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I. Introduction and Motivation.

This paper advances two aspects of the study of the properties of computer programs — the
scientifically motivated search for general theorems that permit deducing properties of programs
and the engineering problem of replacing debugging by computer-assisted computer-checked
proofs that programs have desired properties. Both tasks require mathematics , but the second
also requires keeping a non-mathematical goal in mind - getting short completely formal proofs
that are easy to write and check by computer.

A pure Lisp style recursive program P defines a partial function fp. By adjoining an
undefined element .1. (read “bottom”) to the data domains, fp may be extended to a total function
which we denote by the same symbol. In (Cartwright 1976). it was shown that fp satisfies a
functional equation, which is a sentence in a first order theory Tp. Besides the functional
equation, Tp contains symbols for the basic functions, predicates and constants of the data
domain, axioms for the data domain and its extension by .1., and additional function symbols for
the functions defined by recursive programs (Csrtwrlght 1976) also showed how the functional
equation can be used to prove facts about the program by reasoning within T~, including the fact
that fp is total. i.e. doesn’t take the value .1. except when .1. is an argument.

When fp Is total, and sometimes when it isn’t, it is completely characterized by the
functional equation. Otherwise, the characterization can be completed by a mInimizatIon schema
(McCarthy 1978 and this paper) or alternatively by a complete recursive function as f irst defined
in (Cartwright 1978). Moreover, we show how to find a representation of fp by a sentence of the
form (VxXj fp(x) • .4(x)) where .4(x) is a wf f of Tp not involving fp.

Now assume that Tp contains functions sufficient for axiomatizing basic syntax, e.g. Lisp or
elementary number theory, and let S be a sentence of Tp involving only fp and the basic functions
of the data domain. Then (Cartwright and McCarthy 1979) shows how to construct a sentence 3’
involving only the basic functions of the data domain such that we can prove In first order logic

• that S • 3’. Therefore, the fact that total correctness is not axiomatlzabie in first order logic Is
iust a matter of the Gbde)ian incompleteness of the data domain, and it can be expected that all

• ordinary” facts about programs will be provable Just as all “ordinary” facts of elementary number
theory are provable in spite of its Incompleteness.

This paper is primarily concerned with proving such “ordinary” facts about recursive
• function programs with a view to developing practical techniques for program verification using

interactive theorem provers. As such it should be compared with other ways of using logic in
program proving.

Axiomatizing programs as functions compares favorably with Floyd—Hoare methods in
several respects. First it permits stating and proving facts that cannot even be stated in Floyd—
Hoare formalisms such as equivalence of programs and algebraic relations between the functions
defined by programs. It has the advantage compared to the Scott-Strachey formalisms that it uses —

• ordinary first order logic rather than a logic of continuous functions. This permits the use of any - - -

I ~ mathematical facts that can be expressed in first order logic, Including those that are most
• 

• 

conveniently expressed In set theory. This is especially important when the statement of program ~ 0 
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correctness or its informal proof involve other mathematical objects than those that occur in the
program data domain.

A fter an iaformal introduction to recursive programs, subsequent sections of this paper
discuss the use of conditional expressions and first order lambdas in first order logic. adjoining J-
to the data domains in order to convert partial functions and predicates Into total functions,
axioms for Lisp and the Integers, the representation of recursive programs by functions, inductive
methods of proof, the minimization schema, an extended example of a correctness proof,
representation of the inductive assertion and subgoal induction methods as axiom schemata, and a
convenient way of representing recursively defined functions by non-recursive sentences.

Our methods apply directly to proving only extensional properties of programs. e.g.
properties of the function defined by the program. Intenslonal properties such as the number of
times an operation like recursion or cons is performed are often extensional properties of simply
obtained derived programs. Some of these properties are also extensional properties of the
functional of which the function is the least fixed point.

An adequate background for this paper is contained in (Manna 1974) and more concisely in
(Manna, Ness and Vvillemin 1973). The connecuons of recursive programs with second order
logic are given in (Cooper 1969) and (Park 1970). Our notation differs from Manna’s in order to
use the — sign exactly as in first order logic.

2. Recursive Programs.

We consider recursive programs like

Factorial: ii! ~- if n equal 0 then I else n . (n — I)!

which is the well known recursive program for the factorial function. We will use capitalized
Italic names for programs themselves regarded as texts and the corresponding name initialized
with lower case as a name for the function computed by the program, except that as in the case of
Factorial , we sometimes use an infix or other conventional notation for the function. Mutually
recursive sets of function programs will also be considered.

Another example is the Lisp program Append. In this paper we will use the Lisp external
or publication notation of (McCarthy and Takott 1979), and we will write u*v for appendtu , v)
We then have

• Append: u * v If ii u then v else a u . Cd u * u)

Here we are using n for null, a for car , d for cdr and an infixed . for cons. We omit brackets for
functions of one argument. In a more traditional Lisp M-expression notation we would have

append(u , v) ~ If nulI(u] then v else cons(car(aJ, .ppend(cdr (u3, v)] ,

and in Maclisp S-expression notation, this would be

4..
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(DEFUN APPEND (U V)
1 (COND ((NULL U) V) (T (CONS (CA R U) (APPEND (CDR U) V))))).

Our objective is to prove facts about such recursively defined functions by regarding the

L • recursive function definitions as sentences of first order logic. More accurately, we represent the
recursive function definitions by very similar sentences of first order logic. Factorial and Append
are translated into the sentences

I) (VnXiseint n ~ is! - If is equal 0 then I else is x (is — I)!)

and

2) (Vu vXis. ’lis t u A isellit v~ u * v - if ii u then v else a u . Ed u * v])

respectively. The form of conditional expression Ifp then a else b used in these sentences Is just
a function that could as well be written if(p, a, b) so far as the logic is concerned.

The predicates iscint and iselist respectively restrict their arguments to be extended Integers
(i.e. the integers extended by .1.) and extended lists. When these domains can be taken for
granted we can omit the ex plicit restrictions and write

3) (VnXn! - if n equal 0 then I else is x (is — I)!)

and

4) (Vu vXu * v — If p u then v else a u . Ed u * v))

The sentences (1) and (2) completely characterize the functions defined by the programs
Factorial and Append , so proofs of the properties of these functions can be deduced from these
sentences together with axioms characterizing the natural number and Lisp dat a domains
respectively. For example, suppose we wish to prove that * satisfies the equations

5) (VvXNIL * v - ii)

and

• 4 6) (VuXu * NIL . u) ,

i.e. NIL is both a left and right identity for the * operation. (5) is trivially obtained by
• substituting NIL for u in (I) and using the rules for evaluating conditional expressions which will

• have been added to the usual rules for first order logIc. (6) expresses a more typical program
property in that its proof requires a mathematical induction.

This induction Is accomplished by substituting

7) •(u).(u * NIL.u)

“S
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in the list induction schema

8) •(NIL) A (VuXislist U A ‘null u A ~(d a). 6(u)) • (YuXislut u . 6(u)) .

and using (2), the axioms for lists, and the rules of inference of first order logic Including those
for conditional ex press ions.

Once the formalism has been estab lished, totality can be proved in the same way as other
properties of the programs. Thus the totality of u*v is proved by substituting

9) 6(u) • islist(u *v)

Into the schema (8) and using (2), etc. as described above.

