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NEW_COMPUTATIONAL MODELS IN CONTINUUM MECHANICS

®
0.M. Belotserkovskii

Direct numerical simulation of complex gas dynamics problems ‘(compu-
tational experiment) is performed with the help of Euler, Navier-Stokes
and Boltzmann equations. The basic principles of the computational experi-
ment are formulated and the results for various gas dymmics problems of
a complex internal structure are presented.

The problems examined include the transonic regime (super-critical
flows including transition through sound velocity), flows with a jet
"injected" into the main stream and diffraction problems. Body wake flows
are studied at various Reynolds numbers. The structure of a shock wave pro-
vides an example of rarefied gas flows at various Mach numbers.

A set of control tests is worked out for the estimation of calcula-
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Preface

Selected results of this report and its companion, "Investigation of
Transonic Gas Flows,' were commmicated in seminar lectures given by Prof.
Belotserkovskii at several American universities during a 4-week visit in
November - December, 1978. His lecture on 'New Computational Modeis in Con-
tinuum Mechanics,'" presented December 1, 1978, at a seminar of the Aerospace
Engineering Department of the University of Maryland at College Park, at-
tracted considerable interest from a diverse audience of scientists and
engineers. In response to numerous requests Prof. Belotserkovskii made
available the manuscripts of two reports which describe in some detail the
computational techniques employed in the numerical solutions of the problems
surveyed in his seminar talks.

This report is a survey of computational models developed by the author
in collaboration with his colleagues at the Computational Center of the
USSR Academy of Sciences over the past decade. Although most of these re-
sults have previously appeared in various Soviet journals, with the most
recent contribution, the last chapter of the present report, in the proceed-
ings of the VI International Conference of Computational Methods of Hydro-
dynamics, Vol. 2, Moscow, 1978, pp. 37-47, this report nevértheless gives a
coherent review of the advances in computational fluid dynamics at one of
the foremost centers of the Soviet Union.

The hallmarks of their numerical techniques are that they are:

(1) typically differentially and globally conservative, and

(2) careful attention is made to minimize truncation errors while at

the same time the favorable properties of the computational

schemes are exploited, e.g., the effective viscosity of the

iii




finite-difference equations (to promote calculational stability)
and (physically interpretted) the ability to compute the essential
features of separated regions of recirculating flows (e.g., wakes)
wholey within the framework of the Euler equations.

The underlying theme of this work is perhaps best described by the
author. '"The properties that a numerical method is to be endowed with,
from the view-point of modern developments, are so diverse that they are
difficult to fully implement in one single method. In view of this, com-
plexes of numerical methods based upon a unified approach should be availa-
ble. Finally, it is desirable to consider homogeneous schemes that enable
calculations through discontinuities that may arise in the evolution of the
solution, that allow for explicitly singling out some (principal) of the
features and that adequately resolve their boundary conditions."

The numerical methods are illustrated by a great variety of computa-
tional results which encompass a wide range of velocities, from subsonic
through transonic as well as up to hypersonic wherein complex physical pro-
cesses (thermo-chemical and radiation) strongly affect the resulting flow
field and over a wide range of Reynold's numbers in the case of viscous
compressible gas flows. Wherever possible English translations of the
references have been cited.

The careful typing of the edited manuscript by Miss Vicki Brewer
deserves a special note of appreciation. Finally, I am pleased to acknow-
ledge Contract N0g14-79—M-0022 from the U.S. Office of Naval Research which
made possible the publication and distribution of this report.

W. L. Melnik, Editor

Professor, Aerospace Engineering Dept.
University of Maryland at College Park
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1. Introduction

At present, specialists of applied sciences are confronted with
various kinds of practical problems whose successful and accurate solution,
in most cases, may be obtained only by numerical methods with the aid of
computers. However, this does not mean that analytical methods which
enable us to find the solution in '"closed'" form will not be developed.
Nevertheless, it is absolutely clear that the range of problems permitting
such an approach to their solution is rather narrow, therefore, the de-
velopment of general numerical algorithms for the investigation of prob-
lems of mathematical physics (gas dynamics, theory of elasticity, etc.)
is especially important.

a) Difficulties of Carrying Out the Experiment.

At hypersonic flight velocities, the resulting high temperatures give
rise to effects of dissociation and ionization in the flow and, in a num-
ber of cases, even to '"luminescence' of the gas. In these cases it is
enormously difficult to simulate the experiment in the laboratory, since
it is not sufficient to satisfy the classical criteria of similarity,
i.e., the equality of the Mach and Reynolds numbers. The equality of abso-
lute pressures and absolute temperatures is also required, which is only
possible if the sizes of the model and prototype are identical. These
requirements pose numerous technical difficulties and not the least of
which concerns the high cost of the experiment.

However, the importance of the experiment must not be underestimated
for it is always the basis of measure for confirming (or rejecting) the

calculation scheme and numerical solution.




b) Complexity of the Equations Considered.

The prominance of numerical methods in mechanics of continua is partly
explained by the fact that the governing equations of aerodynamics and
gas dynamics, and of theory of elasticity represent the most complicated
(as compared to other branches of mathematics) system of partial differen-
tial equations. In the general case, this is a nonlinear system of mixed
type (wherein the surface across which the equations change their type is
unspecified) and with "movable boundaries', i.e., the bouridary conditions
are given on surfaces or lines which, in turn, are determined by the
calculations. Moreover, the range of the unknown functions is so wide
that ordinary methods of analytical investigation (linearization of
equations, series expansion, separation of a small parameter, etc.) are
not appropriate for the development of the complete solution of the pro-
blem in the general case.

It should be noted, that in solving complicated problems on electronic
computers that the preliminary analytical investigation of a problem may
provide great insight and sometimes this investigation is simply decisive
for the successful realization of the numerical algorithm.

Let us dwell on one more peculiarity of algorithms used for solving
concrete problems of mechanics of continua. Currently, numerical methods
have found a wide practical application in design offices and research
institutes. Substantial progress in the exploration of the cosmos, in
the optimum control of vehicles, in the choice of rational configurations
of vehicles and etc., are, to a considerable extent, due to scientific
information obtained from serial calculations. The volume of information

obtained by means of the calculation is far more complete and substantially




cheaper than the corresponding experimental investigations if the problem
is correctly formulated, well simulated and algorithmicaily rational. How-
ever, a wide application of the numerical methods for practical purposes
requires sufficient simplicity and reliability. Thus, on the one hand, one
has to deal with rather complicated mathematical problems, while on the
other hand, it is necessary to develop rather simple and reliable numeri-
cal methods permitting us to carry out serial calculations at project
institutes and design offices.

Note that for most problems in gas dynmamics, not only have no mathe-
matical theorems of existence and uniqueness been proved, but very often
there is no confidence that such theorems can even be derived. As a rule,
the very mathematical formulation of the problem is not strictly given
and only the physical treatment is presented, which is far from being one
and the same thing. The mathematical difficulties of the investigation of
such types of problems are related to the nonlinearity of the equations,
as well as to the number of independent variables.

The state of affairs with the methods of solution are no better. So
far, investigations related to the possibility of realization of the algo-
rithm, its convergence to the unknown solution, and its stability have
rigorously been preformed only for linear systems, and, in a number of
cases, only for equations with constant coefficients. When confronted
with the necessity of solving a problem, the mathematician often has to
use the known algorithms and to develop new methods without a rigorous
mathematical basis for their applicability.

In science, as well as in mathematics, one can find many examples

when new ideas and concepts were successfully used without




a rigorous basis which only appeared later. Of course, this does not
suggest, that when developing new numerical algorithms, one may slight

the accurate formulation of the problem or its physical meaning. This
oversight inevitably leads to numerous mistakes, consequently a waste of
time and, moreover, the experience without being theoretically interpreted
does not give the foundation for further development of the method.

We want to draw your attention to this rather clear question only
because there is still preﬁlmt an opinion, that the main thing is to
write down differential equations and all the rest reduces to a trivial
substitution of derivatives by differences and to programming on which
too much importance is sometimes attached. In this connection, it is
reasonable to formulate the main stages of the numerical solution to a
physical problem with the aid of computers in the following way:

1) the construction of a physical model and the mathematical state-
ment of the problem;

2) the development of a numerical algorithm and its theoretical
interpretation;

3) programming (manual or automatic) and the formal adjustment of
the program;

4) the methodical adjustment of the algorithm, i.e., the test of
its operation by concrete problems; the elimination of drawbacks uncovered
and the experimental investigation of the algorithm;

5) accumulation of experience, the estimation of effectiveness and
the range of applicability of the algorithm from serial calculations.

At all stages, the mathematical theory, the physical and computational

experiment are used jointly and consistently. Their application may be




illustrated by solving concrete problems, which will be described below.
Therefore, we shall make only some common observations by way of intro-
duction.

The main principle of using mathematical results is that the condi-
tions providing the solution of a problem for special simplified cases
must be fulfilled as well for more general cases. Parallel to this, con-
sideration of the physical phenomenon provides a qualitative picture
against which the statement of the problem is checked and ‘defined more
exactly. Ultimately, the final experimental test allows us to access the
correctness of the assumptions made and the validity of the algorithm and
resulting solution. It should be noted, that the estimate of accuracy of
the numerical solution must be done purely mathematically, without using
the results of the physical experiment. The latter may be used for quali-
tative comparison while the quantitative comparison between the calcula-
tion and experiment provides information on how closely the physical model
used approaches the natural environment.

1.1 Numerical Methods of Solution of Equations of Gasdynamics.

Many important problems of the exact sciences involve the solution of
a system of non-linear partial differential equations. Oftentimes it includes
many problems with discontinuous solutions (e.g., gas dynamics).

The construction of reasonably accurate solutions of the exact equa- -
tions of gasdynamics in the general case has become possible only with the
aid of numerical methods, exploiting the advantages of high-speed elec-
tronic digital computing machines. Technological requirements have called
for an intensive development of numerical methods and their application to
the solution of a wide variety of gas dynamics problems. Scientists and
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research engineers in the area of gas dynamics have contributed signifi-
cantly to the development of modern numerical methods of solving systems
of non-linear partial differential equations.

There exist four universal numerical methods which are applicable to
the solution of non-linear partial differential equations of gas dynamics
problems.

3

I. Method of Finite Differences. This method is the most highly

developed of the four at the present time and is widely applied to the
solution of both linear and non-linear equations of the hyperbolic, ellip-
tic and parabolic types. The region of integration is subdivided into a
network of computational cells by a generally fixed orthogonal mesh.
Derivatives of functions in the various directions are replaced by finite
differences of one form or another; usually, a so-called implicit differ-
ence scheme is applied to the integration of the equations. This results
in the solution, at each step of the procedure, of a system of linear
algebraic equations involving perhaps several hundred unknowns.

Finite difference schemes are often used for solving steady and un-
steady gas dynamics equations. Lagrangian and BEulerian approaches are
widely used here. In the first case, where the coordinate network is re-
lated to the fluid particles the structure of the flow is better defined
and one succeeds in constructing rather accurate numerical schemes for
flows with comparatively small relative displacements. In the second
case, when the calculational network is fixed over space, the schemes are
used for constructing flows with large deformation. In recent time, the
approaches mentioned here have also found a wide application to the cal-

culation of steady flows.




