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FREQUENCY DEPENDENCE OF DIELECTRIC LOSS
IN CONDENSED MATTER

I. INTRODUCTION

The dielec tric response of solids and liquids has been the subject

of intense investigation over a long period of t ime extending to this

da te, and pursued by physicis ts , chemists and engineers alike . A

detailed survey of the dielectric properties of a wide range of solids

has been given recent ly by Jonscher) It was observed 1 that the die-

lectric response functions in frequency or in time depart strongly from

the Debye response for a large number of essentially dissimilar materials

and fall into a remarkably conanon or “universal” pattern . In particular ,

the frequency dependence of dielec tric loss follows the empirical law

X” (W)~~c (~
’1 w i t h 0 < n < l  (1)

extending over several decades of frequency from low audio and sub—audio
to w/2w .Pl09 Hz. For some dielectrics , a broad loss peak may be found
at lower frequencies . Genuine Debye behavior with the complex suscepti—

bili ty given by x(w) (1 +iLjjT)’ is seldom observed in solids . The

empirical law (1) emphasized by Jonacher is implicit also in several other
empirical expressions presented in the past. These include the Cole—

Cole , Cole—Davidson and Havliak—Nigami forms1 and their expressions

are respectively 1/(1 + i(wr)8), 1/(1 + iüyr )~ and 1/(1 + i(orr)B)a. In
the wT >> 1 limit these expressions all reduce to the empirical law (1)

of Jonecher . Examples of the materials that obey the empirical law
(Eq. (1)) include inorganic ceramics; ionic conductors ; polymeric

materials , inorganic crystalline and amorphous materials including

glasses , insulating or semiconducting ; and organic and biological systems.
By way of these examples we see that the frequency response (1) is similar

for systems with permanent dipoles and with hopping charge carriers of

elec tronic or ionic nature . It is valid in covalent , ionic and molecular

solids , in single crystals , polycrystalline and amorphous structures ; hence

the behavior (1) is apparently independent of the particulars of the
material. At higher frequencies , Hz and up, quantum effects
Note: Manuseript submitted March 29, 1979.
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involving lattice mode excitations and/or electronic exci tat ions become

prominent and, as is well known, the response then differs from material
to material , and as such will not be of interest to us in the present

context .

The various types of dielectric response are summarized in Fig. I.

This figure is taken from a short summary of the present work published

earlier .
2 We note the vir tual absence of the pure Debye response; and

the validity of the universal law of dielectric response , (1), in a remark-

ably wide range of physical and chemical situations , and over a very wide

range of frequencies. In some types of dielectrics the universal response

(1) is followed at low frequencies by a loss peak referred to as a and B
peaks , or by another universal response with n typically between 0.1 and

0.3.

It is this state of affairs that has motivated us to seek a renewed

understanding of these phenomena in terms of a common or “universal”

characteristic across the entir e spec trum of materials and to associa te
such a charac teristic with some physically simple and “elementary”

principles or properties. In the next section we shall present several

elementary principles which when combined enable a derivation of the

“universal” law (1) regardless of the physical , chemical and geometrical
propert ies of the solids , and also regardless of the nature of the elec-

trically active species responsible for polarization , whether dipoles ,

electrons or ions. Then in Section III we discuss several examples of

low energy excitations expected in a host of systems that satisfy these

elementary principles . In Section IV we consider the response of these

states. Next , in Section V we derive the universal response (1) and the

possible presence of a loss peak at lower frequencies . Finally, in Sec-
tion VI we make some concluding remarks.
II • INFRARED DIVERGENCE AND THE “UNIVERSAL” LAW X” (w) ~

Infrared divergence phenomena , although not commonly observed in
physics , have been seen in several ins tances. The most well—known case
is in quantum electrodynamics where the infrared divergence manifests

itself in a Bremastrahiung experiment3 of a fast charged particle. In •

the realm of solid state phy5ic54~5 an example of infrared divergence is

2



thought to be provided by the peculiar shape of X—ray absorption edges

of metals.6 These examples are by no means exhaustive but the subjects
they cover demonstrate that infrared divergence is not uncommon. Excel—

lent reviews on the subject are available.
4’5

The features common to systems exhibiting the infrared divergence

phenomenon are (a) the sudden application of a potential, or a sudden
change of the potential or the Hamiltonian; and (b) availability of low—

energy excitations of the system and its response to the sudden potential

change dominated by the emissions of these low—energy excitations. In

the time domain the phenomenon is the transient response7 9  of the
system to that abrupt change of potential. Infrared divergence occurs

whenever the suddenly switched on potential V excites some low energy

excitations, with density of states 14(E) for excitation energy E, which
is such that v2 (E)  14(E) ~ E. In this instance there is an increasingly

high probability of exciting decreasingly small energy excitations and
• this causes a power law divergence of the response in the frequency

domain. In the X—ray edge problem in metals an X—ray photon when

absorbed, suddenly switches on a hole—core potential V for the conduc—
tion electrons. The low—energy excitations here are the electron—hole

pairs.

In the later sections we shall argue that within a broad classifi—
cation of dielectrics, according to a scheme to be outlined, there exist
states which, for convenience, we shall refer to as correlated states.

3
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Low energy excitation (and deexcitations) of the correlated states

with excitation (deexcitation) energy E consists of transition from

one correlated state to another and is the analogue of the electron—

hole pair excitation in the X—ray edge problem.

The charged particles or dipoles responsible for polarization
in the dielectrics undergo quantum transitions, including changes in

their positions/orientations, between preferred states in an abrupt
manner by hopping or jumping movements such that the time 1/V taken

by the actual transition is negligible in comparison with both (i)
the time spent on average in the respective preferred states, and (ii)
the time characteristic of the low energy excitation of the correlated

states. The condition (i) is invariably satisfied in solid dielectrics.
That condition (ii) is also satisfied will become clearer after we

have considered the nature of the correlated states.

