magnetic f ield can be found by using
- 

S 

equations (B-55) and (B-58) in reference 3

~ n
H 1flC 

= ~~~ ~~~ [A 2 n , m I a ’ p ~ n ’ ,m ’ ,a ’ 
5

n 1  m ’ =O o ’=e , O

A N~
1
~ (50)1 ,n ’ ,xn ’ ,a ,p ~ n ’ ,m ’ , a

where p = 2,3 represents the two possible polarization directions

defined in reference 3 and

22
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S _ _

!~n,rn ,a = i~~(yr) ~n,m,a~ °’~~

(

(1 i (y r)

S 

-~n ,m , a = n (n + 1) 
~yr ~-n,m ,a

’
~
0’~~ (5’

[yr .. (yr)1
- • + n .J

Q (O~~~)yr —n ,m ,a

~n,m ,a 
is the third vector spherical harmonic (the other two being

t Q and R; see equations (B-il), (B-12), and (B-13) in reference 3).

Employing the orthogonali ty properties among P, Q, and R
given by equations (B-18 and ’ (B-19) in reference 3 and equations (50)

and (51), we can rewrite equations (48) and (49) as

yai (ya)
{R ~inc 1 — d A M L f l
—n,m,cY ’ —p 

— 
R l , n , m ,c ,p n ,m,a ya

• 
(52)

~~n,m ,o’ ~~~~~~ 
} = —dQ A2 n,m,a p  Mn m a  i~~(ia)

where a is the radius of the sphere We are now in a position to

rewrite equation (23) in its final form by f i rs t  recalling
equations (47) and (52)

= 

~~~~~~ 

~~~ [A 1In~m~aIP~~R
Mn im Ia [Yain(Ya)] 

~n ,m,o
n=l m=0 a=e,0 ya n R n ,m ,a

- 

A2,n ,m ,a ,p dQ Mn,m ,o i~~(Ya)

~ A 0 (—d M ) —n,m ,a
n Q n ,m ,a

• and using equation (35) to obtain

1 
23
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= 

~ ~ ~ Al n r n a p

n=1 m 0  a=e,0 ~ n

S 
- 

A2 n m a ,p Q (53)
‘ra [ia k (Ya)] 

_n I m s a ( 0
~ 4 ) S

Equation (53) is identical to equation (B-68) in reference 3. S

S I
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SECTION V

SEM COUPLING COEFFICIENTS FOR THE SPHERE VIA THE PSEUDOSYMMETRIC

EIGENMODE SOLUTION TO THE MFIE

• We first examine Class 1 coupling coefficients with q = 1
corresponding to the TM modes R . In appendix B we show that
this coupling coefficient has the form

~R ( l ) (y) = e(1~ ,n
1 t o~~~

nu n,a’ ~:p 
)
~ (54)n,n ’,m ,a ,p - 

~
N
~ ,m,a[

dA
~ /dY] Sy=yR

• ç n , n ’

- I where to = —a/c. From the previous section we recall equations

(52), (47) and (35)

- Iyai (ya)
~ ,~, L n

~~n,m ,a’ ~-p 
— 

~1,n,m,a ,p ‘~R “n,m ,a 
— 

ya

N
~ ,m ,a 

= dR Mn,m, a (independent of y) (56)

= [Yain(Ya)]
’ 
[ia k (Ya)] (57)

Recalling that for q = 1 modes [ya kn(ya)] = 
R = 0 we have

— y 1n n ’

= 
{a[Yain (Ya)]” [

ia k~~(Ya)]

+ a[iai~ (ia)] [~
a k (Ya)] }‘‘

~~,n ’

= a{[Yain(Ya)]’ 

~~:: kn(1~)]’}y=yR (58)

.•~L -
~
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In view of equations (55), (56), and (58), equation (54) gives

