
AD —AO 71 1119 MARYLAND t f r i I V  COLLEGE PARK DEPT OF AEROSPAC E EMINCERPIG F/G 20/11
INVESTIGATION Of TRANSCNIC GAS FLOWS UNALYTICAL AND P*nRICAI. ——E TC (U1

I ~I~~LASSIFIEO *L 79 4 
Ii NooflG—Tp

I _

L~QflDDfltELDU



lIIII I.O~~LL

H

111111.25 IIIII~ ~ I6

MICROCOPY RESOLUTION TEST CHART
NATIONAL DUR~AU (IF STANDARDS I963 -A



T.chnica ( Report No. AE.79.2

~~J.EVEL~
• £ •

•

•

• • 

.

S _

._

O
•

~~ INVESTIGATION OF TRANSONIC GAS FLOWS
(Ana lytical and Numeric al Methods)

by

PROF. OLEG BELOTSERKOVSKII

Computing Center

Academy of Sciences of the USSR

D D C
~~ IJ~J~ J?flfl flip

Offic . of Naval R.s.arch J3-JL 19 ]919
Fluid Dynamics Progra m V Uu~i~u,u u i~Arlington . Virg Inia 22217 B

ContractN000lIpl9.M.0022
L.L NR 061.262

MARCH, 1979 [DISTRIBUTION ST FMENT A
IC~ Appioved fox public reIscae~• Di,Uibution Unlimited

“Reproduction in whoP, or part is permitted for any purpose of th.
United States Government’

79 .97 . 16~ 0. 9?J~



—-

V

(&-7

Technical Report No{ 2

UNIVEPSI1Y OFL~ ARYLAND, (X)LLEGE PARK
DEPARThIENT OF AEROSPACE ENGINEERING

(
~~~~) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~(Analytical and Numerical Methods) 1

/ô by 
-

~

PROFESSO EG/~EWTSERICO~~~~~J
Computing Center

Academy of Sciences of the USSR
.~ r—~~——~~~~~~ ——-—

~~~i
i 

-~~~~~~~~~~~~~~i~ 
i

i

Office of Naval Research
Fluid I~rnamics Program

Arlington, Virginia 22217

D D C

Contr~~~~~~~~~ 7~~M.ØØ22 J

“Reproduction in whole or part is permitted for any purpose of the
United States Goverrinent”

DISTRIBUTION STATEMENT A
Approved fox public r.I.oaeç

j Dfatxfbulic@ Unlimited

- ~ I //o / ~~

- (1 ~ 
- 

_ _ _ _ _ _ _ _ _ _ _



INVESTIGATION OF TRANSONIC GAS FLOWS

O.N. Belotserkovskil *

This report considers some problems of transonic gasdynamics related

to the theory of planar and three-dimensional flows of a perfect gas which

have been worked out mainl y by the author and his collaborators . Results

of analytical investigations of a number of exact properties of solutions

which describe the flow around bodies with a detached shock, obtained by

E.G. Shifrin , O.M. Belotserkovskii , et al., are presented without proof in

the form of theorems (proofs are to be found in the papers cited). Results

of numerical solutions (due to O.M. Belotserkovskii , Yu. M. Davidov ,

F.D. Popov , et al.), obtained by the methods of integral relations and

“lar ge par ticles ” , are presented for the complete problem of transonic flow

around blunt bodies whose profiles possess sharp corners. The boundaries

of distinct minimal domains of Influence in mixed flow about blunt bodies

are also examined .

* Pro fessor , Member 0f the Academy of Sciences of the USSR, Computing

Center , Academy of Sciences, 40 Vavilova St., Moscow V-333, U.S.S.R.
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PRE FACE

Selected resul ts of this report and its companion “New Computational

Models in Conti nuum Mechanics ,” were communicated in seminar lectures given

by Prof. Belotserkovskii at several American universities during a 4-week

v i s i t  in November - December , 1978. In response to numerous requests Prof.

Belotserkovskli made available the manuscripts of two reports which describe

in some detail the computational techni ques employed in the numerical solu-

tions of the probl ems surveyed in his seminar talks .

Thi s report surveys resul ts of researc h at the Computational Center of

the USSR Academy of Sciences , Moscow , over the past decade in some problems

of planar and three-dimensional transonic flows of a perfect gas. Al though

most of these resul ts have previously appeared in various Soviet journals ,

this report nevertheless gives a coherent review of the advances in the

computation of transonic flows at one of the foremost centers of the Soviet

Union .

The hallmarks of their numerical techniques are that they are:

(1) typically differentially and globally conservative , and

(2) careful attention is made to minimize truncation errors while at

the same time the favorable properties of the computational schemes

are exploited , e.g., the effective viscosity of the finite-difference

equations (to promote calculational stability) and (physically

interpretted) the ability to compute the essential features of se-

parated regions of recirculating flows (e.g., wakes) wholey within

the framework of the Euler equations.

This work Involves a careful and mutually beneficial blending of analysis

and numerical computations to develop a complete picture of complex flows.



The numerical methods are illustrated by a great variety of computational

results which are supported by analysis and compared with experimental re-

sults in some cases. Wherever possible Engl i sh translations of the refer-

ences have been cited.

The careful typing of the edited manuscript by Miss Vicki Brewer de-

serves a special note of appreciation. Finally, I am pleased to acknowledge

ContractN000l1i-79-M-0022 from the U.S. Office of Naval Research which made

possible the publication and distribution of this report.

W. L. Melnik, Editor
Professor , Aerospace Engineering Dept.
University of Maryland at College Park
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1. INTRODUCTION

Much attention has recently been given to the investigation of transonic

pr~b1ems of gasdynamics . Such flows occur , for exampl e, in nozzles , around

a body with a detached bow shock , around convex corners , as wel l as on wings

with imbedded local supersonic regions .

Difficulties arise in theoretical analysis of such probl ems primarily

because of the fact that there Is no compl ete mathematical formulation of

the probl em in a number of cases . In mixed flow domains complex phenomena

occur: so-called secondary “suspended ” compression shocks can originate be-

hind the bow wave and for supercritical flight Mach number local supersonic

domains can also be closed off by compression shocks. The mechanism by

which such phenomena occur has not been sufficiently studied and questions

regarding the region of influence and its adaptation to a change in flow

parameters also remain open. Class ical anal ytical methods , deve1opec~ for

plane potential flows, which predominantly utilize the hodograph plane , do

not as a rule apply here. Numerical solutions of these probl ems involve

many difficulties , and require the constructIon of special schemes for the

Integration of elliptic-hyperbolic equations .

If there is a break (corner) in the generator of a blunt body within

the domain of influence of the flow , and the free stream is altered so that

the local speed of sound occurs at this corner , then the analysis of such a

flow is complicated substantially by the existence of this singulari ty. The

flow expansion around the corner will be in the mi xed transonic regime and

is characterized by an abrupt change. in both magnitude and dIrection of velo—

city. Moreover, a secondary compression shock can occur in the supersonic

zone of this flow which substantially affects the whole flow patte’n. It

should al so be noted that the computational resul ts for the flow In the

1



domain of influence of the bluntness (M—domain) serve as the initial data

for the calculation of the supersonic zone . Construction of the solutions

in the transonic domain for a body wi th a corner must be made wi th special

care since even slight inacc-.~racies in the calculations will not permit con-

tinuation of the computation into the supersonic domain.

A study of the flow properties around blunt bodies at low supersonic

Mach number is of no less interest. As the free stream Mach number decreases,

the domain of mixed flow influence increases . In examining such a probl em

It is necessary to take account of the transonic nature of the flow in the

zone between the sonic line and the l imiting characteristic separating the

M-domain. Perturbations in the transonic domain affect the shape of the

sonic line , and , therefore, the whole flow in the mixed zone. The solution

of the boundary value problem becomes increasingly sensative to changes in

initial data , so that round-off errors increase , and an instability in the

computation is manifested . All this demands the construction of special

numerical schemes. Consequentl y it is important to identi fy the existence

of boundaries of distinct minimal domains of influence of the bluntness.

Only careful numerical experiments utilIzing high-speed computers give

quantitative data and a complete picture of the flow in such compl ex problems .

An attempt is made to analyze and discuss some transonic flow properties

(the solutions in the neighborhood of the sonic line , the formation of Se-

condary compression shocks, the shape of the minimal domain of influence ,

etc.) from the aspect of analytical and numerical solutions .

