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Abstract

This paper presents the results of an analysis of the vibra-
tional spectrum of the solvated alkali metal cations in dimethyl
sulphoxide (DMSCG). The purpose of this study is to determine more
about the structure of the primary solvation shell and to formulate
a clearer picture of the vibrational states of these species. The
ionic systems are investigated with the use of a potential energy
function which consists basically of an ionic term and an exponential
repulsiuvin. Dispersion interactions, where they apply, are accounted
for with the use of the Morse function. We show that for systems with
cubic symmetry there is no dependence in the force constant upon
electrostatic terms. Thus, the far infrared spectrum provides a
probe of the repulsion interaction which operates between the ion and
the solvent. On the other hand, the breathing modes depend upon
all contributions in the potential function. Our study shows that
the ions of lithium, sodium, and potassium can be regarded as
classical point charges. Dispersion effects are not important for
these ions. The far infrared spectra of the ions of rubidium and
cesium, on the other hand, depend upon dispersion forces. Finally,
the ions of lithium and sodium may be regarded as atomic masses
trapped inside an infinitely massive solvent cage. For the
remaining alkali metal ions, reduced mass effects are important

in the determination of the vibrational frequencies.
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Introduction :

A knowledge of the mechanics of ionic solvation is important

for the understanding of a number of phenomena. For example, the |

|
deformation of the solvation sheath about an ion contributes to the ]

1.4
electrophoretic cffvct.l An adjustment of the solvation sheath i
about an ion or electroactive species often contributes to the f
activation of an electron transfer transition in an oxidation- r
reduction r'uctiun.: The elastic deformation of the solvation '
structure can be expressed in terms of the vibrations of the system. f
Thus, a knowledge of the vibrational modes of solvated ionic and H

molecular species is needed in order to understand a number of
transport and Kkinetic processes.,

Recause of the relative simplicity of the electronic structure
of the alkali metals and their cations, thev are potentially

excellent svstems to investigate in order better to understand

many of the features of the electron transfer reaction.
Flectrochemistry can be carried out on the alkali metal cations in
dimethyl sulphoxide (DMSO) as well as in other solvonts.3 All of
the available alkali metal cations are soluble in DMSO to some
extent. Thus, for these svstems there is the greatest amount

of information from spectroscopic experiments. Thus,

we concentrate our attention on these svstems in this paper.

In particular, we are interested in the vibrational spectra of

the metal cations in DMSO,
: 4 \l % e .5.° i
Edgell et al.” and Popov and his colleagues have carried
out extensive investigations of the far infrared vibrational

spectra of the alkali metal cations in DMSO., Thus, their data form




the basis of our investigation,

Edgell et ;ll.4 and POpovs'h in examining their data have
constructed potential energy functions in order to try to determine
the force constants for the vibrations in these systems. Gcnefally,
their analvses have been based upon the use of much simplified
modeis of the primary state of solvation. In particular, both
groups have examined a linear triatomic model in which the ion
is sandwiched between two solvent molecules. This model is not
adequate in that it does not usually consider enough of the solvent
which surrounds the ion. Specifically, a linear triatomic model
predicts that the force constant will depend upon an electrostatic
contribution which arises from the ion-dipole interactions. In
the following paragraphs we present a refined solvation model which
can account for more complicated states of solvation. We show that
whenever the geometry of solvation satisfies simple cubic symmetry
requirements, there will be no electrostatic contribution to the
force constant for the far infrared vibrational modes. The
conclusion reached by Edgell at al., that the repulsion interactions
are important in the determination of the magnitude of the
vibrational force constants survives in our treatment. Indeed,
it is strengthened. We assert, in fact, that the far infrared,
dipole allowed transitions of the ion vibrating within the solvent
cage provide a direct probe of these repulsion interactions.

The potential energy tfunction for a svstem of an ion with a
shell of solvent molecules (as dipoles) can be constructed from
four basic parts. The first, and obvious, part consists of the
electrostatic interactions which operate between the ion and the

solvent dipoles which surround it. The second part consists of
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the intermolecular repulsion interactions. Third, dispersion
interactions enter to a lesser or greater degree depending upon
the degree of polarizability of the ion and the solvent. Finally,
if the ion and its first solvation shell are immersed in a polar
solvent svstem, it is necessarv to consider the influence of the
remainder of the solvent svstem on the central ion.

