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NEW c~14PtTFATI~~AL MJDELS IN CONTINLJU’f MECMANICS

*O.M. Belotserkovskii

Direct ni~nerica1 simulation of complex gas dynamics problems (compu-

tational experiment) is performed with the help of Euler , Navier-Stokes

and Boltzmann equations. The basic principles of the computational experi-

ment are formulated and the results for various gas dynamics problems of

a complex internal structure are presented .

The problems examined include the transonic regime (super-critical

flows including transition through sound velocity) , flows with a jet

“inj ected” into the main stream and diffraction problems . Body wake flows

are studied at various Reynolds numbers. The structure of a shock wave pro-

vides an example of rarefied gas flows at various Mach numbers.

A set of control tests is worked out for the estimation of calcula-

tion accuracy . ACCESS~ N for
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Preface

Selected results of this report and its companion , “Investigat ion of

Transonic Gas Flows ,” were coninunicated in seminar lecture s given by Prof.

Belotserkovskii at several American universities during a 4-week visit in

November - December, 1978. His lecture on “New Computational Models in Con-

tinuum Mechanics,” presented December 1, 1978, at a seminar of the Aerospace

Engineering Department of the University of Maryland at College Park, at-

tracted considerable interest from a diverse audience of scientists and

engineers. In response to numerous requests Prof. Belotserkovskii made

available the manuscripts of two reports which describe in some detail the

computatio nal techniques employed in the numerical solutions of the problems

surveyed in his seminar talks .

This report is a survey of computational models developed by the author

in collaboration with his colleagues at the Computational Center of the

USSR Academy of Sciences over the past decade . Althoug h most of these re-

sults have previously appeared in various Soviet j ournals , with the most

recent contribution , the last chapter of the present report , in the proceed-

ings of the VI International Conference of Computational Methods of Hydro-

dynamics, Vol. 2, Moscow, 1978, pp. 37-47, this report nevertheless gives a

coherent review of the advances in computational fluid dynamics at one of

the foremost centers of the Soviet Union.

The hallmarks of their numerical techniques are that they are :

(1) typically differentially and globally conservat ive , and

(2) careful attention is made to minimize truncation errors while at

the same time the favorable properties of the computational

schemes are exploited , e.g.,  the effective viscosity of the
p
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finite-differenc e equations (to promote calculationa l stabili ty)

and (physically interpretted) the abili ty to compute the essential

features of separated regions of recirculating flows (e.g. , wakes)

wholey within the framework of the Euler equations.

The underlying theme of this work is perhaps best describe d by the

author . “The prop erties that a numerical method is to be endowed with,

from the view-point of modern developments, are so diverse that they are

difficul t to ful ly implement in one single method . In view of this , com-

plexes of numerical methods based upon a unified approach shoul d be availa-

ble. Finall y, it is desirable to consider homegeneous schemes that enable

calculations through discontinuities that may arise in the evolut ion of the

solution, that allow for explicitly singling out some (principal) of the

features and that adequately resolve their boundary conditions.”

The numerical methods are illustrated by a great variety of c~~çuta-

tiona l results which encompass a wide range of velocities , from subsonic

throug h transonic as well as up to hypersonic wherein ccmçlex physical pro-

cesses (thermo -chemical and radiation) strong ly affect the resulting flow

field and over a wide range of Reynold ’s numbers in the case of viscous

compressible gas flows . Wherever possible English translations of the

references have been cited.

The careful typing of the edited manuscript by Miss Vicki Brewer

deserves a special note of appreciation. Finally, I am pleased to acknow-

ledge Contract N0~~4-79-M -0022 from the U.S. Office of Naval Research which

made possible the publication and distribution of this report.

W. L. Melnik , Editor
Professor, Aerospace Engineering Dept.
University of Maryland at College Park
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1. Introduction

At present , specialists of app lied sciences are confronted with

var ious kinds of practical problems whose successful and accurate solution ,

in most cases , may be obtained only by numerical methods with the aid of

computers . !-bwever , this does not mean that analytical methods which

enable us to find the solution in “closed” form will not be developed.

Nevertheless, it is absolutely clear that the range of problems permitting

such an approach to their solution is rather narrow , therefore , the de-

velopment of general numerical algorithms for the investigation of prob-

lems of mathematical physics (gas dynamics , theory of elastici ty, etc.)

is especially important .

a) Difficulties of Carrying (kit the Exper iment.

At hypersonic flight velocities, the resulting high temperatures give

rise to effects of dissociation and ionization in the flow and, in a num-

ber of cases, even to “luminescence” of the gas. In these cases it is

enormously difficult to simulate the experiment in the laboratory, since

it is not sufficient to satisfy the classical criteria of similarity ,

i.e., the equality of the Mach and Reynolds numbers. The equality of abso-

lute pressures and absolute temperature s is also required , which is only

possible if the sizes of the model and prototype are identical. These

requirements pose numerous technical difficulties and not the least of

which concerns the high cost of the experiment.

However , the importance of the exper iment must not be underestimated

for it is always the basis of measure for confirming (or rej ecting) the

calculation scheme and numerical solution.

1 
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b) Complexity of the Equations Considered.

The prominance of numerical methods in mechanics of continua is partly

exi,lained by the fact that the governing equations of aerodynamics and

gas dynamics, and of theory of elasticity represent the most complicated

(as compared to other branches of mathematics) system of partial differen-

tial equations . In the general case , this is a nonlinear system of mixed

type (wherein the surface across which the equations change their type is

unspecified) and with “movable boundaries”, i.e., the boundary conditions

are given on surfaces or lines which, in turn, are determined by the

calculations . ?i’breover , the range of the unknown functions is so wide

that ordinary methods of analytical investigation (linearization of

equations, series expansion, separation of a small parameter, etc.) are

not appropriate for the development of the complete solution of the pro-

blem in the general case.

It should be noted, that in solving complicated problems on electronic

computers that the preliminary analytical investigation of a problem may

provide great insight and sometimes this investigation is simply decisive

for the successful realization of the numerical algorithm.

Let us dwell on one more peculiarity of algorithms used for solving

concrete problems of mechanics of continua. Currently, numerical, methods

have found a wide practical application in design offices and research

institutes. Substantial progress in the exploration of the cosmos, in

the opt imun control of vehicles, in the choice of rational configurations

of vehicles and etc., are, to a considerable extent, due to scientific

information obtained from serial calculations. The volume of information

obtained by means of the calculation is far more complete and substantially

2



cheaper than the corresponding experimental investigations if the problem

is correctly formulated , well simulated and algorithmically rational . How-

ever , a wide application of the numerical methods for practical purposes

requires sufficient simplicity and reliability. Thus, on the one hand, one

has to deal with rather complicated mathematical problems, while on the

other hand, it is necessary to develop rather simple and reliable numeri-

cal methods permitting us to carry out serial calculations at project

institutes and design offices.

Nete that for most problems in gas dynamics, not only have no mathe-

matical theorems of existence and uniqueness been proved, but very often

there is no confidence that such theorems can even be derived. As a rule,

the very mathematical formulation of the problem is not strictly given

and only the physical treatment is presented, which is far from being one

and the same thing. The mathematical difficulties of the investigation of

such types of problems are related to the nonlinearity of the equations,

as well as to the number of independent variables.

The state of affairs with the methods of solution are no better. So

far, investigations related to the possibility of realization of the algo-

rithm, its convergence to the unknown solution, and its stability have

rigorously been preformed only for linear systems, and, in a number of

cases , only for equations with constant coefficients. When confronted

with the necessity of solving a problem, the mathematician often has to

use the known algorithms and to develop new methods without a rigorous

mathematical basis for their applicability.

In science, as well as in mathematics, one can find many examples

when new ideas and concepts were successfully used wi
thout3



a rigorous basis which only appeared later. Of course, this does not

suggest, that when developing new numerical algorithms, one may slight

the accurate formulation of the problem or its physical meaning. This

oversight inevitably leads to numerous mistakes, consequently a waste of

time and, moreover, the experience without being theoretically interpreted

does not give the foundation for further development of the method.

We want to draw your attention to this rather clear question only

because there is still prevalent an opinion , that the main thing is to

write down differential equations and all the rest reduces to a trivial

substitution of derivatives by differences and to progranining on which

too much importance is sometimes attached. In this connection, it is

reasonable to formulate the main stages of the numerical solution to a

physical problem with the aid of computers in the following way:

1) the construction of a physical model and the mathematical state-

ment of the problem;

2) the development of a numerical algorithm and its theoretical

interpretation;

3) programming (manual or automatic) and the formal adjustment of

the program;

4) the methodical adjustment of the algorithm, i.e., - the test of

its operation by concrete problems; the elimination of drawbacks uncovered

and the experimental investigation of the algorithm;

5) accumulation of experience, the estimation of effectiveness and

the range of applicability of the algorithm from serial calculations .

At all stages, the mathematical theory , the physical and ccmputational

experiment are used jointly and consistently. Their application may be

V

4

___________________________ 

___________

_ _ _ _ _  ~~--- ~~~-.~~~- - - - ~~~~ ---~~~~~_ _



illustrated by solving concrete problems, which will be described below.

Therefore , we shall make only some common observations by way of intro-

duction.

The main principle of using mathematical results is that the condi-

tions providing the solution of a problem for special simplified cases

must be fulfilled as well for more general cases. Parallel to this , con-

sideration of the physical phenomenon provides a qualitative picture

against which the statement of the problem is checked and ‘defined more

exactly. Ultimately, the final experimental test allows us to access the

correctness of the assumptions made and the validity of the algorithm and

resulting solution. It should be noted, that the estimate of accuracy of

the numerical solution must be done purely mathematically, without using

the results of the physical experiment . The latter may be used for quali-

tative comparison while the quantitative comparison between the calcula-

tion and experiment provides information on how closely the physical model

used approaches the natural environment.

1.1 Numerical Methods of Solution of Equations of Gasdynamics.

Meny important problems of the exact sciences involve the solution of

a system of non-linear partial differential equations. Oftentimes it incl~xIes

many problems with discontinuous solutions (e.g., gas dynamics).

The construction of reasonably accurate solutions of the exact equa-

tions of gasdynamics in the general case has beccine possible only with the

aid of numerical methods, exploiting the advantages of high-speed elec-

tronic digital computing machines. Technological requirements have called

for an intensive development of numerical methods and their application to

the solution of a wide variety of gas dynamics problems. Scientists and

_ _  
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research engineers in the area of gas dynamics have contributed signifi-
cantly to the development of modern numerical methods of solving systems
of non-linear partial differential equations .

There exist four imiversal numerical methods which are applicable to
I-.

the solution of non-linear partial differential equations of gas dynamics

problems.

I. Method of Finite Differences. This method is the most highly

developed of the four at the present time and is widely applied to the

solution of both linear and non-linear equations of the hyperbolic, elli p-
tic and parabolic types . The region of integration is subdivided into a
network of computational cells by a generally fixed orthogonal mesh .
Derivatives of functions in the various directions are replaced by finite
differences of one form or another ; usually, a so-called implicit differ-
ence scheme is appl ied to the integration of the equations . This results
in the solution , at each step of the procedure, of a system of linear
algebraic equations involving perhaps several hundred unknowns .

Finite difference schemes are often used for solving steady and wi-

steady gas dynam ics equations. Lagrangian and Eulerian approaches are
widely used here. In the first case, where the coordinate netwerk is re-
lated to the fluid particles the structure of the flow is better defined

and one succeeds in constructing rather accurate numerical schemes for

flows with comparatively small relative displacements. In the second

case, when the calculational network is fixed over space, the schemes are
used for constructing flows with large deformation . In recent time, the
approaches mentioned here have also found a wide application to the cal-
culation of steady flows .

6
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II. Method of Integral Relations. In this method, which is a

generalization of the well-known method of straight lines, the region of

integration is subdivided into strips by a series of curves, the shape of

which is determined by the form of boundaries of the region. The system

of partial differential equations written in divergence form is integrated

across these strips, the functions occuring in the integrands being re -

placed by known interpolation functions . The resulting approximate system

of ordinary differential equations is integrated numerically. The method

of integral relations, like the method of finite differences, is applica-

ble to equations of various types.

III. Method of Characteristics. This method is usually only applied

to the solution of equations of hyperbolic type. The solution, in this

case, is computed with the aid of a grid of characteristic lines, which

is constructed in the course of the computation. Actually, the method of

characteristics is a difference method of integrating systems of hyperbol ic

equations on the characteristic calculational network and is mainly used

for detailed description of flows. Its distinguishing feature as compared

to other difference mentods is the minimal utilization of interpolation

operators and associated with it the region of influence of the difference

scheme closely approximating the region of influence of the system of

differential equations. The smoothing of the profiles, inherent in

difference schemes with fixed network, is minimized since the calculational

network used in the method of characterisitics is constructed exactly

with the region of influence of the system taken into account.

Irregularity (nonconservativeness) of the calculational network

should be noted as a drawback of the method of characteristics. It is

7



possible to develop a technique, based on this method, in which the calcu-

lations are carried out in layers bounded by fixed lines. The method of

characteristics permits one to accurately determine the point of origin

of secondary shock waves within the field of flow as the result of inter-

section of characteristics of o~ie family. On the other hand, if a large

number of such shock waves occur, difficulties are encountered in their

calculation. Accordingly, the method of characteristics is most expedient-

ly applied to hyperbolic problems in which the number of discontinuities

is small (for example, problems concerning steady supersonic gas flow) .