It should be mentioned that precisely by numer ica l means are secondary

compress ion shocks , non-monotone sonic lines , etc., successfully detected

and constructed. At the same time , the conditions for spoiling the continu-

ous so l u tion , and the regulariti es associated with different kinds of domains

2



of influence , have been delineated analytically. In examining the flow

aroun d a corner , the effective construction of numerical schemes turned

out to be possible only when utilizing asymptotic methods of solution of

the differential equations . Therefore, the combination of both analysis

and numerical solutions prove to be quite fruitful .

A number of papers have been devoted to the study of these questions .

We consider in this report the results of investigations of the direct

two-dimensional (planar or axisymmetric) problem obtained by using the

methods of integral realtions [17,23 24,26,28,29,36] and “large particles ”

[31,32,37], which represents part of an ongoi ng research program in tran-

sonic flows.

_ _  

_ ~.L.



2. HODOGRAPH PLANE

In analyzing plane stationary flows behind a shock it is convenient to

use the gasdynamics equations written In a local streamline coordinate sys-

tern:

(1 - M 2)~~~~~=k M
2
~~~

_ , 
~~~~= - kM~~~- 

(1)

or in the form [1]

(M2 1) ~~~~~ = aB — ainx 1 dRnp0 (2)— a~2 05
i 

— 

~ 2 
— 

~~

Here x is the velocity magnitude , made dimensionless by the maximum

adiabatic velocity , M — the Mac h num ber , B - the slope of the velocity vec-

tor measured counter-clockwise, p — the pressure, p0 - the total pressure,

and k is the adiabatic index ; a/asp a/as2 - derivatives with respect to

the directions of the velocity vector and its normal obtained by rotation

of the velocity vector counter—clockwise through an angle ni2.

Equations (1) and (2) can be transformed (by using differential geo-

metry formulas) into equations in a •,‘I’ coordinate system, where ‘v,~ are

families of streamlines and their orthogonal trajectories since h1a/as1 
=

= a/a’, h2a/as2 
= qa/a’v; the Lame coefficients h1,h2 are given by the for-

mu las [7]

d £np
h1Aexp (— ~~ M2 

= •(~ ) ,  h2q(x) = F(’v); 
( )

1/ k-l)
q A -X-- 2— - --- ~--X

Here ~(A), F(’v) are arbitrary functions governing the numbering of the lines

in the •,Y families .

In the case of irrotatlona l flows (for p0 = const), the Chaplygin equa-

tions can be obtained from the equations in •,‘ coordi nates (by a change In

the role of the dependent and independent variables).

4 .



Equations (3) permit the investigation of singularities of a mapping
in the •,‘v plane . Indeed

______ = a(s~,s)~ 
= 

h
~
W2 

= xq(x)exp[- .~~~ .~ 
_!~ ~

hence , for 0 < A < (k+1)1”2(k—ly~~
2 a mapping in the plane is locally one-

-to-one (x ,y are Carteisan coordinates in the phys ical plane).

Let us consider the mapping of the velocity (x ,a ) and pressure (p,8) in
the hodograph plane; the former is more convenient for potential flow in-

vestigations , and the latter for rotational flow investigations.

It follows from the expressions for th~ Jacoblans J =

I = a (x,B)/a (x,y) of the transformations , using (1) and (2), that the mapping

of subsonic domains in the PB plane . (and in the X8 plane in the potential

flow case) can only have Isolated singularities [2,3]; however , this does

not mean that the image of the subsonic domain in the p8 plane cannot be

many sheeted (on the whole); the flow can only be single-valued in the physi-

cal plane.

A mapping of supersonic domains in the p8 plane can have folds; their

edges (on which J changes sign) are called branch lines. A branch line can

be a characteristic if J undergoes a discontinuity upon passing through it;

in the general case a branch line is the envelope of characteristics of one

family in the PB plane , and the geometric locus of cusps of the second

family of characteristics. A mapping of a rotational flow in the x~ plane can
have branch lines even ir? the subsonic domain. In the general case, a branch

lIne of this mapping is a characteristic only in the potential flow case [3].

A classic illustration of the flow having a fold In the AB plane is a Laval

nozzle; the branch lines are here characteristics issuing downstream from

the center-line of the nozzle.



The edge of the fold of the inverse mapping is cal l ed a limit line. The

presence of a l imit line indicates that the flow whose image has been found

in the hodograph plane can not be realized in the physical plane.

The characteristics equation in the p8 plane have the form :

/1.4,2 ~± d81 2 = - “ ~~
‘-‘ dtnp . (4)

kM

Hence it follows that for 1 < M < the first family characteristic always

makes a negative angle with the p-axis , and a characteristic of the second

family a positive angle; in some cases this permits establishment of the

form of the branch line (if it exists).

The characteristics in the AB plane are given by

± d81 2 = - ~~~~~ d~nX - 
/(M ~~ dtnp . (4’)

kM

which describe epicycloids in the case of potential flow (dtnp0 = 0).

THEOREM 1. The Image in the AB plane of a segment of characteristic

contained in the domain of monotonicity of the function p0(v) will intersect

an epicycloid of the same family not more than once. A segment of a charac-

teristIc of the first (second) family, drawn in the direction of diminishing

total pressure front the point of intersection with the epicycloid of the

same family, is located above (below) this eplcycloid [4].

THEOREM 2. The Image in the AB plane of a characteristic drawn in

the domain behind the shock located between two epicycloids 0f the same

family which are separated by a distance (in the B direction) not exceeding

1 ,  ~omax 1
~~1 Ln I,

~omfn

where 
~omax and are the maximum and minimum values of the total pres-

sure behind the shock (depending on the free stream velocity) and k is the

6
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adiabatic index .

THEOREM 3. If the velocity vector is continuous at some point in the

physical plane, then the characteristic at the corresponding point in the PB
plane is either a smooth curve , or has a cusp (the latter can be realized

only in the case when intersection with a branch line occurs at this point).

This property of the characteristics in the AB plane only exist under the

additional conditIon of continuous differentiability of the total pressure
and the velocity vector at the corresponding point of the physical plane .

7 .



3. MINIMUM DOMAIN OF INFLUENCE OF MIXED FLOW

The minimum domain of influence of mixed sub- and supersonic flow (the

N—domain) is characterized by the fact that small perturbations of its

boundaries are propagated throughout this domain. In the general case the

M-domain boundary is delineated by segments of the body-profile which may

include a tangential discontinuity (corner), the axis of symmetry, the

bow shock, the limiting characteristic , and the sonic line .

3.1 GENERAL RESULTS

In order to establish the location of the N-domain in the hodograph

plane , it is necessary to know the sign of the Jacobian of the mapping at

points of the boundary.

THEOREM 4. The following Inequalities hold:

1. On a straight—line wall

I = a(x ,8)/a(x,y)~ 0, I a (A,B)/a (x,y) ~ 0 for x ~ 1 ;

2. On a free boundary J > 0

3. On the shock polar J > 0, I ~ 0 for N ~ ACM_k),

where 
~,, is the free-stream Mach number, and A is some constant; A ~ 1 for

~ M(~(k), where 140(k) Is some constant.

THEOREM 5. The Image of a convex corn r In the p0 and XB planes Is

mapped by a characteristic of the potential flow which has no turning

points*.

THEOREM 6. In potential flow , the Image in the AB plane of the neigh-

* This is proved in (5] for potential flow .

8
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borhood of a convex corner covered by characteristics emerging from this

point is located on one side of the epicycloid mapping the corner.

Let K denote a point of the sonic line at which it is convex relative

to the lines + = constant (sonic line at the point K+ turns the convexity

towards the supersonic velocity region , and at K_ towards the subsonic

domain). Let I denote a point of the sonic line at which the sign of the

streamline curvature changes during passage through it. If the vorticity

Is zero at the point K, then it coincides with 1.

THEOREM 7. There are no points K located within the potential flow

domain.

THEOREM 8. If there is displacement along the sonic line in potential

flow so that the subsonic domain lies on the left, the velocity vector will

be rotated monotonely clockwise [6].

THEOREM 9. The slope of the velocity vector B changes monotonely with

displacement along a sonic line segment In a rotational flow which does not

contain the points K or I. A change in the direction of variation of B

occurs at each of the points K or 1 [7].

Thus , branch lines of the mapping in the x~ plane (an odd number at

each of the points) pass through the points K and 1.

THEOREM 10. If the acceleration of the flow at the sonic line is

bounded, then a(p,B)/ a(x,y) = 0 at the point L.

Let y denote the angle through which it is necessary to turn the tan—

gent to the sonic line counter-clockwise (at the sonic point of the shock)

so that it would coincide with the velocity vector.

