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1. Introduction and Motivation.

This paper advances two aspects of the study of the properties of computer programs - the
scientifically motivated search for general theorems that permit deducing properties of programs
and the engineering problem of replacing debugging by computer-assisted computer-checked
proofs that programs have desired properties. Both tasks require mathematics, but the second
also requires keeping a non-mathematical goal in mind - getting short completely formal proofs
that are easy to write and check by computer.

A pure Lisp style recursive program P defines a partial function fp. By ad joining an
undefined element L (read "bottom”) to the data domains, fp may be extended to a total function
which we denote by the same symbol. In (Cartwright 1976), it was shown that fp satisfies a
Sfunctional equation, which is a sentence in a first order theory Tp. Besides the functional
equation, Tp contains symbols for the basic functions, predicates and constants of the data
domain, axioms for the data domain and its extension by 1, and additional function symbols for
the functions defined by recursive programs. (Cartwright 1976) also showed how the functional
equation can be used to prove facts about the program by reasoning within T'p, including the fact
that fp is total, i.e. doesn't take the value L except when 1 is an argument.

When fp is total, and sometimes when it isn't, it is completely characterized by the
functional equation. Otherwise, the characterization can be completed by a minimization schema
(McCarthy (978 and this paper) or alternatively by a complete recursive function as first defined
in (Cartwright 1978). Moreover, we show how to find a representation of fp by a sentence of the
form (VxXy = fp(x) = A(x)) where A(x) Is a wif of Tp not involving fp.

Now assume that Tp contains functions sufficient for axiomatizing basic syntax, eg. Lisp or
elementary number theory, and let S be a sentence of Tp involving only fp and the basic functions
of the data domain. Then (Cartwright and McCarthy 1979) shows how to construct a sentence S’
involving only the basic functions of the data domain such that we can prove in first order logic
that S » §’. Therefore, the fact that total correctness is not axiomatizable in first order logic is

st a matter of the Godelian incompleteness of the data domain, and it can be expected that all
ordinary” facts about programs will be provable just as all "ordinary” facts of elementary number
theory are provable in spite of its incompleteness.

This paper is primarily concerned with proving such “ordinary” facts about recursive
function programs with a view to developing practical techniques for program verification using
interactive theorem provers. As such it should be compared with other ways of using logic in

program proving.

Axiomatizing programs as functions compares favorably with Floyd-Hoare methods in
several respects. First it permits stating and proving facts that cannot even be stated in Floyd-
Hoare formalisms such as equivalence of programs and algebraic relations between the functions
defined by programs. it has the advantage compared to the Scott-Strachey formalisms that it uses
ordinary first order logic rather than a logic of continuous functions. This permits the use of any
mathematical facts that can be expressed in first order logic, including those that are most
conveniently expressed in set theory. This is especially important when the statement of program




{ correctness or its informal proof involve other mathematical ob jects than those that occur in the
program data domain.

After an iaformal introduction to recursive programs, subsequent sections of this paper
discuss the use of conditional expressions and first order lambdas in first order logic, ad joining L
to the data domains in order to convert partial functions and predicates into total functions,
axioms for Lisp and the integers, the representation of recursive programs by functions, inductive
methods of proof, the minimization schema, an extended example of a correctness proof,
representation of the inductive assertion and subgoal induction methods as axiom schemata, and a
convenient way of representing recursively defined functions by non-recursive sentences.

Our methods apply directly to proving only extensional properties of programs, eg.
properties of the function defined by the program. Intensional properties such as the number of
times an operation like recursion or cons is performed are often extensional properties of simply
obtained derived programs. Some of these properties are also extensional properties of the
functional of which the function is the least fixed point.

An adequate background for this paper is contained in (Manna 1974) and more concisely in
(Manna, Ness and Vuillemin 1973). The connections of recursive programs with second order
logic are given in (Cooper 1969) and (Park 1970). Our notation differs from Manna's in order to
use the « sign exactly as in first order logic.

2. Recursive Programs.
We consider recursive programs like
Factorial:  n! « if n equal O then | else n . (n - 1)

which is the well known recursive program for the factorial function. We will use capitalized
italic names for programs themselves regarded as texts and the corresponding name initialized
with lower case as a name for the function computed by the program, except that as in the case of
Factorial, we sometimes use an infix or other conventional notation for the function. Mutually
recursive sets of function programs will also be considered.

Another example is the Lisp program Append. In this paper we will use the Lisp external
or publication notation of (McCarthy and Talott 1979), and we will write uxv for append(u, v).
We then have

Append: usxveif nuthenvelseau . (duxv)

Here we are using n for nuil, a for car, d for cdr and an infixed . for cons. We omit brackets for
functions of one argument. In a more traditional Lisp M-expression notation we wouild have

appendly, v « if nuil(u] then v else cons(car(u), appendlcdriul, v]},

and in Maclisp S-expression notation, this would be

Q Rt ,._de-l'f' Wit Tond .\.;ﬁ -»«‘; ~ =i,
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(DEFUN APPEND (U V)
(COND ((NULL U) V) (T (CONS (CAR U) (APPEND (CDR U) V).

Our objective is to prove facts about such recursively defined functions by regarding the
recursive function definitions as sentences of first order logic. More accurately, we represent the
recursive function definitions by very similar sentences of first order logic. Factorial and Append
are translated into the sentences

1) (Vn)iseint n > n! = if n equal O then | else n x (n ~ 1))
and
2) (Vi vXiselist u A lselist vouxveif nuthenvelseau . [duxv))

respectively. The form of conditional expression if p then a eise b used in these sentences is just
a function that could as well be written {f(p, a, b) so far as the logic is concerned.

The predicates iseint and iselist respectively restrict their arguments to be extended integers
(i.e. the integers extended by 1) and extended lists. When these domains can be taken for
granted, we can omit the explicit restrictions and write

3) (VaXn! = if n equal O then | else n x (n - 1))
and
4) (Yu vXu x v = if n u then v else a u . [d u x v))

The sentences (i) and (2) completely characterize the functions defined by the programs
Factorial and Append, so proofs of the properties of these functions can be deduced from these
sentences together with axioms characterizing the natural number and Lisp data domains
respectively. For example, suppose we wish to prove that » satisfies the equations

5) (YoXNIL x v = v)
and
6) (YuXu x NIL = u),

le. NIL is both a left and right identity for the x operation. (5) is trivially obtained by
substituting NIL for u in (1) and using the rules for evaluating conditional expressions which will
have been added to the usual rules for first order logic. (6) expresses a more typical program
property in that its proof requires a mathematical induction.

This induction is accomplished by substituting

) ®(u) = (u % NIL = u)




in the list induction schema
8) S(NIL) A (VuXistist u A null u A O(d ) > $u)) > (Yu)islist u > ®(u)),

and using (2), the axioms for lists, and the rules of inference of first order logic Including those
for conditional expressions.

Once the formalism has been established, totality can be proved in the same way as other
properties of the programs. Thus the totality of uxv is proved by substituting

9) ®(u) = istist{uxv)
into the schema (8) and using (2), etc. as described above.

