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THE GEORGE WASHINGTON UNI VERSITY
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Institute for Management Science and Engineering
• Program in Logistics

TRANSIENT SOLUTIONS FOR REPAIRABLE ITEM PROVISIONING

by

Zeev
Donald Gross

1. Introduction

It is desired to find the level of spares Inventory (y) and number

of repair channels (c) to support an operating population of M items.

An operating item may randomly fail and require repair. Both the t ime to
failure and the repair time of any item are independently distributed ex-
ponential random variables with parameters A and p , respectively.
All items are identical and independent. -

Generally one is interested in knowing how many spares and repair

channels (or repairmen) are required in order to support the system at a
certain level measured in terms such as the probability that the popula—
don is operating at full strength or the probability that a certain per-
centage of the population is operational or the probability that the
spares pool is not empty upon a request for a spare .

The classical finite source queueing theory (also known as the
n~.zchine repair problems) can be used to provide the steady state distri-
bution of the number of units in and awaiting repair which is required
to calculate the service level measures . Further , using the costs of
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spares and repair channels , a procedure can be developed to find the op-
timal combination of spares and repair channels to meet a specified level
of service (see Reference [6]).

In many cases, the provisioning for spares and repair capacities

must be planned in advance. Also, in many new systems, operating units ‘ 1are added over an initial period until the population reaches Its full

strength. An example of this is a gas turbine engine fleet which is to

build to a full strength of 256 ships, starting with an initial fleet

size of 5 the first year and adding ships over an 11—year period. When

the population size changes, especially if new units have different mean

times to failure or mean repair times (which is likely due to technologi-

cal growth and learning), transient effects might be significant. In Ref—
erence [61, it was assumed that the population reached instantaneous steady

state every year at new population values. We concentrate here on methods

of analyzing transient effects so that situations can be noted for which

• steady state assumptions may be in doubt as well as those for which

steady state assumptions may be adequate.

2. Calculation of Transient Probabilities

The state of the system Is defined by the number of items in and

awaiting repair, which can vary between zero and M+y . Letting p..(t)

represent the probability of the system being in state j at time t given

that it started in state i (0 < i,j, ~~ M+y) , wi(t) be the unconditional

probability of the system being in state I at time t , P(t)

be the (M+y+l) x ()Hy+1) matrix of transition probabilities (t) ,

7r(t) be the )}fy+l component vector whose elements are the lT
i
(t) , and

ir(O) be the initial probability vector whose components Ir
~
(O) are the

probabilities that the system starts in state I, we have

ir(t ) = ir(0)P(t) . (1)

Denoting the steady state probability vector by it

ii u r n  n(t) . (2)

——
I-- 
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4 4



- -. ~~~~~~~~~~~~~~~~~~~~~ 
- -~~ -~—-~— r- - - - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -

T—390

• It Is not necessary to obtain ir(t) if only it is of interest since

this can be determined directly by steady state finite source queueing

results (for example, see [5), pp. 118—125). However, to assess transi-

• ent effects, it is necessary to calculate ir(t) ; in fact, it is of inter—

est to compare w(t) to it to observe the speed of convergence to steady

state.

Solving for ir(t) requires solving a set of M+y+1 differential
— equations in M+y unknowns. Obtaining analytical solutions is extremely

difficult and in most cases impossible unless M+y is very small. How—
ever, a variety of procedures are available which can yield numerical so—

lutions to the differential equations. Reference [4) compares several

of these numerical procedures and concludes that the so—called rand omi—
zation proced ure has some advantages. This procedure is presented (al-

though not under that name) in Reference [31 on page 46.

For the purposes of study in this paper, the randomization pro—

cedure appears useful, although if solutions for ir(t) are desired for

a large number of t values, the Runge—Xutta method may be more efficient.
The randomization procedure will yield P(t) , from which n(t) can be

calculated using Equation (1). The calculation procedure is as follows.

Let Q dencte the intensity matrix (infinitesimal generator) of the

Markov chain of this birth—death system, that is

0 ... 0

I —A

1

—
~~L
1 

)t
1 

0 .. .
~‘2 —A 2—p2 A2

0 . . . 0 • . • 1
~
j.i.y ~i*fy

where
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MA , ( O< i < y)

A1 = (M-I+y)A , (y < I < y+M)

•1 0 , (I> y4+f)

(OIi< c)
.

cp , (i~~~c)

The birth—death differential equations then can be written

— ir(t )Q , (3)

where 1T’(t) is the vector whose components are ir~~(t)  — dn1(t)/dt -

The randomization procedure gives a method of calculating P(t) using
Q . Denoting the i,jth element of Q by qjj define a scalar a as

a ! m ax q11 .

Let 8 be another scalar such that

B~~~a.

