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INVESTIGATION OF TRANSONIC GAS FLOWS

0.M. Belotserkovskii *

This report considers some problems of transonic gasdynamics related
to the theory of planar and three-dimensional flows of a perfect gas which
have been worked out mainly by the author and his collaborators. Results
of analytical investigations of a number of exact properties of solutions
which describe the flow around bodies with a detached shock, obtained by
E.G. Shifrin, 0.M. Belotserkovskii, et al., are presented without proof in
the form of theorems (proofs are to be found in the papers cited). Results
of numerical solutions (due to 0.M. Belotserkovskii, Yu. M. Davidov,

F.D. Popov, et al.), obtained by the methods of integral relations and
"large particles", are presented for the compiete problem of transonic flow
around blunt bodies whose profiles possess sharp corners. The boundaries
of distinct minimal domains of influence in mixed flow about blunt bodies

are also examined.

* Professor, Member of the Academy of Sciences of the USSR, Computing
Center, Academy of Sciences, 40 Vavilova St., Moscow V-333, U.S.S.R.
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PREFACE

Selected results of this report and its companion "New Computational
Models in Continuum Mechanics," were communicated in seminar lectures given
by Prof. Belotserkovskii at several American universities during a 4-week
visit in November - December, 1978. In response to numerous requests Prof.
Belotserkovskii made available the manuscripts of two reports which describe
in some detail the computational techniques employed in the numerical solu-
tions of the problems surveyed in his seminar talks.

This report surveys results of research at the Computational Center of
the USSR Academy of Sciences, Moscow, over the past decade in some problems
of planar and three-dimensional transonic flows of a perfect gas. Although
most of these results have previously appeared in various Soviet journals,
this report nevertheless gives a coherent review of the advances in the
computation of transonic flows at one of the foremost centers of the Soviet
Union.

The hallmarks of their numerical techniques are that they are:

(1) typically differentially and globally conservative, and

(2) careful attention is made to minimize truncation errors while at

the same time the favorable properties of the computational schemes
are exploited, e.g., the effective viscosity of the finite-difference
equations (to promote calculational stability) and (physically
interpretted) the ability to compute the essential features of se-
parated regions of recirculating flows (e.g., wakes) wholey within
the framework of the Euler equations.

This work involves a careful and mutually beneficial blending of analysis

and numerical computations to develop a complete picture of complex flows.
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The numerical methods are illustrated by a great variety of computational
results which are supported by analysis and compared with experimental re-
sults in some cases. Wherever possible English translations of the refer-
ences have been cited. | 4
The careful typing of the edited manuscript by Miss Vicki Brewer de-
serves a special note of appreciation. Finally, I am pleased to acknoﬁledge

Contract NOOO14-79-M-0022 from the U.S. Office of Naval Research which made

Aade

possible the publication and distribution of this report.

W. L. Melnik, Editor

Professor, Aerospace Engineering Dept.
University of Maryland at College Park
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1. INTRODUCTION

Much attention has recently been given to the investigation of transonic
prchlems of gasdynamics. Such flows occur, for example, in nozzles, around
a body with a detached bow shock, around convex corners, as well as on wings
with imbedded local supersonic regions.

Difficulties arise in theoretical analysis of such problems primarily
because of the fact that there is no complete mathematical formulation of
the problem in a number of cases.. In mixed flow domains complek phenomena
occur: so-called secondary “suspended" compression shocks can originate be-
hind the bow wave and for supercritical flight Mach number local supersonic
domains can also be c]ésed off by compression shocks. The mechanism by
which such phenomena occur has not been sufficiently studied and questions
regarding the region of influence and its adaptation to a change in flow
parameters also remain open. Classical analytical methods, developed for
plane potential flows, which predominantly utilize the hodograph plane, do
not as a rule apply here. Numerical solutions of these problems involve
many difficulties, and require the construction of special schemes for the
integration of elliptic-hyperbolic equations.

If there is a break (corner) in the generator of a blunt body within
the domain of influence of the flow, and‘the free stream is altered so that
the local speed of sound occurs at this corner, then the analysis of such a
flow is complicated substantially by the existence of this singularity. The
flow expansion around the corner will be in the mixed transonic regime and
is characterized by an abrupt change in both magnitude and direction of velo-
city. ﬁoreover, a secondary compression shock can occur in the supersonic
zone of this flow which substantially affects the whole flow pattern. It

should also be noted that the computational results for the flow in the

| O ——

I




domain of influence of the bluntness (M-domain) serve as the initial data
for the calculation of the supersonic zone. tonstruction of the solutions
in the transonic domain for a body with a corner must be made with special
care since even slight inacc:racies in the calculations will not permit con-
tinuation of the computation into the supersonic domain.

A study of the flow properties around blunt bodies at Tow supersdnic
Mach number is of no less interest. As the free stream Mach number decreases,
the domain of mixed flow influence increases. In examining such a problem
it is necessary to take account of the transonic nature of the flow in the
zone between the sonic line and the limiting characteristic separating the
M-domain. Perturbations in the transonic domain affect the shape of the
sonic line, and, therefore. the whole flow in the mixed zone. The solution
of the boundary value problem becomes increasingly sensative to changes in
initial data, so that round-off errors increase, and an instability in the
computation is manifested. A1l this demands the construction of special
numerical schemes. Consequently it is important to identify the existence
of boundaries of distinct minimal domains of influence of the bluntness.

Only careful numerical experiments utilizing high-speed computers give
quantitative data and a complete picture of the flow in.such complex problems.
An attempt is made to analyze and discuss some transonic flow properties
(the solutions in the neighborhood of the sonic line, the formation of se-
condary compression shocks, the shape of the minimal domain of influence,
etc.) from the aspect of analytical and numerical solutions.

It should be mentioned that precisely by numerical means are secondary
compression shocks, non-monotone sonic lines, etc., successfully detected
and constructed. At the same time, the conditions for spoiling the continu-

ous solution, and the regularities associated with different kinds of domains
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of influence, have been delineated analytically. In examining the flow
around a corner, the effective construction of numerical schemes turned
out to be possible only when utilizing asymptotic methods of solution of
the differential equations. Therefore, the combination of both analysis

and numerical solutions prove to be quite fruitful.

A number of papers have been devoted to the study of these questibns.

We consider in this report the results of investigations of the direct
two-dimensional (planar or axisymmetric) problem obtained by using the
methods of integral realtions [17,23,24,26,28,29,36]'and “large particles"
[31,32,37], which represents part of an ongoing research program in tran-

sonic flows.
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2. HODOGRAPH PLANE

In analyzing plane stationary flows behind a shock it is convenient to

use the gasdynamics equations written in a local streamline coordinate sys-

tem:
_ M%) a&np _ 2 3B aznp _ 38
(1 - ¥°) &= kM 3s, il -kM 3y (m
or in the form [1]
2 agny  _ 38 38 _ agma 1 9%nP
(M -1) &= ==, L= = 2228 g (2)
as, 3s, 8s; 35, k—M?Tg

Here A is the velocity magnitude, made dimensionless by the maximum
adiabatic velocity, M - the Mach number, 8 - the slope of the velocity vec-
tor measured counter-clockwise, p - the pressure, i the total pressure,
and k is the adiabatic index; 3/387> 3/352 - derivatives with respect to
the directions of the velocity vector and its normal obtained by rotation

of the velocity vector counter-clockwise through an angle w/2.

Equations (1) and (2) can be transformed (by using differential geo-
metry formulas) into equations in a ¢,¥ coordinate system, where ¥,¢ are
families of streamlines and their orthogonal trajectories since h]a/as] =
= 3/3¢, h23/352 = q3/3¥; the Lame coefficients hl,h2 are given by the for-
mulas [7] '

REPR o R T
exp[- 1 = A = ; :
[ i i S " 2 (3)

1/(k-1)
a(r) = A (55 - K133 ;

Here (1), F(¥) are arbitrary functions governing the numbering of the lines

-in the ¢,v families.

In the case of irrotational flows (for Po * const), the Chaplygin equa-
tions can be obtained from the equations in ¢,¥ coordinates (by a change in

the role of the dependent and independent variables).
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Equations (3) permit the investigation of singularities of a mapping
in the ¢,¥ plane. Indeed

.3§2',‘l’)= ao,¥) _ 1 _ 1
306y 3(sy.s,) W, - aq(2)expl- ¢ f

hence, for 0 < ) < (k~l-1)1/2(k-'l)"”2 a mapping in the plane is locally one-

i
M :
-to-one (x,y are Carteisan coordinates in the physical plane).