Due to the charged particle (dipole) transition a potential is
suddenly switched on which acts on the correlated states. The low-

frequency response of the dielectric to this potential involves the ernie—

sion of low—energy excitations of the correlated states. We shall argue

that the low energy excitations of these correlated states have a density
of states N(E)CCE, and that the potential change V has li ttle or no B
dependence. It follows that the conditions for an infrared divergent

dielectric response of the correlated states are satisfied. The mean

number ~ oZ correlated state excitations is then ~ ~ by2 ~~c EdE/E2,



which diverges logarithmically, where E
~ 

is the upper “cut—off” of the
correlated state excitation energy which can be considered as the energy
above which the correlated state excitations no longer have the density
of states ~ E. The Fourier transform to the time domain of the “universal”

relation (1) is i(t) ~ t~~ , i.e., the widely observed Curie—von Schweidler

law1 of depolarization. It is interesting to note that the infrared

divergence problem when considered in the time domain as a transient response

problem 7 9  does lead to the time decay of the response function for large
times as S( t) ~ t~~ . The derivation of the complete dielectric response

will be deferred to Sec tion IV , af ter we have discussed the correlated
states in a broad classification of dielectrics in the next section.

III. CORRELATED STATES

In the preceding section we connected the “universal law,” Eq. (1)

to an infrared divergent response of correlated states. For this inter-

pretation to follow it is necessary for such states to be prevalent in

dielectrics and have characteristic response times long in comparison to
the switching of the harniltonian. In this section, we discuss several examples of
such correlated states which can reasonably be expected to be present in
many dielectrics. Parenthetically, the purpose of this section is

to give enough insights into these correlated states and their excitations
so that the reader can, if he desires , have a better feeling for them.
These discussions are not the core of this work but serve as useful illus-

trations. One should note from the onset that although the examples that

we will detail are quite general, they are by no means exhaustive. Fur-

ther note that these correlated states are cer tainly not familiar nor are
their excitations “elementary.”

(i) Dielectrics with electron self—trapping states

The concept of local electron self—trapping largely arises from the

observation that by and large if a particular electronic state is singly
occupied the atom or atoms principally associated with this state will adjust

their positions in such a way as to lower the energy level of this state

relative to its value when unoccupied . A traditional example is provided by

.1 ~~~~~~~~~~~~~~

-
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those ionic solids where strong local coulomb interactions between the electron

and lattice constituents induces a local lattice distortion leading possibly
to the self—trapping of the electron and the formation of a small polaron.

This tendency is not simply restricted to ionic materials but is much more

general. Well—known examples lying outside the usual small polaron

mechanism are provided by the reconstruction of semiconductor surfaces1°’~~
and electron pairing states in amorphous glasses.12 The origin of the self—

10,11trapping in former instance is essentially a dehybridization energy
arising from concepts inherent in covalency and stereochemistry. The

electron—lattice interaction may be strong enough to make it energetically

much more favourable to self—trap electrons in pairs rather than singly

and such systems have been described by Anderson’2 through a negative U
Hubbard model. Let us restrict our attention for the moment to the nega-

tive U electron pairing states which should be the physically most important
due to the prevalence of diamagnetic systems in nature. In this instance

several subgroups of possible correlated states can be identified with

properties leading to the desired behaviour in X” where, in each case , the
response time of these states is expected to be acceptably slow due to the
lattice coordinates involved.

As noted in the previous paragraph, in order to develop further the
idea of local distortion mediated effective electron—electron attractive

interaction Anderson has employed an effective negative U Hubbard—like term

to model the effect, where is the number operator for an elec-

tron of spin a in a state centered at the “site” i; l icy> . One should keep
in mind that i could well index the up and down spin states associated with

a group of atoms and not just a single one. Let us describe a group of such
centers in contact with one another as veil as alternate states of the

system (those with U~ — 0) by the simplified )lamiltonian:

H ~ B.c0 + j~cy1jj~~cyajcy + 

~ 
u~ c+~+ (2)

where a~0, aicy create and annihilate electrons of spin 0 in the state

ia’, and we take R1. as B if i,j are nearest neighbors and zero otherwise.

- - 
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The parameters {E 1} and {u.} are considered as random variables obeying

the joint probability distribution ~~ U . )  which for the t ime being is
left unspecified. This model can be made to mimic many different situa-

tions depending on the choice of P(E 1,U1).
To obtain results from (2) we have developed 13 a generalized mean

field—like method which entails linearizing the many—body terms
A A ~I ~“as U

~fi.+
n
~+ ~~~~~~~~~~~~~~~~~~~~~~~~ 

U1n1+n1+ is present to prevent

double counting of the interaction. The conditionally averaged number

of spin a electrons at the site i is given by the relation

= — 
~~~ fdEf(E)g.

0
(E~ ) , (3)

with f the fermi function and E4 denotes the lim (E+is). Equations
5~~0+

(3) provides a set of generalized }lartree Fock—like self—consistent

relations determining the parameters ~~~. since the Green’s functions

~~~~~~~ 
entering these formulae are defined as — <iaI(z—H~i) Ia~>

where H — ~ (E. +U i .  )~~. + .~~ it. .at a. and hence depends onel La ]. 1 1— ~~~ icy 2.30 2.3 1~J Ja
For convenience (3) can be recast as n10 

—(Im/fl) fdEf(E)/(E—E.—u.~~.0
—

A .), where A . is the usual self—energy and is a function of {n.
0

}, E
and R.

