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INTRODUCTION

"...it seems that hardly anybody proposes to use different variables for propositions and for truth-
values, or different variables for individuals and individual concepts.” - (Carnap 1956, p. 113).

Admitting individual concepts as objects - with concept-valued constants, variables,
functions and expressions - allows ordinary first order theories of necessity, knowledge, belief and
wanting without modal operators or quotation marks and without the restrictions on substituting
equais for equals that either device makes necessary.

According to the ideas of Frege (1892), the meaning of the phrase "Mike's telephone
number” in the sentence "Pat knows Mike's telephone number” is the concept of Mike's telephone
number, whereas its meaning in the sentence "Pat dialed Mike's telephone number” is the number
itself. Thus if we also have "Mary's telephone number = Mike's telephone number”, then "Pat
dialed Mary's telephone number" follows, but "Pat knows Mary's telephone number” does not.

Frege further proposed that a phrase has a sense which is a concept and is its meaning in
obliqgue contexts like knowing and wanting, and a denotation which iIs its meaning in direct
contexts. Denotations are the basis of the semantics of first order logic and model theory and are
well understood, but sense has given more trouble, and the modal treatment of oblique contexts
avoids the idea. On the other hand, logicians such as Carnap (1947 and 1956), Church (1951)
and Montague (1974) see a need for concepts and have proposed formalizations. All these
formalizations involve modifying the logic used; ours doesn't modify the logic and is more
powerful, because it includes mappings from ob jects to concepts.

The problem identified by Frege - of suitably limiting the application of the substitutitivity
of equals for equals - arises in artificial intelligence as well as in philosophy and linguistics for
any system that must represent information about beliefs, knowledge, desires, or logical necessity -
regardless of whether the representation is declarative or procedural (as in PLANNER and other

Al formalisms).

Our approach involves leaving the logic unchanged and treating concepts as one kind of
object in an ordinary first order theory. We shall have one term that denotes Mike's telephone
number and a different term dencting the concept of Mike's telephone number instead of having
a single term whose denotation is the number and whose sense is a concept of it. The relations
among concepts and between concepts and other entities are expressed by formulas of first order
logic. Ordinary model theory can then be used to study what spaces of concepts satisfy various
sets of axioms.

We treat primarily what Carnap calls individual concepts like Mike's telephone number or
Pegasus and not general concepts like telephone or unicorn. Extension to general concepts seems
feasible, but individual concepts provide enough food for thought for the present.

It seems surprising that such a straightforward and easy approach should not have been

more fully explored than it apparently has. e -
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KNOWING WHAT AND KNOWING THAT

To assert that Pat knows Mike's telephone number we write
1) true Know(Pat, Telephone Mike)
with the following conventions:

I. Parentheses are often omitted for one argument functions and predicates. This purely
syntactic convention is not important. Another convention is to capitalize the first letter of a
constant, variable or function name when its value is a concept. (We considered also capitalizing
the last letter when the arguments are concepts, but it made the formulas ugly).

2. Mike Is the concept of Mike; i.e. it is the sense of the expression "Mike". mike is Mike
himself.

3. Telephone is a function that takes a concept of a person into a concept of his telephone
number. We will also use telephone which takes the person himself into the telephone number
itself. Whether the function Telephone can be identified with the general concept of a person’s
telephone number is not settled. For the present, please suppose not.

4. If P is a person concept and X is another concept, then Know(P, X) is an assertion
concept or proposition meaning that P knows the value of X. Thus in (1) Know(Pat, Telephone
Mike) is a proposition and not a truth value. Note that we are formalizing knowing what rather
than knowing that or knowing how. For Al and for other practical purposes, knowing what seems
to be the most useful notion of the three. In English, knowing what is written knowing whether
when the "knowand" is a proposition.

5. true () is the truth value, t or f, of the proposition Q, and we must write true Q in order
to assert (). Later we will consider formalisms in which true has a another argument - a
situation, a story, a possible world, or even a partial possible world (a notion we suspect will
eventually be found necessary).

6. The formulas are in a sorted first order logic with functions and equality. Knowledge,
necessity, etc. will be discussed without extending the logic in any way - solely by the introduction
of predicate and function symbols sub ject to suitable axioms. In the present informal treatement,
we will not be explicit about sorts, but we will use different letters for variables of different sorts.

The reader may be nervous about what is meant by concept. He will have to remain
nervous; no final commitment will be made in this paper. The formalism is compatible with
many possibilities, and these can be compared using the models of their first order theories.
Actually, this paper isn't much motivated by the philosophical question of what concepts really
are. The goal is more to make a formal structure that can be used to represent facts about
knowledge and belief so that a computer program can reason about who has what knowledge in
order to solve problems. From either the philosophical or the Al point of view, however, if (1) is
to be reasonable, it must not follow from (1) and the fact that Mary's telephone number is the
same as Mike's, that Pat knows Mary’s telephone number.