Let us consider the mapping of the velocity (A,8) and pressure (p,8) in
the hodograph plane; the former is more convenient for potentigl flow in-
vestigations, and the latter for rotational flow investigations.

It follows from the expressions for the Jacobians J = 3(p,8)/3(x,y),

I = 3(x,8)/3(x,y) of the transformations, using (1) and (2), that the mapping
of subsonic domains in the pg plane (and in the A8 plane in the potential
flow case) can only have isolated singularities [2,3]; however, this does

not mean that the image of the subsonic domain in the pR plane cannot be
many sheeted (on the whole); the flow can only be single-valued in the physi-
cal plane.

A mapping of supersonic domains in the p8 plane can have folds; their
edges (on which J changes sign) are called branch 1ines. A branch line can
be a characteristic if J undergoes a discontinuity upon passing through it;
in the general case a branch line is the envelope of characteristics of one
family in the pg plane, and the geometric locus of cusps of the second
family of characteristics. A mapping of arotational flow in the B plane can
have branch 1ines even im the subsonic domain. In the general case, a branch
line of this mapping is a characteristic only in the potential flow case [3].
A c1a§sic illustration of the flow having a fold in the A8 plane is a Laval
nozzle; the branch lines are here characteristics issuing downstream from

the center-l1ine of the nozzle.




The edge of the fold of the inverse mapping is called a 1imit 1ine. The
presence of a 1imit 1ine indicates that the flow whose image has been found
in the hodograph plane can not be realized in the physical plane.

The characteristics equation in the pg plane have the form:

i
-1
+dgy 5 = - i—zl:M denp . (4)
Hence it follows that for 1 < M < = the first family characteristic always
makes a negative angle with the p-axis, and a characteristic of the second
family a positive angle; in some cases this permits establishment of the
form of the branch line (if it exists).

The characteristics in the A8 plane are given by
L N
Y 2
tdgy , = - (Mz-l) den - !Kﬂ_%ll denp, . (4')
y kM

which describe epicycloids in the case of potential flow (dznpo = 0).

THEOREM 1. The image in the AB plane of a segment of characteristic
contained in the domain of monotonicity of the function po(v) will intersect
an epicycloid of the same family not more than once. A segment of a charac-
teristic of the first (second) family, drawn in the direction of diminishing
total pressure from the point of intersection with the épicyc]oid of the
same family, is located above (below) this epicycloid [4].

THEOREM 2. The image in the A8 plane of a characteristic drawn in
the domain behind the shock located between two epicycloids of the same
family which are separated by a distance (in the g direction) not exceeding

1 pomax

‘pomin
where Pomax and Pomin 2Te the maximum and minimum values of the total pres-

sure behind the shock (depending on the free stream velocity) and k is the

T



adiabatic index.
THEOREM 3. If the velocity vector is continuous at some point in the
physical plane, then the characteristic at the corresponding point in the pg

plane is either a smooth curve, or has a cusp (the latter can be realized

F only in the case when intersection with a branch 1ine occurs at this point).
This property of the characteristics in the Ag plane only exist under the
additional condition of continuous differentiability of the total pressure

; and the velocity vector at the corresponding point of the physical plane.

}




3. MINIMUM DOMAIN OF IMFLUENCE OF MIXED FLOW

The minimum domain of influence of mixed sub- and supersonic flow (the
M-domain) is characterized by the fact that small perturbafions of its
boundaries are propagated throughout this domain. In the general case the
M-domain boundary is delineated by segments of the body-profile whichAmay
include a tangential discontinuity (corner), the axis of symmetry, the
bow shock, the 1imiting characteristic, and the sonic line.

3.1 GENERAL RESULTS

In order to establish the location of the M-domain in the hodograph
plane, it is necessary to know the sign of the Jacobian of the mapping at
points of the boundary.

THEOREM 4. The following inequalities hold:

1. On a straight-line wall

I =2a(x,8)/3(x,y)% 0, I = a(x,8)/a(x,y) 20 forr 21 ;

2. On a free boundary J > 0

"w

3. On the shock polar J > 0, I Z 0 for M 3 A(M_k),
where M_ is the free-stream Mach number, and A is some constant; A 2 1 for
M, 2 Mj(k), where M (k) is some constant.

THEQOREM 5. The image of a convex corner in the p8 and AR planes is
mapped by a characteristic of the potential flow which has no turning
- points*.

‘THEOREM 6. In potential flow, the image in the A8 plane of the neigh-

* This is proved in [5] for potential flow.




borhood of a convex corner covered by characteristics emerging from this
point is located on one side of the epicycloid mapping the corner.

Let K denote a point of the sonic line at which it is convex relative
to the lines ¢ = constant (sonic line at the point K, turns the convexity
towards the supersonic velocity region, and at K_ towards the subsonic
domain). Let L denote a point of the sonic line at which the sign of'the
streamline curvature changes during passage through it. If the vorticity
is zero at the point K, then it coincides with L.

THEOREM 7. There are no points K_ located within the potential flow
domain.

THEOREM 8. If there is displacement along the sonic line in potential
flow so that the subsonic domain 1ies on the left, the velocity vector will
be rotated monotonely clockwise [6].

THEOREM 9. The slope of the velocity vector 8 changes monotonely with
displacement along a sonic line segment in a rotational flow which does not
contain the points K or L. A change in the direction of variation of 8
occurs at each of the points K or L [7].

Thus, branch lines of the mapping in the A plane (an odd number at
each of the points) pass through the points K and L. |

THEOREM 10. If the acceleration of the flow at the sonic line is
bounded, then 3(p,8)/ a(x,y) = 0 at the point L.

Let y denote the angle through which it is necessary to turn the tan-

~gent to the sonic 1ine counter-clockwise (at the sonic point of the shock)

so that it would coiincide with the velocity vector.
THEOREM 11. If the curvature of the shock wave at the sonic point
does not vanish or become infinite, then y > ¥n for M_ < Mo(k) and

S ————
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y < Y4m for M_ > Mo(k) [8].
The constant Mo(k) is here the same as in THEOREM 4 (see Fig. 1 and 2).

Theorem 11 can be generalized partially to the case of axisymmetric
flow. Let o denote the slope of the shock to the free stream velocity
vector measured counter-clockwise.

THEOREM 12. If the curvature of the shockwave at the sonic point of
an axisymmetric flow does not become zero or infinite, then the following
inequalities hold:

1. y<k%m for o <0 < %n and M, > Mo(k).

2. vy >%n for -4mr <o <0 and M, < Mo(k).

In the remaining cases the angle y (Fig. 2) depends on the shock curvature,

the distance from the axis of symmetry, and the free stream velocity [9].

Let § denote the angle between the sonic 1ine and the profile on the
downstream side of the sonic line.

THEOREM 13. If the vorticity is zero along the contour of a smooth
profile, then 0 < § < %m on the convex profile, and %r < 6§ < = on the con-
cave profile (if the acceleration aA/as] does not vanish or become infi-

nite at the sonic point of the profile) [8].

The next theorem follows from 11 and 13.

THEOREM 14. If the assumptions of Theorems 11 and 13 are satisfied,

~ in the case of symmetric flow around a smooth convex profile with a detached
shock an odd number of points K exists on the sonic 1ine for M_ > Ho(k)

(at least one point K+); for M_ < Mo(k) the number of points K is zero or

even (the number of points K, equals the number of points K_) [8].

0
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THEQREM 15. At a convex corner of the profile, the sonic line is
orthogonal to the “"subsonic” direction of the angle (in transonic flow).

This property has been proved in [10] for potential flow.

The theorems considered above assist in classifying the minimum domains
of influence for an unbounded flow around a profile (or axisymmetric body)
énd are in good agreement with results of calculations.

THEOREM 16. In symmetric flow around a smooth convex profile (if the
assumptions of Theorems 11 and 13 are satisfied), the number of branch lines
of a mapping in the a8 plane which intersect the sonic line is zero or is

even if M_ < Mo(k); the number of these branch lines is odd if M_»> Mo(k) [71.

The following theorems characterize the flow in the neighborhood of
the point K of the sonic line.

THEOREM 17. If a point K exists on the sonic 1ine, at which the flow
acceleration does not become zero or infinite, then the following inequali-

ties are satisfied [7]:

5 R, RS < ARIE ds,2
s, RO 42 T ZZ(cany 00

at the point K, or K_. Here R is the gas constant, and s the entropy.