R(l) — 

(y~~~~,_ y) c t
0 Ai n , m ,c ,p/a

— e 
( 

,
~~

~ya[ya k~ (ia)] ~ R
~~~~~~n n ’

H Following equation (8—76) in reference 3 in conjunction with
equation (B-74) we find

(ia)2 k~ (ia) = e~~~ Ci,n (ya) (60)

Noting that

t[(ya)
2 kn (Ya)]

} ~~ 

= 

{
~ra kn (Ya) + ia[ia kfl (Ya)] }1 1

R

= {ia[ia kfl
(ia)

~~ }1..~R

we can rewrite equation (60) as

1 1 1

~ia[ia k~ (ya)] ‘
~
‘
~~ n, n ’ 

[Cia
2 kn(Ya)]y=yR 

[e~~~ cl,n~~a]’~~yR

= 

~e T a [C1,~~(ia)j ’ — e la C1,~~(ia)~ 
— 

R

1• = 

~e
_1a

[C1,~~Ya)] 11
R 

(61)

n,n ’

26
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Combining equations (59) and (61) we obtain

R(1) 
— e

(1
~ m n~~~~~

to A i n m o p /a
‘1n n ’,m a p  y —yR ,aI

e n,n 
~
Ci,n (ya)j 

— 
R

A /a
= 

l,n,m,a ,p e
_
~~

t
o (62)

[Cl,n ( Ya )] ’ R
n,n ’

since t = —a/c . -

Employing equation (8-82) in reference 3 in conjunction with
equation (8—98) we finally obtain

= e yct0 Ci,n n ’,m a ,p ~~~
. (63)

S Recalling that y = s/c we understand that the coupling coefficient
S 

given by equation (63) is identical to the one that can be identi-
fled in equation (8-97) in reference 3 for q = 1.

tS,. -

~~
, ‘

~ ( Following the same procedure as above we obtain

= e~~~~ o C ‘641n,n ’,m ,a ,p ~~ ‘ 2,n,n ’,m,ci ,p c

Thus Class 1 coefficients give the correct result for the sphere,

i.e., equation (8-97) in reference 3. For class 2 the defining
relationship for q = 1 is

jlflC)R(2) ) — —n,m,a —p (65)
~n,n ’,m,a,p 

‘V
a — 

~N~~,mIa [dA~ /d~ ] } R
n,n ’

27
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Taking into account the manipulations that led to equation (63)
we can rewrite equation (65) as

R(2) ) — I e~~’~~
’ 

~ 
[~ai~~’~a]’i~ay — 

1,n,n’,m,a ,p 
{[~

ai(~a)]’/~a} R
-~~ 

y=yn ,n t

(66)

and similarly for q = 2 a

Q
Q(2) ) — 

i 1
~~~~’a i~~(ya) 

67)1
~n,n’,m,a,p 

‘r — e C2,n,n t ,m ,a ,p 
i N 0 1a)

Comparing these expressions with (63) and (64) we conclude that
Class 2 does not give the correct answer for the sphere. (See end
of this section.) Specifically let us consider q 2, n = 1,

n’ = 1 and set 
~~~~ 

‘

~~~~ 

- We have

— 
cosh (ya) 

- 
sinh(ya) 

— 
e’~ (~~ - + 

e~~~ ( 
+ya — ya (ya)2 

— 2ya 
~ 

yaj 2ya ya

( 68)

To Laplace invert the form containing the Class 1 coupling

coefficient for n = 1, n ’ = 1, we write

T~
1
~ 

1 c2 l
~~

e
~~~~ = c2 e

Y1c(t4a/~~ u (t + a/c) (69)

where C2 C , with n = 1, ii ’ = 1. We also invert the2,n,n ,m,a,p
term n = 1, n ’ = 1 with the Class 2 coupling coefficient by

considering the expression

28
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T~
2
~ = ~ 

C e~~~ 
~~~~~~~ ~-e’~~ (

~~ 
l \  1 

+ 
0—ya ‘i + ..L \

c i~~(y 1a) ~2ya yaj y — y
1 2ya \‘ yaJ y —

(70)

Now we can write

Ia 1 \ 1 1 1ay 1 
— 1 ay 1 

— 1
_ _ _  _ _ _ _ _  - y

(~~~~~+~~~L\ 1 1 1 ay 1 + l ay 1 + 1 y 1
S ~y ~2/ ~~ 

— 
— 

~y — y
1 y ~2

and equation (70) can be rewritten as

C2 e
lla 

( y1c( t+a/c)
T~

2
~ 

= 2 2 
/
~[(ai1 — l)e + 1 + Y ict]u(t + a/c)

2y 1a in (11a) ( -

+ [(ai1 + l)e — 1 — Yict]u(t 
— a/c)

y c(t+a/c)
C e 1 y1a- 

~, 
= 

2 [ay1 
— l)e u(t + a/c) + (ay1 + 1)

S 

2y1a 1~~(i1a)

—y1ae u(t — a/c) + (1 + y1ct) (u(t + a/c) — u(t — a/c))]
(71)

For —a/c < t < a/c equation (71) is different from equation (69).