Then, form a matrix P with element Pjj  as

P 

~‘i~~ 
= I + 1Q ,

I

where I is an (Mfy+l) x (M+y+l) identity matrix. It can be shown
that the elements of P(t) can be obtained by

= e~~t 
~ ‘ 

(4)
n 0

where is the (i j)th element of the matrix ~~~ and ~~~~ is the

matrix P raised to the power n • Thus the computations are not simple
since they involve raising the matrix P to the nth power for n0,l,2,...
Obviously, the numerical procedure must truncate n at some appropriate
value and our criterion was to truncate n at a number N , such that

— 4 —
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p1 (t) — p~ (t)

N -~~ C ,

where

N 1~~ = 
—Bt ~ ~

“t~ (n)Pjj~ t i e 
~ ~ 

Pun—O

We are fortunate here in being able to guarantee this since

p1 (t) = e 8t ~ (B~~ = (t) + e 8t ~ (8t)~ ( )

w~N+l

Nov

e
_8t (~~)

n 
< ~~~ ~f 

(~~~)
fl 

= e 8t 

[
e8t — ~~ 

(8t)~
]n=N+l n—N+]. n 0  -

= i _ e 8t ~

Thus

- ~~~~(t ) < 1 - e 8t

Hence we can choose the smallest N such that the absolute error

N n
1 — e~~

t ~ (st ) 
< ~ (5)n.

Because some of the Pij(t) may be very small, a somewhat better criter-

ion might be to choose N such that

N n
1 — e 8t ~ ( 8t)

N 
n=0 

< (6)
18t) ’~ ~(n)e 

n—O ru ij

that is, the percentage error is less than or equal to C . This is
- 

• 
somewhat more complex to calculate however.
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This procedure was progranmied on an IBM 370/148. Analytical solu—

tiona are obtainable for the special case N = y c — 1 for which there

are only three states (1—0,1,2). The three differential equations in

three unknowns given by Equation (3) can be solved using Laplace trans-

forms (see Reference [1]). The numerical procedure was checked against

the analytical solution for the special case and found to be quite accu-

rate. Table I shows the comparison using criteria from Inequality (5);

that Is , the absolute error criterion with C lO s, and 10 6 
. We see

TABLE I

COMPARISON OF Nu MERICAL AND ANALYTICAL SOLUTIONS
M y c l ;  A = O . 5 , p = 1 . 0

Anal . (Analytical); Num. (Numerical) ; Numa: ~ = l0 ’
~ , Numb : C = io

_6

t p~~(t) p01(t) p02(t)

Anal. 1 0 0
aNum 1 0 0

Nwnb i

Anal. 1 .7265 .2227 .0508

Nulna .7260 .2224 .0506

Numb .7266 .2226 .0508

Anal. .6010 .2768 .1222

Num5 .6003 .2767 .1222

Anal. .5775 .2839 .1386

Numa .5770 .2837 .1385

Anal. 10 .5715 .2857 .1428

.5710 .2854 .1427

4 
aRunning time to generate four 3X3 P(t)
matrices (t—l ,3,5,lO): 15.78 sec.

bRunning time to generate one 3X3 P(t)
matrix (t l): 3 m m .

— 6 —

- - -~~ —- —— -  ~~~~ 
-—_—  

. • — ‘~~~~~
_
~~~~~~ • -~~~~~

- • -~~•‘.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~— — ~~~~~~~~~~~~~~ -—- ~~~~~~ .-~~~~~~~----— .‘-‘ ~~~~~~~~~~ 
I



—- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

T—3901 -
that the numerical procedure, with C ~~~~ , is always exact to the
second decimal place and in most cases to the third. While lowering c

to 10 6 helps somewhat on the accuracy (see the t l  case in Table I),

the added expense in running time becomes enormous and hence It was felt

that l0~~ was satisfactory.

3. Results

Figure 1 shows the results of a case where M = 10, y = 4, c 2 ,

• A = .15, p = 1.0 . The measure of system service used is the probability

that the entire population is operational. Denoting this by A (t) , we

have
y

A(t)  = 
~~ 7r~ (t )

1=0

Two cases are shown, one in which the initial conditions had all machines
• • 

- 

“up,” that is, no machines in or awaiting repair, one machine operating,

and one in the spares pool (w(0) (l,0,0)] ,  and the other where both ma-
chines were “down,” that Is, one in repair and the other in the repair

4 
queue [Ir(0)=(0,0,l)]. We can see that in the first case steady state is

approached rather quickly while in the second the approach is consider-

ably slower.

There are two factors influencing the speed to steady state. One

is the initial conditions, that is, how far the system is from steady

state initially, and the other is the speed at which the transient terms

(terms depending on t) of the full solution to the differential equations

damp out. In some cases it is known what the initial conditions are or

are likely to be, but in many cases information about the initial state

of the system may not be available or reliable. In order to divorce the

effect of the initial conditions from how quickly the transient terms

damp out, we decided to look at the P(t) matrix itself. We became in-

terested in two facets of the P(t) matrix. First, we wished to obtain

information about the behavior of the ~~~(t) as t increases and second,

we wished to determine for a given t how “far” P ( t )  was from its steady

state value P(~) , where

~~~~~~~~ — - ----~-- —‘—--—--— at_ .Sa...~. ~ s. r a.. - -. — a
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/

‘iT
O 

ir~ .
~~~~ 