For the solvated ionic svstem there are two distinct kinds
of force constant which operate. The far infrared, vibrationally
active transitions depend upon the oscillation of the central ion
within its cage of solvent molecules. For this degree of freedom
the interaction between the solvent molecules in the solvation shell
and the interaction between the solvent and outer solvent molecules
is unimportant. Indeed, as we show later, electrostatic interactions
in general are important only as cubic or higher order corrections
to the basic spherical harmonic oscillator potential energy
function.

On the other hand, the symmetric stretching, Raman active
mode depends upon a number of factors. In particular, it depends
upon the electrostatic terms which operate within the primary
solvation svstem, i.e., the ion and its first solvation shell,
as well as the interaction between the system and the outer solvent.
The secondary interaction between the primary solvated ion and the
remaining solvent svstem in part can be handled in terms of
electrical image interactions. Specifically, the solvated ion
resides in a spherical cavity. The charged ion and the solvent
dipoles all have images in the surrounding continuum dielectric.
In addition, there is a repulsion torce which acts to Keep the

solvent molecules within the cavity. As a consequence, although

£

ke i s ol



e

~§5-

the breathing mode is simple with respect to svmmetry, the mechanical i

interactions which determine the strength of the oscillation are
much more complicated than is the case with the infrared active
vibration of the central ion.

There are indeed other modes of vibration which are possible,
Many of these modes, however, are expected to be of very weak
intensity and low frequency. Nevertheless, they can be important in
the activation process for an electron transfer reaction. In
particular, the simultaneous stretching along one axis and
the contraction along another, can be important. This type of
elliptic deformation has been discussed before in connection with the
hvdrodynamic, collective model of ionic solvation. It represents
effectively a volume conserving, surface oscillation. In this
paper, however, we do not examine this particular vibrational mode.
On the one hand, there is no direct experimental evidence which can
he attributed to such vibrations. On the other hand, it may well
be the case that such vibrational modes represent collective
oscillations of the secondary solvation shell. In spite of a
lack of direct experimental evidence for the existence of these
vibrations, thev are nevertheless important to the electron transfer
process. They will be considered more in detail in a separate
paper.

The basic form of the interaction between the ion and its
collection of solvent molecules is through the ion-dipole inter-
action. However, in order to be able to describe the small
vibrational excursions which the ion can make away from its equilibrium
position at the centre of the solvation cage, it is necessary to

consider the expansion of the interaction in appropriate terms,
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This can be done in terms of the Carlson-Rushbrooke formula.
The reason for using the Carlson-Rushbrooke expansion is the

following. In a system in which the ion moves with respect to

a fixed set of solvent dipoles, it is necessary to be able to
specify the interaction between the ion and each of the dipoles 4
with reference to one point. (learly, for an ion with some form i

of symmetric solvation, the reference point for the ion is at the

P

centre of symmetrv. The use of the Carlson-Rushbrooke expansion
tormula [see appendix 1 for details] enables us to express the

ion-dipole interaction in terms of coordinates which are appropriate

A ol ok el

to the analvsis of the vibrations of the ion in the cage. This
has not been done in other trcatmcnts.4_h Our use of this type !
of expansion allows us to consider the types of caged ion vibrations 3
which occur in condensed systems, but not necessarily in the -
gas phase.

In the tollowing section we present the various forms of the
potential energy function. The force constants which are derived ]
from these functions are summarized. The details of many of the
calculations are presented later in this paper in a series of

appendices. There, a number of technical points are developed.

These matters, pertaining to computation, are important in the
analysis of the activation of the electron transfer reaction.

I'he application of the force constants to the analysis of the spectrum
of the solvated alkali metal cations in DMSO is considered in the

third section.




Potential btnergy Functions and Vibrational Force Constants

‘ In this section we present potential energy functions for

two basic types of solvated ronic svstem: a four-coordinated,

tetrahedral solvation, and a six-coordinated, octahedral solvation.
Mention i1s made ot the cight coordinated, cubic solvation case.

For an arrvangement of solvent dipoles (in a sense to ensure L
an attractive interaction) at the vertices of a regular tetra

‘ i

‘ ; 8
hedron, the Carlson- Rushbrooke” expansion vields

¥, 4 EE11 +ig/TOn77 [Ysa(r) - Y .-«r\ltr/k\‘l] (1
R2
inowhich Yo (r) s the spherical harmonic function. The vector ’
il
r = (X,y,2) defines the position of the ion with reference to the 'y

centre of svmmetryv. The distance R 1s the distance between the
centre of svmmetry and the solvent molecules.  In the regular
arrav, cach molecule has the same value of R,  The molecular dipole
moment i1s given by u.

