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THE GEORGE WASHINGTON UNIVERSITY
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Program in Logistics

TRANSIENT SOLUTIONS FOR REPATRABLE ITEM PROVISTIONING

by

Zeev Barzily
Donald Gross

1. Introduction

It is desired to find the level of spares inventory (y) and number
of repair channels (c) to support an operating population of M items.
An operating item may randomly fail and require repair. Both the time to
failure and the repair time of any item are independently distributed ex-
ponential random variables with parameters A and u , respectively.

All items are identical and independent.

Generally one is interested in knowing how many spares and repair
channels (or repairmen) are required in order to support the system at a
certain level measured in terms such as the probability that the popula-
tion is operating at full strength or the probability that a certain per-
centage of the population is operational or the probability that the

spares pool is not empty upon a request for a spare.

The classical finite source queueing theory (also known as the
machine repair problems) can be used to provide the steady state distri-
bution of the number of units in and awaiting repair which is required

to calculate the service level measures. Further, using the costs of
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spares and repair channels, a procedure can be developed to find the op~-
timal combination of spares and repair channels to meet a specified level

of service (see Reference [6]).

In many cases, the provisioning for spares and repair capacities
must be planned in advance. Also, in many new systems, operating units
are added over an initial period until the population reaches its full
strength. An example of this is a gas turbine engine fleet which is to
build to a full strength of 256 ships, starting with an initial fleet
size of 5 the first year and adding ships over an ll-year period. When
the population size changes, especially if new units have different mean
times to failure or mean repair times (which is likely due to technologi-
cal growth and learning), transient effects might be significant. In Ref-
erence [6], it was assumed that the population reached instantaneous steady
state every year at new population values. We concentrate here on methods
of analyzing transient effects so that situations can be noted for which
steady state assumptions may be in doubt as well as those for which
steady state assumptions may be adequate.

2. Calculation 6f Transient Probabilities

The state of the system is defined by the number of items in and
awaiting repair, which can vary between zero and Mty . Letting pij(t)

represent the probability of the system being in gstate j at time t given
that it started in state i (0 < i,j, < M4y) , ﬂi(t) be the unconditional

probability of the system being in state i at time t, P(t) = {pij(t)}
be the (Mty+l) X (Mty+l) matrix of transition probabilities pij(t) .
m(t) be the My+l component vector whose elements are the wi(t) , and
m(0) be the initial probability vector whose components "1(0) are the
probabilities that the system starts in state i, we have

m(t) = w(0)P(t) . (1)
Denoting the steady state probability vector by 7 ,

m = 1im 7(t) . (2)

t-o0

-'J =
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It is not necessary to obtain w(t) if only 7 is of interest since

this can be determined directly by steady state finite source queueing
results (for example, see [5], pp. 118-125). However, to assess transi-
ent effects, it 78 necessary to calculate m(t) ; in fact, it is of inter-

est to compare T(t) to T to observe the speed of convergence to steady
state.

Solving for mw(t) requires solving a set of Mty+l differential
equations in Mty unknowns. Obtaining analytical solutions is extremely
difficult and in most cases impossible unless Mty 1is very small. How-
ever, a variety of procedures are available which can yield numerical so-
lutions to the differential equations. Reference [4] compares several
of these numerical procedures and concludes that the so-called randomi-
zation procedure has some advantages. This procedure is presented (al-

though not under that name) in Reference [3] on page 46.

For the purposes of study in this paper, the randomization pro-
cedure appears useful, although if solutions for mw(t) are desired for
a large number of t values, the Runge-XKutta method may be more efficient.
The randomization procedure will yield P(t) , from which w(t) can be
calculated using Equation (1). The calculation procedure is as follows.
Let Q dencte the intensity matrix (infinitesimal generator) of the
Markov chain of this birth-deaﬁh system, that is

-Ao Ao 0 s 0
1Y -Al-ul Xl 0" e 0
0 u, -Az-uz Az S 0 A
o LN

:
{

o




(0<1i<y)

(y 21 < y)

The birth-death differential equations then can be written

0 » (12 yH)
E 1y s OX1xo)
E M, = .
E i . cu sa (1 2c)
[

™ (t) = w(t)Q , (3)

B PRSP

PSS

where 7'(t) is the vector whose components are wi(t) = dﬂi(t)/dt .

IO

The randomization procedure gives a method of calculating P(t) using 3
Q . Denoting the i,jth element of Q by qij , define a scalar a as ’

T

é a = max qii .