The translation of the program into a logical sentences would be trivial to justify if we were
always assured that the program terminates for all sets of arguments and thus defines a total
function. The innovation is that the translation is possible even without that guarantee at the
cheap price of extending the data domain by an undefined element 1, rewriting recurstvely
defined predicate programs as function programs, having two kinds of equality and conditional
expression, and providing each predicate with two forms - one a genuine predicate in the logic
and the other a function imitating the partial predicate by a function that takes the value 1L when
the program for the predicate doesn't terminate. Proofs of termination then take the same form as
other inductive proofs. However, additional formalism is required to characterize completely
programs that don't aiways terminate.

The next sections introduce the logical basis of the formalism and axioms and axiom
schemata for Lisp.

3. Two Useful Extensions to Firit Order Logic.

We begin by extending first order logic to include conditional expressions and first order
lambda expressions. This allows us to parallel the structure of recursive programs within logical
sentences.

We cannot add arbitrary programming constructions to first order logic without risking its
useful properties such as completeness or even consistency. Fortunately, these extensions are
harmiess, because they are not merely conservative; they can even be eliminated from wffs, and
they are generally useful. In fact, they are useful for expressing mathematical ideas concisely and
understandably quite apart from applications to computer science. The reader is assumed to
know about first order logic, conditional expressions and lambda expressions; we explain only
their connection.

Remember that the syntax of first order logic is given in the form of inductive rules for the
formation of terms and wffs. The rule for forming terms is extended as follows:




If Pis a wif and @ and b are terms, then /F P THEN a ELSE b is a term. Sometimes
parentheses must be added to insure unique decomposition. Note that this makes the definitions
of term and wff mutually recursive.

The semantics of conditional expression terms is given by a rule for determining their
values. Namely, if P is true, then the value of /F P THEN a ELSE b is the value of a.
Otherwise it is the value of b.

It is also necessary to add rules of inference to the logic concerned with conditional
expressions. One could get by with rules permitting the elimination of conditional expressions
from sentences and their introduction. These rules are important anyway, because they permit
proof of the metatheorem that the main properties of first order logic are unaffected by the
addition of conditional expressions. These include completeness, the deduction theorem, and
semi-decidability.

In order to state these rules it is convenient to introduce conditional expressions also as a
ternary logical connective. A more fastidious exposition would use a different notation for logical
conditional expressions, but we will use them so little that we might as well use the same notation,
especially since it is not ambiguous. Namely, if P, Q, and R are wffs, then so is IF P THEN Q
ELSE R. Its semantics is given by considering it as a synonym for (P A Q) v (P A R)).
Elimination of conditional expressions is made possible by the distributive laws

10) fUF P THEN a ELSE b) = IF P THEN fla) ELSE fv)
and

1) O®(/F PTHEN a ELSE Y «IF PTHEN ®a) ELSE ®(b)
e (P A &a)) v (7P A SO)

where f and ® stand for arbitrary function and predicate symbols respectively.

Netice that this addition to the logic has nothing to do with partial functions or the element

While the above rules are sufficient to preserve the completeness of first order logic, proofs
are often greatly shortened by using the additional rules introduced in (McCarthy 1963). We
mention especially an extended form of the rule for replacing an expression by another expression
proved equal to it. Suppose we want to replace the expression ¢ by an expression ¢’ within the
conditional expression /F P THEN a ELSE b. To replace an occurrence of ¢ within a, we need
not prove ¢ = ¢’ but merely P 5 ¢ = ¢’. Likewise if we want to replace an occurrence of ¢ in b, we
need only prove 7P > ¢ = ¢’. This principle is further extended in the afore-mentioned paper.

A further useful and eliminable extension to the logic is to allow “first order” lambda
expressions as function and predicate expressions. Thus if x is an individual variable, e is a
term, and P is a wff, then (Ax)¢ and (Ax)P may be used wherever a function symbol or predicate
symbol respectively are allowed. Formally, this requires that the syntactic categories of <function




symbol> and <predicate symbol> be generalized to <function expression> and <predicate
expression> respectively and that these categories are then defined mutually recursively with terms
and wffs.

The only inference rule required is lambda conversion which serves to eliminate or
introduce lambda expressions. According to this rule, a wff is equivalent to a wff obtained from
it by replacing a sub-wff or sub-term by one obtained from it by lambda conversion. The rules
for lambda conversion must include alphabetic changes of bound variables when needed to avoid
capture of the free variables in arguments of lambda expressions.

The use of minimization schemata and schemata of induction is facilitated by first order
lambda expressions, since the substitution just replaces occurrences of the function variable in the
schema by a lambda expression which can subsequently be expanded by lambda conversion.
Using lambda expressions somewhat simplifies the rule for substitution in schemata. First order
lambda expressions also permit many sentences to be expressed more compactly and may be used

to avoid duplicate computations in recursive programs. Thus we can write [(AxXx2 + x)Ka + b)

instead of (a + 8)2 + (a + b). Since all occurrences of first order lambda expressions can be
eliminated from wffs by lambda conversion, the metatheorems of first order logic are again
preserved. The reason we don't get the full lambda caiculus is that the syntactic rules of first
order logic prevent a variable from being used in both term and function positions. While we
have illustrated the use of lambda expressions with single variable A's, expressions like (Ax y z)e
are alio useful and give no trouble. It is also easily seen that lambda conversion within a term
preserves its value, and lambda conversion within a wff preserves its truth value.

Actually it seems that even higher order A's won't get us out of first order logic provided
rules of typing are obeyed and we provide no way of quantifying over function variables. Any

occurrences of higher order lambda expressions in wifs are eliminable just by carrying out the
indicated lambda conversions. For example, we could define

transitive = ARX(VX ¥ ZXR(X,Y) A R(Y,Z) > R(X, 2))),

and any use of fransitive in a wif would be eliminable using its definition and lambda conversion.

4. Partial Functions and Partial Predicates.

The main difficulty to be overcome in representing recursive programs by logical sentences
is that the computation of an arbitrary recursive program cannot be guaranteed to terminate.
Consider the recursive program

Runaway:  fin) « fin) + |

over the integers. If we transiate Runaway into the sentence

12) (VaXf(n) = fin) +1)




and use the axioms of arithmetic, we get a contradiction.

The way out is to ad join to our data domains an additional element L (read "bottom”),
which is taken to be the value of the function when the computation doesn't terminate. In
addition we add the axiom

13) (YnXisint(n) v n = 1),

and modify the axioms for arithmetic to refer to elements satisfying isint. Then going from
Runaway to (12) doesn't lead to a contradiction but to the desired result that

14) (YnKfin) = 1),
provided we aiso postulate that
15) (Ynn+ Lel+ne=l)

which is reasonable given the interpretation of 1 as the value of a computation that doesn't
terminate. We will postulate that all of the base functions, except the conditional expression, have
L as value if any argument is L. Such functions are called strict. Manna (1974) calis them
natural extenstons of the functions defined on the domain without 1.

We have discussed treating partial functions by introducing L. A function takes the value
1 when the program that computes it doesn’t terminate, and it is sometimes convenient to give a
function the value 1 in some other cases when we want it to be undefined.