IV. “Particle-in-Cell” Method (PlC). In certain respects, the PlC

method incorporates the advantages of both the Lagrangian and Eulerian

approaches. The range of solution here is separated by the fixed (Eulerian)

calculation network; however, the continuous medium is represented by a

discrete model, i.e., the population of particles of fixed mass (Lagran-

gian network of particles) which move across the Eulerian network of cells

is considered. The particles are used to determine parameters of the

fluid itself (mass, energy, velocity), whereas the Eulerian network is

employed for determining parameters of the field (pressure, density ,

temperature).

The PlC method allows us to investigate complex phenomena of multi-

component media in dynamics, because particlas carefully monitor free

surfaces, lines of separation of the media, etc. 1)ie to discrete repre-

sentation of a continuous medium (the finite number of particles in a cell)

calcu].ational instability (fluctuations) often occurs. However the cal-

culation of rarefied regions is also difficult. Limitations in capacity

of modern computers do not permit a significant - icrease in the number 
of8



particles.

For problems in gas dynamics involving a uniform medium, it seems

more reasonable to employ the concept of continuity considering the mass

fl ow across th~ boundaries of Eulerian cells instead of “particles”.

Only numerical methods using high speed computers and careful experi-

ments allow us to obtain the complete solution to complex gas dynamics

problems and to determine the necessary flow characteristics. Thus, the

elaboration of numerical schemes, the calculation of different gas dyna-

mics problems, as well as the study of analytical properties of the solu-

tions and their asymptotic behavior are of significant interest at present.

1.2 Aerodynamic Characteristics of High-Speed Vehicles.

In this paper a short review of the numerical methods used for the

determination of the aerodynamic characteristics of high-speed vehicles

with transonic and supersonic velocities will first be given. The numeri-

cal schemes were developed under our supersivion and in collaboration with

the Mescow Physical Technical Institute and the Computing Center of the

Academy of Sciences of the USSR. We shall discuss the problems of the

development and use of the numerical algorithms for carrying out serial

calculations in solving modern engineering problems arising in practice.

I. Steady-State Schemes. In determining the steady aerodynamic

characteristics of bodies (especially when electronic computers of average

capacity were employed) we made wide use of the following methods for sal-

ving the steady gas dynamics equations: the method of integral relations

(m.i.r.), the method of characteristics (m.ch.) and some finite difference

schemes (e.g., schemes with “artificial viscosity”). We wish to especially

consider problems in which different discontinuities and singularities are

9



given beforehand, together with some associated boundary conditions; the

solutions being carried out in regions where functions vary continuously.

Three different schemes of the method of integral relations have been

developed for the determination of flow in the nose region of a blunt body,

namely, one that employs an interpolation of various functions across the

shock layer (Scheme I), along it (Scheme II) or in both directions (Scheme

III). As a result the boundary value problem is solved for an approxi-

mate system of ordinary differential equations (Schemes I and II) or

algebraic equations (Scheme III). To solve the three dimensional problem,

certain additional trigonometric approximations in the circumferential

coordinate were introduced. The various schemes of the method of integral

relations have found a wide variety of applications [1-6].

The main advantage of these schemes is that, by means of different

transformations, one succeeds eventually in approximating functions (or

groups of functions) with comparatively weak variations. Consequently

reliable results with a high degree of accuracy can be obtaimed with a

comparatively small number of interpolation nodes (usually 3-4 are used).

The choice of the independent variables, the form of the initial

system of equations of motion (i.e., the introduction of the integrals

into the initial system and the use of the divergence form of the laws of

conservation), the use of conservation schemes, the approximation of the

integrals, etc., are all of great importance in writing an efficient numeri-

cal algorithm using m.i.r.

The main difficulty in carrying out the schemes of m.i.r. is the

solution of many parameter boundary value problems for the approximating

system of equations. This is overcome by means of appropriate iteration

10



schemes. ?breover, these schemes have been used in transonic regions

mainly for bodies of a comparatively simple form, while when dealing with

a supersonic zone one has to adopt another algorithm.

In calculating supersonic flow the two- and three-dimensional schemes

of the method of characteristics by P.1. Ciiushkin, K.M. Magcsmedov, and

their co-workers were used [7 ,8]. With the governing equations expressed

in characteristic variables, one requires approximation of ordinary den -

vat ives, only. Using a fixed computational network, a system of linear

finite difference equations is obtained with its attendant advantages.

With the help of the methods cited above, a large number of gas

dynamics problems have been solved, namely, ideal gas flows with chemical

reactions and radiation , transonic and three -dimensional flows, as well

as viscous flows. In most cases reliable results were obtained which

were in excellent agreement with experiment [6]. However, these approaches

to the solution of the steady-state equation may be successfully used only

for problems in which there are no singularities, discontinuities, inter-

sections, and interactions. The application of these approaches is difficult

for bodies of complex form with a large number of discontinuities. Besides,

a single algorithm for the calculation of different types of flow is pre-

ferable.

II. Unsteady-State Schemes. The next step in the evolution of nuneri-

cal methods, which was motivated by urgent practical needs and aided by

the availability of electronic computers, was the development of nonsteady

schemes to calculate the asymptotic solution of steady-state aerodynamic

problems. In approximating the nonsteady equations, the general principles

and ideas of the m. i.r. and m.ch . were applied with respect to space

11



variables. The divergence or characteristic forms of the initial equa-

tions were used and the same calculational networks were employed.

In this way the nonsteady Schemes II and III of the method of inte-

gral relations and the network-characteristic method were developed [9,10].

In this way rather complicated types of flow could be treated with a sin-

gle algorithm. It is natural that the problems of computational stability

and the attainment of steady-state solutions should become crucial. They

require some specific technique such as the introduction of artificial

viscosity into the &nitial system, and of dissipation terms into the

difference equations. In a number of cases the accuracy of the results

obtained is somewhat less than in the steady-state methods, but these

approaches enabled us to consider new classes of problems; for example,

the determination of the aerodynamic characteristics of specific configura-

tions involving three-dimensional flow, the calculations of viscous tran-

sonic flows , and others [10].

III. “Large Particles” Method. Finally, in the third stage of

development it seemed reasonable and advantageous to introduce the ele-

ments of the Harlow “particle-in-cell” method [11-13] into the algorithms.

At first only the equation of continuity is represented as the mass flow

across the Euler cell, using the simplest finite difference or integral

approximation along the coordinates.

Thus the modified method of “large particles” [14-15] came into exis-

tence, which (again by means of the stability process) allowed us to con-

shier from one point of view such a canplicated task as, for example, the

supsonic, transonic, and supersonic fl ow past a flat-nosed body in two

dimensions or with axial symmetry. This method is likewise used in cal-

culating viscous flows which would even permit the study of separated flows
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from solutions of the Navier-Stokes equations [16-18].

The main principle of splitting the evolution of a physical process

by a time step is as follows.

The medium simulated may be replaced by a syste i of N particles

(fluid particles for a continuous medium and molecules for a discrete one)

which at the initial instant of time are distributed in cells of the

Eulerian mesh in a coordinate space in accordance with the initial data.

The evolution of such a system in t ime At may be split into two stages:

change of the internal state of sub-systems in cells which are assumed to

be “frozen” or stable (“Eulerian” stage for a continuous medium and colli-

sion relaxation for a discrete one) and subsequent displacement of all the

particles proportional to the ir velocity and At without changing the inter-

nal state (“Lagrangian” stage for a continuous medium and free motion of

molecules for a discrete one) . The stationary distribution of all the

medium parameters is calculated after the process attains steady state.

It should be stressed that the development of the numerical schemes

mentioned above has been paced by the improvement and extension of the

ways of solving the boundary value problems for the corresponding approxi-

mating equations; by the consideration of a new, wider class of problems;

by the development and improvement of electronic computers , machine

languages , input and output arrangements , etc .

1.3 Computational Experi ments

In recent years the introduction of big computers has aroused a con-

siderably greater interest in various numerical methods and algorithms

whose realization borders on carrying out computational exper iments . The

need in such an approach for the solution of problems of mathematical

13
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physics is prompted by ever growing practical demands; in addition it is

connected with an attempt of constructing more rational general theore-

tical m odels for the investigation of complex physical phenomena.

Let us outline the principle steps of computational experiments. At

first , one chooses a mathematical model of a physical object based on its

analytical study. Then one works out a tool for the investigation of the

phenomenon in question, namely a difference scheme which permits the ex-

peri.ment itself to be carried out, i.e., the computational process. The

next step comprises a detailed analysis of the results , leading to improve-

ments and corrections of the mathematical model. This feedback procedure

leads to perfections and modifications in the methodology of numerical

experiments.

A close analogy to physical experiments comprising similar steps is

evident ; an analysis of the phenomenon under study; development of an

experimental scheme; modification of design elements of the experimental

installation; and measurements and their analysis.

In recent years the Comput ing Center of the USSR Academy of Sciences

carried out a nuñber of experiments associated with studies of complex

gasdynamic flows using the non-stationary method of “large particles”

[14 ,15]. Characteristic features of flows past bodies of different shapes

were studied over a wide range of velocities, from subsonic, through tran-

sonic , up to hypersonic . In this paper results of a number of such experi-

ments are presented without delving into the details of the computations

[10 ,14, 15 ,19 ,20].

It also seemed promising to apply the main principles of the approach

in question for the simulation of rarefied gas flows. The application of
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a statistical variant of such an approach for the solution of the Boltz-

maiu~ equation is studied in [21 -23]. Since the complete details of the

techniques are given in the cited references, this paper will only be

concerned with the characteristic features of each approach .

I
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2. “Large Particles” Method for the Study of Complex Gas Flows.

For numerical models constructed by Yu.M. Davidov [14,15] on the basis

of Rulerian equations, the mass of a whole fluid (Eulerian) cell, i.e.,

“a large particle” (from which originates the name of the method) is con-

sidered instead of the ensemble of particles in cells. Furthermore, non-

-stationary (and continuous) flows of these “large particles” across the

Eulerian mesh are studied by means of finite-difference or integral re-
I

presentations of conservation laws.

This method utilizes the conservation laws given in the form of ba-

lance equations for a cell of finite dimensions (which is the usual proce-

dure in deriving the gas dynamics equations but stops short of passing in

the limit to a point . As a result, we obtain divergence-form conservative

and dissipative-steady numerical schemes that allow us to study a wide

class of complex gas dynamics problems (transonic flows , turbulent flows

in the wake of a body, diffraction problems , etc.) [10 ,14 ,15 ,20].

2.1 Description of the Method

Consider the motion of an ideal compressible gas. Our starting-point

is provided by the Euler differential equations in divergence form (the

equations of continuity, momentum and energy)

V . (
~ ) = 0,

+ v • (pu~) + = 0,x (1)
+ v • (pv~) + = 0,

v . (pE~) + V  • (p~) 0.

It was shown in (14] that , in the “large particle” method, the set of equa-

tions of gas dynamics , written as laws of conservation in integral form ,
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may be used instead of (1). The important point is that the difference
scheme approximating the initial set of equations should be homogeneous,
so that “through” computations may be performed without isolating singu-

L. larities .

Equations (1) are completed by the equation of state

p = p(p ,E ,~) = 0. (2)

The various stages of the computational cycle will be considered

separately. Let us briefly describe the main principles of the “large

particle” method. The region of integration is covered by a fixed (over

space) Euler mesh composed of rectangular cells with sides Ax , t~y (or ~z ,
Ar in a cylindrical coordinate system).

In the first (“Eulerian”) stage of calculations only those quantities

change which are related to a cell as a whole, and the fluid is supposed

to be momentarily decelerated. Hence, the convective terms of the form

div(~p~) where ~ = (l,u,v,E), corresponding to displacement effects, are

omitted in equation (1). Then it follows from the equation of continuity,

in particular , that the density field will be “frozen” and the initial

system of equations will be of the form

p~~ •.~ = o , ~~~~~~~ p~~~ + V .(p~) 0 .  (3)

Here we have used both the simplest finite-difference approximations

and, to improve the calculation stability, the schemes of the method of

integral relations , in which “sweeping-through” approximations of the in-

tegrands with respect to rays (N — 3,4,5) are used.

In the second (“Lagrangian”) stage we find mass flows across the

cell boundaries at ~
n+l = t’~ + At. At this stage we assume total mass to

be transferred only by a velocity component normal to the boundary . Thus,
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for instance

= (
~ +½,~> (u~~~~~Ay At (4)

The angle brackets ( ) denote the value of p and u on the cell boundary.

The choice of these values is extremely important since they substantially

influence the stability and accuracy of the computation. The various pos-

sible ways of writing down A?~
1 are characterized by consideration of the

flow direction.

First and second order accurate representations of All’ are considered.

These are based on central differences, without account being taken of the

flow direction, as well as by means of the discrete model of a continuous

medium comprising a combination of particles of a fixed mass in a cell

[14,15].

Lastly, in the third (“Final”) stage we estimate the final fields of

the Euler flow parameters at the instant of time ~~~ (all the errors in

the solution of equations are “removed”) . As was pointed out , the equa-
4

tions at this stage are laws of conservation of mass M, momentum P and

total energy written down for a particular cell in the difference form

P
11+1 = F” + ~ A ~~~~~ where P = (M,~ ,E) (5)

According to these equations, inside the flow field there are no

sources or sinks of M, ~ and E and their variation in time At is caused

by interaction at the external boundary of the flow region.

22 Boundary Conditions.

To retain the unified nature of the computations and avoid special

expressions for the boundary cells, layers of fictitious cells are intro-

duced along all the boundaries , which are assigned parameters from the

neighboring flow cells. The number of such layers depends on the order
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of the difference scheme (one layer for theschemeoffirst-order accuracy, etc.).

Two kinds of boundary then have to be distinguished: the rigid boundary

(or axis of symmetry) and the “open” boundary of the computational region.