II. Method of Integral Relations. In this method, which is a

generalization of the well-known method of straight lines, the region of
integration is subdivided into strips by a series of curves, the shape of
which is determined by the form of boundaries of the région. The system
of partial differential equations written in divergence form is integrated
across these strips, the functions occuring in the integrands being re- '
placed by known interpolation functions. The resulting approximate system
of ordinary differential equations is integrated numerically. The method
of integral relations, like the method of finite differences, is applica-
ble to equations of various types.

ITI. Method of Characteristics. This method is usually only applied

to the solution of equations of hyperbolic type. The solution, in this
case, is computed with the aid of a grid of characteristic lines, which
is constructed in the course of the computation. Actually, the method of
characteristics is a difference method of integrating systems of hyperbolic
equations on the characteristic calculational network and is mainly used
for detailed description of flows. Its distinguishing feature as compared
to other difference mentods is the minimal utilization of interpolation
operators and associated with it the region of influence of the difference
scheme closely approximating the region of influence of the system of
differential equations. The smoothing of the profiles, inherent in
difference schemes with fixed network, is minimized since the calculational
network used in the method of characterisitics is constructed exactly
with the region of influence of the system taken into account.

Irregularity (nonconservativeness) of the calculational network

should be noted as a drawback of the method of characteristics. It is
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possible to develop a technique, based on this method, in which the calcu-
lations are carried out in layers bounded by fixed lines. The method of
characteristics permits one to accurately determine the point of origin

of secondary shock waves within the field of flow as the result of inter-
section of characteristics of o?e family. On the other hand, if a large
number of such shock waves occur, difficulties are encountered in their
calculation. Accordingly, the methqd of characteristics is most expedient-
ly applied to hyperbolic problems in which the number of discontinuities

is small (for example, problems concerning steady supersonic gas flow).

IV. 'Particle-in-Cell' Method (PIC). In certain respects, the PIC

method incorporates the advantages of both the Lagrangian and Eulerian

approaches. The range of solution here is separated by the fixed (Eulerian)

calculation network; however, the continuous medium is represented by a
discrete model, i.e., the population of particles of fixed mass (Lagran-
gian network of particles) which move across the Eulerian network of cells
is considered. The particles are used to determine parameters of the
fluid itself (mass, energy, velocity), whereas the Eulerian network is
employed for determining parameters of the field (pressure, density,
temperature) .

The PIC method allows us to investigate complex phenomena of multi-
component media in dynamics, because particles carefully monitor free
surfaces, lines of separation of the media, etc. Due to discrete repre-
sentation of a continuous medium (the finite number of particles in a cell)
calculational instability (fluctuations) often occurs. However the cal-
culation of rarefied regions is also difficult. ULimitations in capacity

of modern computers do not permit a significant . icrease in the number of

PO




particles.

For problems in gas dynamics involving a uniform medium, it seems
more reasonable to employ the concept of continuity considering the mass
flow across the boundaries of Eulerian cells instead of "particles".

Only numerical methods using high speed computers and careful experi-
ments allow us to obtain the complete solution to complex gas dynamics
problems and to determine the necessary flow characteristics. Thus, the
elaboration of numerical schemes, the calculation of different gas dyna-
mics problems, as well as the study of analytical properties of the solu-
tions and their asymptotic behavior are of significant interest at present.

1.2 Aerodynamic Characteristics of High-Speed Vehicles.

In this paper a short review of the numerical methods used for the
determination of the aerodynamic characteristics of high-speed vehicles
with transonic and supersonic velocities will first be given. The mmeri-
cal schemes were developed under our supersivion and in collaboration with
the Moscow Physical Technical Institute and the Computing Center of the
Academy of Sciences of the USSR. We shall discuss the problems of the
development and use of the numerical algorithms for carrying out serial
calculations in solving modern engineering problems arising in practice.

I. Steady-State Schemes. In determining the steady aerodynamic

characteristics of bodies (especiall& when electronic computers of average
capacity were employed) we made wide use of the following methods for sol-
ving the steady gas dynamics equations: the method of integral relations
(m.i.r.), the method of characteristics (m.ch.) and some finite difference
schemes (e.g., schemes with "artificial viscosity''). We wish to especially

consider problems in which different discontinuities and singularities are
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given beforehand, together with some associated boundary conditions; the

solutions being carried out in regions where functions vary continuously.
Three different schemes of the method of integral relations have been .
developed for the determination of flow in the nose region of a blunt body,
namely, one that employs an interpolation of various functions across the
shock layer (Scheme I), along it (Scheme II) or in both directions (Scheme l
III). As a result the boundary value problem is solved for an approxi- :
mate system of ordinary differential equations (Schemes I and II) or
algebraic equations (Scheme III). To solve the three dimensional problem,
certain additional trigonometric approximations in the circumferential
coordinate were introduced. The various schemes of the method of integral 5
relations have found a wide variety of applications [1-6].
The main advantage of these schemes is that, by means of different
transformations, one succeeds eventually in approximating functions (or
groups of functions) with comparatively weak variations. Consequently
reliable results with a high degree of accuracy can be obtained with a
comparatively small number of interpolation nodes (usually 3-4 are used).
The choice of the independent variables, the form of the initial
system of equations cf motion (i.e., the introduction of the integrals
into the initial system and the use of the divergence form of the laws of
conservation), the use of conservation schemes, the approximation of the
integrals, etc., are all of great importance in writing an efficient numeri-
cal algorithm using m.i.r. . h
The main difficulty in carrying out the schemes of m.i.r. is the
solution of many parameter boundary value problems for the approximating

system of equations. This is overcome by means of appropriate iteration
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schemes. Moreover, these schemes have been used in transonic regions
mainly for bodies of a comparatively simple form, while when dealing with
a supersonic zone one has to adopt another algorithm.

In calculating supersonic flow the two- and three-dimensional schemes
of the method of characteristics by P.I. Chushkin, K.M. Magomedov, and
their co-workers were used [7,8]. With the governing equations expressed
in characteristic variables, one requires approximation of ordinary deri-
vatives, only. Using a fixed computational network, a system of linear
finite difference equations is obtained with its attendant advantages.

With the help of the methods cited above, a large mumber of gas
dynamics problems have been solved, namely, ideal gas flows with chemical
reactions and radiation, transonic and three-dimensional flows, as well
as viscous flows. In most cases reliable results were obtained which
were in excellent agreement with experiment [6]. However, these approaches
to the solution of the steady-state equation may be successfully used only
for problems in which there are no singularities, discontinuities, inter-
sections, and interactions. The application of these approaches is difficult
for bodies of complex form with a large number of discontinuities. Besides,
a single algorithm for the calculation of different types of flow is pre-
ferable.

II. Unsteady-State Schemes. The next step in the evolution of numeri-
cal methods, which was motivated by urgent practical needs and aided by

the availability of electronic computers, was the development of nonsteady
schemes to calculate the asymptotic solution of steady-state aerodynamic
problems. In approximating the nonsteady equations, the general principles
and ideas of the m.i.r. and m.ch. were applied with respect to space

11
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variables. The divergence or characteristic forms of the initial equa-
tions were used and the same calculational networks were employed.

In this way the nonsteady Schemes II and III of the method of inte-
gral relations and the netwo;'k-characteristic method were developed [9,10].
In this way rather complicated types of flow could be treated with a sin-
gle algorithm. It is natural that the problems of computational stability
and the attainment of steady-state solutions should become crucial. They
require some specific technique such as the introduction of artificial
viscosity into the initial system, and of dissipation terms into the
difference equations. In a number of cases the accuracy of the results
obtained is somewhat less than in the steady-state methods, but these
approaches enabled us to consider new classes of problems; for example,
the determination of the aerodynamic characteristics of specific configura-
tions involving three-dimensional flow, the calculations of viscous tran-
sonic flows, and others [10].

ITI. '"Large Particles' Method. Finally, in the third stage of

development it seemed reasonable and advantageous to introduce the ele-
ments of the Harlow "particle-in-cell" method [11-13] into the algorithms.
At first only the equation of continuity is represented as the mass flow
across the Euler cell, using the simplest finite difference or integral
approximation along the coordinates.

Thus the modified method of "large particles' [14-15] came into exis-
tence, which (again by means of the stability process) allowed us to con-
sider from one point of view such a complicated task as, for example, the
supsonic, transonic, and supersonic flow past a flat-nosed body in two
dimensions or with axial symmetry. This method is likewise used in cal-

culating viscous flows which would even permit the study of separated flows
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from solutions of the Navier-Stokes equations [16-18].

The main principle of splitting the evolution of a physical process
by a time step is as follows.

The medium simulated may be replaced by a system of N particles
(fluid particles for a continuous medium and molecules for a discr_ete one)
which at the initial instant of time are distributed in cells of the
Eulerian mesh in a coordinate space in accordance with the initial data.
The evolution of such a system in time At may be split into two stages:
change of the internal state of sub-systems in ceils which are assumed to
be "frozen" or stable ("'Eulerian' staée for a continuous medium and colli-

sion relaxation for a discrete one) and subsequent displacement of all the

particles proportional to their velocity and At without changing the inter-

nal state ("Lagrangian" stage for a continuous medium and free motion of
molecules for a discrete one). The stationary distribution of all the
medium parameters is calculated after the process attains steady state.

It should be stressed that the development of the numerical schemes
mentioned above has been paced by the improvement and extension of the
ways of solving the boundary value problems for the corresponding approxi-
mating equations; by the consideration of a new, wider class of problems;
by the development and improvement of electronic computers, machine
languages, input and output arrangements, etc.

1.3 Computational Experiments

In recent years the introduction of big computers has aroused a con-
siderably greater interest in various numerical methods and algorithms
whose realization borders on carrying out computational experiments. The

need in such an approach for the solution of problems of mathematical
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physics is prompted by ever growing practical demands; in addition it is
connected with an attempt of constructing more rational general theore-
tical models for the investigation of complex physical phenomena.

Let us outline the principle steps of computational experiments. At
first, one chooses a mathematical model of a physical object based on its
analytical study. Then one works out a tool for the investigation of the
phenomenon in question, namely a difference scheme which permits the ex-
periment itself to be carried out, i.e., the computational process. The
next step comprises a detailed analysis of the results, leading to improve-
ments and corrections of the mathematical model. This feedback procedure
leads to perfections and modifications in the methodology of numerical
experiments.

A close analogy to physical experiments comprising similar steps is
evident; an analysis of the phenomenon under study; development of an
experimental scheme; modification of design elements of the experimental
installation; and measurements and their analysis.

In recent years the Computing Center of the USSR Academy of Sciences
carried out a number of experiments associated with studies of complex
gasdynamic flows using the non-stationary method of ''large particles'
[14,15]. Characteristic features of flows past bodies of different shapes
were studied over a wide range of velocities, from subsonic, through tran-
sonic, up to hypersonic. In this paper results of a number of such experi-
ments are presented without delving into the details of the computations
[10,14,15,19,20].

It also seemed promising to apply the main principles of the approach

in question for the simulation of rarefied gas flows. The application of
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a statistical variant of such an approach for the solution of the Boltz-
mann equation is studied in [21-23]. Since the complete details of the
techniques are given in the cited references, this paper will only be

concerned with the characteristic features of each appfoach.
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2. "Large Particles' Method for the Study of Complex Gas Flows.

For numerical models constructed by Yu.M. Davidov [14,15] on the basis
of Fulerian equations, the mass of a whole fluid (Eulerian) cell, i.e.,
"a large particle" (from which originates the name of the method) is con-
sidered instead of the ensemble of particles in cells. Furthermore, non-
-stationary (and continuous) flows of these ''large particles' across the
Eulerian mesh are studied by means of finite-difference or integral re-
presentations of conservation laws.

