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NOMENCLATURE

[c] Element damping matrix

[CI, [C] s  Damping matrices

kQ Diagonal generalized damping matrix

e Error of linearization or equation deficiency

E[ I Operator denotes the mathematical expectation

{f} El ement nodal force vector

{F}, {F} Nodal force vectors

g Structural damping coefficient

H(Q) Frequency response function

[k] Element stiffness matrix

[K], [K] Stiffness matrices

rKQ Diagonal generalized stiffness matrices

[kg] Element geometrical stiffness matrix

[Kgl,[K g] Geometrical stiffness matrices

Keq Equivalent linear stiffness constant

[ml Element consistent mass matrix

[M], [M]S Consistent mass matrices

N Diagonal generalized mass matrix

{P} Force vector in modal coordinates

{q} Vector of node displacements normal to the surface of
structure

{q} Nodal displacement vector

[qjqk] Deflection covariance matrix
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NOMENCLATURE (CONCLUDED)

S]IV [S] 2  Strain-deflection transformation matrices

IsFM)] Cross spectral density matrix of {F}

S (sQ) Spectral density function of P

{6} Element nodal displacement vector

{E} Element strain vector

[ers Strain covariance matrix

Damping ratio

Proportionality constant between damping and stiffness
and inertia, respectively

{} Amplitude vector in modal coordinates

{@J)} j-th normalized eigenvector

[W] Modal transformation matrix

W Linear undamped frequency

"'eq Equivalent linear frequency

Angular frequency
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SECTION I

INTRODUCTION

The response of outside surfaces or skins of an aircraft structure
to high intensity acoustic pressure levels has been the subject of
considerable research effort (References 1 and 2, for example). The
complex problem may be separated into three parts:

(1) Prediction of the acoustic loading,

(2) Determination of the response of complex structural panels
to this excitation, and

(3) Estimation of the fatigue life.

There are considerable data available to predict the acoustic loads
on an aircraft structure due to the many possible sources of high sound
levels. These sources are normally classified as to propulsion system
noise sources and aerodynamic noise sources. Noise prediction methods
for various sources have been summarized in two excellent reports
(References 2 and 3).

Basic design considerations and procedures to estimate the fatigue
life, various cumulative damage theories, and fatigue curves describing
the S-N characteristics of various materials are given in References 1
and 2. Fatigue design data for bonded aluminum structures can be found
in Reference 4.

The present study concentrates on the response aspects of the
problem, where considerable overlapping also occurs. Special effort
is made to incorporate the nonlinear effects due to large deflections
into the analysis. The discrepancy between the measured and computed
responses can be attributed to these nonlinear effects. The computed
results have been based on linear or small deflection theory, while test
panels responded nonlinearly with large deflection at sufficiently high
intensity noise levels. These are summarized briefly in Section II.

1
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In approaching this problem of random excitation of nonlinear

systems, one can turn to a number of prior investigations. Therefore,

an important task of this study is to review, classify, and evaluate

these existing techniques. The evaluation is based on some realistic

considerations from the point of view of their application to complex

panels of aircraft structure. These are presented in Section III. It is

evident from the survey that additional research is necessary to

accurately predict the nonlinear random response of aircraft panels.

Section IV gives a mathematical formulation, which is based on

the finite element method and the equivalent linearization approach,

for complex structures subjected to random acoustic excitation. An

iterative scheme used in the solution procedure and a simplified flow

chart are also presented. The ratio of root mean-square (RMS) response

of nonlinear and linear cases is expressed as a function of linear

frequency, equivalent linear frequency, and power spectral density (PSD)

of the excitation. A preliminary procedure for the improvement of

predicting responses using large deflection theory is also included in

this section.

Section V gives a review of the advances in the development of

geometrical stiffness matrices for various finite elements. These

matrices are required in the nonlinear random vibration analysis.

A "Quasi-Linearization" method which is, at present, in the conceptual

phase is discussed briefly in Section VI. Conclusions and recommended

future work are given in Section VII.

2



AFFDL-TR-79-3028

SECTION II

EVIDENCE OF LARGE AMPLITUDE NONLINEARITY

Some aspects of current knowledge about the response of structural
panels to high intensity noise are discussed in this section. Tests on
aircraft structural components have displayed behavior that is not
consistent with linear or small deflection theory assumptions. The
deviations, which differ for various structural configurations, are

suggestive of two types of nonlinearity sources:

(1) Nonlinear damping ratio, and

(2) Nonlinearity due to large deflections.

Commonly used methods for determining damping ratio are the bandwidth
method by measuring half-power widths at modal resonances, and the decay
rate method by measuring the logarithmic decrement on decaying modal
response traces. The values of damping ratio range generally from 0.001
to 0.025 for common panel constructions used in aircraft structure. For
such relatively small damping coefficients, it is reasonable to assume
that the effects of nonlinear damping on structural behavior would also
be small in comparison to large amplitudes. This has been observed
in many experiments and is discussed and summarized in the following.