1tM+Y\~
• (w 0 ~~~~~ 

~~~~~ 
-

-

• P (co)

. ~~~ ¶
j  ... 7TM~.y,/

that is, a matrix in which all rows are the steady—state probability

vector ii • This necessitated the development and study of single value

measures for the “distance” between P(t) and P (co)

3.1 Behavior of

-• We kitow P(0) is an (M+y+l) x (M+y+l ) identity matrix and P(co)
is the (Mfy+l) X (M+y+l) matrix with all rows equal to the vector It

We are interested in what happens in between. For the case N — 10 ,
y = 4 , c = 2 , A .05 , p — 1.0 , we plotted the first four probabili—

ties of row three of the matrices P(t) , t—0 l,3,5,lO and ~ ; that is,

we plotted p20(t) , p21(t) , p~~(t) , and p23(t) for the above values

• of t (see Figure 2).

It can be seen that not all of the ~1~(t)’s approach their steady

state value monotonically. The diagonal element p22(t) and the first

elemeut p20 do, p22(t) from above and p20(t) from below. But the -

other elements, p21(t) and p23(t) , start at zero, overshoot their

steady state values, and then appear to monotonically decrease toward
them. We will show that p11(t) will always approach from above

and, although it has not been proven, we conjecture that if ~1~(t1) ~~
-
.

, then ~1~(t) 
> it~ for all t > t

1 
; that is, ~1~(t) , i#j , starts

at zero, overshoots at moat once , and then approaches from

above.

• The above conjecture can be argued by the following physical anal—

ogy. Consider a row of the P(t) matrix as a bar of water. At t—O , a
sugar cube is dropped in at the diagonal (i i) position. As time passes,

— 9 —
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the sugar is dispersed along the row until it reaches its steady—state

concentration ni (I—O,l,2,...,M+y) . Note that at 1,1 the sugar

gradually flows away from its initial concentration (of 1) to its final

concentration 11
1 

. At either end, sugar gradually flows in until it builds

up to the steady state concentrations 710 and . All other states

start at zero, receive sugar from the diagonal element, some of which will
eventually flow past to other states and some of which will remain, causing

the overshoot prior to settling down to its steady—state concentration.

It is possible that other states near to the “end” of the row may not

overshoot depending on the rates of sugar flow in versus sugar flow out.

We expect the greatest overshoots to be in the states near the diagonal

element.

We next looked at the behavior of the ~1~
(t) as a function of j

for fixed t • That is , it was of interest to observ.. which p1..(t) were ‘

• larger than their steady state values, lT
i 

, and which were smaller, for a

given value of t . In all cases run, we observed one of three situations

as shown In Figure 3. It can be seen that the ~~~(t)’s which overestimate

their it
s
’s appear together in a “clump.” If this were always true, there

could be significant savings in the computational effort required for ob—

tam ing the distance measures (IP(a )—P(t)l) discussed in the next section.

We have proved that this clumping will always be the case as well as its

relative position in the row in the leimsa and theorems presented below.

Lenr~ : Let Ni(t) — the nuther of customers in and awaiting re—

pair at time t given i in and awaiting repair at time 0. Then

Pr(N1~1(t) <k ) 
< Pr(N1(t) <k) ,~~ 

Pr(Nj+i(t) <k+1) .

Proof: Let

T
1 

= inin{u: N1(u) Ni÷i(u) , 
0 < u < oo}

It is obvious that

— 11 —
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(b)
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(c)

Figure 3.——Beh avior of ~~~ (t) versus j , t fixed.
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Pr[N1(t)—k I t~~ t} Pr[Ni+i(t)=k I T1~ t] , k0 ,l,2,... , (7)

Pr[Ni(t)<k T
1
>t] > Pr[N1+1(t)<k T

1 ’t]  • (8)

Combining (7) , (8), and the fact that Pr(t
1>t) 

> 0 yields

Pr (N ~(t) < k )  > Pr(N1~1(t) < kJ . (9)

Now we denote by A1(t) the number of arrivals in [0,t] and by S1(t)

the number of service completions in the same time interval, given i in
system at t=0 . Since A

3 ~ 
A
3~1 

and u~ ~ 
for all 3 ,~~ 0 , then

Pr(A1(t) S
1(t) ~ k) ~ Pr(A141(t) 

— S1+1(t) ~~~, k )  , for any k

The proof Is now complete since

N
3
(t) — 3 + A

3
(t) — S

3
(t)

• From (9) we obtain that

p00(t) ~ p10(t) ~ p20 (t) ~
and as

MfY
= 

~1=0
then

p00(t) .
~~

The next theorem extends this result for all p1~ (t)

Theorem 1: Pii (t) > ir~ v I and t .

Proof: We compare our system to a Markovian queueing system
wi th only two states , 0 and 1. Denote the rate out of state 0 by V and
the rate out of state 1 by r~ • Let r01(t) be the transient probability

of being in state 1 (1=0,1) at t given that the system started in state 0.
The steady state probabilities of the two—state system depend on the ratio
v/ri . We choose v/ fl such that

— 13 —
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lim r~~ (t) 
~~~~~~~ 

‘

It is well known that r~~(t) > it
1 

for any v , , and t ; hence the

required result is obtained if n and V can be chosen to yield

• r00(t) 
~~ 

p~1(t) . (10)

Since r~~(0) p
11

(O) = 1 , then Equation (10) is satisfied if

r~0(t) ~ p~1(t) (11)

at any point t where

r00(t) 
= p11(t) . (12)

To determine the conditions under which Inequality (11) holds, we write

p~1(t) p~1(t) 
- p~~(~) = -(A

1+p~ ) (p 11
(t)-it

1)

• + Aj i(p i,i.1(t)_ w
i i J + uj+1(P 1,j+1(t)—i r1+1)