The proposition that joe knows whether Pat knows Mike's telephone number, is written
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2) Know(Joe, Know(Pat, Telephone Mike)),

and asserting it requires writing

3) true Know(Joe, Know(Pat, Telephone Mike)),

while the proposition that Joe knows that Pat knows Mike's telephone number is written

1) K(Joe, Know(Pat, Telephone Mike)),

where K(P,Q) is the proposition that P knows that Q. English does not treat knowing a
proposition and knowing an individual concept uniformly; knowing an individual concept means
knowing its value while knowing a proposition means knowing that it has a particular value,

namely ¢. There is no reason to impase this infirmity on robots.

We first consider systems in which corresponding to each concept X, there is a thing x of
which X is a concept. Then there is a function denot such that

5) x = denot X.
Functions like Telephone are then related to denof by equations like
6) YP | P2.(denot P| = denot P2 > denot Telephone P = denot Telephone P2).
We call denot X the denotation of the concept X, and (6) asserts that the denotation of the concept
of P's telephone number depends only on the denotation of the concept P. The variables in (6)
range over concepts of persons, and we regard (6) as asserting that TelepAone is extensional with
respect to denot. Note that our denot operates on concepts rather than on expressions; a theory of
expressions will also need a denotation function. From (6) and suitable logical axioms follows the
existence of a function telephone satisfying
) VP .(denot Telephone P = telephone denot P).

K now is extensional with respect to denot in its first argument, and this is expressed by
8) YP| P2 X .(denot P « denot P2 > denot Know(P1, X) = denot Know(P2, X)),

but it fs not extensional in its second argument. We can therefore define a predicate knoa(p, X)
satisfying

9) VP X (true KnowP, X) = knoaldenot P, X)).

(Note that all these predicates and functions are entirely extensional in the underlying logic, and
the notion of extensionality presented here is relative to denot.)

The predicate true and the function denof are related by
10) VQ.(true Q » (denot Q = 1))
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provided truth values are in the range of denot, and denot could also be provided with a (partial)
possible world argument.

When we don't assume that all concepts have denotations, we use a predicate denotes(X, x)
instead of a function. The extensionality of Telephone would then be written

SRR S RIS = St =i
»

i) YP1 P2 x u.(denotes(P |, x)adenotes(P2, x)adenotes(Telephone P, u) > denotes(T elephone
P2, u)).

We now introduce the function Exists satisfying
12) VX .(true Exists X u 3x.denotes(X , x)).

Suppose we want to assert that Pegasus is a horse without asserting that Pegasus exists. We can
do this by introducing the predicate /shorse and writing

13) true Ishorse Pegasus
which is related to the predicate ishorse by

14) VX x.(denotes(X, x) > (ishorse x = true Ishorse X)).

’ - In this way, we assert extensionality without assuming that all concepts have denotations. Exists
! is extensionai in this sense, but the corresponding predicate exists is identically true and therefore
?E_ Bi% dispensable.

In order to combine concepts propositionally, we need analogs of the propositional operators
such as And, which we shall write as an infix and axiomatize by

P : 15) YOI Q2.(truelQl And Q2) w true QI A true Q2).
; ‘ The corresponding formulas for Or, Not, Implies, and Equiv are
i ! 16)  VQI Q2.(true(Ql Or Q2) = true QI v true Q2),

; 17) VQ.(true(Not Q) = " true Q),
18)  VQI Q2.(true(Q Implies Q2) = true QI > true Q2),
| | and
19) vQI Q2.(true(Ql Equiv Q2) = (true Q1 w true Q2)).
The equality symbol "=" is part of the logic so that X « ¥ asserts that X and ¥ are the same
‘ : concept. To write propositions expressing equality, we introduce EquaXX,Y) which is a
. proposition that X and ¥ denote the same thing if anything. We shall want axioms
&
‘ 20) VX .true EquakX, X),
21) VX Y .(true EqualX,Y) » true Equal(Y, X)),
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22) VX ¥ Z.(true Equal(X,Y) A true EqualY , Z) > true Equal(X, Z)
making frue Equal(X,Y) an equivalence relation, and
23) VX ¥ x.(true Equal(X,Y) A denotes(X, x) > denotes(Y , x))

which relates it to equality in the logic. We can make the concept of equality essentially
symmetric by replacing (21) by

24) VX Y .Equal(X,Y) = EqualY, X),
i.e. making the two expressions denote the same concept.