It is convenient to introduce a rather trivial partial ordering relation on our data domain
once it has been extended by ad joining 1. Namely, we define the relation X = ¥ by

16) (YXYXXeYaXelAal s l)

(Readers of (Manna 1974) should note that the symbol = is being used in its common logical sense
of "if and only If"). We also make corresponding definitions of =, &, and 2. The ordering can be
extended to functions by defining

17 fe g (YXNAX) & gX).

This induced ordering is not so trivial, but we don’t use it in this paper, since it gets us out of
first order logic. Even though (16) defines a rather trivial ordering, we find that it shortens and

clarifies many formulas.

Partial predicates give rise to new problems. The computation of a recursively defined
predicate may not terminate, so the same problem arises. However, we can't soive it in the same
way without adding an additional undefined truth value to the logic. This would give rise to a
partial first order logic in which sentences couid be true, faise or undefined. Various partial
predicate calculi have been studied in (McCarthy 1964), (Bochvar 1938 and 1943) and elsewhere,
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but they have the serious disadvantage that arguments by cases become quite long, since three
cases always have to be provided for, even when most of the predicates are known to be total.
Moreover, existing logic texts, proof-checkers and theorem provers all use total logic. Therefore,
it seems better to keep the logic conventional and handle partial predicates as functions.

We introduce a domain IT with three elements T, F and 1 called the domain of extended
truth values. In a sorted logic, this may be a separate sort. Otherwise, it may be considered either
separately or as part of the main data domain. In Lisp it is convenient to regard T and F as
special atoms and to use the same 1 for extended truth values as for extended S-expressions. It is
even possible to follow the Lisp implementations that use NIL for F and interpret all other S-
expressions as T, although we don't do that in this paper.

It is convenient to define first a form of conditional expression that takes an extended truth
value as its first argument, namely

if pthenaelsebe /F p= LTHEN LELSEIF p=T THEN a ELSEb.

The only difference between then extended conditional expression and the logical conditional
expression is that since the extended conditional expression takes an extended truth value as
propositional argument, we can provide for the possibility that the computation of that argument
fails to terminate. Since the extended conditional expression treats the undefined cases according
to their behavior in programs, we use the same notation as previously used for programs.

Extended boolean operators are conveniently defined using the extended conditional
expressions. For every predicate or boolean operator, we introduce a corresponding function
taking extended truth values as operands and taking an extended truth value as its value. Thus
the function and, is written with an infix and defined by :

p and q = if p then g else F

The function and is distinct from the logical operator A which remains in the logic. To illustrate
this, we have the true sentence

(pand @)= T)e(p=T)A(g=T)

The parentheses in the above can be omitted without ambiguity given suitable precedence rules.
Note that and has the non-commutative property of (McCarthy 1963), namely F and 1L = F while
L and F = 1. This corresponds to the fact that it is convenient to compute p and ¢ by a program
that doesn't look at ¢ if p is false but which doesn't terminate if the computation of p doesn't
terminate. Symmetry could be restored if the computer time-shared its computations of p and ¢,
but there are too many practical disadvantages to such a system to justify doing it for the sake of
mathematical symmetry. Algol 60 requires that both p and ¢ be computed which precludes using
boolean opeators as the main connectives of Lisp type recursive definitions of predicates.

Other extended boolean operators are defined by
porqeif pthenT elseq




and

not p = if p then F eise T.

We also require an equality function thai extends logical equality, namely

XequalY =IF XwLlvY «LTHEN LELSE!F X «YTHENT ELSEF.

Readers familiar with (Manna 1974) should note that we write = where Manna writes =,
and we write equal where Manna writes =. We have chosen our notation to conform to that of
first order logic with equality.

In fact, the key to successful representation of recursive programs in first order logic is the
simultaneous use of true equality in the logic in order to make assertions freely and the equal
function that gives an undefined result for undefined arguments. The latter describes the
behavior of an equality test within the program. The two forms of conditional expression are
also essential.

The partial ordering = is also useful applied to extended truth values.

We summarize this in the following set of axioms:

TL(VpXistv papaTvpaF)
T2: (YpXisetv puistvpv p = 1)
T3T ¢ Fanistv L

T4 (Vp X YXisetv p >
if pthen X elseY « IF pe LTHEN LELSEIF p=T THEN X ELSEY)

T5: (VpXisetv p > not p = if p then F eise T)

T6: (Yp gXisetv p A isetv ¢ > p and ¢ = if p then g else F)

T7:(Vp qXisetv p A isetv g p or ¢ = if p then T else g)

T8 (VX YXX equalY « IF X = LvY « A\THEN LELSEIF X «Y THENT ELSE F

TO: (VpXisetv p Aisetv go(pegupela(geTvgsF))
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5. The Functional Equation of a Recursive Program - Theory.
The familiar recursive program
18) uxveifnuthenvelseau . [duxv)

is a special case of a system of mutually recursive programs which can be written

19) f|(x|.---.xml)6-f|(f|. bve ofgo B ...,xml)

fn(xl.....xmn)c-fn(fl. e sfmeps wes ,xmn).

Here the T's are terms in the individual variables x, etc. and the function symbols f), ... fp.
All the essential features of such mutual recursive definitions arise when there is only one

function, but phenomena arise when there are two or more arguments to the functions that do not
arise in the one argument case - two arguments being sufficiently general. Therefore, we write

20) for.9) « 7(f.x,9),

which may also be written

21) fix,y) « 7(fXx,y)
when we wish to emphasize that T maps a partial function f into another partial function rlf)

In this paper, we shall mainly consider recursive programs over S-expressions, lists and
integers, but we can actually start with an arbitrary collection of base functions and predicates
over a collection of domains and define the functions computable in terms of the base functions.
This is discussed in (McCarthy 1963). In a discussion of the basic ideas, fuil generality is
superfluous, and all the interesting phenomena arise with a single domain - call it D, extended to

D* by ad joining 1 and with characteristic predicate isD.

Such a program or system of mutually recursive programs can be regarded as defining a
partial function in several ways.

I. It can be compiled into a machine language program for some computer using cali-by-value.
The resulting program is a subroutine that calls itself recursively. Before it is called, the values of
the arguments must be computed and stored in suitable conventional registers. This includes its
calls to itself. Most Lisp implementations as well as most implementations of other programming
languages use cali-by-value.

2. It can be compiled into a machine language program for some computer using call-by-name.
The resulting program again calls Itself recursively. It is called by storing into suitable registers
the location of programs for computing the expressions that have been written as its arguments.
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Thus ((w.2)xf(x)) would be compiled into program that would give the program for uxv pointers
to program for computing w.z and flu). The program for x could call these other programs
whenever it wanted its arguments. In the case of uxv, there is nothing the program can
profitably do except call for both of its arguments. However, a program for multiplying two
matrices might call its first argument, and, if the first argument turned out to be the zero matrix,
not bother to call the second argument.

We can also consider evaluating the function by symbolic computation. Namely, we
substitute the arguments of the function x for u and v, and then evaluate the right hand side of
the definition. There are many ways to do this evaluation, because there may be more than one
occurrence of the function being defined on the right hand side of the definition, but two of them
correspond to call-by-name and call-by-value respectively.