This method utilizes the conservation laws given in the form of ba-
lance equations for a cell of finite dimensions (which is the usual proce-
dure in deriving the gas dynamics equations but stops short of passing in
the limit to a point. As a result, we obtain divergence-form conservative
and dissipative-steady numerical schemes that allow us to study a wide
class of complex gas dynamics problems (transonic flows, turbulent flows
in the wake of a body, diffraction problems, etc.) [10,14,15,20].

2.1 Description of the Method

Consider the motion of an ideal compressible gas. Our starting-point
is provided by the Euler differential equations in divergence form (the

equations of continuity, momentum and energy)
)
‘3‘%+V° (QV)=0,

dpu ip _
W+ V-(puV)"'s)%-O, (1)

2y i 3.
it u v (DVV) 5 ay 0’

BE 4 v GEN + 7. @) =0.

It was shown in [14] that, in the "large particle' method, the set of equa-

tions of gas dynamics, written as laws of conservation in integral form,
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may be used instead of (1). The important point is that the difference
scheme approximating the initial set of equations should be homogeneous,
so that "through' computations may be performed without isolating singu-
larities.

Equations (1) are completed by the equation of state

p = p(o,E,¥) = 0. (2)

The various stages of the computational cycle will be considered
separately. Let us briefly describe the main principles of the 'large
particle" method. The region of integration is covered by a fixed (over
space) Euler mesh composed of rectangular cells with sides Ax, Ay (or Az,
Ar in a cylindrical coordinate system).

In the first (""Eulerian') stage of calculations only those quantities

change which are related to a cell as a whole, and the fluid is supposed
to be momentarily decelerated. Hence, the convective terms of the form
div(epV) where ¢ = (1,u,v,E), corresponding to displacement effects, are
omitted in equation (1). Then it follows from the equation of continuity,
in particular, that the density field will be "frozen" and the initial

system of equations will be of the form

Pttt 0 ety etV ®V) = 0. )

Here we have used both the simplest finite-difference approximations
and, to improve the calculation stability, the schemes of the method of
integral relations, in which "sweeping-through' approximations of the in-
tegrands with respect to rays (N = 3,4,5) are used.

In the second ("Lagrangian') stage we find mass flows across the
1

cell boundaries at t™" = t™ + at. At this stage we assume total mass to

be transferred only by a velocity component normal to the boundary. Thus,
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for instance

Mo, = Gl 3D (o, P ot e

The angle brackets( )denote the value of p and u on the cell boundary.
The choice of these values is extremely important since they substantially
influence the stability and accuracy of the computation. The various pos-
sible ways of writing down sM* are characterized by consideration of the

flow direction.

First and second order accurate representations of aM” are considered.

These are based on central differences, without account being taken of the
flow direction, as well as by means of the discrete model of a continuous
medium comprising a combination of particles of a fixed mass in a cell
[14,15].

Lastly, in the third ("Final') stage we estimate the final fields of

the Buler flow parameters at the instant of time i (all the errors in
the solution of equations are '"removed''). As was pointed out, the equa-
tions at this stage are laws of conservation of mass M, momentum -I; and
total energy written down for a particular cell in the difference form
Fn+l =+ 3 Fbrcllry , Wwhere F = (M},E) 5)

According to these equations, inside the flow field there are no
sources or sinks of M, P and E and their variation in time At is caused
by interaction at the external boundary of the flow region.

2.2 Boundary Conditions.

To retain the unified nature of the computations and avoid special
expressions for the boundary cells, layers of fictitious cells are intro-
duced along all the boundaries, which are assigned parameters from the
neighboring flow cells. The number of such layers depends on the order
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of the difference scheme (one layer for the scheme of first-order accuracy, etc.).
Two kinds of boundary then have to be distinguished: the rigid boundary
(or axis of symmetry) and the '"open' boundary of the computational region.

In the first case, the velocity component normal to the boundary
changes sign, i.e., non-penetration condition along rigid walls, while the
remaining flow parameters are taken unchanged. However another type of
boundary condition is possible, namely, walls without slip (condition of
sticking). In this case both velocity components change sign and the
entire velocity vector vanishes on the wall.

Fluid can flow across ''open'' boundaries of the region, and some con-
ditions on the continuity of the movement are required in this case.
Consider the fluid to be flowing into the rectangular mesh from the left;
then the parameters of the entering flow will be specified here. On the
remaining "“open' boundaries of the region we extrapolate the parameters
of the flow '"from within", i.e., transfer to the fictitious layer the
parameter values from the layer nearest to the boundary (zero order extra-
polation). A more complicated statement of the conditions is possible,
or more accurate extrapolation (say linear or quadratic).

It is natural that the outer boundary of the region should be fairly
remote from the source of disturbance, in which case methods of flow extra-
polation "outwards'" are possible. This topic will be discussed in more
specific terms below. It will merely be mentioned here that the basic
principle underlying the statement of the conditions is that no substantial
disturbances should penetrate through the '"open'' boundaries of the region
into the computational region.

2.3 Viscosity Effects.

It has already been remarked that this approach employs homogeneous
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difference schemes, whereby computation by a unified algorithm is possible
both through smooth flow regions and through discontinuities. This is
achieved by using finite-difference schemes with a viscosity approximation.
Let us dwell briefly on this topic.

While the equations of gas dynamics for a non-viscous gas were taken
as the governing equations, viscosity effects are in fact inherent in our
difference scheme. They are produced, firstly, by the introduction into
the scheme of an explicit term with artificial viscosity ('‘viscosity pres-
sure'') and secondly, by the presence of an essentially schcmatic viscosity,
deperident on the structure of the finite-difference equations.

The form of the approximation viscosity and estimates for the stabili-
ty of the scheme can be obtained by writing as Taylor series the difference
operators appearing in the equations in all three stages. The temrms of
zero (lowest) order should then represent the initial differential equa-
tions, while the structure of the approximation viscosity can be determined
by retaining higher order terms in the expansions ('‘expansion errors').

The resulting differential equations will be termed the differential approxi-
mation of the finite-difference scheme, while an expansion up to second
order terms in time and space is termed the first differential approxima-
tion [14,15,24].

The stability of the difference schemes may be investigated by means
of the differential approximation. Such investigations were made by
N.N. Yanenko and Y.I. Shokin for one-dimensional quasi-linear equations of
the hyperbolic type [24]. While a strict mathematical foundation has not
yet been supplied for the case of non-linear equations, the method of

differential approximations has in fact been used here [13].
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Taking the one-dimensional case for simplicity, let us describe the
first differential approximation of our difference scheme. Take, say
urilﬂ, write it as function u(x + Ax,t), and expand each term of the
finite-difference equations in Taylor series in the neighborhood of the
point (x,t).

For instance, in computations of aM® from the expressions (4) of

second order accuracy we obtain

%%4-.8-29_ =0’

dpu  3(p + pu ) = 9 u
apt axp 3%* (oe x) . (6)

%%_ +—[u(p+pE)]"£'l %(-(peg%),

or when using expressions (4) of first order accuracy

) au__
e G

at ax L
2 2
dpu , 3(p +pu%) _ 39,3  3pu 24
it 3X il rer 5 R ™

2
e+ om = - 32 2004 G,

=
*lm
+

where ¢ = |u|ax/2. The differential approximations may be written down
similarly in the case of two-dimensional problems.

On the left-hand sides of (6) and (7), the exact expressions of the
initial differential equations have been obtained, while on the right we
have the terms which are a consequence of 'viscosity' effects in the dif-
ference equations. The terms involving q result from the explicit intro-
duction of an artificial viscosity, while the terms involving e are due to

schematic viscosity, which appears when the exact differential equations
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are replaced by finite-difference equations ('‘expansion errors').

It may easily be seen that, as the mesh is refined (Ax + 0), ¢ - 0
and the equations of the differential approximation reduce to the exact
set of initial equations. In practical computations (due to Ax, At,...,
being finite), terms containing e always appear implicitly in the differ-
ence scheme even when q = 0, which are in turn analogous to the dissipa-
tive terms of the Navier-Stokes equations. The role of the coefficient
of actual viscosity is here played by the coefficient € of schematic vis-
cosity, which depends on the local flow velocity and the size of the
difference mesh.

Ir the two-dimensional case, it follows from the equations of momen-

tum that the schematic viscosity (with q = o) has the tensor form

au au
UAX o= VAY 5y
> ->
a=% =%OVA?-VV, (6")
v VvV :
UAX o vAyg}7

where AT = AXi + Ayj
It is clear from (6') that, due to the presence of the vectors AT and V,
the schematic viscosity does not possess invariance under Galileo trans-

formations; in practice it only appears in zones where the gradient is

large, i.e., in a shock wave, at the body surface, and near flow separation.
The coefficient of schematic viscosity ¢ (and hence the width of the
"smeared" shock wave) then depends on the size of the local flow velocity
and the cell size. In regions of smooth flow, where the gradients of the
flow parameters are relatively small, the influence of the schematic vis-
cosity is negligible.

It will be shown that in certain cases (when expressions (4) of
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the first order accuracy are used for computing aM , the schematic vis-
cosity ensures a stable computation even in the absence of pseudo-viscosity
q; whereas when the second-order expressions (4) are used in regions where
the local velocity is small compared with the Velocityvof sound, the intro-
duction of a term with q is necessary to obtain a stable solution.

2.4 Stability of the Scheme.

While it is natural for different types of difference equations to
be appropriate at various stages, the computations become strongly unstable
on occasions, and rapidly increasing and oscillating solutions appear,
which no longer reflect the behavior of the solutions of the initial dif-
ferential equations.

The difference schemes quoted above are of the multi-layer type,
while the difference equations are strongly non-linear with variable co-
efficients. This makes it impossible to employ Fourier's method, devised
for linear equations with constant coefficients, for investigating the
stability of the difference scheme as a whole. In essence, Fourier's me-
thod presupposes that the equations are linearized in the neighborhood of
the flow with constant parameters, and it ignores non-linear effects (in-
fluence of the flow gradients), which are sometimes the true sources of
the instability.

A heuristic approach will therefore be employed here to analyze the
stability of the difference schemes, based on a consideration of their dif-
ferential approximations [13,14,15] and appropriate for non-linear equa-
tions. In this approach, we determine the signs of the coefficients ay
("diffusion coefficients') in the dissipative terms of the differential

approximation; these terms contain second partial derivatives in the space
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variables. For example, a linear equation can be indicated, such that,
when the value of the coefficient is negative, the equation of the differ-
ential approximation admits a solution which is exponentially increasing
in time (unstable) [14].

In short, the necessary conditions for stability are obtained here
from the condition o« > 0 (parabolicity condition). In the case of linear
equations, the results of a stability analysis obtained by means of the
differential approximation are exactly the same as that obtained by
Fourier's method.

Let us examine how the different ways of writing the continuity equa-
tion (second stage of the computations) contribute to the instability,
assuming that the equations of momentum and energy are stable.