Let AKB denote the line formed by the characteristics issuing down-

stream from the point K (we consider the direction "downstream" to be along

the streamlines from the subsonic domains).
THEOREM 18. At least one branch line of the mapping in the A8 plane

which passes through the point K, in the supersonic domain will be down-

stream of the line AK B [71.
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If the flow acceleration at the point K does not become zero cr
infinite, the flow in the neighborhood of this point can be investigated
analytically [11]. Equations of transonic rotational flow are derived by

the small parameter method
_B_U___al.___o av

u —_—t— = g¥
a¢?  a¢° 2 oy
2
& 2 o1 ds T ds
o AR ol ) YT W B
. (5)
0,0
ule,¥) . 2u ¥
Rl Bl ks + .
0.0
3 5
g " v ¢  J S s]2¢0M0 = W . ¥ ) b= Ezyo’ v = E\l,o

Here ¢ is a small parameter characterizing the size of the neighborhood
of the point K.

The equations obtained have an exact solution, analogous to the
exact solution of the transonic potential flow equations, which was used
in [12] to investigate the flow in the neighborhood of the center line
of a Laval nozzle under the condition that the acceleration does not be-
come zero or infinite.

This solution has the form:

2 ’ 2
u=A¢ - Ajfﬂ ¢2, V. = (k‘-H)uo¢ + A2¢v - Aiﬂgzﬂl ,3 :

A = -(k+1) g%T i

The solution so obtained can be analyzed. For example, a three-
-yalued mapping function can be constructed in the hodograph plane; the
geometry of the branch line is studied as a function of the parameter w,

which characterizes the velocity (Fig. 3). Also the characteristics
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pattern (Fig. 4) is of considerable interest, particularly, when w > A2
(the point K_). Analogous investigations have been made in [13,14] for

axisymmetric and three-dimensional rotational flows.

3.2 DOMAINS OF INFLUENCE IN FLOW AROUND BODIES
WITH A DETACHED SHOCK WAVE

Let us examine the boundaries of various kinds of minimal domains of
influence in the flow around smooth plane or axisymmetric bodies with a
detached shock. A schematic diagram of the domains of influence realized
for such flows in given in Fig. 5 (the velocity vector at the point K is
orthogonal to the sonic line).

The essential characteristics of each type of domain of influence are
the slope of the sonic line to the velocity vector on the shock (y) and on
the body (8). The minimum domain of influence shown in Fig. 5. holds for
the following combinations of values of these angles [8,9,17]:

Ist type : y oblique , & acute;
2nd type : vy acute s 6 acute;
3rd type : vy acute ,» & oblique.

Since the angle § is always acute in the plane case (v=0) in the flow
around a convex profile (Theorem 13), the third type of domain of influence
is not realized. The transition from the first into the second type occurs

for M_ = Mo(k) (Theorem 11). The graph of Mo(k) is given in Fig. 2, where

H°='1.6358,1.6895 and 1.7421 for k=1.2,1.4, and 1.6 respectively. Flow patterns

. and domains of influence for M_ = 1,1.5,3,3.10 (k = 1.4, circular cylinder),
obtained from numerical calculations, are presented in Fig. 6 [8,17,29].
The situation is more complicated in the axisymmetric case (v=1).

According to Theorem 12, the angle y is acute for M_ > Mo(k). Therefore,

13




even in the axisymmetric case the first type of domain of influence (if it
exists) can hold only for M, < Mo(k), when the angle y will be oblique,
which governs the location of the sonic point of the shock wave with coor-
dinates R/y, M_ (R is the radius of curvature of the shock) relative to the
dividing curve f(M_,k), on which y =%n [9] (Fig. 2).

It is interesting to note that domains of influence of the second type
(y <m/2) were realized in computations of the flow around a sphere (k = 1.4,
Mo(k) = 1.69) down to M_ = 1.1. The magnitude of the angle & varied thus in
this case: 6 = n/2 for M_ = M, = 3.7 (the point K is on the body); for
M < "2 the angle & is acute (domain of influence of the second type); for

(-]

M, > M, the angle § is oblique (domain of influence of the third type).

(]

Flow patterns and domains of influence for a sphere (k=1.4, and

1.15, 1.5, 2,3,4), obtained from numerical computations, are presented

in Fig. 7 [17,28].

3.3 SUPERSONIC FLOW AROUND BLUNT BODIES

WITH A BREAK IN THE GENERATOR OF THE CONTOUR

Supersonic flow around blunt bodies which have a corner are calculated
by scheme I or II of the Dorodnitsyn-Belotserkovskii method of integral re-
lations [8,17,23,24,26] whose computafionaI meshes are shown in Fig. 8 and
9.

The first scheme of the integral relations method is applied in both
the domain up to the corner and in the supersonic expansion around it, where

"the governing equations are written in a polar coordinate system centered
at thé corner. The resulting system of ordinary differential equations is
integrated numerically along the shock layer starting from the axis of sym-

metry. In the neighborhood of the corner, where the Prandtl -Meyer solution
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holds, a differential relation is used which is the compatibility condition
along the second family of characteristics [17].

In the second scheme of the method (Fig. 9), the domain of influence of
the bluntness is deiineated exactly because of the simultaneous construction
of the limiting characteristic, which substantially increases the accuracy
of the calculation in each approximation. Here the asymptotic Vaglio-
-Laurin-Shugaev solution, reduced to a form convenient for calculations
[17,25,26], is utilized in the neighborhood of the corner (the domain G).

The solution which describes plane and axisymmetric transonic flow of
a perfect gas in the neighborhood G of a corner has the form of a power
series in the distance o from the body surface (n° = 0) with coefficients

dependent on the corresponding self-similar variable z:

u=1+ ()3 E u (e (BHIA sty (o BHOA
i=0 j=0 ' ©
g = (k+1)']/350n0'5/4 ; N =i, (6)

5y = (s=sflle %,

where u,v are velocity components (referred to the critical speed of sound)
along the tangent and normal to the body surface in the subsonic neighbor-
hood of the corner; quantities at the sonic point on the body are denoted
with an asterisk (Fig. 8). The main term of this expansion described. two-
-dimensional transonic potential flow in the neighborhood of the corner

(primes denote derivatives with respect to z):

up = 9's Vo=(7g - 5¢9')/4

.where

1. g - (2522 6.

g" = B,(21g - 25¢9')/16, B]

It is interesting to note that the function g(z), corresponding to the poten-

tial of this flow, can be expressed in the parametric form [27]:
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(25/42)51/8(522452-4) (1-2)"7/8(1432/5)"9/8¢"3 |
-2.5"387(1.2)"5/8(1432/5) 38", _5/3<z2<1

g
(7)

4
If¥ the scale factor C=1, then g'(1)=0, where g= (125/56)2']/5(-c)7/5 as
g+» and g=;33-675/96 10']/351/3 as ¢»>» (refer to equation (8) below, for
the relationship between & and Z).

The terms of the expansion (6) of a higher order of smallness, which
take into account the rotational and axisymmetric nature of the flow (ui,
vi,i =1,2,...), are found from the solution of linear non-homogeneous
ordinary differential equations. The functions UgsVy must satisfy the boun-
dary conditions in both the subsonic domain (zero normal component of velo-

city relative to the body on its surface) and in the supersonic domain where

the solution describes a flow of Prandtl-Meyer type.

An analytic solution of this system was found in [17,26] by F.V. Shugaev.

Let us represent the quantities ug,vy as the sum of the particular solution
ui(l),vi(]) of the non-homogeneous system, and the general solution ui(z),
vi(z) of the homogeneous system. If ¢.(z) is introduced, so that the solu-

@, (2

tion uy of the corresponding homogeneous system would be written as

oY I PR 8 MR
i a5 =N G o
then a second order equation is obtained to determine %,

(169'-25;2)¢i" + [16g" + 5(5-21);]o,.'-(7+1)(3-1)¢i =0

Utilizing the parametric representation (7) of the function g(z) and

making the change of variables

ty=0,(1-2) 71814 3 2)304)8 o . L o 201 (8)

we obtain the hypergeometric equation

GE(l-g)t{' + (9+21)(l-2§)t1 - 2(7+i)(9+1)ti =0

Its solution is made up of Jacobi polynomials
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(7+1)
t; = [E(]{)](SIZHB) dd - {[(1-6)](2i/3+9/2)},
12

which permit expression of the quantities ug,v; in finite form.