The translation of the program into a logical sentences would be trivial to justify if we were
always assured that the program terminates for all sets of arguments and thus defines a total
function. The innovation is that the translation is possible even without that guarantee at the
cheap price of extending the data domain by an undefined element 1, rewriting recursively

-• 

• defined predicate programs as function programs, having two kinds of equality and conditional
expression. and providing each predicate with two forms - one a genuine predicate In the logic

-
~ 

V and the other a function Imitating the partial predicate by a function that takes the value .1. when
the program for the predicate doesn’t terminate. Proofs of termination then take the same form as
other inductive proofs. However , additional formalism is required to characterize completely
programs that don’t always terminate.

The next sections introduce the logical basis of the formalism and axioms and ax iom
schemata for Lisp.

3. Two Useful Extensions to First Order Logic.

We begin by extending first order logic to include conditional expressions and first order
lambda expressions. This allows us to parallel the structure of recursive programs within logical
sentences.

We cannot add arbitrary programming constructions to first order logic without risking its
useful properties such as completeness or even consistency. Fortunately, these extensions are
harmless, because they are not merely conservative; they can even be eliminated from wfIs, and
they are generally useful. In fact, they are useful for ex pressing mathematical ideas concisely and
under standably quite apart from applications to computer science. The reader is assumed to
know about first order logic, conditional expressions and lambda expressions; we explain only
their connection.

Remember that the syntax of first order logic is given In the form of Inductive rules for the
formation of terms and wffs . The rule for forming terms is extended as follows:

S
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If P is a wf f and a and b are terms, then IF P TH EN a ELSE b is a term. Sometimes
parentheses must be added to insure unique decomposition. Note that this makes the definitions

I 
- 

of term and wff mutually recursive.
V The semantics of conditional expression terms is given by a rule for determining their

values. Namely, if P is true, then the value of IF P THEN a ELSE b is the value of a.
Otherwise it is the value of b.

It is also necessary to add rules of inference to the logic concerned with conditional
expressions. One could get by with rules permitting the elimination of conditional expressions
from sentences and their introduction. These rules are important anyway, because they permit
proof of the metatheorem that the main properties of first order logic are unaffected by the
addition of conditional expressions. These include completeness, the deduction theorem, and
semi-decid ability.

In order to state these rules il ls convenient to introduce conditional expressions also as a
ternary logical connective. A more fastidious exposition would use a different notation for logical
conditional expressions, but we will use them so little that we might as well use the same notation,
especially since it is not ambiguous. Namely, if P. Q, and R are wffs, then so is IF P THEN Q
ELSE R. Its semantics is given by considering it as a synonym for ((P A Q) v (-s P n R)).
Elimination of conditional expressions Is made possible by the distributive laws

10) f ( I F  P THEN a ELSE b) • IF P THEN fia) ELSE fib)
- - and

• II) •(IF P THEN a ELSE b) • iF P THEN 6(a) ELSE 6(b)
a (P A 6(a)) v (‘P A 6(b))

where f and 6 stand for arbitrary function and predicate symbols respectively.

Nc’tice that this addition to the logic has nothing to do with partial functions or the element
.1..

While the above rules are sufficient to preserve the completeness of first order logic, proofs
are often greatly shortened by using the additional rules introduced in (McCarthy 1963). We
mention especially an extended form of the rule for replacing an expression by another expression
proved equal to it. Suppose we want to replace the expression c by an expression c ’ within the
conditional expression IF P THEN a ELSE b. To replace an occurrence of c within a, we need
not prove c • c ’ but merely P . c • c ’. Likewise if we want to replace an occurrence of C in b. we
need only prove ~P . c • c ’. This principle is further extended in the afore—mentioned paper.

A further useful and eliminable extension to the logic is to allow ufirst order lambda
ex pressions as function and predicate expressions. Thus If x is an individual variable, e is a
term, and P Is a wiT, then (~x)e and (7 r)P may be used wherever a function symbol or predicate
symbol respectively are allowed. Formally, this requires that the syntactic categories of cfunction

4
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symbol> and cpredicate symbol> be generalized to <function expression> and <predicate
expression> respectively and that these categories are then defined mutually recursively with terms
and wffs.

The only inference rule required is lambda conversion which serves to eliminate or
introduce lambda expressions. A ccording to this rule, a wff is equivalent to a wff obtained from
it by replacing a sub-wif or sub-term by one obtained from It by lambda conversion. The rules
for lambda conversion must include alphabetic changes of bound variables when needed to avoid
capture of the free variables in arguments of lambd a expressions.

The use of minimization schemata and schemata of induction is facilitated by first order
lambda ex pressions, since the substitution just replaces occurrences of the function variable in the
schema by a lambda expression which can subsequently be expanded by lambda conversion.

V - Using lambda expressions somewhat simplifies the rule for substitution in schemata. First order
lambda expressions also permit many sentences to be expressed more compactly and may be used
to avoid duplicate computations in recursive programs. Thus we can write ((~ucXx2 + x)Xa + b)
instead of (a + b)2 + (a + b). Since all occurrences of first order lambda expressions can be
eliminated from wffs by lambda conversion, the metatheorems of first order logic are again
preserved. The reason we don’t get the full lambda cakulus Is that the syntactic rules of first
order logic prevent a variable from being used in both term and function positions. While we
have illustrated the use of lambda expressions with single variable )s , expressions like () .x y z)e
are aIM useful and give no trouble. It is also easily seen that lambda conversion within a term
preserves Its value, and lambda conversion within a wif preserves its truth value.

Actually it seems thai even higher order )‘s won’t get us out of first order logic provided
rules of typing are obeyed and we provide no way of quantifying over function variables. Any
occurrences of higher order lambda expressions in wffs are ellminable just by carrying out the
indicated lambda conversions. For example, we could define

transitive . (~RX (YX Y ZXR (X , Y) A R(V , Z) • R(X, Z))),

and any use of transitive in a wff would be eliminable using its definition and lambda conversion.

4. Part Ial Functions and Partial Predicates.

The main dif f icu lty to be overcome in representing recursive programs by logical sentences
V is that the computation of an arbitrriy recursive program cannot be guaranteed to terminate.
• Consider the recursive program

Runaway: fin) i-fin) + I

over the integers. If we translate Runaway into the sentence

12) (YnXfi n)sfi n)+i)

4c
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and use the axioms of arithmetic , we get a contradiction.

The way out is to adjoin to our data domains an additional element 1. (read “bottom ),
which is taken to be the value of the function when the computation doesn ’t term inate, in
addition we add the axiom

13) (YnXlslnt(n) v n - i).

and modify the axioms for arithmetic to refer to elements sat isfy ing Iii *1. Then going from
Runaway to (12) doesn’t lead to a contradiction but to the desired result that

14) (Yn)(fiii). .1.).

provided we also postulate that

15) (YnX n+.L ..L+n• .L),

which is reasonable given the interpretation of .1. as the value of a computation that doesn ’t
terminate. We will postulate that all of the base functions, except the conditional expression , have
.1. as value if any argument is .L. Such functions are called strict. Manna (1974) calls them
natural extensIons of the functions defined on the domain without 1.

We have discussed treating partial functions by Introducing 1. A function takes the value
V V .L when the program that computes It doesn’t terminate, and it is sometimes convenient to give a

V function the value .L In some other cases when we want it to be undefined.

Il ls convenient to introduce a rather trivial partial ordering relation on our data domain
once it has been extended by adjoining .1.. Namely, we define the relation X ~ Y by

16) (YX YX X C Y U X . I A Y Ø I ) .

(Readers of (Manna 1974) should note that the symbol u is being used In Its common logical sense
of TMif and only ir). We also make correspond ing definitions of a,;, and ~~~. The ordering can be
extended to functions by defining

17) f  ~ g • (VXXfiX) ~~ g( X )) . -

This induced ordering is not so trivial, but we don’t use it in this paper, since it gets us out of
first order logic. Even though (IS) defines a rather trivial ordering, we find that it shortens and
clarifies many formulas.