If aM" is determined from the second order accurate expressions of

(4), we find, on expanding the relevant difference equations in Taylor

series and retaining terms containing aZp/axZ:
2

.., - Yal.hip 8
X

If aM? is evaluated from the first order accurate expressions of (4),

we get
3 , 3pu _ %, [AX |u|-At(z+c2)-“x23“ a%p ()
Nl - Sy g g LI e

where 8y and A; are terms of the first differential approximation propor- »
tional to Ax and containing the first derivatives. In our case [14,15],

ax = 0.071; At = 0.0071; o =1l;u__ =1 (10)
In practical computations, when shock waves, contact discontinuities and
rarefaction wave appear,

plul =1; I%;-’-I Ax < 0.3; l-g%l AX < 2.
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It follows from this that the coefficient of azp/ax2 in (9) is posi-
tive, whereas it is negative in (8), i.e., scheme (8) is computationally
unstable, while scheme (9) is stable.

2.5 Some Practical Aspects of the Method

It follows from the very character of the construction of the calcula-
tion scheme that a complete system of nonstationary gas dynamics equations
is essentially solved here, while each calculation cycle represents a com-
pleted process in calculating a given time interval. Besides, all the
initial nonstationary equations as well as the boundary conditions of the
problem are satisfied and the real fluid flow at the time in question is
determined.

Thus, the 'large particles'" method allows us to obtain the properties
of nonstationary gas flows and as a consequence of their stability
characteristics their asymptotic state as well. Such an approach is
especially applicable to problems in which a complete or partial develop-
ment of physical phenomena with respect to time takes place. For example,
in studying transonic gas flows and flows around finite bodies, flow in
local supersonic zones, and separation regions develop comparatively slowly
while the major part of the field develops rather rapidly.

In contrast to the FLIC - method [25] our investigation is wholly de-
voted to systematic calculations of a wide class of compressible flows
involving transonic regimes; discontinuity, separation and "injected"
flows, etc.

The divergence forms of the differential and difference equations are
considered in the "large particle" method; different kinds of approximations
are used in the 1st and 2nd stages; additional density calculations are
introduced in the final stage, which helps to remove fluctuations and makes
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it possible to obtain satisfactory results with a relatively small network
(usually one to 2.5 thousand cells are used). All this results in completely
conservative schemes, i.e., laws of conservation for the whole mesh region
are an algebraic consequence of the difference equations. Fractional cells
are introduced for the calculation of bodies with a curvature in the slope
of the contour.

The investigation of these schemes (approximation problems, viscosity,
stability, etc.) was carried out for the zero, the first and the second
differential approximations [13-15]. These investigations show that the
'""large particle' method yields divergence-conservative and dissipative-
-steady schemes for ''sweeping-through' calculations.

These enable us to carry out stable calculations for a wide class of
gas dynamics problems without introducing explicit terms with artificial
viscosity. It may be of particular significance in studying flows around
bodies with a curvature in the slope of the contour since the ways of
introducing explicit terms with artificial viscosity are different for

whole and fractional cells. Moreover, by varying only the second stage of

the calculation procedure we can arrive at the conservative 'particle-in-cell"

method so that the calculational algorithm is of general use.

As for discontinuities the approximate viscosity in the schemes (dissi-
pative terms in difference equations) results in stable calculations with
a ''smearing" of shock waves over several computational cells and the forma-
tion of a wide boundary layer near the body. It should be stressed that
the magnitude of the approximate viscosity is proportional to a local flow
velocity and to the dimension of the difference mesh, therefore its effect

is practically evident only in zones with large gradients.
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2.6 Results of Numerical Computations

Some computational results obtained by the ''large particle' method
[20] for transonic and "supercritical" flows around profilés, plane and
axisymmetrical bodies will now be described.

For purposes of this discussion the supercritical regimes of transonic
flows around bodies will be characterized by the value of the critical Mach
number of the oncoming flow M_* (i.e., when a sonic point first develops on
the body) as well as by the extent of the local supersonic zone (as com-
pared to a characteristic dimension of the body) and by its intensity (say
the maximum supersonic velocity realized in the zone).

Figure 1 (series 1l.a - 1.h) presents the flow field patterns (lines
M = const.) for a 24% circular arc profile (v = 0) extending from purely
subsonic (M_ = 0.6) to supersonic regimes (M = 1.5). Successive flow
fields for increasing M_ depict transition through the critical Mach num-
ber (here M: = 0.65), and the formation and development of a local super-
sonic zone. The supercritical flow around this profile is observed in
Fig. 1 (b)-(g) (0.65 <M_ < 1). One can distinctly see the position of the
shock in the region of crowded lines M = const. which bound the local super-
sonic flow together with the sonic line (M = 1). The region of subsonic
velocities is located behind the shock wave. When the velocity of the on-
coming flow increases, the flow disturbances produced by the body die out .
at a large di.stance from the body. With M_ > 0.9'the zone becomes consi-
derable both in size and in intensity (supersonic velocities up to M=1.7
to 1.8 are attained) and in case of sonic flow (Fig. 1.g) the sonic lines
(M = 1) extend to infinity.

The asymmetry of the whole fldw pattern is noticeable (even at purely
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subsonic velocities - Fig. 1.a) which results from non-potentiality of the
flow (super-critical regimes) and from the presence of viscous effects as
well (formation of a wake behind the body). % i

In the case of a supersonic flow around a profile (Fig. l.h, M =1.5) +
a shock wave ahead of the body develops which bounds the disturbed region.
Behind the wave, subsonic velocites occur in the vicinity of the axis of
symmetry, away from which the flow velocity along the contour of the body 1
increases and, as a result, a '"terminal" shock occurs near the stern of
the body.

For comparison the results of calculations by the above method of a
flow around a 24% axisymmetric ''spindle-like' body (v = 1) are given in
Fig. 2 (2.a-2.h) for 0.8 <M < 2.5 . In this case a critical regime
already occurs at M* = 0.86; local supersonic zones as compared to the
plane case are less developed and of weaker intensity (for example, values
of M~ 1.3 to 1.4 are realizetli), although, naturally, the main features of a
transonic flow are quite evident. /

In Fig. 3 a comparison is given between the flow fields calculated by
the above method (solid line) and those of the Wood and Gooderum experiment
(dashed 1line) [26] for subcritical (Fig.3.a,M_ = 0.725) and supercritical
(Fig. 3.b M_ = 0.761) flows around a 12% profile (results of both the
calculations and the experiment indicate M* = 0.74).

The analysis of internal check tests as well as the results of com-

parisons indicate that the computational error of the ''large particle"

P

method usually does not exceed several per cent. The calculations were
carried out using a Soviet BESM-6 computer; the time of the calculation

in this case did not exceed an hour.
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Figures 4 to 6 show results of calculations for some complicated flows
past bodies of different shapes in the presence of discontinuities in the
wake as well as under the influence of injection of a fluid upstream from
the front surface of the body. Such flows are of great practical interest
in the study of wakes and turbulence.

The results of numerical experiments for the investigation of flows
with injection, are given in Figs. 4a, 5 and 6b,c. They include the case
of the interaction of a supersonic flow around a finite thick circular disk
(Fig. 4a, M = 3.5), a 24% body of revolution (Fig. 5, M_ = 3.5), and a
sphere (Fig. 6b, M_= 3.5; Fig. 6c, M_ = 6) with a sonic injection stream
(i.e., one where MC = 1.0; P ™ 2.9, 0. 1.0, o 0) issuing upstream
out of a nozzle situated on the axis of symmetry of the body. Fig. 6d
presents results for the case when distributed injection of the flow takes
place at the surface of a sphere. In all the figures, streamlines, shock
waves, horizontal velocity lines (dots), and sonic lines (circles) are
indicated; dashes denote lines separating the main flow from the injected
stream.

The action of the jet markedly complicates the flow pattern. For
instance, in the flow past a cylinder the head shock wave ABCD (Fig. 4a) is
pushed towards the oncoming flow, and its distance from the body increases
significantly. The jet issues out of the body in the direction of axis of
symmetry at a sonic velocity and expands, forming a local supersonic re-
gion OLMNPO which is closed by a triple-shock intersection (normal front:
ML; oblique front:MN; transverse front:MP), having a common point M. A
recirculation zone with a complicated vortex structure developes in front

of the body; sonic line BQ is situated much lower in comparison to flow
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without injection. Behind the front recirculation zone, a secondary shock
QC is formed and at some distance from the body merges with the head shock
wave ABCD at point C.

Behind the bodies in Figs. 4-6, both with and without injection, one
can observe the development of separated zones of recirculating flows. In
the cases considered, these zones are closed, localized in the wake of the
body and separated from the external flow by a "non-flow'" line, i.e., a
contact surface indicated by dashes in the figures. In the vicinity of
the separation (it is interesting to note that in Fig. 4 the separation
point is situated somewhat lower than the rear shoulder of the body) a
transverse shock wave FF develops. Backward recirculation flows are essen-
tially subsonic and rarefied (gas density and pressure are low), so that
effects of viscosity are negligible.

The 'large particle' method has also been applied to the study of in-
ternal gas flows and diffraction problems. Fig. 7 presents results of
computations for flow through a straight chamnel (v = 0, Fig. 7a) and a
straight tube (v = 1, Fig. 7b) in the presence of a central body (M_=1.5)
for the case when a triple shock intersection is formed as a result of the
interaction of the flow with the upper wall (this can be seen by an
examination of the lines M = constant in Fi+. 7a and rot ﬁ = constant
in Fig. 7b).

In calculating separated flows, the cell dimensions of the ''large
particles" were changed several times so that across the wake of a body of
size R from 4 to 30 computational intervals were used (Fig. 8). In all
cases there was an ample reserve of computational stability (over 100 x

Courant, where the Courant number represents the ratio of the time step to
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the space width of the cell).

Fig. 8 shows base flows behind an axisymmetric cylinder (M = 2.0) for
R = 14ay. A gradual development of the flow in time is shown (in dimen-
sionless units) from t" = 21 to t" = 31, when the zone is practically loca-
ted. Streamlines are represented by solid lines; velocity vectors by
arrows. It follows from this diagram that at t" = 25 the flow haé already
been formed but still continues to 'breathe'. It is interesting to note
that similar flow patterns were obtained with denser meshes (which is quite
important) and the zone 'breathing'" i.e., changes of its dimensions, inter-
nal structure, and other features of the flow occurred approximately at
the same time intervals, tn, in the various approximations.

The development of flow separation in the case of strong interaction
seems to be explained by the fact that, as a result of viscosity (compu-
tational) effects and the treatment of the boundary conditions, close to
no-slip conditions are realized on the body itself; a fairly thick boundary
layer forms around the body surface (comparable to the width of the
body at its tail), and this layer then separates from the body surface
and forms a near wake flow with complicated vertical structure behind the
base of the body. It must be empahsized that, while the boundary layer is
in fact the result of viscosity effects in the scheme, in the wake itself
the influence of the approximation viscosity e ( which is proportional to
the local velocity and the size of the computational mesh, see above) is
quite small, since in these zones only small values of the subsonic velo-
cities are realized, while computations with different size meshes revealed
only a slight change (within the limits of one step) in the zone contour.

The fact that the solution does not strongly depend on viscosity
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e = p/u/h) shows, by the way, that flows corresponding to high Reynolds
numbers can be treated by our methods of analysis. Thus, our calculations
of separated zones might give quantitative information for "limiting"
flows (Re + =) as, for example, the calculation of shock waves by a scheme

including viscous effects. Naturally, the accuracy of determining the

characteristic features of such zones can be further increased, if necessary,

by using the results of preliminary calculations (e.g., the position of
separation and closure points, a zone contour, etc.) as initial data.
However, it should be pointed out that in the calculations, the
flow parameters on the front part of the body are determined com-
paratively quickiy, while local supersonic zones and separation regions
continue, as mentioned above, to 'breathe'. This may be due to the physi-
cal (non-stationary) character of the phenomenon itself. The application
of the difference scheme of calculations prescribed by the non-stationary
method of ''large particles' appears to be especially well suited for such

a case.
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3. Computation of Incompressible Viscous Flows.