THEOREM 11. If the curvature of the shock wave at the sonic point

does not vanish or become infinite, then y ½ir for M,, < It~(k) and

L _ _



-r < ½ir for M,, > 110(k) [8] .

The constant 110(k) is here the same as in THEOREM 4 (see Fig. 1 and 2).

Theorem 11 can be generalized partially to the case of axisynmietric

flow. Let a denote the slope of the shock to the free stream velocity

vector measured counter-clockwise.

THEOREM 12. If the curvature of the shockwave at the sonic point of

an axisyninetric flow does not become zero or infinite , then the following

inequalities hold:

1. y < ½ n for c i < 0 < ½ i r  and

2. y > 3 vr for - ½ i r < a < O  and M < M 0(k).
In the remaining cases the angl e y (Fig. 2) depends on the shock curvature,

the distance from the axis of symmetry , and the free stream velocity [9].

Let 6 denote the angle between the sonic line and the profile on the

downstream side of the sonic line .

THEOREM 13. If the vorticity is zero along the contour of a smooth

profile, then 0 < & < ~ ir on the convex profile , and ½~r <  6 ir on the con-

cave profile (if the acceleration ax/as1 does not vanish or become infi-

nite at the sonic point of the profile) [8].

The next theorem follows from 11 and 13.

THEOREM 14. If the assumptions of Theorems 11 and 13 are satisfied,

in the case of symmetric flow around a smooth convex profile with a detached

shock an odd number of points K exists on the sonic line for N,, > M0(k)

(at least one point K~
) ; for N,, c M0(k) the number of points K is zero or

even (the number of points K~ equals the number of points K_) [8].

LI___ 
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ThEOREM 15. At a convex corner of the profile, the sonic l ine  is

orthogonal to the “subsonic ” direc tion of the angle ( in transonic flow).

This property has been proved In [10] for potential flow.

The theorems considered above assist in classifying the minimum domains

of influence for an unbounded flow around a profile (or axisyninetric body)

and are In good agreement with resul ts of calculations .

THEOREM 16. In symmetric flow around a smooth convex profile (if the

assumptions of Theorems 11 and 13 are satisfied), the number of branch lines

of a mappi ng in the AB plane whic h intersect the sonic line Is zero or is

even if M~ < M0(k); the number of these branch lines 
is odd if M, > 110(k) [7].

The foll owing theorems characterize the flow in the neighborhood Of

the point K of the sonic line .

THEOREM 17. If a point K exists on the sonic line , at which the flow

acceleration does not become zero or infinite, then the following inequal i-

ties are satisfied [7):

ax 2
> 1 d2s 1 ds 2
< Rk(k+i) ~~ 

- 

R2k2(k+l) ~~~

at the point K+ or K ,. Here R is the gas constant, and s the entropy.

Let AK~B denote the line formed by the characteristics IssuIng down-

stream from the point K+ (we consider the direction 
udownstreams to be along

the streamlines from the subsonic domains).

THEOREM 18. At least one branch line of the mapping in the AB plane

which passes through the point K~ In the supersonic domain 
will be down-

stream of the line AK~B [7]. 

-~-• 
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If the flow accel eration at the point K does not become zero cr