To solve these self—consistent conditions we employ the long
established coherent potential approximation

14 (CPA) to obtain the self

energies A~. This entails defining an effective medium characteucized
by a single potential E which is energy dependent and can be complex ,
in such a way that the G(E—E ) — <g. (B)> , where the brackets < >0 10 av. av.
here and henceforth denote an average over the random variables entering
11el and C is the Green ’s function obtained by replacing the site
diagonal random potentials of H l 

by Z at each site i. The CPA is

exact in both strong and weak scattering (virtual crystal) limits and

hence provides an interpolation scheme for treating the intermediate

cases. The use of this method greatly simplifies the computations since

its functional form of A . can be easily found using established tech-

niques once the “lattice” structure is specified. For example, if we
assume a simple chain then A — (E—E

0
) -/{(E—E

0
)2—4R

2
}. The CPA equation

7
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V

defining 
~ 

and hence A can be writ ten explicitly for the present model

as: ffP(E i~Ui )dE idU j / (E_E
i

_U
i~ ia (E i~Uj )_A (E

o )J =

We now have as inputs into the formalism some specified tempera-

ture, T, and number of electrons in the band , Nel’ as well as particular

functional forms for G(E) and P (E . , U . ) .  The calculation then proceeds
.1’ 13as follows : First we assume the function fli cy (Ei ~ U i )  and then solve the

CPA equations using a modified Newton—Raphson technique to obtain Z (E)

and hence A(E 0). Having determined A0( E )  we can then find the chemical
potential ii of the system from the usual relation Nel = (2/ 1r ) ImJdE/

where in obtaining this condition , we have
employed the CPA equation . Note the CPA determined satisfies the

important sum rule fdE/ (E—Z —A (Z ) )  = 1. Having E0(E ’) and ~t , we then
calculate a new function ~~~ ( E . ; U . )  from (3) and this procedure is iterated
until self—consistency is established , i.e. ~~~ .

‘ (E . , U .)  = a. (E . , U .) .LO 1 ~.a 1 1
If a continuous probability distribution is assumed for the random
variables , it is of course not numerically feasible to establish self—
consistency at each point in (E . ,  T I . )  space . In these instances we
establish self—consistency at a grid of points assuming that

can be adequately represented for intermediate values by trapezoidal
interpolation. We have found for simple continuous probability distribu—

tions that this procedure converges very nicely~
3 (well within the realm

of numerical feasibili ty) as the number of points in the grid is increased .
Note that usually more than one self—consistent solution exists and this

will prove important to our subsequent development.

Before detailing some of the examples that we have treated, it is
convenient to backtrack somewhat and draw a relationship between elec-
tron pairing interactions and covalency and in so doing motivate these
cases and further stress the generality of the pairing ideas.

As a prototype consider a simple dangling bond such as one associ-
ated with an Si atom which is bonded to three neighboring silicons
leaving a dangling hybrid. If we denote by x.~ the displacement of this

atom from where it would sit if the dangling hybrid were constrained to

8



be singly occupied with energy E.~ then a Hamiltonian partially
describing the energetice of this atom is Ha” ~Ehnha

_x
h%
(
~~++c;

l)
+ chx~

/2 , where fi.~, is the number operator for electrons of spin a in
the dangling hybrid orbital ha>. The last term entering H.~ is a back—

bond stretching energy and the second is the so—called dehybridization
energy)0’~~ f we have a group of such nonbonded states interacting with
one another then a simplified Hamil tonian describing the situation is
H V E~’n. — V A .x.(~ . +~~. -1) + Vc.x~/2 + .V R . .a~~ a. . We can now viewta 1 ia i 1 1+ 1+ 1 2. i ija i j  ia j a
the displacements x1 as parameters entering the Hamiltonian to be deter-
mined self—consistently by requiring the free energy of the sys tem to
be stationary with respect to their variations. This results in a set

of self—consistent conditions which can be used to eliminate the

parameters x1. It is then a simple matter to show that the resultant

Hamiltonian is essentially similar to the negative U model (2) within
the context of our mean field approximation if we make the identifica-
tion: 2A~/c1+U.,E

1
~+E.+U./2. Thus we expect the negative U model to

incorporate the behavior of a simple noubonded orbital since the
analysis of course is not limited to only the Si dangling hybrid but

applies whenever one has a dangling bond associated with covalent back—

bonds and hence is quite general .
Consider now as a first example of electron self—trapping states with the

desired properties those pairing states associated with breaking the pair

and “placing” the electrons in states associated with non—pairing sites.
Such a case could be physically realized e.g. with metal—semiconductor

(Schottky) contacts where one could envision transferring the electrons

from pairing centers in the semiconductor (say, nonbonded orbitals) to
the Fermi sea. A particular example derived from the general model (2) is

shown in Fig. 2 where we display two different self—consistent solutions

to (3) obtained by using the previously detailed formalism. We have taken
as inputs in calculating these examples: T 0 , Nel~~3 and C appropriate
for a Cayley lattice of coodination number six. The form of P(E1,U~)
is chosen so that P(E

~
,U.) — x6(U.) 6(1

1
—E
0
) + (l—x)6(U .—U )W(R.) where

I _ _ _ _ _ _  _ _ _ _ _  _ _ _ _



W(E1)/B — 5 (B the unperturbed half bandwidth) for .1 < Ei/B < .3 and

zero otherwise and x (the concentration of pairing centers) .1 with

U0/B — —1.6. The solid line of Fig. 2 is within our formalism the

density of states corresponding to the numerically determined lowest

energy state of the system while the dashed line represents a low-lying

self—consistently obtained excited state; a fact that we have verified

directly by comparing the energies of the two cases. These two solu-

tions differ from one another by the transfer of electrons from the
pairing centers (which when occupied in this example form a band of

states JIJ /2 below E
f 
as shown in Fig. 2) to the main band with the

unoccupied pairing levels now appearing .f’TJ /2 above E
f
. This is exem-

plified in Fig, 2 in going from the ground to excited state by the

slight increase in ‘E
f
’~ as well as the decrease in the measure of the

pair band below the main band edge and a concurrent increase in the

measure of the main band.

Further insight into this behavior can be gained by considering a
single pairing impurity in a tight binding lattice. The situation can

be described by the model Hamil tonian H V B ~~. + .V R.. a~ a. +lcyO  tcy ljcy ij ~ajau.a. a. + Z E.~I. , which represents of course a special case of (2).
3 3+ . i+ U 

~Approximating U~ as before the free energy of the system as a

function of ~c. can be expressed as
3 + .p lt.