Partial predicates give rise to new problems. The computation of a V..ecu rsivety defined
predicate may not terminate , so the same problem arises . However, we can’t solve it in the same
way without adding an additional undefined truth value to the logic. This would give rise to a

• partial first order logic in which sentences could be true, false or undefined. Various partial
predicate caku li have been studied in (McCarthy 1964), (Bochvar 1938 and 1943) and elsewhere,

V _~~_ ,
VV
~t_V V~~~~ VV
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but they have the serious disadvantage that arguments by cases become quite long, since three
cases always have to be provided for, even when most of the predicates are known to be total.
Moreover, existing logic texts, proof-checkers and theorem provers all use total logic. Therefore,
it seems better to keep the logic conventional and handle partial predicates as functions.

We introduce a domain II with three elements 7’, F and .1. called the domain of extended
truth values. In a sorted logic, this may be a separate sort. Otherwise, it may be considered either
separately or as part of the main data domain. In Lisp it is convenient to regard T and F as
special atoms and to use the same I for extended truth values as for extended S-expressions. It is
even possible to follow the Lisp implementations that use NIL for F and interpret all other S—
expressions as T , although we don’t do that in this paper.

It is convenient to define first a form of conditional ex pression that takes an extended truth
value as its first argument, namely

• If p then a else b - IF p .  .1. THEN .1. ELSE IF p - T THEN a ELSE b.

The only difference between then extended conditional expression and the logical conditional
ex pression is that since the extended conditional expression takes an extended truth value as
propositional argument, we can provide for the possibility that the computation of that argument
fails to terminate. Since the extended conditional expression treats the undefined cases according
to their behavior in programs, we use the same notation as previously used for programs.

Extended boolean operators are conveniently defined using the extended conditional
• ex pressions. For every predicate or boolean operator, we introduce a corresponding function

taking extended truth values as operands and taking an extended truth value as its value. Thus
the function and, is written with an infix and defined by

p and q. if p then q else F V

The function and Is distinct from the logical operator A which remains in the logic. To illustrate
this, we have the true sentence

((p and q) — T) • (~ - T) A (q. 7’).

The parentheses in the above can be omitted without ambiguity given suitable precedence rules.
Note that and has the non -commutative property of (McCarthy 1963), namely F and I • F while
.1. and F — .1.. This corresponds to the fact that it is convenient to compute p and q by a prog ram
that doesn’t look at q If p is false but which doesn’t terminate if the computation of p doesn’t
terminate. Symmetry could be restored if the computer time-shared its computation s of p and q,
but there are too many practical disadvantages to such a system to justify doing it for the sake of
mathematical symmetry. A lgol 60 requires that both p and q be computed whk h precludes using
boolean opeators as the main connectives of Lisp typ e recursive definitions of predicates.

Other extended boolean operators are defined by

p or q • if p then T else q
• 

~~V?~
V
~~

4 -
~

~~~~~~ 
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and

not p • If’ 
~ 

theii F else 7’.

We also require an equality function that extends logical equality, namely

X - e q u a l Y . I FX . I v Y • I TH E N I ELSE ’~~X - r T H E N T ELSE F.

Readers familiar with (Manna 1974) should note that we write • where Manna writes •,
and we write equal where Manna writes .. We have chosen our notation to conform to that of
first order logic with equality.

In (act , the key to successful representation of recurs ive programs in first order logic is the
simultaneous use of true equality in the logic in order to make assertions freely and the equal
function that gives an undefined result for undefined arguments. The latter describes the
behavior of an equality test within the program. The two forms of conditional expression are
also essential.

The partial ordering is also useful applied to extended truth values.

We summarize this in the following set of axioms:

TI: (VpXts ev p • p T v p  . F)

T2: (VpXlseev ft • lstv p v p 1)

T3: T~~ FA ,1stzJ I

T4: (Vp X ) ‘X Is e t v p D
If p then X else Y • IF p • .1. THEN .1. ELSE IF p - T THEN X ELSE Y)

T5: (VpXlsetv p ‘ not p • if p then F else 7’)

T6: (Vp qXlset v p A lsetv q 
~ 

p and q • if p then q else F)

T7: (Vp qXls etv p A lsetv q 
~ 

p or q • if p then T else q)

T8: (VX YXX e q u a 1 Y- I F X . . L v Y • J . THEN I ELSE I F X . Y TH E N T EL.SE F

V T9: (VpXisetv p A Isetu q • (p c q • p 1 A (q T v q- F))).

L -

•~

4 .

I~~~
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5. The Functio nal Equat ion of a Recursi ve Program - Theory.

The familiar recursive program

18) u * - v 4 ~ifnuthen v elsea l i . (d U* U)

Is a special case of a system of mutually recursive programs which can be written

19) fl (x l,...,xm1 ) 4
~T l(fl, ... ~~~~~ ...

fn(
~CI , . . . , X m ) 4 ’ T n(fi , ,

~~~~ ,fn,ni. ...

Here the T ’s are terms in the individual variables r1, etc. and the function symbol s f ~~‘ 
...

All the essential features of such mutual recursive definitions arise when there is only one
function, but phenomena arise when there are two or more arguments to the functions that do not

- - arise in the one argument case — two arguments being sufficiently general. Therefore, we write

20) flx,y) .-
V 

which may also be written

2 1) f ix ,y) .- i’tfX x .y)

when we wish to emphasize that 1 maps a partial Iunctionf into another partial function T (f]
- 

In this paper, we shall mainly consider recursive programs over S—expressions, lists and
integers, but we can actually start with an arbitrary collection of base functions and predicates
over a collection of domains and define the functions computable in terms of the base functions.
This is discussed In (McCarthy 1963). In a discussion of the basic ideas, full generality is
su perfluou s, and all the interesting phenomena arise with a single domain - call it D, extended to

V 
D4 by adjoining I and with characteristic predicate l iD.

Such a program or system of mutually recursive programs can be regarded as defining a
V partial function in several ways.

I. It can be compiled into a machine language program for some computer using call-by—value.
The resulting program is a subroutine that calls Itself recursively. Before It is called, the values of
the arguments must be computed and stored in suitable conventional registers. This includes its
calls to itself. Most Lisp implementations as well as most implementations of other programm ing
languages use call-by-value.

V 
2. Ii can be compiled into a machine language program for some computer using call-by—name.
The resulting program again calls Itself recu rsively. It is called by storing Into suitable registers

V the location of programs for computing the expressions that have been written as its arguments.
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f Thus ((tu . z) *f(u)) would be compiled into program that would give the program for u*v pointers
to program for computing w.z and flu). The program for * could call these other programs
whenever it wanted its arguments. In the case of u*v , there is nothing the program can
profitably do except call for both of its arguments. However, a program for multIplying two
matrices might call its first argument. and, if the first argument turned out to be the zero matrix .
not bother to call the second argument.

We can also consider evaluating the function by symbolic computation. Namely, we
substitute the arguments of the function * for u and v , and then evaluate the right hand side of
the definition. There are many ways to do this evaluation, because there may be more than one
occurrence of the function being defined on the right hand side of the definition, but two of them
correspond to call—b y—name and call—by—value respectively.

3. When evaluating a conditional expression, always evaluate the propositIonal term first and use
it to decide which of the other terms to evaluate first. When evaluating a term formed by
composition of functions, if there is only one occurrence of the function being defined on the right
hand side, there is no choice to be made, but if there is more than one, expand the leftmost
innermost first. If it gives an answer substitute it and continue the process. If it gives further
recursion, then proceed with Its leftmost innermost , etc. This corresponds to call-by value.