infinite , the flow in the neighborhood of this point can be iflvestigated

analyticall y [11]. Equations of transonic rotational flow are derived by

the small parameter method
au av av au o— + — - - - w ’V

~ :(k+l)(Wl W 2) ,:: = :
~~~K 

Wl = 
‘ 

(5)

• 1 u(~,’y) — 1 2 u(+°,’v°)A — k+l 
— — c k+l

B = v~+
f

v) = s1
2
+°W0 - C 3 W(~°

1
’v°) 

, + = € 2,~
o 

~ =

Here c is a small parameter characterizing the size of the neighborhood

of the point K.

The equations obtained have an exac t sol ution, analogous to the

exact solution of the transonic potential flow equations , which was used

in [12] to Investigate the flow in the neighborhood of the center line

of a Laval nozzle under the condition that the acceleration does not be-

come zero or Infinite .

This solution has the form:
2 2

u = A+ - ~
_?L ,2 v = (k+l )Wo+ + A 2+! - A A

6
-~ ,3

K

The solution so obtained can be analyzed . For exampl e, a three-

-valued mapping function can be constructed In the hodograph plane; the

geometry of the branch line is studied as a function of the parameter w ,

which characterizes the velocity (Fig. 3). Al so the characteristics
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pattern (Fig. 4) is of considerable interest, particularly, when w > A2

(the point Kj. Analogous investigations have been made in [13,14] for

axisymmetric and three-dimensional rotational flows .

3.2 DOMAINS OF INFLUENCE IN FLOW AROUND BODIES

WITH A DETACHED SHOCK WAVE

Let us examine the boundaries of various kinds of minimal domains of

influence in the flow around smooth plane or axisynmietric bodies with a

detached shock. A schematic diagram of the domains of influence realized

for such flows in given in Fig. 5 (the velocity vector at the point K is

orthogonal to the sonic line).

The essential characteristics of each type of domain of influence are

the slope of the sonic line to the velocity vector on the shock (y) and on

the body (6). The minimum domain of influence shown in Fig. 5. holds for

the following combinations of values of these angl es [8,9,17]:

1st type : 
~r 

obl ique , 6 acute;

2nd type : 
~
‘ acute , 6 acute;

3rd type : 
~r 

acute , 6 oblique.

Since the angle 6 is always acute in the plane case (v = O) in the flow

around a convex profile (T heorem 13), the third type of domain of influence

is not realized . The transition from the first into the second type occurs

for N,, • 140(k) (Theorem 11). The graph of M0(k) is given in Fig. 2, where

P10=l.6358,l.6895 and 1.7421 for k=l .2 ,l.4, and 1.6 respectively. Flow patterns

and domains of influence for M ,, = 1 ,1.5,3,3.10 (k = 1.4 , circular cylinder),

obtained from numerical calculations , are presented in Fig. 6 (8,17,29].

The situation Is more complicated in the axisynmietric case (v ’l).

According to Theorem 12, the angl e r is acute for N, > 110(k). Therefore,
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even in the axisymmetric case the first type of domain of influence (if it

exists) can hold only for M,, < M0(k), when the angle y will be obl ique,

which governs the location of the sonic point of the shock wave with coor-

dinates R/y, N,, (R is the radius of curvature of the shock) relative to the

dividing curve f(M ,k), on which y = ½ir [9] (Fig. 2).

It is interesting to note that domains of influence of the second type

(y<ir/2) were realized in computations of the flow around a sphere (k = 1.4,

110(k) = 1.69) down to M,, = 1.1. The magnitude of the angle 6 varied thus in

this case: 6 = w/2 for N,, = N2 = 3.7 (the point K is on the body); for

N < N2 the angle 6 is acute (domain of influence of the second type); for

N,, > M2 the angl e 6 is oblique (domain of influence of the third type).

Flow patterns and domains of influence for a sphere (k=1 .4, and

N,, = 1.15, 1.5, 2,3,4), obtained from numerical computations , are presented

in Fig. 7 [17,28].

3.3 SUPER SONI C FLOW AROUND BLUNT BODIES

WITH A BREAK IN THE GENERATOR OF THE CONTOUR

Supersonic flow around blunt bodi es whi ch have a corner are calcula ted

by scheme I or II of the Dorodnltsyn-Belotserkovsk ii method of integral re-

lations [8,17,23,24,26] whose computational meshes are shown in Fig. 8 and

9.

The first scheme of the integral relations method is appl ied in both

the domain up to the corner and in the supersonic expansion around it , where

the governing equations are wr itten in a polar coord inate system centered

at the corner. The resulting system of ordinary differential equations is

Integrated numerically along the shock layer starting from the axis of sym-

metry. In the neighborhood of the corner, where the Prandtl -Meyer solution
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holds , a differential relation Is used which is the compatibility condition

along the second family of characteristics [17].

In the second scheme of the method (Fig. 9), the domain of influence of

the bluntness is delineated exactly because of the simultaneous construction

of the limiting characteristic , which substantially increases the accuracy

of the calculation in each approximation. Here the asymptotic Vaglio-

-Lauri n—Shugaev solution , reduced to a form convenient for ca lculations
[17,25,26], is utilized in the neighborhood of the corner (the domain G).

The solution which describes plane and axisymmetri c transonic flow of

a perfect gas in the neighborhood G of a corner has the form of a power

series in the distance n0 from the body surface (n0 = 0) with coefficients

dependent on the corresponding sel f—similar variable C:

= 1 + (k+l )~~’3 ~ u~(~)n 
(2H)/4 v = ! v.(c)n (3+1)/4

i=O ° i=O~ °

= (k +l)~~
”3s0n0

5”4 , no = n/r0* , (6)

= (s_s *)/r *

where U ,V are velocity components (referred to the critical speed of sound)

along the tangent and normal to the body surface in the subsonic neighbor-

hood of the corner; quantities at the sonic point on the body are denoted

with an asterisk (Fig. 8). The main term of this expansion described two-

-dimensional transonic potential flow in the neighborhood of the corner

(primes denote derivatives with respect to ~):

u0 = g ’ , v0=(7g - 5Cg ’)14

• where
• 

g ” = Bi (2l g — 25cg ’)/16, B~
1 = g ’ — (25 c 2)1l6.

It is interesting to note that the function g(c), corresponding to the poten-

tial of this flow, can be expressed in the parametric form [27]:

~ 15 L



g = (25/42)5 /8(5Z2+5Z_4)(l_ZY718(i+3Z/5Y 9/’8c 3 
,

3 8  5 8  3’8 1 (7)
C = —2.5 Z ( l—Z ) (l+3z/5) ‘ C , -5/ 3 < Z < l

If the scale factor C=l , then g ’ ( l) =O , where g~ ( l25 / 56)2~~
”5(-~)7”5 as

~-~= and g=C 3/3 - 675/96 io~
1”3
~
1”3 as c~ °° (refer to equation (8) below , for

the relationship between ~ and Z).

The terms of the expansion (6) of a higher order of smallness , which

take into account the rotational and axisymnetric nature of the flay (u1 ,

v~~i = 1,2,...), are found from the solution of linear non-homogeneous

ordinary differential equations . The functions u i , V i must satisfy the boun-

dary conditions in both the subsonic domain (zero normal component of velo-

city relative to the body on its surface) and in the supersonic domain where

the solution describes a flow of Prandtl -Meyer type.

An analytic solution of this system was found in [17,26] by F.V. Shugaev .

Let us represent the quantities u1,v1 as the sum of the particular solution P

uj
(U ,vi~~

) of the non—homogeneous system, and the general solution u1 ,

vj
(2) of the homogeneous system. If o1(c ) is introduced , so that the solu-

tion uj~
2),v1

P
~
2) of the corresponding homogeneous system would be written as

(2)  do 1 (2) — 7+i ~ 
dO1u.~ a~ 

, vi — -~— - ~~- C - ~~— ‘ S
then a second order equation is obtained to determine

(l6g ’—25~
2)o1

’ + [l 6g ” + 5(5—21)c]o1 — (7+i)(3-i)o1 = 0

Utilizing the parametric representation (7) of the function g(c) and

making the change of variabl es

~ z)
3
~
7
~
1)18,~ = -~ [2- 43/2(l-Z)~] (8)

we obtain the hypergeometric equation

6~(1— ~)t1
’ + (9+2i)(l_2

~
)ti - 2(7+i)(9+i)t1 = 0

Its solution is made up of, Jacobi polynomials 
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t1 = [~(l~~)](5/2+i/3)_
~
t { [ ( 1 _ ~)] (2 1 13+9/ ’2) } ,

which permit expression of the quantities u1,v1 In finite form.

Such a representation turns out to be quite convenient for calculations

in the G-domain since direct Integration 0f the origina l system would give

rise to definite difficulties . Computations have shown that it is sufficient

to use the first two or three terms of the solution (6)-(8) to construct

the flow in the neighborhood of an angular point; the Influence of the re-

maining terms is negligible.

Because the limiting characteristic of the domain of influence of the

bluntness approaches the corner from the supersonic side , expansion (6),

which is valid only near the sonic line in the supersonic domain , turns out

to be inadequate . Hence, it is necessary to continue .the solution into the

purely supersonic domain , which has indeed been found as a correction in

powers of r1 (Fig. 8) of the type z f1r1
aj to the fundamental Prandtl -Meyer

solution.

The customary al gorithm of scheme II is appl ied outside the domain G.

Systems of ordinary differential equations are integrated across the shock

layer between the bow shock wave and the body, while the additional condi-

tions of “joining” both solutions along the boundary of this domain make

the problem singl e—valued .

On the whole we have succeeded in obtaining al gorithms which enable us

to compute solutions with a high degree of accuracy . The solution outside

the zone of influence of the bluntness is constructed by the usual method of

characteristics. Some results of computations obtained by A. Bulekvaev ,

E.S. Sedova and F.V. Shugaev [17,26] are presented in Figs.lO-l2.

The geometry of the detached bow shock , sonic line and l imiting

17 
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characteristic for perfect gas fl ow ( k=l .4 , M ,=4) around a spherica l seg-

ment with a sonic corner followed by a reversed cone of ~=3O° half angle ,

are shown in Fig. 10; the corresponding features are shown in Fig. 11 for

x 33° and 43°30’ wi th N, = 10. The variation of the velocity components

(along n,s, respectively) on the axis of synmietry (1=0), the limiting char-

acteristic (i=l), and the intermediate line (i=2) is given In Fig. 12. It

is seen that the behavior of u1 on the flmiting characteristic depends

strongly on the half-angle of the afterbody.

3.4 FLOW AROUND BLUNT BODIES AT LOW SUPERSONIC VELOCITIES

As has already been remarked , the construction of special numerical

schemes would be required for the computation of mixed gas flows at low

supersonic velocities . In this case, scheme III of the method of Integral

relations [17,24,28] turned out to be the most effective, wherein a repre-

sentation of functions in two directions Is used , and the origina l equations

are approximated by a nonl i near system of al gebraic equations in a curvi-

linear computational mesh Fig. 13.

With these schemes F.D. Popov [17] carried out calculations for free

stream Mach numbers down to N,, = 1.05 for the complete set of gasdynamics

equations which included effects of vorticity . The calculation of sonic

flows (M,, = 1 , potential flow), where the shock stands off at an infinite

distance , was also carried out by the method of integral relations by

P.1. Chushkin [29]. The results of some of these calculations are illustra-

ted in Figs . 14-17. The geometries of the detached bow shock and l imiting

characteristic for flow of a perfect gas (k=1 .40) past a sphere are shown

in Fig. 14 and 15 for different N,. Experimenta l results of D.P. Bedin and

G.I. Mishin are indicated by the open circles . Fig. 16 shows the pressure
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distri bution along the surface of a sphere (referred to the stagnation

point pressure) for different N,. As the Mach number decreases, the pres-

sure distribution differs more and more radically from the Newtonian dis-

tribution often utilized in the approximate theory of supersonic flow.

In Fig. l7d computational results (solid line) are compared wi th the

experiments of V.G. Maslennikov et al. [301 for the bow shock standoff dis-

tance e
0 

along the axis of syninetry of a sphere as a function of the free-

-stream Mach number.

G.M. Ral binkov made a detailed experimental investigation of the flow

behind a detached shock and presented the results in the form of tabl es

and graphs [17]. Figure 17 (a,b,c,e,f) give a comparison between the

experimental data of G.M. Riablnkov and the results of calculations by the

method of integral relations for a sphere (6=1 ) and ellipsoids of revolution

(6=0.5 and 2 where 6 Is the ratio between the vertical and horizontal axes

of the ellipsoid). The pressure distri bution along the body, as wel l as

the shape and location of the bow shocks, are presented. It is seen that

agreement between theoretical and experimental results is very good every-

where.

S t •
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4. SECONDARY SHOC K WAVES

4.1 FORMATION OF A SHOCK WAVE WITHIN THE MINIMUM-DOMAIN OF INFLUENCE