However, for t > a/c equation (71) can be reduced to

2) y1c(t+a/c):: T~ = C 2 e

29
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and Class 2 gives the correct answer only for t > a/c, i.e.,

after the wavefront has passed the sphere. Notice that the previous

result is valid for a delta function incident plane wave. For an

incident wave with a different functional dependence say

f~ (t - a1
.r/c) u(t - ~1

.r/c) the response is split into the object

response and waveform response, i.e.,

J = EA~P
(s
~
) n (s) v (r) (S  — s~ )~~ (72)

f ( s ) — f ( s )
= sri (s)  v (r) 2 ... ~~~~~± (73 )

From equation (72) we see that Class 2 will again give the correct

-~~ object response only for t > a/c. However , the waveform response
will be wrong for all times since from equation (73) we have to
convolve 2~~1 (~1a~~~#’~ 

- 

~a~
) with 9~~ (f~ (s) — f~~(s~ )) and

2~~
1 

(n~~
s)As - is correct for t > a/c only.

We conclude this section by answering the following question.
~TT What if, despite the fact that Class 1 and Class 2 coupling co-

efficients are different , the corresponding infinite sums produce
identical responses? The answer is that this is impossible . To
show this, we recall the orthogonality properties of the

~~nma’~nma~ ’ 
i.e., equations (B—l9) in reference 3 (which , inciden-

tally, show the linear independence of the ~~‘s as we mentioned inj  the introduction) and notice that if the responses were identical
we would have

An
v’ n,n ’,m ,a ,p 

= 0
‘i

~r’ 
~~~~~~~~~~~~~
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r

where A~ , is the difference between the Class 1 and
t - n,n  in, ‘p

Class 2 coupling coefficients.  In particular, for q =. 1
(R functions) and n = 1, we have n ’ = 0; i.e., there is only

one pole and it lies on the real axis. Thus 
~~~~~~~~~~~ 

0.

This is impossible as we have shown, and consequently the two

a ’ sums must be different.

-~ I• I’

I

~ i;

S

31

• 

S~~~ 

_  
-

~~~~~~~~~~~~~~~~~~~

_ _ _ _  ________ ii~ 11 - 141.



SECTION VI

EIGENMODE SOLUTION TO THE ELECTRIC FIELD
INTEROD IFFERENT IAL EQUAT ION

‘I

The Electric Field Integrodifferential Equation (EFIDE) for

scattering from perfectly conducting bodies can be cast into the
following operator form (ref. 2)

Z . J = Z l Emnc (74)

where

= . (V 4 + yA)

a 
= 

fG~~r ,r
1)  J (r ’)  dS’

S

= — IfG(r,rl) V’ • J (r ’) dS’

and Emnc is the tangential (= L~.E
’
~~

) component of the incident
electric field. It can be shown that the following relationship
is true

fa .Z .b d s =J (Z .a ) .b d s  (75)

Thus if we define a complex inner product

(
~~s) ~ ~~dS

we have

• b) = (Z* . a,b) (76)

32
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I
In order to utilize equation (76) in the derivation of the eigenmode
solution to equation (74) we define the eigenvalue equations 

S

• 
~iL = 

~i ~it

~~~~~~~L ~i~~iL 
(78)

and one can show that 
S

S S

t (79)
I
J~ 1i ~jm 

dS = NiL 6ij 6Lm
S

I. Recalling equation (76) and the defining relationship

(a,Z • b) = (ZT • a,b)