4. If Instead of expanding the leftmost innermost occurrence of the fu,~ction first, we expand the
outermost occurrences, we get an evaluation method corresponding to call—by—name.

It should also be proved that evaluation by substitution and evaluation by subroutine both
V V using call-by-value give the same results. The two ways of doing call-by—name should also be

proved to give the same results. Such a proof would involve reasoning about the operation of
subroutine calls and the saving of temporary storage registers on the stack. We are not aware of a
pubiished proof of these statements or even a precise statement of them.

Computing u*v doesn’t show the difference between these methods but consider the
function

22) morrl s (r , y) .- if r equal 0 then 0 else morris(x — I, moi-rls(x , y))

introduced in (Morris 1968). Evaluating morru(2, I) by either call—b y—value method leads to an
infinite computation, because the term morr is (x , y) has to be evaluated all over. Call—by—name
evaluation, on the other hand, gives the answer 0, because the second argument of morris is never
called. Vwllemin (1973) shows that whenever call-by— value gives an answer , call—by—name gives
the same answer, but sometimes call-by-name gives an answer when call—by—value doesn’t. If we
force a program to be strict , i.e. to demand that all of its arguments are defined, then call—by—
name and call-b y-value are equi-terminating - to coin a word.

(Manna 1974) also contains proofs of these assertions.

Execution of recursi ve programs by subs titution is Inefficient, but provides a good
theoretical tool for classifying the more efficient subroutine methods of evaluation.
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5. Finally, we can regard (18) and (22) as functional equations for * and morris respectively. In
general , a functional equation may have many solutions or none. However , it is essentially
Kleene’s (1952) first recursion theorem, (see Manna 1974, theorem 5—2) that if the right side is
continuous in the function being defined and in the individual variables, there will be a unique
minimal solution. This condition is assured if the right hand side is a term built from strict
functions and predicates by composition and the formation of extended conditional expressions.
Continuity is discussed in (Manna 1974). It is not permitted to use logical conditional expressions
without satisfying additional hypotheses, and this restriction prevents true equality or any
predicate from direct use. If logical conditional expressions were generally allowed, we could have
sentences like

23) (YxXfix) - IF fix) - .1 THEN T ELSE .1.)

which are self—contradictory. The corresponding version using extended conditional expressions,
namely

24) (Yxxfix) - if fix) equal I then T else I)

is satisfied by fix) a ~ and is therefore harmless. Logical conditional expressions can be used
when we can guaran tee that the propositional part is total and in some other cases.

The minimal solution is minimal in the sense that any other solution is greater In the
ordering of functions previously given, i.e. 1ff is the minimal solution and • is another solution,
then

25) (Yr yXfix, y) c #(x , y)) .

The minimal solution of the functional equation can therefore be character ized by the
schema

26) (Yr yXO(r , y) a r(~ Xr , y)) • (Yr yXf (r . y) c #(x , y)) .

6. Ax ion is for S-express ions , Lists and Integers.

The collection of axioms iisp i allows for the possibility that there are other kinds of entity
besides S—expressions, lists and integers. In practical program proving, these will include sets and
data stru ctures of various kinds. In consequence of this decision, we need the predicates 135ev p.
tills : and h int to pick out S—expressions, lists and integers respectively. Lists are considered to be
a particular kind of S-expression , namely S-expressions such that going In the cdr direction
eventually reaches NIL. It Is convenient to have both the predicates atom and ts~

baIr that pick. out
atomic and non-atomic S-expressions respectively.

Lisp I is convenient for making proofs and is intended to treat S-expressions, lists and

L~t ~~~~~~~~~~~~~~
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integers as similarly as possible. Therefore , the axioms are highly redundant. Adjoining .1. to the
domains has both conveniences and inconveniences. The main convenience is that the recursive
definitions now give total functiens. A major inconvenience is that algebraic relations often
require qualification, e.g. 0 x x e 0 isn’t true if it • I.

Our first axiom gives the algebraic relations of cons , car and cdr .

SI: (Yr yXissexp x A tssex p , • ispai r (x. yJ A a(x.,) . X A d(x.,] - y)

The definition of atoms and pairs:

S2: (YxX (ls pair it . iss.xp x A ‘atom it) A (atom x ~ Issexp x))

Taking apart an S-expression and putting the parts back together gives back the original
expression.

S3: (YrXis pair x .  hsse’xp a x A isserp d x A x • a x .  d x)

Lists are included among S-expressions.

S4: (VuXhs Ust u ~ u ser p u)

conilng an S—expression onto a list gives a list.

S5: (Yr uX is.texp X A hills: u ~ is l is t[x.u))

NIL is the only atomic list and only NIL satisfies the predicate null .

S6: (YuX (islls r U A atom u.  u. NIL) A (null u.  u a NiL))

The simple struc tural induction schema for S-expressions:

S7: (YxXatom x ~~ x) A (VxXispair x ‘ 4 ’  a r A 4 ’  d r.4’  it) • (YrXissexp x .4’ it)

The simple structural induction schema for lists:

S8: 4’ NIL A (YuXls Uj i U A ‘null U ~• d u ~~I u) • (YuXislhst u ~ 4’ u)

x �~ y means that x Is a subexpresslon of ,  and Is a well-founded partial ordering. It is

important for course-of—values induction for S—expressions.

S9~ (Yr yX tssexp X A iss tXp ~ 3 x 
~s y  . x • y v ~atOM~ A (at s3 a, v it s~ d ,))

Definition of proper subexpression:

S i0 (Yr ,Xx .c~ , ex  y A at
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The course-of-values structural induction schema for S-expressions:

Si I: (YrXhss exp at A (Vyxlsserp y A ,  <,~ 
x ‘ 4’ y) .4’ x) • (YxXis:erp v.4 ’  x)

u v is the natural well-founded partial ordering for lists. It can be read “The list u is a

tail of the list 0”.

SI2: (Vu vXi.rlis t U A h Eist v.  is v u is a v v ‘null v A U ‘L d v)

u is a proper tail of v.

S13: (YU VX U ’ C L v u U SL V A U #  v)

The course-of-values induction schema for lists. Course-cf-values Induction schemata are
all the same except for the ordering used.

S 14: (YuXls list u A (YvXis lls V A v u ~ 4’ v) • 4’ u) • (YuX islis t U ~ 4’ a)

These axioms for integers are based on the successor and predecessor functions and are
analogous to the above axioms For S-ex pressions. They are equivalent to the usual first order
number theory.

The relation between the successor and predecessor funct ions:

Ii: (YnXisine n .hsint succ ii A SUCC ft # 0 A pred succ a • n)

As a function in the logic, the predecessor must always have a value. However we say
something about pred a only for non-zero a.

12: (VnXlsln: n A n ~ 0 • h int pred fl A 514CC pud a - a)

The sim ple induction schema for integers

13: (4’ 0 A (YnXisint a A a • 0 A 4 ’  DYed a ~ 4’ a) • (V nXhsft ’t a .4’ a)

For course-of-values induction, we need the ordering relations.

14: (Vrn aX isin : as A tsint a ‘(as s n  .m • a v n  ~ O A m  s pred ie))

Proper orderini

15 (Yas nXm n . m � n A m  d a)

The course-of-values schema:

16: (YnXI,int a A (YmXisinl as A as ~ a .4’ as) .4’ a) • (YnXIsI,U a .4’ a)
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The recursive definition of addition :

17: (Vat nXi,int at A lila: n. as + a • IF a • 0 THEN as ELSE succ as + pred a)

Multiplication:

18: (Vat nXisint as A lila: a . as x a • IF a • 0 THEN 0 ELSE as + as x ~r.d a)

The next grou p of axioms are concerned with extending the domain by adjoining i.. The
predicates of the extended doma ins are 15.5ev p hseltst and Lu tist respectively.