(13)
and

r~~(t) — r~0(t) 
— r

~~~
(co) = — (v-f~)(r00(t)—it

1
) . (14)

Using Equation (12) in (13) and then comparing (13) to (14) yields that
Inequality (11) holds 1ff

+ A1 1(p 1 11(t)—it 11) +

Pu i
(15)

The RHS of (15) is clearly bounded since the matrix P(t) can be ex-
pressed as

C t  C t  cM+YtP(t) — liiii P(t) + B2e 2 + B3e ~ + ... + ~~~~~
where C~ < 0 is the ith eigenvalue of the infinitesimal generator

matrix Q and B
1 is a (MfY+l) x (MI-Y+l) matrix that has finite

elements (see, for example, [2], pp. 364—368). Thus we conclude that V

— 14 —
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and fi can be chosen big enough so that (11) is satisfied at any point

at which (12) is satisfied, and the proof is now complete.

Theorem 2: For any I and t there exists a j
~
(i t) and a 3rU~

t) 
~

j~(I,t) < 1<  3 (i , t) , such thatr

Pij
(t) — > 0 , if 3 = j L(i ,t) or ~ —

~• p~3
(t) — > 0 , if j~ (i ,t) < <

and

pij (t) — < 0 , otherwise.

Proof: Denote

K(I t) = {k: PIk(t) 
—

At t=0 we have p11(O) = 1 and p13
(O) = 0 , i#j ; hence the required

conditions are satisfied. To complete the proof we have to show that for

any k C K(i,t) we have

Pik
(t)  ~ 0 , if k < J L

(i,t)—l or k >

Plk(t) 
> 0 , If jz(i,c) 

< k < 3rU~
t)

To show that the above conditions hold, we write

Pik(t) 
= Pik

(t) — 

~ik~
°°
~ 

=

Xk IP jk(t) Il
k ) + Pk+llpi,k+l(t)7Tk+l) k—O

+ Ak_ 1(P i ,k_l (t )_ itk..l) + ~~+1(p i ,k+l(t)_ 71k+l ) ‘ ~~~~~~~~~ 

>

~c(~ik(t~~
1k.j + )~k_l(~ 1,k_l

(t) ~~~~~~ ~ k=M+Y

(16)

If k < 3 L(i ,t)_l or k > 3r(1
~~
t
~~~ , 

then Pi,k_l(t) 
— 71k..l ~ 0 and

Pi,k+l(t) — 71k+l < 0 ; thus p
~k

(t) ~~ 0 . If j
~
(i,t) < k < j

~~
(i,t) ,

then I~i,k_l
(t) — 71

k—l ~ 0 and Pj,k+1(t) — 

~
1k+l ~ 0 ; thus p~~(t) ~~~, 0

— 15 —
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3.2 Measures of the distance between
P(t) and P(oo)

We now turn our interest to gaining information concerning how

far from steady state the system is at a given time. We desire some
measure of the distance between two matrices P(t) and P(~ ) ; that is,
a measure of ~P(t)  — P(oo) I

Consider th; following for P(t1)~~ , :nd P(oo~ :

P(t 1) = ( .6 .3 .1 J , P(t2) — ( .2 .4 .4 )
\ 0 .6 .41 \.i .~~

- f .2  .5 .3
P(Øo) — ( .2 .5 .3

\.2 .5 .2

It is clear that IP(t2) — P(~o) I < ~P(t1
) — P(~ ) )  . We desire to de-

velop scalar measures to reflect this situation. •

Two measures that appear reasonable are the following:

ii1(t ) = M1(t) /M1
(0) ,

where
M+y M+y

14,1(t)  = ~ it
1 ~~ ~p1~ (t) — it~~ (17)

1=0 3—0 •J J

and

?42 (t) = M
2(t)/M2(0)

where
Mfy M+y

f M2(t) 
= 

~ 1p 1 (t) — ~ I . (18)
1—0 3—0 i

Both measures are normalized to vary between 0 and 1 [i.i~(0) = 1 ,

M1
(co) = 0]. The second is merely the sum of all the absolute differ-

ences between the corresponding elements of P(t) and P(o~) . The
first is a weighted sum of the corresponding element absolute differ—
ences, the weights being the steady state probabilities; that is,

I -16 -
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errors In the State probabilities which are seldom visited in steady

state are “discounted.”

A well—known mathematical definition of the distance between two

matrices is the norm of the matrix formed by subtracting corresponding

elements, denoted by I (P(t) — P(co) II . Matrix norms must obey certain

properties (see Reference (7], page 59), which are given below.

(1) IIP~t) — P(oo)II > 0 and I IP(t) — P(oo)II — 0  ~
1ff P(t) — P(co) — 0

(2) Ia[P(t) - p (co)JII - lal IIP(t) - P(°°) I I;
(3) I I (P(t1) 

— P(co) ] + [P(t2
) — P(~)] II ,~~~ I I P ( t 1) — P(oo) II +

I IP(t2) — P(o~)II ;

- (4) ~~rP(t ) — P(co)] . (P (t 2) — P&°)] II ~~~ IIP(t1) 
— P(

~)II

• I IPIt2 
— 

~
(
~)II

We have not been able to show that N
1 and M2 obey all the above

properties, although we believe that they do. liowevet, variations of
N1 and which do obey all properties are (see Reference [7],

page 61):

i~i3(t) — M
3
(t)/M

3
(0)

where

M3(t) ~ 
max 1p 14 (t) — 714 )  (19)

1—0 -j J J

and
M4(t) 

— M4(t)/M4(0)
where

M4(t) — max I~ 4 (t) — ~~~~ . (20)
j—O i J -I

Once again, H3 uses the ir~ to weight the maximum row deviations,

while 1114 is based on the unweighted maximum column deviations. We

• have run many cases to observe the behavior of the proposed measures.