Many documents, for example references 5 to 8, have repeatedly
reported that a poor comparison exists between the measured and calculated
RMS responses. They all observed that the test panels responded with
large deflections at high sound pressure levels, whereas the computed
responses were based on linear small deflection theory. This is the
major reason for the discrepancy between measured and calculated results.

This experimental evidence was taken from:

(1) ASD-TDR-62-26 (Reference 5)

Fitch et al. observed the nonlinear stress response at relatively
low siren excitation level for conventional skin-stringer panels
as shown in Figure 1. Their explanation to this nonlinear behavior was

3
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the diaphragm action which limits the amplitude of deflection of the

vibrating plates. Examination of Figure 1 indicates that as the
excitation level is raised above 104 dB, the structural response begins

deviating from the linear assumption.

(2) AFFDL-TR-68-44 (Reference 6)

Three types of typical aerospace structures were tested at an
average sound pressure level (SPL) of 157 dB overall. They are a skin-
stringer 3-bay, a honeycomb sandwich, and a corrugated sandwich panel.

Measured RMS deflection on the skin-stringer panel was surprisingly
large, 0.064 inch, or twice the skin thickness. Measured honeycomb

panel RMS deflection was 0.031 inch, or 1.4 thickness of the top skin.
Comparisons of RMS deflection showed that calculated skin-stringer panel
deflection was 34-percent high and calculated honeycomb panel deflection
was 5-percent high only. Comparisons between calculated and measured

RMS stresses were poor. They are shown in Table 1 taken from Reference 6.

TABLE 1

STRESS COMPARISON
(After Jacobs and Lagerquist, Reference 6)

RMS Stress (kpsi)

Stress Measured on Panel:
Panel Type Component Calculated Measured

A B C D E Average

Skin-stringer ;:(:x 7.7 2.2 2.9 2.5 --- 2.2 2.5

'f72 2.4 0.63 0.94 0.78 1.1 0.84 0.87

Honeycomb 2.6 2.0 1.8 1.2 1.2 1.3 1.5

; 2.1 1.3 1.3 0.91 0.84 1.3 1.1

Strain components were also measured with rosette strain gauges
mounted on both the upper and lower surfaces. Appreciable membrane stress

was recorded, which implies the panels responded with large deflections.

5
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The stress levels measured were actually very low, showing that the

nonlinearity is not associated with yield or plasticity of the material,

but rather with coupling of inplane and out-of-plane displacements.

(3) AFFDL-TR-71-126 (Reference 7)

Three nine-bay, cross-stiffened, graphite-epoxy panels were exposed

in a broad-band 166 dB SPL overall acoustic environment. Under loud

speaker excitation, the lowest natural frequency was at 174 Hz. But

under the acoustic pressure in the progressive wave test chamber, the

lowest frequency increased from 200 Hz to 290 Hz as the SPL was increased

from 139 dB to 166 dB. The increase in natural frequency with increasing

pressure level is attributed to the large deflections of the panel response.

Again strain comparisons were poor as shown in Table 2 taken from

Reference 7. Deflection was not measured.

TABLE 2

COMPARISON OF EXPERIMENTAL RESULTS OF CROSS-
STIFFENED PANELS WITH RESULTS USING

UNSTIFFENED PLATE THEORY
(After Jacobson, Reference 7)

Fundamental Strain at Strain at
X , =b a

Approach Method Frequency x =0, y y = 0

(Hz) (micro-inch/ (micro-inch/
inch-rms) inch-rms)

Analytic Simplified Theory 182 180(2) 406(2)

(Beam Functions)

Analytic Finite Element 180 180(2) 348(2)
REDYN)

Experi- Test Panel 187(1) 96(4 )  160 (3 )

mental A-GG-B-2

Experi- Test Panel 170(1) 74(4) 164 (3 )

mental A-GG-B-3

(1) Obtained during damping factor determination under loudspeaker
excitation

(2) Strain response to fully correlated, white noise excitation of 1.2 x
10-6 psi 2/Hz

(3) Strain gage No. 2 reading during 139 db run
(4) Strain gage No. 7 reading during 139 db run

6
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(4) AFFDL-TR-77-45 (Reference 8)

A total of ten bonded aluminum panels were tested. Table 3, taken
from Reference 8, gives the ratio of the fundamental frequency obtained
under the loud-speaker excitation to the frequency at which the peak
strain PSD occurred in the sonic fatigue test at 166 dB overall SPL.
Again, the agreement between the test strains and the predicted strain
was poor as shown in Table 4 (taken from Reference 8), and no measured
deflection was reported.