we understand that

- S

~ 
We can now rewrite equation (78) as

z* . J 1. 
—

—iL~~~~ i —iL

or
/

~~~~ ~~~~~U i.e.,

~iL 
= 

~
1iL (80)

33
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Thus in view of equations (79) and (80) the eigenmode solution

to equation (74) is

= 
(j* E

1flC
) 

(81)

where

(J~~ , Ei~~ ) = f~IL • ~~ 1flC dS
S (82) 4

NiL = f ~iL ~iL dS

As an example for equation (81) we consider the case of a sphere.

From reference 2 we have

n = 1,2, . .
j.~~~ =~~~ m < n  (83)

(Q a = o, e (odd, even))• —n,m ,o

5 
i.e., Z has the same eigenfunctions as the MFIE operator .~P. The

corresponding eigenvalues are (ref.2)

= 
[~ai~

(~a)] [~
a k (la)] 

~84)
= _ [~ai~~(’ra ] [~a k~~(y a)]

and from equation (44)

N. = M  = R •R  dSn,m,a j  —n , m ,a —n ,m ,a
S

= I Q  .Q dS (85)
J — n, m ,a —n ,m ,a

34



The incident electric field Ejflc has the form (equa tion (B59) in
ref.2)

~~ fl

Einc = ~~~ 
~ [A i n m a p ~g~~1,0 (

~~
)

n 1  m=0 a=e,o

+ A2 n m a p  ~~~a
(
~~
)] (86)

i :  where and are given by equation (51) and the A ’ s —

by equation (B-58) in reference 3.. By using the orthogonality

4/ relationships given by equations (B-il), (B—l2), and (B—13) in
reference 3 in conjunction with equation (86) we find

Zo
’(
~ n m a i E~~

C) = Zo
1(
~ n m a ~ 

E~~
C)

= in(~Ya) Mn,m ,a A i n m a p (87a)

‘I) —l * inc — —1. * incz0 ~~~~~~~ ~ — z0 ~~n,m ,a’ ~t 
)

I

1 .
[Yai~ (Ya)

— 
ya Mn,m,a 2,n,m ,a,p

(87b)

where M are given by equation (85). Employing equations (87)
• and (84) we can rewrite equation (81) as
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€1~ n
— ~~ ç-~ ‘ç5’ [A l,n,m ,a,p in(ya) Mn,m a  

~ 
a

— 
— 

~11 ~~ a~~~elMn ,m , a [ in (Ya) ] [‘ia k~ (Ya)] —n,m
,a

— 

A2,n,m,a 4[iain ’ra]iya} Mn m a
Mnma [Yain(la)][Ya k~~(la)]’ 

—n ,m ,a

— 
‘V. V~

’ [ Al n m G p R — 
A2 n m u p  

~
- • t~~~.. a~~~ e [-cya) 2 k (ia) —n,m ,a ia[~a k ( y a ) 1  —n ,m , o

( 8 8) a

Equation (88) as expected , is identical to equation (53) obtained

via the pseudosymmetric eigenmode expansion for the Magnetic Field
Integral Equation .

We conclude this section by noting two important factors;

• (a) if we examine the coupling coefficients for the sphere we

can follow a procedure similar to the one employed in ~. ction IV
and arrive at formulas that are identical to the ones in section IV ,

i.e., draw the same conclusions and (b) the excitation coefficient

(Jr, Z~~ E
C) can be shown to vanish at the interior resonances by

employing a procedure similar to the one in section III of the

MFIE.

‘a
’I

I
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SECTION VII

A SET OF ASSUMPTIONS FOR THE GENERALIZATION OF TIlE SEM SPHERE
SOLUTION TO AN ARBITRARILY SHAPED CONDUCTING BODY

J S

In this section we cas t the eigenmode solution (to either the
MFIE or EFIDE) for electromagnetic scattering from an arbitrar i ly
shaped perfectly conducting body into a form tha t represents a
generalization to the SEM sphere solution . Certain assumptions 

5

:~ 
are made along the way that are motivated by the known sphere
solution and the procedure leads to an SEM representation that
involves Class 1 coupling coefficients with no additional entire

H function. If the same procedure is applied to the sphere, no

- 
assumptions are necessary , and one is inexorably led to the

a SEM solution with Class 1 coupling coefficients with no entire
function to be added .

*

We begin with the eigenmode solution’

b~J(r,y) =E3:— J~ (89a)

where b~ = (~~~~, J~~~~}/N~ for the MFIE (eq. 23) and b~ = (J~ , Z~~
for the EFIDE (eq. 81). The eigenvalues and eigen-

j  functions are determined by solving the appropriate eigenvalue
problems. It has be en shown in reference 1 that for an incident

del ta function plane wave pulse (in the time domain ) J (r ,y)
is a ineromorphic function of y, i.e., in any f inite region of the
complex y—plan~ J(r,y) has a finite number of pole singularities.

The pole locations correspond to the exterior and interior resonances

o~ the body and can be determined by setting A~~(y) = 0. Recall that

our incident wave in the time domain is a delta function plane wave

Ii
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pulse, i.e., the incident fields have no singularities in the
finite v—plane . In section III we showed that the excitation
coefficient ~~~~~~~ 3~~

c} is zero at the interior resonances
and in section Vi we mentioned that we can similarly prove that
(J~ , Z~~ E

3
~~ ) is also zero at This leads us to one of the

assumptions necessary for our generalization; it is that J(r,y)
can be wri tten as

J ( r , y )  = L. (r,y) (89b)

where s is a uni t surface vector and the L~~(r~Y) are meromorphic
functions of y. At this point, it is appropriate to relate equa-

tion (89b) to the Mittag—Leffler theorem (see refs. 5 and 6). This
• theorem is used to derive a general representation for merornorphic

func tions i~-t terms of an infinite sum in which poles are explicitly
represented. Af ter we obtain more explicit represen tations for the
L~~(r , Y ) ,  we will show that equation (89b) does not violate this

S 

theorem. Because the excitation coefficients are zero at at

this point we assume that the L~~(r~i) are such that their only singu—
larities in the finite v-plane are poles located only at exterior

resonances. Notice that to each subscript i corresponds a Set of

exterior resonances

Equation (89b) is exact for the sphere as we can see by invoking
equations (34), (35), and (52) for the MFIE and equations (83), (84 ),
and (87) for the EFIDE. Next we invoke a corollary to the Weierstrass

theorem concerning the representation of an entire function which
states that “every function which is meromorphic in the whole

5. Carrier, G., M. Krook and C. Pearson , Functions of a Complex
Variable, McGraw-Hill, New York , 1966.

— 
- 6. Ahlfors, L., Complex Analysis, McGraw-Hill, New York, Second

-
~ Edition , 1966.
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f in i te plane is the quotien t of two entire func tions ” (see for
example , ref. 6). Thus -

f .( r ,y)
L~ (r ,y) = g~ (y ) (93)

and the zeroes of g1 (y) correspond to the poles of Li. Equation
5 (90) is also true for the sphere. We now assume that both