—17 — 
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We chose situations for which M+y equaled five ao that we could view

the entire 6~’6 P(t) matrix and compare it with the 6X6 P(co) matrix.

The cases run are shown in Table II, with the results shown in Table III.

TABLE II

6x6 CASES RUN

Case N 
- 

y c A p “p” — MA/cp

1 3 2 2 .2 0.5 0.6

2 3 2 2 .4 1.0 0.6

3 3 2 2 .6 1.5 0.6
— 4 3 2 2 .8 2.0 0.6

5 3 2 2 .2 1.0 0.3

6 3 2 2 .6 1.0 0.9

7 3 2 2 .8 1.0 1.2
8 3 2 2 .2 0.33 09

9 3 2 2 .2 0.25 1.2
10 3 2 1 .2 1.0 0.6

11 4 1 1 .15 1.0 0.6
12 4 1 2 .15 0.5 0.6

Before comparing the four measures numerically, we would like

to present two properties that may help in judging the measures.

M+Y 3 (i ,t~Prop erty l: 
~ I~~~ 

( t ) — i t  = 2 r
z (p ( t ) — i r )

3—0 jj&~~
,t) ~

This follows from Theorem 2, which yields

jr(i,t)
Z 1p13 (t) — 71~I — (~~~(t) — •iT ) + (i t

3 
— p

13
(t))

3—0 - j—j
1
(i ,t) ~ j<j&~~

,t)

+ (n — p
1
(t)) ;

— 18 —
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TABLE III

RESULTS OF 6x6 CASES RUN

Case A(co) Measures t 0 t 1 t 3  t 5  tlO

1 .820 M1 1.000 .376 .143 .066 .010

H2 1.000 .505 .232 .115 .019

143 1.000 .319 .103 .046 .007

1114 1.000 .366 .178 .092 .016

2 .820 1.000 .216 .046 .010 .001

H 1.000 .335 •08 .019 .001

1113 1.000 .110 .031 .007 .000

N 1.000 .246 .066 .016 .0004

3 .820 1.000 .142 .015 .002 .001
H 1.000 .232 .027 .003 .000 —

P13 1.000 .103 .010 .001 .000

• 
114 1.000 .178 .023 .003 .000

4 .820 1.000 .097 .005 .001 .001

1.000 .164 .009 .001 .001

N3 1.000 .068 .003 .000 .000

144 1 000 129 008 000 000

5 .964 1.000 .266 .039 .007 .001

14
~ 

1.000 .464 .110 .025 .001

H
3 

1.000 .262 .039 .007 .001

- 144 1.000 .325 .092 .022 .000

6 .630 1.000 .221 .043 .009 .001

N2 1.000 .275 .056 .012 .001

14
3 

1.000 .120 .020 .004 .000

144 1.000 .099 .040 .009 .000

— 19—
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Case A(CD) Measures t 0 t—l t 3  t—5 t10

7 .462 1.000 .198 .033 .006 .000

142 1.000 .237 .041 .007 .000

143 1.000 .103 .016 .003 .000

144 1.000 .164 .023 .004 .000

8 .624 1.000 .445 .223 .123 .034

1.000 .515 .276 .159 .044

N3 1.000 .371 .120 .062 .016

144 1.000 .417 .199 .111 .031

9 .462 H
1 1.000 .478 .258 .154 .052

14
2 

1.000 .536 .30~ .186 .063

14
3 

1.000 .416 .145 .077 .025

H4 1.000 .457 .215 .125 .037

• 10 .860 1.000 .371 .155 .076 .013

~2 1.000 .522 .268 .141 .026

N3 1.000 .332 .128 .061 .011

• N4 1.000 .384 .205 .114 .022

11 .735 1.000 .349 .121 .053 .007

1.000 .535 .260 .127 .019

N3 1.000 .319 .105 .044 .006
• 111

4 
1.000 .400 .211 .111 .017

12 656 111,~ 1.000 .359 .114 .048 .006

H2 1.000 .521 .227 .106 .014

N3 1.000 .315 .092 .036 .004
- 

H
4 

1.000 .376 .186 .092 .013

-l
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and as

j 3
then

jr(i,t)
~ Jp~3

(t) — = 2 (p 13
(t) —

• 
- 3—0 J=i g(i~t)

Proper ty 1 suggests that i~i~(t) and i~i2(t) may in general re—

qulre less computation , since only part of the matrix P(t) has to be
calculated. Further, while all numerical work indicated that j

1
(i,t)

and jr
(1p t\ dQ not decrease as I increases (that is, the “clump,”

p
13 (t) — it . ~~~ 0 , moves to the right as we go down rows of the P(t)

matrix), we ha,e not been able to prove this. -:

Property 2: The measures 
N1(t) , 142(t) , and M4(t) decrease

monotonically in t.