(Un .+E .)(3G .(E ‘)/aE)dE
F — K — U~~ — (2/ 1r ) Im_CdEf(E)_~~ 

3 3 3 (4)
3 l—(Un.+E.)G.(f5)

where K is a constant independent of ~~. and we have used the up—down
spin symmetry present for U . < 0 to replace by 

~~

.. The free energy

F, possesses a double minimum as a function of when B
3 
+ U

3
/2 lies

in the vicini ty of E
f 

and U/ B  is >>l, as is shown in Fig. 3. In

arriving at these results we have chosen for simplicity a rectangular

densi ty of states of half—bandwidth B to model the main band i.e.

G.0(Z) —( l/2B ) ln {(z—z)/(z+3)} and neglected temperature effects which
are unimportant at moderate temperatures for physically expected U~;
i . e . IU .I~ .1 cv. At the minima 

~~

. satisfies the appropriate form of

10



Eq. (3) and hence represents the self—consistently obtained average

number of electrons of one spin species at the site j. The two minima
hence correspond to distinctly different occupancy of the pairing center

‘p
since in one case n. J~ 0 and the other n. ~I’ 1. That is on one hand

3 3
almost two electrons occupy the pairing levels which lie approximately

at (E.—U .) while on the other the pairing center is effectively unoc-

cupied and its associated states lie at 1’E~. One can show that

the two minima are separated for large U~ by “IE~ + U~/2 — Ef I and hence

such a negative U center can give rise to a low lying excitation of the

system if its characteristic parameters are such that (E
3
+U~/2)  ~ E~.

This is of course consistent with the previously obtained results sum-

marized in Fig. 2 and is just a rather more specific case.

Although within the context of the present mean—field like approxi-

mation we cannot make a new linear combination of the two states

represented by the essentially degenerate generalized Hartree—Fock self—

consistent solutions (associated with the minima of Fig. 3) that reduces

further the energy of the system (there is an orthogonality theorem15)
-: such an effect of course physically exists. The resultant intrinsic

matrix element connecting these states should itself be a random
variable because of the different allowed choices of E., U. sufficient

1. 1.

to produce the same degree of degeneracy. Such being the case, one
expects the density of the very low—lying excitations at a particular

E to behave as E and contribute an infrareJ divergent dielectric
response (1). We will postpone details of this argument until the next

section.

The essentials of the present low—lying pair state picture should

not be smeared out at reasonable temperatures since although e.g. the

details of Fig. 3 may be somewhat different at different temper~~~res

one still finds a double minimum in F(~ 1) and the corresponding low—lying

excitations.

t 
_ _ _ _ _ _ _



Another not completely orthogonal class of electron pairing states

with -the desired properties would be expected to exist in systems where

these are a number of essentially equivalent pairing centers the number
of which exceeds the number of available electrons. In these instances

oi~e can envision very low energy tunneling mode like excitations corresponding

to different arrangements of the electrons over these pairing centers and

cc~rrelated states of this type as we shall see in the next section should

exhibit the correct infrared divergent behavior.

Next consider a situation, that may obtain in certain amorphous
glasses ,’2 where the one—electron potentials of (2), E

~
, obey a continuous

probability distribution P(~ .) spanning the forbidden gap. To model the

resultant situation we have solved the self—consistent equation (3) assuming

P(E.,U.) — 6(U.—U )W(E.) where W(E.)/B — 1/2 for —l < E./B < 1 and zero

otherwise and U/B — 3; B is unperturbed half bandwidth. Also we

assumed that 1—0, N~~’.l and employed as an unperturbed Green’s function,
C, appropriate for a Cayley tree of coordination number six. In Fig. 4

we exhibit the numerically determined lowest energy state of the system

(solid line), as well as another self—consistent solution (dashed line)

which represents a low—lying excitation of the system. The two solutions

essentially differ from one another by the transfer of electrons from
one group of pairing centers to another, and in this way, although there

is a large gap in the one—electron spectrum very low lying excitations

can be achieved leading to a gapless pair state spectrum. To understand
this behavior further consider two isolated pairing centers labeled i,j
in competition with one another for two electrons. Then if U. — U. it

2. 3
is not the magnitude of U that determines the occupancy but rather B1,

B3. For example if E.< B. then the site labeled i is doubly occupied

and that labeled j is doubly empty in the ground state. Thus, although

the one electron states lie at B. + U. and E . ,  and are hence usually
> 1 2. .1

well separated in energy (~.leV), excitations of the system that require

only energy E
~
—E

5 
which becomes vanishingly small as E.~E. can be

achieved by removing the electron pair from the site i to the site j.

In the case Ri3
+0, the density of pair state excitations is then

12



P(E
1 
+ U./2) which is continuous and slowly varying around E

f 
and

we have seen a similar picture also applies if we assume some coupling

between the pairing centers.

Such a smooth distribution of self—trapped pair state excitations
is expected to have a charaãter sufficient to produce an infrared diver-

gence at very low temperatures if we suppose that a field induced hop

introduces a coupling between these states largely independent of energy.
This is so because the density of states of low energy pair state excita-

tions with energy E is ~N2 (E f )E where N(E
f
) is the density of pair states

at E
f
. Furthermore, the fact that the pair states are strongly self—trapped

implies that their response time can be much longer than the time charac-

teristic of the hopping or reorientation of the charge speices. Thus

all conditions for an infrared divergent dielectric response are apparently

satisfied. This behavior, however, will be completely smeared out at experi-
mental temperatures unless we suppose that the energy barriers between
pairing states is sufficient to prevent thermally assisted tunneling.