Extending the S-expressions with .L:

El: (VrX Ueserfr it a hss.x/ ~ it v at a

Extending the lists with .1.:

E2: (VuXiselhst is a hsihsi a v a • .1.)

Extending the integers with .1.:

ES: (VnXiseint a a lila: a v n a 1)

We need a function taking the value T when its argument is an S-expression. It w ill be
used In extended conditional expressions.

E4: (VxXLuserfrf at • IF at • .1. THEN £ ELSE iF u ser/ i x THEN T ELSE F)

Likewise for lists:

E5 (YuXhslhstf u • IF is • .1. THEN .1. ELSE IF h u t  ~ THEN T ELSE F)

Likewise for integers.

E6: (YnXhsintf a e IF a • I THEN 1. ELSE iF h int at THEN T ELSE F)

Extending the integer functions to take .1. as an argument. The extension is strict, i.e. the
extended values are all .1..

$ E7: iuccI.IApredI.I

Extending the Lisp functions strictly to take I as an argument:

£8: a .1. • I A d I • .1.

The stri ct exten sion of cons. (Friedman and Wise (1977) propose a non-strict extension).
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E9: (VxXr .j . a IA L a t e  1)

The functions at and n are defined from the predicates atoas and null .

£10: (VrXa at • IF at • I THEN I ELSE IF atom at THEN T ELSE F)

Eli: (VuXu is • IF a • 1. THEN I ELSE iF null is THEN T ELSE F)

7. Forms of Induction.

All proofs of non—trivial program properties require some form of mathematical induction.
Methods of induction can be divided into three classes - induction on data, various forms of
computation induction on approximations to the program, and induction on the course of the
computation. It is not certain that that these are really distinct; i.e. there may be systematic ways

— - of regarding one as a form of another. in this section, we deal only with induction on data.

induction on data often takes a form called structural induction in which the data domain
consists of objects built up from elementary objects by a fixed finite set of operations. The
construction of S—expressions from atoms by con s or the construction of the integers from zero by
the successor operation are examples.

Induction can take two forms. One form involves the constructors or seleciors of the
domain directly. Simple list. S-expression, and numerical induction are examples. The second
form is a course-of-values induction schema

27) (VrXisD at A (VyXIsD, A~~ ‘C at ~ ~ y).~~ at) • (VxXIsD at .~~ at)

based on an ordering relation < defined in terms of the selector functions. Course—of—values
schemata were also given for lists, S-expression and natural numbers. Course-of-values often
gives a proof with a simpler induction predicate than simple induction.

A simple examp le is the termination of the list Function alt defined by

28) alt u .- i f n u o r n d ut h e n u else au .a f t dd u.

Because of the dd, simple induction doesn’t work on the obvious predicate

29) •(u) • Islist aft a,

but course-of-values induction dries work.

In the simple cases we have seen so far , the induction is on one of the variables in the
program, but this is not the general case. More generally, the induction is on some function of the
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variables, and the domain of this function may be quite different from that of the variables of
- , 

- 
the progam. Often it can be taken to be the natural numbers , but more genera lly It can be any
partially ordered domain in which all descending chains are finite.

I
For example S-expression can be replaced by induction on natural numbers by introduc ing

the function size at defined by

30) size at .- if at at then I else size a it + size d at

Size has the property that size a at < size at and size d at ‘C size at. We can prove that a formula
•(r) holds for all S-ex pressions by inductlon on the s ize of at”. This is done by proving that the
formula 4” given by

Si) 4’ ‘(a) • (YxXsirv at • a

holds for all numbers using numerical induction. In fact any proof of the formula 4’ by S-
expression induction can easily be converted to a proof of 4” by numerical induction and vice
versa.

A more ex otic example of this is provided by the Takeuchi function (Takeuchi 1978)
defined by

32) tak(,n , a , P)
• if as lesseq a the mi n else tak (tak(a,— I, a, p) . tak(n— . I, p, at), tak(p— I, at , a)).

The function is total when the arguments are integers and Is equal to

35) takO(mI ,m2, asS) . IF ml � m2 THEN m2 ELSE iF m2 ~ asS THEN asS ELSE ml.

The most convenient proof that tak Es total uses the course-of—values schema for integers with

34) $(n) • (Vai l m2 m3Xrank(m l,m2, as3) .a~ tak(as i,as2, asS) • iakO(as l,as2. mS)),

where

35) rank(ai I, m2, asS) . diak l(m l—m2 , asS—ss2),

and
36) dtakl (n l , n2) . IF n I  ~ O THEN 0

ELSE IF n 2 a 2 T H E N a s + n ( a — 1)12—I
ELSE I F a � O T HEN as
ELSE IF a • -l THEN (at + IXas + 2)12 —
ELSE (m - n X a t - n +  1) 12- as- I .

This is an example of the more general form of inductive proof. A rank function s defined
taking values in some Inductively ordered domain (in this case the natural numbers ), and the

L
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theorem is proved under the hypothesis that it is true for all lower rank tuples of variables. The
term structural induction seems no longer applicable to this general case, because it is not an
induction on the structure of the data domain of the program, although it requires no new
machinery when we are operating within first order logic. Perhaps str u ctural induction was a
misnomer anyway, since the more general form corresponds to how mathematicians already looked
at induction.

The inductively ordered set serving as the domain of the rank function is chosen (or
convenience , where the object is to get a short and under standable proof. If we only care about
whether a proof exists and not how easy it is to write and read, then all the domains considered
so far are equivalent to the natural numbers. To get something stronger, we go to induction over
transfinite ordinal numbers — explained in most books on axiomatic set theory.

The axiom schema for induction over ordinals is just the usual course-of—values schema
written with the ordering over the ordinals, say s0. In order to use it. this ordering must be
defined, and we must be able to write a rank function from tuplets to ordirmals. This requires that
we use a notation for ordinals, and any given notation represents only the ordinals less than some
bound. Most proofs arising in practice will involve only ordinals less than W~ which can be
represented as polynomials in 1.).

An example requiring induction up to is proving the termination of Ackerma rmn’s
function which has the functional equatton

3’?) (Vat nXA(m , a) -
ii as equal 0 then ~+l else if a equal 0 thea A(”s— I, 0) else A(as— I, A(in , n—I)) ) .

The statement to be proved is

38) (YaXa ~ w2 •

where

39) (VcuX4’(a) • (Vat nXrank(a,, n).  a ‘lila: AOu,, a))),

and

40) (Vas nX rank(as , a) .  Was + a).

The proof is straightforward, because w (as— l) < wai+n and Wm + (n—I ) .c Was+a , so we can assume
isint A (at— 1,0) and h int 4(ai , n—I). From the latter, it (ollws that w(m—I)+A(m, n—I) ‘C Wm+n
which completes the induction step.
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8. An Extended Example.

The SAMEFRINGE problem is to write a program that efficiently determines whether two
S—ex pressions have the same fringe, i.e. have the same atoms in the same order. (Some people
omit the NILs at the ends of lists, but we will take all atoms). Thus ((A.B).C) and (A .(B.C)) have
the same fringe, namely (A B C). The object of the original problem was to program it using a
minimum of storage. and it was conjectured that co-routines were necessary to do it neatly. We
shall not discuss that matter here - merely the extensional correctness of one proposed solution.