Therefore, a conclusion can be reached that any real structure
designed for service in high sonic environment regions would respond
with large deflection nonlinearity.

7
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TABLE 3

FREQUENCY AND DAMPING DATA
(After Jacobson, Reference 8)

Natural Frequencies

Damping(, ) (2)
Panel Factor First Second Third Fourth f166  f166

Mode Mode Mode Mode f

(Hz) (Hz) (Hz) (Hz) (Hz)

A-I-I 0.018 137 189 265 340 218 1.59

A-I-2 0.015 97 147 179 266 204 2.10
A-2-1 0.011 144 209 284 386 212 1.47

A-2-2 0.009 141 203 279 376 211 1.50
A-3-1 0.012 165 245 - - 205 1.21

A-3-2 0.011 141 210 295 413 207 1.47
A-4-1 0.023 80 114 155 226 140 1.75

A-4-2 0.009 84 124 172 235 144 1.71

A-5-1 0.012 103 155 211 292 150 1.46
A-5-2 0.014 99 153 215 300 143 1.44

Average 0.0134

(1) Nondimensional viscous damping factor, -c

c
(2) The parameter f166 was the frequency of the predominant strain

response at 166 dB overall SPL.

8
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TABLE 4

STRAIN PREDICTIONS BASED ON THE ASSUMPTION
OF FULLY CLAMPED EDGES OF A PLATE

(After Jacobson, Reference 8)

RMS Strains

Gage No. 2 Gage No. 4 Gage No. 11
Test Panel Over- Pres-
Being Sim- All sure Pre- Pre- Pre-
ulated SPL PSD Test dicted Test dicted Test dicted

(dB) (psi2/Hz) (p"/") ,. (11,,/,' , 61,,/,,) (p,, /,,) (p,,/,, )

A-2-1 142 5.0 x 10-6 32 445 27 ill 84 270

A-4-1 145 3.4 x lO- 5  75 766 110 192 178 466

9
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SECTION III

REVIEW OF EXISTING APPROACHES
ON NONLINEAR RANDOM VIBRATION

Methods used to model structural systems can be basically divided

into analytical methods and numerical methods. Analytical approaches

are usually focused on obtaining explicit closed-form quantitative

results for simple structural configurations. For complex structures

such as found in aircraft design, numerical methods must invariably be

employed to accurately model the complex configuration. However,

analytical methods can generally provide more insight and lead to a

better understanding of the problem. And other approximate and numerical

techniques can then be extended from there. In this section, both

analytical and numerical approaches for solving random excitation of

nonlinear systems are reviewed.

1. ANALYTICAL METHODS

a. Fokker-Planck Equation Approach. The most general extension of

the Fokker-Planck equation method to the multiple-degree-of-freedom

(multiple-DOF) systems of nonlinear second order equations was developed

by Caughey (References 9 and 10). One great advantage of this method

over all of the other approaches is that it gives an exact solution.

However, this should not be construed that all problems relating to the

response of nonlinear systems with random excitation have been solved.

In fact, exact solutions of the steady-state probability function have

only been found for certain restricted classes of problems provided:

(1) The only energy dissipation in the system arises from

damping forces which are proportional to the velocity,

(2) The exciting forces are uncorrelated Gaussian white noise,

(3) The spectral density matrix of the excitation is proportional

to the damping matrix of the system, and

(4) The restoring force vector of the system is derivable from a

potential.

10
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The solution of the time-independent Fokker-Planck equation under
these conditions represents a very significant accomplishment. Problems
of simple structures which satisfy these four conditions were solved
by Herbert (Reference 11 and 12). Yet many problems of practical interest
do not satisfy those conditions necessary for a solution. The required
relationship between the excitation and the damping matrix is particularly
restrictive. In additiion, the transitional probability density function
generally can not be found with the Fokker-Planck approach. Without this
transitional probability, it is generally impossible to obtain the
correlation function and PSD of the response. Thus, a number of
approximate techniques have been developed to treat a broader class of
problems than is presently possible with the exact analysis. These are
the equivalent linearization technique, perturbation method, and others.

b. Equivalent Linearization Approach. This method was originated
by Krylov and Bogoliubov (Reference 13). Caughey (Reference 14) and
others have extended the equivalent linearization technique to systems
of nonlinear differential equations. In Caughey's formulation, the
correlation function matrix of the excitation must be diagonalized by
the same transformation that diagonalizes the linear mass, damping, and
stiffness matrices. This represents a rather severe limitation and in
particular precludes the application of this formulation to dynamic
systems which are excited randomly at only several nodal points. Lin
(Reference 15) used the equivalent linearization method with a single-
mode approach And obtained response for a rectangular panel subjected
to randomly-varying loadings. Seide (Reference 16) has employed the
formulation by Caughey and obtained solution for a simple beam subjected
to uniform pressure excitation uncorrelated in time.