At the present time, a fairly large number of numerical methods of
solving the Navier-Stokes equations (governing viscous incompressible flows)
are known. Most of these methods were developed for equations expressed in
terms of the stream function ¥ and vorticity w.

A common disadvantage of these methods is the need for some form of
a boundary condition (the Tom condition) for the vorticity on the solid surface,
which is absent in the physical formulation of the problem. The rate of
convergence of numerical algorithms is limited by the presence of an addi-
tional iteration imposed by this boundary condition on the surface vor-
ticity.

Moreover, the obvious limitation of methods of solving the (¥,w)-system,
connected with their inapplicability for cases of three-dimensional viscous
flows and compressible gas flows, accounts for the recent interest in the

numerical solution of Navier-Stokes equations expressed in natural variables:
%?t- + (V0)VW=-pp + ¥, vV =0 (1)

where p - pressure, V - vector of velocity, v - coefficient of kinematic
viscosity.

Using the main principles of the 'large particle' method V.A. Gushchin
and V.V. Shchennikov [16,17,29] studied viscous incompressible gés flows
with variables 'velocity-pressure' by means of a numerical scheme of
splitting analogous to the SMAC method [27].

3.1 Description of the Splitting Method

Let us now consider the scheme of difference approximations of equa-
tions (11) which enable calculations by a single algorithm for plane,

axisymmetric and three-dimensional flows of a viscous incompressible fluid.
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For this purpose consider the following scheme of splitting a time cycle:

Stage I - determination of intermediate values of velocities

- /e=-@" DV wl" ‘ (12.1)
Stage II - calculation of the pressure field
p = Nz : - i7n+1= Dn+1 =0) ; . (12.2)

Stage III - determination of the final values of velocities

Vo F - . . (12.3)

Stages I and III lead to the realization of the Navier-Stokes equation
and stages II and III are the conditions of solenoidality (second equation of
(11)). Consequently at stage I the evolution of the velocity field is ac-
complished only by convection and diffusion so that the resulting %—field
does not satisfy the continuity equation (i.e., D # 0). Therefore it is
necessary to change ("to correct") the field V at the expense of a pres-
sure gradient p so that Dm'1 = 0 (stage III) where p is found by solving
the Poisson equation (stage II).

For a proportional calculational mesh a two-dimensional difference
scheme of second order accuracy with respect to space is presented in
[17]. The main difficulties of the mumerical realization of the scheme
involve the calculation of a pressure field and the formulation of boundary
conditions. :

It should be noted that in some works boundary conditions at a solid
surface are replaced by the projection of an equation of motion onto the
normal to the surface at the boundary points. This substitution reduces the
efficiency of the numerical methods since these conditions are not available
in the physical formulation of the problem.

In [28] there is proposed an original modification of boundary conditions




v

in the MAC method, which enables homogeneous boundary conditions to be
provided for pressure. Moreover, in the SMAC method [27] and the modified
MAC method [28], due to the difference schemes chosen, the realization of the
condition of no-slip necessarily results in the determination of the vor-
ticity value on a solid surface which satisfies the Tom condition to first
order accuracy. In addition, the no-slip condition in the SMAC méthod does
not provide a balance of forces on a solid surface. The error in this

case is of the order of 0(v).

An essential point of the method proposed is the choice of boundary
conditions. From the viewpoint of the solution of problems of a viscous
incompressible flow around bodies of finite dimensions we can distinguish
two basic types of boundary conditions: conditions on a solid surface and
those on a line sufficiently remote from the body. Let us consider each
of these conditions in further detail.

Boundary conditions on a solid surface:

) . =0 (nonpenetration condition),
1,74 (13)
uril“!’_;! =0 (no-slip condition);
from the latter it follows
o .
= _ ik, 0 i+k,1 3
Uisg,0 = 2 g ey 0(h™) . (14)

Condition (14) makes it possible to determine the boundary value for u

of second order accuracy with respect to internal field points. This avoids
the alternative of introducing a layer of fictitious cells (inside a solid
body), which in schemes of the MAC, SMAC and modified MAC types [28] gives
rise to only first order accurate values of surface vorticity. Note that in

the limits of the approach proposed it is umnecessary to calculate the
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vorticity on the solid surface. The latter can be determined from a calcu-
lated velocity field using some of the difference representations of the
verticity
w = 3u/dy - Iv/ax
at boundary points. :
Boundary conditions on a line remote from the body represent an undis-
turbed flow; for U || OX this has the form

n 0,

Vi,N+35 = U

ulil+!5,N = e
In calculating the pressure field, homogeneous boundary conditions
are attained following the approach of [28]. Corresponding to Vllh:hi =0
(for the case of a solid surface) and Vlil:rlwz = 0 (for the case of a line
remote from a body) we have from the finite-difference approximation of

(12.3)

Vi T Py Pi,-1), Vi = F ®i 1 - Py N (15)
Taking account of (15) it is not difficult to write down now a difference
equation for calculating the pressure at boundary cells [17].

The stationary solution of the system of equations (12) is obtained as
a result of repetition of the above stages until the following criterion

is fulfilled
31, x5 - Vg
sJ
The stability can be investigated stage-by-stage. A stability cri-
terion for the first stage can be obtained from the first differential
approximation (condition of a-parabolicity). With regard to equations

(12a) the first differential approximation is [17]:




-

2 2 2 2
du . du duv _ 1 2:37u T h™avy37u
AR b e e e Al S e &
(16)
3!+31_N_+ﬁ=(_'r uz-hz .82)32"+(\)~'r vz)azv
ot  ax 9y v Tax;';g z a—yz

The stability criterion of the difference scheme employed follows from (16)

T < 4\»/(u2 + VZ) :
Eliminating p from (12.2) and (12.3), the unconditional stability of the
second and third stages is easily demonstrated by Fourier's method.

Thus, the proposed difference scheme enables us to calculate a flow
without prescribing vorticity and pressure at the body surface. This
markedly increases the accuracy of the calculations. Results of the cal-
culations attest to its effectiveness. This difference scheme (of second-
-order accuracy) provides a single algorithm for calculating viscous in-
compressible flows around plane, axysymmetrical and three-dimensional bodies
of complex configuration as well as internal flows in a wide range of
Reynolds numbers [17].

3.2 Results of Numerical Computations

Solutions of a whole series of problems of external hydrodynamics were
obtained by the method described. Viscous incompressible flows over a
wide range of Reynolds numbers (1 < Re < 10°) were studied around different
bodies of finite dimensions: a rectangular slab and a cylinder of finite
length whose axis is parallel to the free stream U_ [29], a |
sphere and a cylinder with the axis perpendicular to U_, a rectangular
parallelepiped (a three-dimensional flow) [7], as well as bodies of more
complex form.

Fig. 9 shows the steady-state streamline patterns around a circular
cylinder (two-dimensional flow) for Re = 1,10,30 and 50(Re = 2Rv_/v, where
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R is the cylinder radius). The streamline patterns in flow around a cylin-
der for Re = 103 are shown in Fig. 10 at the instants t, = 162, t, = 166 and
t, = 170, respectively. In the last case a non-steady flow pattern is ob-
served (there is a definite growth of the stagnation zone and at some in-
stant of time occurs a ''collapse'" and ejection of fluid from the stagnation
zone). This result probably requires further study.

Figs. 11 and 12 present results for unsteady three-dimensional
incompressible viscous flow around a cube (of dimension 2a) when
the oncoming flow velocity U_is parallel to an axis OX. Due to the pre-
sence of two planes of symmetry (OXY and 0ZX) the calculation is carried
out only in the positive quadrant OXYZ (Fig. 11). The properties of the
flow are illustrated by the velocity profiles u(parallel to the vector T )
at various cross-sections Q (x = const.). Fig. 11 shows the velocity
profile u in the undistrubed flow (x = -») and for a section x = 3a with
Re =1 (Re= 2aV_/v). Fig. 12a illustrates for various Re the spatial
change of the velocity profiles u at several sections downstream of the
body (section Q1 coincides with the rear face of the cube x = 2a; the
distance between the sections is constant, Ax=0.5a). Fig. 12b shows the
evolution with time (1.0 < t < 1.29) of the velocity field for the section
x = 4a. It follows from Fig. 12, in particular, that with Re = 40 and 100
a reverse-circulation zone (u<0) develops, and after an elapse of time a cer-
tain flow stabilization is observed. The reader is referred to [16,17,29]

for further details concerning results of this calculation.
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4. Flow of a Viscous Compressible Gas (Conservative '"Flow Method')

The calculation of viscous compressible gas flows was performed by
L.I. Severinov and A.I. Babakov with the approximation of conservation
laws represented in integral form for each cell of the calculation scheme
("flow'" method) [18]. Conservation laws for mass, momentum and energy of
a finite volume have the form:
- 4 &,  F=mMXYZE , an

Q
where Sq - is the lateral surface of volume cell Q; M - mass, X,Y,Z, -
momentum components and E - energy terms in @, respectively, and ﬁF is a
flow density vector for each of the quantities. Eqs. (17) take account of
the boundary conditions and are solved numerically for each cell of the
computational domain.
If the values of M" = M(tn), Xn,Yﬂ,Zn,En are known at the instant

tn

= nt, where t is a time integration step, at time tn+1 = (n+1) t
these quantities can be calculated with error 0(12) as follows [18]:

FPlap gl b as)
S

Q
Supplementary conditions, the form of which depends on the problems
posed, must make it possible to determine the flow-density vectors on the
boundary of the domain in which the solution is sought. The three-dimen-.
sional coordinate system, the shape of the cell volumes 2, the methods of
determining the field variables and their first derivatives on the surfaces

s, must be chosen in such a way as to ensure stability and monotonicity of

Q
the difference method, as well as a fairly simple approximation of the in-

tegrals in the system (18).
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In the solution of a specific problem the integrals in (18) are cal-
culated on separate segments of the surface which are the boundaries be-
tween two adjacent volumes Q. Depending on the directions of the flow
density vectors the values of M,X,Y,Z and E vary (they increase in some

cells and decrease in others) by quantities determined by the flows of mass,

momentum and total energy through the corresponding segments of the boundary.

Apart from round-off errors this calculation method cannot lead to the loss
or generation of the quantities {M,X,Y,Z,E} due to computational errors.
Therefore, the flow method is conservative with respect to mass, momentum
components and total energy [18].

In the finite-difference approximation of Equation (18) Stokes' assump-
tion of the equality of the mean values of the principal stresses (with
a reversed sign) and pressure has been used. If the field variables are
sufficiently smooth and the assumptions used in calculating the mass, mo-
mentum and energy flow density vectors are satisfied, the conservation laws
(17) imply the complete Navier-Stokes equations for a compressible gas,
if the volume @ is arbitrary.