To show that ii.~(t) and 1112(t) are monotone, we use Expression

(16) to obtain for ji(i,t) ~ 0 and j (i,t) # M+Y that

L / d jr~~,t)

C
~~j_j~~I,t) 

(p 13
(t) — 71~~) = AjZ(i,

t)_l(Pi,3 L(i,t)_1
(t) —

— 

jL(i,t)(i,j~
(i,t) 

— 

~
j
~
(i,t))

— Aj r (is t) (Pi,j r(i ,t) (t) —

+ Pjr ,t)+l(Pi~j ,t)+l(t~ 
— ltj r (i ,t)+1)

(21)
Expression (21) yields the monotone convergence since all four terms of
the RBS are nonpositive. The results for the cases 3Q(i~t )  — 0 and

• 3rU~
t) — 11*! can be obtained in a similar way.

— 21 —
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- 

We ~iow show that M
4
(t) is monotone . Firs t we notice that

-

- 

. 
max)p1 (t

)-.ir4 I = max 1max{p1 
(t)} — 714 ; — lmin{pjj (t) } — 11

4)1 (1 ~ •J 
~~i

Thus the staten~ nt is t rue if max{p
1 (t)} is decreasing and

i 3
min{~~ (t)} is increasing. These requirements are met since
1

P(t 1+t2) = P(t 1)P(t 2 )

hence the elements of the jt h column of P(t
1+t2) are convex coiflbina—

tions of the j t h column of P(t 2
)

As for i~3(t) , in all our calculations this measure was monotone

decreasing. Hovever, we are unable to prove it.

• 
- Since we are interested in assessing the relative merits of all

the measures, I r the cases in Table II all p~3
(t) were calculated.

Case 1 can be considered the base case. Cases 2, 3, 4 Increase
A and p , keeping p (defined as MA/ep) constant. Cases 5, 6, and
7 have p constant but varying A , while cases 8, 9, and 10 have A
constant with varying p . Cases 11 and 12 revert back to the base
case p , but vary M , y , and c

Figure 4 shows some graphs of the measures ~s they vary with cer-
tain parameter.4. In 4(a), we see that all measures do decrease monoton—
ically with time (in fact, they appear convex), which certainly must be
a requirement for the measures to be useful. The unweighted measure 142
decreases more slowly than its weighted counterpart , . The same is

- - true of H
4 and M

3 . Of course, 14
3 Is always less than , and 111

4
is always less than 1112 , since 14

3 and 14
4 consider only maximum row

and column errors, respectively.

— 2 2 —
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Figure 4.——Results of 6x6 runs.
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In Figure 4(b), we see that increasing A ann p together 80 88

to keep p constant causes a faster approach to steacy state (all mea-

sures agait. decrease monotonically). This is int-4tive, since we would

expect the greater the transition (arrival and service completion) rate,
the faster steady state should be approached. While this generally

holds also fo~ varying only arrival rate (service completion rate)
keeping service completion rate (arrival rate) fixed [see Figures 4(c)
and 4(d)] ,  the measures do not always decrease mo,otonically. In the

case where p is fixed, decreases, then slIghtly increases, then

decreases again as A increases . In other runs not ~hown in Table III we
saw similar effects for the other measures. Just why this is so is not

intuitively clear, although one must keep in mind that the traffic in—
tensity (p) is now also varying, so that the probability distributions

— of the system states are also changing.

The final two cases run (Cases 11 and 12) had the same p but

varied 14 , y , and c • Even with p fixed, A(o~) varies, showing
the effect of population size, spares pool size, and v epair capacity

on availability. However , the convergence to steady state as given by
the four measures does not appear to change significantly.

Which measure to choose anc~ how to utilize the measure ultimate—
ly lie in a subjective j udgment. We see that 1112 decreases more slowly

than the others, while decreases most rapidly . Since in effect the

scale is arbitrary, one a measure (or measures) is chosen, subjective

benchmarks would have to be set up. For example, consider the P(t)
matrices for Case 1, t=l,3,5 and ~ , and the respective measures shown

in Figure 5. The full P(t) matrices for t l ,3,5 are given. At the

bottom of each is listed the steady state probability, [the P(co)

matrix has all, its rows identical and equal to it ~~~~~~~~~~~~~~~

so that near steady state all elements in column 3 of a P(t) matrix

should be close to it
3
].

— 24—
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In viewIng Figure 5, it is fairly clear that P(1) is extremely

far from P(co) and P(3) is quite far, while P(5) is somewhat closer——

although in a few places there are some sizable errors, particularly in
rows 5 and 6, which, of course, are discounted by measures 14

i and 113
Thus one might conclude that a value of of .05 or less indicates a

near steady state condition, while a value for H
2 of .10 or less

suffices.

Also shown in Figure 5 is the steady state population availability,
L I A(oo) , along with two transient A(t)’s • One of these, A(t)~~ , as—

sumes all units are operational at time zero, and the other, A(t)DN ‘

assumes the opposite, namely, all units are down (in o’- awaiting repair).

Note, as before, that A(t)~~ is much closer to A(co~ than is

since A(~) is nearer to A(O)~~ 1 than to A(O)DN — 0

As to which measure might be preferable, again subjectivity is

required. Consider Figure 6, where P(l) for Cases 1, 11, and 12 is
shown, along with the respective P(co) , A(t) , and A(co) . In viewing

the matrices, it appears that all are about the same distance from
steady state. In looking at A(t)~~ and A(t)DN 7ereus A(co) , perhaps

one might say that Case 12 is the “poorest” case, while Case 1 is the
“best.” None of the measures indicates Case 12 to be the poorest, al-
though 

~2 
and 144 come closest to this . The measures 

~2 and 144
do indicate that Case 1 is the best.