Thus the system at finite temperature is presumed locked into a metastable

state and this could happen for large enough negative U. We mention this

case because it is complementary to our previous examples where it is

supposed that each TM has equal probability of being in either of its
two states. Note that the possibility of low lying excitations which

are thermodynamically inaccessible over at least the time of a specific

heat measurement has already been pointed out’6and in amorphous materials

metastable states may persist almost indefinitely. Further note though

that in this metastable regime the response of the system should depend

on its history.

Thus, we have detailed several rather general examples which illus-
trate how electron self—trapping can provide correlated pair states with

characteristics sufficient to produce the “universal law”; Eq. (1).
Further examples can be found in those instances where the coulomb repulsion
dominates , favoring single self—trapping of the electron . In these cases ,

various subgroups of correlated state ~n be identified completely analogous

to the bipolaron ones outlined above. atermediate subgroups can also

be defined vehre e.g. one envisions very low energy excitations which

_ __  -~~~~~- - -~~~~~~~ - - ~~~~ - - -- -~~~~~~~~~~~_



entail disassociation of a bipolaron into two singly self—trapped electrons

or vice—versa. Although we have phrased our discussion implicitly in terms

of nnorphous systems where one expects an appreciable number of weaken

stionger bonds, lone pairs , etc., to be present giving rise to the self—

trapping states , it is also reasonable to expect that such low—lying excita-

tions occur and are important in more nearly crystalline covalent solids

since the remaining self—trapping centers in these materials could par-

tially pin the Fermi level in their vicinity. Another point that should

not be overlooked is the probable presence of an appreciable density of

self—trapping centers effective in determining the electronic structure

of various interfaces such as oxide—semiconductor , metal—semiconductor etc.

This follows since these interfacial regions are expected on the whole to

be disordered giving rise e.g. to weaker/stronger bonds . Indeed the
presence of such centers can be used to understand some of the more puzzling

electronic behavior of the localized inversion layer regime of MOSFETs 17

where one is dealing with an oxide—semiconductor interface in contact with

a quasi—two—dimensional electron gas . Furthermore , recently18 we have
carried out an analysis of the origin and role of such states at metal—

semiconductor (Schottky) interfaces and the resultant picture has been
found to be consistent with the so—called Covalent—Ionic trend.19 Thus,
although interface or contact effects are usually ignored we expect that

such systems should also exhibit a dielectric loss obeying the “universal
law” and a systematic study of the details could provide a powerful probe
of the interfacial structure.

(i i)  Dielectrics with Atom—atom or Molecule—molecule or Ion—ion
or Dipole—di pole Interactions

New concepts and ideas on low—energy excitations in real glasses and

spin glasses have been recently introduced by Anderson, et al.,2° Phillips21

and by Anderson)6 They propose the existence of a statistical distribu-

tion of localized tunneling levels and/or modes. A tunneling mode in a

real glass is realized by an atom (or group of atoms) which has an energy

- 
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E(~) as a function of its generalized position coordinate x which
exhibits two local minima of energy difference AE separated by a barrier.

Similarly in spin glasses spins are considered as classical dynamical
quantities with a potential energy surface that is a function of the

simultaneously specified orientations of all the spins (i.e. a N—dimensional

configuration space); local minima in the energy correspond to metastable

states of the spin glass associated with different spin configurations.
20,1 6 .  . . . . .A tunneling mode for spin glasses is defined in spin configuration

space as two local minima separated by a quantum—mechanical energy
barrier. Tunneling between one local minimum and another, if it occurs,

involves the rearrangement of several spins .- The linear specific heat

observed in real glasses (spin glasses) comes from tunneling modes whose

energy barriers are sufficiently great so that resonant tunneling of

atoms (spins ) between local minima does not occur, but sufficiently small
such that tunneling between the two levels can take place during the time

span of the specific heat measurement. Tunneling modes that contribute

to the low temperature linear specific heat have a density of levels
N(AE) per unit AE which is non-zero, smooth and continuous for AE $ kT.
Those tunneling modes that contribute to the low temperature linear

specific heat compose only a small subset20”6 of the total density of
alternate states or modes with level spli tting AE.

The spin—glass system and the resultant spin—spin interaction

models can often be transcribed to other physical models with non—spin

interactions.22 
Well—known examples include the Ising model equivalence

to a lattice gas and to a binary alloy. A lattice gas is a collection
of atoms (molecules) whose positions can take on only discrete values
which form a lattice. Bach lattice site can be occupied by at most one
atom. In general the potential energy of the system of atoms corresponds
to a gas in which the atoms are located only on lattic. sites and interact
through a two—body potential v()51 — 5.1). The corr.spond.nce b tvs•n
the lattice gas and the Ising model is seen by identifying occupied sites
to up spin and empty sites to down spin and the nearest neighbor atom—atom



interaction £ to —4 j . . ,  with J.. the Ising interaction between spins.LA ij
A binary alloy in a lattice model corresponds to sites occupied by A or B

atoms (molecules). Let £
~A~ 

£~~~, ~~~ represent the interaction energies

between the atoms . A site occupied by an atom A is identified with an up

spin and a site occupied by an atom B with a down spin. The quantity

(2c
~~

_c
AA

_c
BB )/4 then corresponds to 3 in the Ising model.

Consider dielectrics where atom—atom , molecule-molecule on ion—ion

interactions are important. In the lattice gas and/or binary alloy

modelling of dielectrics wi th random interactions, the equivalence to the

spin glass Ising model implies a dielectric state corresponding to the

spin glass state exists. Such dielectrics will have, in analogy to spin

glasses , tunneling modes. In direct analogy to a tunneling mode in spin
glasses which corresponds to several spins turned over , in these dielectrics

a tunneling mode corresponds to the change of the atomic (molecular or
ionic) occupancy of several sites to get from one energy minimum to the
other . The essential point is the existence of very low energy tunneling
modes in these dielectrics. This class of tunneling modes will be shown

in the next section to again satisfy the criterion for infrared

divergence and hence yields the universal law. The lattice gas and

binary alloy model should be good representations of many dielectrics
including the class of solid state ionic conductor23 on solid electrolytes
such as AgI , CaF and Na 8-alumina. In fact ionic conductivity for these

solids has been calculated in the lattice gas model .24 In the case of
Na 8—alumina , there is the repulsive interaction among the diffusing sodium
ions and also the attractive interactions between the ions and their
randomly distributed, compensating defects. These properties imply a

lattice gas with random interactions. There is indeed ample experimental
evidence25’26 

for the existence of tunneling modes in alkali B—alumina as

well as Ag B—alumina. In particular there is an excess low temperature

specific heat26 
contribution which is nearly linear in T as in the case

of spin glasses.