4.1 Computational Problems &%

We will now consider some problems involved with the numerical inves-
tigation of equatiqn a7. _

Knowing the values of M,X,Y,Z,E for each cell, we can calculate for a
given small volume cell @ fixed in space the average densities (in each
cell) of the given quantities p,£,n,z,e :

' p =MQ, £ =X/, n=Y/Q, ¢t =2/2, ¢ =E/Q.
From these functions it is easy to arrive at generally accepted field

varibles, i.e., the components u,v,w of the velocity V and the specific
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internal energy of the gas e:
u==t/p, venlo,w=2tlo, e=clp - (W +v

2 4 )2,

Applying certain procedures of interpolation and numerical differentiation, we

determine the value of the field variables and the first derivatives of
u,v,w,e on the boundaries s of the cells @ [18].

In determining the values of all the function (except the distribution
densities p,t,n,z,e) and their first derivatives, symmetric formulas were
used, for example,

Unesg, k= ek * U,k /2

U :
(a—xM e Pk Uy ) /by
’

u
g m+s,k (um’k"'l um,k-l X um+1,k+1 um+1,k-1) / 4h2 :

However asymmetric formulas were used to calculate the density values of the

distributions p,&,n,z,e :

i 1.5pm’k - O'SDm-l,k if um_'_!i,n > <
Pméisk T g5 - 0.5 if ‘B
“Pmelk T U Pme2,k M Ynegon g

These approximations ensure second-order accuracy.

In approximating flow density vectors GF an essential aspect of the
method required that the distribution densities of additive characteristics
such as densities F are calculated on the boundary Sq of volume 2 in a
non-symmetrical way (extrapolation in the direction of gas flow); while the
other parameters, e.g., pressure and transfer velocities u,v of additive
characteristics are calculated according to symmetric formulas in the vis-
cous stress tensor and in the thermal conduction law. We believe that this
treatment accounts for the region of influence, which is an important factor
in the investigation of complex physical flow patterns. The presence of a
"convective' transfer gives unequal weighting to the space directions and it
is desirable to take account of this fact in constructing the difference
scheme.

The integral form of the conservation laws essentially requires the
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approximation of derivatives of one order lower than that required for
numerical solutions of the Navier-Stokes equations. By its formulation the
"flow" method is conservative with respect to mass, momentum and total
energy, both locally (for each cell of a difference meshb and integrally,
i.e., for the whole computational space [18]. As follows from (17), con-
servativeness results from the fact that this approach is based upbn the
difference approximation of conservation laws written down for each cell in
terms of surface integrals of vectors of flow densities ﬁp, i.e., the con-
servation law which governs an arbitrary gas volume. Indeed, while solving
a given problem, surface integrals in (17) are calculated on separate sur-
face segments Sq which constitute boundaries between two adjacent volumes Q.
Depending upon the direction of flow vectors the values F = {M,X,Y,E} vary
(they increase in some cells and decrease in others) and acquire new values
determined by flows of mass, momentum and total energy across common bounda-
ries of the cells. '

It should be noted that the "flow'" method is essentially another de-
velopmer . - the '"large particle' method. The difference formulas of the
"flow'" met:~d can be deduced by using the splitting scheme (3) - (5) for
the "transfer'" of the components of quantities F.

4.2 Examples of Calculations

The "flow" method has been applied to the systematic study of the .
characteristics of viscous compressible gas flow around bodies of finite
dimensions over a wide range of Reynolds numbers Re. Although the method
formally "works" even with large values of Re, the results are reliable
only when the boundary layer thickness is much greater than the size of the
computationai mesh. It should be emphasized that the division of the
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vector of flow density GF into convective and viscous components facilitates
application of the algorithm to the calculation of an ideal gas flow, as
well.

The results given below represent the asymptotic steady state obtained
by the method for the solution of a stationary boundary value problem. The
investigation of a linear model reinforced by the results of the calculations
themselves showed that the second-order accurate difference scheme exhibited
conventionally stability and monotonicity [18]. The reliability of the
numerical results is examined for a general case by subdividing the compu-
tational cell, by using various forms of boundary conditions, by comparing
with the results of other calculations as well as with measurements taken

from an experiment [18,30].

Some details of the flow past a sphere (separation zones of a reverse-cir-

culation) at M_=20 and 550 < Re_ < 104 are given in Figs. 13 and 14. Fig. 14
shows the behavior of lines p = const. in a separation zone behind the sphere
with Re_ = 10% and 1500 (Re_ = Rv_/v).

Fig. 15 illustrates the variation of density across the shock layer in
the neighborhood of the forward stagnation point (x = 3°) for 75 < Re_ < 104
and compared with that of an ideal gas ™M, = 20, k = 1.4, Re_ =«). With
increasing Re the density in the shock layer approaches its limiting value
in a viscous thermally non-conducting gas; the tendency towards the forma-
tion of a shock wave is distinctly seen.

The pressure distribution along a blunt body (relative to the pressure
at the stagnation point, x = 0) is shown in Fig. 16: "lines" designate the
results obtained by the "flow'" method (Mw = 6.05, Re_ = 6.43-106), "'crosses'

- experimental data (G.M. Riabinkova) and ''circles" - the results for an
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ideal gas (0.M. Belotserkovskii [31]). Very good agreement is observed
between the data. In this way transition from the "viscous' equations (17)
to the limit of an ideal gas is obtained.

The results of calculations show that the "flow" method makes it pos-
sible to study viscous compressible gas flows around finite bodies over a
wide range of flow regimes (including separation zones) up to large Rey-

nolds numbers.
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5. Statistical Model for the Investigation of Rarefied Gas Flows

A statistical variant of the method of large particles has been
investigated by V.E. Yanitsky [21-23] for the solution of the Boltzmann
equation. The main difficulty of this problem is the development of a model of
behavior of the gas medium consisting of a finite number of particles. This
study combines the splitting of the ''large particle' method in terms of
Bird's statistical treatment [32,33] with Kats' ideas [34] about the exis-
tence of asymptotically equivalent models to the Boltzmann equation.

As is typical of "particle-in-cell" methods, the medium is simulated
by a system containing a finite number N of particles of fixed mass. At a
given instant of time t, each cell j contains N(a,j) particles endowed with
certain velocities. The main calculation cycle comprises two stages:

- at the first stage particles only collide with their counterparts

in a cell (collisional relaxation) and

- at the second stage they are only displaced and interact with the

boundary of a reference volume and with the surface of a body(collisionless
relaxation).

The main distinction between the model suggested in [21-23] and Bird's
model lies in the fact that at the first stage of the calculation each group of
N particles in a cell is regarded as Kats' statistical model for an ideal
monoatomic gas consisting of a finite number of particles in a homogeneous
coordinate space. Molecular collisions are calculated by the Monte-Carlo
method from the main equation of Kats' model, which correctly determines the
time between particle collisions in accordance with collision statistics
for an ideal gas.

In contrast to previously reported versions of Bird's method [32,33]
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the approach in question [21-23] is a rigorously Markovian process. The
main equation of this formulation is linear (unlike the Boltzmann equation),
which substantially simplifies numerical realization of the algorithm. The
feature of molecular chaotic motion implies that Kats' model is asymptoti-
cally equivalent to the Boltzmann equation without the convective derivative.
Integration of Kats' main equation results (with accuracy up to the reali-
zation of the assumption of molecular chaotic motion) in the Boltzmann
equation.

In the realization of the second stage of the calculation for the dis-
placement of the particles, the numerical algorithms [21-23] employ incomplete
information about the position of particles in coordinate space. This
reduces storage requirements in the processor memory, which significantly
increases the speed of the computations. The method can just as well be
realized in a two- or three-dimensional coordinate space.

Let us review here the principal aspects of the statistical '‘particle-
-in-cell method [21-23].

5.1 Description of the Statistical ''Particle-in-Cell' Method.

We suppose that the problem of a rarefied gas flow around a body can
be solved by means of a distribution function with a monoatomic gas. Then
any macroparameter of a gas flow ¥(t,X) related to a molecular feature
W(E) is a functional of the form

¥(t,X) = Iy (@)-£(t,X,0) d&&

n(t,x)

where f(t,i,E) is a molecular distribution function in a 6-dimensional space
(x,¢) of the coordinates and velocites of the particles.
If o denotes the region of a control volume and I - the boundary of Q

which emcompasses a body surface as well, then the problem is reduced to
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that of obtaining the solution of Boltzmann's equation

g 2 :—)f( = S(E' -] - ) gdo-dE) (19)

subject to the initial parameters

f(t + 0,?,3) = fo(;,z), -)EeQ, -m<cx’y‘z<+w (20)
and boundary conditions
£(t,X.,0) = /c(C,8)F(t,%.,¢)de; AM(x)>0, SAK)<0. (20)
E 1 ks brtins | T ) i

Here ﬁ(‘ir) is the normal to the surface I at point 'irer directed toward
the interior of volume Q; the kernal shape k is derived from the interaction
law of the ''gas-surface".

In deducing Boltzmann's equation the following assumptions are made.

1) mechanics of collisions are described in a classical way;

2) force fields of molecules are spherically symmetric;

3) only binary collisions are considered (two molecules take part in

any collision);

4) molecules move randomly (the hypothesis of molecular chaos is valid,

i.e., the distribution function of molecular pairs f2 (t,i,zl ,Ez) =
= f1 (t,'i,'él) . fl (t,'i,'éz) which implies statistical independence
of particles);

5) the collision time is negligibly small.

The difficulty in constructing the solution of the Boltzmann equation
in nonlinear integro-differential form results both from the large number
of independent variables (there are seven of them in the general case: time,
geometrical coordinates and molecular velocity components) and from the com-
plex structure of the integral of the collisions. Quadratic nonlinearity in
the integrands, their strong dependence upon distribution functions (deter-

mined by the values of molecular velocities after a collision) as well as
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the high level of multiplicity of integration (equal to five in a general
case) and the complex formulation of the boundary condition (20) - these are
the main features which complicate a direct solution of the Boltzmann
equation (19) and the application of ordinary numerical algorithms.

For an approximate solution of the problems formulated in this fashion
we shall construct a statistical model of an ideal monotomic gas consisting
of N particles* with coordinates r;, and velocities ci(i =1,2,...,N) so
that the equation of evolution of the model approximates equation (19), the
only additional assumption being that of molecular chaos:

£,(t,%,8,8,) = £ %) ftxE) , (21)

where
N -> > > >
™3T Fs(t,rl,...,I‘S,Cl,...,Cs)

and with Ty =T, =...=T =X, Fs being a s-partial function of distribu-

> > >
fs(t,x,cl,...,cs)

tion in a phase space of 6N dimensions.

If (R(1),E(1)} = {F(1),& (t);...; Ty(t),&\(t)} designates the model
state at time t, the problem solution is then reduced to a numerical reali-
zation of a finite number of trajectories {R(t),2(t)} with initial parame-
ters corresponding to (20); the modelling of particle interaction with the
boundary I is accomplished in accordance with the given kernel ¥k of (20').
Having calculated a number of trajectories one can obtain any macroparameter

using adequate estimates of the integrals by the Monte Carlo method.

* A real gas is modelled by an ensemble of about a thousand rigid sphere-like
molecules that can be regarded as typical representatives of many trillions
(1012) of molecules, e.g., in the study of phenomena occuring in a real

shock wave [22].
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The synthesis of the basic ideas of splitting, the "particle' method
and Kats' statistical model enable us to construct the desired model
{ﬁ(t) ,E(t)} for a space-inhomogeneous case when 3f/3x # 0.
Let us suppose that at time interval t (e =0,1...) in a cell with
center X3 G =1,2,...,j) there are N(a,j) particles with velocities
> -»> . o . .
{cl’”"cn(a,j)}' The center xj of a cell in which a particular particle
is situated is taken as a coordinate r; of a particle i. The state of such
a gas model {R,&} is uniquely defined by a sequence of J points of the form:
{R(t),2(t)} ~ {N(a,j); Es,...,“c‘N(u’j)} BTy b e TR
J
N= £ N(a,j)
j=1

The evolution of this system in time At is split into two stages.