It has been shown in [6] that potential flow in a local supersonic zone

of definite type (“zone I”) is spoiled if an arbitrarily small l ength .of the

profile segment bounding this zone becomes a straight line . Zone I is charac-

terized by the fact that both characteristics go from each point of the pro-

file segment bounding it to the sonic line (see Fig. 18).

It turns out that an analogous result holds even in the case of sym-

metric rotational flow around a smooth convex profile with a detached shock

[4]. The existence of zone I here follows from Theorem 13 (Figs. 1 , 19).

Let us designate zone III as a subsonic domain of monotonely decreasing

dependence of the entropy on the stream function. In the case of a strictly

convex profile , there exists an C-neighborhood of the sonic point of the

profile , whose mapping in the hodograph plane is single-valued .

THEOREM 19. A profile segment bounding an C—neighborhood of the sonic

point of the profile in zorn. III , whose mapping is single-valued in the hodo-

graph plane , cannot contain a straight-line section [4].

Therefore , making some part of the profile in the C-neighborhood (for

x > 1) into a straight line results , independently of its l ength, either in

such a deformation of the sonic line or the characteristics so that zone III

will not contain the straight line section , or in the formation of branch

lines which violate the one-sheetedness of the mapping of the origninal

• c-neighborhood, or in the formation of a shock wave. Apparently, the first

does not hold , since otherwise the solution of direct flow probl em would not

be uniqu e or there would not be a continuous dependence on the boundary con-

ditions. For the direct flow problem It can be shown that violation of the
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one-sheetedness of the mapping is also Impossible because in this case

changes would occur in the flow which depend not on the l ength of the recti-

fied section , but only on its location (under the condition that the flow in

zone III remains continuous). These considerations lead to the following

theorem.

THEOREM 20. If the problem of external flow around a prof i le  wi th a

detached shock is correct, then its solution Is not generally continuous

(In the domain behind the detached shock [4]).

4.2 SPOILING THE CONTINUOUS SUPERSONIC FLOW DOMAIN IN THE CHARACTERISTIC

TRIANGLE BOUNDED BY THE PROFILE AND THE AJOINING N-DOMAIN

We assume the existence of a smooth convex profile such that the flow in

the region behind the shock is continuous , and the entropy in the M-domain

monotonely decreases wi th the stream function (i.e., the shock has turned the

convexity towards the free stream). It follows from Theorem 13 that the

boundary of the N— domain contains a segment of a characteristic of the first

family AB , which has one end on the profile, and the other on the sonic line

(Fig. 20).

Let ~ denote the triangle bounded by a characteristic of the first

family AB , a characteristic of the second family AC , and the profile segment

BC. The triangle ~ adjoins the N-domain from downstream (see Fig. 20).

THEOREM 21. Suppose part of a profile downstream of some point E is

replaced by a straight line tangent to this point, and then consider up-

• stream displ acement of the point E. Before the point E enters into the

N—domain the continuous supersonic flow in the triangle ~ collapses : either

a secondary shock wave or a local subsonic zone arises in the flow [15].
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In flow about a semi-infinite blunt wedge with a detached shock wave ,

eIther an imbedded shock or a local subsonic zone of isentropically retarded

gas (Fig. 20) wIll arise as the vertex angle is gradually increased so long

as the flow far downstream of the bow shock remains supersonic. An analogous

result is obtained in the case of flow about a profile with a corner from

which a sonic line originates .

We shall restrict the proof of the preceding theorem to the case of a

smooth convex profile in incident flows with N, < M0(k) (Fig. 20). In this

case the first type of minimal region of influence of the blunt nose is found ,

bounded in the shock layer by the characteristic of the first family AB.

Integrating the compatibility relations on the characteristics in the

direction of increasing entropy from point A to the profile contour, we

obtain [15]

BR ~ 
BA 

+ I.~ = 8A + •�•~i~ ~ 
sin2u ds

(AB )
(9)

B B - I = — f sin2ads

where a = arc sin (1/N), B is the angle of inclination of the velocity vector

to the axis of symmetry and R is the gas constant. Since both integrals are

positive there must exist a point D on the profile contour, lying between

points A and C in which BD =

We subject the profile to a continuous deformation , replacing part of

its contour located downstream from some point E, by the tangent to the con-

tour at this point and then displacing the point E upstream from its aft-most
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position all the way up to the point D. We shall show that just as soon as

point E coincides with point D, either one of the aforementioned assumptions

Is contradicted or the minimal region of Influence is reconstructed . Indeed ,

E4DF] 
= 

~~ V E EDC] ~~~~~~~~ f sin2a ds

where P is the point of intersection of characteristics of the second family

AC with characteristics of the first family DP.

Let us now define the point G on the original profile by the equality

In view of the convexity of the profile, point G lies between points 0 and

C. If point E Is located between points D and G, i.e., if

~ 
8E > 8G

then we obtain

Bc BE > 8G ~D - C 8A �W~ E*[DC] (iC)

i.e., > 3A - ~ which contradicts ~he second of the inequalities (9) .

Thus , while the problem of determining cupersonic continuous flow in

the characteristic triangle ABC from Cauchy data on the characteristic AB

and the impenetrability conditions on the original profile BC had a solution

in the large, this is no longer true for the profile deformed in the manner

S 
indicated .

In an analogous way the case N,, > 110(k) can be examined, as can the case

in which the sonic line eminates from the corner on the profile. Results of

numerical computations agree very well with the results of the analytical

studies cited in this section for smooth bodies .



4.3 FORMATION OF IMBEDDED FLOATING SHOCK WAVES IN FLOW S PAST

PROFILES WITH A CORNER

Let us now examine [33] the flow about a profile wi th a convex corner

immersed in a uniform supersonic stream , especially when changes in entropy

on the shock wave can be neglected . We shal l also take advantage of the

transonic approximation to the shock polar and the characteristics inter-

secting it.

First consider supersonic flow past a wedge-slab body (a profile with

straight-line segments OA and AF in Fig. 21) with an attached shock wave.

In Fig. 2la , OB is the straight-line segment of the shock wave; AB ,AD ,AC

are the straight-line segments of characteristics of the first family while

BE is a characteristic of the second family. The region behind the shock

wave in physical space is mapped onto the velocity hodograph plane n,8 where

x is the velocity coefflcient ,Bis the angle of inclination

of the velocity vector to the axis of symmetry , k is the adiabatic index ;

the axes ~,y are directed verticall y upward , the axes A ,x horizontally to the

to the right. The mapping of the region OBEAO (Fig. 21b) is the segment of

the characteristic a1a2 of the second family B = C - (2/3)r~
3
~
’2; the point a1

with coordinate lies on the shock polar 8’m~f
112(r~ - ~)l/2(~~..~), the point

a2 l ies on the n axis. The equations of the characteristics and shock polar

are given in the transonic approximation.

Theorem 22. If the flow field about a profile wi th straight line seg-

ments OA and AF behind an attached shock wave is everywhere supersonic, then

it cannot be continuous.

Let us examine the fan of characteristics of the first family emanating

from the corner point A (subsequently denoted as fan A) in the physical plane S

(Fig. 2la). If the flow behind the shock wave is everywhere supersonic and
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continuous , then every characteristic of the fan either intersects the
shock wave or extends out to infinity . Corresponding to this, in the riB

plane , each characteristic of the first family passing through the charac-
teristic a1a2 must end up either somewhere on the shock polar or at the point

n , which also lies on the shock polar and represents the mapping of the

uniform rectilinear flow at infinity . This represents a contradiction

inasmuch as characteristics of the first family emanating from points of the

segment Ca2 in the riB plane cannot end up on the shock polar;. consequently,

if the flow is to be supersonic a secondary shock must arise .

This theorem with appropriate changes in formulation can also be

extended to the case of a detached shock wave.

It can be shown [33], that the beginning of the shock does not lie at

the apex of the convex angle , but again in the region covered by the charac-

teristics of the fan A. The imbedded floating shock is inclined downstream

from its origin. The end of the shock of the first family (where it degener-

ates into a characteristic) lies at an Infinite distance from the profile.

If a shock of the first family intersects the main shock wave or another

shock, then at the point of intersection its intensity does not vanish.

The proof of these properties for IFS* is based on the one-to-one pro-

perty of the mapping in the hodograph . plane of the apex of the convex angle

and its neighborhood covered by characteristics of the fan A.

We denote by 
~R 

the region bounded by the shock wave, the segment of

profi le OA , the imbedded floating shock, and the last characteristic of the S

S fan A. In accordance with theorems of [33], the beginning ’ of the shock lies

either on this characteristic or on a characteristic of the first family

located downstream of it. A study of the mapping of the region 
~R 

in the

* IFS - Imbedded Floating Shocks.
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hodograph plane leads to the conclusion that the flow in the region 
~R 

does

not depend on the shape of the profile over the segment AF. This feature

was also observed in the numerical solutions of [17]. In the flow about a

profile with a straight—line segment AF the last characteristic of fan A

represents a branch li ne.

Finally, the following theorem can be established :

THEOREM 23. In the flow about a profile with a straight-line segment

AF with = 0 the imbedded shock does not intersect the bow shock wave at a

finite distance; apart from that, there are no other imbedded floating shocks

of the first family.

In case there exists a second shock in flow about a profile with an

afterbody segment AF having 8
~ 

> 0, it must intersect the bow shock wave.

Up to their point of intersection behind the bow shock wave , B < 8~. The

bow shock wave after the point of Intersection wi th a second shock (or the

point of intersection with the last characteristic of the fan A , if there

is no second shock) consists of an infinite number of segments with curva-

tures of opposite signs*; the oscillations in the angle of inclination of

the shock wave decay with increasing distance from the profile. This result

also agrees wel l with numerical results for bodies wi th corners [17,26].

4.4 CALCULATiON OF FLOATING AND SECONDARY SHOCK WAVES

Imbedded “floating” compress ion shocks are formed behind the bow shock

in the ca lcula tion of supersonic flow around blunt wedges and cones (smooth,

* The property of oscillation of the angle of incl ination of the bow
shock is found in connection wi th the theory of propagation of dis-
turbances in the case of flow about wedge-shaped profiles .
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with a break in the generator) in definite flow regimes [16,17]. These

results demonstrate that effects due to viscosity (i.e., boundary

layer separation) do not underlie such phenomenon (confirmed by

experiment). In certain regimes of supersonic flow about blunt bodies

(cone s, wedges , etc.) imbedded floating shocks (IFS) arise in the flow field

behind the bow shock which have a significant effect on their aerodynamic

characteristics . This phenomenon was also noted earlier in experiments ;

its cause, however , was not particularl y wel l understood . It was suggested

by M.J. Lighth ill , for example , that the shock was generated as the resul t

of separation and subsequent reattachment of the boundary layer in the vi-

cinity of the corner [33]. The reasons for the generation of IFS, the

conditions under which they arise (body configuration , flight regime , etc.),

and the properties of such flows have not been adequately studied to the

present time. 
S

We present here certain results of computations related to the genera-

tion of IFS. The computations were carried out by the aforementioned me-

thods within the context of an ideal gas for both smooth blunt bodies and

profiles with a sonic or supersonic corner [17).