The statement that Mary has the same telephone as Mike is asserted by
25) true Equal(T elephone Mary, Telephone Mike),
and it obviously doesn't follow from this and (1) that
26) true Know(Pat, Telephone Mary).

To draw this conclusion we need something like
27 true K(Pat, Equal(T elephone Mary, Telephone Mike))
and suitable axioms about knowledge.

If we were to adopt the convention that a proposition appearing at the outer level of a
sentence is asserted and were to regard the denotation-valued function as standing for the sense-
valued function when it appears as the second argument of Know, we would have a notation that
resembles ordinary language in handling obliquity entirely by context. There is no guarantee that
general statements could be expressed unambiguously without circumiocution; the fact that the

principles of intensional reasoning haven't yet been stated is evidence against the suitability of
ordinary language for stating them.

FUNCTIONS FROM THINGS TO CONCEPTS OF THEM
While the relation denotes(X , x) between concepts and things is many-one, functions going
from things to certain concepts of them seem useful. Some things such as numbers can be

regarded as having standard concepts. Suppose that Conceptl n gives a standard concept of the
number n, so that

28) Vn.(denot Conceptl n = n).

We can then have simuitaneously
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29) true Not Knew(Kepler, Number Planets)
and
30) true Knew(Kepler, Composite Concept) denot Number Planets).

(We have used Knew instead of Know, because we are not now concerned with formalizing
tense.)

(30) can be condensed using Compositel which takes

a number into the proposition that it is composite, i.e.

31) Compositel n = Composite Concep?l n

getting

32) true Knew(Kepler, Compositel denot Number Planets).

A further condensation can be achieved using Composite2 defined by

33) Composite2 N = Composite Concept| denot N,

letting us write

34) true Knew(Kepler, Composite2 Number Planets),

which is true even though

35) true Knew(Kepler, Composite Number Planets)

is false. (35) is our formal expression of "Kepler knew that the number of planets is composite”,
while (30), (32), and (34) each expresses a proposition that can only be stated awkwardly in
English, eg. as "Kepler knew that a certain number is composite, where this number (perhaps

unbeknownst to Kepler) is the number of planets”.

We may also want a map from things to concepts of them in order to formalize a sentence
like, "Lassie knows the location of all Aer puppies™. We write this

36) Vx.(ispuppylx, lassie) > true Knowd(Lassie, Locationd Conceptd x)).

Here Conceptd takes a puppy into a dog's concept of it, and Locationd takes a dog's concept of a
puppy into a dog's concept of its location. The axioms satisfied by Knowd, Locationd and
Conceptd can be tailored to our ideas of what dogs know.

A suitable collection of functions from things to concepts might permit a language that
omitted some individual concepts like Mike (replacing it with Conceptx mike) and wrote many
sentences with quantifiers over things rather than over concepts. However, it is still premature to
apply Occam’s razor. It may be possible to avoid concepts as ob jects in expressing particular facts
but impossible to avoid them in stating general principles.
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RELATIONS BETWEEN KNOWING WHAT AND KNOWING THAT
As mentioned before, "Pat knows Mike's telephone number” is written

37 true Know(Pat, Telephone Mike).

We can write "Pat knows Mike's telephone number is 333-3333"

38) true K(Pat, Equal(Telephone Mike, Concepti "333-3333)

where K(P, Q) is the proposition that denot(P) knows the proposition Q and Concept1("333-3333")
is some standard concept of that telephone number.

The two ways of expressing knowledge are somewhat interdefinable, since we can write
39) K(P,Q) = (Q And Know(P,Q)),

and

40) true Know(P, X)  3A.(constant A A true K(P, Equal(X , A))).

Here constant A asserts that A is a constant, i.e. a concept such that we are willing to say that P
knows X if he knows it equais A. This is clear enough for some domains like integers, but it is
not obvious how to treat knowing a person.

Using the standard concept function Conceptl, we might replace (40) by
41) true Know(P, X) = 3a.true K(P, Equal(X , Concept| a))
with similar meaning.

(40) and (41) expresses a denotational definition of Know in terms of K. A conceptual
definition seems to require something like

42) VP X.(Know(P, X) = Exists X And K(P, Equal(X , Concept2 denot X))),

where Concept2 is a suitable function from things to concepts and may not be available for ail
sorts of ob jects.

UNQUANTIFIED MODAL LOGIC

In unguantified modal logic, the arguments of the modal functions will not involve
quantification although quantification occurs in the outer logic.