~~~~

- and g
~ have a finite number of zeroes for each i and consequently

being entire functions they must have the form (ref.6)

f~~(r1y) = ~~~~~~~~ Q~ (~~v)
(91)

= eGi~~ P
~~
(y)

where F~ 1 G1 are entire functions and Q1, P~ polynomials . Guided
by the sphere solution we assume that F1 is a function of y only
and that the degree of Q is lower than the degree of P in order
to be able to obtain a partial fraction expansion of the desired

a form. With the aid of equations (91) we can rewrite equation
(90) as

‘i’ . (v) Q~(~.~v)S L1(r ,y )  e 
P~~(v) 

(92)

where we have defined F1 
- G

~
. Again equation (92) is exactly

a true for the sphere. The explicit form for a sphere can be obtained
by invoking equations (2—74), (B—75), and ~B—76) in reference 3. Thus

= Ya and by noting that Q1(r,-y = M1(y) (s J.) where is
-
~~ either 

~n ,m ,o 
or 2n,m ,ci we obtajn

39
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- M~(v) 
-
~ (ya)~~~

+ Polynomial of nth degree

We will now assume that P. (y) has simple zeroes (true for the

sphere) and set

N(i) A.

s = L
~ 

= ~~~~~ 

(
~
ç;) = ~~~~~~ 

j=l

From equation (93) one obtains

b.(y.  - )  S • J.(r ,y. .)
A. . = 

1 1] - —1 — ~~ e~~i~~ ij
) (94)

ij  
[dx~/dv] 

S

and equation (89a) can be rewritten as

N ( i )
J(r ,y)  = ~~ ~~~ ~~~~~~~~~~~~~ IdA ./dyl

i. j = l  1 

~~~~~~ 
1]

(95)

:~~~Y For the sphere 4~(y ) = ay and consequently equation (95) shows

that an - appropriate rearrangement of the eigertrnode solution (89a)

inexorably leads to an SEM expansion with Class 1 coupling•

coefficients. In order to determine the form of the entire function

for a general body we consider the inverse Laplace transform

and we close in the left half-plane for times t > t0 and in the
right half-plane for t < t0 where to is the instant at which the
incident wavefront first hits the scattering body. All ,the poles

are located in the left half-plane and for t < t0 we should obtain
J(r,t) = 0, i.e., the integral on the large semicircle, Rey>o , should

approach zero as i~s radius approaches infinity. The integrand

of interest has the form

~~~5~~~~ 5 7fl ~~~~~~
’ ~~ ~~~~~~~~~~~~~ - 

- 
_ _ _
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4~~( v)+v ct
i(y) e - 

