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FREQUENCY DEPENDENCE OF DIELECTRIC LOSS
IN CONDENSED MATTER

I. INTRODUCTION )

The dielectric response of solids and liquids has been the subject
of intense investigation over a long period of time extending to this
date, and pursued by physicists, chemists and engineers alike. A
detailed survey of the dielectric properties of a wide range of solids
has been given recently by Jonscher.1 It was observed1 that the die-
lectric response functions in frequency or in time depart strongly from
the Debye response for a large number of essentially dissimilar materials
and fall into a remarkably common or "universal" pattern. In particular,
the frequency dependence of dielectric loss follows the empirical law

X" (w) « mn-l with 0 <n <1 (1)
extending over several decades of frequency from low audio and sub-audio
to w/2m J‘lO9 Hz. For some dielectrics, a broad loss peak may be found
at lower frequencies. Genuine Debye behavior with the complex suscepti-
bility given by x(w) = (1 +in)-1 is seldom observed in solids. The
empirical law (1) emphasized by Jonscher is implicit also in several other
empirical expressions presented in the past. These include the Cole-
Cole, Cole-Davidson and Havliak-Nigami forme1 and their expressions
are respectively 1/(1 + i(wT)B), 1/(1 + iwt)® end 1/Q1 + i(wr)P)®. In
the WT >> 1 limit these expressions all reduce to the empirical law (1)
of Jonscher. Examples of the materials that obey the empirical law
(Eq. (1)) include inorganic ceramics; ionic conductors; polymeric
materials, inorganic crystalline and amorphous materials including
glasses, insulating or semiconducting; and organic and biological systems.
By way of these examples we see that the frequency response (1) is similar
for systems with permanent dipoles and with hopping charge carriers of
electronic or ionic nature. It is valid in covalent, ionic and molecular
solids, in single crystals, polycrystalline and amorphous structures; hence
the behavior (1) is apparently independent of the particulars of the

material. At higher frequencies, 109 Hz and up, quantum effects
Note: Manuscript submitted March 29, 1979,




involving lattice mode excitations and/or electronic excitations become
prominent and, as is well known, the response then differs from material
to material, and as such will not be of interest to us in the present
context.

The various types of dielectric response are summarized in Fig. 1.
This figure is taken from a short summary of the present work published
earli.er.2 We note the virtual absence of the pure Debye response; and
the validity of the universal law of dielectric response, (1), in a remark-
ably wide range of physical and chemical situations, and over a very wide
range of frequencies. In some types of dielectrics the universal response
(1) is followed at low frequencies by a loss peak referred to as @ and B
peaks, or by another universal response with n typically between 0.1 and
0.3.

It is this state of affairs that has motivated us to seek a renewed
understanding of these phenomena in terms of a common or "universal"
characteristic across the entire spectrum of materials and to associate
such a characteristic with some physically simple and "elementary"
principles or properties. In the next section we shall present several
elementary principles which when combined enable a derivation of the
"universal" law (1) regardless of the physical, chemical and geometrical
properties of the solids, and also regardless of the nature of the elec-
trically active species responsible for polarization, whether dipoles,
electrons or ions. Then in Section III we discuss several examples of

low energy excitations expected in a host of systems that satisfy these

elementary principles. In Section IV we consider the response of these
states. Next, in Section V we derive the universal response (1) and the
possible presence of a loss peak at lower frequencies. Finally, in Sec-

tion VI we make some concluding remarks.
II. INFRARED DIVERGENCE AND THE "UNIVERSAL" LAW ¥" (w) « w“'

Infrared divergence phenomena, although not commonly observed in

1

physics, have been seen in several instances. The most well-known case
is in quantum electrodynamics where the infrared divergence manifests
itself in a Bremsstrahlung experiment3 of a fast charged particle. In

the realm of solid state physic34’5 an example of infrared divergence is
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thought to be provided by the peculiar shape of X-ray absorption edges
of metala.6 These examples are by no means exhaustive but the subjects
they cover demonstrate that infrared divergence is not uncommon. Excel-
lent reviews on the subject are available.a’5

The features common to systems exhibiting the infrared divergence
phenomenon are (a) the sudden application of a potential, or a sudden
change of the potential or the Hamiltonian; and (b) availability of low-
energy excitations of the system and its response to the sudden potential
change dominated by the emissions of these low-energy excitations. 1In
the time domain the phenomenon is the transient response7-9 of the
system to that abrupt change of potential. Infrared divergence occurs
whenever the suddenly switched on potential V excites some low energy
excitations, with density of states N(E) for excitation energy E, which
is such that V>(E) N(E) = E. In this instance there is an increasingly
high probability of exciting decreasingly small energy excitations and
this causes a power law divergence of the response in the frequency
domain. In the X-ray edge problem in metals an X-ray photon when
absorbed, suddenly switches on a hole-core potential V for the conduc-
tion electrons. The low-energy excitatioms here are the electron-hole
pairs.

In the later sections we shall argue that within a broad classifi-
cation of dielectrics, according to a scheme to be outlined, there exist

states which, for convenience, we shall refer to as correlated states.




Low energy excitation (and deexcitations) of the correlated states
with excitation (deexcitation) energy E consists of transition from
one correlated state to another and is the analogue of the electron-
hole pair excitation in the X-ray edge problem.

The charged particles or dipoles responsible for polarization
in the dielectrics undergo quantum transitions, including changes in
their positions/orientations, between preferred states in an abrupt
manner by hopping or jumping movements such that the time 1/v taken
by the actual transition is negligible in comparison with both (i)
the time spent on average in the respective preferred states, and (ii)
the time characteristic of the low energy excitation of the correlated
states. The condition (i) is invariably satisfied in solid dielectrics.
That condition (ii) is also satisfied will become clearer after we
have considered the nature of the correlated states.