The relevant recursive definitions are

4 1) fringe at .- if at at then x elsefringe. at * frhnge d x ,

We are Interested In the condition fringe at . fringe,.

The function to be proved correct is saasefringe(x, yJ defined by the simultaneous recursion

42) iaatefringe[x. y) .- (at equal y) or (not at at and not at, and saww(gopher at, go fritter y)J,

43) saase(x , y] a- (a at equal a y) and samefringe(d at . d ,],

where

gopher at . -  ii at a at then at else gopher ii at . (di a t .  d xi.

We need to prove that saasefringe is total and

45) (VryXsansefringe(x, yJ. T • fringe at “fringe y)~
The functional equations are

46) (VatX fringe at — if at at then cx else fringe a at * fringe d at),

4’?) (Vu vXu * v • if n is th en v else a u . Cd a *
48) (Vat yXsaaiefringe(at, y) .

at equaJ y or (not eat at and not eat , and saatdgofrher at , gopher y) D.

49) (Vat yXsamne(at, y]. a at equal a , and saasefringe(d at , d y),

50) (Yx)( gopher at s ~f at a at then a else gopher as a t .  (di a t .  d it)).

We shall not give full proofs but merely the induction predicates and a few Indications of
the algebraic transformation s. We begin with a lemma about gopher.

SI) (Vat ,Xispalr gopher(at.,] A atom a gophev(at.,] AJWmtge gophei (at.,) .frlnge(x.,1).
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This lemma can be proved by S-expression structural induction on at using the predicate

52) •(r) • ( VyXis pai r gopherlx.,) A atoas a gopher(at.y] A fringe go/sher(at.y) . fringe(at.y)) .

In the course of the proof, we use the associativity of * and the formula
fringe[at.y) — fringe at * fringe,. The lemma was expressed using gopherlat.y) in order to avoid
considering atomic arguments for gopher, but it could have equally well be proved about gopher at
with the condition ‘atom at.

For our proof about saatefringe we need one more lemma about gopher, namely

53) (Vat yX size gopher(at.,) . size(x .y] .

This can be proved by S-expression induction on at separately or as a part of the above
lemma by including size gopher(x.y) . size(x.y) as a conjunct in (SI) and (52).

The statement about saasefringe is

54) (Vat yXissexp saasefringe(x, y) A saasefringe(x. y] a T • fringe at . fringe y) .

and it is most easil y proved by induction on size at + size, using the predicate

• 55) •(a) .(Vx yXn - size x .i. size y~issexp saasefringe(x, y) ~ (saaiefringeCx , y)- T • fringe at a fringe y)).

It can also be proved using the well-foundedness of lexicographic ordering of the list cat , a x~,
but then we must decide what lexicographic orderings to Include in our axiom system.

Transfinite induction Is also useful, and can be illustrated with a variant saasefringe that
does everything in one complicated recursive definition, namely

56) scaiefringe(at, y) a-
(at equal y) or
not at at and not at y aad

ii at a at th en (if at a y then a at equal a y and saasefrlnge(d at, dy )
else samefrlruge(at, sa y .  (day. d yD)

else saasefringe(aa a t .  Cd. at .d at), ,J.
The eransf inite induct ion predicate then has the form

57) •(n) • (Vat ,Xn - W(ztze at + size ,) + size a at + sire a,.
issexp saa.efringe(at , yJ A (iainsfringe(at, ,J - T • fringe at fringe y)J.

We would hike to prove that the amount of storag e used in the computation of
scasefringe(at ,y)  aside from that occupied by at and y, never exceeds the sum of the numbers of
cars required to reach corresponding atoms in at and,. Unfortunately, we can’t even express that
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fact, because we are axiomatizing the programs as funct ions, and the amount of storage used does
not depend merely on the function being computed; it depends on the method of computation.
We may regard such things as lntensional properties, but any correspondence with the notion of
intensional properties in intenslonal logic remains to be established. Many such intensional
properties of a program are extensional properties of certain “derived programs”, and some are
even extensional properties of the functional 1’.

9. The Minimization Schema.

The functional equation of a program doesn’t completely characterize K. For example , the
program

58 f lat -a -f l at

leads to the sentence

59) (VxXf I at - f i at)

which provides no information although the function f i ts undefined for all at. This is not always
the case, since the program

60) f t a t -a - (f2at).NIL

has the functional equation

61) (VxX J2x - (J2at).NIL).

from which (Vx)~isseatp/2(r) can be proved by induction.

In order to characterize recursive programs, we need some way of asking for the least
defined solution of the functional equation.

Suppose the program is

62) fix ,y) a- v (fXat.y)

yielding the functional equation

63) (Vat yXf (x,y) -u ?(/Xx,y).

The minimization schema is then

64) (VatX r(~ Xr) c O(at)) ‘ (VatXfix) ~ ~ (at)).

In the case of Apfremtd we have
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65) (Va vX~(u. v) ~ If n a thei~ v else a a . #(d a, u)) ~ (Vu vX ~(u, v) ~ a*v).

In the schema~~ is a free function variable of the appropriate number of arguments. The
schema is jUs t a translation into first order logic of Park’s (1970) theorem.

66)

Here Y is the least fixed point operator.

(Note that this theorem is a generalization to continuous functionals of the second part of Kleene’s
first rescursion theorem (K heene 1952)1

The simplest application of the schema is to show that thefi defined by (58) 1, never an S—
ex pression. The schema becomes

67) (VxX# at ~ -# at) • (YxX# at 
~ fi at),

and we take

68) # a t .J ..

The left side of (67) is identically true, and, remembering that .1. is not an S—expression, the right
side tells us that fl at is never an S—ex pression.

The minimization schema can sometimes be used to show partial correctness. For example,
the well known 91-function is defined by the recursive program over the integers

69) (91 a t . -  ii at greater 100 then at — JO else /91 f91(at + II).

The goal is to show that

70) (YxXf Plx a !F x J00 TH~ N r —  IO ELSE 9I).

j We apply the minimization schema with

71) # a t . - If x greaier I00 th en at— IOehse 9I ,

and It can be shown by an explicit cakulation without induction that the premiss of the schema is
satisf ied, and this shows that f91, whenever defined has the desired value.

The method of recursion Induction (McCarthy 1963) is also an immediate application of the
minimization schema. If we show that two functions satisfy the schema of a recursive program,
we show that they both equal the function computed by the program on wherever the function is
defined.

The utility of the minimIzation schema for proving partial correctness or non-termination
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depends on our ability to name suitable comparison functions. (I and (91 were easily treated,
because the necessary comparison functions could be given explicitly without recursion. Any
extension of the language that provides new tools for naming comparison functions, e.g. going to
higher order logic, will Improve our ability to use the schema in proofs.

10. Derived Programs and Complete Recursive Programs.

The methods considered so far in this paper concern extensional properties of programs, I.e.
properties of the function computed by the program. The following are not extensional
properties: the number of times a certain function is evaluated in executing the program including
as a special case the number of recursions, the maximum depth of recursion, and the maximum
amount of storage used. Some of these properties depend on whether the program is executed
call—by—name or call—by—value, while others are extensional properties of the functional of the
program.

Many of these intensional properties of a program are extensional properties of related
programs called derived programs. For example, the number of cons operations done by Append
can be computed by a program of the same recursive structure, namely

72) ncap/’endCu, u) -a- if it is then 0 else I + ,icep1~en4d is, vi

If we define flat by

73) flat(x , u] a- if at at then x.u else flat(i r ,flat(d at a]],

• then the number of recursions done by flat is given by

74) nrflaz(at , a] a- if a~ at (hen I else I + nrfla((a at ,flat(d at , u]] + nrflat(d at, is],

noticing that nrfla t is mutually recursive with fiat itseIf~ The maximum depth of recursion of the
91-function is given by

75) dpI n - a -  I + ii ii greater 100 then 0 else max (df9I(n + Ii), df9ltflx + Ii))).