(96)

with Re < 0. Consequently we require that

Re[~1(Y) +y c~~ < 0 (97)

for all y along the semicircle. Let us now define ‘V~ (v) by the
equation

c ~i. (v) &~ 
(y) —yc c + yct

c E . t — t
0

For t < t condition (97) can be rewritten

- Re ~~
(y) < ki cRe 

~ . (98)

Recalling that Re ~ < lv i  we can cast inequality (98) into the
form

14
4’ . (y)

Re
~~ tyl id (99)

with c being an arbitrarily small finite value. Recalling that
is an entire -function one would be tempted to expand it

in a McLaurin series based on the argument that equation (99) is

only required to be true on a finite semicircle at this stage of

a 
the analysis and argue that equation (99) could only be satisfied
if 4~1(y) = constant with all remaining coefficients in the series
necessarily equal to zero. We have not satisfied ourselves with
this argument; however, we are willing to conjecture that q~~(y)
= constant in view of the fact that any polynomial representation
for *~~(v) can be shown to reduce to a constant. Making this
conjecture, it follows that 

a
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s~~(’r
) = yct0 + constant (100)

Such a choice of course allows us to close in the left-hand plane
for t > t0 since the requirement

a Re 1jJ~ (y) < —acRe y = ccIRe-y~, , (Re y < 0, ~ > 0)

is then satisfied for large lv i  with Re y > 0.

Assuming that 4~~(v) is given by equation (100) then 4~~(v ) —

~~ (v~~ )= (v~~ 
— y ) t

0 
and equation (95) is an SE~1 solution with Class 1

coupling coefficients. Rewriting equation (95) after making

this substitution and using equation (89), one obtains

N ( i )

~ ~~~~~ = E ( y )  ~~~ ~~~ ~ii~~~ (lOla)

i ~=1

where 
S

E ( y )  = e ’
~~
to (lOlb)

C
13

(r) = e~~j
Ct0 

b1(v 11
)~~~~~~J1(r,

Y
13
) 

(lOic)

Combining the two indices Ci and j )  into the index “n,” we can
write equation (101) as

• J (r ,y ) = E ( y )  .7. 
( 102)

and this form is convenient for a discussion of the relationship

between merontorphic functions and pole series expansions. A

consequence of the Mittag—Leff].er theorem is that the most general

42



I
t infinite pole series representation of a meromorphic function

m (y) is

• m (y) = 

n=l 
n~~ ~~~~ 

- 
~n~

1
~] 

+ H(y) (103)

I where and are finite degree polynomials not necessarily of

‘~ degree rt and H(y) is an entire function . There exist meromorphic
functions for which P~~(1Ai - v~ ))= CnI4Y - v~) and 

~~~~~ 
and H(v)

are identically zero. We also note that multiplying the meromorphic

function m(y) by an entire function E(y), would still result 
S

in a meromorphic function . For the case where and Cn have the

appropriate n dependence to eliminate the need for P~ and H , we
I : would obtain a representation for the meromorphic function

M(y) = E(y) m(y) as follows

:~ M (y)  = E(y) 
~ 
~~ (104)

n=1

which is consistent with both equation (102) and the Mittag-

Leffler theorem. This is also consistent with our assumed initial

representation shown in equation ( 8 9 ) .

IS

4
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SECTION VIII

NUMERICAL DETERMINATION OF POLE LOCATIONS AND EIGENFUNCTIONS

FOR THE SPHERE

In this section we describe the procedure that was used to

approximately find the pole locations for the sphere, i.e., those
values of y for which L(y) - (1/2)1 has a zero eigenvalue. To do

this we approximate the integral operator L(y) — (1/2)1 by a matrix,
M(y), according to the algorithm described in reference 7, and
try to find those values of y for which M(y) has a zero eigenvalue.

• Since the matrix is of finite order its determinant, D(y), equals
zero if and only if at least one of the eigenvalues of M(y) is
zero. This observation permits us to search for the zeroes of D(y)

rather than the more d i f f icult task of searching for the zeroes
of the eigenvaiues.

Our method of calculation of the elements of the matrix M (y)

guarantees that D(y) is an analytic function of y. Assuming that

the errors due to the finite word size of the computer do not
interfere with certain properties of analytic functions we may
apply the method of Singaraju, Gin , and Baum (ref. 8) for
determining the zeroes of an analytic function to find those
values of y for which D(y) is zero A brief description of the

method follows.

If both f(z) and g(z) are analytic functions of z in a
simply connected open domain, ~~~~, then Caughy ’s theorem states
that if C is the border of a rectangular region contained in ~

7. Sancer, M. I., S. Siegel and A. D. Varvatsis, Foundation
of the Magnetic Field Integral Equation Code for the

Calculation of Electromagnetic Pulse External Interaction
with Aircraft, Interaction Note 320, Air Force Weapons

Laboratory, 1976.
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N

I ~~Tfg(z) 
f
f
I
(~Z
z
)
) dz = g(z~)

:1) C 1=1

S €

5; where thez~ are the N zeroes of f(z), counted according to
multiplicity , in the interior of C , provided tha t f has no zeroes
on C. In particular we have that

5

S

f
’

I N —  1 f f ’ ( z )  d— 

~TnI J f(z) z (106 )
) c
1 and