Nec Q is the proposition that the proposition Q is necessary, and Poss Q is the proposition
that it is possible. To assert necessity or possibility we must write true Nec Q or true Poss Q.
This can be abbreviated by defining nec Q » frue Nec Q and poss Q correspondingly. However,
since nec is a predicate in the logic with ¢ and f as values, nec Q cannot be an argument of nec or
Nec.
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Before we even get to modal logic proper we have a decision to make - shall Not Not Q be
considered the same proposition as Q, or is it merely extensionally equivalent? The first is
written

43) v¥Q. Not Not Q = Q,

and the second

14) YQ.true Not Not Q = true Q.

The second follows from the first by substitution of equals for equals.

In Meaning and Necessity, Carnap takes what amounts to the first alternative, regarding
concepts as L-equivalence classes of expressions. This works nicely for dlscusslng necessity, but
when he wants to discuss knowledge without assuming that everyone knows Fermat's last theorem
if it is true, he introduces the notion of intensional isomorphism and has knowledge operate on the
equivalence classes of this relation.

If we choose the first alternative, then we may go on to identify any two propositions that
can be transformed into each other by Boolean identities. This can be assured by a small
collection of propositional identities like (43) including associative and distributive laws for
con junction and disjunction, De Morgan's law, and the laws governing the propositions 7" and F.
In the second alternative we will want the extensional forms of the same laws. When we get to
quantification a similar choice will arise, but if we choose the first alternative, it will be
undecideable whether two expressions denote the same concept. I doubt that considerations of
linguistic usage or usefulness in Al will unequivocally recommend one alternative, so both will
have to be studied.

Actually there are more than two alternatives. Let M be the free aigebra built up from the
"atomic” concepts by the concept forming function symbois. If s= is an equivalence relation on M
such that
45) VX1 X2« M.((X1 un X2) > (true X | = true X2)),
then the set of equivalence classes under su may be taken as the set of concepts.

Similar possibilities arise in modal logic. We can choose between the conceptual identity
46) ¥Q.(Poss Q = Not Nec Not Q),
and the weaker extensional axiom
17) VQ.(true Poss Q » true Not Nec Not Q).

We will write the rest of our modal axioms in extensional form.

We have

48) VQ.(true Nec Q > true Q),
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and
49) YQI Q2.(true Nec QI A true Nec(Ql Implies Q2) > true Nec Q2).
yielding a system equivalent to von Wright's T,
S4 is given by
50) YQ.(true Nec Q u true Nec Nec Q),
and S5 by
51) VQ.(true Poss Q = true Nec Poss Q).

Actually, there may be no need to commit ourselves to a particular modal system. We can
simuitaneously have the functions NecT, Nect and Nech, related by axioms such as

52) VQ.(true Nect Q > true Nech Q)

which would seem plausible if we regard S4 as corresponding to provablility in some system and
S5 as truth in the intended model of the system.

Presumably we shall want to relate necessity and equality by the axiom
53) VX .true Nec Equal(X, X).
Certain of Carnap's proposals translate to the stronger relation
54) VX Y.(XeY u true Nec Equal(X,Y))
which asserts that two concepts are the same if and only if the equality of what they may denote is
necessary.
MORE PHILOSOPHICAL EXAMPLES - MOSTLY WELL KNOWN

Some sentences that recur as examples in the philosophical literature will be expressed in
our notation so the treatments can be compared.

First we have "T he number of planets = 9" and Nmuarﬂ) 9 = 9" from which one doesn't
want to deduce “Necessarily the number of planm = 9" This example s discussed by Quine
(1961) and (Kaplan 1969). Consider the sentences
55) “nec Equal(Number Planets, Concepti 9)
and

56) nec Equal(Concept| number planets, Concept| 9).




e — .
B P —— > -
-

? Both are true. (55) asserts that it is not necessary that the number of planets be 9, and (56) asserts

| that the number of planets, once determined, is a number that is necessarily equal to 9. It is a

. major virtue of our formalism that both meanings can be expressed and are readily distinguished.
Sustitutivity of equals nolds in the logic but causes no trouble, because “T'he number of planets =
9" may be written

57) number(planets) = 9
or, using concepts, as

58) true Equal(Number Planets, Conceptl 9),

and "Necessarily 9=9" is written
59) nec Equal(Conceptl 9, Concepti 9),
and these don't yield the unwanted conclusion.

Ryle used the sentences "Baldwin is a statesman” and "Pickwick is a fiction™ to illustrate that
parallel sentence construction does not always give parallel sense. The first can be rendered in
four ways, namely true Statesman Baldwin or statesman denot Baldwin or statesman baldwin or

! . statesman| Baldwin where the last asserts that the concept of Baldwin is one of a statesman. The
| second can be rendered only as as true Fiction Pickwick or fictionl Pickwick.