Let B be another scalar such that

:
g2a. 3

Then, form a matrix P with element pij as %

S T

where I 1is an (Miy+l) x (Méy+l) didentity matrix. It can be shown
that the elements of P(t) can be obtained by

L S CY

pij(t) = al Piy (4)

n=0

where pig) is the (i,j)th element of the matrix P(n) and P(n) is the

matrix P raised to the power n . Thus the computations are not simple
since they involve raising the matrix P to the nth power for n=0,1,2,... .

Obviously, the numerical procedure must truncate n at some appropriate

value and our criterion was to truncate n at a number N » such that
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N
pij(t) - pii(t)

2 %a
pfj(t)
where

N
N -Bt ﬁ (n)
pij (t) - e nzo ol 1j .

We are fortunate here in being able to guarantee this since

) = Bt 7 (BO"

Sy e FF 3 LN

P :
1j Sb T

n=0

Now

© © n N n
o Bt ) B0 () _ o Bt g SRR _ Bt [eBt_ y (itzz

P
n=N+1 n 13 n=N+1 n! n=0

RRL S Bt z (Bt)

n=0

Thus

By b g 2 ®"

n=0 e

Hence we can choose the smallest N such that the absolute error

140§ ot

y e (5)

n=0

Because some of the pij(t) may be very small, a somewhat better criter-

ion might be to choose N such that

1 - -Bt z (Bt)

n'
< n=0 & (6)
e-Bt ) SBtZ (n)
As0 n! 1j

that is, the percentage error is less than or equal to € . This is
somewhat more complex to calculate however.

I e e
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This procedure was programmed on an IBM 370/148. Analytical solu-
tions are obtainable for the special case M=y = ¢ =1 for which there
are only three states (i=0,1,2). The three differential equations in
three unknowns given by Equation (3) can be solved using Laplace trans-
forms (see Reference [1]). The numerical procedure was checked against
the analytical solution for the special case and found to be quite accu-
rate. Table I shows the comparison using criteria from Inequality (5);

that is, the absolute error criterion with € = 10-3, and 1078 . We see

TABLE I

COMPARISON OF NUMERICAL AND ANALYTICAL SOLUTIONS
M=y=c¢c=1; A=0.5 u=1.0

3

Anal. (Analytical); Num. (Numerical); Num®: ¢ = 10 °, e P B

t poo(t) pm(t) poz(t)
Ana:. 0
Num
Num
Anal. 5 .7265 .2227 .0508
Num® .7260 .2224 .0506
pr .7266 .2226 .0508
Anal. 3 .6010 .2768 1222
Num® .6003 .2767 1222
Anal. 5 .5775 .2839 .1386
Num® .5770 .2837 .1385
Anal. o .5715 .2857 .1428
Num® .5710 .2854 1427

2Running time to generate four 3x3 P(t)
matrices (t=1,3,5,10): 15.78 sec.

b

Running time to generate one 3%x3 P(t)
matrix (t=1): 3 min.

—
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that the numerical procedure, with € = 10_3 , is always exact to the

second decimal place and in most cas¢s to the third. While lowering €

to 10.6 helps somewhat on the accuracy (see the t=1 case in Table I),

the added expense in running time becomes enormous and hence it was felt

that 10-3 was satisfactory.

3. Results

Figure 1 shows the results of a case where M =10, y = 4, ¢c = 2,

A= .15, u=1.0 . The measure of system service used is the probability
that the entire population is operational. Denoting this by A(t) , we
have

y

A(t) = ) m () .

i=0
Two cases are shown, one in which the initial conditions had all machines
"up," that is, no machines in or awaiting repair, one machine operating,
and one in the spares pool [7(0)=(1,0,0)], and the other where both ma-
chines were "down,'" that is, one in repair and the other in the repair
queue [m(0)=(0,0,1)]. We can see that in the first case steady state is
approached rather quickly while in the second the approach is consider-

ably slower.