In Figure 7 two more cases are compared, namely, Cases 2 and 6.
Again it is difficult to judge which P(l) is the better, although in

looking at the A(I)’s one might give “the edge” to Case 2. Here,
however, shows Case 2 to be preferable, while 

~2 ~ 
143 , 

and 144
show the opposite.

It appears that no measure is superior, so that the choice should
perhaps be the one that is computationally easiest to obtain. In view of
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-
- the theorems, and are computationally most efficient for large

matrices, so that either of these might be an appropriate choice.

Il

t

—29 —

~LL -_—- - -- - —— - - .  ~~~~~~~ ~~~~~~ ‘‘

II,.. _-_ _:
~~~~~.aL4~_~ ~~~- --— u.-_______ 

/ 
1 _  - ~~~~~~~~~~~ . —. ~~~~ • —.. I~I~~~.2I. - ~~~~~~~~~~~~~~ .~ ~~~~~~~ 1.~~ —



- - ,

T-390

REFERENCES

[1] BARZILY, Z•, D. GROSS, and H. D. KAHN (1977). Some practical con—

siderationa in the application of finite source queueing mod—

els. Technical Paper Serial T—360. Program in Logistics,

The George Washington University.

[2] CINLAR, E. (1975). Introduction to Stochastzc Processes, Prentice—

Hall 9 New Jersey.

[3] COHEN, J.. W . (1969) - The Single Server Queue. North—Holland,

Amsterdam; Wiley, New York.

[4] GRA SSMAN, W. (1977). Transient solutions in Markovian queueing

systems. Conrput ers and Opera tions Rae. 4 47—56.

[5] GROSS, D. and C. 14. HARRIS (1974). Fundamenvale of Queueing Theory .

Wiley, New York.

(6] GROSS, I)., 11. B. KMIN, and J. B. MARSH (1977). Queueing models for

- - 
spares provisioning. Naval Ree. Logist. Quart. 24 521—536.

[7] MA~RLOW, W. H. (1978).- Mzthematice for Op erations Research. Wiley,

New York

— 30 —

~~~LL
I
- - , ) - - ~~~~~~~~~~~~~~~~~~~~~~ ‘~~- i~~~~~--~~~~~~~~~~~~ 

-

L — ~~~~~~.—‘ ~dL _---~ -~~~ —- •-‘. -- . —‘.- -~~ — --- --



THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics

Distribution List for Technical Papers

A m y  t.ogtstic. l4$t CenterThe Gsorgs Washington University Fort LasOff cs of Sponsored Research
.‘. Library 

Consanding Of f ice r , USALDSHAVice Pr.aideot N. F. BrL&It 
New Cusharlaad Ar.y DepotDeem Harold Li.bowfts

Deem Henry BOlOSOm Amy Inviuntory Bee Ofc
Philade lphia

a i.f of Naval Research Air Force Headquarters(Cod.. 200. BU) AVAIlS-IResident Rapreeent.ttve 
Lil lY
SAF/ALGOPNAV

Op_dO Gri ff f. a Air Force BaseDC~~. logistics Reliability Analyst. CenterNavy Dept Library
NAYDATA Autosation Ced Gunter Air Force Base- 

- OP—PM

Naval Aviation Inte gr ated Log Support 
Maxwell Air Fo rc e Ba.. Library

KAIDAC Tech Library Wrig ht—Patf ereon Air Furct Base
Log C o a ndNaval Electronics Lab Library 
Re.sarcb Sch Log
A?ALD/XRNaval Facilitisa Eng Cad Tech Library

Defenae Docu.entation CenterNaval Ordnance Station

• Louisville , Ky . Na t ional Acadesy of SciencesIndian ~~~~~ Me. Mariti.e Transportation lies Board L ibr j ry
Naval Ordnance Bye Cud Library Nat ional $ureau of Standard ,

Dr 8. II. CoivinNaval Research Branch Off ice Dr loan Røg~,.bLettBoston
Chicago Nationa l Science FoundationNew York
Pasadena Nat tonal Security AgencySen Francisco

- I 
Wea pon Syste.. Evaluation GroupNavel Ship Lag Center

Philadelphia. Pa. 
Brit ish Navy StaffWaahing ton, DC
National Oetense )ldqtra . OttawaNaval Ship Re. B Dsv Center 

Logiat ice , OR Anal ysis I~stablinhaent
Navel Sea Syet Cansand Aaerican Power Jet Co

- I P145 30611 George Chernowite- - - Tech Library
Code 073 General Dynaetc.. Fo.ona

Navel Supply Systems Co~~~nd General Research CorpLibrer y Dr Hugh Cole
-
~ / Operation . and Inventor y Analy s is Library