Such a representation turns out to be quite convenient for calculations
in the G-domain since direct integration of the original system would give
rise to definite difficulties. Computations have shown that it is sufficient
to use the first two or three terms of the solution (6)-(8) to construct
the flow in the neighborhood of an angular point; the influence of the re-
maining terms is negligible.

Because the limiting characteristic of the domain of influence of the
bluntness approaches the corner from the supersonic side, expansion (6),
which is valid only near the sonic line in the supersonic domain, turns out
to be inadequate. Hence, it is necessary to continue the solution into the
purely supersonic domain, which has indeed been found as a correction in
powers of r, (Fig. 8) of the type : fir]aj to the fundamental Prandtl-Meyer
solution.

The customary algorithm of scheme II is applied outside the domain G.
Systems of ordinary differential equations are integraged across the shock
layer between the bow shock wave and the body, while the additional condi-
tions of "joining" both solutions along the boundary of this domain make
the problem single-valued. _

On the whole we have succeeded in obtaining algorithms which enable us

to compute solutions with a high degree of accuracy. The solution outside

. the zone of influence of the bluntness is constructed by the usual method of

characteristics. Some results of computations obtained by A. Bulekvaev,
E.S. Sedova and F.V. Shugaev [17,26] are presented in Figs.10-12.
The geometry of the detached bow shock, scnic Tine and limiting
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characteristic for perfect gas flow (k=1.4, Mm=4) around a spherical seg-
ment with a sonic corner followed by a reversed cone of x=30° half angle,
are shown in Fig. 10; the corresponding features are shown in Fig. 11 for
x=33° and 43%30' with M, = 10. The variation of the velocity components
(along n,s, respectively) on the axis of symmetry (i=0), the limiting char-
acteristic (i=1), and the intermediate line (i=2) is given in Fig. 12. It
is seen that the behavior of uy on the 1imiting characteristic depends

strongly on the half-angle of the afterbody.

3.4 FLOW AROUND BLUNT BODIES AT LOW SUPERSONIC VELOCITIES

As has already been remarked, the construction of special numerical
schemes would be required for the computation of mixed gas flows at low
supersonic velocities. In this case, scheme III of the method of integral
relations [17,24,28] turned out to be the most effective, wherein a repre-
sentation of functions in two directions is used, and the original equations
are approximated by a nonlinear system of algebraic equations in a curvi-
linear computational mesh Fig. 13.

With these schemes F.D. Popov [17] carried out calculations for free
stream Mach numbers down to M_ = 1.05 for the complete set of gasdynamics
equations which included effects of vérticity. The calculation of sonic
flows (M°° = 1, potential flow), where the shock stands off at an infinite
distance, was also carried out by the method of integral relations by

P.I. Chushkin [29]. The results of some of the;e calculations are illustra-

“ted in Figs. 14-17. The geometries of the detached bow shock and limiting

characteristic for flow of a perfect gas (k=1.40) past a sphere are shown
in Fig. 14 and 15 for different M_. Experimental results of D.P. Bedin and

G.I. Mishin are indicated by the open circles. Fig. 16 shows the pressure
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distribution along the surface of a sphere (referred to the stagnation
point pressure) for different Mm. As the Mach number decreases, the pres-
sure distribution differs more and more radically from the Newtonian dis-
tribution often utilized in the approximate theory of supefsonic flow.

In Fig. 17d computational results (soiid line) are compared with the
experiments of V.G. Maslennikov et al. [30] for the bow shock standoff dis-
tance €0 along the axis of symmetry of a sphere as a function of the free-
-stream Mach number.

G.M. Raibinkov made a detailed experimental investigation of the flow
behind a detached shock and presented the results in the form of tables
and graphs [17]. Figure 17 (a,b,c,e,f) give a comparison between the
experimental data of G.M. Riabinkov and the results of calculations by the
method of integral relations for a sphere (6=1) and ellipsoids of revolution
(6=0.5 and 2 where § is the ratio between the vertical and horizontal axes
of the ellipsoid). The pressure distribution along the body, as well as
the shape and location of the bow shocks, are presented. It is seen that
agreement between theoretical and experimental results is very good every-

where.
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4. SECONDARY SHOCK WAVES

4.1 FORMATION OF A SHOCK WAVE WITHIN THE MINIMUM-DOMAIN OF INFLUENCE

It has been shown in [6] that potential flow in a local supersonic zone
of definite type ("zone I") is spoiled if an arbitrarily small length of the
profile segment bounding this zone becomes a straight line. Zone I is charac-
terized by the fact that both characteristics go from each point of the pro-
file segment bounding it to the sonic line (see Fig. 18).

It turns out that an analogous result holds even in the case of sym-
metric rotational flow around a smooth convex profile with a detached shock
[4]. The existence of zone I here follows from Theorem 13 (Figs. 1, 19).

Let us designate zone III as a subsonic domain of monotonely decreasing
dependence of the entropy on the stream function. In the case of a strictly
convex profile, there exists an e-neighborhood of the sonic point of the
profile, whose mapping in the hodograph plane is single-valued.

THEOREM 19. A profile segment bounding an e-neighborhood of the sonic
point of the profile in zonc¢ III, whose mapping is single-valued in the hodo-
graph plane, cannot contain a straight-line section [4].

Therefore, making some part of the profile in the e-neighborhood (for
A > 1) into a straight line resu1ts,’independently of its length, either in
such a deformation of the sonic 1ine or the characteristics so that zone III -
will not contain the straight line section, or in the formation of branch

lines which violate the one-sheetedness of the mapping of the origninal

* e-neighborhood, or in the formation of a shock wave. Apparently, the first

doesAnot hold, since otherwise the solution of direct flow problem would not
be unique or there would not be a continuous dependence on the boundary con-

ditions. For the direct flow problem 1t can be shown that violation of the
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one-sheetedness of the mapping is also impossible because in this case
changes would occur in the flow which depend not on the length of the recti-
fied section, but only on its location (under the condition that the flow in
zone III remains continuous). These considerations lead to the following
theorem.

THEOREM 20. If the problem of external flow around a profile with a
detached shock is correct, then its solution is not generally continuous

(in the domain behind the detached shock [4]).

4.2 SPOILING THE CONTINUOUS SUPERSONIC FLOW DOMAIN IN THE CHARACTERISTIC

TRIANGLE BOUNDED BY THE PROFILE AND THE AJOINING M-DOMAIN

We assume the existence of a smooth convex profile such that the flow in
the region behind the shock is continuous, and the entropy in the M-domain
monotonely decreases with the stream function (i.e., the shock has turned the
convexity towards the free stream). It follows from Theorem 13 that the
boundary of the M-domain contains a segment of a characteristic of the first
family AB, which has one end on the profile, and the other on the sonic line
(Fig. 20). '

Let A denote the triangle bounded by a characteristic of the first
family AB, a characteristic of the second family AC, and the profile segment
BC. The triangle A adjoins the M-domain from downstream (see Fig. 20).

THEGREM 21. Suppose part of a profile downstream of some point E is
replaced by a straight 1ine tangent to this point, and then consider up-

- stream displacement of the point E. Before the point E enters into the

M-domain the continuous supersonic flow in the triangle A collapses: either

a secondary shock wave or a local subsonic zone arises in the flow [15].
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In flow about a semi-infinite blunt wedge with a detached shock wave,
either an imbedded shock or a local subsonic zone of isentropically retarded
gas (Fig. 20) will arise as the vertex angle is gradually increased so long
as the flow far downstream of the bow shock remains supersonic. An analogous
result is obtained in the case of flow about a profile with a cornér from
which a sonic line originates.

We shall restrict the proof of the preceding theorem to the case of a
smooth convex profile in incident flows with M_ < Mo(k) (Fig. 20). In this
case the first type of minimal region of influence of the blunt nose is found,

bounded in the shock layer by the characteristic of the first family AB.

Integrating the compatibility relations on the characteristics in the
direction of increasing entropy from point A to the profile contour, we

obtain [15]

1

BBEBA+I]=BA+2_R-E / sin2ads ,
(AB)
] e (9)
Bo < By - Iy = B = 7Rk (K;)s1n2a s,

where o = arc sin (1/M), B is the angle of inclination of the velocity vector
to the axis of symmetry and R is the gas constant. Since both integrals are
positive there must exist a point D on the profile contour, lying between
points A and C in which BD = BA.