There are two factors influencing the speed to steady state. One
is the initial conditions, that is, how far the system is from steady
state initially, and the other is the speed at which the transient terms
(terms depending on t) of the full solution to the differential equations
damp out. In some cases it is known what the initial conditions are or
are likely to be, but in many cases information about the initial state
of the system may not be available or reliable. In order to divorce the
effect of the initial conditions from how quickly the transient terms
damp out, we decided to look at the P(t) matrix itself. We became in-
terested in two facets of the P(t) matrix. First, we wished to obtain

information about the behavior of the pij(t) as t increases and second,

we wished to determine for a given t how "far" P(t) was from its steady

state value P(®) , where

- -
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ﬂo ﬂl ses “M"'y
“0 '"'1 ces ﬂmy
P(») = s
“0 “1 ® 00 “M

that is, a matrix in which all rows are the steady-state probability
vector T . This necessitated the development and study of single value
measures for the "distance" between P(t) and P(«) .

Ser

3.1 Behavior of pij(t)

We know P(0) is an (Mty+l) X (Miy+l) identity matrix and P(«)
is the (Mty+l) x (Mty+l) matrix with all rows equal to the vector T .
We are interested in what happens in between. For the case M = 10 ,
y=4,¢c=2,)A=.05, u=1.0, we piotted the first four probabili-
ties of row three of the matrices P(t) , t=0,1,3,5,10 and » ; that is,
we plotted pzo(t) = pzl(t) 5 pzz(t) , and p23(t) for the above values

of t (see Figure 2).

It can be seen that not all of the pij(t)'s approach their stéady
state value monotonically. The diagonal element pzz(t) and the first
elemernt Py do, p22(t) from above and p20(t) from below. But the .
other elements, p21(t) and p23(t) , start at zero, overshoot their
steady state values, and then appear to monotonically decrease toward

them. We will show that pii(t) will always approach “i from above

and, although it has not been proven, we conjecture that if p,, (t,) >
- iy [nRa [

"j , then pij(t) > "j for all t 2t that is, pij(t) , i#j , starts
at zero, overshoots "1 at most once, and then approaches ﬂj from

above.

The above conjecture can be argued by the following physical anal-
ogy. Consider a row of the P(t) matrix as a bar of water. At t=0 , a
sugar cube is dropped in at the diagonal (i,i) position. As time passes,

-G w
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the sugar is dispersed along the row until it reaches its steady-state 1
concentration "1 (i=0,1,2,...,M+y) . Note that at 1i,i the sugar

gradually flows away from its initial concentration (of 1) to its final

i concentration mo. At either end, sugar gradually flows in until it builds
up to the steady state concentrations T, and T . All other states 7

0 Mty

start at zero, receive sugar from the diagonal element, some of which will

—

eventually flow past to other states and some of which will remain, causing

A S ok g

the overshoot prior to settling down to its éteady-state concentration.

3 It is possible that other states near to the "end" of the row may not

overshoot depending on the rates of sugar flow in versus sugar flow out.

T

We expect the greatest overshoots to be in the states near the diagonal
element.

We next looked at the behavior of the Pij(t) as a function of j
for fixed t . That is, it was of interest to observ. which pij(t) were ®

larger than their steady state values, “1 , and which were smaller, for a

given value of t . In all cases run, we observed one of three situations

as shown in Figure 3. It can be seen that the pij(t)'s which overestimate

their m,'s appear together in a "clump." If this were always true, there

‘ 3
%i, could be significant savings in the computational effort required for ob-

taining the distance measures (IP(w)-P(t)I) discussed in the next section.

We have proved that this clumping will always be the case as well as its

relative position in the row in the lemma and theorems presented below.

} Lemma: Let Ni(t) = the number of customers in and awaiting re-

] pair at time t given i in and awaiting repair at time 0. Then

FQ Pr(N,, (0) <k) < Pr(N(0) < k) Pr(N,, (6) < k1) .
1
Proof: Let
N
5. ; T, = minfu: N (u) = Niyg(w , 0 <ugw},
J é It is obvious that

- 31 -
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Pigure 3.--Behavior of pij(t) versus j , t fixed.
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Pr[N (t)=k | T.<e] = PN (0)=k | T.%] ,  k=0,1,2,..., (7)

PrN, (£)<k | T, >t]

v

Pr[N, ,(O<k | T.>t] . (8)
Combining (7), (8), and the fact that Pr(ti>t) >0 vyields
Pr(N (t) <k) 2 Pr(N . (t) < k. 9)

Now we dendte by Ai(t) the number of arrivals in [0,t] and by Si(t)

the number of service completions in the same time interval, given i in

system at t=0 . Since A 2 A and for all j >0 , then

3

Pr(A (t) - s,() <k) < Pr(Ag,, () - 8, ., (t) <k), for any k.