The first stage models the change of internal state of subsystems
enclosed in the cells, assuming that the particles are fixed; collisions of
particles (with their counterparts in a cell) in subsystems {'51,.. . ’EN} are
simulated independently in each cell, thus the particles acquire new velo-
cities. The vector ¢ = {31,. e ’EN} is regarded as a state of Kats' model.
Let ¢(t,3) be the density of the probabilistic distribution of the state
E(t); then the governing equation of this model (''Kats' Master Equation' [24])

has the form

9t 1 o et e ) - o(t,9)1do, = Ko(t,Q) . (22)
T v1<y.<m5Ng’““ o(t,Cop) e ’

where K - Kats' operator of collisions; Cin * |32-3m| 5 Ez and Em denote the
velocities of the ¢-th and m-th particles upon their collision; do, .
differential section of elastic dissipation of a pair of particles (32 ,Em);
a normalizing parameter V is determined by the choice of measurement units

and it can be interpreted as a cell volume.
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If we introduce the distribution functions

! >

N
f¢(t,€) n dc.

F e i e
P B Al 4 RN jesel 1

?

then by integrating (22) it is not difficult to obtain

—————— =f[f2(tscivcz) i fz(t’cl’cz)]glz'd"lZ'dCZ

which coincides with the Boltzmann equation having a zero convective deri-
vative when satisfying equality(21).

The algorithm for the realization of the first calculational stage of
evolution of a space-inhomogeneous model corresponds to the Monte Carlo
method of numerical solution of Kats' basic equation (22) which (unlike

the Boltzmann equation) is linear.

The second stage models a collisionless transfer of particles from a
particular cell to any neighboring one without changing the internal state
of the subsystems; their interactions with the control volume boundary and
body surface are considered as well. This stage corresponds to the Monte
Carlo method of numerical solution of the Boltzmann free-molecular equation

in the following form

g—f+ELf=o. (23)

where L is a finite-difference operator approximating the derivative 3/3x;
its introduction is closely related to an incomplete description of the
system state in coordinate space.

The simplest numerical algorithms of the method described [21-23]
correspond to the solution of time explicit, conventionally-stable finite-
-difference schémes of first-order accuracy, respectively, for Kats'
equations and the Boltzmann free-molecular equation. Herein the equation

of evolution of a model gas {R(tu), E(tu)} within the accuracy of satisfying

50




molecular chaos has the form (a one-dimensional flow)

Aaf A f AGJ (ffl)

+C o = J(££)) - atc,

B K ix (24)

Ax
where A / At and .:u/Ax are first-order finite-difference operators approxi-
mating derivatives 3/3t and 3/3x, respectively; J(ffl) designates the
right-hand side of the Boltzmann equation.” The finite-difference scheme
given is conventionally-stable and it approximates the Boltzmann equation
within the accuracy of 0(at) and 0(ax). As mentioned above, this calcula-
tion employs incomplete information concerning the space position of
particles.

This calculational model can naturally be extended to the cases of a
two- and three-dimensional space; it consists of a sequence of one-dimen-
sional displacements along each coordinate axes. This corresponds to the
splitting of a multidimensional transfer equation

27 i _

+ ¢

into a sequence of one-dimensional finite-difference schemes.

The Boltzmann equation is known to imply a molecular chaos or a statical
independence of particles.* The same premises are inherent in our model as
in the Boltzmann equation but without the assumption of molecular chaos
(statistial independence). In our model statistical dependence of the par-
ticles violates molecular chaos. It should be noted that the inherent
statial independence rests upon theoretical and physical premises and does

not depend upon the mesh dimension (it exists as Ax+0 as well).

* The molecular chaos hypothesis implies that particle velocities are sta-
tistically independent. (M.N. Kogan, '"Rarefied Gas Dynamics," M., Nauka, 1967).
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The numerical results of rarefied gas flow reveal that:

1) results of calculations with various numbers of particles in a cell
(e.g. with N = 3 and N = 20) practically coincide;

2) these results are in good agreement with the solution of the Boltz-
mann equation (Cheremisin's and Rykov's data). Therefore, the viqlation of
molecular chaos in the problems involved is small (though statical depen-
dence exists, it is weakly manifested in rarefied gas problems, and appar-
ently, it can be neglected here).

For the study of turbulence, statistical independence is of crucial sig-
nificance and we expect that it will be manifested in this method when applied
to turbulent flows.

5.2 Simulated Structure of a Shock Wave

The model was tested for the solution of a problem dealing with the
structure of a normal shock wave in a gas consisting of elastic spheres in
the range of Mach numbers M_ = 1.25 to 4.

Graphs of density n(x), longitudinal temperature '}11 (x), transverse
temperature 'i‘l (x) and static temperature 'I‘(x) are shown in Figs. 17 and 18
for M= 2 and 3. The unit of length is the mean free path of molecules
in the free stream flow. The value of At/Ax was chosen to insure stability

of the calculations. The average number of particles in cells

corresponding to the oncoming flow is Ny = 15 to 20 (M = 2) and Ny = 12

(M = 3). A comparison is made in the figures with the density n(x) and
temperature 'i‘(x) obtained by direct numerical integration of the Boltzmann
equation [35,36] on a network ax similar to the one used in our calculations
(ax = 0.2 to 0.3).

Finally, Figs. 19 and 20 show that the results of the calculations are
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only weakly dependent upon the average number of particles Ng in the cells

for rarefied gas flows.
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6. Numerical Investigation of Some Gas Dynamics Problems by

Net-Characteristic Methods.

The manifold problems presently confronting computational mechanics
are increasing in complexity, which in turn requires the improvement of
earlier numerical methods and the creation of new ones. The properties
that a nu'nerical method is to be endowed with, from the view-point of modern
developments, are so diverse that they are difficult to fully implement in
one single method. In view of this, complexes of numerical methods based
upon a unified approach should be available.

A large and important class of problems is described by multi-dimen-
sional systems of equations of hyperbolic type. A fundamental conéept
underlying the construction of numerical approximations for such systems
requires that their characteristic properties be taken into account in
some form, i.e., it is essential to impart relevant features to the numeri-
cal methods of their solution as well. Finally, it is desirable to consi-
der homogeneous schemes that enable calculations through discontinuities
that may arise in the evolution of the solution, that allow for explicitly
singling our some (principal) of the features and that adequately resolve
their boundary conditions.

6.1 Investigation of Difference Schemes for a Model Equation

Positive type difference schemes, first introduced in [37], play an
important role in the solution of equations of hyperbolic type. Using the
method of indefinite coefficients and the characteristic properties of equa-
tions of hyperbolic type, one can write a rather large class of schemes of
this kind and then perform a comparative analysis, in particular, with

respect to the magnitude of "approximation viscosity' (see, e.g., [38]).
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These schemes possess a number of indisputable advantages, the main ones
are the absence of oscillations in the numerical simulation of non-smcoth
solutions, and the construction of efficient algorithms for the calculation of
boundary points. However, since they are all of first-order accuracy, the
utilization of even the best of the schemes‘[39,40] (having a minimal
""approximation viscosity'') requires in some cases a great number of grid
points in the difference net and, consequently, a voluminous number of
calculations. Some schemes of higher order accuracy can be constructed by
a similar method in which difference approximations are treated as compo-
nents of a linear space of indefinite coefficients.

The basic idea of the method is illustrated by the simple wave equation

Ve +Av, = 0,1= const., A >0 (25)

discretized in a pattern typical of explicit schemes comprising six points

(Fig. 21)

i T T | SN (26)
Linear difference schemes written for the pattern (26) in the following form
2
ol x « Vo = e o 27)
when substituted into (25) yield
It (m-vo)a =-g¢
MV : (28)
z a: = 1, o=)xt/h>0,
M,V
where coefficients @_q and @, are excluded.

Any point in the space of the coefficients that remain indeterminate
a= {gz, ao,az} (figs. 22a,b) gives rise to a difference scheme of first-

-order accuracy for eq. (25); when this point is inclosed by polyhedrons
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AjAg,. .. 5A¢ with 0 < 0 <1 (fig. 22a) or A)A;AAc with 1 <o < 2 (fig. 22b)
it gives rise to difference schemes of positive approximation for which all
coefficients

v
a >0
-

: (29)
Points A} with 0 < 0 < 1 (scheme [39]) and A, with 1 <o < 2 correspond to
difference schemes with the least "'approximation viscosity', i.e., with the

smallest value of the coefficient of v__ in the first differential approxi-

xx
mation of (27) [38].
Plane Bl,...,Bg (fig. 22)
T (u-vo)zav = 02, or a = 3(a 5 * az) + 1-02 (30)
TR L = 3

for the pattern (26) constitutes a two-parameter family of difference
schemes of second-order accuracy for the solutions of (25). In figs. 22a,b
the boundaries of the region of stable schemes with an approximation order

higher than the first are shown by ticked lines on plane (30). It is seen

that with 0 < o < 2 this region is not empty. It is shown in [41] that there

are no difference schemes of the form (27) having a second order approxima-
tion (a higher order accuracy as well, see [38]) which satisfies the con-
straints of eq. (29), i.e., plane (30) does not intersect a closed polyhe-
dron (28), (29).

A straight line C..... Cg being an intersection line of plane (30)
and the plane
I P SNGE (31)
uov e

incorporates a one-parameter family of schemes of third-order accuracy.
With 0 < o < 1 the segment C,C¢ (fig. 22a) contains stable schemes of

third-order accuracy. Point C; on the pattern given is the only difference
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scheme of fourth-order accuracy. The familiar Lax-Wendroff scheme is indi-
cated by point B, in figs. 22a,b.

6.2 Construction of Positive-Type Difference Approximations.

Evidently, various kinds of oscillations of nonsmooth solutions that
are observed in familiar difference schemes with an approximation order
higher than the first, and that are not present in schemes of positive type
approximation, are due to the fact that some of the coefficients a: in
difference expressions of the form (27) are negative for schemes of
higher order accuracy. It is natural to suppose that the behavior of a
particular scheme for nonsmooth solutions (the amplitude and character
of oscillations) is determined by the distance of a point (corresponding to
this scheme in the space of indeterminate coefficients) from the
region of difference schemes with positive approximation (from polyhedrons
A1A3...A6 (fig. 22a), A2A3A4A6 (fig. 22b) etc.). From this observation,
it is proposed that the ''non-monotonicity' of difference schemes be charac-
terized by the value

y=lo-ayl, (32)

where a{a:} is the set of coefficients in eq. (27) corresponding to the
difference scheme in question (of approximation order higher than the first
situated on plane (30)), and % is the set of coefficients in eq. (27)
corresponding to the vertex of the polyhedren prescribed by eqs. (28), (29)
which describe difference schemes of first-order accuracy of positive type
approximation (point A, in fig. 22a with 0 <o < 1 and point A, in fig. 22
with 1 <0 < 2 etc.). That is, schemes of first-order accuracy should be
constructed on three-point patterns incorporating the point (tn+1, x,) that

is to be calculated and two nodes of the difference molecule along t" which
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just brackets the characteristics dx = Adt (e.g., Xp-20%p-1 Of fig. 21).