Quine (1961) considers illegitimate the sentence
60) (3xXPhilip is unaware that x denounced Catiline)
obtained from "PAilip is unaware that Tully denounced Catiline” by existential generalization. In
the example, we are also supposing the truth of Philip is aware that Cicero denounced Catiline".
These sentences are related to (perhaps even explicated by) several sentences in our system. Tully

and Cicero are taken as distinct concepts. The person is called tully or cicero in our language, and
we have

61) tully = cicero,
62) denot Tully = cicero
and
63) denot Cicero = cicero.
We can discuss Philip's concept of the person Tully by introducing 2 Function
Concept2(p), p2) giving for some persons pl and p2, pl's concept of p2. Such a funcrion need

{ E . not be unique or always defined, but in the present case, some of our information may be
conveniently expressed by

S TV S —

64) Concept2(pAilip, tully) = Cicero,
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asserting that Philip’s concept of the person Cicero is Cicero. The basic assumptions of Quine’s
example also include

65) true K(Philip, Denounced(Cicero, Catiline))

and

66) “true K(PAilip, Denounced(T ully, Catiline)),

From (62), ... (66) we can deduce

67) 3P .true Denounced(P, Catiline) And Not K(PAilip, Denounced(P, Catiline)),

from (66) and others, and

68) 13p.(denounced(p, catiline) A ~true K(Philip, Denounced(Concept2philip, p), Catiline)))
using the additional hypotheses

69) Vp.(denounced(p, catiline) > p = cicero),

70) denot Catiline = catiline,

and
M) YP1 P2.(denot Denounced(P 1, P2) s denounced(denot P, denot P2)).

Presumably (67) is always true, because we can always construct a concept whose denotation is
Cicero unbeknownst to Philip. The truth of (68) depends on Philip's knowing that someone
denounced Catiline and on the map Concept2(pl, p2) that gives one person's concept of another.
If we refrain from using a silly map that gives something like Denouncer(Catiline) as its value, we
can get results that correspond to intuition.

The following sentence attributed to Russell is is discussed by Kaplan: “/ thought that your
yacht was longer than it (s". We can write it

”) true Believed(l, Greater(Length Youryacht, Concept| denot Length Y ouryacht))
where we are not analyzing the pronouns or the tense, but are using denot to get the actual length
of the yacht and Conceprl to get back a concept of this true length so as to end up with a

proposition that the length of the yacht is greater than that number. This looks problematical,
but if it is consistent, it is probably useful.

In order to express “Your yacht is longer than Peter thinks it is.", we need the expression
Denot(Peter, X) giving a concept of what Peter thinks the value of X Is. We now write

73) longer(youryacht, denot Denot(Peter, Length Youryacht)),

but 1 am not certain this s a correct transiation.
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Quine (1956) discusses an example in which Ralph sees Bernard J. Ortcutt skulking about
and concludes that he is a spy, and also sees him on the beach, but doesn't recognize him as the
same person. The facts can be expresed in our formalism by equations

) true Believe(Ralph, Isspy P1)
and

75) true Believe(Ralph, Not Isspy P2)
where Pl and P2 are concepts satisfying

denot Pl = ortcutt and denot P2 = ortcutt. Pl and P2 are further described by sentences relating
them to the circumstances under which Ralph formed them.

We can still consider a simple sentence involving the persons as things - write it
believespy(ralph, ortcutt), where we define

76) Vol p2.(believespy(pl, p2) s true Believe(Conceptl pi, Isspy Concept? p2)

using suitable mappings Conceptl and Concept? from persons to concepts of persons. We might
also choose to define believespy in such a way that it requires true Believe(Concept| pl, Isspy P)
for several concepts P of p2, eg. the concepts arising from all pl's encounters with p2 or his
name. In this case believespy(ralph, ortcutt) will be faise and so would a corresponding
notbelievespy(ralph, ortcutt). However, the simple-minded predicate believespy, suitably defined,
may be quite useful for expressing the facts necessary to predict someone’s behavior in simpler

circumstances.

Regarded as an attempt to explicate the sentence "Ralph believes Ortcutt is a spy”, the above
may be considered rather tenuous. However, we are proposing it as a notation for expressing
Ralph's beliefs about Ortcutt so that correct conclusions may be drawn about Ralph’s future
actions. For this it seems to be adequate.

PROPOSITIONS EXPRESSING QUANTIFICATION

As the examples of the previous sections have shown, admitting concepts as ob jects and
introducing standard concept functions makes "quantifying in" rather easy. However, forming
propositions and individual concepts by quantification requires new ideas and additional
formalism.