3. When evaluating a conditional expression, always evaluate the propositional term first and use
it to decide which of the other terms to evaluate first. When evaiuating a term formed by
composition of functions, If there is only one occurrence of the function being defined on the right
hand side, there is no choice to be made, but if there is more than one, expand the leftmost
innermost first. If it gives an answer substitute it and continue the process. If it gives further
recursion, then proceed with its leftmost innermost, etc. This corresponds to call-by value.

4. If instead of expanding the leftmost innermost occurrence of the function first, we expand the
outermost occurrences, we get an evaluation method corresponding to call-by-name.

It should also be proved that evaluation by substitution and evaluation by subroutine both
using call-by-value give the same resuits. The two ways of doing cali-by-name should also be
proved to give the same results. Such a proof wouid involve reasoning about the operation of
subroutine calls and the saving of temporary storage registers on the stack. We are not aware of a
published proof of these statements or even a precise statement of them.

Computing uxv doesnt show the difference between these ‘methods, but consider the
function

22) morris(x, y) « If x equal O then 0 else morris(x - 1, morris(x, y))

introduced in (Morris 1968). Evaluating morris(2, i) by either call-by-value method leads to an
infinite computation, because the term morris(x, y) has to be evaluated all over. Call-by-name
evaluation, on the other hand, gives the answer 0, because the second argument of morris is never
called. Vuillemin (1973) shows that whenever call-by-value gives an answer, call-by-name gives
the same answer, but sometimes call-by-name gives an answer when call-by-value doesn't. If we
force a program to be strict, ie. to demand that all of its arguments are defined, then call-by-
name and call-by-value are equi-terminating - to coin a word.

(Manna 1974) also contains proofs of these assertions.

Execution of recursive programs by substitution is inefficient, but provides a good
theoretical tool for classifying the more efficient subroutine methods of evaluation.
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5. Finally, we can regard (18) and (22) as functional equations for x and morris respectively. In
general, a functional equation may have many solutions or none. However, it is essentially
Kleene's (1952) first recursion theorem, (see Manna 1974, theorem 5-2) that if the right side is
continuous in the function being defined and in the individual variables, there will be a unique
minimal solution. This condition is assured if the right hand side is a term built from strict
functions and predicates by composition and the formation of extended conditional expressions.
Continuity is discussed in (Manna 1974). It is not permitted to use logical conditional expressions
without satisfying additional hypotheses, and this restriction prevents true equality or any
predicate from direct use. If logical conditional expressions were generally allowed, we could have
sentences like

23)  (YxXflx) = IF fix) = L THEN T ELSE 1)

which are self-contradictory. The corresponding version using extended conditional expressions,
namely

24) (VxXflx) = if fix) equal L then T else 1)

is satisfied by flx) = L and is therefore harmless. Logical conditional expressions can be used
when we can guarantee that the propositional part is total and in some other cases.

The minimal solution is minimal in the sense that any other solution is greater in the
ordering of functions previously given, ie. if f is the minimal solution and ¢ is another solution,
then

25) (Vx yXflx, y) € é(x, ).

The minimal soiution of the functional equation can therefore be characterized by the
schema

26) (Vx 9Xé(x,y) = T(#Xx,y) > (Vx yXfix,)) & é(x, ).

6. Axioms for S-expressions, Lists and Integers.

The collection of axioms Lisp1 allows for the possibility that there are other kinds of entity
besides S-expressions, lists and integers. In practical program proving, these will include sets and
data structures of various kinds. In consequence of this decision, we need the predicates issexp,
islist and isint to pick out S-expressions, lists and integers respectively. Lists are considered to be
a particular kind of S-expression, namely S-expressions such that going in the cdr direction
eventually reaches NIL. It is convenient to have both the predicates atom and ispair that pick out
atomic and non-atomic S-expressions respectively.

Lispl is convenient for making proofs and is intended to treat S-expressions, lists and

i




integers as similarly as possible. Therefore, the axioms are highly redundant. Ad joining 1 to the
domains has both conveniences and inconveniences. The main convenience is that the recursive
definitions now give total functicns. A major inconvenience is that algebraic relations often
require qualification, eg. 0 x x = 0 isn't true if x = L.

Our first axiom gives the algebraic relations of cons, car and cdr.
S1: (Vx yXissexp x A issexp y > ispair(x.y] A alx.9] = x A dx.9] = )

The definition of atoms and pairs:

$2: (YxX(ispair x w issexp x A “atom x) A (atom x > issexp x))

Taking apart an S-expression and putting the parts back together gives back the original
expression.

S3: (VxXispair x > Issexp a x AlssexpdxAx=ax.dx)
Lists are included among S-expressions.
S4: (Vu)islist u > issexp u)
consing an S-expression onto a list gives a list.
S5: (Vx uXissexp x A islist u > islist{x.u))
NIL is the only atomic list and only NIL satisfies the predicate null.
S6: (VuX(istist u A atom u = & = NIL) A (null u w u = NIL))
The simple structural induction schema for S-expressions:
$7: (YxXatom x > ® x) A (YxXispair x n® a x A ® d x> x) > (VxXissexp x > & x)
The simple structural induction schema for lists:
$8: ® NIL A (VuXistist u A null u A ® d u> & u) > (YuXislist u > ® u)

x Sg y means that x is a subexpression of y and is a well-founded partial ordering. It is
important for course-of-values induction for S-expressions.

S9: (Vx yXissexp x Aldssexpy>x Sgynx=yviatomya(xsgayvxsgdy)

Definition of proper subexpression:

SlO:(Vx,)(x<3,-xss,Ax¢,)
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The course-of-values structural induction schema for S-expressions:
S1L: (VxXissexp x A (VyXissexp y Ay <5 x 2 & 9) 2 & x) > (VxXissexp x > & x)

u s; v is the natural well-founded partial ordering for lists. It can be read “The list u is a
tail of the list v".

S12: (Yu oXistist u Aislistvous; veusvyv mullvau sLdv)

u is a proper tail of v.

SIS:(Vuv)(u<Lv-uvaAud v)

The course-of-values induction schema for lists. Course-of-values induction schemata are
all the same except for the ordering used.

S14: (VuXistist u A (VoXislistvAv < u>®9)> ® u) > (VuXislist u > ® u)

These axioms for integers are based on the successor and predecessor functions and are
analogous to the above axioms for S-expressions. They are equivalent to the usual first order
number theory.

The relation between the successor and predecessor functions:
11: (Yn)Xisint n > isint succ » A succ n ¢ O A pred succ n = n)

As a function in the logic, the predecessor must always have a value. However we say
something about pred n only for non-zero n. ;

12: (VnXisint n A n ¢ 0> isint pred n A succ pred n = n)
The simple induction schema for integers:
13: (@ OA(YnXisint nAn ¢ OA® pred n>® n)> (Y nKisint n > ® n)
For course-of-values induction, we need the ordering relations.
14: (Ym nXisint m Adsintno(msnumenvn ¢ 0AmS pred n))
Proper ordering:
I5(VYmnm<namsnamy n)
The course-of-vaiues schema:

16: (YnXisint n A (YmXisint m Am < n > & m) > @ n) > (Vn)Kisint n > & n)
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The recursive definition of addition:

17: (Ym n)Xisint m Adsintnomene IFneOTHEN m ELSE succ m + pred n)
Multiplication:
18: (Ym n)Xisint m Adsintnom xne|Fne OTHEN 0 ELSEm + m x pred n)

The next group of axioms are concerned with extending the domain by ad joining 1. The
predicates of the extended domains are isesexp, (selist and iseint respectively.