Due to the charged particle (dipole) transition a potential is
suddenly switched on which acts on the correlated states. The low-
frequency response of the dielectric to this potential involves the emis-
sion of low—-energy excitations of the correlated states. We shall argue
that the low energy excitations of these correlated states have a density
of states N(E)OC E, and that the potential change V has little or no E
dependence. It follows that the conditions for an infrared divergent
dielectric response of the correlated states are satisfied. The mean
number T of correlated state excitations is then n = bv2 £xc EdE/Ez,

Ak




which diverges logarithmically, where Ec is the upper "cut-off" of the
correlated state excitation energy which can be considered as the energy
above which the correlated state excitations no longer have the density

of states « E. The Fourier transform to the time domain of the "universal
relation (1) is i(t) « t_n, i.e., the widely observed Curie-von Schweidler
lawl of depolarization. It is interesting to note that the infrared
divergence problem when considered in the time domain as a transient response
problem7.9 does lead to the time decay of the response function for large
times as S(t) * t ". The derivation of the complete dielectric response

will be deferred to Section IV, after we have discussed the correlated

states in a broad classification of dielectrics in the next section.

III. CORRELATED STATES
In the preceding section we connected the "universal law," Eq. (1)
to an infrared divergent response of correlated states. For this inter-
pretation to follow it is necessary for such states to be prevalent in
dielectrics and have characteristic response times long in comparison to
the switching of the hamiltonian. In this section, we discuss several examples of
such correlated states which can reasonably be expected to be present in
many dielectrics. Parenthetically, the purpose of this section is
to give enough insights into these correlated states and their excitations
so that the reader can, if he desires, have a better feeling for them.
These discussions are not the core of this work but serve as useful illus-
trations. One should note from the onset that although the examples that
we will detail are quite general, they are by no means exhaustive. Fur-
ther note that these correlated states are certainly not familiar nor are
their excitations "elementary."
(i) Dielectrics with electron self-trapping states
i The concept of local electron self-trapping largely arises from the
observation that by and large if a particular electronic state is singly
occupied the atom or atoms principally associated with this state will adjust
their positions in such a way as to lower the energy level of this state

relative to its value when unoccupied. A traditional example is provided by




those ionic solids where strong local coulomb interactions between the electron
and lattice constituents induces a local lattice distortion leading possibly

to the self-trapping of the electron and the formation of a small polaron.

This tendency is not simply restricted to ionic materials but is much more
general. Well-known examples lying outside the usual small polaron
mechanism are provided by the reconstruction of semiconductor surfaceslo'll
and electron pairing states in amorphous glasses.lz The origin of the self-
trapping in former instance is essentially a dehybridization energylo’ll
arising from concepts inherent in covalency and stereochemistry. The
electron-lattice interaction may be strong enough to make it energetically
much more favourable to self-trap electrons in pairs rather than singly

and such systems have been described by Andersonlz through a negative U
Hubbard model. Let us restrict our attention for the moment to the nega-
tive U electron pairingAstates which should be the physically most important
due to the prevalence of diamagnetic systems in nature. In this instance
several subgroups of possible correlated states can be identified with
properties leading to the desired behaviour in X" where, in each case, the
response time of these states is expected to be acceptably slow due to the
lattice coordinates involved.

As noted in the previous paragraph, in order to develop further the
idea of local distortion mediated effective electron-electron attractive
interaction Anderson has employed an effective negative U Hubbard-like term
gﬁifﬁi+ to model the effect, where ﬁic is the number operator for an elec-
tron of spin 0 in a state centered at the "site" i; |io>. One should keep
in mind that i could well index the up and down spin states associated with
a group of atoms and not just a single one. Let us describe a group of such
centers in contact with one another as well as alternate states of the
system (those with U, = 0) by the simplified Hamiltonian:

+

& ~ z ~ ~
5 ,ia b e ijaxij‘ia'jo % }f' Uy D404 0 (2)

-

where ‘;o’ &g create and annihilate electrons of spin O in the state

|io>, and we take Rij as R if i,j are nearest neighbors and zero otherwise.
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The parameters {Ei} and {Ui} are considered as random variables obeying
the joint probability distribution P’?i, Ui) which for the time being is
left unspecified. This model can be made to mimic many different situa-
tions depending on the choice of P(Ei,Ui).

To obtain results from (2) we have developed13 a generalized mean
field-like method which entails 11near1z1ng the many-body terms U, nl’n1+
as Uiﬁ“ni+ wXUUini_onio- n +£.+where U.n. ’n ' is present to prevent
double counting of the interact1on. The condltlonally averaged number
of spin 0 electrons at the site i is given by the relation

ﬁio = . 28 def(E)g (z ) o (3)

with f the fermi function and E' denotes the lig‘£§+is). Equations
(3) provides a set of generalized Hartree Fock-like self-consistent
relations determining the parameters ﬁ'c since the Green's functions

gy entering these formulae are defined as 8y ™ <io|(z-He1)-1|ai>

where H Z (E U, 1. )n. ) R..a* a, and hence depends on n. .
e i- ig ijo ij io jo 10
For convenience (3) can be recast as nio- -(Im/m) [AE£(E)/(E-E. -U1n10—

), where A is the usual self-energy and is a function of {nj } E
and R.

To solve these self-consistent conditions we employ the long
established coherent potential approximationl4 (CPA) to obtain the self
energies Ai' This entails defining an effective medium characterized
by a single potential Zo which is energy dependent and can be complex,
in such a way that the G(E-Zo) = <gio(E):v! where the brackets < >
here and henceforth denote an average over the random variables entering
Hel and G is the Green's function obtained by replacing the site

diagonal random potentials of H . by 20 at each site i. The CPA is

exact in both strong and weak szittering (virtual crystal) limits and
hence provides an interpolation scheme for treating the intermediate
cases. The use of this method greatly simplifies the computations since
its functional form of Ai can be easily found using established tech-
niques once the "lattice" structure is specified. For example, if we

assume a simple chain then A = (B-Zo) q/{(E-Zo)z-bkz}. The CPA equation




defining Z and hence A can be wr1tten explicitly for the present model
as: IIP(E ,U;)dE du, / [E-E,-U, n (B;U)-AC )] = 1/[E-E -ACZ)].