We subject the profile to a continuous deformation, replacing part of
its contour located downstream from some point E, by the tangent to the con-

tour at this point and then displacing the point E upstream from its aft-most
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position all the way up to the point D. We shall show that just as soon as
point E coincides with point D, either one of the aforementioned assumptions

is contradicted or the minimal region of influence is reconstructed. Indeed,

1 inf .1 inf o
- / sin2ads Rk Ee[DC] (f sin2ads > RK (f sin2a ds

where P is the point of intersection of characteristics of the second family
AC with characteristics of the first family DP.
Let us now define the point G on the original profile by the equality
BG BD - € »
In view of the convexity of the profile, point G l1ies between points D and
C. If point E is located between points D and G, i.e., if

Bp 2 B¢ > B¢
then we obtain
- 1 _inf

i.e., Bo > By - I, which contradicts the second of the inequalities (9).

Thus, while the problem of determining supersonic éontinuous flow in
the characteristic triangle ABC from Cauchy data on the characteristic AB
and the impenetrability conditions on the sriginal profile BC had a solution
in the large, this is no longer true for the profile deformed in the manner
indicated.
: In an analogous way the case M_ > Ho(k) can be examined, as can the case
in which the sonic line eminates from the corner on the profile. Results of
numerical computations agree very well with the results of the analytical

studies cited in this section for smooth bodies.
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4.3 FORMATION OF IMBEDDED FLOATING SHOCK WAVES IN FLOWS PAST

PROFILES WITH A CORNER

Let us now examine [33] the flow about a profile with a convex corner
immersed in a uniform supersonic stream, especially when changes in entropy
on the shock wave can be neglected. We shall also take advantage of the
transonic approximation to the shock polar and the characteristics inter-
secting it.

First consider supersonic flow past a wedge-slab body (a'profile with
straight-line segments OA and AF in Fig. 21) with an attached shock wave.

In Fig. 2la, OB is the straight-line segment of the shock wave; AB, AD, AC
are the straight-line segments of characteristics of the first family while
BE is a characteristic of the second family. The region behind the shock
wave in physical space is mapped onto the velocity hodograph plane n,8 where
n=(k+1)]/3(x-1), 1 is the velocity coefficient, B is the angle of inclination
| of the velocity vector to the axis of symmetry, k is the adiabatic index;
the axes B,y are directed vertically upward, the axes A,x horizontally to the
to the right. The mapping of the region OBEAO (Fig. 21b) is the segment of
the characteristic 3;;; of the second family g =C - (2/3)n3/2; the point a
with coordinate 8, 1ies on the shock polar B=9'1/2(n”~1)]/2(n¢-n), the point
a, lies on the n axis. The equations'of the characteristics and shock polar
are given in the transonic approximation.

Theorem 22. 1f the flow field about a profile with straight line seg-
ments OA and AF behind an attached shock wave is everywhere supersonic, then
‘it cannot be continuous.

.Let us examine the fan of characteristics of the first family emanating

from the corner point A (subsequently denoted as fan A) in the physical plane
(Fig. 21a). If the flow behind the shock wave is everywhere supersonic and
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continuous, then every characteristic of the fan either intersects the

shock wave or extends out to infinity. Corresponding to this, in the ng
plane, each characteristic of the first family passing through the charac-
teristic a3, must end up either somewhere on the shock polar or at the point
n, which also lies on the shock polar and represents the mapping of the
uniform rectilinear flow at infinity. This represents a contradiction
inasmuch as characteristics of the first family emanating from points of the
segment ca, in the nB plane cannot end up on the shock polar;.consequently,
if the flow is to be supersonic a secondary shock must arise.

This theorem with appropriate changes in formulation can also be
extended to the case of a detached shock wave.

It can be shown [33], that the beginning of the shock does not lie at
the apex of the convex angle, but again in the region covered by the charac-
teristics of the fan A. The imbedded floating shock is inclined downstream
from its origin. The end of the shock of the first family (where it degener-
ates into a characteristic) lies at an infinite distance from the profile.
If a shock of the first family intersects the main shock wave or another
shock, then at the point of intersection its intensity does not vanish.

The proof of these properties for IFS* is based on'the one-to-one pro-
perty of the mapping in the hodograph. plane of the apex of the convex angle
and its neighborhood covered by characteristics of the fan A.

We denote by QR the region bounded by the shock wave, the segment of
profile OA, the imbedded floating shock, and the last characteristic of the

fan A. In accordance with theorems of [33], the beginning:of the shock lies

either on this characteristic or on a charactekistic of the first family

located downstream of it. A study of the mapping of the region QR in the

* IFS - Imbedded Floating Shocks.
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hodograph plane leads to the conclusion that the flow in the region QR does
not depend on the shape of the profile over the segment AF. This feature
was also observed in the numerical solutions of [17]. In the flow about a
profile with a straight-Tine segment AF the Tast characteristic of fan A
represents a branch line.

Finally, the following theorem can be established:

THEOREM 23. In the flow about a profile with a straight-line segment
AF with g, = 0 the imbedded shock does not intersect the bow shock wave at a
finite distance; apart from that, there are no other imbedded floating shocks
of the first family.

In case there exists a second shock in flow about a profile with an
afterbody segment AF having By > 0, it must intersect the bow shock wave.
Up to their point of intersection behind the bow shock wave, B < By The
bow shock wave after the point of intersection with a second shock (or the
point of intersection with the last characteristic of the fan A, if there
is no second shock) consists of an infinite number of segments with curva-
tures of opposite signs*; the oscillations in the angle of inclination of
the shock wave decay with increasing distance from the profile. This result

also agrees well with numerical results for bodies with corners [17,26].

4.4 CALCULATION OF FLOATING AND SECONDARY SHOCK WAVES

Imbedded "floating" compression shocks are formed behind the bow shock

in the calculation of supersonic flow around blunt wedges and cones (smooth,

o The property of oscillation of the angle of inclination of the bow
shock is found in connection with the theory of propagation of dis-
turbances in the case of flow about wedge-shaped profiles.
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with a break in the generator) in definite flow regimes [16,17]. These

results demonstrate that effects due to viscosity (i.e., boundary

layer separation) do not underlie such phenomenon (confirmed by

experiment). In certain regimes of supersonic flow about blunt bodies

(cones, wedges, etc.) imbedded floating shocks (IFS) arise in the flow field

behind the bow shock which have a significant effect on their aerodynamic
characteristics. This phenomenon was also noted earlier in experiments;

its cause, however, was not particularly well understood. It was suggested /
by M.J. Lighthill, for example, that the shock was generated as the result

of separation and subsequent reattachment of the boundary layer in the vi-

cinity of the corner [33]. The reasons for the generation of IFS, the

conditions under which they arise (body configuration, flight regime, etc.),
and the properties of such flows have not been adequately studied to the
present time.

We present here certain results of computations related to the genera-
tion of IFS. The computations were carried out by the aforementioned me-
thods within the context of an ideal gas for both smooth blunt bodies and
profiles with a sonic or supersonic corner [17].

Let us first consider those properties which lead‘to the generation of
IFS. In flow about blunt cones or wedges there occurs a rapid deceleration
of the flow in passing from the blunt nose portion to the straight portion
of the contour. This results in crowding together of the characteristics
and in the appearance of compression waves emanating from the body surface
; behind the corner. In those cases when the pressure gradient downstream
from. the characteristic bounding the region of influence of the blunt nose
is large and the shock layer is sufficiently thick the compression waves

coalesce into a shock wave of initfally zero intensity which arises in the
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interior of the flow.

An imbedded floating shock by analogy with characteristics, will be
identified as a shock of the first (second) family if the tangent to it is
achieved by rotating the velocity vector through a positive (negative) acute
angle. Shocks of different families do not connect smoothly with each
other. |

Every instance of spontaneous generation of shock waves is always
associated with the intersection of characteristics of one family. In such
flows there arises an entire region doubly covered by characteristics of one
family. Furthermore, the cusp of the envelope of these characteristics
marks the beginning of the shock wave. The cusp itself does not yet belong
to the discontinuity. The derivatives of velocity, density, pressure, etc.,
become infinite at the cusp, and hence the intensity of the IFS at this
point must be zero and a "real" shock wave arises only subsequently.