341 5 < ¥jn

The proof is now complete since

Nj(t) = j+ Aj(t) -8

From (9) we obtain that

j(t) 5

Poolt) 2 Pgft) 2 pyp(t) 2 ...,

and as
MEY
m, = m.p,.(t) ,
0 1=0 i“10
then

Poolt) 2 T -

The next theorem extends this result for all pii(t) s

Theorem 1: (t) >m, v 1 and t.

Pii 1
Proof': We compare our system to a Markovian queueing system
with only two states, 0 and 1. Denote the rate out of state O by Vv and
the rate out of state 1 by n . Let ro i(t) be the transient probability
£

of being in state i (i=0,1) at t given that the system started in state 0.

The steady state probabilities of the two-state system depend on the ratio
v/n . We choose v/n such that

- '{S -
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1lim roo(t) = "i 2

t-0
It is well known that roo(t) 2 “1 for any v, n, and t ; hence the
required result is obtained if n and Vv can be chosen to yield

Since roo(O) = pii(O) = 1 , then Equation (10) is satisfied if

2la(t) < b (1) (1)
at any point t where
Too(t) = py, (E) © (12)

To determine the conditions under which Inequality (11) holds, we write

Pi;(t) = Py (€) - pi (=) = -(Ai+ui)(pii(t)-ﬂi)

FAyalPy g1 (O )+ u Py g (BT )

(13)
and

roo(t) = roo(t) - tgp() = -(v+n)(roo(t)-wi) ; (14)

Using Equation (12) in (13) and then comparing (13) to (14) yields that
Inequality (11) holds iff

SO [Py (T ) + Xy 1Py g (=T 1)+ My [Py 3 (DT )

il Py (B) = my

(15)
The RHS of (15) is clearly bounded since the matrix P(t) can be ex-
pressed as
C,t C,t t
P(t) = 1lim P(t) + B.e 2 3 Swy

2e + B.e e O A BM¥Ye ’

too

where Ci < 0 1is the ith eigenvalue of the infinitesimal generator

matrix Q and B is a (M#+Y+l) x (M4Y+l) matrix that has finite

i
elements (see, for example, [2], pp. 364-368). Thus we conclude that Vv

- 14 -
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and N can be chosen big enough so that (11) is satisfied at any point
at which (12) is satisfied, and the proof is now complete.

Theorem 2: For any i and t there exists a jz(i,t) and a jr(i,t) -

Jo(i,e) <1< jr(i,t) , such that

pij(t) - nj >0, 5 1 il jz(i,t) or j = jr(i’t)
pij(t) s "j ; 0 ’ if jz(i,t) <j < jr(i’t)
and
pij(t) - "j £00 4 otherwise.
Proof': Denote
K(i,t) = {k: pik(t) = nk} .

At t=0 we have pii(O) =1 and pij(O) =0 , i#j ; hence the required

conditions are satisfied. To complete the préof we have to show that for

any k € K(i,t) we have

pik(t) 20, 1f k<3,(i,6)-1 or k> i (1,0)+1
p’ik(.t) >0, if jz(i,t) <k < jr(i,t) =

To show that the above conditions hold, we write

Py (0) = pik(t) =Pl =
_)\k(pik(t)-wk) + ukﬂ(pi’kﬂ(t)_ﬂkﬂ) . k0
' MHY-1 >
“ Oy (P (O-m ) + A [Py 4y O-Meg) + Wegg [Py 4 (O-Te) 5 5 0
WPy (O-m ) + A (e (O)-m ) , k=MY
(16)
If k <jy(i,£)-1 or k >j (i,t)+1 , then p, , ,(t) - T , <0 and

pi,k+1(t) - My S0 thus pp(t) <0 . If jo(i,t) <k <j(i,¢),

- - . '
then pi,k_l(t) M1 2 0 and pi’k_,_l(t) Mgy 2 0 5 thus pik(t) 20.

- 15 =
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3.2 Measures of the distance between
P(t) and P(»)

We now turn our interest to gaining information concerning how
far from steady state the system is at a given time. We desire some
measure of the distance between two matrices P(t) and P(x) ; that is,

a measure of |P(t) - P(x)] .

Consider the following example for P(tl) : P(tz) , and P(®)

8.2 0 Phes TN .2
P(tl) = ke 0 0300 Sl P(tz) - g2 e e Y,
.6 .4 ‘1 .5 .a
.2 o3 .3
P =[.2 .5 .3]). j
o 8 ?
It is clear that lP(tz) - P(w)| < |P(t1) - P(w)| . We desire to de- J

velop scalar measures to reflect this situation.