Foster (Reference 17), and Iwan and Yang (Reference 18) have
extended the equivalent linearization technique by removing the restriction
imposed on the transformation. Foster's formulation is very general.
He first replaced the original n-DOF second order system by a 2n-DOF
first order system. The determination of the equivalent linear stiffness
coefficients is then accomplished by the inversion of a 2n x 2n mean-square

11
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matrix and an iterative procedure. Practical application of this

approach to a simple deep-ocean tower frame structure is reported in

Reference 19.

c. Perturbation Approach. A perturbation method, based on classical

perturbation theory, was developed by Crandall (Reference 20) to obtain

approximate solutions to nonlinear systems, containing a small parameter,

excited by a weakly stationary random Gaussian process. In principle,

the perturbation approach can be extended to systems of coupled nonlinear

equations in which the nonlinearities contain a small parameter. Lyon

(Reference 21) used this method to study the responses of a nonlinear

string. Tung, Penzien, and Horonjeff (Reference 22) used the perturbation

procedure to a two DOF system. For complex structures, however, the

algebraic operations may become so unwieldy that the method is no longer

practical. In addition, there are certain subtle questions about the

convergence of the power-series expansion for the nonlinear response still

remaining unanswered.

d. Other Approximate Methods. Fox et al. (Reference 23) have

developed three new approaches: (1) Direct Evaluation of Spectra,

(2) Estimates of Equilibrium Distribution, and (3) Generalized Kinetic

Equation. They have applied the direct evaluation of spectra method to a

hinged uniform beam with the assumptions that the force spectrum is white

and that all DOF are equally forced and have the same damping factor.

Extension of these methods to complex structures would certainly require

considerable efforts.

2. NUMERICAL METHODS

Numerical methods can be subdivided into two categories: numerical

solutions to differential equations or finite difference method, and

matrix displacement method based on discrete element idealization or

finite element method.

a. Finite Difference Approach. Numerical solutions to differential

equations are somewhat restricted so that these techniques can be

12
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practically applied only to simple structural configurations. Belz
(Reference 24) used the finite difference approach and obtained statistical
response for a simple uniform beam subjected to a single concentrated

load at the midspan of the beam.

b. Finite Element Method. Application of the finite element methods
to linear structures subjected to random excitations have been presented,
for example, by Jacobs and Lagerquist (References 6 and 25), Olson and
Lindberg (Reference 26), Jacobson (Reference 7), and Olson (Reference 27).
In Reference 26, refinement on the continuity between the stiffeners and
the panel itself was introduced. Olson in Reference 27 presented a
consistent formulation for the cross spectral density matrix of the
excitation. Both should improve the accuracy of predicting random
responses for linear structures.

Application of the finite element method to deep-ocean towers has
been given by Foster (Reference 19) and to off-shore towers by Penzien
et al. (Reference 28). For these problems, the nonlinear effects can be
expressed explicitly in terms of the displacements or velocities. But,
this is not possible for problems of complex panel responses to high
intensity noise. The nonlinear effect due to large deflections or the
geometrical stiffness matrix is not known a priori.

Extension of the finite element approach to complex structures under
high noise environment with large deflection nonlinear effect is the
purpose of this research. A matrix formulation which is based on the
finite element method and the equivalent linearization technique is

developed and presented in the next section.

13
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SECTION IV

MATHEMATICAL FORMULATION

1. FINITE ELEMENT REPRESENTATION

The structures considered will be restricted to stable structural

systems which are highly resonant, that is with little damping. These

are typical properties for panel components of aircraft structure.

In the matrix structural analysis, the structure is idealized into

a finite number of discrete structural elements connected at node points.

The physical properties of the structure are assumed to be lumped into

individual elements. The stiffness equations of motion for such an

element under the influence of dynamic loading, inertia, damping, elastic,

and nonlinear large deflection characteristics are:

[m]{ } + [c]{} + ([k] + [kg({ 6 })]){6} = {f(t)} (1)

where {6} and {f} are vectors of nodal displacements and applied forces,

respectively. The consistent mass [m], damping [c], and linear stiffness

[k] matrices have been developed for almost every beam, plate, and shell

element available. The element geometrical stiffness matrix or nonlinear

stiffness matrix [kg ({6})], which is displacement dependent and is

induced due to large deflections, will be discussed in Section V.

By assembling all the elements, and applying the kinetic boundary

conditions, the equations of motion of the structure are:

[M]s{q} s + [C]s{q} s + ([K] s + [Kg({q}s )]){q} s = {F(t)} s  (2)

in which {q}s and {F} s denote the vectors of nodal displacements and

forces of the structure, matrices [M] s , [C] s , [K] s, and [Kg] s are the
mass, damping, stiffness, and geometrical stiffness coefficients of the

structure, respectively.