In practice it is usually not necessary to determine exactly the point
at which the envelope has a cusp or to start out the IFS at zero intensity.
The shock wave is considered instead to emanate from the point of intersec-
tion of those characteristics of one family which are followed in the compu-
tations. It should be noted that IFS, in view of their'relativity weak
intensity, can be rigorously constructed numerically only by direct applica-
tion of the method of characteristics.

Fig. 22, taken from [34], shows examples of numerical results for flow
of‘an ideal gas (k=1.4) at M_ = 100 past a nose cone of semi vertex angle
wy = 54.5° with conical afterbodies of various half angles wy = 0°,10° and 20°.
-The generator of the body of revolution is described by the cross-hatched line
ACB; AD represents the bow shock wave and BD, the characteristic of the

second family along which characteristics of the first family intersect up
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to point H (if such exists) denoted by a dot. In Fig. 22c the line CH is

the last characteristic of the fan emanating from point C. The dot-dash line
in Figs. 22a and 22b represents the pressure on pointed cones with semi

apex angles of 20° and 100, respectively, for the same Mach number, M_ .
Lengths are referred to the radius of the cone at the corner and the surface
pressures is divided by the stagnation pressure.

As indicated by the pressure distributions, in the third case, the IFS
is generated inside the flow field, in the second, immediately behind the
bow shock wave, and in the first case there is no IFS in the shock layer.
Furthermore, it should be noted that as the angle of the conical afterbody
wy is decreased, there is a corresponding increase in the pressure gradient at
the corner, and the shock layer becomes relatively thicker.

The calculations were obtained by the method of characteristics for an
ideal gas; the initial conditions for the calculations were obtained from
the exact solution for a pointed cone, insuring a high degree of accuracy
in the computations. These examples show that the generation of IFS is not
dependent on flow properties related to viscosity (i.e., separation of the
boundary layer) and moreover that their occurrance is not related to the use
of “coarse“ initial data for the numerical calculation 5f the supersonic
region by the method of characteristics.

Thus the regimes of flow about blunt cones and wedges which are condu-
cive to the development of a positive pressure gradient behind the corner
and a sufficiently thick shock layer lead to the generation of IFS, the posi-
' tion of which is determined by the intersection of two neighboring charac-
teristics of the same (first) family.

We shall now consider several more examples. Shock waves (Fig. 23a)

and surface pressure distributions (Fig. 23b) are shown for plane (v=0) and
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axisymmetric (v=1) bodies described by a circular nose with a corner at
x=68° and w=0, while Fig. 24 shows the pressure distribution along smooth
circular cones (solid line) and wedoes (dotted 1ine) for various apex
angles [8,16]. From these figures it is apparent that, other things being
equal (the flow regime, contour shape, etc.), the plane blunt body, in con-
trast to the axisymmetric (or a body with a sonic corner in contrast to a
smooth one) introduces a greater disturbance into supersonic flow, and the
resulting shock layer is thicker. Furthermore, in the case of blunt plates
w=0 and wedges w#0 (plane flows), and also for bodies with a sonic corner
(Fig. 25) a zone of overexpansion arises immediately after the blunt nose
followed at the shoulder by a positive pressure gradient which increases
rapidly with increasing x. It follows that, all other things being equal,
conditions more favorable to the generation of IFS are realized in the plane
two-dimensional case or for bodies with a sonic corner.

Fig. 26 shows the main bow shock wave and IFS which arise in the super-
sonic zone in the case of flow about spherically blunted cones, which have
a sonic corner (x=30%; k=1.4) [17]. Results are shown for cones with semi
vertex angles of w=-5°, 0°, 10° and incident Mach numbers of N =4 (the
solid curve) and M =6 (dotted) curve. The intensity ﬁf the imbedded
floating shock first rapidly increases and then gradually decreases with
increasing distance from the blunt nose. In the cases cited above the angle A
through which the flow passing through the imbedded shock is deflected

achieves a maximum of only a few degrees, while at a distance of some 30 to

40 nose radii this angle amounted to only a few seconds. V.F. Ivanov first

computed tables of the locations of floating shocks [17]. It is interesting
to note that when floating shocks formed, the shape and location of the main

shock waves (in the region lying ahead of their intersection with secondary
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shocks) coincided (for identical values of incident Mach number) for various
half-angles of the cone in the range -10° <w < +10° (Fig. 27). This pro-
perty is explained, apparently, by the substantial extent of the region of
influence of a blunt nose, which, for such regimes of flow, includes a rela-
tively large portion of the main shock wave. Fig. 28 illustrates the effect
of the corner point on the position of the limiting characteristics.

An analogous situation regarding the region of influence is also ob-
served for smooth blunt cones. Fig. 29 shows the coordinates.of the shock
wave for smooth cones with spherical ‘noses. The coordinates of the point B,
through which passes the characteristic bounding the region of influence
of the nose are shown for various cone half-angles w.

Fig. 30 shows examples of flow with IFS obtained by V.I. Kosarev for
axisymmetric double-cone bodies with o = 0° and 5° at M_ =6 (k=1.4); these
conditions insure isentropic compression of the flow at the juncture between
the cones. Flow patterns (IFS are shown by dotted lines) and longitudinal
surface pressure distributions are shown for the planes ¢ = 0, n/2, =. Here,

too, the generation of IFS is clearly seen when the conditions of a suffi-

ciently thick shock layer and positive pressure gradient are present (a 0°;

a=5%at ¢=0, n/2).
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5. LOCAL SUPERSONIC ZONES

Recently, systematic calculations of “supercritical" and transonic ro-
tational flows have been carried out by the Computing Center of the Academy
of Sciences of the U.S.S.R. [37,38]. These apply to plane.and axisymmetric
bodies and are based on the method of “large particles" [31,32,37]. In this
paper, without discussing the details of the method, we shall only be con-
cerned with the formulation of the boundary conditions of the problem for
this class of flows and present some computational results.

The development of the unsteady "large particles" method was stimulated
by the works of F. Harlow [35] and others. We adhere to the "particle-in-
-cell" method. Nevertheless, it seems reasonable that, for gas dynamics
problems, we should not confine ourselves to the discrete model of a con-
tinuous medium comprising a combination of particles of a cell of fixed mass.
Instead, we consider continuous flows of "large particles" whose mass coin-
cides with the mass of an Fuler cell at a given instant of time. In this
formulation each time cycle is divided into three stages ("Eulerian", "La-
grangian", and "Final"), with greater attention given to the development of
a numerical algorithm which might be used for a wide class of problems con-
cerned with motion of a compressible gas [31,32,35-38].

As a result, we have obtained some divergence form (conservative), dis-
sipative-steady difference'schemes which allow us to consider a wide class
of transonic problems as well. Developments in this direction have been

carried out since 1965.

5.1 "LARGE PARTICLES" METHOD

Let us briefly describe the main principles of the "large particles"

methecd. The region of integration is covered by a fixed (over space) Euler
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net composed of rectangular cells with sides ax, ay (or Az, Ar in a cylindri-
cal coordinate system).

In the first ("Eulerian") stage of calculations only those quantities
change which are related to a cell as a whole, and the fluid is supposed to
be momentarily decelerated. Hence, the convective terms of the form
div(¢ow), where ¢ = (1,u,v,E), corresponding to displacement effects, are omit-
ted in the governing (initial) equations. Then it follows from the equation
of continuity, in particular, that the density field will be ."frozen" and the
initial system of equations will be of the form

au . 3p _ 3V, 3 3E 4 div(ow) =
o = + ax 0, P 5t + By 0, 0 7t g d'lV(DW) 0 (5-1)

Here we have used both the simplest finite-difference approximations
and, to improve the calculation stability, the schemes of the method of inte-
gral relations [36], in which "sweeping-through" approximations of the inte-
grands with respect to rays (N = 3,4,5) are used [37].

In the second ("Lagrangian") stage we find mass flows aM" across the
cell boundaries at time t" + At. At this stage we assume the total mass to
be transferred only by a velocity component normal to the boundary. Thus,

for instance, )
AM?+%,j = <p?+%’j> <h?+%,j> Ay 4t . et (5.2)

The brackets { ) denote the values of p and u across the cell boundary. The
choice of these values is extremely important since they substantially influ-
ence the stability and accuracy of the calculations. Consideration of the
flow direction is essential to the various possible ways of writing down
aM".

. First and second order accurate répresentations of aM" are considered.