Two measures that appear reasonable are the following:

Ml(t) = Ml(t)/HI(O) >

where
B e i
and :
M,y(£) = M)(£)/M,(0) ,
where
Mty My
M, (t) = g3 Ipij(t) - 'njl ‘ (18)

i=0 j=0
Both measures are normalized to vary between 0 and 1 [ﬂi(O) B [0
Ml(W) = 0]. The second is merely the sum of all the absolute differ-

ences between the corresponding elements of P(t) and P(x) . The
first is a weighted sum of the corresponding element absolute differ-
ences, the weights being the steady state probabilities; that is,

- 16 =




s e et A e 3 e AR S SRS

T-390

errors in the state probabilities which are seldom visited in steady
state are "discounted."

A well-known mathematical definition of the distance between two
matrices is thc¢ norm of the matrix formed by subtracting corresponding
elements, denoted by ||P(t) - P(»)|| . Matrix norms must obey certain
properties (see Reference (7], page 59), which are given below.

(1) ||P{t) -~ P(=)|| 20 and ||P(t) ~ P(=) || =0,
iff P(t) - P(») =0 ;

(2) [la[p(t) = B(=)]][| = |a] « [[P(t) - P(=) ][] ;
(3 [[[B(t)) - P(=)] + [P(e,) - P(=)]]] < [1eCe)) - B || +
[e(e,) - @] 5

- (4) IIFP(tl) = P()] - [B(t,) - P(®)]]]| < IIP(tl) - P@) || -

|1BCe,) - 2]
We have not been able to show that ﬁi and ‘ﬁé obey all the above
properties, although we believe that they do. However, variations of

Ml and ﬁé which do obey all properties are (see Reference [7],

page 61):
M3(t) = M3(t)/M3(0)
where
M,(t) Mfy lp, . (t) | (19)
t) = T, max |p,,(t) -
3 jey L P ij j
and L
M, (t) = M, ()/M, (0)
where
M, (t) = ) max Ipij(t) - njl . (20)

Once again, 'ﬁs uses the "i to weight the maximum row deviations,

while .ﬁk is based on the unweighted maximum column deviations. We

have run many cases to observe the behavior of the proposed measures.
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We chose situations for which My equaled five 30 that we could view
the entire 6%6 P(t) matrix and compare it with the 66 P(®) matrix.

The cases run are shown in Table II, with the results shown in Table III.

TABLE II

6x6 CASES RUN

Case M y ¢ A u "p" = MA/cu
1 5 . o2 0.5 0.6
2 FianZn 2 el 1.0 0.6
3 Fre200 2 .6 1.5 0.6
4 o 2 .8 2.0 0.6
5 £ Ly e .2 1.0 0.3
6 320D .6 1.0 0.9
7 S R iy .8 1.0 1.2
8 S Sl el o2 0.33 0.9
9 32 2 .2 0.25 1.2

10 o SRR 1 o2 1.0 0.6
11 (/A R | .15 1.0 0.6
12 (e | 2 wlDie =085 9.6

Before comparing the four measures numerically, we would like

to present two properties that may help in judging the measures.

MY i,
Property 1: ) lpij(t) - 1rj| = 2 ) (pij(t) - ) -
3=0 §=34(1,1)
This follows from Theorem 2, which yields
M+Y Jp(di,t)
I lp,(®) =m | = Y e =T )+ I (m -, (D)
PR R e ey i R
+ ) (m, - Pij(t),;

1 (1,0

- 18 =
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TABLE III
RESULTS OF 6x6 CASES RUN
Case A(») Measures t=0 t=1 t=3 t=5 t=10
1 .820 'ﬁl 1.000 .376 .143 .066 .010
iiz 1.000 .505 .232 .115 .019
33 1.000 .319 .103 .046 .007
1’44 1.000 .366 ,178 .092 .016
2 .820 iil 1.000 .216 .046 .010 .001
iz 1.000 .335 .08~ .019 .001
i3 1.000 .170 .031 .007 .000
'i‘ 1.000 .246 .066 .016 .000
3 .820 'ﬁl 1.000 .142 .015 .002 .001
iz 1.000 .232 .027 .003 .000
i3 1.000 .103 .010 .001 .000
i,. 1.000 .178 .023 .003 .000
4 .820 ’_‘1 1.000 .097 .005 .001 .00l
iz 1.000 .164 .009 .001 .001
§3 1.000 .068 .003 .000 .000
ia 1.000 .129 .008 .000 .000
5 .96% il 1.000 .266 .039 .007 .001
iz 1.000 .464 .110 .025 .001
i3 1.000 .262 .039 .007 .001
i4 1.000 .325 .092 .022 .000
6  .630 M 1.000 .221 .043 .009 .001
'ﬁz 1.000 .275 .056 .Cl2 .001
i3 1.000 .120 .020 .004 .000
ﬁz. 1.000 .099 .040 .009 .000