14
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Applying the static condensation (or Guyan reduction) and retaining
only those DOF, say m of them, normal to the surface of the structure,

Equation 2 may be written as:

[M]{q} + [c]{q} + ([K] + [Kg({q})]){q} = {F(t)} (3)
mxm mxl

where {q} is a vector containing all nodal deflections normal to the
panel structure. The matrices [M], [C], and [Kg] denote the reduced mass,
damping, stiffness, and geometrical stiffness, respectively.

2. DAMPING REPRESENTATION

For certain forms of damping, the coupled nonlinear equations of
motion, Equation 3, can be reduced to a set of equations which contain
coupling only in the nonlinear terms. This requires the determination
of the eigenvalues and eigenvectors of the undamped linear system

W[M]{ ( j ) } = [K]{q (j)} j : 1,2,...,m (4)
ii

in which w. is the natural frequency and {(J} is the corresponding

j-th mode shape of the linear structure.

Apply a coordinate transformation, from the nodal displacements to

the modal coordinates, by

nq} = [<]{ } n <m (5)
mxl mxn nxl

in which { } represents a vector of modal coordinates. Substituting

Equation 5 into Equation 3 and premultiplying by the transpose of [q],

Equation 3 becomes

rMj{q} + [0]T[c][0]{} + tKjfE}

+ D1 T[Kg({ })][0]{(} = {P(t)} (6)

15
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where {P} = [4] {F is the generalized force vector in modal coordinates.

The terms Mj and K. are the j-th generalized mass and stiffness defined by

M. = {()TM{()

K. = f (J)}T[K]{ (J)} = W2M. j = 1,2,...,n (7)

The equations of motion, Equation 6, will contain coupling only in

the nonlinear terms if the viscous damping (Reference 29) is proportional

to inertia, stiffness, or both, that is

[C] = i[M] + XEK] (8)

where p and X are proportionality constants. Then the j-th generalized

damping coefficient is given by

= iM. + A K j = 1,2....n (9)

Structural damping is another form of damping that allows it to be

uncoupled, that is

[C] = ig[K] (10)

where g(g<<l) is the structural damping coefficient. The j-th generalized

damping coefficient is

C. = ig K. (11)

Sometimes it is more convenient to represent the damping as a

fraction of critical damping. The modal damping ratio j represents

the fraction of critical damping in the j-th mode. This ratio is

16
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related to viscous damping proportionality constants P and X in Equation 8,
and to structural damping coefficient g in Equation 10 by the relationships

,j + Xwj, for viscous damping
2j = (12)

g, for structural damping

When damping can be represented by proportional viscous or structural
damping, then the equations of motion, Equation 6 can be written as

[M4{f} + rCj{E} + [Kj{} + [p]T[Kg({ })][]{ } = {P} (13)

The j-th row of Equation 13 has the form

Mj j + Cj j + KjEj + n {=}[Kg]{(k}Ek  p.

k=l 3

n m m (14)Mj + Cj j + Kj j + E=i k E E 4rjKgss D P "

r=l s=l rjssk

which has coupling only in the nonlinear term.

3. EQUIVALENT LINEARIZATION APPROACH

The basic idea of the equivalent linearization method (References 14
and 17) is to replace the actual system, Equation 13 or 14, with a set of

equations of the form

Mj j + Cj j + Keqj + e( . = Pj

j = 1,2,...,n (15)

where Kieq is an equivalent linear stiffness constant, and e. is the
error of linearization or equation deficiency term.

If this error term e. is neglected, then Equation 15 is linear
and it can be readily solved. The smaller that the error is, the
smaller the error in neglecting it, and the better approximate solution

17
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to Equation 14 will be obtained. To this end, the n equivalent linear
stiffness constants, kj , are chosen in such a way that the mean-square,

E[e 2], is minimized. The error of linearization is

n

e. = K.j. - ) + (k)

k=l

j = 1,2,...,n (16)

which is the difference between Equation 14 and Equation 15. From
Equation 16 it is apparent that e. depends upon the equivalent linear
stiffness constant Keq It is these constants which will vary in order

1 2to minimize the n values of E[e. requiring the following equation for
Keq

29E[e i]
=Kq 0 j :l,2,...,n (17)

3

where the operator E[ ] denotes the statistical average or mathematical
expectation of the appropriate variables. Substituting Equation 16 into
Equation 17 and interchanging the order of differentiation and expectation

Equation 17 reduces to

KjE[ ] K qE[] + E[ i n [Kg({ })](} = 0
J + k=l

j 1,2,...,n (18)

Solving for the equivalent linear stiffness constant Keq Equation 18

gives

E[j 0 T(k)

Keq = K. + k=l

j = 1,2,...,n (19)

18
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Note that Equation 19 is not an explicit equation for K.eq, since the
J eq

expectations appearing on the right-hand side depend on K. . In
addition, the geometrical stiffness matrix which is needed in the
numerator is not known a priori, and the coupling of the modal displacements
causes some difficulties in evaluating the expectation. Therefore,
one has to turn to simpler approach with a single-mode approximation
solution. Further study is needed to evaluate Equation 19 numerically

or by some other means.