Let us first consider those properties which lead to the generation of

IFS. In flow about blunt cones or wedges there occurs a rapid dece leration

of the ‘flow in passing from the blunt nose portion to the straight portion

of the contour. This results in crowding together of the characteristics

and In the appearance of compression waves emanating from the body surface
S behind the corner. In those cases when the pressure gradient downstream

from .the characteristic bounding the region of influence of the blunt nose

is large and the shock layer is sufficiently thick the compression waves

coalesce into a shock wave of Initiall y zero intensity which arises in the



interior of the flow.

An Imbedded floating shock by analogy with characteristics , will be

identifi ed as a shock of the first (second) family if the tangent to it is

achieved by rotating the velocity vector through a positive (negative) acute

angle. Shocks of different families do not connect smoothly wi th each

other.

Every instance of spontaneous generation of shock waves Is always

associated with the intersection of characteristics of one family. In such

flows there arises an entire region doubly covered by characteristics of one

family. Furthermore, the cusp of the envelope of these characteristics

marks the beginning of the shock wave. The cusp it.~elf does not yet belong

to the discontinuity . The derivatives of velocity , density , pressure, etc.,

become infinite at the cusp, and hence the intensity of the IFS at this

point must be zero and a “real” shock wave arises only subsequently.
In practice it is usually not necessary to determine exactly the point

at which the envelope has a cusp or to start out the IFS at zero intensity .

The shock wave is considered instead to emanate from the point of intersec-

tion of those characteristics of one family which are followed in the compu-

tations. It should be noted that IFS, in view of their relativity weak

intensity, can be rigorously constructed numerically only by direct applica-

tion of the method of characteristics.

Fig. 22, taken from [34], shows examples of numerical resul ts for flow

of an ideal gas (k=l .4) at M, = 100 pas t a nose cone of semi ver tex angle

= 54•50 with conical afterbodies of various half angl es w
1 

= 00,100 and 200 .

The generator of the body of revolution is described by the cross-hatched line

ACB ; AD represents the bow shock wave and BD, the characteristic of the

second family along which characteristics of the first family intersect up
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to point H (if such exists ) denoted by a dot. In Fig. 22c the line CH Is

the last characteristic of the fan emanati ng from point C. The dot-dash line

in Figs. 22a and 22b represents the pressure on pointed cones with semi

apex angles of 200 and 100, respectivel y, for the same Mach number , ?4

Lengths are referred to the radius of the cone at the corner and the surface

pressures is divided by the stagnation pressure .

As indicated by the pressure distributions , in the third case , the IFS

is generated inside the flow field , in  the second , immediately behind the

bow shock wave , and In the first case there is no IFS in the shock layer .

Furthermore, it should be noted that as the angle of the conical afterbody
is decreased , there is a corresponding increase in the pressure gradient at

the corner, and the shock layer becomes relatively thicker .

The calculations were obtained by the method of characteristics for an

ideal gas; the initial conditions for the calculations were obtained from

the exact solution for a pointed cone , insuring a high degree of accuracy

in the computations. These examples show that the generation of IFS is not

S dependent on flow properties related to viscosity (i.e., separation of the

boundary layer) and moreover that their occurrance is not related to the use

of “coarse” initial data for the numerical calculation of the supersonic

region by the method of characteristics .

Thus the regimes of flow about blunt cones and wedges which are condu-

cive to the development of a positive pressure gradient behind the corner

and a sufficientl y thick shock layer lead to the generation of IFS, the posi—

tion of which Is determined by the intersection of two neighboring charac-

teristics of the same (first) family.
S 

We shall now consider several more exampl es. Shock waves (Fig. 23a)

and surface pressure distributions (Fig. 23b) are shown for plane (v O) and

-

. 
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b
axisyimnetric (vl) bodies described by a circular nose with a corner at

~=68° and w=O , while Fig. 24 shows the pressure distri bution along smooth

circular cones (solid line) and wedges (dotted line) for various apex

angles [8,16] . From these figures it is apparent that, other things being

L equal (the flow regime , contour shape , etc.), the plane blunt body , in con-

trast to the axisymetric (or a body with a sonic corner in contrast to a

smooth one) introduces a greater disturbance into supersonic flow, and the

resulting shock layer is thicker . Furthermore, in the case of blunt plates

w 0  and wedges w~O (plane flows), and also for bodies wi th a sonic corner

(Fig. 25) a zone of overexpansio n arises immediately after the blunt nose

followed at the shoulder by a positive pressure gradient which increases

rapidly wi th increasing x. It follows that, all other things being equal ,

conditions more favorable to the generation of IFS are realized in the plane

two—dimensional case or for bodies with a sonic corner .

Fig. 26 shows the main bow shock wave and IFS which arise in the super-

sonic zone in the case of flow about spherically blunted cones , which have

a sonic corner (x=30°; k=l.4) [17]. Results are shown for cones wi th semi

vertex angles of w=-5°, 00, 100 and incident Mach numbers of M = 4 (the

solid curve) and M,, = 6 (dotted) curve. The intensity of the imbedded

floating shock first rapidly increases and then gradually decreases with

increasing distance from the blunt nose. In the cases cited above the angle

through which the flow passing through the imbedded shock is deflected

ac hi eves a max imum of only a few degrees , while at a distance of some 30 to

40 nose radii this angle amounted to only a few seconds. V.F. Ivanov first

computed tabl es of the locations of floating shocks [17]. It is Interesting

to note that when floating shocks formed, the shape and location of the main

shock waves (in the region lying ahead of their intersection with secondary
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shocks) coincided (for identical values of incident Mach number) for various

half-angles of the cone In the range -l0~ < w < +10° (Fig. 27). This pro-

perty is explained , apparently, by the substantial extent of the region of

influence of a blunt nose, which , for such regimes of flow, includes a rela-

tively large portion of the main shock wave. Fig. 28 illustrates the effect

of the corner point on the position of the limiting characteristics.

An analogous situation regarding the region of influence Is also ob-

served for smooth blunt cones . Fig. 29 shows the coordinates Sof the shock

wave for smooth cones with spherical noses . The coordinates of the point B ,

through which passes the characteristic bounding the region of influence

of the nose are shown for various cone half-angles w.

FIg. 30 shows examples of flow with IFS obtained by V.1. Kosarev for

axisymmetric doubl e-cone bodies with c~ = 00 and 5° at N, = 6 (kl.4); these

conditions insure isentropic compression of the flow at the juncture between

the cones. Flow patterns (IFS are shown by dotted lines) and longitudinal

surface pressure distri butions are shown for the planes • = 0, ,r/2, 11. Here,
too, the generation of IFS is clearly seen when the conditions of a suffi- 

S

ciently thick shock layer and positive pressure gradient are present (a = 00;
0 

S

a — 5 at - 0 , ir/2
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5. LOCAL SUPERSONIC ZONES

Recently, systematic calculations of “supercritical” and transonic ro-
tational flows have been carried out by the Computing Center of the Academy

of Sciences of the U.S.S.R. [37,38]. These apply to plane and axisyninetric

bodies and are based on the method of “large particles” [31,32,37]. In this

paper, without discussing the details of the method , we shal l only be con-
S 

cerned with the formulation of the boundary conditions of the probl em for

this class of flows and present some computational results.

The development of the unsteady “large particles” method was stimulated

by the works of F. Harlow [35) and others. We adhere to the “particle-in-

-cell” method . Nevertheless , it seems reasonabl e that, for gas dynamics

problems, we should not confine ourselves to the discrete model of a con-

tinuous medium comprising a combination of particles of a cell of fixed mass.

Instead, we cons ider continuous flows of “large particles ” whose mass coin-

cides with the mass of an Euler cel l at a given instant of time . In this

formulation each time cycle is divided into three stages (“Eulerian ” , “La-

grangian” , and “Final”), with greater attention given to the development of

a numerica l a lgorithm which might be used for a wide class of probl ems con-

cerned with motion of a compressible gas [31 ,32,35—38).

As a resul t, we have obtained some diver gence form (conserva tive.), dis-

sipative-steady difference schemes which allow us to consider a wide class

• of transonic problems as well. Developments in this direction have been

carried out since 1965.

• 5.1 “LARGE PARTICLES” METHOD

Let us briefly describe the main principl es of the ~large particles”

method . The region of integration is covered by a fixed (over space) Eu’er
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net composed of rectangular cells with sides ~x , ~y (or Az, Ar In a cylindri-

cal coordinate system).

In the first (“Eulerlan ”) stage of calculations only those quantities

change which are related to a cel l as a whole , and the fluid is supposed to

be momentarily decelerated . Hence, the convective terms of the form

div(~p~), where 4 ( l ,u ,v ,E), corresponding to disp lacement effects, are omit-

ted in the governing (initial) equations . Then it follows from the equation

of continuity , in particular , that the density fiel d will be “frozen” and the

Initial system of equations will be of the form

p + = 0, p + = 0, p + div(p~) = 0 (5.1)

Here we have used both the simpl est finite-difference approximations

and , to improve the calculation stability , the schemes of the method of inte-

gral relations [36], in which “sweeping—through” approximations of the inte-

grands with respect to rays (N = 3,4,5) are used [37].

In the second (“Lagrangian ”) stage we find mass flows AMn across the

cel l boundaries at time tn + At. At this stage we assume the total mass to

be transferred only by a vel ocity component normal to the boundary . Thus,

for instance ,

AM?.~~,j 
= (P~.~~~J) 

(u~+~,j) A~ At , etc. (5.2)

The brackets( ) denote the values of p and u across the cell boundary. The

choice of these values is extremely important since they substantially infl u-

ence the stability and accuracy of the calculations . Consideration of the

flow direction is essential to the various possible ways of writing down

• AMA .

First and second order accurate representations of AM” are considered .

These are based on central differences , without account being taken of the

flow direction , as wel l as by means of the discrete model of a continuous

- S 5
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medium comprising a combination of particles of a fixed mass in a cell.

Lastly, in the third (“Final”) stage we estimate the final fields of

the Euler flow parameters at the instant of time tn+l = t’1 + At (all the er—

L. rors in the solution are “removed”). As was pointed out the equations at

thi s stage are laws of conserva tion of mass N, momentum and total energy

E written down for a particular cell in the difference form

= F” + EAF’
~dry where F = (M,,E) (5.3)

According to these equations, inside the flow field there are no sources

or sinks of M, P and E and their variations in time At is caused only by in-

teraction at the external boundary of the flow region.

It follows from the very character of the construction of the calcula-

tion scheme that a compl ete system of nonstationary gas dynamics equations is

essentially solved here, while each calculation cycle represents a compl eted

process in a given time interval . Consequently, the governing nonstationary
- equations , subject to the boundary conditions of the probl em, are satisfi ed

so that the real fluid flow at the time in question is determined .

Thus , the “large particles” method allows us to obtain the characteris-

tics of nonstationary gas flows and as a consequence of their stability , the

asym ptotic steady state as well . Such an approach is especially applicabl e

to problems in which a complete or partial development of physical phenomena

with respect to time takes place. For example, in studying transonic gas