Sl Al i o o s i
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TABLE III--continued

Case A(®) Measures t=0 t=1 t=3 t=5 t=10
7 462 il 1.000 .198 .033 .006 .000
M, 1.000 .237 .041 .007 .000
M, 1.000 .103 .016 .003 .000
i,. 1.000 .164 .023 .004 .000
8 624 M 1.000 .445 .223 .123 .034
M, 1.000 .515 .276 .159 .044
M, 1.000 .371 .120 .062 .016
M, 1.000 .417 .199 .111 .031
9 .462 El 1.000 .478 .258 .154 .052
M, 1.000 .536 .30% .186 .063
M, 1.000 .416 .145 .077 .025
; M, 1.000 .457 .215 .125 .037
10 .860 ﬁl 1.000 .371 .155 .076 .013
M, 1.000 .522 .268 .141 .026
M, 1.000 .332 .128 .061 .011
M, 1.000 .384 .205 .114 .022
4 11 .735 'ﬁl 1.000 .349 .121 .053 .007
| M, 1.000 .535 .26 .127 .019
' M, 1.000 .319 .105 .044  .006
M, 1.000 .400 .211 .111 .017
12 .636 Ell 1.000 .359 .114 .048 .006 4
M, 1.000 .521 .227 .106 .0l4
M, 1.000 .315 .092 .036 .004 j
M, 1.000 .376 .186 .092 .013

B T R
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and as
l= Z p,.(t) = z T, »
j ij j ]
then
Loty =m.| » 2 (pe.(8) - m ) .
gm0 H : g e M ?

Property 1 suggests that Ei(t) and ﬁ}(t) may in general re-

quire less computation, since only part of the matrir P(t) has to be
calculated. Further, while all numerical work indfcated that jz(i,t)

and jr(i,t) do not decrease as i increases (that is, the "clump,"
pij(t) - ﬂj 2 9 , moves to the right as we go down rows of the P(t)

matrix), we have not been able to prove this.

Property 2: The measures Ml(t) . Mz(t) , and "4(‘) decrease
monotonically in t.

—

To show that Ml(t) and ‘ﬁi(t) are monotone, we use Expression

(16) to obtain for jz(i,t) # 0 and jr(i,t) # MY that

S A s
dt Pys() =7 " P oAVt =, »
€ 3m34(1,0) s 3 iz<1-t)‘1( 1,§,(1,¢)-1 §y(1,0) 1)

“jz<1,c>(P1,32<1,c)(t’ ; “jzci,:>)
J‘er,t)("i,jr(i,c)(" 3 "jr(i,t))

“j,(i.c)+1(p1,jr<1,c>+1‘t’ 7 "jr(i,t)+1) '

(21)
Expression (21) yields the monotone convergence sincze all four terms of

the RHS are nonpositive. The results for the cases jQ(i,t) =0 and

jr(i,t) = MY can be obtained in a similar way.

——

T T 1 Y
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We wow show that ‘ﬁg(t) is monotone. First we notice that

i

maxlpij(t)unjl = max {mix{pij(t)} - "j 3 -(min{pij(t)} - nj)} >

Thus the statement is true if max{pij(t)} is decreasing and
i

L! min{pij(t)} is increasing. These requirements are met since

; i

P(tl+t2) = P(tl)P(tz) g

hence the elements of the jth column of P(t1+t2) are convex combina-

tions of the jth column of P(t2) s

As for ﬂé(t) » in all our calculations this measure was monotone

i Lol i e

decreasing. However,.we are unable to prove it.

Since we are interested in assessing the relative merits of all

the measures, fir the cases in Table II all pij(t) were calculated.