For difference schemes for the solution ot (25) of second-order ac-
curacy, the coefficients a: are found by a conventional geometric construc-
tion in the a-space (a = (a_z,ao,uz}) of the point of intersection with
plane (30) of the normal drawn from point A. With 0 <o <1 (ay = {0,1-0,01)
this procedure results in point B¢ in fig. 22a, a difference scheme of
second-order accuracy. With 1 <o < 2 such a scheme corresponds to point
By in fig. 22b. (ay ={o-1, 0,01).

The difference scheme of third-order accuracy with the smallest value
of y which is stable for 0 < o < 1 is found by constructing the point of
intersection of the normal drawn from point ap = {0,1-0,0} with the
straight line ((30), (31)), point C; in Fig. 22a.

The calculation of the simplest modelling problems reveals that dif-
ference schemes of second and third-order accuracy constructed in this
manner have the shortest amplitude of oscillations with fast damping as
compared to other schemes.

Bearing in mind that eq. (25) is, in essence, an ordinary differential
equation along the characteristic dx = Adt

v _ o d
gt Trde

9 )
FI I

n+l

and, consequently, at point (t ,xm) the exact value is

V;+1=V(tm,;() & i=xm-l'r 5

so that the difference expressions in the right-hand part of (27) are es-
sentially interpolation formulas for calculating v(t",X). From this view-
point the right-hand part of eq. (27) for schemes possessing the smallest

value of y may be treated as interpolation polynomials of the second and
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third-order for the function v(tn,i) ; these polynomials differ from a
piecewise-linear interpolation relevant to difference schemes of first-
-order accuracy with positive approximation. A more detailed description
of the approach in hand including "implicit" difference molecules will be
given in a forthcoming publication.

6.3 Positive-Type Difference Schemes for Model Equations

The construction of difference schemes of sections 6.1 and 6.2 is rea-
lized by a separate compatibility condition along characteristics dx=xidt
of a one-dimensional system of equations of hyperbolic type

U+ M =f , A=alm |, (33)

which, in a conventional way, is reduced to canonical form

wiUt + AiwiUx = Wif Pl i R [ (34)

Here U = {Ul,...,UI} is the vector of unknown functions; f = {fl"' .,fI} =
is a vector-colum of right-hand parts; A = {Ai} is a diagonal matrix from
eigenvalues of matrix A; @ = {wi} is a nonsingular matrix whose lines are
linear-independent eigenvectors w; of the matrix A.

If matrix A has fixed components and f = 0, difference schemes (27)

are generalized, in an obvious manner, for the case of system (9)

fle s ™=l g,
m W,V TR 1 TR T H

where A: = {(a:)i} are diagonal matrices. The general quasilinear case of
system (33) (A = A(t,x,v), f = f(t,x,v)) requires the development of a pro-
per method of integration of '"ordinary" differentidl equations (34) that takes
into account the dependence of AisW;,£ upon the unknown solution v and inde-
pendent variables t, x. Different approaches may be used for this purpose.
One example, intended for the construction of explicit difference schemes

using the pattern of type (26), is the Runge-Kutta method applied in [43]
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and in a number of subsequent papers (see, e.g., [44]).

In [43] for a system expressed in divergence form

Uy + F(t,x,0) =9, (35)

on the pattern (26) a one-parameter family of difference schemes of
third-order accuracy was constructed

Uy = (Up *+ UL 1)/2 - at(Fy - E/ho+ ax(om,; + 0/2,  (36)

m+i
U® = O - se(EL - Fa)/h + pr(ele + o012, (37)
(EnS- B8 (Rl )
U:nwl G ._"?{ (Fne1 r ¢;+B] "i' - m+1Zh .t WA ¢rrnl] +
(38)
+1 (pj‘n_z-z;f‘n+1+2p" F“ _)/1Zh+ gy 2-40 +6U“ 4u“ P

=1/3 , B =2/3.
It was also shown there that to insure stability of these schemes the
value of the parameter g is subject to the condition:

-1/8 < g < cr,zt 02-4)/24 5 GgEiy ma.xl)\ |/h. (39)
m, i

According to the analysis carried out in sec. 6.1,2 for linear equations,
it is preferable to choose a matrix
-1 !
Q" . 0a, G={gi}, 9={wi} 3

(40)
= |o;| « (Slos| - 24)/152 o, =Mt/ i=1,..,T

instead of a scalar factor in the last term of (38) which is the same for

all characteristics. In equation (39) and (40) A; are the eigenvalues of the
matrix A = 3F/3u, @ is a matrix derived above from the eigenvectors, and G

is a diagonal matrix. The modification just cited of the scheme (36-38) for
a linear case is the scheme discussed in section 6.2 corresponding to the
smallest value of y. We should also note that the last term in (38), modified

in accordance with (40), is more conveniently written in divergence form
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(Q-lm)r?w!s ; (-Unm+1+3U$-3U:1n+1+U:'n+2) g

; (41)
SCIRORPRENCLAP AR LAY

On the same pattern of (26) there can be generalized for the case of
quasilinear systems (35), difference schemes of second-order accuracy which
are ''closer" to schemes with positive approximation, for example, in the form
of a two-step system with a predictor - the Lax scheme with o« = 0.5 in (36)
and a corrector

1 o :
ann+ = (@ Az“);+% ('Urrnl-l i 3”::11 T 3ann+1 * o) -

m+

- @Ay W v Sy - S+ U ¢ “42)
O -+

which is stable providing
O% = T max I)‘il/h < 2. (43)

m,i

Here A = {(a_z)i} > A2 ='{(a2)i} are diagonal matrices with elements

(az)i | 1 01) L= Gi)/19’
for

1< o5 < 2
(a_z)i = (a_z)i sl 01)
(a.0); = 3 + o) (2 + oi)/w,} (44)
for ' ~2 < o; < -1,
(az)i % (a_z)i - (1 + Oi)
()5 = (@_p)s= -3|oi| (-1 - |°i|/19 for '°il %3

It is seen that satisfying the more restrictive condition of o4 < 1,
rather than (43), the scheme of (36), (42), and (44) is conservative. The
last three terms in equation (42) coincide with the familiar Lax-Wendroff
scheme [42] and can be replaced by other modifications of analogous schemes
[45].

61




As an example, in fig. 23a, results for t/t = 52 of numerical solutions,
using the second-order accurate scheme {(36), (42), (44) (scheme II), the
Lax-Wendroff scheme [42], and the MacCormak scheme [45], are compared with
the exact solution (dashed lines) for a problem concerned with one-dimensional
wave motion in gas resulting from initial conditions: v(0,x) = 0, p(0,x) =
= p(0,x) = 2 for x < 0; p(0,x) = p(0,x) with x > 0. In fig. 23b a similar
comparison is given for the scheme (36)-(38) with (o, = 1) choosing g; from
(40) (scheme III) and Vs 0,2,(0,% - 4)/24 = -1/8. 1In the same figure a scheme
of first-order accuracy with positive approximation [46] (scheme I) is com-
pared with the exact solution and schemes of third-order accuracy.

In this problem, as well as in the linear case, one observes the im-
provement of '"oscillation'' properties in schemes II, III as compared to
other schemes of second and third-order accuracy. Note that scheme I as
far as its accuracy is concerned is quite comparable with schemes II, III
in the calculation of shock waves; however, it requires a very fine difference
net for calculations through contact discontinuities.

6.4 Applications to Gasdynamics Problems

Without elaborating here upon the generalization of the difference .
schemes described to multidimensional cases it should only be noted that,
for schemes of first-order accuracy with positive approximation (27), (28),
the construction procedures are performed rather formally (see, e.g.,
[39,46,47]). For difference schemes of higher-order accuracy there also
exist various efficient approaches described in detail in scientific publi-
cations.

In the past years systematic investigations have been conducted on the
aerodynamics of bodies of complex geometry, on numerical modelling of pro-
blems in plasma physics, and on dynamic problems in the theory of elasticity
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utilizing some of the difference schemes discussed above. The prominent
features in such problems are the complex structure of the unknown solution,
the presence of regions with large gradients, and discontinuous functions.

Stable schemes of first-order accuracy [47] prove to be sufficiently
effective for the numerical solution of problems that involve a com-
paratively small number of discontinuity surfaces; they can be expli-
citly defined fornulating on them appropriate boundary conditions.

As an example, in fig. 24a are shown the stationary bow shock patterns
in the plane of symmetry of a supersonic three-dimensional inviscid flow of
a thermally nonconducting gas (adiabatic index of k = 1.4) around a spheri-
™ 10° half-angle which has a segmentally capped
base (6 o B 35°). The overall length of the body is equal to 5.5 radii of the

cally blunted cone of 6

spherical nose blunting. The Mach number of the incoming flow was M=2, with
the angle of attack varied from 0 to 180°. Fig. 24b presents the correspon-
ding pressure distributions along this body. Other problems of three-
-dimensional supersonic flow of a radiating gas around blunt bodies, solved
by means of the numerical method of [47] ynder the assumption of thermo-
chemical equilibrium, are described in detail in [48-52].

Solutions to problems containing singularities (discontinuities) within
the integration region are obtained (with acceptable accuracy) without
singling them out explicitly by the introduction of conservative elements
(see, e.g., [38,46]) in the difference scheme of [47]. A mmber of one- and
two-dimensional problems involving the interaction of laser light with
matter are considered by this scheme. As a typical example of this kind

(taken from [46]) fig. 25 presents at a time instant t = 10 10

‘sec., appro-
priate to the termination of the impulse, the isochores p/po = const. (fig.

25a) and isotherms in Kev (the electronic temperature Te = const, solid

63




curves, and the ionic plasma temperature Ti = const. - dashed curves, fig.
25b) in the interaction of a symmetrical impulse of laser light of energy

E = 300j with a spherical envelope of variable radius. The initial distur-
bances of the envelope are located at its hali-radius and the following
physical processes are taken into account; the absorption of outer laser
radiation, nonlinear electronic thermal conduction, and electron-ion colli-
sional relaxation. The terms in the energy equations for electronic and
ion components related to thermal conduction and energy exchange between the
components are approximated in an implicit way. The direct application of
the schemes of [47] for the solution of similar problems resulted in a sig-
nificant violation of the integral balance of mass, momentum and energy, so
that the solution in the vicinity of a nonstationary shock wave moving along
a cold background is quite unsatisfactory.

The last example of the net characteristic methods is shown in Fig. 26,

yy? xy? Oxx
a stress tensor in an elastic layer of finite thickness at the instant

an instantaneous picture of the distribution of components o of

t = ty = 0.029. They are produced by the nonstationary loading, P, on part

cf the upper boundary of the elastic layer which is supported on a perfectly
plane rigid base. Boundary conditions in this problem are given as follows:
on the portion AB of the upper boundary,

BEGE U, B ; .
vy(t,x,l) m fodt[P+2fAcyy(t,x,1)dx] see the inset of Fig. 26c,

oxy(t,x,l) = 0;
on the other portion of the upper boundary,
oyy(t,x,l) = axy(t,x,l) =0,
on the lower beundary, y = .5,
vy(t,x,O.S) = oxy(t,x,O.S) = 0.
A0 is a plane of symmetry and m, the mass density of the elastic layer, is
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a constant.
In conclusion, the author would like to express his sincere gratitude
to V.V. Demchenko and I.B. Petrov who were helpful in obtaining the numerical

solutions of some of the problems described.
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