We now have as 1nputs 1nto the forma11sm some spec1f1ed tempera-
ture, T, and number of electrons in the band, Nel’ as well as particular
functional forms for G(E) and P(E.,U.). The calculation then proceeds
as follows: First we assume the funct1on n (E ,U ) and then solve13 the
CPA equations using a modified Newton-Raphson technlque to obtain ZO(E)
and hence A(Z ). Having determined A (Z ) we can then find the chemical
potential M of the system from the usual relatlon N = (Z/w)Imde/

{(e -B(E- u)+1)(E -z -A(E ))}, where in obtaining th1s condition, we have
employed the CPA equat1on. Note the CPA determined I satisfies the
important sum rule de/(E- —A(Z )) = 1. Having Z (E') and u, we then
calculate a new function ﬁl (E. ,U ) from (3) and thls procedure is iterated
until self-consistency is estab11shed, i.e. n (E A ) = (E A Ye

If a continuous probability distribution is assumed for the random
variables, it is of course not numerically feasible to establish self-
consistency at each point in (Ei’ Ui) space. In these instances we
establish self-consistency at a grid of points assuming that ﬂio(Ei’Ui)
can be adequately represented for intermediate values by trapezoidal
interpolation. We have found for simple continuous probability distribu-
tions that this procedure converges very nicely13 (well within the realm
of numerical feasibility) as the number of points in the grid is increased.
Note that usually more than one self-consistent solution exists and this
will prove important to our subsequent development.

Before detailing some of the examples that we have treated, it is
convenient to backtrack somewhat and draw a relationship between elec-
tron pairing interactions and covalency and in so doing motivate these
cases and further stress the generality of the pairing ideas.

As a prototype consider a simple dangling bond such as one associ-
ated with an Si atom which is bonded to three neighboring silicons
leaving a dangling hybrid. If we denote by X the displacement of this

atom from where it would sit if the dangling hybrid were constrained to




be singly occupied with energy Eh then a Hamiltonian partially
descr1b1ng the energetics of this atom is ;= I hnha Ahxh(ﬁhf+ﬁh11)
+ c xh/2, where nhc is the number operator for electrons of spin O in
the dangling hybrid orbital |h0> The last term entering Hh is a back-
bond stretching energy and the second is the so-called dehybridization
energy.lo’llf we have a group of such nonbonded states interacting with
one another then a simplified Hamiltonian describing the situation is

: = PR 2 ta
H f E n. Zk.x.(ni*+ni* 1) + §cixi/2 .% R. .a.

iio 111 ijoij ic JO
the displacements x, as parameters entering the Hamiltonian to be deter-

. We can now view

mined self-consistently by requiring the free energy of the system to
be stationary with respect to their variations. This results in a set
of self-consistent conditions which can be used to eliminate the
parameters X, . It is then a simple matter to show that the resultant
Hamiltonian is essentially similar to the negative U model (2) within
the context of our mean field approximation if we make the identifica-
tion: 2k§/c{*Ui,E2*Ei+Ui/2. Thus we expect the negative U model to
incorporate the behavior of a simple nonbonded orbital since the
analysis of course is not limited to only the Si dangling hybrid but
applies whenever one has a dangling bond associated with covalent back-
bonds and hence is quite general.

Consider now as a first example of electron self-trapping states with the
desired properties those pairing states associated with breaking the pair
and "placing" the electrons in states associated with non-pairing sites.
Such a case could be physically realized e.g. with metal-gsemiconductor
(Schottky) contacts where one could envision transferring the electrons
from pairing centers in the semiconductor (say, nonbonded orbitals) to
the Fermi sea. A particular example derived from the general model (2) is
shown in Fig. 2 where we display two different self-consistent solutions
to (3) obtained by using the previously detailed formalism. We have taken
as inputs in calculating these examples: T=0, Rel-.3 and G appropriate
for a Cayley lattice of coodination number six. The form of P(!i,Ui)
is chosen so that P(E,,U.) = xG(Ui) 5(3i-30) + (1-x)8(U,~U _)W(E;) where

= _ SN E A R TN
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W(Ei)/B = 5 (B the unperturbed half bandwidth) for .1 < Ei/B < .3 and
zero otherwise and x (the concentration of pairing centers) = .1 with
UOIB = -1.6. The solid line of Fig. 2 is within our formalism the
density of states corresponding to the numerically determined lowest
energy state of the system while the dashed line represents a low-lying
self-consistently obtained excited state; a fact that we have verified
directly by comparing the energies of the two cases. These two solu-
tions differ from one another by the transfer of electrons from the
pairing centers (which when occupied in this example form a band of

states JUo/2 below E. as shown in Fig. 2) to the main band with the

f

unoccupied pairing levels now appearing ¢Uo/2 above Ef. This is exem-

plified in Fig. 2 in going from the ground to excited state by the
slight increase in 'Ef', as well as the decrease in the measure of the
pair band below the main band edge and a concurrent increase in the

measure of the main band.
Further insight into this behavior can be gained by considering a

single pairing impurity in a tight binding lattice. The situation can

be described by the model Hamiltonian H = JEA., + .IR.. aT a, +
1g 0 10 1j0 1) 10 Jo

U ﬁj+ﬁj++ P Ejajc’ which represents of course a special case of (2).
Approximating U. ﬂjfﬂj+ as before the free energy of the system as a
function of n. can be expressed as
J &> 45 Al
2 z (Unj-l-Ej)(aGi(E )/ 3E)dE
F =K - UR: - (2/m)m_[dE£(E)_[ — y ()
J 1-(UA +E, )6, ¢3)

where K is a constant independent of :. and we have used the up-down
spin symmetry present for Uj < 0 to replace gjo by ﬁj. The free energy
F, possesses a double minimum as a function of fi, when E, + U./2 lies
in the vicinity of Ef
arriving at these results we have chosen for simplicity a rectangular

and Uj/R is >>1, as is shown in Fig. 3. 1In

density of states of half-bandwidth B to model the main band i.e.