We want to continue describing concepts within first order logic with no logical extensions.
Therefore, in order to form new concepts by quantification and description, we introduce
functions All, Exist, and TAe such that AIV, P) is (approximately) the proposition that for all
values of V P is true, Exist(V, P) is the corresponding existential proposition, and TAe(V, P) is the
concept of the V such that P.

Since All is to be a function, ¥ and P must be objects in the logic. However, V is
semantically a variable in the formation of All(V,P), etc., and we will call such ob jects inner
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variables so as to distinguish them from variables in the logic. We will use V, sometimes with
subscripts, for a logical variable ranging over inner variables. We also need some constant
symbols for inner variables (got that?), and we will use doubled letters, sometimes with subscripts,
for these. X X will be used for individual concepts, PP for persons, and QQ for propositions.

The second argument of All and friends is a “proposition with variables in it", but
remember that these variables are inner variables which are constants in the logic. Got that? We
won't introduce a special term for them, but will generally allow concepts to include inner
variables. Thus concepts now include inner variables like XX and PP, and concept forming
functions like Telephone and Know take the generalized concepts as arguments.

Thus
) Child(Mike, PP) Implies Equal(Telephone PP, Telephone Mike)

is a proposition with the inner variable PP in it to the effect that if PP is a child of Mike, then
his telephone number is the same as Mike's, and

78) AU(PP,Child(Mike, PP) Implies Equal(Telephone PP, Telephone Mike))

is the proposition that all Mike’s children have the same telephone number as Mike. Existential
propositions are formed similarly to universal ones, but the function Exist introduced here should
not be confused with the function Exists applied to individual concepts introduced earlier.

In forming individual concepts by the description function TAe, it doesn't matter whether
the ob ject described exists. Thus

79) The(PP,ChildMike, PP))

is the concept of Mike's only child. Exists TAe(PP,Child(Mike, PP)) is the proposition that the
described child exists. We have

80) true Exists The(PP,ChildMike, PP)) = trudExist(PP,Child(Mike, PP) And
AUWPP, Child(Mike, PP1) Implies EqualPP, PP1),

but we may want the equality of the two propositions, ..

81) Exists TALPP,Child{Mike, PP)) = ExtsPP,Child(Mike, PP) And
Al(PP,Child(Mike, PP1) Implies Equal(PP, PP1))).

This is part of general problem of when two logically equivalent concepts are to be regarded as
the same.

In order to discuss the truth of propositions and the denotation of descriptions, we
introduce possible worlds reluctantly and with an impsitant difference from the usual treatment.
We need them to give values to the inner variables, ind we can also use them for axiomatizing
the modal operators, knowledge, belief and tense. Huwever, for axiomatizing quantification, we
also need a function a such that

82) n' e alt/, x,n)
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is the possible world that is the same as the world n except that the inner variable V' has the
value x instead of the value it has in n. In this respect our possible worlds resemble the state
vectors or environments of computer science more than the possible worlds of the Kripke treatment
of modal logic. This Cartesian product structure on the space of possible worlds can aiso be used
to treat counterfactual conditional sentences.

Let nO be the actual world. Let true(P,n) mean that the proposition P is true in the
possible world n. Then

83) YP .(true P = true(P, n0)).

Let denotes(X , x, n) mean that X denotes x in n, and let denot(X, n) mean the denotation of X in n
when that is defined.

The truth condition for Al(V, P) is then given by
84) Yn V P.(true( AUV, P),n) » Yx.true(P, a(V, x, n)).

Here V ranges over inner variables, P ranges over propositions, and x ranges over things. There
seems to be no harm in making the domain of x depend on n. Simitarly

85) Yn V P .(true(Exist(V, P), n) » 3x.true(P, oV, x, n)).

The meaning of TAe(V, P) is given by

86) Vn ¥V P x.(truelP, aV, x,n) A Vy.(trudP, alV 3. n)) > y = %) > denotes(The(V , P), x, n))
and

87) Vn V P.(3'x.truelP, oV, x, n)) > true Exists TheV, P)).