In the first case , the velocity component normal to the boundary

changes sign , i.e., non-penetration condition along rigid walls, while the

remaining flow parameters are taken unchanged. However another type of

boundary condition is possible, namely, walls without slip (condition of

sticking). In this case both velocity components change sign and the

entire velocity vector vanishes on the wall.

Fluid can flow across “open” boundaries of the region, and some con-

ditions on the continuity of the movement are required in this case.

Consider the fluid to be flowing into the rectangular mesh from the left ;

then the parameters of the entering flow will be specified here . On the

remaining “open” boundaries of the region we extrapolate the parameters

of the flow “from within”, i.e., transfer to the fictitious layer the

parameter values from the layer nearest to the boundary (zero order extra-

polation). A more complicated statement of the conditions is possible,

or more accurate extrapolation (say linear or quadratic).

It is natural that the outer boundary of the region should be fairly

remote from the source of disturbance , in which case methods of flow extra-

polation “outwards” are possible. This topic will be discussed in more

specific terms below. It will merely be mentioned here that the basic

principle underlying the statement of the conditions is that no substantial

disturbances should penetrate through the “open” boundaries of the region

into the computational region.

2.3 Viscosity Effects.

It has already been r~merked that this approach employs homogeneous
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difference schemes, whereby computation by a unified algorithm is possible

both through smooth flow regions and through discontinuities. This is

achieved by using finite-difference schemes with a viscosity approximation.

Let us dwell briefly on this topic.
L..

While the equations of gas dynamics for a non-viscous gas were taken

as the governing equations, viscosity effects are in fact inherent in our

difference scheme. They are produced, firstly, by the introduction into

the scheme of an explicit term with artificial viscosity (“viscosity pres-

sure”) and secondly, by the presence of an essentially schematic viscosity,

dependent on the structure of the finite-difference equations.

The form of the approximation viscosity and estimates for the stabili-

ty of the scheme can be obtained by writing as Taylor series the difference

operators appearing in the equations in all three stages. The terms of

zero (lowest) order should then represent the initial differential equa-

tions , while the structure of the approximation viscosity can be determined

by retaining higher order terms in the expansions (“expansion errors”).

The result ing differential equations will be termed the differential approxi-

mation of the finite-difference scheme, while an expansion up to second

order terms in time and space is termed the first differential approxima-

tion [14 ,15,24] .

The stability of the difference schemes may be investigated by means

of the differential approximation. Such investigations were made by

N.N. Yanenko and Y.I. Shokin for one-dimensional quasi-linear equations of

the hyperbolic type [24]. While a strict mathematical foundation has not

yet been supplied for the case of non-linear equations , the method of

differential approximations has in fact been used here [13].
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• Taking the one-dimensional case for simplicity, let us describe the

• first differential approximation of our difference sch~~~. Take, say

write it as function u(x + e~x ,t),  awl expand each term of the

finite-difference equations in Taylor series in the neighborhood of the

point (x ,t).

For instance, in computations of &l’ from the expressions (4) of

second order accuracy we obtain

= 0at ax

+ a(p + ~u
2) = - .

~~~~~ 
+ .1 ~~ 

!! ~) (6)

+ 
~j  [ + pE)] 

~x 

~~: ~~,

or when using expressions (4) of first order accuracy

at ax ax ax ’

(7)

+ ~~~~ [u~~ + pE) = - + C 
a)~~~ +

where c JuIAx/2. The differential approximations may be written down

similarly in the case of two-dimensional problems .

On the left-hand sides of (6) and (7), the exact expressions of the

initial differential equations have been obtained, while on the right we

have the terms which are a consequence of “viscosity” effects in the dif-

ference equations . The terms involving q result from the explicit intro-

duction of an artificial viscosity, while the terms involving c are due to

schematic viscosity , which appears when the exact differential equations

___  
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are replaced by finite-difference equat ions (“expansion errors”).

It may easily be seen that , as the mesh is refined (~x 0), ~ -~ 0

and the equations of the differential approximation reduce to the exact

set of initial equations. In practical computations (due to ~x , st ,... ,

being finite), terms containing c always appear implicitly in the differ-

ence scheme even when q = 0, which are in turn analogous to the dissipa-

tive terms of the Navier-Stokes equations . The role of the coefficient

of actual viscosity is here played by the coefficient c of schematic vis-

cosity, which depends on the local flow velocity and the size of the

difference mesh.

In the two-dimensional case , it follows from the equations of momen-

tun that the schematic viscosity (with q = o) has the tensor form

u~~x~~~ v~~y~~~
— 

p 1 ~-~~-pV~ r V V , ‘.

u~~x~~~ v~~y~~~
where = taxi + ~yj

It is clear from (6’) that , due to the presence of the vectors th~ and ~~,

the schematic viscosity does not possess invariance under Galileo trans-

formations ; in practice it only appears in zones where the gradient is

large , i.e •,  in a’ shock wave , at the body surface , and near flow separation.

The coefficient of schematic viscosity c (and hence the width of the

“smeared” shock wave) then depends on the size of the local flow velocity

and the cell size. In regions of smooth flow , where ‘the gradients of the

flow parameters are relativel y small , the influence of the schematic vis-

cosity is negligible.

It will be shown that in certain cases (when expressions (4) of
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the first order accuracy are used for computing tJ t(’, the schematic vis-

cosity ensures a stable computation even in the absence of pseudo-viscosity

q; whereas when the second-order expressions (4) are used in regions where

the local velocity is small compared with the velocity of sound , the intro-

duction of a term with q is necessary to obtain a stable solution .

2.4 Stability of the Scheme.

While it is natural for differ ent types of difference equations to

be appropriate at various stages , the computat ions become ’ stro ngly unstable

on occasions , and rapidly increasing and oscillating solutions appear ,

which no longer reflect the behavior of the solutions of the initial dif-

ferential equations .

The difference schemes quoted above are of the multi-layer type,

while the difference equations are strong ly non-linear with variable co-

efficients . This makes it impossible to employ Fourier ’s method, devised

for linear equations with constant coefficients , for investigating the

stabili ty of the difference scheme as a whole. In essence , Fourier ’s me-

thod presupposes that the equations are linearized in the neighborhood of

the flow with constant para meters , awl it ignores non-l inear effects (in-

fluence of the flow gradients) , which are sometimes the true sources of

the instability .

A heuristic approach will therefore be employed here to anal yze the

stability of the difference schemes , based on a consideration of their dif-

ferential approximations [13,14 ,15] and appropriat e for non- linear equa-

tions. In this approach , we determine the signs of the coefficients cs~
(“diffusion coefficients”) in the dissipat ive terms of the different ial

approximation ; these terms conta in second partial derivat ives in the space
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variables. For example, a linear equation can be indicated, such that ,

when the value of the coefficient is negative , the equation of the differ-

ential approximation admits a solution which is exponentially increasi ng

in time (unstable) [14].

in short , the necessary conditions for stability are obtained here

from the condition a > 0 (parabolicity condition) . In the case of linear

equations, the results of a stability analysis obtained by means of the

differential approximation are exactly the same as that obtained by

Fourier’s method.

Let us examine how the different ways of writing the continuity equa-

tion (second stage of the computations) contribute to the instability,

assuning that the equations of nomentun and energy are stable.

If M~ is determined from the second order accurate expressions of

(4) , we find, on expanding the relevant difference equations in Taylor

series and retaining terms containing a 2p/ax 2 :

(8)

If M~ is evaluated from the first order accurate expressions of (4),

we get

!~ + !2!~. = 4 + E ~~ I u) ~~~ . ( u 2 + c 2) ~X~~~~1) 3 P  (9)

where and are terms of the first differential approximation propor-

tional to ~x and containing the first derivatives. In our case (14, 15],

Ax 0.071 ; At 0.0071 ; ~ = 1; u = 1. (10)

In practical computations, when shock waves, contact discontinuities and

rare faction wave appear ,

plu l 1; ~x 0.3; I~ -I Ax < 2.

24



It follows from this that the coefficient of ~
2p/ax2 in (9) is posi-

tive , whereas it is negative in (8), i.e., scheme (8) is canputationally

unstable, while scheme (9) is stable .

2.5 Some Practical Aspects of the Method

It follows from the very character of the construction of the calcula-

tion scheme that a complete system of nonstationary gas dynamics equations

is essentially solved here, while each calculation cycle represents a com-

pleted process in calculating a given time interval. Besides, all the

initial nonstationary equations as well as the boundary conditions of the

problem are satisfied and the real fluid flow at the time in question is

determined.

Thus, the “large particles” method allows us to obtain the propertie s

of nonstationary gas flows and as a consequence of their stability

characteristics their asymptotic state as well. Such an approach is

especial ly applicable to problems in which a complete or partial develop-

ment of physical phenomena with respect to t ime takes place. For example,

in studying transonic gas flows and flows around finite bodies, flow in

local supersonic zones, and separation regions develop comparatively slowly

while the major part of the field develops rather rapidly.

In contrast to the PLIC - method [25] our investigation is wholly de-

voted to systematic calculations of a wide class of compressible flows

involving transonic regimes; discontinuity, separation and “injected”

flows , etc .
The divergence forms of the differential and difference equations are

considered in the “large particle ” method ; different kinds of approximations

are used in the 1st and 2nd stages ; additiona l density calculations are

introduced in the final stage, which helps to remove fluctuations and makes
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it possible to obtain satisfactory results with a relatively small net~~rk

(usually one to 2.5 thousand cells are used). All this results in completely

conservative schemes, i.e., laws of conservation for the whole mesh region

are an algebraic consequence of the difference equations. Fractional cells

are introduced for the calculation of bodies with a curvature in the slope

of the contour .

The investigation of these schemes (approximation problems , viscosity,

stabilit y, etc.) was carried out for the zero, the first and the second

differential approximations [13-15]. These investigations show that the

“large particle ” method yields divergence-conservat ive and dissipat ive-

-steady schemes for “sweeping-through” calculations.

These enable us to carry out stable calculations for a wide class of

gas dynamics problems without introducing explicit terms with artificial

viscosity. It may be of particular significance in studying flows around

bodies with a curvature in the slope of the contour since the ways of

introducing explicit terms with artificia l viscosity are different for

whole and fractional cells. M reover , by varying only the second stage of

the calculation procedure we can arrive at the conservat ive “particle- in-cell”

method so that the calculational algorithm is of general use.

As for discont inuities the approxi mate viscosity in the schemes (dissi-

pative terms in difference equations) results in stable calculations with

a “smearing ” of shock waves over several computational cells and the far ina-

tion of a wide boundary layer near the body. It should be stressed that

the magnitude of the approximate viscosity is proportional to a local flow

velocity and to the dimension of the difference mesh , therefore its effect

is practically evident only in zones with large gradients.
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2.6 ~~sults of Numerical Computations

Some computational results obtained by the “large particle ” method

[20] for tran sonic and “supercritical ” flows around profiles , plane and

axisyninetrical bodies will now be described .

For purposes of this discussion the supercritical regime s of transonic

flows around bodies will be characterized by the value of the critical Mach

number of the oncoming flow M* (i.e., when a sonic point first develops on

the body) as well as by the extent of the local supersonic zone (as coin-

pared to a characteristic dimension of the body) and by its intensi ty (say

the maximum supersonic velocity realized in the zone) .

Figure 1 (series l.a - l.h) presents the flow field pattern s (lines

M = const.) for a 24% circular arc profile (v = 0) extending from purely

subsonic (M = 0.6) to supersonic regimes (M,,, = 1.5) . Successive flow

fields for increasing M , depict transition throug h the critical Mach nun-

ber (here M = 0.65) , and the formation and developnent of a local super-

sonic zone . The supercritical flow around this profile is observed in

Fig . 1 (b) - (g) (0.65 < M < 1). (~ie can distinctly see the position of the

shock in the region of crowded lines M const. which bound the local super-

sonic flow together with the sonic line (M = 1). The region of subsonic

velocities is located behind the shock wave . When the velocity of the on-

coming flow increases , the flow disturbances produced by the body die out

at a large distance from the body. With > 0.9’ the zone becomes consi-

dera ble both in size and in intensity (supersonic velocities up to M = 1.7

to 1.8 are attained) and in case of sonic flow (Fig . l.g) the sonic lines

(Tv! 1) extend to infini ty .

The asyninetry of the whole flow pattern is noticeable (even at purely
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subsonic velocities - Fig. l.a) which results from non-potentiality of the

flow (super-critical regimes) and from the presence of viscous effects as

well (format ion of a wake behind the body).

In the case of a supersonic flow around a profile (Fig. l.h , M = 1.5)

a shock wave ahead of the body develops which bounds the disturbed region.

Behind the wave, subsonic velocites occur in the vicinity of the axis of

symetry , away from which the flow velocity along the contour of the body

increases and, as a result , a “terminal” shock occurs near the stern of

the body.

For comparison the results of calculations by the above method of a

flow around a 24% axisynlmetric “spindle-like” body (v = 1) are given in

Fig . 2 (2 . a-2.h) for 0.8 ~ M ~ 2.5 . In this case a critical regime

already occurs at M 0.86 ; local supersonic zones as compared to the

plane case are less developed and. of weaker intensity (for example, values

of M 1 .3 to 1.4 are realized), although, naturally, the main features of a

transonic flow are quite evident.

In Fig. 3 a comparison is given between the flow fields calculated by

the above method (solid line) and those of the Wood and Gooderun experiment

(dashed line) [26] for subcritical (Fig. 3.a, M,,, = 0.725) and supercritical

(Fig. 3.b M~, = 0.761) flows around a 12% profile (results of both the

calculations and the experiment indicate M = 0.74) .