: almmcs i o

it 3 il B —————— e

Case 1 can be considered the base case. Cases 2, 3, 4 increase é
A and yu, keeping p (defined as MA/cu) constant. Cases 5, 6, and
7 have y constant but varying ) , while cases 8, 9, and 10 have A

|

!
constant with varying u . Cases 11 and 12 revert back to the base T
case p , but vary M, y , and c .

| Figure 4 shows some graphs of the measures as they vary with cer-

tain parameter.. In 4(a), we see that all measures do decrease monoton-

ically with time (in fact, they appear convex), which certainly must be

a requirement for the measures to be useful. The unweighted measure M2

decreases more slowly than its weighted counterpart, 3& . The same is

true of 'ﬁg and §3 « Of course, ﬁé is always less than ﬁi , and M

4

is always less than ﬁé s since ﬁs and ﬁz consider only maximum row !

I3
and column errors, respectively. |
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In Figure 4(b), we see that increasing A and U together so as
to keep P constant causes a faster approach to steacy state (all mea-
sures agaii decrease monotonically). This is intuitive, since we would

expect the greater the transition (arrival and service completion) rate,

the faster steady state should be approached. While this generally
holds also for varying only arrival rate (service completion rate)

keeping service completion rate (arrival rate) fixed [see Figures 4(c) i
and 4(d)], the measures do not always decrease monotonically. In the :

case where u is fixed, .ﬁl decreases, then slightly increases, then

decreases again as A increases. In other runs not shown in Table III we
saw similar effects for the other measures. Just why this is so is not
intuitively clear, although one must keep in mind that the traffic in-
tensity (p) is now also varying, so that the probability.distributions

of the system states are also changing.

The final two cases run (Cases 11 and 12) had the same p but
varied M, y , and c . Even with p fixed, A(x) varies, showing
the effect of population size, spares pool size, and 1repair capacity
on availability. However, the convergence to steady state as given by

the four measures does not appear to change significantly.

Which measure'to choose anc. how to utilize the measure ultimate-

ly lie in a subjective judgment. We see that ﬁé decreases more slowly

than the others, while 'ﬁﬁ decreases most rapidly. Since in effect the

scale is arbitrary, one a measure (or measures) is chosen, subjective
benchmarks would have to be set up. For example, consider the P(t)
matrices for Case 1, t=1,3,5 and ® , and the respective measures shown
in Figure 5. 1lke full P(t) matrices for t=1,3,5 are given. At the

bottom of each is listed the steady state probability, "j [the P(x)

matrix has all its rows identical and equal to = = ("0’"1""’“H+Y)

so that near steady state all elements in column j of a P(t) matrix

should be close to nj].
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In viewing Figure 5, it is fairly clear that P(1l) is extremely
far from P(x») and P(3) is quite far, while P(5) is somewhat closer--
although in a few places there are some sizable errors, particularly in
rows 5 and 6, which, of course, are discounted by measures ii and '§3 .
Thus one might conclude that a value of .ﬁl of .05 or less indicates a

near steady state condition, while a value for ‘ﬁa of .10 or less

suffices.

Also shown in Figure 5 is the steady state population availability,

A(») , along with two transient A(t)'s . One of these, A(t)UP s as-—

sumes all units are operational at time zero, and the other, A(t)DN 3

assumes the opposite, namely, all units are down (in ov awaiting repair).

Note, as before, that A(t)UP is much closer to A(«} than is A(t)DN 5

since A(x) is nearer to A(O)UP = 1 than to A(O)DN =0 .

As to which measure might be preferable, again subjectivity is
required. Consider Figure 6, where P(l) for Cases 1, 11, and 12 is
shown, along with the respective P(®) , A(t) , and A(®) . In viewing
the matrices, it appears that all are about the same distance from

steady state. In looking at A(t)U? and A(t)DN versus A(«) , perhaps

one might say ttat Case 12 is the "poorest" case, while Case 1 is the
"best." None of the measures indicates Case 12 to be the poorest, al-

though ﬁé and ﬁ; come closest to this. The measures iﬁ and ﬁg

do indicate that Case 1 is the best.

In Figure 7 two more cases are compared, namely, Cases 2 and 6.
Again it is difficult to judge which P(l) is the better, although in
looking at the A(1)'s one might give "the edge" to Case 2. Here,

however, i& shows Case 2 to be preferable, while ﬁé » 35

, and H‘

show the opposita.

It appears that no measure is superior, so that the choice should
perhaps be the one that is computationally easiest to obtain. In view of

- 26 -
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the theorems, T{]_ and -ﬁz are computationally most efficient for large

matrices, so that either of these might be an appropriate choice.
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