flows and flows around finite bodies , flow in local supersonic zones and se—

paratlon regions develop comparatively slowly while the major part of the

field develops rather rapidly. Our investigation is wholly devoted to sys-

tamatic calculations of a wide class of compressible flows involving tran-

sonic regime, discontinuities , separation and “injection” .

Th divergence forms of the differential and difference equations are
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considered in the “large particles ” method ; the energy relation for total

energy E is used ; different kinds of approximations are used in the 1st and

2nd stages ; additional density calculations are introduced in the final

stage, which hel ps to remove fluctuations and ma kes it possible to obtain

satisfactory results with a relatively small network (usually 1-2.5 thousand

cells are used). All this results in completely conservative schemes , i.e.,

laws of conservation for the whol e net region are an algebraic consequence of

the difference equations . Fractional cells are introduced for the calcula-

tion of bodies wi th a curvature in the slope of the contour [37] .
S 

The investigation of these schemes (approximation probl ems , viscosity ,

stability , etc.) was carried out successively for the zero, the first and

S the second differential approximations [31 ,32,37]. These investigations

S show that the “large particles” method yields divergence-conservative and

dissipative—steady schemes for “sweeping-through” calculations . This enabl es

us to carry out stable calculations for a wide class of gas dynamics problems

without inLroducing explicit terms with artificial viscosity . It may be of

particular significance in studying flows around bodies with a curvature in

the slope of the contour since the ways of introducing explicit terms wi th
S artificial viscosity are different for whol e and fractional cells. Moreover,

by varying only the second stage of the calculation procedure we can arrive

at the conservative “particle—in—cell” method so that the calculational S

al goritPin Is of general use.

As for discontinuities the approximate viscosity in the scheme (dissi — S

pative terms in difference equations ) results in stable calculations with a

“smear ing” of shock waves over several computational cells and the formation

of a thick boundary layer near the body. It should be stressed that the

magnitude 0f the approximate viscos ity is proportional to a l ocal flow
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vel ocity and to the dimensions of the difference net , therefore its effect

Is practically evident only in zones with large gradients .

The boundary conditions of the probl em were realized by introducing

layers of “fictitious” cells along the region boundaries [31,32 ,37] . Condi-

tions on the body closely approximate the “no—slip ” condition. For examp le ,

in Fig. 31 where the density profile is given for the conditions of “no-slip”

(dashed line) and vanishing of the normal component of velocity , Identified

“non-fl ow” (solid line), even in the vicinity of the body the’ difference

between these two cases is insignificant and at some dista nce from the body

it disappears entirely.

It turned out that the right hand “open ” boundary of the region intro-

duces the greatest distrubances in the calculation of transonic gas flows.

To evaluate its influence and determine the optimum dimensions of the net,

the calculations were carried out for nets of different sizes; “matching ” of

the flow fields was enforced by utilizing one of the internal columns as the

initial one for a new field. Finally a comparison between the asymptotic

(steady) state and experiment was made as wel l [31,32,37,38] .

Fig. 32 shows the resul ts of the calculations of a ”super—crltical” flow

(N, = 0.9) over regions of various extent, t/R=2 to 3 in  the flow around a

semi—finite cyl inder (as if the body Were “moved into” the stream). If the

flow field ahead of the body is established rather quickly, then the flow
S downstream from the corner become steady only past L/R 2 to 3. The resul ts

of the calculations with a coarse net are shown in Fig. 32d while the region

•of Figs. 32a-32c (which utilize about 2.5 thousand nodes) is indicated by a

dashed line.

A comparison is given In Fig. 33 between the results of the calculations

(sol id l ines ) an d anal ytical data for the asymptotic steady state (dashed
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line) for a sonic flow around the same body [31 ,32] . In this figure “1” is

the sonic line, “2” the limiting characteristic curve , “3” Is the line show-

ing the departure of the velocity vector from the horizontal , and “4” is the

shock wave. It should be noted that good agreement is observed with the

analytic data already at a distance of 2-3 radii from the body .

5.2 CALCULATION OF TRANSONIC AND “SUPERCRITICAL” FLOWS

Some computational results obtained by the “large particles ” method

[37 ,38] for transonic fl ows around two-dimensional and axisymetric bodies

will now be described . For purposes of this discussion the supercritical

regimes of transonic flows around bodies will be characterized by the value

of the critical Mach number of the oncoming flow M (i.e., when a son ic

point first develops on the body) as wel l as by the extent of the l ocal

supersonic zone (as compared to a characteristic dimension of the body) and

by its intensity (say the maximum supersonic vel ocity 11 realized in the

zone).

Fig. 34 (series 1 - 8) presents the flow field patterns (lines

M = constant) for a 24% circular arc profile (v = O) extending from purely

su bson ic (N, = 0.6) to supersonic regimes (N, = 1.5). Successive flow fields

for increasing M, depict transition through the critical Mach number (here

M* = 0.65) and the formation and development of a local supersonic zone.

The supercritical flow around this profile is observed for 0.7 <

(Figs. 34 :2-7). One can distinctly see the position of the shock in the

• region of crowded N constant lines which , together with the sonic line ,

boun d the local superson ic flow . The reg ion of su bson ic ve loc iti es is loca ted

behind the shock wave. When the velocity of the oncoming flow Increases,

the flow disturbances produced by the body die out at a large distance from

3~ 
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the body. With N, > 0.9 the zone becomes considerabl e both in size and in

intensity (supersonic velocities up to M = 1 .7 to 1 .8 are attained ) and In

case of a sonic fl ow (Fig. 34.7) lines of the level M = 1 extend to infinity.

The asyninetry of the whole flow pattern is noticeable (even at purely

subsonic vel ocities - Fig. 34.1) which resul ts from non—potentiality of the

flow (supercr itical regimes) and from the presence of viscous effects as

well (formation of a wake behind the body) .

In the case of supersonic flow past this profile (Fig. 34.8 , II, = 1 .5)

a shock wave developes ahead of the body which bounds the disturbed region.

Behind the wave , subsonic vel ocities occur in the vicinity of the axis of

symmetry away from which the fl ow velocity along the contour of the body in-

creases an d, as a resul t, a “term ina l ” shock occurs near the stern of the

body.

For compari son the results of calculations by the above method for flow

around a 24% axisymmetr ic “spindlelike ” body (v = 1) are g iven in Fi g. 35

with 0.8 < M, < 2.5. In this case a critical regime already occurs at

M* = 0.86 ; local supersonic zones as compared to the plane case are less de— 
S

veloped and of weaker intensity (for exampl e , values of N 1 .3-1 .4 are

realized), although , naturally, the main features of a transonic flow are

quite evident (see also [38]).

In Fig. 36 a comparison is given between the flow fields calculated by

the above method (solid line) and those of the Wood and Gooderum experiment

(dashed line) for subcritical (Fig. 36a , N = 0.725) and supercrltlcal (Fig.

• 36b, M* = 0.761 ) flows around a 12% profile (results of both the calcula tions

and the experiment indicate M = 0.74).

As compared to the corresponding plane cases with the same value of 6

it can be seen that , in  ax l symnm etr ic flows , an increase is seen in the critical
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Mach number (with 6 = 12%, from 0.74 to 0.89, and from 0.65 to 0.86 for ts = 24%).

In axisymmetric flow local supersonic zones are of smaller size and lower

intensity, for instance , the maximum Mach number in these zones is M 1 .2

for v 1 as compared to ~ = 1.5 for v = 0 when ô = 12%, and ~ = 1.3: 1.7 when

= 24%. However greater asymmetry of the flow picture about the vertical

axis is observed for axisyninetric bodies ; behind the body we find a stronger

wake , which exerts quite a marked influence on the flow picture , and finally,

the shock layer is considerably narrower in supersonic axisymmetric flow .

Analysis of internal check tests as wel l as the results of various com-

pari sons indicate that the computationa l error of the “large particles ” me-

thod usually does not exceed several per cent. These calculations were

carried out using a Soviet, BESM-6 computer ; the time of the calculation in

this case did not exceed an hour.

S 
Some numerical results obtained by the large particle method for flow

S past more complicated types of bodies wi ll now be considered . In Fig. 32 we

have plotted the M = constant lines for supercritical flow past a senii-infi-

nite cylindrical block (here , M* 0.70 , which is in good agreement with the

experimental value M* = 0.69 obtained by Stanbrook [40]) while Fig. 37 refers to

the case of sonic flow past a space vehicle of the Apollo type. The stream-

lines , bow shock wave and sonic line in supersonic flow past a short cylin-

drical body and a sphere are shown in FIg. 38. These numerical results 
S

clearl y indicate the formation , behi nd “badly streamli ned” bodies (Figs. 37

and 38), of clos ed recircula tion zones , localized behind the tall , which are

• isolated from the external flow by a contact surface (marked by a dashed

line ’ in Fig. 38). The flow in the recirculation zones is strongly subsonic

and extremely rarefied (i.e., both the gas density and pressure are small in 
S

them).
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An important pratical application of the large partical method is de-

scribed by near sonic flow (N, = 1) past a body that has a jet (with para-

meters Mc~ ~c’ 
U
c~ 

vc) “blown out” opposite to the main flow, thus changing

the enti re flow field. In this case, auxiliary conditions for the jet

flow must be prescribed , usually sonic vel ocity, with the jet parameters

specified in appropriate cells on the body surface. The field of constant

Mach number contours are shown in Fig. 39a, for sonic flow (N = 1.0) past

a sphere which has an axial sonic jet (Mc = 1.0; ~c 
= 2.9, uc S = 1.0, Vc = 0),

issuing upstream from a nozzle l ocated on its axis of symmetry ; Fig. 39b

gives corresponding results for supercritical flow at N, = 0.9. In the pre-

sence of a jet the flow around the body becomes much more compl icated and is

unsteady in the mixing region. The flow field splits into two sub-regions ;

the gas coming from the jet passes through one of them , and the external flow

through the other . The trend towards this division may be seen in Fig. 39a,

and becomes even more evident in the supercritical case (Fig. 39b). This de-

marcation is given by the contact surface (shown by the dashed line in Fig.

3gb) which separates the external flow from the injected gas. A separated

wake is also formed behind the body.
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6. ON THE QUESTION OF EXTREMAL ITY OF THE ENTROPY ON

THE STAGNATION STREAMLINE IN THREE-DIMENSIONAL FLOW

Of great interest in three-dimensional supersonic flow is the question

as to whether the stagnation streamline (streamline arriv ing at the body)

passes through a point on the shock where it is orthogonal to the velocity

vector .

It has been shown in [18] that if the entropy does not have a maximum

on the surface of an axisymmetrlc body in supersonic three-dimensional flow,

then the vorticity on the body surface is a discontinuous function of the

angle of attack. This property was found under the assumption that the cur-

vature of the shock was finite at its point of intersection wi th the axis of

symmetry (it was later established that this assumption is always true).

An investigation of the l ocal three-dimensional flow in the neighborhood

of the stagnation point on a body showed that the vorticity is generally not

bounded on the body surface [19]. In the general case of flow around a body

with a detached shock , an analogous result has been obtained under the as-

sumption of the existence of a stagnation streamline in [20].

THEOREM 24. For the normal derivative of the velocity on a body surface

to be bounded , it is necessary that

5 conditions for the existence of an ex-

tremum in the entropy be satisfied on

the stagnation streamline.

~~ 
0 Figure 40. SpecIal coordinate system 

S

generated by the stagnation

streamline.