For completeness , we mention again that it has been pointed out’6

that there are also a large number of tunneling modes having small ~Z which

16 
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have their two alternate states inaccessible to each other because their

energy barriers are too large for tunneling to occur. Those pairs of

levels are practically not connected, and some of them contribute to the
• zero point entropy of the glass. Indeed experimental easureaents of fused

silica27 and glycerol28 has shown that the zero-point entropy is fini te for
both. Such tunneling modes can also produce an infraisd divergent response
although considerations of thermal histories become important.

To conclude this section, we note that the apparent arbitrary division
of dielectrics (implicit in this section) according to whether electron self—

trapping interactions or ion—ion interactions, etc., dominate the behavior

of the dielectrics is quite natural. Ions have closed atomic shells and

molecules are usually covalently bonded. In both cases electron self—

trapping interactions have already gone to completion, although the origins

of the pairing interactions in the two cases are entirely different. The

residual interactions are then the ion—ion or the molecule—molecule inter-

actions, which then should play the important role in providing correlated
states and their excitations.

IV. INFRARED DIVERCENT RESPONSE OF CORRELATED STATES
Let us examine the transient response of the tunneling modes to sudden

potential change caused by fast quantum transition of some charged species.
Tunneling modes whose alternate states are such that w/2w > 10 CHz can be

eliminated from the outset for consideration of infrared divergent response.

Our interest is in the law frequency dielectric response where w is smaller
on much smaller than 10 GHz. It may already be noted by the reader that
many of the examples of correlated •tates presented in the last section
have some common characteristics although the identity of the correlated

states can differ drastically from one example to another . Correlated
states can be electronic in origin, plired electron states in bonds, lone
pairs or arise from defects and impurities; or single electron self—trapping

states; or even be associated with extended electronic states. Correlated

states of atomic or molecular origin can be the atomic (or molecular) configura—

tion state of a set of atoms (molecules); or spin configuration state of a set

17
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of spins; or the configuration state of a cluster of ions or a group of dipoles.

Excitation (deexcitation) of correlated states consists of the transfer of
occupancy or state of lower (higher) energy to another of higher (lower)

energy. For succint discussion we shall focus on the case of atomic con-

figuration state and spin configuration state where excitations are the

conventionally called tunneling modes. However, we emphasize again that

the discussions in the remainder of this section hold as well for the

electron self—trapping tunneling—like modes detailed in section III.

The very low ~E of the tunneling modes guarantees contribution to the
dielectric response at corresponding low frequencies w tIE/h. This class

of tunneling modes should exist. Since the configurations of the atoms

(Spins) is random, there must16 be very many locations (of order N, the
number of atoms or sets of atoms) where there are two possible configurations

of very similar energies E1 and B
2
. If B1 and B2 are independent random,

vaniables , then the probability p(
~~

) of finding ~E — f E2—E 11 is finite as
+ 0. But physically thie is not true because it is possible to tunnel

between the two alternate levels with a tunneling matrix element even
though it is small. The energy level separation will be at least ~E>IT12 t ;

The off—diagonal matrix element between the alternate levels. For this class

of very low energy inaccessible tunneling modes (i.e., <10 GHz) the physical

energy d i f ference ~E is determined by the off—diagonal matrix element
tiE — 1T 12 1. 

6
It has been argued by Anderson,1 that T12 being a complex matrix element

acts like the x and y components of the random field that prevents the

actual level splitting tiE going to zero even though 1E 1—E 2 1 +0 unless
T12 + 0 also. For low frequency dielectric response, we are particularly

interes ted in the ~~ — IT12 I + 0 limit. T12 consists of two random variables
since it has real and imaginary parts. The probability that the mode energy

~~ lie in th, interval I T I and I T I + dJTJ is proportional to I T I d I T I .  Hence

th. density of states of very low energy, tunneling modes

N(~~) is proportional to ~~~~. Now the sudden potential change that induces

transitions between the two alternate levels should not depend on ~E.

- 
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Hence, for atomic and spin configuration states the condition 1v12 1 2
N(tiE ) — n B for infrared divergence of the response through correlated
state excitations (i.e. tunneling modea here) is satisfied. This statement
applies also to cases in which other types of correlated states are concerned.
This will lead to the desired functional dependence in X” of Eq. (1) as well
as the loss peaks , as will be discussed in the next section.

V. LOW FREQUENCY INFRARED DIVERGENT DIELECTRIC RESPONSE

Having argued that dielectrics with diverse interaction types should
have invariably some very low frequency excitations that respond in an

infrared divergent manner to fast transitions of polarizing species and

contribute a time dependence of the form t~~ at large t to same correlation
function, we (XLN) embark on the derivation of the dielectric response func-
tion and examine its properties. The total dielectric polarization ~
induced by an electric field ~(t) can be calculated by standard methods

29’3°

of linear response. The interaction of the polarization with the electric
field is given by -