G, (z) = -(1/2B)1n {(Z-B)/(Z+B)} and neglected temperature effects which
are unimportsnt at moderate temperatures for physically expected U H
1.e.|U |w .1 ev. At the minima ﬁj satisfies the appropriate form of

10
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Eq. (3) and hence represents the self-consistently obtained average
number of electrons of one spin species at the site j. The two minima
hence correspond to distinctly different occupancy of the pairing center
since in one case ﬁj v 0 and the other ﬁj v 1. That is on one hand
almost two electrons occupy the pairing levels which lie approximately
at (Ej-Uj) while on the other the pairing center is effectively unoc-
cupied and its associated states lie at JEj. One can show that

the two minima are separated for large Uj by lej + Uj/Z - Efl and hence
such a negative U center can give rise to a low lying excitation of the
system if its characteristic parameters are such that (Ej+Uj/2) A Ef.
This is of course consistent with the previously obtained results sum-
marized in Fig. 2 and is just a rather more specific case.

Although within the context of the present mean-field like approxi-
mation we cannot make a new linear combination of the two states
represented by the essentially degenerate generalized Hartree-Fock self-
consistent solutions (associated with the minima of Fig. 3) that reduces
further the energy of the system (there is an orthogonality theoremls)
such an effect of course physically exists. The resultant intrinsic
matrix element connecting these states should itself be a random
variable because of the different allowed choices of Ei’ Ui sufficient
to produce the same degree of degeneracy. Such being the case, one
expects the density of the very low-lying excitations at a particular
E to behave as E and contribute an infrared divergent dielectric
response (1). We will postpone details of this argument until the next
section.

The essentials of the present low-lying pair state picture should
not be smeared out at reasonable temperatures since although e.g. the
details of Fig. 3 may be somewhat different at different temper<tures

one still finds a double minimum in F(gi) and the corresponding low-lying

excitations.

1

-
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Another not completely orthogonal class of electron pairing states
with -the desired properties would be expected to exist in systems where
these are a number of essentially equivalent pairing centers the number
of which exceeds the number of available electrons. In these instances
orie can envision very low energy tunneling mode like excitations corresponding

to different arrangements of the electrons over these pairing centers and

correlated states of this type as we shall see in the next section should

exhibit the correct infrared divergent behavior.

Next consider a situation, that may obtain in certain amorphous
glasses,12 where the one-electron potentials of (2), !i’ obey a continuous
probability distribution P(Ei) spanning the forbidden gap. To model the
resultant situation we have solved the self-consistent equation (3) assuming
P(E,,U;) = 8(U.-U )W(E,) where W(E;)/B = 1/2 for -1 < E./B X 1 and zero
otherwise and UOIB = 3; B is unperturbed half bandwidth. Also we
assumed that T=0, Nei.l and employed as an unperturbed Green's function,
G, appropriate for a Cayley tree of coordination number six. In Fig. &4
we exhibit the numerically determined lowest energy state of the system
(solid line), as well as another self-consistent solution (dashed line)
which represents a low-lying excitation of the system. The two solutions
essentially differ from one another by the transfer of electrons from
one group of pairing centers to another, and in this way, although there
is a large gap in the one~electron spectrum very low lying excitations
can be achieved leading to a gapless pair state spectrum. To understand
this behavior further consider two isolated pairing centers labeled i,]
in competition with one another for two electrons. Then if Ui = Uj it
is not the magnitude of U that determines the occupancy but rather Ei'
Ej. For example if Ei< Ej then the site labeled i is doubly occupied
and that labeled j is doubly empty in the ground state. Thus, although
the one electron states lie at E1 + U and Ej’ and are hence usually
well separated in energy (f lev), exc1tatxona of the system that require
only energy Ei-Ej which becomes vanishingly small as Ei*Ej can be
achieved by removing the electron pair from the site i to the site j.

In the case Rij*o, the density of pair state excitations is then

12
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N p(gi + Ui/2) which is continuous and slowly varying around Ef and
we have seen a similar picture also applies if we assume some coupling
between the pairing centers.

Such a smooth distribution of self-trapped pair state excitations
is expected to have a character sufficient to produce an infrared diver-

gence at very low temperatures if we suppose that a field induced hop

introduces a coupling between these states largely independent of energy.
This is so because the density of states of low energy pair state excita-
tions with energy E is JNZ(Ef)E where N(Ef) is the density of pair states

at Ef. Furthermore, the fact that the pair states are strongly self-trapped
implies that their response time can be much longer than the time charac-
teristic of the hopping or reorientation of the charge speices. Thus

all conditions for an infrared divergent dielectric response are apparently
satisfied. This behavior, however, will be completely smeared out at experi-
mental temperatures unless we suppose that the energy barriers between
pairing states is sufficient to prevent thermally assisted tunneling.

Thus the system at finite temperature is presumed locked into a metastable
state and this could happen for large enough negative U. We mention this
case because it is complementary to our previous examples where it is
supposed that each TM has equal probability of being in either of its

two states. Note that the possibility of low lying excifations which

are thermodynamically inaccessible over at least the time of a specific

heat measurement has already been pointed out16

and in amorphous materials
metastable states may persist almost indefinitely. Further note though
that in this metastable regime the response of the system should depend

on its history.

Thus, we have detailed several rather general examples which illus-
trate how electron self-trapping can provide correlated pair states with
characteristics sufficient to produce the "universal law"; Eq. (1).