-~~~ - -
~~~ Navel War Colleg . Libra ry logist ic. Managa.snt Ins tituteNewport Dr Murray A. Gsiel er

- 
- 

BUPERS Tech Libra ry KG
Or Eliot Feidasn

P1450

Rand CorporationIntegrated Sea Lift Study Library
USN A o  Depot Earle Carnegie—Mello n Univers ity

Dee,. H. A. Stews
USI! Poetgr.d School Monterey Prof C. Thospeon

Libra ry Case Western Resarve Univer eltyDr Jack I. Borut ing Prof B. V. DeanProf C. B. Jonee 
Pro f N. Mesarovic
Prof S. 7.ackaUS Marina Corps

Cc~~~n~ant Cornell University
Deputy Chief of Stsf C . MD Prof K. E. Bechhofer

Prof K. .1. Conway
Marine Corps School Quentico Prof Andrew Schult .. Jr.Lauding Force Dev Ctr

Log ietics Officer Cowleus Foundation for Research in Econosics
Co~~~~4inS Officer Prof Herbert Scarf

URS Franca. Marion (LPA 249) Prof Mart in Shubik

Amid Force. Indua triel College Florida State University
Prof N. .‘.. Bradley

Armed Forces Staff College
Harvard iJ...ver.ity

Ar.y War Collage Library Pro f K. J. Arrow
Carlis le Barrack. Pro f W . C. Cochran

Prof Arthur SchIeifer , Jr,
Army Cud B Gen Staff College 

Princeton University
Prof A . V. Tucker
Prof J. 14. Tulisy
Prof Geoffrey S. Watøon

/ ..i i ~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~_______________________________________ ~~- -
‘.- -



--‘ -- -
~

--- --
~

-- -—.--,_
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~

---  — ------ - —,-- --- - ------

Purdue University
Prof S. S. Gupta 

Hr Gerald F. lein

Prof N. Robin ~~~~ rch Center

Prof Andrew Whinaton Pro f V . N. Hirech

Stanford Uni ers ity 
Courant institute

Prof T. V . Anderson
Prof C. B. Destzig 

Dr Alan ‘. iloff.sn

Prof P. S. Hillier 
I~~1, York town Heighta

Prof D. L. Iglehart
Prof Samuel HarlAn 

Prof John R. isbell

Prof S. J . Li.bernan 
State Univera tty of 11ev York Mdterst

Prof Herbert Soloeoa
Prof A. F. Veinott , Jr. 

Dr J. L. lain
University of Delhi

University of California Bsrkele
Prof B. K. Barlow 

• y Prof J. H. K. Ken

Prof 0. Cal. 
Polytech Institut e of New York

Prof Jack KSsfs r
Prof Boeadith Stmgreavea 

~~~~~~~~~~~~~ Chicago

Uni aity Loa Angeles Mr S. Lunar

Prof B. I. O’ )Ieij l 
University of Nedrae

University of North Caroline 
Prof C. S. L~~~a

Prof 14. 1. Smith 
Renasala r Polyta ch Inatitu te

Prof 11. K. Laadbet ter Prof Lapses

Univereity of Pennsylv ania 
University of Sheffield , ~~~~~~~~

~~~~ 

Prof Steven Hahunica
University of Pittsb~r~~

University of Texas
Prof A. 

rof D. 1. Oven
Southern Methodist UuLv.rstty

Yale Uaiveretty
Prof F. J. Anacoah. 

Prof S. Parnen

Prof I. g~ Savage 
Terse A B II University

Prof Z. w. Birnbeim 
Prof H. 0. Post...

University of Washington 
Univareity of Connecticut

Prof 8. N. Bissingar 
Prof 1. R sge, Jr.

Ths Pennsylvania State University 
Univereity of Del ere

Prpf Seth Bonder 
Prof Rena Riedvyl

University of Michigan 
University of Bern

Prof C. K. P. Box 
Dr Fred Rigby

Unive rsity of Wteconatut 
Texas Tech Collage

Dr Jerome Bracken 
Mr David RoaeubLatg

Inat it ute for Defense Analy~~. 
we.hinglon, 0. C.

Prof N. Chernoff 
Prof N. P.oeanblatt

Mass. Institute of Technology 
leivereity of California. San Diago

Prof Arthur Cohen 
Prof Alan J. Rove

Rutgers — The State Univereity 
Untveralty of Southern California

- - Kr Wallace H. 
Prof A. N. lubenstein

US General Accounting Office 
Northwester n University

Pro f C. Dermsn 
Dr N. L. Salveeon

Col*~~ ia University 
West 1.0. Angelee

Prof Kaeao Fukushi .. 
Prof Edward A. Silver

Kyo to University 
University of Waterloo. Caned-a

Prof Saul I. Gaes 
Prof N. J. Babel

University of Mary l sod 
Georgia Inst of Tu.iewla ~~

Dr Donald P. Gayer 
Prof 1. N. Thrail

Carmel, California 
Rice University

Prof An rit 1.. Coel 
Dr S. Ve3ds

Syracuse University 
University of Sussex, tagI—~

Prof J. F. Henna,. 
Prof T. N. Whit th

Michigan Stat. University 
Veelsysa University

Prof II. 0. Haft isy 
Prof Jacob Wolfowitz -

Tsnae A B K Foundation 
University of South Plorids

Prof Max A. Woodbury
Duks University

Dece~~er IP7B

a - - 

~ 
- - 

~~~~~~~~~~~~ 

- - 

~~~~ ~~~~~~~~~~~~~~ ~~~~~~
— — 

- 

r~’ ~~~~~~~
- - - 

~~~~~~~~~ ~~ 
- -

— ~~~~~~~~~~~~~~~~~~ ga~~~~ ~~~ 
_________________ ___ 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~