4. SINGLE-MODE APPROACH AND MEAN-SQUARE RESPONSES

For most of the sonic fatigue analyses in practice, only a single-
mode approach and linear small deflection theory are commonly employed.
The inclusion of the large deflection into the analysis with a single-
mode approximation represents a significant improvement of the design
tools for complex structural panels.

Thus, if a single-mode approximation (usually the fundamental mode)
is assumed, if the excitation pressure to the structure is stationary,
Gaussian, and has a zero mean, then the expectations in Equation 19 can
be evaluated, and the equivalent linear stiffness constant becomes

Keq = K + 3{0}T[Kg]{}E[ 2] (20)

in which the subscript j has been dropped. Note again that Equation 20
Keq sic thexetainqEis not explicit for Ke , since the expectation E[e] depends on K

and also the geometrical stiffness matrix which is displacement dependent
and is not known a priori. Therefore, an iterative scheme is introduced
to determine Keq from Equation 20. This will be presented later. At
present, let us assume that a satisfactory equivalent linear stiffness
constant has been found. By dropping the error of linearization e(E)
from Equation 15, the single-mode approximation solution of Equation 3 is

obtained from

MP + C + Keq, = p (21)
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or

+ 2Cw + W 2  P (22)eq = M (2

where weq (Keq/M)1 /2 is an equivalent linear frequency, and C is the
modal damping ratio related to the linear frequency w by Equation 12.

Now a random analysis of the modal equation (22) may be easily
carried out to yield the PSD for the modal amplitude as

S (0) = Sp ()IH(Q)I 2 = WT[SF(F)]{2IH()I (23)

in which SF (Q) is the cross spectral density matrix of the noise
excitation {F. The frequency response function H(Q) is given by

H(Q) = 1 (24)
M(W2Q + i2 w o)

eq

The mean-square response of modal amplitude is related to S (Q) by

05

E [C2] =J S (Q) do

0

=C 2 S (Q)dQ

M2[(weq - 2)2 + (2Cw ) 2] (25)

For lightly damped ( < 0.05) structures, the response curves will be
highly peaked at weq. The integration of Equation 25 can be greatly
simplified if Sp (Q) or [S ()] can be considered to be constant in
the frequency band surrounding the resonance peak, so that

E[E 2 ]  S p(W eq ) f H(Q) 12 d

05

_ Sp(eq)24 Mww We (26)
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The covariance matrix of the nodal deflections {q} can be obtained
by use of the coordinate transformation given in Equation 15, then

[q k] = {¢} E[E2]{¢}T  j,k = 1,2,...,m (27)

The diagonal elements of [qjqk ] are the mean-square values of the nodal
deflections, and the off-diagonal terms are time averages of products of

deflections at different nodes. The mean-square node deflection

is simply

2-7= E[ 2] j

T7r 2 S (We)
: j = 1,2,...m (28)

4M 2 2meq C

in which ¢j is the j-th element in modal vector {¢}.

The element strains and nodal deflections are related by

{} = [S]I{q} + [S] 2 {q} (29)

in which {W} is the vector of element strains. [S] and [S]2 are the

strain-deflection transformation matrices. [S], is the usual trans-

formation matrix based on linear theory, and [S12 represents the inplane
strains due to large deflections. Equation 29 is based on an appropriate

linearization of the nonlinear strain-displacement relations (Reference 30)

which will be discussed in Section V. Thus, the strain covariance

matrix is given by

le r 6 l = 1S1l1_j O lI + IS jq k 2js
T T

+ [S] 2 [ qjqk[S], + [S]2[qkS2 (30)

The diagonal elements are the mean-square values of element strains.
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5. ITERATION PROCEDURE AND FLOW CHART

As it was pointed out earlier, in Equation 20 the equivalent linear

stiffness constant Keq depends upon its response, which, in turn, depends

upon Keq . And also, the geometrical stiffness matrix [kg] is response

dependent and it is not known a priori. In this way an iterative approach

to final solution occurs. It makes no difference at which point in the
iteration cycle the process begins. One certainly can assume either

equivalent linear stiffness or response at the outset. The process will

converge to an answer, provided the structure considered is a stable one.

All panel structures of aircraft or space vehicle under sound environment

are examples of such stable types.