An octahedron with dipoles at the vertices vields the tollowing:

Vo= - 0 =M1+ (35/18)/773(r R\‘*'(\'.,u-\ + VSTIT[Y oo (1)
L {
R\

. Y, Hm]” ()

Another torm which 1s possible, but probably not common,
ylaces the dipoles at the vertices of a regular cube. In this case
i !
the tirst term past the ceroth orvder contribution depends upon

O l"l ) 1




[t is obvious that the equilibrium position is located

at v = 0, i.e., at (0,0,0). It is equally clear that in both eqn (1)

and (2) there is no contribution to the potential of order O(r7).
Hence, when the harmonic oscillator limit is sought (through the

use of a Taylor series expansion) in the complete potential energy
function, there will be no electrostatic contribution. This 1s

not true if the solvation is linear. For linear solvation, however,
two distinct caged ion vibrational modes are predicted; this is
considered further in an appendix. The non-involvement of electro-

static terms in the force constants anplies only to the infrared,

dipole allowed transitions in a point charge svstem,

There are scveral acceptable expressions for the usually short
ranged, repulsion interaction which operates between atomic and

_1‘
molecular species. Although the repulsion term (R "7) in the
Lennard-Jones potential is perhaps best known and most widely used,
: 1 3 9

an exponential form, used extensively by Born,  can also be
emploved. There are obvious computational advantages to the
use of the Lennard-Jones potential for many applications. However,
for the centro-symmetric svstems we investigate here, the Lennard-
Jones function has the disadvantage of not allowing an appropriate
Laplace-type expansion. Thus, for the repulsion which operates
between species, we make use of the exponential rvepresentation.

The dispersion interaction, as it is contained in the Morse
potential function, is also given in an exponential form.

The Born repulsion has the simple exponential form




V. Boexpl-(ror )/o] (3)

where B oand poare constants.  When dispersion is also considered,

10

the Born term is expanded into the Morse function:

V. = D{1 - exnf-k(r-v_)]}? (4)
m ¢
where, as usual, D is the dissociation energy and v is a constant
with the units of inverse distance.

The Laplace oxpansion of the exponential function (3) is

given by (see appendix 3)

3 b ; 7 : » g = \ )
\r - 4uB “\P("v'/“)\,}"l\fm“H(‘m“‘)“““”'(‘“/‘”\0“‘/0)
+ (!‘/.v)i“l(l‘/.\)k“('l/s') - (I\’/w)ic(l‘/s\)k“l(R/(‘)}. (S

'he functions L, (v) and K, (X) are respectively the modified
spherical Bessel functions of the first and second kinds. This
cxpansion is valid only as long as r < R. A more general expression
can casily and obviously be written (see appendix 3).

For a four-coordinated, tetrahedral svstem the contribution
from eqn (3) throupgh (5) to the svstem potential energy function

is given by

\"_ = lc{.l.r’fl‘}i\",o(r)l’o(r,l{) + i_%/.s.URT[YS'S(H - \'33(1'111'3(1',1{)
(6)

with
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t, (r,R) "-(.'\"l)I\,(I'/.‘)k\.(l{/.‘) U (l‘/.‘)ik,'l(l"/.‘)k‘,(R/.‘)

(Rr’.\h\,(r/.\lk“l\I\'/.\) (ba)

3
Fhe Laplace expansion of the Morse tunction tollows that i
alrveady shown tor the exponential repulsion,  Apart from a constant .
tactor D, the dissoctation energy, the expansion is the same 4
(see appendin 30) [t can be written as K
4
3

Y " (v ‘ ) )

D D \ vy R)E . (v R 7
m 8 \‘m( \'m“‘ g\ R { 1

Cam

with ¢

B e, R) s v\]\(u{(_) (.‘\"I)lv.\p(.ltvll\,(.‘»r)k\,(.‘»l\‘)

.'l\_(hl')'\\,(-'{‘l ¢ .'(»r)lvxp(»l{v)l\‘ ‘(.'ur)l\,(.'nk)

+

l\"l (~ l‘)k\,(r!ill .'UN\[l‘\p(uRv)l\.(.'kl‘)l\\,‘ (2xR)

l\.(;r)k‘..l(»l\‘)l (8)