The analysis of internal check tests as well as the results of com-

parisons indicate that the ‘computational error of the “large particle”

method usually does not exceed several per cent . The calculations were

carried out using a Soviet BE~4-6 computer ; the t ime of the calculation

in this case did not exceed an hour .
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Figures 4 to 6 show results of calculations for some complicated fl ows

past bodies of different shapes in the presence of discontinuities in the

wake as well as under the influence of injection of a fluid upstream from

the front surface of the body. Such flows are of great practical interest

in the study of wakes and turbulence.

The results of numerical experiments for the investigation of flows

with injection, are given in Figs. 4a, 5 and 6b,c. They include the case

of the interaction of a superson ic flow around a finite thick circular disk

(Fig. 4a, M = 3.5) , a 24 % body of revolution (Fig . 5, M,, = 3.5) , and a

sphere (Fig. 6b, M = 3.5; Fig. 6c, M~ = 6) with a sonic injection stream

(i.e., one where M
~ 

= 1.0; 0c = 2.9, u
~ 

= 1.0, v~ = 0) issuing upstream

out of a nozzle situated on the axis of synlnetry of the body. Fig. 6d

presents results for the case when distributed injection of the flow takes

place at the surface of a sphere. In all the figures, streamlines, shock

waves, horizontal velocity lines (dots), and sonic lines (circles) are

indicated; dashes denote lines separating the main flow from the inj ected

stream.
The action of the jet markedly complicates the flow pattern . For

instance, in the flow past a cylinder the head shock wave ABCD (Fig . 4a) is

pushed towards the oncoming flow , and its distance from the body increases

significantly. The jet issues out of the body in the direction of axis of

syninetry at a sonic velocity and expands , forming a local supersonic re-

gion OL14WO which is closed by a triple-shock intersection (normal front :

ML; oblique front :?vt4; transverse front :MP) , having a conmon point M. A

recirculation zone with a complicated vortex structure developes in front

of the body; sonic line BQ is situated much lower in comparison to flow
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without inj ection. Behind the front recirculation zone , a secondary shock —

QC is formed and at some distance from the body merges with the head shock

wave ABCD at point C.

Behind the bodies in Figs . 4-6 , both with and without injection, one

can observe the development of separated zones of recirculating flows. In

the cases considered , these zones are closed, localized in the wake of the

body and separated from the external flow by a “mm-flow” line, i.e., a

contact surface indicated by dashes in the figures . In the vicinity of

the separation (it is interesting to note that in Fig . 4 the separation

point is situated somewhat lower than the rear shoulder of the body) a

transverse shock wave FF develops . Backward recirculation flows are essen-

tiall y subsonic and rarefied (gas density and pressure are low) , so that

effects of viscosity are negligible .

The “large particle” method has also been applied to the study of in-

ternal gas flows and diffraction problems. Fig . 7 presents results of

computations for flow through a straight channel (v = 0, Fig . 7a) and a

straight tube (v = 1, Fig. Th) in the presence of a central body (M0, = 1.5)

for the case when a triple shock intersection is formed as a result of the

interaction of the flow with the upper wall (this can be seen by an
+

examination of the lines M = constant in Fi , ’. 7a and rot W = constant

in Fig. 7b) .

In calculating separated flows, the cell dimensions of the “large

particles” were changed several t imes so that across the wake of a body of

size R from 4 to 30 computational intervals were used (Fig . 8). In all

cases there was an ample reserve of computational stability (over 100 x

Courant , where the Courant number represents the ratio of the time step to
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the space width of the cell) .

Fig. 8 shows base flows behind an axisymmetric cylinder (M = 2.0) for

R = l4~y. A gradual development of the flow in time is shown (in dimen-

L sionless units) from tn = 21 to = 31, when the zone is practically loca-

ted. Streamlines are represented by solid lines; velocity vectors by

arrows. It follows from this dia,~ram that at t11 25 the flow has already

been formed but still continues to “breathe”. It is interesting to note

that similar flow patterns were obtained with denser meshes (which is quite

important) and the zone “breathing” i.e • ,  changes of its dimensions, inter-

nal structure , and other features of the flow occurred approximately at

the same time intervals , ~~ in the various approximations .

The development of flow separation in the case of strong interaction

seems to be explained by the fact that, as a result of viscosity (compu-

tational) effects and the treatment of the boundary conditions, close to

no-slip conditions are realized on the body itself; a fairly thick boundary

layer forms around the body surface (comparable to the width of the

body at its tail), and this layer then separates from the body surface

and forms a near wake flow with complicated vertical structure behind the

base of the body. It must be empahsized that, while the boundary layer is

in fact the result of viscosity effects in the scheme, in the wake itself

the influence of the approximation viscosity c ( which is proportional to

the local velocity and the size of the computational mesh, see above) is

quite small , since in these zones only small values of the subsonic velo-

cities are realized, while computations with different size meshes revealed

only a slight change (within the limits of one step) in the zone contour .

The fact that the solution does not strongly depend on viscosity
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p/u/h) shows, by the way, that flows corresponding to high Reynolds

numbers can be treated by our methods of analysis. Thus, our calculations

of separated zones might give quantitative information for “limiting”
flows (Re a.) as , for example , the calculation of shock waves by a scheme

including viscous effects. Naturally, the accuracy of determining the

characteristic features of such zones can be further increased, if necessary,
by using the results of preliminary calculations (e.g., the position of

separation and closure points, a zone contour , etc.) as initial data.

However , it should be pointed out that in the calculations, the

flow parameters on the front part of the body are determined com-

paratively quickly, while local supersonic zones and separation regions

continue, as mentioned above, to “breathe”. This may be due to the physi-

cal (non-stationary) character of the phenomenon itself. The application

of the difference scheme of calculations prescribed by the non-stationary

method of “large particles” appears to be especially well suited for such

a case .
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3. Computation of Incompressible Viscous Flows.

At the present time, a fairly large number of numerical methods of

solving the Navier-Stokes equations (governing viscous incompressible flows)

are known. fvbst of these methods were developed for equations expressed in

terms of the stream function ‘V and vorticity w.

A common disadvantage of these methods is the need for some form of

a boundary condition (the Tom condition) for the vorticity on the solid surface,

which is absent in the physical formulation of the problem. The rate of

convergence of numerical algorithms is limited by the presence of an addi-

tional iteration imposed by this boundary condition on the surface vor-

ticity.

?‘breover, the obvious limitation of methods of solving the (~V ,w) -system,

connected with their inapplicability for cases of three-dimensional viscous

flows and compressible gas flows, accounts for the recent interest in the

numerical solution of Navier-Stokes equations expressed in natural variables:

-
~~~ 

+ (~.v)~ -~Ap + = 0 (11)

where p - pressure, - vector of velocity , v - coefficient of kinematic

viscosity.

Using the main principles of the “large particle” method V.A. Gushchin

and V.V. Shchennikov [16 ,17 ,29] studied viscous incompressible gas flows

with variables “velocity-pressure” by means of a numerical scheme of

splitting analogous to the SMAC method [27].

3.1 t~scription of the Splitting Method

Let us now consider the scheme of difference approximations of equa-

tions (11) which enable calculations by a single algorithm for plane ,

axisyninetric and three-dimensional flows of a viscous incompressible fluid.



For this purpose consider the following scheme of splitting a time cycle:

Stage I - determination of intermediate values of velocities

(
~ 

- ~n) / = _~~n~ V)~~~+ ~~~ (12.1)

Stage II - calculation of the pressure field

= ~~~/ t  , (V ~n+l ~i+l 
= 0) ; (12.2)

Stage III - determination of the final values of velocities

= - -r .c ~~. (12.3)

Stages I and III lead to the realization of the Navier-Stokes equation

and stages II and III are the conditions of solenoidality (second equation of

(11)). Consequently at stage I the evolution of the velocity field is ac-

complished only by convection and diffus ion so that the resulting v-field

does not satisfy the continuity equation (i.e., ~ ~ 0). Therefore it is

necessary to change (“to correct”) the field ~ at the expense of a pres-

sure gradient p so that = 0 (stage III) where p is found by solving

the Poisson equation (stage II).

For a proportional calculational mesh a two-dimensional difference

scheme of second order accuracy with respect to space is presented in

[17]. The main difficulties of the numerical realization of the scheme

involve the calculation of a pressure field and the formulation of boundary

conditions.

It should be noted that in some works boundary conditions at a solid

surface are replaced by the projection of an equation of motion onto the

normal to the surface at the boundary points. This substitution reduces the

efficiency of the numerical methods since these conditions are not available

in the physical formulation of the problem.

In [28] there is proposed an original modification of boundary conditions
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in the MAC method, which enables homogeneous boundary conditions to be

provided for pressure. Moreover , in the SMAC method [27] and the modified

MAC method [28] , due to the difference schemes chosen, the realization of the

condition of no-slip necessarily results in the determination of the vor-

ticity value on a solid surface which satisfies the Tom condition to first

order accuracy. In addition , the no-slip condition in the SMAC method does

not provide a balance of forces on a solid surface. The error in this

case is of the order of 0(v) .

An essential point of the method proposed is the choice of boundary

conditions. From the viewpoint of the solution of problems of a viscous

incompressible flow around bodies of finite dimensions we can distinguish

two basic types of boundary conditions: conditions on a solid surface and

those on a line sufficiently rmixte from the body. Let us consider each

of these conditions in further detail .

Boundary conditions on a solid surface :

vT
~ ½ = 0 (nonpenetration condition) ,
, (13)

~~~ ½ = 0 (no-slip condition) ;

from the latter it follows

= 
Uj+½ O 

+ 
ui+½ l + 0i+½, 0 ( )

Condition (14) makes it possible to determine the boundary value for U

of second order accuracy with respect to internal field points. This avoids

the alternative of introducing a layer of fictitious cells (inside a solid

body), which in schemes of the MAC, ~‘(AC and modified MAC types [28] gives

rise to only first order accurate values of surface vorticity. Note that in

the limits of the approach proposed it is unnecessary to calculate the
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vorticity on the solid surface. The latter can be determined from a calcu-

lated velocity field using some of the difference representations of the
vorticity

= au/By -

at boundary points.

Boundary conditions on a line remote from the body represent an undis-

turbed flow ; for U II OX this has the form

-0 ~ -UVi~~~½ 
- -

In calculating the pressure field, homogeneous boundary conditions

are attained following the approach of [28]. Corresponding to V
~~
’
½ 

= 0

(for the case of a solid surface) and vr~~½ = 0 (for the case of a line

remote from a body) we have from the finite-difference approximation of
(12.3)

Vi ..½ 
= T~ 

(Pi,o - 

~~~~~ 
Vi,N~~ 

= Ti (Pi,N+l - ~~~~ 
(15)

Taking account of (15) it is not difficult to write down now a difference

equation for calculating the pressure at boundary cells [17].

The stationary solution of the system of equations (12) is obtained as
a result of repetition of the above stages until the following criterion

is fulfilled

m
1~~Iu~~ ,~ - U;1

+½J 1 ~ C*.

The stability can be investigated stage-by-stage . A stability cri-

terion for the first stage can be obtained from the first differential

approximation (condition of a-parabolicity) . With regard to equations

(l2a) the first different ial approximation is [17]:
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2 2 2 2Bu Bu Buy ~ 2 a u  -r 2h av ~~u+ + = v-~ u + v -~~~ v -

~~ w
(16)

2 2 2 2By Buy By -r 2 h  B u B v  -r 2~~~v+ 1—
~ 

+ -
~~

-

~

- - v -.~. u --r 
~~~ ~~~~~~~~ 

+ v -
~~ v

The stability criterion of the difference scheme employed follows from (16)

t < 4v/ (u2 + v2)

El iminating p from (12.2) and (12.3), the unconditional stability of the

second and third stages is easily demonstrated by Fourier’s method.

Thus , the proposed difference scheme enables us to calculate a flow

without prescribing vorticity and pressure at the body surface. This

markedly increases the accuracy of the calculations. Results of the cal -

culations attest to its effectiveness. This difference scheme (of second-

-order accuracy) provides a single algorithm for calculating viscous in-

compressible flows around plane, axysyiimietrical and three-dimensional bodies

of complex configuration as well as internal flows in a wide range of

Reynolds numbers [17].

3.2 Results of ?&m~erical Computations

Solutions of a whole series of problems of external hydrodynamics were

obtained by the method described. Viscous incompressible flows over a

wide range of Reynolds numbers (1 < Re < l0~) were studied around different

bodies of finite dimensions : a rectangular slab and a cylinder of finite

length whose axis is parallel to the free stream TT,3, [29), a

sphere and a cylinder with the axis perpendicular to U,, a rectangular

parallelepiped (a three-dimensional flow) (7], as well as bodies of more

complex form.