~~~ (z~~) k 
= ~~

.
~Jz

’c ~~~~~~ k = 1, 2 , ..., N (107)
i=l C

and from these equations we can determine the z1.

To avoid the numerical difficulties associated with computing

f ’ ( z ) ,  Singaraju et al. (ref. 8 ) integrate equation (105) by
parts to obtain

N
g(z ~j ) = N g(z1~~~) + ~~~.3.

_f g
1 (z) adj log (f(z)) dz (108)

~~~~~~
- 

~~~~~- i=1 C

where adj log (f(z)) is that branch of the locally defined log

function whose only discontinuity along the contour occurs at
- 

~~~~ 
where it undergoes a jump of 2ni N. The problem of

8. Singaraju, B. K., D. V. Gin and C. E. Baum, Further

Developments in the Application of Contour Integration to

the Evaluation of the Zeros of Analytic Functions and

Relevant Computer Programs, Mathematics Note 42, Air Force
Weapons Laboratory, 1976.
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calculating f’(z) has been replaced by the simpler problem of
finding the phase of f(z) and guaranteeing that the phase change
from point to point is less than it radians. Using equation (108),

a 
equations (107) become

N

Ak ~~~~ z~ = N z~~ + ~~~~fz~~
4 adj log(f(z)) dz k=l,2,...,N

i 1  C (109)

For further details we refer the reader to re ference 7.

In their paper, Singaraju et al. provide a computer program
to determine the z1 if a contour contains up to three zeroes ,
however , the sphere problem has a high degeneracy and therefore
the numerical approximation has the zeroes of D(y) clustering

about their true locations. We therefore found it necessary to
extend their procedure to arbitrary N. To accomplish this we

transformed the system of equations (109) to the equivalent Nth

degree polynomial equation

N 4
Bk E

N-k 
= 0 (llOa)

k=0

where Bk are defined by the recursive formula

B0 = 1 ( l iOb)

kBk + A~ Bk_ i = 0 k = 1, ... , N

Equation ( i lOb)  was found in reference 9 as suggested by Dr. Gin .

9. Krylov , V. I . ,  Approximate Calculation of Integrals,
(Priblizhennoe Vychislenie Integralov), Moskva, Gos. Izd-Vo
Fizika Matematicheskoi Lit., 1959.
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We have chosen to use the subroutine package ZRPCC of the

AFWL Scientific Program Library (ASPLIB) to find the zeroes of this

polynomial. This routine forms the companion matrix whose charac-
teristic equation is identical to the required polynomial and then

‘a returns the eigenvalues of that matrix.

For each y that estimates a zero of D(y) and therefore a pole
location of the sphere ’s response function we compute a new M (y).
We “feed” this matrix to another ASPLIB subroutine package , CIVAA,
which is documented as CG in the Eispack Guide (ref. 10). This
package computes the eigenvalues and eigenvectors of M(y). We
expect to find, and in practice have found that all of the eigen—
values occur in pairs which sum to one (see equation (24 )).
We search the list of eigenvalues for those pairs near (0,1)
and identify the corresponding eigenvectors as the natural mode

a
, vector .3 and its dual vector ~~ . In theory, because we are solving

the problem for a sphere , J and 3~ are related by the formu la
= ~i(r) x ~ (r) ~~~ where the e10 is introduced to account

i
i for the arbitrariness in the phase of an eigenvalue; our numerical

experiments showed that this relationship held to within the errors

of our approximation.

- - Since the sphere problem has a high degeneracy we cannot expect
• our eigenfunctions to agree with those published in other sources

but we can expect ours to be linear combinations of theirs. As

-j an example, for the n = 1, q = 1 mode we found three eigenmodes