We also have the following “syntactic” rules governing propositions involving
quantification:

88) Vn Q1 Q2 V.(absent(V, Q1) A true AV, Q1 Implies Q2), n) > truelQ) Implies AUWV, Q2), n))
and

89) VoV Q X .(truel AV, Q), n) > true(Subst(X , V, Q), m)).

where absent(V, X) means that the variable V is not present in the concept X, and Subst(X,V,Y)
is the concept that results from substituting the concept X for the varfable V' in the concept V.
absent and Subst are characterized by the following axioms:

90) VW1 V2.(absent(V1,V2) a V1 ¢ V2),

91) VW P X .(absent(V, Know(P, X)) u absent(V', P) A absent(¥, X)),

axioms similar to (91) for other conceptual functions,
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92) W Q.absent(V, ALV, Q)),

93) W Q.absent(V, Exist(V, Q)),

94) W Q.absent(V, T Ae(V,Q)),

95) W X .SubstV,V,X) =X,

%) VX V. Subst(X .V, V)= X,

97) VXV PY.(Subst(X,V, Know(P,Y)) = Knou(Subst(X,V, P), Subst(X ,V,Y))),
axioms similar to (97) for other functions,

98) VX V Q. (absent(V,Y) > Subst(X ,V,Y) = Y),

99) YX VI V2 QW1 e V2 A absent(V2,X) > Subst(X,V1, Al(V2,Q) =
All(V2, Subse(X ,V1,Q)),

and corresponding axioms to (99) for Exist and TAe.
Along with these comes the axiom that binding kills variables, i.e.
100) Wi V2Q.(AlVI, Q) « AlV2, SubstV2,V1, Q).

The functions absent and Subst play a “syntactic” role in describing the rules of reasoning
and don't appear in the concepts themselves. It seems likely that this is harmless until we want to
form concepts of the laws of reasoning.

We used the Greek letter n for possible worlds, because we did not want to consider a
possible world as a thing and introduce concepts of possible worlds. Reasoning about reasoning
may require such concepts or else a formulation that doesn't use possible worlds.

Martin Davis (in conversation) pointed out the advantages of an akernate treatment
avoiding possible worlds in case there is a single domain of individuals each of which has a
standard concept. Then we can write

101) W Q.(true AV, Q) » Vx.true Subst(Concept| x,V, Q).

POSSIBLE APPLICATIONS TO ARTIFICIAL INTELLIGENCE

The foregoing discussion of concepts has been mainly concerned with how to transiate into
a suitable formal language certain sentences of ordinary language. The success of the
formalization is measured by the extent to which the logical consequences of these sentences in the
formal system agree with our intuitions of what these consequences should be. Another goal of
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the formalization is to develop an idea of what concepts really are, but the possible formalizations
have not been explored enough to draw even tentative conclusions about that.

For artificial intelligence, the study of concepts has yet a different motivation. Our success
in making computer programs with general intelligence has been extremely limited, and one
source of the limitation is our inability to formalize what the world is like in general. We can try
to separate the problem of describing the general aspects of the world from the problem of using
such a description and the facts of a situation to discover a strategy for achieving a goal. This is
called separating the epistemological and the Aeuristic parts of the artificial intelligence problem
and is discussed in (McCarthy and Hayes 1969).

We see the following potential uses for facts about knowledge:

I. A computer program that wants to telephone someone must reason about who knows the
number. More generally, it must reason about what actions wili obtain needed knowledge.
Knowledge in books and computer files must be treated in a parallel way to knowledge held by
persons.

2. A program must often determine that it does not know something or that someone else
doesnt. This has been neglected in the usual formalizations of knowledge, and methods of
proving possibility have been neglected in modal logic. Christopher Goad (to be published) has
shown how to prove ignorance by proving the existence of possible worlds in which the sentence
to be proved unknown is faise. Presumably proving one's own ignorance is a stimulus to looking
outside for the information. In competitive situations, it may be important to show that a certain
course of action will leave competitors ignorant.

3. Prediction of the behavior of others depends on determining what they believe and what
they want.

It seems to me that Al applications will especially benefit from first order formalisms of the
kind described above. First, many of the present problem solvers are based on first order logic.
Morgan (1976) in discussing theorem proving in modal logic also translates modal logic into first
order logic. Second, our formalisms leaves the syntax and semantics of statements not involving
concepts entirely unchanged, so that if knowledge or wanting is only a small part of a problem, its
presence doesn't affect the formalization of the other parts.

In Appendix I, we give a set of axioms for knowledge that permits deduction from "Pat
knows Mike's telephone number” and Pat wants Joe to know Mike's telephone number™ that Joe
will know Mike's telephone number”. Treatments of the "dynamics” of knowledge are a first step
towards Al applications. The axiomatization is quasi-static, i.e. each action takes a situation into
a definite resulting situation, and there are no concurrent processes.

The special premisses are written true(world, Want(Pat, Know(Joe, Telephone Mike))) and
true(world, Know(Pat, Telephone  Mike)), and the conclusion is  true(world, Future
Know(Joe, Telephone Mike)).