Hi
t 

— —
~~~ 
. ~(t) (5)

where is the operator of the polarization. The perturbation Hint induces
a polarization density

t
.
~
p>_ <p> +f~~~(t—t ’) . ~~, (t’)dt’ (6)

where ~(t—t ’) — —<5(t) ~(t’)>> is the dielectric polarizability tensor,
and is the polarization density in the equilibrium state as + 0,
which can be nonzero for some dielectrics such as ferroelectrics. For

simplicity consider the dielectric tensor to be diagonal. In the case

when classical statistical mechanics suffi~e (as often is the case for
dielectrics at finite temperature.), the response function simplifies to

the t ime correlation function

— B < Pi(t) Pi(t ’)> (7)
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where <...>~ denotes averaging with the equilibrium distribution function,

8— l/k
B
T and P.(t’) the derivative of P

~
(t’) with respect to t’.

If P.(t) takes on either of two values + p0 and makes transitions
from one value to the other, as in the case of a system of particles with

a dipole moment or the case of a charged particle that can occupy one of
two alternate sites, then can be readily calculated by generalizing

the method3° to take into account a time dependent jump transition rate

w(r). Rewriting t—t ’ as t, we wish to calculate 41u
(r) — — 8<

~~
(t) ~1(t—t)>0,

where the derivative is now with respect to t. Doing this we obtain the
result 

-

— 28p2 W(r )  exp(_2 fTW(t)dt ) (8)

for the time dependence of the dielectric response function. The task that

remains is to calculate W(t) including the possibility of an infrared

divergence of correlated states excitations. Let 4 ( t )  describe the

time response of the correlated states to the sudden jump of the elec-

tron (dipole) from one position to another with probability per unit
time W .  The form of 4 ( t )  in our notation is $(T) — fE~ V

2 N(E) cos(Er)

dE/E 2 , and is different from the form normally given. ~~~ The difference

is the appearance of the cosine term instead of exp(—iEt), and is due to both
excitation and deexcitation of correlated states that now must be taken into

consideration. We have seen in the last section that there exists some class

of correlated states in the dielectrics we considered so that V2N(E) ~bV2E
is proportional to E and satisfies the condition for infrared divergence in
the number of these low energy correlated states excitations. The integral,

can be evaluated and yields

— bV2 Re + ln(iE t) + E,(iE~
t)} (9)

where ~
y — 0.5722, B (ix) is a standard integral which vanishes at large x.1 _

~(t)The j ump transition rate is W(t) — W
0 
e • On defining a time 

~~ 
by

l/t — 2W and combining equations, we obtain
— (8p0/t0) exp(—$ (t)) exp(—~ exp (—~(r)) dt/T ) (10)
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Consider the case when either the infrared divergent correlated states
- 2do not exist or the coupling V0 of the hopping charges 

(dipoles) to the

correlated states is vanishingly small. Then in either case +(t) + 0
and ~1..(r) — Bp2/ r  (exp (—r/ T 0) whose Fourier transform is x~

(w) —

8p
2(l+iWT

0
) 
1
ishich is the classical Debye susceptibility. Recapturing the

classical Debye laws by turning off the low energy correlated state excita-
tion is of course no surprise. The interesting point is that dielectrics

or dielectric interfaces in nature seldom obey the Debye law which implies
there should exist some low energy correlated states excitations which are

coupled to the carriers/charges/dipoles of the dielectric.

The dielectric response function for E
~.T >>l is

— (Bp~/t0
)e~~~ (E

c
T)
~~ 

exp (—e~~
’ T1~~/(l—n) T ~~n) (11)

where we have put n bV2 and assumed n < 1. By inspection one can observe
that although the (E T)~~ term may ini tially determine the T—dependence of

for sufficiently large values of T be dominated by the exponential
• function. This occurs roughly at

T 
~ [(1—n) e

’
~ E~ t )

111
~~ (12)

X~1
(w), the Fourier transform of 4~..(t) of Eq. (5) can be obtained

numerically. Several representative results for representative values of

n are shown in Fig. 5. A peak in x”(w) exists and its location is close
to the value of — l/t . This post—l/w~ 

n peak may be identified with
the cx or the 8 peaks commonly observed in dipole systems such as polymers,
liquids, p—n junctions , ferroelectnics, liquid crystals, cryogenic polymers
and some glasses. The approximate peak position

— ((l—~)~~~ ~~~~~~~~~~~ (13)

is a decreasing function of increasing t~, and E
~ 

and depends sensitively

also on the infrared divergenc, exponent n. In general T
0 
is temperature

dependent and usually has a clearly defined activation energy BA: t0
(T)

t~ exp(EA/kBT). This alone introduces a temperature dependence into
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exp(_E
A
/(l_n)k

B
T) (14)

with an apparent activation energy 
~A 

of E
A
/ (l

~
n). Increase in temperature

will cause a lateral shift of the universal law and its post—peak along the

frequency axis.
A wide range of dielectrics have associated with them the present.

of charge carriers of electronic or ionic nature. These charge carriers

are also evidently responsible for dc conductivity. Thus one expects

that charge carrier hopping transitions, under excitation by a time—

varying electric field , do not necessarily involve only two preferred sites.

Consider the charge carriers that do not jump randomly between two states/sites ,
then the dielectric loss is simply proportional to the probability of exciting

low energy correlated state excitations. With the same time response function

of the correlated states 4(t) as displayed in preceding paragraphs,

)C’(w)~ f°dt exp(iTw) exp(—4(r)). For E
c
t large, •(t) can be approximated by

+ nLn(E
c
t). The approximate dielectric loss x”(w) is then proportional to

which is identical to the universal law1 and the absence of a loss peak.

This predicted type of dielectric response is indeed observed in a very wide
range of dielectrics of all physical and chemical characteristics , and

interestingly they are always associated with the presence of hopping
- n - l

charge carriers (Fig. 1). A second universal law (W/W
c
) 2 will follow

a f i rs t  (W/W )nl~~ on decreasing U) if there are available two types of

correlated states that can contribute to infrared divergences. From sum
rule considerations on x”(~

), we expect n
2
<n

1 
which is also observed

(Fig. 1).

VI . SUMMARY AND DISCUSSIONS
In this work we have broadly and arbitrarily classified dielectrics

according to the type of interaction or correlations inherent in all

materials. We have found that independent of the type of correlations,

a dielectric in general has gapless “correlated states” whose density
of states is continuous. These “correlated states” have response times

much longer than the time taken by the hopping between sites of charged
particles or jumping between orientations of dipoles. Hence the hopping

or jumping movements can be considered instantaneous as far as the
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“correlated states” are concerned and they experience a sudden change of