Extending the S-expressions with 1:
EL: (YxXisesexp x m issexp x v x = 1)
Extending the lists with i:
E2: (YuXiselist u m islist uv 4 = 1)
Extending the integers with i:

ES3: (YnXiseint nwisint nvn = l)

We need a function taking the value T when its argument is an S-expression. It will be
used in extended conditional expressions.

E4: (YxXissexpf x = [F x « L THEN L ELSE IF issexp x THEN T ELSE F)
Likewise for lists:
ES: (YuXislistf u = IF u = LTHEN L ELSE IF islist x THEN T ELSE F)

Likewise for integers:
E6: (VnXisintf n = IF n e LTHEN L ELSE IF isint xTHEN T ELSE F)

Extending the Integer functions to take L as an argument. The extension is strict, iLe. the
extended values are all 1.

ETsucc L= LApredle=l
Extending the Lisp functions strictly to take L as an argument:

E8alelndlel
The strict extension of cons. (Friedman and Wise (1977) propose a non-strict extension).
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E9: (VxXx.1l = LAl x=1l)

The functions at and n are defined from the predicates atom and null.
E10: (YxXat x = |F x « L THEN L ELSE IF atom x THEN T ELSE F)
Eil: (VuXn u =« IF u =« L THEN L ELSE IF null u THEN T ELSE F)

7. Forms of Induction.

All proofs of non-trivial program properties require some form of mathematical induction.
Methods of induction can be divided into three classes - induction on data, various forms of
computation induction on approximations to the program, and induction on the course of the
computation. It is not certain that that these are really distinct; i.e. there may be systematic ways
of regarding one as a form of another. In this section, we deal only with induction on data.

Induction on data often takes a form called structural induction in which the data domain
consists of ob jects built up from elementary objects by a fixed finite set of operations. The

construction of S-expressions from atoms by cons or the construction of the integers from zero by

the successor operation are examples.

Induction can take two forms. One form involves the constructors or selectors of the
domain directly. Simple list, S-expression, and numerical induction are examples. The second
form is a course-of-values induction schema
27) (VxXisD x A (Y9XisD y Ay <x 2> ¢ 9)> ¢ x) 2 (VxXisD x> ¢ x)

based on an ordering relation < defined in terms of the selector functions. Course-of-values
schemata were also given for lists, S-expression and natural numbers. Course-of-values often
gives a proof with a simpler induction predicate than simple induction.

A simple example is the termination of the list function alt defined by

28) alt u « if nuor ndu then u eise a u . alt dd u.

Because of the dd, simple induction doesn't work on the obvious predicate

29) ®(u) = slist alt u,

but course-of-values induction dnes work.

In the simple cases we have seen so far, the induction Is on one of the variables in the
program, but this is not the general case. More generally, the induction is on some function of the
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variables, and the domain of this function may be quite different from that of the variables of
the progam. Often it can be taken to be the natural numbers, but more generally it can be any
partially ordered domain in which all descending chains are finite.

For example S-expression can be replaced by induction on natural numbers by introducing
the function size x defined by

30) size x « if at x then | else size a x + size d x

Size has the property that size a x < size x and size d x < size x. We can prove that a formula
®(x) holds for all S-expressions by "induction on the size of x". This is done by proving that the
formula @' given by

31) ®’(n) w (VxXsize x = n > $(x))

holds for all numbers using numerical induction. In fact any proof of the formula ® by S-
expression induction can easily be converted to a proof of ®' by numerical induction and vice
versa.

A more exotic example of this is provided by the Takeuchi function (Takeuchi 1978)
defined by

32) tak(m, n, p) «
if m lesseq n then n else tak(tak(m-1,n, p), tak(n~1, p, m), tak(p-1, m, n)).

The function is totai when the arguments are integers and is equal to
33) takO(mi, m2,m3) =« IF m1 s m2 THEN m2 ELSE IF m2 s m3 THEN m3 ELSE m\.
The most convenient proof that tak is total uses the course-of-values schema for integers with
34) ®(n) = (Ym1 m2 m3Xrank(ml, m2, m3) « n > tak(ml, m2, m3) « takO(mi, m2, m3)),
where
35) rank(mi, m2, m3) « dtaki(mi-m2, m3-m2),
and
36) dtaki(n), n2) = JF nl SOTHEN 0
ELSEIF n22 2 THEN m + n(n - 1)/2 -1
ELSEIFn20THEN m
ELSEIF n= - THEN (m+ 1Xm+ 2)/2 - |
ELSE(m~nXm~n4+ 1)2-m-~ |

This is an example of the more generai form of inductive proof. A rank function ‘s defined
taking values in some inductively ordered domain (in this case the natural numbers), and the
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theorem is proved under the hypothesis that it is true for all lower rank tupies of variables. The
term structural induction seems no longer applicable to this general case, because it is not an
induction on the structure of the data domain of the program, although it requires no new
machinery when we are operating within first order logic. Perhaps structural induction was a
misnomer anyway, since the more general form corresponds to how mathematicians aiready looked
at induction.

The inductively ordered set serving as the domain of the rank function is chosen for
convenience, where the ob ject is to get a short and understandable proof. If we only care about
whether a proof exists and not how easy it is to write and read, then all the domains considered
so far are equivalent to the natural numbers. To get something stronger, we go to induction over
transfinite ordinal numbers - explained in most books on axiomatic set theory.

The axiom schema for induction over ordinals is just the usual course-of-values schema
written with the ordering over the ordinals, say s, In order to use it, this ordering must be

defined, and we must be able to write a rank function from tuplets to ordinals. This requires that
we use a notation for ordinals, and any given notation represents only the ordinals less than some

bound. Most proofs arising in practice will involve only ordinals less than @ which can be
represented as polynomials in W.

An example requiring tnduction up to w? is proving the termination of Ackermann's
function which has the functional equation

37 (Ym nXA(m,n) =
if m equal O then n+ | else if n equal 0 then A(m-1,0) eise A(m-1, A(m, n-1))).

T he statement to be proved is

38)  (YaXa < w2 > ¥(a)),

where

39) (YaX®(a) = (Ym nXrank(m, n) = a > isint A(m, n))),

and

40) (Ym nXrank(m,n) = Wm + n).

The proof is straightforward, because W(m-1) < Wm+n and Wm+(n-1) < Wm+n, so we can assume

isint Alm—-1,0) and isint A(m,n-1). From the latter, it follws that W(m-1)+A(m, n-1) < Wm+n
which completes the induction step.
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| 8. An Extended Example.

4 The SAMEFRINGE probiem is to write a program that efficiently determines whether two
S-expressions have the same fringe, ie. have the same atoms in the same order. (Some people
omit the NILs at the ends of lists, but we will take all atoms). Thus ((A.B).C) and (A (B.C)) have
the same fringe, namely (A B C). The object of the original problem was to program it using a
minimum of storage, and it was con jectured that co-routines were necessary to do it neatly. We
shall not discuss that matter here - merely the extensional correctness of one proposed solution.