Fig. 9 shows the steady-state streamline patterns around a circular

cylinder (two-dimensional flow) for Re - 1,10,30 and S0(Re - 2Rv _/v , where
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R is the cylinder radius). The streamline patterns in flow around a cylin-

der for Re = l0~ are shown in Fig. 10 at the instants t1 = 162, t2 166 and

t3 = 170, respectively. In the last case a non-steady flow pattern is ob-

served (there is a definite growth of the stagnation zone and at some in-

stant of time occurs a “collapse” and ejection of fluid from the stagnation

zone). This result probably requires further study .
Figs. 11 and 12 present results for unsteady three-dimensional

incompressible viscous flow around a cube (of dimension 2a) when

the oncoming flow velocity U~, is parallel to an axis OX. Die to the pre-

sence of two planes of syninetry (OXY and OZX) the calculation is carried

out only in the positive quadrant OXYZ (Fig. 11) . The properties of the

flow are illustrated by the velocity profiles u(parallel to the vector if,,,)
at various cross-sections Q Cx = const.). Fig . 11 shows the velocity

profile u in the undistrubed flow (x = -o’) and for a section x = 3a with

Re = 1 (Re = 2a V,,, / v). Fig. l2a illustrates for various Re the spatial

change of the velocity profiles u at several sections downstream of the

body (section Q1 coincides with the rear face of the cube x = 2a; the

distance between the sections is constant , Ax = 0. 5a) . Fig. 12b shows the

evolution with time (1.0 < t < 1.29) of the velocity field for the section

x = 4a. It follows from Fig. 12, in particular, that with Re = 40 and 100

a reverse-circulation zone (u < 0) develops , and after an elapse of time a cer-

tain flow stabilization is observed. The reader is referred to [16,17 ,29]

for further details concerning results of this calculation.
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4. Flow of a Viscous Compressible Gas (Conservative “Fl ow Method”)

The calcul ation of viscous compressible gas flows was performed by

L .I .  Severinov and A. I .  Babakov with the approxima tion - of conservation

laws repre sented in integral form for each cell of the calculation scheme

(“flow” method) [18) . Conservat ion laws for mass , momentum and energy of

a finite volume have the form:

= ~ ~F ~
s, F = (M ,X ,Y,Z,E} , (17)

SQ

where ~ - is the lateral surface of volume cell Q; M - mass , X ,Y,Z, -

momentum components and E - energy terms in Q, respectively, and is a

flow density vector for each of the quantities. Eqs. (17) take account of

the boundary conditions and are solved numerically for each cell of the

computational domain.

If the values of ~~ = M(t”) ,  X~,Y
’1,Z~,B~ are known at the instant

~~ = nt , where -r is a time integration step, at time ~~~ = (n + 1) -r

these quantities can be calculated with error 0( 2) as follows [18]:

(18)
sQ

Supplementary conditions, the form of which depends on the problems

posed, must make it possible to determine the flow-density vectors on the

bounda ry of the domain in which the solution is sought . The three-dimen- .

sional coordinate system, the shape of the cell volumes cz, the methods of

determining the field variables and their first derivatives on the surfaces

SQ must be chosen in such a way as to ensure stabili ty and monotonicity of

the difference method , as well as a fairly simple approximation of the in-

tegrals in the system (18) .
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In the solution of a specific problem the integrals in (18) are cal-

culated on separate segments of the surface which are the boundaries be-

tween two adjacent volumes cz. Depending on the directions of the flow

density vectors the values of M,X,Y,Z and E vary (they increase in some

cells and decrease in others) by quantities determined by the flows of mass ,

momentum and total energy through the corresponding segments of the boundary.

Apart from round-off errors this calculation method cannot lead to the loss

or generation of the quantities {M,X,Y,Z,E} due to computational errors.

Therefore, the flow method is conservative with respect to mass, momentum

components and total energy [18].

In the finite-difference approximation of Equation (18) Stokes ’ assump-

tion of the equality of the mean values of the principal stresses (with

a reversed sign) and pressure has been used . If the field variables are

sufficiently smooth and the assumptions used in calculating the mass, me-

mentun and energy flow density vectors are satisfied, the conservation laws

(17) imply the complete Navier-Stokes equations for a compressible gas ,

if the volume Q is arbitrary .

4.1 Computational Problems

We will now consider some problems involved with the numerical inves-

tigation of equation (17).

Knowing the values of M,X,Y,Z,E for each cell, we can calculate for a

given small volume cell Q fixed in space the average densities (in each

cell) of the given quantities ~~~~~~~

From these functions it is easy to arrive at generally accepted field

varibles , i.e., the components u,v,w of the velocity ~ and the specific
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internal energy of the gas e:
u = c/p , v = n/p , w = ç/p , e = ~/p 

- (u2 
+ v2 

+ w2)/2 .
• Applying certain procedures of interpolation and numerical differentiation , we

determine the value of the field variables and the first der ivatives of

u,v ,w,e on the boundaries s of the cells Q [18] .

In determinin g the values of all the function (except the distribution

densities ~~~~~~ and their first derivatives , syninetric formulas were

used , for example ,

~imi½,k
z (Um+i k + Um,k) / 2 ,

(.~!!) = ( u  1 k ~~~~ k) / h l,X~~~~ k m+ ,

= 
~% ,kil - Um k ~1 + Um4l k+1 - U~ .1 k..1) / 4h2

However asymetric formulas were used to calculate the density values of the

distributions ~~~~~~~~
I 

1 ’ 5
~’m,k - 0 5 ’

~m-l ,k if um+½ n > 0

~m+½ k =
- 0 5

~m+2 ,k if < 0

These approximations ensure second-order accura cy.

In approximating flow density vectors an essential aspect of the

method required that the distribution densities of additive charac teristics

such as densities F are calculated on the boundary s~ of volume Q in a

non-symmetrical way (extrap olation in the direction of gas flow) ; while the

other parameters , e.g. , pressure and trans fer velocities u ,v of additive

characteristics are calculated accordi ng to symmetric formulas in the vis-

cous stress tensor and in the thermal conduction law. We believe that this

treatment accounts .for the region of influence , which is an important factor

in the investigation of complex physical flow patterns . The presence of a

“convective” transfer gives unequal weighting to the space directions and it

is desirable to take account of this fact in constructi ng the difference

scheme.

The integral form of the conservation laws essentially requires the
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approximation of derivatives of one order lower than that required for

numerical solutions of the Navier-Stokes equations. By its formulation the

“flow” method is conservative with respect to mass , momentum and total

energy, both locally (for each cell of a difference mesh~ and integrally ,

i.e •, for the whole computational space [18]. As follows from (17) , con-

servativeness results from the fact that this approach is based upon the

difference approximation of conservation laws written down for each cell in

terms of surface integrals of vectors of flow densities ~~~~~, i.e •, the con-

servation law which governs an arbitrary gas volume. Indeed, while solving

a given problem, surface integrals in (17) are calculated on separate sur-

face segments s~ which constitute boundaries between two adjacent volumes Q.

Depending upon the direction of flow vectors the values F = {M ,X,Y ,E} vary

(they increase in some cells and decrease in others) and ac4uire new values

determined by flows of mass , momentum and total ener gy across common bounda-

ries of the cells.

It shou1~ be noted that the “flow” method is essentiall y another de-

velopmei the “large particle ” method . The difference fonnulas of the

“flow” mets ‘1 .an be deduced by using the splitting scheme (3) - (5) for

the “transfer ” of the components of quantities F.

4.2 Examp les of Calculations

The “flow” method has been applied to the systematic study of the

characteristics of viscous compressible gas flow around bodies of finite

dimens ions over a wide range of Reynolds numbers Re. Although the method

formally “works ” even with large values of Re , the results are reliable

only when the bounda ry layer thickness is much greater than the size of the

computational mesh. It should be emphasized that the division of the
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vector of flow density 
~~ 

into convective and viscous components facilitates

application of the algorithm to the calculation of an ideal gas flow, as

well.

The results given below represent the asymptotic steady state obtained

by the method for the solution of a stationary boundary value problem. The

investigation of a linear model reinforced by the results of the calculations

themselves showed that the second-order accurate difference scheme exhibited

conventionally stability and monotonicity [18]. The reliability of the

numerical results is examined for a general case by subdividing the compu-

tational cell, by using various forms of boundary conditions, by comparing

with the results of other calculations as well as with measurements taken

from an experiment [18,30].

Some details of the flow past a sphere (separation zones of a reverse-cir-

culation) at M~~20 and 550< Re0, < 1O4 are given in Figs. 13 and 14. Fig. 14

shows the behavior of lines p = const. in a separation zone behind the sphere

with Re = l0~ and 1500 (Re = Rv /v).

Fig. 15 illustrates the variation of density across the shock layer in

the neighborhood of the forward stagnation point (x = 3°) for 75 < R&~ l0~
and compared with that of an ideal gas (M~ = 20 , k = 1. 4 , Re0, = no) . With

increasing Re the density in the shock layer approaches its limiting value

in a viscous thermally non-conducting gas; the tendency towards the forma-

tion of a shock wave is distinctly seen.

The pressure distribution along a blunt body (relative to the pressure

at the stagnation point, x = 0) is shown in Fig. 16: “lines” designate the

results obtained by the “flow” method (M = 6.05, Re = 6.43.106), “crosses”

- experimental data (G.M. Riabinkova) and “circles” - the results for an
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ideal gas (O.M. Belotserkovski i [31 ]) .  Very good agreement is observed
between the data. In this way transition from the “viscous ” equations (17)

to the limit of an ideal gas is obtained .

The results of calculations show that the “flow” method makes it pos-

sible to study viscous compressible gas flows arou nd finite bodies over a

wide range of flow regime s (includ ing separation zones) up to large Rey-

nolds numbers .

I
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• 5. Statistical !~bdel for the Investigation of Rarefied Gas Flows
• A statistical variant of the method of large particles has been

investigated by V.E. Yanitsky [21-23] for the solution of the Boltzmann

equation. The main difficulty of this problem is the development of a model of

behavior of the gas medium consisting of a finite number of particles . This

study combines the splitting of the “large particle” method in terms of

Bird’s statistical treatment [32 ,33] with Kats’ ideas [34] about the exis-

tence of asymptotically equivalent models to the Boltzmann equation .

As is typical of “particle-in-cell” methods, the medium is simulated

by a system containing a finite number N of particles of fixed mass . At a

given instant of time t~ each cell j  contains N(a ,j) particles endowed with

certain velocities. The main calculation cycle comprises two stages :

- at the first stage particles only collide with their counterparts

in a cell (collisional relaxation) and

- at the second stage they are only displaced and interact with the

boundary of a reference volume and with the surface of a body(collisionless

relaxation) .

The main distinction between the model suggested in [21-23] and Bird ’s

model lies in the fact that at the first stage of the calculation each group of

N particles in a cell is regarded as Kats ’ statistical model for an ideal

monoatomic gas consisting of a finite number of particles in a homogeneous

coordinate space. hblecular collisions are calculated by the ?‘bnte-Carlo

method from the main equation of Kats ’ model , which correctly determines the

time between particle collisions in accordance with collision statistics

for an ideal gas.

In contrast to previously reported versions of Bird ’s method [32 ,33]
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the approach in question [21-23] is a rigorously Markovian process. The

main equation of this formulation is linear (unl ike the Boltzmann equation) ,

which substantially simplifies numerical realization of the algorithm. The

feature of molecular chaotic motion implies that Kats ’ model is asymptoti-

cally equivalent to the Boltzmarm equation without the convective derivative.

Integration of Kats ’ main equation results (with accuracy up to the reali-

zation of the assumption of molecular chaotic motion) in the Boltzmann

equation.

In the realization of the second stage of the calculation for the dis-

placement of the particles, the numerical algorithms [21-23] employ incomplete

information about the position of particles in coordinate space. This

reduces storage requirements in the processor memory, which significantly

increases the speed of the computations. The method can just as well be

realized in a two- or three-dimensional coordinate space.

Let us review here the principal aspects of the statistical “particle-

-in-cell method [21-23].

5.1 Description of the Statistical ‘Particle-in-Cel l” Method.

We suppose that the problem of a rarefied gas flow around a body can

be solved by means of a distribution function with a monoatanic gas . Then

any macroparameter of a gas flow ~
‘ (t ,~~

) related to a molecular feature

is a functional of the form
1 +- ~~ ÷‘Y(t ,x) = fly (c).f(t ,x ,c) dc

n(t ,x)

where f( t ,~ ,~ ) is a molecular distribution function in a 6-dimensional space

~~~~~~~ 
of the coordinates awl velocites of the particles .

If c2 denotes the region of a control volume and r - the boundary of ~
which emcompasses a body surface as well , then the problem is reduced to
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that of obtaining the solut ion of Boltzmann ’s equation

• + 
~ 

= f(f’ • 
9 

- ff 1) gda • d~1 , (19)

subject to the initial parameters -

4 +  + 4 ÷f(t  + 0,x ,c) = f0(x ,c), xcc~, _ = < C
x y z < + c o  (20)

and boundary conditions

= 
~~~~~~~~~~~~~~~~~~~~ ~~~~~ 

> 0, 
~~~~~ 

<0 . (20 ’)

Here i~(~ ,) is the normal to the surface r at point ~~r directed toward

the interior of volume c~; the kernal shape K is derived from the interaction

law of the “gas-surface”.

In deducing Boltzmann ’ s equation the following assumptions are made.

1) mechanics of collisions are described in a classical way;

2) force fields of molecules are spherically symmetric ;

3) only binary collisions are considered (two molecules take part in

any collision);

4) molecules move randomly (the hypothesis of molecular chaos is valid,

i.e., the distribution function of molecular pairs f 2 (t ,~,~1,a2) =

= f1(t ,~,~1) • f1(t ,~ , )  which implies statistical independence

of particles) ;

5) the collision time is negligibly small .

The difficulty in constructing the solution of the Boltzmann equation

in nonlinear integro-differential form results both from the large number

of independent variables (there are seven of them in the general case: time,

geometrical coordinates and molecular velocity components) and from the com-

plex structure of the integral of the collisions. C~zadratic nonlinearity in

the integrands, their strong dependence upon distribution functions (deter -

- 
. 

mined by the values of molecular velocities after a collision) as well as
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the high level of multiplicity of integration (equal to five in a general

case) and the complex formulation of the boundary condition (20) - these are

the main features which complicate a direct solution of the Boltzmann

equation (19) and the application of ordinary numerical algorithms.

For an approximate solution of the problems formulated in this fashion

we shall construct a statistical model of an ideal monotomic gas consisting

of N particles* with coordinates r~ , and velocities c1(i = 1,2 ,... ,N) so

that the equation of evolution of the model approximates equation (19) , the

only additional assumption being that of molecular chaos:

f 2 (t ,~ ,~1,~ 2) = f1(t ,~ ,~1) f1(t ,~ ,~ 2) , (2].)

where
-.- ÷ + N + + + +f5(t ,x ,c1,.. .,c5) 

~~~~~ 
F5(t ,r1,..., r5,c1,..., c5)

and with r1 = r2 = ...  = r5 = x, F~ being a s-partial function of distribu-

tion in a phase space of 6N dimensions .