the potential induced by the charged particles or dipoles. The tran—

sient response of the system is the emission of low—energy excitations

of the “correlated states” which cause the response to have a
time dependence or an infrared divergent like 1/~l~n frequency response
of the dielectric loss. We have thua arrived at a fundamental mechanism

for the empirical dependence (accompanied sometimes by a peak at
cw enough w) of the dielectric loss obeyed by nearly all dielectrics

and the mechanism is operative independent of the type of physical
structure and chemical bonding in the materials , and whether the

• polarization is associated with permanent dipoles or hopping charge car-

riers of electronic or ionic nature.

This arbitrary classification of dielectrics according to the

present scheme is quite general . The classification is based
on the type of dominant correlations and the correlated states they
render. Detailed developments of the electron pairing correlations and

of the ion—ion correlations have been given. Correlated states are

identified in both cases . Types of correlations other than those
between electrons or between ions could conceivably lead to some sort of
“correlated states” as has been demonstrated explicitly for the cases of
electron pairing correlations and the ion—ion correlation. These cor-

related states although they may have very different physical origin and
interpretations dependent on which class of dielectrics share some com-

mon important properties. The very low energy excitations of these

correlated states have an infrared divergent behavior, and lead to the
low frequency dielectric response obeying a universal law, x”(~

) 1/w1 ,

with sometimes the appearance of a post peak at low enough w. The Debye

law holds only in the probably seldom realized cases where the correlated
state excitations are either non—existent or ineffective because of weak
coupling to the hopping charges/dipoles that contribute to the Debye suscepti—

bility. The invariable deviation from the Debye laws in most dielectrics

- •~~~~



implies that the existence of very low energy correlated state excitations
are often the rule rather than the exception. We emphasize the

importance here of not only the recognition of the Curie—von Schweidler

law as an infrared divergence phenomenon but also the subtle task of

identifying the (correlated state) excitations that are responsible for it.

There is an important difference between the present case and the Cerenkov

(or Bremstrahlung) radiation on the X—ray edge singularity problem, since

energies in the present regime of interest are so low that for these

cases, the spontaneous photons or electron—hole pairs produced infrared

divergence is entirely smeared out at finite temperatures. This is not

the case here for the particular correlated states responsible for such
low energy dielectric response singularities. The infrared divergence is

retained at finite temperatures even 10 GHz. In all infrared divergence

problems, an upper cut off E
~ 

of the excitation energies E is needed
either to insure convergence at large E or simply that we run out of these

excitations as B increases, or that ~V~
2 N(E)~ E no longer holds for B > E

~
.

The universal law X”(w)~
X l/w1~~ may be modified at low enough frequencies

in dipolar dielectrics by the introduction of a peak, and this may or may
not occur within the frequency spectrum scanned, dependent on the magnitude
of B ,  the upper cut—off of the correlated state excitations, and the value
of n. The occurrence of a post—peak in some classes of dielectrics and

the non—occurrence in other classes can be correlated. Order of magnitude
estimates of E are possible for certain classes of dielectrics and the

• post—peak frequency predicted seems to be consistent with experimental

data. The temperature dependence of the post—peak position is also con-

sistent with experimental data.

In addition to bulk dielectrics we have considered also the inter—

faces of a dielectric with another dielectric or a semiconductor or a metal.

Another interesting example of these interfacial systems is the thermal

oxidized Si—Si0
2 interface in MOS device structures. The present authors

have investigated the local electron pairing interaction on dangling bonds
and weaker/stronger bonds31 (a concept also introduced by Anderson11) and the
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resultant electronic structure of the Si—Si02 interface.
3’ Both the

dangling bonds and the weaker/stronger bonds can give rise to pair states
which are strongly self—trapped and have the interesting dynamic charac—

ter when e.g. electrons are excited in pairs. In particular, correlated

states of this type at the interface give rise to electron pair excitations

with arbitrary low energies and hence should produce an infrared divergent
dielectric response. We wish to point out that low frequency dielectric
response measurements of the interfacial region could be a powerful and novel

tool for the characterization of devices. These measurements may have the

potential of yielding more in depth understanding of interfaces when coupled

with conventional measurements such as capacitance versus gate voltage.
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Pig. 1. A schematic representation of the various observed types of
dielectric response in the entire range of solids. The upper

set of diagrams represent the shapes of the logarithmic plots

of X’(W)—cbein—dotted lines, and X”(W)—aolid lines, ranging
from the ideal Debye through the cx and B peaks and on to the
universal dependence for charged carrier systems. The limiting

forms of behaviour are represented by the strong low—frequency

dispersion with small values of n and by the limiting case of
frequency—independent “lattice response” with n 1. The lower
set of diagrams represent the cor resp onding complex X plots .
The various types of materials Obeying the respective types of
resp onse are shown and the presumed polarization mechanisms are

• indicated. This figure is taken from the article by K.L. Ngai ,
A .X. Jo nscher and C.T. White , Nature 
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185 (1979).
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Fig. 5. The behavior of X’, )(“ in the present theory for several dif-

ferent values of n. Note the peak shape is independent of
-ny na e / (1—n)t E but strongly dependent on n. The slope m

of each of these log (x”) versus log (w) plots varies continuously
from zero to one for log (00) < log (w

e
), where is the post

peak position. m for a fixed decrement of log (w), i.e. at a
value of 00 with log (00/00 ) < 0 and fixed) decreases as n increases.

In view of this property one should not take the asymptote of

the lowest available frequency measurements of X” (w) and attach

a universal meaning to the slope of that asymptote but rather

analyze the local slope m at a fixed decrement below the post peak.
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