The relevant recursive definitions are

41) fringe x « if at x then <x> else fringe a x % fringe d x,
We are interested in the condition fringe x = fringe y.

The function to be proved correct is samefringe(x, y] defined by the simuitaneous recursion
42) samefringelx, y) « (x equal y) or [not at x and not at y and samel{gopher x, gopher ]},
43) same(x, 9] « (a x equal a y) and samefringeld x, d y),
where
14) gopher x « if at a x then x else gopher aa x . (da x . d x}.

We need to prove that samefringe is total and

45) (YxyXsamefringe(x,yl = T « fringe x = fringe y).

The functional equations are

16) (VxXfringe x = if at x then <x> else fringe a x % fringe d x),
17) (Vu vXu % v = if n uthen velsea u . (duxv).

48) (Vx yXsamefringe(x, 9] =
x equal y or [not aat x and not aat y and same{gopher x, gopher y])),

49) (Vx yXsame(x, y) = a x equal a y and samefringeld x, d 9],
50) (VxXgopher x = if at a x then u else gopher aa x . [da x . d x)).

We shall not give full proofs but merely the induction predicates and a few Indications of
the algebraic transformations. We begin with a lemma about gopAer.

51) (Vx yXispair gopher(x.y) A atom a gopher(x.y] A fringe gopher(x.9) = fringelx.y)).
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This lemma can be proved by S-expression structural induction on x using the predicate
52) ®(x) » (YyXispair gopher(x.9) A atom a gopher(x.y) A fringe gopher(x.y] = fringelx.y)).
In the course of the proof, we use the associativity of x and the formula
Sringelx.y) = fringe x x fringe y. The lemma was expressed using gopher(x.y) in order to avoid
considering atomic arguments for gopher, but it could have equaily well be proved about gopher x
with the condition “afom x.

For our proof about samefringe we need one more lemma about gopher, namely
53) (Vx yXsize gopher(x.y) « size(x.y).

This can be proved by S-expression induction on x separately or as a part of the above
lemma by including size gopher(x.y] = size[x.y) as a conjunct in (51) and (52).

The statement about samefringe is
54) (Vx yXissexp samefringe(x, y) A samefringelx,y) = T = fringe x = fringe y),
and it is most easily proved by induction on size x + size y using the predicate

55) ®(n) » (Vx yXn = size x + size y >
issexp samefringe(x, y) A (samefringe(x,y) = T u fringe x = fringe y)).

It can also be proved using the well-foundedness of lexicographic ordering of the list <x, a x>,
but then we must decide what lexicographic orderings to include in our axiom system.

Transfinite induction is also useful, and can be illustrated with a variant samefringe that
does everything in one complicated recursive definition, namely

56) samefringe(x, y] «
(x equal y) or
not at x and not at y and
if at a x then [if at a y then a x equal a y and samefringeld x, d y)
else samefringe(x, an y . (day . d yll]
eise samefringe(an x . (da x .d x], yl’

The transfinite induction predicate then has the form

57) ®(n) » (Vx y)Nn = W(size x + size y) + size a x + sizea y>
issexp :amfrlnge&. Y A (samefringelx, 9] = T » fringe x = fringe y)).

We would like to prove that the amount of storage used in the computation of
samefringe(x, y) aside from that occupied by x and 9, never exceeds the sum of the numbers of
cars required to reach corresponding atoms in x and 9. Unfortunately, we can't even express that
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fact, because we are axiomatizing the programs as functions, and the amount of storage used does
not depend merely on the function being computed; it depends on the method of computation.
We may regard such things as intensional properties, but any correspondence with the notion of
intensional properties in intensional logic remains to be established. Many such intensional
properties of a program are extensional properties of certain “derived programs”, and some are
even extensional properties of the functional .

9. The Minimization Schema.

The functional equation of a program doesn't completely characterize it. For example, the
program

58) flxefix
leads to the sentence
59) (VxXfl x = fi x)

which provides no information although the function f1 is undefined for all x. This is not always
the case, since the program

60) f2x «(f2x).NIL

has the functional equation

61) (VxXf2 x = (f2 x).NIL).

from which (Yx)issexp f2(x) can be proved by induction.

In order to characterize recursive programs, we need some way of asking for the least
defined solution of the functional equation.

Suppose the program is
62) fix,9) « Tifx,y)

yielding the functional equation

63) (Vx yXfix, y) = T{fXx, ).

The minimization schema is then

64) (VxXT[$Xx) & $(x)) > (VxKflx) & $(x)).
In the case of Append we have
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65) (Yu vXé(u,v) 2 if n u then velse a u . é(d u, v)) > (Yu vXé(u, v) 2 uxv).

In the schema ¢ is a free function variable of the appropriate number of arguments. The
schema is just a translation into first order logic of Park's (1970) theorem.

66) LERIOEX ER())
Here Y is the least fixed point operator.

[Note that this theorem is a generalization to continuous functionals of the second part of Kleene's
first rescursion theorem (K leene 1952)).

The simplest application of the schema is to show that the fi defined by (58) is never an S-
expression. The schema becomes

67) (VxXé x 2 ¢ x) > (Vx)¢ x 2 f] x),
and we take
68) $xe=l

The left side of (67) is identically true, and, remembering that 1 is not an S-expression, the right
side tells us that f1 x is never an S-expression.

The minimization schema can sometimes be used to show partial correctness. For example,
the well known 9i-function is defined by the recursive program over the integers

69) SOl x « if x greater 100 then x — 10 else fOI f91(x + 11).
The goal is to show that

70) (VxXf91 x « IF x > 100 THEN x - 10 ELSE 91).

We apply the minimization schema with

mn ¢ x « if x greater 100 then x - 10 else 91,

and it can be shown by an explicit calulation without induction that the premiss of the schema is
satisfied, and this shows that /91, whenever defined has the desired value.

The method of recursion induction (McCarthy 1963) is also an immediate application of the
minimization schema. If we show that two functions satisfy the schema of a recursive program,
we show that they both equal the function computed by the program on wherever the function is
defined.

The utility of the minimization schema for proving partial correctness or non-termination




depends on our ability to name suitabie comparison functions. i and f91 were easily treated,
because the necessary comparison functions could be given explicitly without recursion. Any
extension of the language that provides new tools for naming comparison functions, e.g. going to
higher order logic, will improve our ability to use the schema in proofs.

10. Derived Programs and Complete Recursive Programs.

The methods considered so far in this paper concern extensional properties of programs, i.e.
properties of the function computed by the program. The following are not extensional
properties: the number of times a certain function is evaluated in executing the program including
as a special case the number of recursions, the maximum depth of recursion, and the maximum
amount of storage used. Some of these properties depend on whether the program is executed
call-by-name or call-by-value, while others are extensional properties of the functional of the

program.
Many of these intensional properties of a program are extensional properties of related

programs called derived programs. For example, the number of cons operations done by Append

can be computed by a program of the same recursive structure, namely

72) neappendlu, vl « if n « then 0 eise | + ncapyendld u, v)

if we define flat by

73) Slatlx, u] « if at x then x.u eise flat(a x, flat(d x u]),

then the number of recursions done by fia¢ is given by

74) nrflat(x, u] « if at x then | else | + nrfiat(a x, flatld x, u]] + nrflaeld x, u),

noticing that nrflat is mutually recursive with fat itself. The maximum depth of recursion of the
91-function is given by

75) df9l n « | + if n greater 100 then 0 else max(df9i(n + 1), df91(fAx + 11))).