It s evident that because of the tunctional form ot the
repulston ntevactions (and an the Morse tunction, the dispersion
contraibution) there s a non vanitshing second ovder contribution
to the Tavior series evaluated about v (with b 0). Thus, as
noted above, although the torce constant does not depend upon

any electrostatic contribut tons, theve are contributions from




ll_
the repulsion terms and from the dispersion interaction (as it is
expressed in the Morse function),
In the limit in which dispersion interactions play little or
no role, and where there are only repulsion contributions, the
expressions tor the torce constants in the harmonic oscillator

limit are the following: the four-coordinated, tetrahedral system,

(4B/3p7) (1 :U/Rv) : (9a)

>
]

the six-coordinated, octahedral system,

k. = (2B/p?) (1 - lp/R‘); (9b)

O >

and the cight -coordinated, cubic system,
ke = (8B/3p%)(1 - -'t‘/R,_-)- (9¢)

In contrast, a svstem potential which i1s a simple combination
of an electrostatic term and a Morse function (i.e., dispersion

included) vields the foilowing expressions for the force constants:

k, = 8Dx?/3 (10a)
Ky = 4Dx? (10b)
ke = 16Dc?/3 (10¢)

—
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Moolwyn-Hughcsl( points out that for small deviations about ,

an equilibrium position the Lennard-Jones potential and the Morse

potential are equivalent. Thus, x can be replaced by b/Re, and

e e ol i i

eqn (1) can be expressed as

. |

= 90D/R” F |

k4 ol/Re (11a) {

) q

kK, = 144D/R" (11b) ‘

(4] (& 'l

|

29 !

The force constants are seen to vary as RC“ as the equilibrium 1
solvation radius changes. There is also a radial dependence in H
o

the dissociation constant D. Altogether, as we shall show in i
the next section, the force constants depend upon Ro as Rés. }
3

Finally, it is necessary to consider the fact that the solvated |

ion occupies space, effectively in a cavity, inside the bulk of ,

a continuum dielectric. However, because we have found that the !

image contributions to the breathing mode force constants amount only

to a small change in the frequencies, we defer our discussion of

these contributions to an appropriate appendix. It is clear that 1

as far as we are concerned with the harmonic oscillator limit

for the infrared active, ionic vibrations within the primary

solvation cage, the image effects (also electrostatic) will be

non-contributing. The image contribution, as we will show, depends

importantly upon the size of the cavity within which the ion resides.

If the cavity dimensions change, then there can be an important

image contribution. [We do not consider this effect in this paper.]
The system potential energy function which is a combination

of the electrostatic, repulsive, and dispersion terms can be
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differentiated with respect to R, the solvation radius, to obtain
the force constants for the breathing modes. 1In addition to the
terms which have been mentioned, the breathing modes depend upon
the solvent dipole-dipole interactions as well as upon an inter-
molecular repulsion of the Born type. For a tetrahedral system,

we¢ can write

\-hr ~ l",‘f‘ + 4B (\Xp['(l{'l{v)/p] + OR' t‘xl’[‘(zv/m}{'Ré)/Q']
R?
+ (15/0)/372 (/R (12)

in which the constants B' and p' account for the possibility that
the intermolecular interaction may difter from the ion-solvent
interaction., We assume that the two types of interaction are
roughly similar. Therefore, the force constant for the breathing
mode 1s obtained directly (note, this term does not include any
account of the clectrical image interactions)

n

Kpp = 248X+ 45/377 L + 20B/p? . (13)

RS R
e

\

‘\
In the next section we consider the application of these
results to the examination of the vibrational spectra of the

alkali metal cations in DMSO.




'I-!II!!!!“ — : _—
‘ E— : el o ATl

=3l «

Discussion of the Solvation Spectra

The data of Maxey and I’opov5 on the far infrared spectra of
the alkali metal cations in DMSO are reproduced in Table 1. These
experimental data torm the basis of our discussion .

A preliminary analysis of these data is needed in order to
extract the force constants. We assume that the harmonic oscillator

limit applies: viz.,

1/2 = 37"_(7./1771 (14)

is the relationship between the frequency (in wave numbers), the

}
mass u and the force constant k; C is the velocity of light. F
At this point it is necessary to specify the form of the mass }
quantity which is to be used in eqn (14). In general, the
f
expression for the reduced mass of the ion (mass mi) which
4
oscillates with respect to ¢ neighbouring solvent molecules
; s
(each m_ ), is .
S
!
14
T Lmsmi/(unS + mi) (15) ]
|

In the limit of large ¢, the reduced mass is the same as the ionic
mass. This limit also applies to the case of an infinitely massive
solvent svstem. In other words, the ion vibrates within a cage of
rigidly fixed solvent molecules.