If {~(t),~(t)} = {~1(t) ,a1(t); ...; ~N (t) ,~~(t) } designates the model

state at time t , the problem solution is then reduced to a numerical reali-

zation of a finite number of trajectories {~ (t) ,~ (t) } with initial parame-

ters corresponding to (20) ; the modelling of particle interaction with the

boundary r is accomplished in accordance with the given kernel K of (20’) .

Having calculated a number of trajectories one can obtain any macroparameter

using adequate estimates of the integrals by the )bnte Carlo method.

* A real gas is modelled by an ensemble of about a thousand rigid sphere-like

molecules that can be regarded as typical representatives of many trillions

(1012) of molecules, e.g., in the study of phenomena occuring in a real

shock wave [22].
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The synthesis of the basic ideas of splitting, the “particle” method

and Kats ’ statistical model enable us to construct the desired model

{~ (t) ,~ (t) ) for a space- inhomogeneous case when sf/ax ~ 0.

Let us suppose that at time interval ta (a = 0,1...) in a cell with

center x~(j = l,2 ,... ,j ) there are N(a ,j) particles with velocities

~~~ fl). The center x) of a cell in which a particular particle

is situated is taken as a coordinate r~ of a particle i. The state of such

a gas model ~~~~~~~ is uniquely defined by a sequence of J points of the form :
— {N(a , j) ;  

~5 ’~ • • ’~~ (cz j )~ 
, j  = l,2,...,J

N E N(a ,j)
i—i

The evolution of this system in time At is split into two stages .

The first stage models the change of internal state of subsystems

enclosed in the cells , assuming that the particles are fixed; collisions of

particles (with their counterparts in a cell) in subsystems ~~~~~~~ . ,~~~ } are

simulated independently in each cell , thus the part icles acquire new velo-

cities . The vector = ~~~ .. ,~~~ } is regarded as a state of Kats’ model .

Let q (t ,~) be the density of the probabilistic distribution of the state

~(t) ; then the governin g equation of this model (“Kats ’ Ma ster Equation” [24] )

has the form

a+(t ,c) 
= E ~~ f[~ (t ,~~~) - •(t,~)]da~~ IC~(t,~) . (22)

l<tcm~N 
m

where K - Kats ’ operator of collisions ; ~~~ = , ~~ and denote the

velocities of the t-th and m-th part icles upon the ir collision; doim - a

differential section of elastic dissipation of a pair of particles 
~c’~m~

a normalizing parameter V is determined by the choice of measurement units

and it can be interpreted as a cell volume.
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If we introduce the distribut ion functions
+ ÷ N! + N ÷f (t ,c~ ,. . . ,c ) = — f ~~t ,c) j~ dc.

~ (N-s) !V~ i s+l 1

then by integrating (22) it is not difficult to obtain

L =i [f 2 (t ,~~ ,~~) -

which coincides with the Boltzmann equation having a zero convective deri-
vative when satisfying equality(21).

The algorithm for the realization of the first calculational stage of

evolution of a space-inhomogeneous model corresponds to the Mente Carlo

method of numerical solution of Kats ’ basic equation (22) which (unlike

the Boltzmann equation) is linear.

The second stage models a collisionless transfer of particles from a

particular cell to any neighboring one without changing the internal state

of the subsystems ; their interactions with the control volume boundary and
body surface are considered as well. This stage corresponds to the ?~ nte
Carlo method of numerical solution of the Boltzmann free-molecular equation

in the following form

!~~+~~Lf= O .  (23)

where L is a finite-difference operator approximating the derivative a/ax;

its introduction is closely related to an incomplete description of the

system state in coordinate space.

The simplest numerical algorithms of the method described [21-23]

correspond to the solution of time explicit, conventionally-stable finite-

-difference schemes of first-order accuracy, respectively, for Kats’

equations and the Boltzmann free-molecular equation . Herein the equation

of evolution of a model gas {R(t
~) ,  ~(t )) within the accuracy of satisfying
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molecular chaos has the form (a one-dimensional flow)

A J(ff 1)
+ c~ ~ - AtCX Ax (24)

where A / At and ~ /Ax are first-order finite-difference operators approxi-

mating derivatives a/ at and a/ax , respectively; J(ff1) designates the

right-hand side of the Boltzmann equation.’ The finite-difference scheme

given is conventionally-stable and it approximates the Boltzmann equation

within the accuracy of 0(At) and 0(Ax). As mentioned above, this calcula-

tion employs incomplete information concerning the space position of

particles.

This calculational model can naturally be extended to the cases of a

two- and three-dimensional space; it consists of a sequence of one-dimen-

sional displacements along each coordinate axes. This corresponds to the

splittin g of a multidimensional transfer equation

ax

into a sequence of one-dimensional finite-difference schemes.

The Boltzmann equation is known to imply a molecular chaos or a statical

independence of particles. * The same premises are inherent in our model as

in the Bolt zmann equation but without the assumption of molecular chaos

(statistial independence). In ow model statistical dependence of the par-

ticles violates molecular chaos. It should be noted that the inherent

statial independence rests upon theoretical and physical premises and does

not depend upon the mesh dimension (it exists as ~x +0 as well).

* The molecular chaos hypothesis implies that particle velocities are sta-

tistically independent . (M.N. Kogan, “Rarefied Gas t~mamics ,” M., Nauka , 1967) .
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The numerical results of rarefied gas flow reveal that :

1) results of calculations with various numbers of particles in a cell

(e.g. with N = 3 and N = 20) practically coincide;

2) these results are in good agreement with the solution of the Boltz-

mann equation (theremisin’s and 1~ykov’s data). Therefore, the violation of

molecular chaos in the problems involved is small (though statical depen-

dence exists, it is weakly manifested in rarefied gas problems, and appar-

ently, it can be neglected here).

For the study of turbulence, statistical independence is of crucial sig-

nificance and we expect that it will be manifested in this method when applied

to turbulent flows.

5.2 Simulated Structure of a Shock Wave

The model was tested for the solution of a problem dealing with the

structure of a normal shock wave in a gas consisting of elastic spheres in

the range of Mach numbers M , = . 1.25 to 4.

Graphs of density ñ(x) , longitudinal temperature T11 (x) , transverse

temperature T1(x) and static temperature T(x) are shown in Figs. 17 and 18

for M = 2 and 3. The unit of length is the mean free path of molecules

in the free stream flow. The value of At/Ax was chosen to insure stability
of the calculations. The average number of particles in cells

corresponding to the oncoming flow is N0 = 15 to 20 CM = 2) and N
0 

12

CM = 3). A comparison is made in the figures with the density ñ (x) and

temperature T(x) obtained by direct numerical integration of the Boltzmann

equation [35 ,36) on a network z~x similar to the one used in our calculations

(Ax — 0.2 to 0.3).

Finally, Figs. 19 and 20 show that the results of the calculations are
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only weakly dependent upon the average number of particles N0 in the cells

for rarefied gas flows .
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6. Numerical Investigation of Some Gas 1~rnainics Problems by

Net - (laracteristic Methods.

The manifold problems presently confronting computational mechanics

are increasing in complexity, which in turn requires the improvement of

earlier numerical methods and the creation of new ones . The properties

that a numerical method is to be endowed with, from the view-point of modern

developments, are so diverse that they are difficult to fully implement in

one single method. In view of this , complexes of numerical methods based

upon a unified approach should be available.

A large and important class of problems is described by multi-dimen-

sional systems of equations of hyperbolic type. A fundamental concept

underlying the construction of numerical approximations for such systems

requires that their characteristic properties be taken into account in

some form , i.e., it is essential to impart relevant features to the mxneri-

cal methods of their solution as well. Finally, it is desirable to consi-

der homogeneous schemes that enable calculations through discontinuities

that may arise in the evolution of the solution , that allow for explicitly

singling our some (princ ipal) of the features and that adequately resolve

their boundary conditions.

6.1 Investigation of Difference Schemes for a !k)del Equation

Positive type difference schemes, first introduced in [37], play an

important role in the solution of equations of hyperbolic type. Using the

method of indefinite coefficients and the characteristic propert ies of equa-

tions of hyperbolic type, one can write a rather large class of schemes of

this kind and then perform a comparative analysis , in part icular , with

respect to the magnitude of “approximation viscosity” (see, e.g. , [38]) .
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These schemes possess a number of . indisputable advantages, the main ones

are the absence of oscillations in the numerical simulation of non-smooth

solutions, and the construction of efficient algorithms for the calculation of

boundary points. However, since they are all of first-order accuracy, the

utilization of even the best of the schemes [39 ,40] (having a minimal

“approximation viscosity”) requires in some cases a great number of grid

points in the difference net and, consequently, a voluminous number of

calculations. Some schemes of higher order accuracy can be constructed by

a similar method in which difference approximations are treated as coinpo-

nents of a linear space of indefinite coefficients .

The basic idea of the method is illustrated by the simple wave equation

vt + A v x = O , A = c o nst., x > 0  (25)

discretized in a pattern typical of explicit schemes ccinprising six points

(Fig. 21)

(t~’~~, ~~)(t~, x~_ 2),...,(t
’1, x~~2) , (26)

Linear difference schemes written for the pattern (26) in the following form

= E 
V ,~/1+V = s c~ v~ (27)m ~ m+p i.i=-2 p m+p

when substituted into (25) yield

E (U~~~va) cs” - a

(28)
= 1, a =  Ar/h > 0p -

where coefficients and a1 are excluded.

Any point in the space of the coefficients that remain indeterminate

U 
~~2’ Uo~U2

) (figs. 22a,b) gives rise to a difference scheme of first-

-order accuracy for eq. (25) ; when this point is inclosed by polyhedrons
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A1A3,. .. ,A6 with 0 < a < 1 (fig. 22a) or A2A3A4A6 with 1 < a < 2 (fig . 22b)

it gives rise to difference schemes of positive approximation for which all

coefficients

a’~> 0 . (29)

Points A1 with 0 < a < 1 (scheme [39]) and A2 with 1 < a < 2 correspond to

difference schemes with the least “approximation viscosity” , i .e . ,  with the

smallest value of the coefficient of v~~ in the first differential approxi-

mation of (27) [38] .

Plane B1,..., B9 (fig. 22)

E (p - v a ) 2a~ = a 2 , or a0 = 3(a _ 2 + a 2) + l~~2 (30)

for the pattern (26) constitutes a two-parameter family of difference

schemes of second-order accuracy for the solutions of (25) . In figs. 22a ,b

the boundaries of the region of stable schemes with an approximation order

higher than the first are shown by t icked lines on plane (30) . It is seen

that with 0 < a < 2 this region is not empty . It is shown in [4].] that there

are no difference schemes of the form (27) having a second order approxima-

tion (a higher order accuracy as well, see [38]) which satisfies the con-

straints of eq. (29), i.e., plane (30) does not intersect a closed polyhe-

dron (28), (29).

A straight line C1 C5 being an intersection line of plane (30)

and the plane

E (cx - va) 3 a” ~~~~ 
, (31)p

incorporates a one-parameter family of schemes of third-order accuracy.

With 0 ~ a < 1 the segment C1C6 (fig. 22a) contains stable schemes of

third-order accuracy. Point C1 on the pattern given is the only difference

56



scheme of fourth-order accuracy . The familiar Lax-Wendroff scheme is indi-

cated by point B5 in figs. 22a ,b.

6.2 Construction of Positive-Type Difference Approximations.

Evidently, various kinds of oscillations of nonsmooth solutions that

are observed in familiar difference schemes with an approximation order

higher than the first , and that are not present in schemes of positive type

approximation , are due to the fact that some of the coefficients ct”~ in

difference expressions of the form (27) are negative for schemes of

higher order accuracy. It is natural to suppose that the behavior of a

particular scheme for nonsmooth solutions (the amplitude and character

of oscillations) is determined by the distance of a point (corresponding to

this scheme in the space of indeterminate coefficients) from the

region of difference schemes with positive approximation (from polyhedrons

A~A3.. .A5 (fig . 22 a), A2A3A4A6 (fig. 22b) etc.). From this observation,

it is proposed that the “non-monotonicity” of difference schemes be charac-

terized by the value

y J ct  aA I , (32)

where a{a~} is the set of coefficients in eq. (27) corresponding to the

difference scheme in question (of approximation order higher than the first

situated on plane (30)), and a
A is the set of coefficients in eq. (27)

corresponding to the vertex of the polyhedren prescribed by eqs. (28), (29)

which describe difference schemes of first-order accuracy of positive type

approximation (point A1 in fig. 22a with 0 < a < 1 and point A2 in fig. 22

with 1 < a < 2 etc.). That is, schemes of first-order accuracy should be

constructed on three-point patterns incorporating the point (tI1
~~~, xm) that

is to be calculated and two nodes of the difference molecule along tn which
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just brackets the characteristics dx = Adt (e.g., xm 2 , xm l  of fig. 21) .

For difference schemes for the solution 0± (25) of second-order ac-

curacy, the coefficients a~ are found by a conventional geometric construc-

tion in the a-space (cx = (ct 2,a0,a2}) of the point of intersection with

plane (30) of the normal drawn from point A. With 0 < a < 1 (cL
A 

= {0,l-a,0})

this procedure results in point B6 jr~ fig. 22a, a difference scheme of

second-order accuracy. With 1 < a < 2 such a scheme corresponds to point

B9 in fig. 22b. (aA {a— l, O,0}).