These are based on central differences, without account being taken of the

flow direction, as well as by means of the discrete model of a continuous
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medium comprising a combination of particles of a fixed mass in a cell.
Lastly, in the third ("Final") stage we estimate the final fields of

n+l t" + at (a1l the er-

the Euler flow paraﬁeters at the instant of time t
rors in the solution are "removed"). As was pointed out, the equations at
this stage are laws of conservation of mass M, momentum 3 and total energy
E written down for a particular cell in the difference form

n+l

i n g >
= F + zAdery where F = (M,P,E) (5.3)

F

According to these equations, inside the flow field there are no sources
or sinks of M, F and E and their variations in time At is caused only by in-
teraction at the external boundary of the flow region.

It follows from the very character of the construction of the calcula-
tion scheme that a complete system of nonstationary gas dynamics equations is
essentially solved here, while each calculation cycle represents a completed
process in a given time interval. Consequently, the governing nonstationary
equations, subject to the boundary conditions of the problem, are satisfied
so that the real fluid flow at the time in question is determined.

Thus, the "large particles" method allows us to obtain the characteris-
tics of nonstationary gas flows and as a consequence of their stability, the
asymptotic steady state as well. Such an approach is especially applicable
to problems in which a complete or partial development of physical phenomena
with respect to time takes place. For example, in studying transenic gas

flows and flows around finite bodies, flow in local supersonic zones and se-

paration regions develop comparatively slowly while the major part of the

. field develops rather rapidly. Our investigation is wholly devoted to sys-

tematic calculations of a wide class of compressible flows involving tran-
sonic regime, discontinuities, separation and "injection".

The divergence forms of the differential and difference equations are

L

St AR =




considered in the "large particles" method; the energy relation for total
energy E is used; different kinds of approximations are used in the 1st and
2nd stages; additional density calculations are introduced in the final
stage, which helps to remove fluctuations and makes it possible to obtain
satisfactory results with a relatively small network (usually 1-2.5 thousand
cells are used). A1l this results in completely conservative schemes, i.e.,
laws of conservation for the whole net region are an algebraic consequence of
the difference equations. Fractional cells are introduced for the calcula-
tion of bodies with a curvature in the slope of the contour [37].

The investigation of these schemes (approximation problems, viscosity,
stability, etc.) was carried out successively for the zero, the first and
the second differential approximations [31,32,37]. These investigations
show that the "large particles" method yields divergence-conservative and
dissipative-steady.schemes for "sweeping-through" calculations. This enables
us to carry out stable calculations for a wide class of gas dynamics problems
without iniroducing explicit terms with artificial viscosity. It may be of
particular significance in studying flows around bodies with a curvature in
the slope of the contour since the ways of introducing explicit terms with
artificial viscosity are different for whole and fractiénal cells. Moreover,
by varying only the second stage of the calculation procedure we can arrive
at the conservative "particle-in-cel1" method so that the calculational
algorithm is of general use.

As for discontinuities the approximate viscosity in the scheme (dissi-
pative terms in differen;e equations) results in stable calculations with a
'"smearing" of shock waves over several computational cells and the formation
of a thick boundary layer near the body. It should be stressed that the

magnitude of the approximate viscosity is proportional to a local flow

35




velocity and to the dimensions of the difference net, therefore its effect
is practically evident only in zones with large gradients.

The boundary conditions of the problem were realized by introducing
layers of "fictitious" cells along the region boundaries [31,32,37]. Condi-
tions on the body closely approximate the "no-slip" condition. For example,
in Fig. 31 where the density profile is given for the conditions of "no-slip"
(dashed 1ine) and vanishing of the normal component of velocity, identified
"non-flow" (solid line), even in the vicinity of the body the difference
between these two cases is insignificant and at some distance from the body
it disappears entirely.

It turned out that the right hand "open" boundary of the region intro-
duces the greatest distrubances in the calculation of transonic gas flows.
To evaluate its influence and determine the optimum dimensions of the net,

the calculations were carried out for nets of different sizes; "matching" of

~ the flow fields was enforced by utilizing one of the internal columns as the

initial one for a new field. Finally a comparison between the asymptotic
(steady) state and experiment was made as well [31,32,37,38].

Fig. 32 shows the results of the calculations of a "super-critical" flow
(M_ = 0.9) over regions of various extent, 2/R=2 to 3 in the flow around a
semi-finite cylinder (as if the body were "moved into" the stream). If the
flow field ahead of the body is established rather quickly, then the flow
downstream from the corner become steady only past &/R = 2 to 3. The results

of the calculations with a coarse net are shown in Fig. 32d while the region

of Figs. 32a-32c (which utilize about 2.5 thousand nodes) is indicated by a

dashed 1line.
A comparison is given in Fig. 33 between the results of the calculations

(solid lines) and analytical data for the asymptotic steady state (dashed
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1ine) for a sonic flow around the same body [31,32]. In this figure "1" is
the sonic line, "2" the 1imiting characteristic curve, "3" is the line show-
ing the departure of the velocity vector from the horizontal, and "4" is the
shock wave. It should be noted that good agreement is observed with the

analytic data already at a distance of 2-3 radii from the body.

5.2 CALCULATION OF TRANSONIC AND "SUPERCRITICAL" FLOWS

Some computational results obtained by the "large particles" method
[37,38] for transonic flows around two-dimensional and axisymmetric bodies
will now be described. For purposes of this discussion the supercritical
regimes of transonic flows around bodies will be characterized by the value
of the critical Mach number of the oncoming flow M; (i.e., when a sonic
point first develops on the bedy) as well as by the extert of the local
supersonic zone (as compared to a characteristic dimension of the body) and
by its intensity (say the maximum supersonic velocity M realized in the
zone).

Fig. 34 (series 1 - 8) presents the flow field patterns (lines
M = constant) for a 24% circular arc profile (v =0) extending from purely
subsonic (M_ = 0.6) to supersonic regimes (M_ = 1.5). Successive flow fields
for increasing M_ depict transition through the critical Mach number (here
M: = 0.65) and the formation and development of a local supersonic zone.

The supercritical flow around this profile is observed for 0.7 < M_<1

(Figs. 34 :2-7). One can distinctly see the position of the shock in the
region of crowded M = constant lines which, together with the sonic line,
bound the local supersonic flow. The region of subsonic velocities is located
behind the shock wave. When the velocity of the oncoming flow increases,

the flow disturbances produced by the body die out at a large distance from
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the body. With M_ > 0.9 the zone becomes considerable both in size and in
intensity (supersonic velocities up to M = 1.7 to 1.8 are attained) and in
case of a sonic flow (Fig. 34.7) lines of the level M = 1 extend to infinity.

The asymmetry of the whole flow pattern is noticeable (even at purely
subsonic velocities - Fig. 34.1) which results from non-potentiality of the
flow (supercritical regimes) and from the presence of viscous effects as
well (formation of a wake behind the body).

In the case of supersonic flow past this profile (Fig. 34.8, N - 1.5)
a shock wave developes ahead of the body which bounds the disturbed region.
Behind the wave, subsonic velocities occur in the vicinity of the axis of
symmetry away from which the flow velocity along the contour of the body in-
creases and, as a result, a "terminal" shock occurs near the stern of the
body.

For comparison the results of calculations by the above method for flow
around a 24% axisymmetric "spindlelike" body (v = 1) are given in Fig. 35
with 0.8 <M _< 2.5. In this case a critical regime already occurs at
M* = 0.86; local supersonic zones as compared to the plane case are less de-
veloped and of weaker intensity (for example, values of M = 1.3-1.4 are
realized), although, naturally, the main features of a transonic flow are
quite evident (see also [38]).

In Fig. 36 a comparison is given between the flow fields calculated by
the above method (solid 1ine) and those of the Wood and Gooderum experiment
(dashed 1ine) for subcritical (Fig. 36a, M = 0.725) and supercritical (Fig.
.36b, M* = 0.761) flows around a 12% profile (results of both the calculations
and the experiment indicate M* = 0.74).

As compared to the corresponding plane cases with the same value of §

it can be seen that, in axisymmetric flows, an increase is seen in the critical
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Mach number (with & =12%, from 0.74 to 0.89, and from 0.65 to 0.86 for & = 24%).
In axisymmetric flow local supersonic zones are of smaller size and lower
intensity, for instance, the maximum Mach number in these zones is M = 1.2
for v = 1 as compared to M = 1.5 for v = 0 when 6 = 12%, and M = 1.3: 1.7 when
8§ = 24%. However greater asymmetry of the flow picture about the vertical
axis is observed for axisymmetric bodies; behind the body we find a sfronger
wake, which exerts quite a marked influence on the flow picture, and finally,
the shock layer is considerably narrower in supersonic axisymmetric flow.