Morris (1968) discussed a derived function that gives successive approximations of bounded
recursion depth to a recursive function by modifying the definition to take a ‘rationed” number of
allowed recursions. For append we would have

76) app endl(n , a, v) a-

if n equal 0 then I else If nu then v else . a . appendl(n — l,d u, v) .

Thus appendlCn, a, v] computes any but with a ration of n recursions. If the computation would
require more than n recursions, the value is I, i.e. is undefined.
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We can give a general rule for the rationed recursion function. Suppose that 1 is a
program for the function flat, y).

P : J (x .y) .- - T(fXx .y)

Then

C( P) g( n , x ,y ) . - r ’[gX n , at ,y)

where

77) v ‘(ö ] — ~~ at yXif n equal 0 then I else v ((X at y)# (n— I, at , y)J (at , y))

is a program for the rationed recursion function g(n, x ,y) . In this case, the functional for the
- j derived function is expressed by a formula in the functional for the original function. This can’t

always be done.

We can use the rationed recursion function as an alternate to the minimixt ion schema for
completing the characterization of fp. Namely we have

78) (Vat yXis D fp(x ,y) u (3nXisD fc p (x ,Y))),

and whether fctp (r , y) Is defined for given arguments is determined by Its functional equation,
because C(P) is what (Cartwr ight 1978) calls a complete recursive program.

A recursive program P is called complete if its functional V p has only one fixed point fp.
Since the minimization schema is used for distinguishing the least fixed point, it is redundant for
complete programs. The idea of complete recursive program was first advanced in (Cartwright
1978) as an alternative to the minimization schema for completing the characterization of the~function computed by a program. The idea was to compute the computation sequence of a
program P with a related complete recursive program C(P) and to show metamathematically that
for any program

79) (VxXf(x) — last fc(p,(x)

where fc(P) is the function computed by C(P), and last is a function giving the last element of a
list — in this case the list of values of f arising in the computation. Since whether C(P) terminates
for given arguments follows from its functional equation, (79) allows us to establish this for P
itself. The constructions of (Cartwright 1978) were somewhat involved and differed substantially
according to whether the original program was executed call-by-name or call—by—value.

The derived programs that give the number of recursions are complete so that nrfla as
defined above sat isfies

80) (Vat uX isine nrfiav(x , a) • lsseatp flati r , a)). :
- 
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A program for the number of recursions done when a program is evaluated call—by -name
can also be given. Thus the number of recursions done in evaluating morrLrtm, n] call—by.-name
is given by cmorris(m, 0, n , 0] where

81) cmorrls t,n , cm , n , cn] .-
I + cm + If in equal 0 then 0 else cmorrl s 1Cm— I, 0, morris(m , ii ), cmorrts(m , 0, n , cn)] .

The idea Is that the arguments cm and cn are the numbers of recursive calls involved in
evaluating in and n respectively. morris and cmorrls are again equt—terminating.

Ii. Proof Methods as Axiom Schemata

Representing recursive definitions in first order logic permits us to express some well known
methods for proving partial correctness as axiom schemata of first order logic.

For examp le, suppose we want to prove that If the input at of a function f defined by

82) f r .- f f p x t h e n x e lsef hx

satisfies •(x), then if the function terminates, the output fix) will satisfy ~ (at .fix)). We appeal to
the following axiom sche ma of induc tive assertions:

83) (VxX4P(r) ~ q(at . at)) A (Vat yXq(at, y) ~ ii p at then ‘l’(r, y) else q(at, h y) )
~ (VxX~(x) A I sD fx  ~ ~P(at ,f at))

where isD f x is the assertion that fir) is in the nominal range of the function definition, i.e. is an
integer or an S—expression as the case may be, and asserts that the computation terminates. In
order to use the schema, we must invent a suitable predicate q(x .y), and this is precisely the
method of inductive assertions. The schema is valid for all predicates •, ~P, and q, and a similar
schema can be written for any collection of mutually recursive definitions that is iterative.

The method of subgoal Induction for recursive programs was introduced In (Manna and
Pnueli 1970), but they didn’t give it a name. Morris and Wegbreht (1977) name It, extend it
somewhat , and apply it to A lgol—like programs. Unlike Inductive assertions , it isn’t limited to
iterative definitions. Thus, for the recursive program

84~ f5 x a-  if f r x t he n  hxe lse glf3 g2at,

where p is assumed total, we have

85) (VxXp at . q(at , Fi at)) A (Vat zX ’p (at) A q(g2 at , at) • q(at, g l r)) A (VxX•(x) A q(at, at) ~ ~~ (at , at ))
• (VxX~(x) A isb(fix)) ~ ~ (r ,fiat)))

4
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We can ex press these methods as axiom schemata, because we have the predicate 1W to
express termination. The minimization schema itself can be proved by subgoal induction. We
need only take $(x) • true and *(r .y) • (y .  #(at)) and q(r,y) • ( y —  #(at))

General rules for going from a recursive program to what amounts to the subgoal induction
schema are given in (Manna and Pnueli 1970) and (Morris and Wegbreit 1977); we need only add
a conclusion Involving the l iD predicate to the Manna’s and Pnueli formula W p.

However, we can characterize subgoal induction as an axiom schema. Namely, we define
V ‘(q] as an extension of V mapping relations into relations. Thus if

86) r([J(x). if px th en hxe lse glfg2 x.

we have

87) 1 ‘(qXx , y) • ii p at then (y— h at) else 3z.(q(g2 at , at) A~~ a gl 7).

In general we have

88) (VxyXV ‘(q](x ,y) • q( x , y) ) • (VrX isDfx • q(r ,f at)),

from which the subgoal induction rule follows immediately given the properues of~~ and ~1’. I
am indebted to Wolf gang Polak (oral communication) for help in elucidating this relationship.

WARNING: The rest of this section is somewhat conjectural. There may be bugs.

The ex tension 7 ‘Eq) can be determined as follows: Introduce into the logic the notion of a
nu~lt E— term which is formed in the same way as a term but allows relations written as functions.
For the present we won’t interpret them but merely give rules for introducing them and
subsequently eliminating them again to get an ordinary formula. Thus we will write q<e> where e
is any term or multi-term. We then form V ‘Iq] exactly In the same way ?(JJ was formed. Thus
for the 91-function we have

89) V ‘( qXx) . if at> 100 then at— 10 else q~q<x. I I>>.

The pointy brackets Indicate that we are “applying” a relation. We now evaluate V ‘LqXx . y)
formally as follows:

90) r ’(qXx .y) • (if x>I00 then at— lOe ls e qcqcat+ ll>>X.y)
if x>I00 then , • x— lO else q(q r + 1 i . ,,)

• if at> 100 then , • at— 10 else 3z.(q(r+lI, z) A

This last formula has no pointy brackets and is Just the formula that would be obtained by
Manna arid Pnueli or Morris and Wegbreit. The rules are as fo llows:

(I) V ‘(qXx) is )ase like v [/Xx) except that q replaces / and takes its arguments in pointy
f :  brackets.
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(Ii) an ordinary term e applied to , becomes, • e.

(iii) q.ce>(,) becomes q(e,,).