Suppose, for definiteness, one desires to estimate the initial

equivalent linear stiffness constant as 1 eq The fact that both E[§ 2

and [Kg] can be approximated using the solutions of the linear equations

of motion (in Equation 26, weq has to be replaced by w in Equation 4),

facilitates the initial estimate of Keq through Equation 20 as

K1q = K + 3{ p}T[Kg]o{p}E[ 2]o (31)

This calculated initial estimate of K eq can be used to obtain refined

estimate of E[ 2]I and [Kg]l, that implies K2eq through Equation 20 in

the same way that Equation 31 implied K1eq As the iterative process

converges on the j-th cycle, the relation

Keq = K + 3W T[Kg]j{ }E[ 2

Kj-l (32)

becomes satisfied. The number of cycles required to attain convergence

depends on the nonlinear characteristics of the structure [Kg], the

intensity of the excitation [Sp (W eq)], and the accuracy desired. The

solution procedure is illustrated by a simplified flow chart shown in

Figure 2.
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IFORM [m], [k], [c] FOR EACH ELEMENTI

ASSEMBLE [M]s , [K] + [

JAPPLY GUYAN REDUCTION fql}s = [T] fqj AND 1

COMPUTE [M], [K], [C]

ISOLVE w 2[M]{0} = [K{I

ANUS STRAFRIN fjI

SSET ITERATION CYCLE COUNT j=l I

COPUE(E[E 21) j_l , (KI j"

JCALCULATE (Keq). = K + 3{ }T([Kg]) j_IfO}(E[E2]) j_1 i =j+l

NO

ICOMPUTE RMS DEFLECTIOS

AND RMS STRAINS

Figure 2. Simplified Flow Chart for Complex Panel Nonlinear Response
to High Intensity Random Loads
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6. ESTIMATION OF IMPROVEMENT

It is a very difficult task to give an accurate quantitative estimate

on the improvement that would be made in predicting random responses

using the nonlinear formulation without developing the computer program

and analyzing these problems given in Section II. A preliminary estimate

of root-mean-square (RMS) deflections, however, is possible. The ratio

of RMS deflection based on large deflection nonlinear theory to RMS

deflection using linear theory is given by

(RMS deflection)NL w ((e3) 3

(RMS deflection)L Weq w Sp w (33)

in which w is the linear natural frequency, and weq is the equivalent

linear frequency. If the spectral density function of excitation Sp (Q)

is a slowly varying function with respect to frequency, Equation 33 can

be further simplified to

(RMS deflection)NL ( 34

(RMS deflection)L Weq

Let us examine the data obtained in Reference 6 (see Section II,

paragraph 2), because this was the only report in which deflections

were measured. For a Skin-Stringer Panel, the measured RMS deflection

is 0.064 inch, or twice the skin thickness. Comparison showed that

calculated panel deflection based on linear theory is 34-percent high.

The rectangular panel has a length-to-width ratio of 3.7. It was

assumed to be clamped along the edges in the analysis. The ratio
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of linear frequency to equivalent linear frequency needed in Equation 33
or Equation 34 can be estimated from the following data:

Support Length-to-
Condition Width Ratio Reference

eq

Clamped 1.0 31 0.64

Clamped 2.0 30 0.58 (extrapolated)

S

s s 3.7 32 0.53

c

c

siZ s 3.7 32 0.65
C

With an approximate ratio of (w/we) ) 0.6, Equation 33 becomes

(RMS deflection)NL = /Spmeq (35

(RMS deflection)L & e (35)

The RMS deflection based on large deflection theory would be very close

to the measured value.

Without analyzing the problem with a computer program, it is very
difficult to give a quantitative estimate on the improvement in predicting
response strains using nonlinear theory. The difficulties come from the
transformation matrices [S] 1 and [S]2 in Equation 30. Therefore, no
attempt is given for pursuing it further.
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SECTION V

GEOMETRICAL STIFFNESS MATRICES

The geometrical stiffness matrix kg({ 6}) needed in the formulation

has been developed for various types of elements. They have been used

successfully, in conjunction with the consistent mass and stiffness

matrices, in problems of large amplitude vibrations of complex structures.

A brief review of the advances in the development of geometrical stiffness

matrices and the associated large amplitude vibration problems is given

in this section.

Extension of the finite element method to large amplitude vibrations

of beams and rectangular plates was first reported by Mei (References 33

and 34). The geometrical stiffness matrix formulation for a rectangular

plate element in Reference 34 was based on a modified form of the Berger's

hypothesis (Reference 35). Nonlinear frequencies, which were obtained

for rectangular plates with various edge support conditions, agreed well

with the approximate analytical solutions. Results for some boundary

conditions in Reference 34 were obtained for the first time.

One important thing which has to be mentioned at this point is that

the nonlinear frequencies determined from the large amplitude vibrational

analysis using a "Quasi-Linearization" technique have the very same

physical meaning, comparing Equation 14 with Equations 21 and 22, as the

equivalent linear frequency, Weq, using equivalent linearization method.