Further examples can be found in those instances where the coulomb repulsion
dominates, favoring single self-trapping of the electron. In these cases,
various subgroups of correlated state “an be identified completely analogous
to the bipolaron ones outlined above. .atermediate subgroups can also

be defined wehre e.g. one envisions very low energy excitations which
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entail disassociation of a bipolaron into two singly self-trapped electrons
or vice-versa. Although we have phrased our discussion implicitly in terms
of cmorphous systems where one expects an appreciable number of weaker/
stronger bonds, lone pairs, etc., to be present giving rise to the self-
trapping states, it is also reasonable to expect that such low-lying excita-
tions occur and are important in more nearly crystalline covalent solids
since the remaining self-trapping centers in these materials could par-
tially pin the Fermi level in their vicinity. Another point that should

not be overlooked is the probable presence of an appreciable density of
self-trapping centers effective in determining the electronic structure

of various interfaces such as oxide-semiconductor, metal-semiconductor etc.
This follows since these interfacial regions are expected on the whole to

be disordered giving rise e.g. to weaker/stronger bonds. Indeed the
presence of such centers can be used to understand some of the more puzzling
electronic behavior of the localized inversion layer regime of MOSFET317
where one is dealing with an oxide-semiconductor interface in contact with
a quasi-two-dimensional electron gas. Furthermore, recently18 we have
carried out an analysis of the origin and role of such states at metal-
semiconductor (Schottky) interfaces and the resultant picture has been
found to be consistent with the so-called Covalent-Ionic trend.l? Thus,
although interface or contact effects are usually ignored we expect that
such systems should also exhibit a dielectric loss obeying the "universal
law" and a systematic study of the details could provide a powerful probe

of the interfacial structure.

(ii) Dielectrics with Atom-atom or Molecule-molecule or Ion-ion
or Dipole-dipole Interactions

New concepts and ideas on low-energy excitations in real glasses and
spin glasses have been recently introduced by Anderson, et al.,zo Phillipl21
and by Anderson.l6 They propose the existence of a statistical distribu-
tion of localized tunneling levels.and/or modes. A tunneling mode in a

real glass is realized by an atom (or group of atoms) which has an energy

14




E(ﬁ) as a function of its generalized position coordinate x which
exhibits two locsl minima of energy difference AE separated by a barrier.
Similarly in spin glasses spins are considered as classical dynamical

quantities with a potential energy surface that is a function of the

simultaneously specified orientations of all the spins (i.e. a N-dimensional

configuration space); local minima in the energy correspond to metastable
states of the spin glass associated with different spin configurations.

A tunneling mode for spin glaaseszo’16

is defined in spin configuration
space as two local minima separated by a quantum-mechanical energy
barrier. Tunneling between one local minimum and another, if it occurs,
involves the rearrangement of several spins. The linear specific heat
observed in real glasses (spin glasses) comes from tunneling modes whose
energy barriers are sufficiently great so that resonant tunneling of
atoms (spins) between local minima does not occur, but sufficiently small
such that tunneling between the two levels can take place during the time
span of the specific heat measurement. Tunneling modes that contribute
to the low temperature linear specific heat have a density of levels
N(3E) per unit AE which is non-zero, smooth and continuous for AE & kT.
Those tunneling modes that contribute to the low temperature linear

specific heat compose only a small subset2°’16

of the total density of
alternate states or modes with level splitting AE.

The spin-glass system and the resultant spin-spin interaction
models can often be transcribed to other physical models with non-spin
interactions.22 Well-known examples include the Ising model equivalence
to a lattice gas and to a binary alloy. A lattice gas is a collection
of atoms (molecules) whose positions can take on only discrete values
which form a lattice. Each lattice site can be occupied by at most one
atom. In genersl the potential energy of the system of atoms corresponds
to a gas in which the atoms are located only on lattice sites and interact
through a two-body potential v(|5i - 5j|). The correspondence between
the lattice gas and the Ising model is seen by identifying occupied sites
to up spin and empty sites to down spin and the nearest neighbor atom-atom
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interaction ?AA to -4 jij’ with Jij the Ising interaction between spins.

A binary alloy in a lattice model corresponds to sites occupied by A or B

> €
atoms (molecules). Let €,,, €. ., €0

between the atoms. A site occupied by an atom A is identified with an up

represent the interaction energies

spin and a site occupied by an atom B with a down spin. The quantity

(2 )/4 then corresponds to J in the Ising model.

AB™ A" “BB
Consider dielectrics where atom—atom, molecule-molecule or ion-ion
interactions are important. In the lattice gas and/or binary alloy
modelling of dielectrics with random interactions, the equivalence to the
spin glass Ising model implies a dielectric state corresponding to the
spin glass state exists. Such dielectrics will have, in analogy to spin
glasses, tunneling modes. In direct analogy to a tunneling mode in spin
glasses which corresponds to several spins turned over, in these dielectrics
a tunneling mode corresponds to the change of the atomic (molecular or
ionic) occupancy of several sites to get from one energy minimum to the
other. The essential point is the existence of very low energy tunneling
modes in these dielectrics. This class of tunneling modes will be shown
in the next section to again satisfy the criterion for infrared
divergence and hence yields the universal law. The lattice gas and
binary alloy model should be good representations of many dielectrics
including the class of solid state ionic conductor23 or solid electrolytes
such as AgIl, CaF and Na B-alumina. In fact ionic conductivity for these
solids has been calculated in the lattice gas model.za In the case of
Na B-alumina, there is the repulsive interaction among the diffusing sodium
ions and also the attractive interactions between the ions and their
randomly distributed, compensating defects. These properties imply a
lattice gas with random interactions. There is indeed ample experimental

. for the existence of tunneling modes in alkali B-alumina as

evidence
well as Ag B-alumina. In particular there is an excess low temperature
specific heat26 contribution which is nearly linear in T as in the case
of spin glasses.