Morris (1968) discussed a derived function that gives successive approximations of bounded
recursion depth to a recursive function by modifying the definition to take a "rationed” number of
allowed recursions. For append we would have

76) appendiln, u,v] «
if n equal O then L else if n u then v else a u . appendi(n - 1,d u, v).

Thus appendiln, u, v]) computes uxv but with a ration of n recursions. If the computation would
require more than n recursions, the value is 1, i.e. is undefined.
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We can give a general rule for the rationed recursion function. Suppose that T fs a
program for the function f(x, y).

P: fix, y) « TfKx, 5)

Then

C(P). g(n, x,9) « T'(gkn, x, y)

where

m T (@] = (An x yXif n equal 0 then L eise T((A x y)d(n-1,x, y)] (x, )

is a program for the rationed recursion function g{n,x,y). In this case, the functional for the
derived function is expressed by a formula in the functional for the original function. This can't

always be done.

We can use the rationed recursion function as an alternate to the minimiztion schema for
completing the characterization of fp. Namely we have

78) (Vx yXisD fo(x,y) = (3nXisD fopy(x.y)),

and whether fcp)(x, y) is defined for given arguments is determined by its functional equation,
because C(P) is what (Cartwright 1978) calls a complete recursive program.

A recursive program P is called complete if its functional Tp has only one fixed point fp.

Since the minimization schema is used for distinguishing the least fixed point, it is redundant for
complete programs. The idea of complete recursive program was first advanced in (Cartwright

1978) as an alternative to the minimization schema for completing the characterization of the

function computed by a program. The idea was to compute the computation sequence of a
program P with a related complete recursive program C(P) and to show metamathematically that
for any program

79) (Vx)(/(x) = last fc(p,(x)

where fcp) is the function computed by C(P), and last is a function giving the last element of a
list - in this case the list of values of f arising in the computation. Since whether C(P) terminates
for given arguments follows from its functional equation, (79) allows us to establish this for P
itself. The constructions of (Cartwright 1978) were somewhat involved and differed substantially
according to whether the original program was executed call-by-name or call-by-value,

The derived programs that give the number of recursions are complete so that nrflat as
defined above satisfies

80) (Yx uXisint nrflatlx, u) w issexp flat(x, u)).
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A program for the number of recursions done when a program is evaluated call-by-name
can also be given. Thus the number of recursions done in evaluating morrisim, n) call-by-name
is given by cmorris(m, 0, n, 0) where

81) emorris[m,em, n, en) «
1 4+ cm + if m equal O then O else cmorrisi(m—1, 0, morrisim, n), emorrisim, 0, n, cnl).

The idea is that the arguments ¢m and ¢n are the numbers of recursive calls involved in
evaluating m and n respectively. morris and cmorris are again equi-terminating.

1l. Proof Methods as Axiom Schemata

Representing recursive definitions in first order logic permits us to express some well known
methods for proving partial correctness as axiom schemata of first order logic.

For example, suppose we want to prove that if the input x of a function f defined by
82) fx«if pxthenxelse fAx

satisfies ®(x), then if the function terminates, the output f(x) will satisfy W(x, fix)). We appeal to
the following axiom schema of inductive assertions:

83) (VxX$(x) > ¢lx, x)) A (Yx yXglx,9) > if p x then W(x, y) else ¢(x, A y))
> (YxX®(x) A isD fx > \]’(X,f x))

where isD f x is the assertion that flx) is in the nominal range of the function definition, i.e. is an
integer or an S-expression as the case may be, and asserts that the computation terminates. In
order to use the schema, we must invent a suitable predicate ¢(x,y), and this is precisely the
method of inductive assertions. The schema is valid for ail predicates &, ¥, and ¢, and a similar
schema can be written for any collection of mutually recursive definitions that is iterative.

The method of subgoal induction for recursive programs was introduced in (Manna and
Pnueli 1970), but they didn't give it a name. Morris and Wegbreit (1977) name it, extend it
somewhat, and apply it to Algol-like programs. Unlike inductive assertions, it isn't limited to
iterative definitions. Thus, for the recursive program
84) Ssx«if pxthen hxelseglfy g2x,

where p is assumed total, we have

85) (VxXp x > gx, A x)) A (Vx 2Xp(x) A (g2 x, 2) o ¢lx, g1 2)) A (VxX®(x) A ¢(x, 2) > ¥(x, 2))
> (VxX®(x) A (sD(f(x)) > ¥(x, fix)))
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We can express these methods as axiom schemata, because we have the predicate isD to
express termination. The minimization schema itself can be proved by subgoal induction. We
need only take ®(x) « true and W(x,y) s (y = é(x)) and ¢(x, y) = (y = ¢(x)).

General rules for going from a recursive program to what amounts to the subgoal induction

schema are given in (Manna and Pnueli 1970) and (Morris and Wegbreit 1977); we need only add
a conclusion involving the isD predicate to the Manna's and Pnueli formula Wp. y

However, we can characterize subgoal induction as an axiom schema. Namely, we define
7 '[q) as an extension of ¥ mapping relations into relations. Thus If

86) T(fXx) = if p x then & x else g} f g2 x,

we have

87) T (qXx,9) w if p x then (y = 4 x) else 3z.(q(g2 x, 2) A y = g} 2).
In general we have

88) (VxyXT "Tgdx, y) > ¢(x, 9)) > (VxXisD f x > ¢(x, f x)),

from which the subgoal induction rule follows immediately given the properites of ®and V. 1
am indebted to Wolfgang Polak (oral communication) for help in elucidating this relationship.

WARNING: The rest of this section is somewhat con jectural. There may be bugs.

The extension 7 '[g) can be determined as follows: Introduce into the logic the notion of a
mudti-term which is formed in the same way as a term but allows relations written as functions.
For the present we won't interpret them but merely give rules for introducing them and
subsequently eliminating them again to get an ordinary formula. Thus we will write g<e> where ¢
is any term or multi-term. We then form 7 ‘[g) exactly in the same way T(f] was formed. Thus
for the 9i-function we have

89) 7 ‘(gXx) = if x>100 then x-10 eise g<gex+1i>>.

The pointy brackets indicate that we are "applying” a relation. We now evaluate 7 ‘(¢Xx.y)
formally as follows:

90) 7 '[gXx.y) u (if x>100 then x- 10 else g<g<x+ 1 1>>Xy)
w if x>100 then y « x-10 else g(gex+11>,9)
w if x>100 then y « x-10 else 3z.(g(x+ 11, 2) A (2, 9)).