~~~ ~~~ ~3 
which can be related to those found in reference 2.

pa

• 10. Smith, B. T., .3. M. Boyle , .3. J. Dongarra , B. S. Garbow,
S 

Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigensystem

Routines - EISPACK Guide, Springer-Verlag, New York, Second

Edition , 1976.
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S

J1 = s in e eq

~2 
= —cos 0 cos(~ 

— n/8) — sin(~ — ir/8)e0

= cos 0 s i n(4  — 3it/l6)~~ — cos(4 — 3u/l6)e0

or

.3 -
—l 

— 10 ,1

= alj i + bj’~~ 1

= C21,~ + dl_111

a = b* = 4e~~~
”8

c = d* = _i e~~3’~”162

and are given by equation (A-10 ) in reference 2.
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APPENDIX A

PROOF OF EQUAT ION (14)

In this appendix we show that Q~ = Q* and Mt = -M, i.e.,

equation (14 ) is true. Recall that

1

QJ(r) £i (r) x (ii(r) ff(R) (r — r’) X J(r’) dS ’)

S

a 

_
~~(~ ) 

. (~~~. 
- r’) )( 

~ (~~
) dS’

where

p (~ ) - ; j(~~~ ) j j ( 1 ) = -~t(r) x ( ( i i ( r )  x

/ —yR \
f(R) = —(1 + yR)k

e
4~R3), 

R = —

Notice that for a tangential vector a, ~ • a = a. Consider now

the inner product involving the tangential vector func tions ~ (r)

and ’P(r):

(~~,Q’Y) E 

f~~
*(r) . (Q’i’(r)) dS

= fdS~~*~~ ) • P(r) • f[f(R)(r - ~~‘)  x ~~(r t ) ]  dS’~

= - 

Jf
dS dS’ f(R){[~ *(r) x (r - r’)] .

If we interchange r and r ’ the “double” integral does not change

value and

_  

~~~~~~~~~~~ S S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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S 

(!‘Q
~

) = _ffdS
l dS f (R) (i’) ~ - £)] • !(~) }

= - ffdS’ dS [f(R)(r - r’) x ~ *( r l )] .  ~ (r)

S 

= — f dS ‘I’(i-) • 
~

(
~

) .f ~~~~~~~~~~~~~~~ (~ . — £ ‘) x ( ]  * 

dS’

= fds {_~ (r) • f f*(R) (~~~ r’) x } dS’ ~
(
~

)

= f (Q * ~ (~ ) )  • !(
~~

) dS

“ S (Q* 
~~~~~

I)
- -  

.v 
•
1

Recalling the defining relationship for Q we conclude that

~~
.

S
S Q~~= Q *

~1- 
S .

’

Next we show that M = -M.

(~~,M~) ~ fdS ~~* • (
~ 

x 
V = 

_
fdS (~i ~ .

= fdS (-fI x 
~

) * • ‘P (-M’~ , ~
)

and this proves that Mt = -M.

____- S 
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APPENDIX B

PROOF THAT N~ dA~/dv = fdS[~
. . (c ~ ~~ 

S

S

In this appendix we show the validity of the formulas employed
in section V for the coupling coefficients by demonstrating that

N. = JdS[J . • x 
~~~ 

(B-i)

where we have ignored degeneracy since the proof is identical for
the degenerate case . We start wi th equa tion

and differentiate both sides w.r.t. 
~

We operate on both sides by M and consider the inner product of
the resulting equation with define d in equation (9).

(
~
, M + (flj , ~~~~~~~ = 

1 (F~~MJ~ ) + x~ (F~, M
( B — 2 )

By definition (Ff1 M./?~~J1/~y) E ((w/a) t F~ , ~~~/~ ‘r) and from equation

(18) 
~~ 

F~ . We can now rewrite equation (B-2) as

-4 - 51
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fdS [~ 
. (

~ ~ ~~~~~

‘ 

ii)] + ~~~~ 
t

F 

aj .
= N. + )~~(F.~ M f ~). 

(B 3)

Recalling equation (9) equation (B-3) is transformed into

fdS ~ .[(~; ~ ~~~~~ 
~.(M

tF., 

~~
= 

1 N.  + x . (~~.. M ~4). (B—4)

a If we now notice that (MtF~ , ~J~/3v) (Ft ,  M ~J1/~y), equation
(B-4) yields the desired result, i.e., equation (B—i) .

S 

a
S I

i

)

I ~
S
~

I

I 
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