For completeness, we mention again that it has been pointed out16

that there are also a large number of tunneling modes having small AE which
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have their two alternate states inaccessible to each other because their
energy barriers are too large for tunmneling to occur. Those pairs of
levels are practically not connected, and some of them contribute to the
zero point entropy of the glass. Indeed experimental measurements of fused
silica27 and glycerol28 has shown that the zero-point entropy is finite for
both. Such tunneling modes can also produce an infrared divergent response
although considerations of thermal histories become important.

To conclude this section, we note that the apparent arbitrary division
of dielectrics (implicit in this section) according to whether electron self-
trapping interactions or ion-ion interactions, etc., dominate the behavior
of the dielectrics is quite natural. Ions have closed atomic shells and
molecules are usually covalently bonded. In both cases electron self-
trapping interactions have already gone to completion, although the origins
of the pairing interactions in the two cases are entirely different. The
residual interactions are then the ion-ion or the molecule-molecule inter-
actions, which then should play the important role in providing correlated

states and their excitatioms.

IV. INFRARED DIVERCENT RESPONSE OF CORRELATED STATES

Let us examine the transient response of the tunneling modes to sudden
potential change caused by fast quantum transition of some charged species.
Tunneling modes whose alternate states are such that w/2mw > 10 GHz can be
eliminated from the outset for consideration of infrared divergent response.
Our interest is in the low frequency dielectric response where w is smaller
or much smaller than 10 GHz. It may already be noted by the reader that
many of the examples of correlated states presented in the last section
have some common characteristics although the identity of the correlated
states can differ drastically from one example to another. Correlated
states can be electronic in origin, paired electron states in bonds, lone
pairs or arise from defects and impurities; or single electron self-trapping
states; or even be associated with extended electronic states. Correlated
states of atomic or molecular origin can be the atomic (or molecular) configura-

tion state of a set of atoms (molecules); or spin configuration state of a set

17
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of spins; or the configuration state of a cluster of ions or a group of dipoles.
Excitation (deexcitation) of correlated states consists of the transfer of
occupancy or state of lower (higher) energy to another of higher (lower)
energy. For succint discussion we shall focus on the case of atomic con-
figuration state and spin configuration state where excitations are the
conventionally called tunneling modes. However, we emphasize again that
the discussions in the remainder of this section hold as well for the
electron self-trapping tunneling-like modes detailed in section III.

The very low AE of the tunneling modes guarantees contribution to the
dielectric response at corresponding low frequencies W A AE/h. This class
of tunneling modes should exist. Since the configurations of the atoms
(Spins) is random, there nuet16 be very manj locations (of order N, the
number of atoms or sets of atoms) where there are two possible configurations
of very similar energies Bl and Ez. If El and Ez are independent random,
variables, then the probability p(4E) of finding AE = IEZ-EII is finite as
AE + 0. But physically this is not true because it is possible to tunnel

between the two alternate levels with a tunneling matrix element T.  even

12
though it is small. The energy level separation will be at least AE>|T

1213
The off-diagonal matrix element between the alternate levels. For this class
of very low energy inaccessible tunneling modes (i.e., <10 GHz) the physical
energy difference AE is determined by the off-diagonal matrix element

AE = |T12|-

It has been argued by Anderaon,l6 that T,, being a complex matrix element

acts like the x and y components of the randoizfield that prevents the

actual level splitting AE going to zero even though [E1-32[ +0 unless

le + 0 also. For low frequency dielectric response, we are particularly
interested in the AE = ITIZI + 0 limit. le consists of two random variables
since it has real snd imaginary parts. The probability that the mode energy
AE lie in the interval |T| and |T| + d|T| is proportional to |T|d|T|. Hence
the density of states of very low energy, tunneling modes

N(AE) is proportional to AE. Now the sudden potential change that induces

transitions between the two alternate levels should not depend on AE.

18
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Hence, for atomic and spin configuration states the condition |V12|2
N(AE) = n E for infrared divergence of the response through correlated

state excitations (i.e. tunneling modes here) is satisfied. This statement

applies also to cases in which other types of correlated states are concerned.

This will lead to the desired functional dependence in X" of Eq. (1) as well

as the loss peaks, as will be discussed in the next section.

V. LOW FREQUENCY INFRARED DIVERGENT DIELECTRIC RESPONSE

Having argued that dielectrics with diverse interaction types should
have invariably some very low frequency excitations that respond in an

infrared divergent manner to fast transitions of polarizing species and

contribute a time dependence of the form t " at large t to some correlation
function, we (KLN) embark on the derivation of the dielectric response func-
tion and examine its properties. The total dielectric polarization
induced by an electric field §(t) can be calculated by standard methods 2?30
of linear response. The interaction of the polarization with the electric

field is given by

nint =-P. 5(:) (5)

where 5 is the operator of the polarization. The perturbation aint induces
a polarization density

t
<B>= <P> +Ly<:-c') . B (t")ae’ (6)
where Y(t-t') = =<<p(t) P(t')>> is the dielectric polarizability tensor,

and <g$; is the polarization density in the equilibrium state as E+0,
which can be nonzero for some dielectrics such as ferroelectrics. For
simplicity consider the dielectric tensor y to be diagonal. In the case
when classical statistical mechanics ouffiic (as often is the case for
dielectrics at finite temperatures), the response function simplifies to

the time correlation function

bg(emtt) = B < B (6) B (2!, )
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where <...>o ?enotes averaging with the equilibrium distribution function,
B= 1/kBT and Pi(t') the derivative of Pi(t') with respect to t'.
If Pi(t) takes on either of two values *+ p and makes transitions

from one value to the other, as in the case of a system of particles with

a dipole moment or the case of a charged particle that can occupy one of

two alternate sites, then J,. can be readily calculated by generalizing

the method30 to take into a::ount a time dependent jump transition rate

W(T). Rewriting t-t' as T, we wish to calculate ¢ (T) = - Bﬁg (t) (t-T)> L
where the derivative is now with respect to T. Doxng this we obtaln the