(iv) P(q’ce .) becomes 3z.q(e, at) A P(at) when P(qce>) occurs positively in V ‘(qXat, y) and
becomes Vr.q(e , at) • P(z) when the occurrence is negaive. It is not evident whether an
independent semantics can be given to multi-terms.

12. Representations Using Em it, Approximations.

Our second approach to representing recursive programs by first order formulas goes back
to Gädel (1931. 1934) who showed that primitive recursive functions could be so represented.
(Our knowledge of Gödel’s work comes from (Kleene 1952)).

K leene (1952) calls a partial function / representable if there is an arithmetic formula A
with free variables at and , such that

91) (Vat yX(y ‘ fix)) • A).

where an arithmetic formula is built up from Integer constant s and variables using only addition,
multip lication and bounded quant if ication. Kleene showed that all partia l recursive funct ions are
representable. The proof Involves GbdeI numbering possible computation sequences and showin g
that the relation between sequences and their elements and the steps of the computation are all
representable.

In Lisp less machinery is needed, because sequences are Lisp data. m d  the relation between
a sequence and its elements is given by basic Lisp functions and by the s,~, axiomatized in section
6 by

92) (Yu vXu~ Lv • (u a v) v
~~nui lvAu sL d v).

Starting with SL and the basic Lisp functions and predicates we will define other Lisp
predicates without recursion.

First we define the well known Lisp function assx whose usua l recursive definition is

93) assoc( at . ai] f n then NlL elae iFx. qual aa~~thes~.w e$s e mssec(x , d w ]

or non—recursivel y

94) ~~~~~~~~~~~~~~~~~~~~~~~~~~ • x) A y .  NIL
v (3uXu s j w A x . a a iL A~~.a u

A (VeXr~ L w A u ( L e . a a . -x ) )
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Now suppose that

95) fat .- 1’(fXr)

is a recursive program , i.e. V is a continuous functional. Our non-recursive definition off uses
finite approximations to f, I.e. lists of pairs of (at.  f(x)), where each pair can be computed from
the functional V using only the pairs that follow it on the lIst. Thus we define

96)
n wo r
da w . V((XatX if ii assoc(at , d w) Ihea I else d a.uoc(r ,d w])Xaa w) end ok(rXd a,),

or non-recur si vely

97) (Va,Xok(VXw) .
(YuXu SL w ~

(null i sv  ia is a V1(~xXif n assoc(x ,d is) then I else d assoc(at ,d u])Xaa is)]))

Now we can define, — fiat) in terms of the existence of a suitable w, namely

98) (Vat ,Xy a fir).
(3wXok (vX ai) A~~ V[(kxXif n assoc[x , a’) then .1 else d assoc(at , wDXat)))

It might be asked whether 
~L is necessary. Couldn’t we represent recursive programs using

Just car , cdr, cons and atom? No, for the following reason. Suppose that the function f  Is
representable using only the basic Lisp functions without S1. and consider the sentence

. 
99) (VatXlssexp fix)),

asserting the totality of f .  Using the representation, we can write (99) as a sentence involvin g only
the basic Lisp functions and the constant £ However, Oppen (1978) has show n that these
sentences are decideable, and totality isn’t.

In case of functions of several variables , (98) corresponds to a call—by—value com putation
rule while the representation s of the previous sections correspond to cal l-by-name or other “safe”
rules. Treat ing call-by-name similarly requires a definition of oh In which some of the tupiets
have some missing elements.

Note. Our original intention was to take s~ as bask , but curiously, we have not succeeded In
defining 5L non-recursively in terms of S~, akhough the converse is a consequence of our general
construction.
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13. Questio ns of Incompleteness.

Luckham , Park and Paterson (1970) have shown that whether a program schema diverges
for every interpretation, whether It diverges for some interpretation, and whether two program
schemas are equ ivalent are all not even partially solvable problems. Manna (1974) has a
thorough discussion of these points. In view of these results, what can be expected from our first
order representations?

First let us constru ct a Lisp computation that does not terminate, but whose non-termination
cannot be proved from the axioms Lisp I within first order logic. We need only program a proof—
checker for first order logic, set it to generate all possible proofs starting with the axioms Lisp I,
and stop when It finds a proof of (NIL • NIL) or some other contradiction. A ssuming the axioms
are consistent, the program will never find such a proof and will never stop. In fact, proving that
the program will never stop is precisely proving that the axioms are consistent. But Gödel’s
theorem asserts that axiom systems like LIspi cannot be proved consistent within themselves.
Until recently, all the known cases of sentences of Peano arithmetic unprovable within Peano
arithmetic involved such an appeal to Cödel’s theorem or similar unsolvability arguments.
However, Paris and Harrington (i97~) found a form of Ramsey’s theorem a well-known
combinatorial theorem, that could be proved unprovable in Peano arithmetic. However: their
prool of its unprovability involved showing that it implied the consistency of Peano arithmetic.

We can presumably prove Lisp 1 consistent Just as Gentzen proved arithmetic consistent —

by introducing a new axiom schema that allows induction up to the transfinite ordinal a~.
Proving the new system consistent would require induction up to a still higher ordinal, etc.

Since every recursively defined function can be defined explicitly, any sentence involving
such functions can be replaced by an equivalent sentence InvolvIng only 5L and the basic Lisp
functions. The theory of ‘L and these functions has a standard model, the usual S—ex pressions
and many non-standard models. We “construct” non-standard models in t,he usual way by
appealing to the theorem that if every finite subset of a set S of sentences of first order logic has a
model, then S has a model. For example, take S a (NIL 5L ~~. (A) 5L x, (A A) 

~L
indefinitely). Every finite subset of $ has a model; we need only take at to be the longest list of
A ’s occurring in the sentences. Hence there is a model of the iisp axioms in which at has all lists
of A ’s as subexpressions. No sentence true in the standard model and fa lse in such a model can
be proved from the axioms. However, it is necessary to be careful about the meaning of
termination of a function. In fact, taking successive cdrs of such an at would never terminate, but
the sentence whose standard intev~retation is termination of the computation is provable from
Li5~ I.

The practical question Is: where does the correctness of ordinary programs come in? It
seems likely that such statements will be provable with our orig inal system of axIoms. ft doesn ’t
follow that the system Lisp I will permit convenient proofs, but probably it will. Some heuristic
evidence for this comes from (Cohen 1965). Cohen presents two systems of axiomati ted arithmetic
Z I and Z2. Z I is ordinary Peano arithmetic with an axiom schema of induction , and Z2 is an
axiomatization of hereditarily finite sets of integers. Superficially, Z2 is more powerful than Z l ,
but because the set operations of Z2 can be represented In Z I as functions on the Godel numbers
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of the sets , it turns out that ZI is just as powerful once the necessary machinery has been
established. Because sets and lists are the basic data of Lisp I, and sets are easily represented. the
power of Lisp I will be approximately that of Z2. and convenient proofs of correctness statements
should be possible. Moreover , since Lisp I is a first order theory, it is easily extended with axioms
for sets , and this should help make informal proofs easy to express.

A PUB source of this paper is available on disk at the Stanford Artificial Intelligence Laborator y with
the file name FIRST(W79,JMC].
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10 a Lisp style recursive function programs are represented in a new way by sentences
and schemata of that order logic. This permits easy end natural proofs of extensional -

-, 
properties of such programs by methods that g.neralze structural Induction. It also
systematizes known methods such as recitr:ims iaiatctlon, su bgoal Induction, inductive
assertions by Interpreting them as first order eziom schemata. We discuss the
met atheorems justifying the representation and techniques for proving facts about -

specific programs. We also give a simpler version of the Goedel-Ki.ene way of
- - - .  

____ representing computable functions by first order sentences.
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