Analysis of internal check tests as well as the results of various com-
parisons indicate that the computational error of the "large particles" me-
thod usually does not exceed several per cent. These calculations were
carried out using a Soviet, BESM-6 computer; the time of the calculation in
this case did not exceed an hour.

Some numerical results obtained by the large particle method for flow
past more complicated types of bodies will now be considered. In Fig. 32 we
have plotted the M = constant Tines for supercritical flow past a semi-infi-
nite cylindrical block (here, M: = 0.70, which is in good agreement with the
experimental value M* = 0.69 obtained by Stanbrook [40]) while Fig. 37 refers to
the case of sonic flow past a space vehicle of the Apollo type. The stream-
lines, bow shock wave and sonic line in supersonic flow past a short cylin-
drical body and a sphere are shown in Fig. 38. These numerical results
clearly indicate the formation, behind "badly streamlined" bodies (Figs. 37

and 38), of closed recirculation zones, localized behind the tail, which are

. isolated from the external flow by a contact surface (marked by a dashed

line in Fig. 38). The flow in the recirculation zones is'strongly subsonic
and extremely rarefied (i.e., both the gas density and pressure are small in

them).
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An important pratical application of the large partical method is de-
scribed by near sonic flow (M°° = 1) past a body that has a jet (with para-

meters Mc’ Pes Ues vc) “blown out" opposite to the main flow, thus changing

c
the entire flow field. In this case, auxiliary conditions for the jet

flow must be prescribed, usually sonic velocity, with the jet parameters
specified in appropriate cells on the body surface. The field of conétant
Mach number contours are shown in Fig. 39a, for sonic flow (M_ = 1.0) past

a sphere which has an axial sonic jet (Mc = 1.0; Pe =2.9,u,=1.0, v, = 0),
issuing upstream from a nozzle located on its axis of symmetry; Fig. 39b
gives corresponding results for supercritical flow at M_ = 0.9. In the pre-
sence of a jet the flow around the body becomes much more complicated and is
unsteady in the mixing region. The flow field splits into two sub-regions;
the gas coming from the jet passes through one of them, and the external flow
through the other. The trend towards this division may be seen in Fig. 39a,
and becomes even more evident in the supercritical case (Fig. 39b). This de-
marcation is given by the contact surface (shown by the dashed line in Fig.
39b) which separates the external flow from the injected gas. A separated

wake is also formed behind the body.
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6. ON THE QUESTION OF EXTREMALITY OF THE ENTROPY ON

THE STAGNATION STREAMLINE IN THREE-DIMENSIONAL FLOW

0f great interest in three-dimensional supersonic flow is the question
as to whether the stagnation streamline (streamline arriving at the body)
passes through a point on the shock where it is orthogonal to the velocity
vector.

It has been shown in [18] that if the entropy does not have a maximum
on the surface of an axisymmetric body in supersonic three-dimensional flow,
then the vorticity on the body surface is a discontinuous function of the
angle of attack. This property was found under the assumption that the cur-
vature of the shock was finite at its point of intersection with the axis of
symmetry (it was later established that this assumption is always true).

An investigation of the local three-dimensional flow in the neighborhood
of the stagnation point on a body showed that the vorticity is generally not
bounded on the body surface [19]. In the general case of flow around a body
with a detached shock, an analogous result has been obtained under the as-
sumption of the existence of a stagnation streamline in [20].

THEOREM 24. For the normal derivative of the velocity on a body surface

to be bounded, it is necessary that

conditions for the existence of an ex-

/ tremum in the entropy be satisfied on

the stagnation streamline.

e o Figure 40. Special coordinate system

generated by the stagnation

streamline.
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If these conditions are not satisfied, then the body surface is almost
everywhere the envelope of surfaces of equal velocity magnitude; a weak dis-
continuity is propagated along two body streamlines which emerge from the
stagnation point (Fig. 40). The construction of an appropriate example in
[20] showed that the extremality of the entropy on the stagnation streamline
is generally insufficient for the boundedness of the normal velocity derivative

on the body surface.

It should also be noted that an approximate solution of fhe problem of
three-dimensional hypersonic flow around a body [21] has shown that the en-
tropy does not take on a maximum value on the body surface. An analogous l
deduction has been made in [22] from an experimental investigation of the
problem. Numerous calculations ([17] et al.) of the flow around axisymme-
tric bodies at angles of attack over a wide range of flow conditions
(V<M <20, 0<a 25°) have shown that the difference in entropy on the
body surface from the maximum value is of the same order as the computational
error.

Therefore, although the connection between the extremum of the entropy
on the stagnation streamline and the flow properties at the body surface has
indeed been established in the papers cited, the question posed herein re-

mains open for a rigorous theoretical analysis.
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Fig. 1. General features of the flow around a body with a de-
tached bow shock.
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Fig. 2. Ratio of the shock curvature to its distance from the axis of symmetry at the sonic
point as a function of the relative speed coefficient, u = A =1
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Fig. 6. Domains of influence in flows of a perfect gas (k = 1.4)
around a circular cylinder: I for M_ < 1.69; II for M_>1.69.
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Fig. 7. Domains of influence in flows of a perfect gas (k = 1.4) around a
. sphere: II for 1.1 <M_< M, = 3.7; III for 3.15 < M_ < =,
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the Method of Integral Relations. Scheme II of the Method
of Integral Relations.

(r4)
\ O m’
X= 4830
Xs 33°
Lay
125 40 e
Fig. 10. Geometry of supersonic flow Fig. 11. Geometry of flow around
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and x = 33~ and 437°30'.
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Fig. 12. Distribution of the normal, u;, and tangential, v., velocity
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components across the shock layer of the bodies of Fig. 11.

calculated from Scheme II, along the axis of symmetry i=0,

ﬂong Ihe %imiting characteristic, i =1 and the intermediate
ne, i = 2,
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Fig. 13. Computational mesh for
Scheme III of the Method
Integral Relations.

Fig. 15. Comparison of numerical
results with experiment
( mtse of Bedin and

shin [30] for T-
sonic flow (k=1.4) past
a sphere.
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Fig. 14. Geometry of Detached Bow Shock in super-
sonic flow of a perfect gas (k = 1.'3”
past a sphere.

A
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Fig. 16. Calculated surface pressure dis-
lt‘ribut}m along a sphere with
= 1.4,
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in the remaining graphs.

Met

Fig. 18. local supersonic "Zone I' in a
subsonic potential flow accord-
Eni to Nikol'skii and Taganov
5].

(e)
Fig. 17. Supersonic flow past various elli
experiment (points) of Maslenniko
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Fig. 19. (a) Zone III in the physical plane.
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graph plane.
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Fig. 20. The collapse of the continuous supersonic flow in the characteristic
triangle A which adjoins the minimal domain of influence as the angle
of the infinite blunted wedge increases.

-

Fig. 21. Supersonic flow past a wedge-slab body with attached shock wave: AB, AC, AD -

characteristics of the first family, BE of the second family.
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j % ¢:0 Fig. 30 Imbedded floating shock and sur-
02 face pressure distribution over
el '.! a double cone in supersonic flow,
Z s M, =6, k=1.4 with a=0° and 5.
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Fig. 31 Density profiles for boundary
¢ conditions of no-slip (---)
) and vanishing of velocity com-
7 ponent normal to surface(—).
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Fig. 32 Lines of constant Mach number (isotachs) in - 0

supercritical flow (M_=0.9) around flat-faced X L el %
cglinders of various lengths: (a) 2/R=0.56, Fig. 33 rison of numerical results
(b) 2/R=2.0, (c) &/R=2.72, (d) &¢/R=7. (—) with the asymptotic steady

state [31,32] for sonic flow
past a flat-faced cylinder: 1 - sonic line,
2 - limiting characteristics, 3 - locus of
horizontal velocity vector, 4 - shock wave.
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number, M_* = 0.86.
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(a) M, =0.725
() M_=0.761

Fig. 36 Isotachs in transonic flow around a 12 per cent circular arc airfoil; calculated by
the "large particles' method ——, ---- experiment of Wood and Gooderum [39].

Fig. 37 Isotachs in sonic flow past a space vehicle of the Apollo type.
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