result A
b, (0 = 28p2 WD) exp(-2 [TW(na) (8)

for the time dependence of the dielectric response function. The task that

remains is to calculate W(T) including the possibility of an infrared

divergence of correlated states excitations. Let $(T) describe the

time response of the correlated states to the sudden jump of the elec-

tron (dipole) from one position to another with probability per unit

time W . The form of ¢(T) in our notation is ¢(T) = {Ec V: N(E) cos(ET) p

’" The difference

dE/Ez, and is different from the form normally given.
is the appearance of the cosine term ingtead of exp(-iEt), and is due to both
excitation and deexcitation of correlated states that now must be taken into
consideration. We have seen in the last section that there exists some class
of correlated states in the dielectrics we considered so that V:N(E) Ebng
is proportional to E and satisfies the condition for infrared divergence in

the number of these low energy correlated states excitations. The integral,

ot SN G it

¢(1), can be evaluated and yields

(1) = bv2 Re {Y + In(iE 1) +E, (iE, 0} 9) |
where Y = 0.5722, E (ix) is a standard integral which vanishes at large x. ?
The jump trnna1t10n rate is W(T) = W e ¢(T). On defining a time - by
1/T = zw and combining equat1ona, we obtain 5

v (r) = (Bp /1)) exp(-4(1)) exp(=[" exp(~4(T)) dT/T ) (10)
20
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Consider the case when either the infrared divergent correlated states
do not exist or the coupling Vﬁ of the hopping charges (dipoles) to the
correlated states is vanishingly small. Then in either case ¢(T) + 0

and wii(T) = Bpi/To (exp(-T/TO) whose Fourier transform is xii(w) =

Bp§(1+iw70f£ﬂﬁ£h is the classical Debye susceptibility. Recapturing the
classical Debye laws by turning off the low energy correlated state excita-
tion is of course no surprise. The interesting point is that dielectrics
or dielectric interfaces in nature seldom obey the Debye law which implies
there should exist some low energy correlated states excitations which are
coupled to the carriers/charges/dipoles of the dielectric.

The dielectric response function for EcT >>1 is

b, (D) = (Bpf/ro)e’“ (B, 0" exp(-e"Y 7% (1-n) % (11)

where we have put n = sz and assumed n < 1. By inspection one can observe
that although the (EcT)- term may initially determine the T-dependence of
wii’ for sufficiently large values of T wii be dominated by the exponential

function. This occurs roughly at
T~

p ¥ [(1-n) e"Y B: rollll-n : (12)
Xii(w), the Fourier transform of Qii(T) of Eq. (5) can be obtained
numerically. Several representative results for representative values of
n are shown in Fig. 5. A peak in X"(w) exists and its location is close
to the value of £p = llrp. This |:»ost:—1/ml'_n peak may be identified with
the a or the B peaks commonly observed in dipole systems such as polymers,
liquids, p-n junctions, ferroelectrics, liquid crystals, cryogenic polymers
and some glasses. The approximate peak position

& n]I/(n-l)
c

wp = [(l-n)enY TOE (13)

is a decreasing function of increasing T and Ec and depends sensitively
also on the infrared divergence exponent n. In general 5 is temperature
Al ro(T) -
N exp(!A/kBT). This alone introduces a temperature dependence into

dependent and usually has a clearly defined activation energy E
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wp « exp(-EA/(l-n)kBT) (14)

with an apparent activation energy £A of EA/(I-n). Increase in temperature
will cause a lateral shift of the universal law and its post-peak along the
frequency axis.

A wide range of dielectrics have associated with them the presenc
of charge carriers of electronic or ionic nature. These charge carriers
are also evidently responsible for dc conductivity. Thus one expects
that charge carrier hopping transitions, under excitation by a time-
varying electric field, do not necessarily involve only two preferred sites.
Consider the charge carriers that do not jump randomly between two states/sites,
then the dielectric loss is simply proportional to the probability of exciting
low energy correlated state excitations. With the same time response function
of the correlated states ¢(T) as displayed in preceding paragraphs,
X'(w)e _“J“ht exp(itw) exp(-¢(T)). For E T large, ¢(T) can be approximated by
ny + nln(EcT). The approximate dielectric loss X"(w) is then proportional to
1/001-n which is identical to the universal lawl and the absence of a loss peak.
This predicted type of dielectric response is indeed observed in a very wide
range of dielectrics of all physical and chemical characteristics, and
interestingly they are always associated with the presence of hopping
charge carriers (Fig. 1). A second universal law (uu/mc)“f-1 will follow
a first (llt’/ls’c)nl_1 on decreasing W if there are available two types of
correlated states that can contribute to infrared divergences. From sum
rule considerations on X"(w), we expect n
(Fig. 1).

2<n1 which is also observed

VI. SUMMARY AND DISCUSSIONS
In this work we have broadly and arbitrarily classified dielectrics
according to the type of interaction or correlations inherent in all
materials. We have found that independent of the type of correlations,
a dielectric in general has gapless 'correlated states'" whose density
of states is continuous. These "correlated states" have response times
much longer than the time taken by the hopping between sites of charged .
particles or jumping between orientations of dipoles. Hence the hopping

or jumping movements can be considered instantaneous as far as the ¢
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"correlated states" are concerned and they experience a sudden change of
the potential induced by the charged particles or dipoles. The tran-
sient response of the system is the emission of low-energy excitationms
of the "correlated states'" which cause the response to have a e
time dependence or an infrared divergent like 1/(»1-n frequency response
of the dielectric loss. We have thus arrived at a fundamental mechanism
for the empirical wn-l dependence (accompanied sometimes by a peak at
low enough w) of the dielectric loss obeyed by nearly all dielectrics
and the mechanism is operative independent of the type of physical
structure and chemical bonding in the materials, and whether the
polarization is associated with permanent dipoles or hopping charge car-
riers of electronic or ionic nature.