Therefore, gaining a better understanding of large amplitude vibrations

of plate and shell structures will certainly be helpful in building a

more solid background for problems of random vibrations of complex

nonlinear structures. This has been found true in the linear case.

Recently, Rao and his colleagues presented a simplified formulation

for large amplitude vibrations of beams (Reference 36), rectangular

plates (References 30 and 37), and circular plates (Reference 38). Their

formulation is based on an appropriate linearization of the nonlinear

strain-displacement relations and an iterative scheme of Mei's

(Reference 33) to obtain the nonlinear frequencies. This linearization
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technique was used in the strain-deflection relations of Equation 29.

Reddy and Stricklin (Reference 39) developed a linear and a quadratic

isoparametric rectangular element to study large amplitude plate vibrations.

Most recently, two triangular element formulations have been developed for

large amplitude vibrations of thin plates of arbitrary planform. The first

one (Reference 40) is consistent with the higher order bending element

TRPLTI (Reference 41) in NASTRAN program, and the second (Reference 41)

is consistent with the high precision plate element of Cowper et al.

(Reference 43). Nonlinear frequencies obtained for numerical examples

include rectangular, circular, rhombic, and isosceles triangular plates.

Raju and Rao (References 44 and 45) intended to develop a shell of

revolution frustum for nonlinear vibration analysis of thin shells of

revolution; however, their results failed to predict the "softening"

type of nonlinear behavior as discussed by Evensen (Reference 46).

Geometrical stiffness matrices of various types of finite elements

that have been developed for free vibration analysis involving large

deflection nonlinearities are listed in Table 5.

TABLE 5

GEOMETRICAL STIFFNESS MATRICES
OF VARIOUS FINITE ELEMENTS

Element Type Reference

Beam Mei33 (1972)

Rao et al.36 (1976)

Rectangular Plate Mei 34 (1973)

Rao et al.30 (1976)

Reddy and Stricklin 39 (1977)

Rectangular (Orthotropic) Plate Rao et al. 37 (1976)

Circular Ring (Orthotropic) Plate Rao et al.38 (1976)

Triangular Plate Mei and Rogers40 (1977)

Mei et al.42 (1978)

Shell of Revolution Raju and Rao 44'45 (1975, -76)
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SECTION VI

QUASI-LINEARIZATION METHOD

The same physical interpretation between the equivalent linear
frequency and the nonlinear frequency, Equations 14, 21, and 22, leads
to the idea that the method of quasi-linearization may also be applied
to problems of complex nonlinear structures subjected to random loads.
The quasi-linearization technique has been used successfully in predicting
nonlinear frequencies for complex structures (References 33, 34, 36-40,
42, 44, 45). Nonlinear frequencies of higher modes can also be
determined by this technique (References 30, 33, 40 and 42). Those
nonlinear frequencies, weq' j, can be employed to obtain an approximate

random response of deflections from the relation

n (j)7T{ (J)}T[SF(Weq )]{q(J)}
[q-s ] = Z {2 (j)}T (36)j=l 4M.i.W .jj j eq,j j

r,s=l,2,...,m

This method may very well be more promising than the equivalent
linearization technique. However, both methods are worth pursuing

further.
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SECTION VII

CONCLUSIONS

1. SUMMARY OF RESULTS

The omission of "large amplitude nonlinearity" in the analysis is

identified as the major factor that contributed to the wide discrepancy

between the measured test data and computed results. A mathematical

formulation based on the finite element displacement method and the
equivalent linearization technique is developed. Statistical responses

using a single-mode approximation can be expressed in terms of linear

frequency, spectral density of excitation, equivalent linear frequency,

and transformation matrices. An iterative scheme for determining the

equivalent linear stiffness constant is presented. Advances in the
development of geometrical stiffness matrices for various finite elements

are reviewed. Finally, a concept of applying the quasi-linearization

method to problems of nonlinear complex panel structures subjected to

high intensity noise levels is discussed briefly.

2. RECOMMENDATIONS

a. Development of Computer Program. A computer program should be
developed based on the finite element-equivalent linearization formulation

presented. The tomputed results should be compared with the experiments.

b. Experiments. Carefully monitored and controlled experiments
with simple structures (such as plates) and typical aircraft panels

should be conducted at both low and high noise environment. Measurements

of deflection, strain, frequency, and pressure spectral density should

be precisely recorded.

c. Refinement of Finite Elements. Refined finite element

representations should be developed and incorporated into the computer

program; such refinements, for example, as higher-order displacement
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function for beam element with various thin-walled cross-sections,

variation in thickness for plate element, shallow shell element,

anisotropic properties for modeling composite panels, etc.

d. Quasi-Linearization Method. More research study on this very

promising approach should be conducted.
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