This last formula has no pointy brackets and is just the formula that would be obtained by
Manna and Pnueli or Morris and Wegbreit. The rules are as follows:

(1) 7 'lgXx) is just like 7{fXx) except that ¢ replaces f and takes its arguments In‘potnty
brackets.
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(1) an ordinary term ¢ applied to y becomes y = ¢.
(111) g<e>(y) becomes ¢(¢, ).
(iv) P(g<e>) becomes 3z.q(¢,2) A P(z) when P(g<e>) occurs positively in 7 ’[¢gXx,y) and

becomes Vz.gle,z) > P(z) when the occurrence is negatve. It is not evident whether an
independent semantics can be given to muiti-terms.

12. Representations Using Finite Approximations.

Qur second approach to representing recursive programs by first order formulas goes back
to Godel (1931, 1934) who showed that primitive recursive functions could be so represented.
(Our knowledge of Godel's work comes from (Kleene 1952)).

Kleene (1952) calls a partial function f representable if there is an arithmetic formula A
with free variables x and y such that

91) (Yx yX(y = fix)) = 4),

where an arithmetic formula is built up from integer constants and variables using only addition,
multiplication and bounded quantification. Kieene showed that all partial recursive functions are

representable. The proof involves Godel numbering possible computation sequences and showing
that the relation between sequences and their elements and the steps of the computation are ali
representable.

In Lisp less machinery is needed, because sequences are Lisp data, and the relation between
a sequence and its elements is given by basic Lisp functions and by the s; axiomatized in section

6 by

92) (VuvXus; ve(uev)v ull vausydo)

Starting with s; and the basic Lisp functions and predicates we will define other Lisp
predicates without recursion.

First we define the well known Lisp function assoc whose usual recursive definition is
93) assoc(x, w) « if n w then NIL else if x equal aa w then a w else assoc{x, d w)

or non-recursively

94) (VoXy = assoc{x, w) » (Vulu s; w>aau v x) Ay« NIL
vQuus, waxesauny=au
A(VoXvs  wAu< 9380 ¢ %)
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Now suppose that
95) [xer(fkx)

is a recursive program, ie. T is a continuous functional. Our non-recursive definition of f uses
finite approximations to f, i.e. lists of pairs of (x . f(x)), where each pair can be computed from
the functional T using only the pairs that follow it on the list. Thus we define

96) ok(T Xw) «
nwor
da w = T(AxXif n assoc(x, d w) then 1 else d assoc(x, d w))Xaa w) and ok(7 Xd w),

or non-recursively

97) (YwXok(T Xw) =
(Vulu sp w >

[null u v da u = T[(AxXif n assoc(x, d u) then L else d assoc(x, d ul)Xaa u)))
Now we can define y = f{x) in terms of the existence of a suitable w, namely

98) (Vx yXy = flx) =
(QwXok(T Xw) A y = TI(AxXif n assoclx, w) then 1 else d assoc{x, w)Xx)))

It might be asked whether <; is necessary. Couldn't we represent recursive programs using

Just car, cdr, cons and atom? No, for the following reason. Suppose that the function f is
representable using only the basic Lisp functions without s , and consider the sentence

99) (VxXissexp fx)),

asserting the totality of f. Using the representation, we can write (99) as a sentence involving only
the basic Lisp functions and the constant 1. However, Oppen (1978) has shown that these
sentences are decideable, and totality isn't.

In case of functions of several variables, (98) corresponds to a call-by-value computation
rule while the representations of the previous sections correspond to call-by~name or other “safe”
rules. Treating call-by-name similarly requires a definition of ok in which some of the tuplets
have some missing elements.

Note: Our original intention was to take sg as basic, but curiously, we have not succeeded in
defining s; non-recursively in terms of sg, although the converse is a consequence of our general
construction.
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13. Questions of Incomplieteness.

Luckham, Park and Paterson (1970) have shown that whether a program schema diverges
for every interpretation, whether it diverges for some interpretation, and whether two program
schemas are equivalent are all not even partially solvable problems. Manna (1974) has a
thorough discussion of these points. In view of these resuits, what can be expected from our first
order representations?

First let us construct a Lisp computation that does not terminate, but whose non-termination
cannot be proved from the axioms Lispl within first order logic. We need only program a proof-
checker for first order logic, set it to generate all possible proofs starting with the axioms Lispl,
and stop when it finds a proof of (NIL ¢ NIL) or some other contradiction. Assuming the axioms
are consistent, the program will never find such a proof and wiil never stop. In fact, proving that
the program will never stop is precisely proving that the axioms are consistent. But Godel's
theorem asserts that axiom systems like Lispl cannot be proved consistent within themselves.
Until recently, all the known cases of sentences of Peano arithmetic unprovable within Peano
arithmetic involved such an appeal to Godel's theorem or similar unsolvability arguments.
However, Paris and Harrington (1977) found a form of Ramsey's theorem a well-known
combinatorial theorem, that could be proved unprovable in Peano arithmetic. However, their
proot of its unprovability involved showing that it implied the consistency of Peano arithmetic.

We can presumably prove Lispl consistent just as Gentzen proved arithmetic consistent -
by introducing a new axiom schema that allows induction up to the transfinite ordinal ¢o.

Proving the new system consistent would require induction up to a still higher ordinal, etc.

Since every recursively defined function can be defined explicitly, any sentence involving
such functions can be replaced by an equivalent sentence involving only s; and the basic Lisp

functions. The theory of <; and these functions has a standard model, the usual S-expressions

and many non-standard models. We “construct” non-standard models in the usual way by
appealing to the theorem that if every finite subset of a set § of sentences of first order logic has a
model, then § has a model. For example, take § = {NIL <; x, (A) 5y x, (A A)sp %, , ...

indefinitely]. Every finite subset of § has a model; we need only take x to be the longest list of
A's occurring in the sentences. Hence there is a model of the Lisp axioms in which x has all lists
of A's as subexpressions. No sentence true in the standard model and false in such a model can
be proved from the axioms. However, it is necessary to be careful about the meaning of
termination of a function. In fact, taking successive cdrs of such an x would never terminate, but
the sentence whose standard interpretation is termination of the computation is provable from

Lispl.

The practical question is: where does the correctness of ordinary programs come in? It
seems likely that such statements will be provable with our original system of axioms. It doesn't
follow that the system Lisp] will permit convenient proofs, but probably it will. Some heuristic
evidence for this comes from (Cohen 1965). Cohen presents two systems of axiomatized arithmetic
Z1 and Z2. ZI is ordinary Peano arithmetic with an axiom schema of induction, and Z2 is an
axiomatization of hereditarily finite sets of integers. Superficially, Z2 is more powerful than Z1,
but because the set operations of Z2 can be represented in Z1 as functions on the Godel numbers
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of the sets, it turns out that Z| is just as powerful once the necessary machinery has been
established. Because sets and lists are the basic data of Lispl, and sets are easily represented, the
power of Lispl will be approximately that of Z2, and convenient proofs of correctness statements
should be possible. Moreover, since Lispl is a first order theory, it is easily extended with axioms
for sets, and this should heip make informal proofs easy to express.

A PUB source of this paper is available on disk at the Stanford Artificial Intelligence Laboratory with
the file name FIRST{W79,JMC}
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