This arbitrary classification of dielectrics according to the
present scheme is quite general. The classification is based
on the type of dominant correlations and the correlated states they
render. Detailed developments of the electron pairing correlations and
of the ion-ion correlations have been given. Correlated states are
identified in both cases. Types of correlations other than those
between electrons or between ions could conceivably lead to some sort of
""correlated states" as has been demonstrated explicitly for the cases of
electron pairing correlations and the ion-ion correlation. These cor-
related states although they may have very different physical origin and
interpretations dependent on which class of dielectrics share some com-
mon important properties. The very low energy excitations of these
correlated states have an infrared divergent behavior, and lead to the
low frequency dielectric response obeying a universal law, X'(w) « llwl-n,
with sometimes the appearance of a post peak at low enough w. The Debye
law holds only in the probably seldom realized cases where the correlated
state excitations are either non-existent or ineffective because of weak
coupling to the hopping charges/dipoles that contribute to the Debye suscepti-
bility. The invariable deviation from the Debye laws in most dielectrics
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implies that the existence of very low energy correlated state excitations
are often the rule rather than the exception. We emphasize the

importance here of not only the recognition of the Curie-von Schweidler
law as an infrared divergence phenomenon but also the subtle task of
identifying the (correlated state) excitations that are responsible for it.
There is an important difference between the present case and the Cerenkov
(or Bremstrahlung) radiation on the X-ray edge singularity problem, since
energies in the present regime of interest are so low that for these

cases, the spontaneous photons or electron-hole pairs produced infrared
divergence is entirely smeared out at finite temperatures. This is not

the case here for the particular correlated states responsible for such
low energy dielectric response singularitie?. The infrared divergence is
retained at finite temperatures even 10 GHz. In all infrared divergence
problems, an upper cut off Ec of the excitation energies E is needed
either to insure convergence at large E or simply that we run out of these
excitations as E increases, or that |V|2 N(E)= E no longer holds for E > E..

The universal law X"{(w)« 1/(:.)1-n

may be modified at low enough frequencies
in dipolar dielectrics by the introduction of a peak, and this may or may
not occur within the frequency spectrum scanned, dependent on the magnitude
of Ec, the upper cut-off of the correlated state excitations, and the value
of n. The occurrence of a post-peak in some classes of dielectrics and

¢he non-occurrence in other classes can be correlated. Order of magnitude
estimates of Ec are possible for certain classes of dielectrics and the
post-peak frequency predicted seems to be consistent with experimental
data. The temperature dependence of the post-peak position is also con-

sistent with experimental data.

In addition to bulk dielectrics we have considered also the inter-
faces of a dielectric with another dielectric or a semiconductor or a metal.
Another interesting example of these interfacial systems is the thermal
oxidized Si-SiO2 interface in MOS device structures. The present authors
have investigated the local electron pairing interaction on dangling bonds

and weaker/stronger bondu31 (a concept also introduced by Anderaonll) and the
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resultant electronic structure of the si-siO2 interface.31 Both the
dangling bonds and the weaker/stronger bonds can give rise to pair states
which are strongly self-trapped and have the interesting dynamic charac-

ter when e.g. electrons are excited in pairs. In particular, correlated
states of this type at the interface give rise to electron pair excitations
with arbitrary low energies and hence should produce an infrared divergent
dielectric response. We wish to point out that low frequency dielectric
response measurements of the interfacial region could be a powerful and novel
tool for the characterization of devices. These measurements may have the
potential of yielding more in depth understanding of interfaces when coupled

with conventional measurements such as capacitance versus gate voltage.
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\

n<03 |I

NON-
INTERACTIONS INTERACTIONS " INTERACTING
HIGHLY PURE ELECTRONIC “SOLID-LIKE"” “LIQUID-LIKE" % PRACTICALLY
LATTICES HOPPING NON-EXISTENT
IONS POLYMERS t <T POLYMERS ‘ ST, LiQuips
GLASSES 9 GLASSES 9
n<03 p-n JUNCTIONS
“HIGH DENSITY" CLATHRATES
CARRIER FERROELECTRICS
SYSTEMS FERROELECTRICS AT HIGH FREQUENCIES
“GIANT DIPOLES" AT LOW FREQUENCIES CRYOGENIC POLYMERS
T, . LIQUID X-TALS
Fig. 1. A schematic representation of the various observed types of

dielectric response in the entire range of solids. The upper
set of diagrams represent the shapes of the logarithmic plots
of X'(w)-chain-dotted lines, and X"(w)-solid lines, ranging
from the ideal Debye through the & and B peaks and on to the
universal dependence for charged carrier systems. The limiting
forms of behaviour are represented by the strong low-frequency
dispersion with small values of n and by the limiting case of
frequency-independent "lattice response" with n $ 1. The lower
set of diagrams represent the corresponding complex X plots.
The various types of materials obeying the respective types of
response are shown and the presumed polarization mechanisms are
indicated. This figure is taken from the article by K.L. Ngai,
A.K. Jonscher and C.T. White, Nature 277, 185 (1979).
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Fig. 5.

The behavior of X', X" in the present theory for several dif-

ferent values of n. Note the peak shape is independent of

e-nY/‘(l-n)ToEcn but strongly dependent on n. The slope m
of each of these log (X") versus log (w) plots varies continuously

from zero to one for log (W) < log (UP), where @ is the post
peak position.

m for a fixed decrement of log (w), i.e. at a
value of W with log (w/wp) < 0 and fixed) decreases as n increases.
In view of this property one should not take the asymptote of

the lowest available frequency measurements of X" (w) and attach

a universal meaning to the slope of that asymptote but rather

analyze the local slope m at a fixed decrement below the post peak.
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