The proof from these axioms that Joe will know Mike's telephone number has about 15
steps. Since there is only one action - Pat telling Joe Mike's telephone number, the frame problem
(McCarthy and Hayes 1969) doesn't arise. A more elaborate example in which Joe wants to know
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_ Mike's telephone number, tells Pat that fact, and leading to Pat telling joe the number has been 4
partially worked out. but the treatment is not very satisfactory. Several frame axioms are
required, the proof would be quite long, and the previous result cannot be used as a lemma |
because its statement doesn't say what remains unchanged when Pat tells Joe Mike's number. i "

Even the fifteen step proof doesn't model human reasoning, or the way computer programs

should be designed to reason. Namely, the particular result is obtained by substitution from a g

general statement about what to do when a person or machine wants another to know a fact.

‘ Therefore, there is no reason to deduce it each time it is needed. Moreover, as the M.LT. Al g
’ school has emphasized, this general fact should be stored so as to be triggered specifically by the i
| desire that another person shall know something.

JZ ABSTRACT LANGUAGES

The way we have treated concepts in this paper, especially when we put variables in them,
| suggests trying to identify them with terms in some language. it seems to me that this can be done
Li provided we use a suitable notion of abstract language.

Ordinarily a language is identified with a set of strings of symbols taken from some
, alphabet. McCarthy (1963) introduces the idea of abstract syntax, the idea being that it doesn't
matter whether sums are represented a+b or +ab or ad+ or by the integer 2'3® or by the LISP S-
expression (PLUS A B), so long as there are predicates for deciding whether an expression is a
sum and functions for forming sums from summands and functions for extracting the summands
from the sum. In particular, abstract syntax facilitates defining the semantics of programming
languages, and proving the properties of interpreters and comptlers. From that point of view, one
can refrain from specifying any concrete representation of the “expressions” of the language and
consider it merely a collection of abstract synthetic and analytic functions and predicates for
forming, discriminating and taking apart abstract expressions. However, the languages considered
at that time always admitted representations as strings of symbols.

4 If we consider concepts as a free algebra on basic concepts, then we can regard them as
! strings of symbols on some alphabet if we want to, assuming that we don't object to a non-
denumerable alphabet or infinitely long expressions if we want standard concepts for all the real
numbers. However, if we want to regard Equal(X,Y) and Equal(Y, X) as the same concept, and
hence as the same “expression” in our language, and we want to regard expressions related by
renaming bound variables as denoting the same concept, then the algebra is no longer free, and
regarding concepts as strings of symbols becomes awkward even if possible.

! \ It seems better to accept the notion of abstract language defined by the collection of
! functions and predicates that form, discriminate, and extract the parts of its "expressions”. In that
'* case it would seem that concepts can be identified with expressions in an abstract language.
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The treatment given here should be compared with that in (Church 1951b) and in (Morgan
1976). Church Introduces what might be called a two-dimensional type structure. One dimension
permits higher order functions and predicates as in the usual higher order logics. The second
dimension permits concepts of concepts, etc. No examples or applications are given. It seems to
me that concepts of concepts will be eventually required, but this can still be done within first
order logic.

Morgan's motivation is to use first order logic theorem proving programs to treat modali
logic. He gives two approaches. The syntactic approach - which he applies only to systems
without quantifiers - uses operations like our And to form compound propositions from
elementary ones. Provability is then axiomatized in the outer logic. His semantic approach uses
axiomatizations of the Kripke accessibility relation between possible worids. It seems to me that
our treatment can be used to combine both of Morgan's methods, and has two further advantages.
First, concepts and individuals can be separately quantified. Second, functions from things to
concepts of them permit relations between concepts of things that could not otherwise be
expressed.

Although the formalism leads in almost the opposite direction, the present paper is much in
the spirit of (Carnap 195%). We appeal to his ontological tolerance in introducing concepts as
ob jects, and his section on intensions for robots expresses just the attitude required for artificial
intelligence applications.

We have not yet investigated the matter, but plausible axioms for necessity or knowledge
expressed in terms of concepts may lead to the paradoxes discussed in (Montague and Kaplan
1961) and (Montague 1963). Our Intuition is that the paradoxes can be avoided by restricting the
axioms concerning knowledge of facts about knowledge and necessity of statements about necessity.
The restrictions will be somewhat unintuitive as are the restrictions necessary to avoid the
paradoxes of naive set theory.

Chee K. Yap (1977) proposes Virtual Semantics for intensional logics as a generalization of
Carnap’s individual concepts. Apart from the fact that Yap does not stay within conventional
first order logic, we don't yet know the relation between his work and that described here.
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