~~~~~~~~~~~~~~ •
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If these conditions are not satisfied , then the body surface is almost

everywhere the envelope of surfaces of equal velocity magnitude; a weak dis-

continuity is propagated along two body streaml i nes which emerge from the

stagnation point (Fig. 40). The construction of an appropriate exampl e in

[20] showed that the extremality of the entropy on the stagnation streamline

is generally insufficient for the boundedness of the normal velocity derivative

on the body surface.

It should al so be noted that an approximate solution of the probl em of

three-dimensional hypersonic flow around a body [21] has shown that the en-

tropy does not take on a maximum value on the body surface. An analogous

deduction has been made in [22] from an experimental investi gation of the

probl em . Numerous calculations ([17] et al.) of the flow around axisynine- 
S

tric bodies at angles of attack over a wide range of flow conditions S

(1 < M, < 20, 0 < a < 25°) have shown that the difference in entropy on the

body surface from the maximum value Is of the same order as the computational

error.

Therefore , although the connection between the extremum of the entropy

on the stagnation streamline and the flow properties at the body surface has

indeed been established in the papers cited , the question posed herein re-

mains open for a rigorous theoretical anal ysis.
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Fig. 6. 1bn~ ins of influence in flows of a perfect gas (k - 1.4)
around a circular cylinder: I for M, < 1.69 ; II for M , > 1.69.
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