The difference scheme of third-order accuracy with the smallest value

of y which is stable for 0 < a < 1 is found by constructing the point of

intersection of the normal drawn from point aA = {O,l-a,O} with the

straight line ((30), (31)), point C3 in Fig. 22a.

The calculation of the simplest modelling problems reveals that dif-

ference schemes of second and third-order accuracy constructed in this

manner have the shortest amplitude of oscillations with fast damping as

compared to other schemes.

Bearing in mind that eq. (25) is, in essence, an ordinary differential

equation along the characteristic dx = xdt

dv _ 0  d _ a a
, ~~~~~~~~~~~~~~~ ~~~

and, consequently, at point (t
~~~~~

Xm) the exact value is

= v(tm,i) , = xm - At

so that the difference expressions in the right -hand part of (27) are es-

sentially interpolation formulas for calculating v(t~L ,~c) . From this view-

point the right-hand part of eq. (27) for schemes possessing the smallest

value of y may be treat ed as interpolation polynomials of the second and
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third-order for the function v(t”,i); these polynomials differ from a

piecewise-linear interpolation relevant to difference schemes of first-

-order accuracy with positive approximation. A more detailed description

L of the approach in hand including “implicit” difference molecules will be

given in a forthcoming publication .

6.3 Positive-Type Difference Schemes for Model Equations

The construction of difference schemes of sections 6.1 and 6.2 is rea-

lized by a separate compatibility condition along characteri stics dx=x~dt

of a one-dimensionAl system of equations of hyperbolic type

U.~ + AU~ f , A = , (33)

which , in a conventional way, is reduced to canonical form

+ A
~w~U~ = w

~f , i = 1,... ,I . (34)

Here U = h i 1,. . . ,1J~ } is the vector of unknown functions ; f = { f1 , . .  • , f1 
} -

is a vector-column of right-hand parts; A = is a diagonal matrix from

eigenvalues of matrix A; c~ = {w1} is a nonsingular matrix whose lines are

linear-independent eigenvectors w1 of the matrix A.

If matrix A has fixed components and f = 0 , difference schemes (27)

are generalized , in an obvious manner , for the case ~~ system (9)

z D” U’~ ” • D ” = Q 1 A” c~ ,m 
~~~~ ~ m+~ p ii

where A~ = {(a
~
)
~
) are diagonal matrices . The general quasilinear case of

system (33) (A = A(t ,x,v), f = f( t ,x,v)) requires the develojii~nt’of a pro-

per method of integ ration of “ordinary ” different ial equations (34) that takes

into account the dependence of X j ,w~,f upon the unknown solution v and inde-

pendent variables t , x. Different approaches may be used for this purpose .

• One example, int ended for the construction of explicit difference schemes

• using the pattern of type (26) , is the Runge -Kutta method applied in [43]
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and in a number of subsequent papers (see , e.g., [44)).
In [43] for a system expressed in divergence form

+ F~(t ,x ,U) = ~ , (35)

on the pattern (26) a one-parameter family of difference schemes of

third-order accuracy was constructed

= (!JT’ + UT’
~1)/2 - c,t (F~ - F~)/h + at + •~)/2 , (36)

= UT’ - Bt (FT’
~~ - F~ ’~ )/h + (

~
‘
~
‘
~ 

+ •
T’

~~~~)/2  , (37)

= Un 
+ .~~~~

- ~~~~~~ 
F)~~~ 

+ ~~~~~~~~ 
(F~~1- F~, 1 )  

~~~~~2h h (38)
+ t ~~~~~~~~~~~~~~ 

~~~~~
- 2~ 

/1 2h + g (1J~ 2 _(1rn _ 1+6
~~

_ 4
~~+2~~~+2)

a 1 /3 , 8 2/3.

It was also shown ther e that to insure stability of these schemes the
value of the parameter g is subject to the condition :

-1/8 < g < a~ (a~ -4)/24 , a~, = ~ m ax IX~ I /h. (39)
m, 1

According to the analysis carried out in sec. 6.1,2 for linear equations,

it is preferable to choose a matrix

• Gcz , G = {g.1 , ~ = {w.} ,1 (40)
= Ja .~ (5Ia~I - 24)/ 152 , a . = X 1t/~1, i =

instead of a scalar factor in the last term of (38) which is the same for

all chara cteristics . In equation (39) and (40) A
~ 

are the eigenvalues of the

matrix A aF/au , fl is a matrix derived above from the eigenvectors , and G

is a diagonal matrix . The modification just cited of the scheme (36-38 ) for~
a linear case is the scheme discussed in section 6.2 corresponding to the

smallest value of y . We should also Tx te that the last term in (38), modified
in accordance with (40) , is more conveniently written in divergence form
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(ç~
l
~~)fl ~~~~~~~~~~~~~~~~~~ -

(ç~~ (3~) fl 
. 

~~~~~~~~~~~~~~~ 

(41)

On the same pattern of (26) there can be generalized for the case of

quasilinear systems (35) , difference schemes of second-order accuracy which

are “closer ” to schemes with positive approximation , for example , in the form

of a two-step system with a predictor - the Lax scheme with a = 0 .5 in (36)

and a corrector

= (ç~ l~~~) fl 

~~~ -l + ~~~~~~~ 
- 

~~ +1 + U’~~2) -

- (~~l~4~~)fl (
~~-2 + 3U~~1 - 31111 + UT’ 1) 

+ (42)

+ - T(F~ 
- F~~~)/h + +

which is stable providing

a
* = t ~~~~~ I x i I / h < 2 .  (43)

m,i

Here A = { (ct 2).} , A2 = { (a 2) .} are diagonal matrices with elements

(cz 2)
~ 

3(1 - a~)(2 - a~)/l9 , ~
? for l < a . < 2I 1 -

= 
~~-2~i - (1 - a

~
) j

(a _ 2 ) 1 = 3(1 + a~)(2  + a~)/l9 , 1 (44)
for -2 < a. < -1,

(a2). = (cx~~2)
1 

- (1 + a .)  
- 1

(ct 2)
~ 

= 
~~-2~i -3!a .j  (-1 - Ia~II19 for ta X I ~ 1.

it is seen that satisfying the more restrictive condition of a~ < 1,

rather than (43) , the scheme of (36) , (42) , and (44) is conservative. The

last three terms in equation (42) coincide with the familiar Lax-Weixiroff

scheme [42] and can be replaced by other modifications of analogous schemes

[45].



As an example , in fig. 23a , results for t/r  = 52 of numerical solutions,

using the second-order accurate scheme (36), (42), (44) (scheme II) , the

Lax-Wendroff scheme [42], and the MacCormaic scheme [45], are compared with

the exact solution (dashed lines) for a problem concerned with one-dimensional

wave motion in gas resulting from initial conditions: v(0,x) = 0 , p ( 0,x) =

= p(0 ,x) = 2 for x < 0; p(O ,x) = p(0 ,x) with x > 0. In fig. 23b a similar

comparison is given for the scheme (36) - (38) with (a~ = 1) choosing ~~ from

(40) (scheme III) and g1 = a~(c~ - 4)/24 = -1/8 . In the same figure a scheme

of first-order accuracy with positive approximation [46] (scheme I) is com-

pared with the exact solution and schemes of third-order accuracy .

In this problem, as well as in the linear case, one observes the mi -

provement of “oscillation” properties in schemes II , III as compared to

other schemes of second and third-order accuracy. Note that scheme I as

far as its accuracy is concerned is quite comparable with schemes II , III

in the calculation of shock waves; however, it requires a very fine difference

net for calculations through contact discontinuities.

6.4 Applications to Gasdyna inics Problems

Without elaborating here upon the generalization of the difference -

schemes described to multidimensional cases it should only be noted that ,

for schemes of first-order accuracy with positive approximation (27) , (28) ,

the construction procedures are performed rather formally (see, e .g. ,

[39 ,46 ,47)). For difference schemes of higher-order accuracy there also

exist variou s efficient approache s described in detail in scientific publi-

cations.

In the past years systematic investigations have been conducted on the

aerodynamics of bodies of complex geometry, on nt.ur&erical modelling of pro-

blems in plasma physics, and on dynamic problems in the theory of elastici ty
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utilizing some of the difference schemes discussed above. The prominent

• features in such problems are the complex structure of the unknown solution,
• the presence of regions with large gradients, and discontinuous functions.

Stable schemes of first-order accuracy [47] prove to be sufficiently

effective for the numerical solution of problems that involve a com-

paratively small number of discontinuity surfaces; they can be expli-

citly defined fornvlating on them appropriate bourx1ary conditions .

As an example, in fig. 24a are shown the stationa ry bow shock patterns

in the plane of synlmetry of a supersonic three-dimensional inviscid flow of

a thermally nonconducting gas (adiabatic index of k = 1.4) around a spheri-

cally blunted cone of 8
~ 

= 100 half-angle which has a segmentally capped

base (e~ = 35°). The overall length of the body is equal to 5.5 radii of the

spherical nose blunting . The Mach number of the incoming flow was M=2 , with

the angle of attack varied from 0 to 180°. Fig. 24b presents the correspon-

ding pressure distributions along this body. Other problems of three-

-dimensional supersonic flow of a radiat ing gas around blunt bodies , solved

by means of the numerical method of [47) un4er the assumption of thermo-

chemical equilibrium, are described in detail in [48-52].

Solutions to problems containing singularities (discontinuities) within

the integration region are obtained (with acceptable accuracy) without

singling them out explicitly by the introduction of conservative elements

(see, e.g., [38,46]) in the difference scheme of [47]. A number of one- and

t~~-dimensional problems involving the interaction of laser light with

matter are considered by this scheme . As a typical example of this kind

(taken from [4 6]) fig. 25 presents at a time instant t l0 10 sec., appro-

priate to the termination of the impulse, the isochores p/p 0 const . (fig .

25a) and isotherms in Key (the electronic temperature Te - const , solid
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curves , and the ionic plasma temperature Ti const . - dashed curves , fig.

25b) in the interaction of a syninetrical impulse of laser light of energy

E = 300j with a spherical envelope of variable radius . The initial distur-

bances of the envelope are located at its hall-radius and the following

physical processes are taken into account ; the absorption of outer laser

radiation , nonlinear electronic thermal conduction, and electron-ion colli-

sional relaxation. The terms in the energy equations for electronic and

ion components related to thermal conduction and energy exchange between the

components are approximated in an implicit way. The direct application of

the schemes of [47] for the solution of similar problems resulted in a sig-

nificant violation of the integral balance of mass , momentum and energy, so

that the solution in the vicinity of a nonstationary shock wave moving along

a cold back ground is quite unsatisfacto ry.

The last example of the net characteristic methods is shown in Fig. 26 ,

an instantaneous picture of the distribution of components a~~, ~~~ a~~ of

a stress tensor in an elastic layer of finite thickness at the instant

t = t ,, = 0.029 . They are produced by the nonstationary loading , P , on part

c~ the upper boundary of the elastic layer which is supported on a perfectly

plane rigid base . Boundary conditions in this problem are given as follows :

on the portion AB of the upper boundary ,

vy(t~x~l) — - 
~~ -. f~dt [P+2f ~ci~~(t ,x ,l)dx] see the inset of Fig . 26c ,

a~~(t ,x,l) — 0;

on the other portion of the upper boundary,

a~~(t ,x ,l) a~ ,(t ,x ,l) 0,

on the lower boundary, y =  .5 ,

v~(t~x~0.5) — a~ ,(t ,x ,O.5) = 0.

AO is a plane of syninetry and m0, the mass density of the elastic layer , is
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a constant .

In conclusion , the author would like to express his sincere gratitude

• to V.V. Demchenko and I.B . Petrov who were helpful in obtaining the numerical

solutions of some of the problems described .



FERENCES

1. A.A. Derodynitsyn , “On One Method of the Equation Solution of the Laminar
Boundary Layer Equation,” Zh. Priki . Mekhan . i Tekhn . Fiz., Vol. 1, No. 3,
1960 , pp. 111-118.

2. O.M. Belotserkovskii , “A Flow With a Detached Shock Wave Around A Cir-
cular Cylinder ,” lbkl . AN SSSR, Vol . 113, No . 3, 1957 , pp. 509-512 .

3. O.M . Belotserkovskii , “A Flow With a Detached Shock Wave Around a Sym-
metrical Profile ,” Soy. J. Appl. Math ~ Mech .*, Vol . 22 , No . 2 , 1958 ,
pp. 279-296 .

4. O.M. Belotserkovskii, P.I~ Chushkin , “A Numerical Method of Intergral
Relation,” USSR J. Comp. Math ~ Math Phys.** , Vol. 2, No. 5, 1962 ,
pp. 825-858 .

5 . O.M. Belotserkovskii , A. Bulekbayev, V.G. Grudnitskii, “Algorithms for
Schemes of the Method of Integral Relations Applied to the Calculations
of Mixed Gas Flow,” USSR J. Comp. Math ~ Math Phys., Vol. 6, No. 6 , 1966 ,
pp. 162-184 .

6. O.M. Belotserkovskii , “Flow Past Blunt Bodies in Supersonic Flow; Theo-
retical and Experimental Results,” Trudy Vych. Ts. AN SSSR, Computing
Center AN SSSR, Moscow, 1966 (1st edition , 1967 (2nd edition, revised
and extended) , NASA Technical Translation, F-453, 1967.

7. P. 1. Chushkin, “Blunt Bodies of Simple Form in Supersonis Gas Flow,”
Soy. J . Appl . Math ~ Mech., Vol. 24 , No. 5, 1960, pp. 1397-1403 .

8. P.1. Chushkin, “Method of Characteristics for Three-Dimensional Super-
sonic Flow,” Trudy Vych. Ts. AN SSSR, Moscow, 1968 .

9. K.M. Magomedov, A.S. Kholodov , “On the Construction of Difference
Schemes for Equations of Hyperbolic Type Based on Characteristic Coor-
dinates ,” USSR J . Comp. Math ~ Math Phys., Vol. 9, No. 2 , 1969, pp.
158-175.

10. O.M. Belotserkovskii, Numerical Investigation of Modern Problems in
Gas Dynamics, Izd. “Nauka” , Moscow, 1974.

11. F .H . Harlow, “The Particle-in-Cell Computing Method for Fluid Dynamics ,”
Methods in Ccinputational Physics, Vol. 3, Berni Alder, Sidney Fernbach,
~~nuel Rotenberg , eds., Academic Press , N.Y., 1964 .

* Pergamon Press translation of Prikl. Mat. i Mekhan.

** Pergamon Press translation of Zh. Vychisl. Mateni . i Matem. Fiz.

66



12. M. Rich, “A Method for Eulerian Fluid Dynamics, Los Alamos Scientific
Laboratory , New Mexico , LA1~ -2826, 1963 .

13 . C.W. Hirt, “Heuristic Stability Theory for Finite-Difference Equations,”
J. Camp. Phys., Vol. 2 , No. 4 , 1968, pp. 339-355.

14. O.M. Belotserkovskii, Yu. M. Davidov, “The Use of Unsteady Methods of
‘Large Particle’ for Problems of External Aerodynamics,” Preprint

Vych. Ts. AN SSSR , 1970, 85 p.

15. O.M. Belotserkovskii , Yu. 14. Davidov, “A Non-Stationary ‘Coarse Particle’
Method for Gas Dynamical. Computations ,“ USSR J. Comp. Math ~ Math Phys.,
Vol. 11. No. 1, 1971, pp. 242-271.

16. V.A. Gushchin, V.V. Shchennikov, “On One Numerical Method of the Solu-
tion of the Navier-Stokes Equation,” USSR J. Camp . Math ~ Math Phys.,
Vol. 14, No. 2 , 1974, pp. 242-250.

17. O.M. Belotserkovskii, V.A. Gushchin, V.V. Shchennikov, “Method of
Splitting Applied to the Solution of Problems of Viscous Incompressible
Fluid Dynamics,” USSR J. Comp. Math ~ Math Phys., Vol. 15, No. 1, 1975,pp. 190-200.

18. O.M. Belotserkovskii , L.I. Severinov, “The Conservative ‘Flow’ Method
and the Calculation of the Plow of a Viscous Heat-Conducting Gas Past
a Body of Finite Size ,” USSR J. Coinp. Math ~ Math Phys., Vol . 13 ,
No. 2 , 1973, pp. 141-156.

19. O.M. Belotserkovskii, E.G. Shifrin, “Transonic Flow Behind a Detached
Shock-Wave,” USSR J. Camp. Math ~ Math Phys., Vol. 9, No. 4 , 1969,
pp. 230-260 .

20. O M .  Belotserkovskj i , Y~. M. I~vidov, “Camputation of Transonic ‘Super-
critical ’ Flows by the ‘(~~rs~ Particle’ Method ,” USSR J. Camp . Math ~Math Phys., Vol. 13, No. 1, i.”~ , pp. 187-216 .

21. V.E. Yanitsky, “Use of Poisson’s Stoc~ fic Process to Calculate the
Collision Relaxation of Non-Equilibrium Gas ,” USSR J . Comp. Math ~Math Phys., Vol. 13, No. 2 , 1973, pp. 310-317.

22. V.E. Yanitsky, “Application of Random Motion Processes for Modelling
Free Molecular Gas Motion,” USSR J .  Camp. Math ~ Math Phys., Vol. 14,
No. 1, 1974 , pp. 264-267 .

23. O.M. Belotserkovskii , V.E. Yanitsky, “Statistical ‘Particle-in Cell’
Method for the Solution of the Problem of Rarefied Gas Dynamics,”
USSR J. Comp. Math ~ Math Phys., Vol . 15 , No. 5 , 1975 , pp. 101-114
(part I) and No. 6, 1975 , pp. 184-198 (part I I ) .

24. N.N. Yanenko, Y.I. Shokin, “On the First Differential Approximation of
Difference Schemes for Hyperbolic Sets of Equations ,” Sibirskii Mat .
Zh., Vol . 10, No . 5, 1969 , pp. 1173-1187.

67



25. R.A. Gentry , R.E. Martin, J. I~ly, “An Eulerian Differencing Method for
Unsteady Compressible Flow Problems,” J. Camp. Phys., Vol. 1, 1966,
pp. 87-118.

26 . G.P. Wood and P.B. Gooderun , “Investigation with an Interferometer of
the Flow Around a Circular-Arc Airfoil at Mach Numbers Between 0.6 and
0.9” , Natl. Advisory Comm. Aeron. (MACA) Tech. Note No. 2801, U.S.
Govt. Printing Office, Washington, D.C., October 1952.

27. A.A. Amsden, F.H. Harlow, “The ~4AC Method,” Los Alamos Scientific
Laboratories, New Mexico, Rept. LA-4370, 1970.

28 . C.R. Easton , “}bmogeneous Boundary Conditions for Pressure in W~C Method,”J. Ccinp . Phys. Vol . 9 , No. 2 , 1972, pp. 375-379 .

29 . V.V. Gushchin , V.V. Shchennikov, “Solution of Problems of Viscous In-
compressible Fluid Dynamics by the Method of Splitt ing,” Sb. Vych. Mat .
i Mat . Fiz.,  No. 2 , 1974 .

30. A.V. Babalcov, O.M. Belotserkovskii, L.I. Severinov, “Numerical Investi-
gation of a Viscous Heat -Conducting Gas Flow Past a Blunt Body of Finite
Size ,” Izv . Ak. Nauk SSSR , Mech . j idkosti i gaza , No. 3 , 1975 , pp.
112-123.

31. O.M. Belotserkovskii , “Calculation of the Flow Around Axial ly Symmetric
Bodies with a Detached Shock Wave ,” Preprint Camp. Center Ak . Nauk SSSR,
1961.

32. G.A. Bird, “The Velocity Distribution Function Within a Shock Wave ,”
J. Fluid Mech., Vol. 30, Pt. 3, 1967, pp. 479-487.

33. G A .  Bird, “Direct Siimilation and the Boltzmann Equation,” Phys. Fluid,
Vol. 13, No. 11, 1970, pp. 2677-2681.

34. M. Kats , Probability and Related Topics in Physical Sciences, Izd. “Mir”,
Moscow, l~6L

35. F.G. Cherem.isin, “Numerical Solution of the Boltzmann Kinetic Equation
for One-Dimensional Stationary Gas Motion,” USSR J. Camp. Math ~ Math
Phys., Vol . 10, No. 3, 1970, pp. 125-137 .

36. V.A. Rikov, “On Averaging the Boltzmann Kinetic Equation with Respect to
a Transverse Velocity for the Case of One-Dimensional Gas Motion,” Izv .
Ak. Nauk SSSR, Mech. j idicosti i gaza , No. 4 , 1969 , pp. 120-127 .

37. K.O. Fridrichs, “Symmetric Hyperbolic Linear Differential Equations ,”
Conin . Pure and Appl. Math , Vol . 7 , No. 2 , 1954 , pp. 345-392.

38. A.S. Kholodov, ‘Th the Construction of Difference Schemes of Positive
Approximation for Equations of Hyperbolic Type,” Zh. Vych. Mat i Mat
Fiz., Vol. 18, No. 6, 1978, pp. 1476-1492.

I

68 

-

~~~~~~~~~~~ 

- 

.



39. R. Courant, E. Isacson, M. Rees, “On the Solution of Nonlinear Hyperbolic
Differential Equations by Finite Differences,” Comm. Pure and Appl. Math.,
Vol. 5, No. 5, 1952 , pp. 243-254 .

40. H .B. Keller, B. Wendroff, “On the Formulation and Analysis of Numerical
Methods for Time Dependent Transport Equations,” Comm. Pure and Appi.
Math , Vol . 10, No. 4 , 1957 , pp. 567-582 .

41. S.K. Godunov, “Difference Methods of Numerical Calculation of Discon-
tinuous Solutions of Equations of Hydrodynamics ,” Matein . Sbornik,
Vol . 47 , No. 3, 1959, pp. 271-306 .

42. P.D. Lax , B. Wendroff , “Systems of Conservation Laws ,” Corn. Pure and
Appi . Math., Vol. 13, No. 2 , 1960 , pp. 217-237 .

43. V.V. Rusanov , “Difference Schemes of Third Order Accuracy for a Swept
Through Calculation of Discontinuous Solutions,” Doki. AN SSSR, Vol.
180, No. 6 , 1968 , pp. 1303-1305.

44. V.B. Balakin, ‘~Methods of the Runge-Kutta Type for Gas Dynamics ,” USSR
J. Comp. Math ~ Math Phys., Vol . 10, No. 6 , 1970 , pp. 208-216.

45. R.W. MacCorinack, “The Effect of Viscosity in Hypervelocity Impact Cra-
tering,” AIAA Paper No. 69-354 , Cincinnati, Ohio, 1969.

46. O.M. Belotserkovskij, V.V. Demchenico, V. 1. Kosarev, A.S. Kholodov,
“Numerical Modelling of Certain Problems of Laser Imploded Envelopes,”
Zh. Vych. Mat . i Mat . Fiz., Vol. 18, No. 2 , 1978 , pp. 420-444 .

47. K.M. Magomedov, AS. Kholodov, “The Construction of Difference Schemes
for Hyperbolic Equations,” USSR J. Comp, Math ~ Math Phys., Vol. 9,No. 2, 1969, pp. 158-175.

48 . O.M. Belotserkovskii, ed., Numerical Investigation of Modern Gas
Dynamics Problems, M. “Nauka”, 1974 .

49 . O.M. Belotserkovskii , S.D. Osetrova , V.N. Fomin, A.S. 1(holodov , “Hyper-
sonic Flow of a Radiation Gas Over Blunt Bodies,” USSR J. Camp . Math ~Math Phys., Vol . 14 , No. 4 , 1974 , pp. 168-179 .

50. V S .  Kostrykin , V.N. Fomin, A S .  Kholodov, “Three-Dimensional Radiating
Flow Around Blunted Cones and Ellipsoids of Revolution,” USSR J. Camp .
Math ~ Math Phys., Vol. 16, No. 2, 1976, pp. 166-174.

51. A.V. Krasilinikov , A.N. Nikulin, AS. Kholodov, “Numerical Solution of
the Problem of a Stream Impacting Against an obstacle,” Izv. Ak. Nauk
SSSR Mekh . zhidk . i gaza , No. 5, 1975, pp. 179-181 .

52. O.M. Belotserkovskii, L.I. Thrchaic, A.S. Kholodov, “Longitudinal Oscil-
lation of Bodies of Revolution in Supersonic Flow ,” Izv. Ak. Nauk SSSR,
Mekh . zhidk . i gaza , No. 5 , 1975, pp. 110-115.

69



(fi)

M0.~~
7 /

I I
11 (6)

(2) 
a7 7

_______ a is

(s;~

~~ ) 

(•)

Fig . 1 Lines of constant Mach number (isotachs) in transonic flow past a
two-dimension 24 per cent circular arc profile ; critical Mach
number , M *  = 0.65.
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Fig. 2 Isotachs in transonic flow past a 24 per cent axisynm~ tric body (gen-
erated by revolution of a circular arc profile) ; critical Mach number ,
M *  = 0.86.

71 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_



[fi t
I

~~~~~~~~~~~ 
,:~::~~~ ~ ~‘/ I 1,’ ~~~~~~~~~I I ~~V~~~~~~/ V W~i*1~~ . ,~~~~~

~. ~~~~~~~~~~~~~

—~~~ I :
‘.0 

~ I . i i
I I~~ x’

I~~~~~~~~ X
8
~~ _ _

~~~~~~~ ~~ 
— -  t i  i

‘. -I ~ ~ j j  j
___________________ c 

.

~~‘.(
~
(..( ,

~~~~~~

I ,

~

72 

~~- — -
~~~~ 



,,~,_ fr~4~~ -

~~~~~ ~~::::_—
_ _ _ _  

U—

~~~~~~~~~~~~~~~~

elI,,..

— — .  
:- ,____ 

/I~~~~
v;.. 

..- 
0•~ 0 0 00  
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Fig. 6 Supersonic flow patterns aroun•~ a sphere.
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Fig. 7 (a) Isotachs in supersonic channel flow (b) Vorticity contours in supersonic flow
past a central body. past a sphere confined in a tube .
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Fig. 8 Evolut ion of the near-base flow behind an axisymetric cylinder with diinen-
sionless time , n.
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Fig. 9 Steady-state streamlines in viscous incompressible flow past a circular cylinder.
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Fi g. 10 Instantane ous stream l ine patterns in viscous incompressible flow past a circularcylinder with Reynold’ s nunber 1000.
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Fig. 11 Instantaneous profiles of the axial velocity component in t~~ cross-Sections
of incompres sible viscous flow past a cube .
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Fig. 15 Density variation across the shock layer , 30 from the stagnation point of
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Fig. 21 Trace of the characteristic relativ e to the
nodes of the discretiz ation net.
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Fig. 22 I~~nains of the difference *lecules in the space of indete rminate coefficionts.
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Fig. 23. Results of various difference schenes for one-dimensional wave wtion in a
perfect gas C- - - - exact solution ) .
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