With the reduced mass as specified by eqn (15), it is possible
to obtain values for the force constants for the ions under the

assumption of various degrees of coordination. The force constants

- - —
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are listed in Table 2. From the table it appears that the lithium

cation has a frequency which is at odds with the rest for any

type of coordination. The cations of sodium and potassium seem

e i i S A ki e T

to pair and the cations of rubidium and cesium likewise seem to (|

form a pair. We show shortly, however, that the frequency of the 4
lithium svstem is wholly consistent with the frequencies of
sodium and potassium. The frequencies of the rubidium and cesium {
systems are distinct trom the rest. In any case, it is clear |

from the table that it is not reasonable to assume that the force

constants are uniform for the ionic svstems of the group. Such
o : . , 4
an assumption was made by Maxey and Popov.

In order to make the comparison between the data and the

£ formulae for the force constants presented in the last section, it
is necessary to specify the values ot the solvation radii. We
1 ;i

assume, as have Abraham and Liszi, that the solvation radius

can be expressed as the sum of the ionic, Goldschmidt radius
. 1 A
and the radius of the solvent. Abraham and Liszi 7 calculated the
solvent radius from the liquid partial molar volumes with the use
: : LN o g BN : i3
of the Stearn-Eyring formula, he values of the radii are
listed in Table 3.
First, we compare the experimental results with the theoretical

expressions for the force constants obtained under the assumption

that dispersion plays a minor rvole. Thus, the force constants

of eqn (9) apply.
When the simple exponential repulsion is used, the two para-
meters B and p must be specified. The work of Huggins and Mayer

on the alkali halide crystals indicates that p tor those systems

is essentially a constant., It scems reasonable to make a similar
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assumption here for the solvated ionic systems., There is no reason,
however, to expect that it should be the same constant.

The parameter B can be eliminated in favour of other quantities
which are more easily determined, viz., the ionic charge, the
solvent dipole moment, and the equilibrium separation between the
ion and the solvent molecules. Following Born's trcatmvnt9 of the

crystalline alkali halides, we write
V = ‘c{t‘[l/l\" - B (‘N[\[~(R-Ro)/0]} (10)

where again ¢ is the coordination number. The simple equilibrium

condition dV/dR = 0 vields
B = Zeup/Rg. (17

We find that an optimal value of p is 1.9 X ln'” cm.  With
the use of this value of p together with the values of the
solvation radii, we determined the values of the force constants
which are listed in Table 4.

The results shown in Table 4 indicate a clear grouping of effects.
Indeed, the theoretical results indicate that lithium belongs
with sodium and potassium in its behaviour. The force constants
and the associated frequencies are reasonably accurately predicted
for the series of ions lithium, sodium, and potassium under the
assumption of four-coordination. It is clear from the results
that six-coordination for these three ions is inconsistent with the

experimental data. It is worth noting trom the table the fact

o M A i S,
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that with the use ot the intinite mass assumption for the solvent,
the best agreement with experiment is tound for lithium. That is,
Lithium, which has a small mass and vervy small polarizability,
shows negligible dispersion and reduced mass effects, At the other
extreme, potassium, which has a mass about halt the mass of the
solvent, begains to show a detfinite dvpvndoncv upon the choice of
the appropriate raduced mass,  The results tor sodium indicate
that this 1on 15 better handled with the assumption that the cage
1s rigid. The value of 206 cm l tor the vibrational frequency
compares tavourably with the experimental value.

furning to the tons of rubidium and cesium, it seems that
tour -coordination i1s inconsistent with the experimental data.

The assumption of six-coordination brings the theoretical results
more into an aprceement with the experimental results., However,
the unmistakable tact that the theoretically predicted force
constants decrease trom rubidium to cesium is at odds with the
experimental tact that the torce constants increase in this
direction.  The tault lies with the neglect of the polarizability
of these larger ionic svstoems,

\s we have indicated in the last section, the Morse potential
can be used to bring an account ot the dispersion interactions into
the analvsis,  Por small amplitude oscillations it 1s possible
to argue the transtormation trom the Lennard Jones to the Morse
potential,  The quantity D oin the Morse potential is the dissocia-
tion encergy tor a single solvent ton couple. By means of an argument
outlined by Moelwvn Hnghcs.l” it is possible to identify the
Jissociation energy further in terms of the London torce which operates

between the ton and the solvent molecule., Fhus, the dissociation
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energy can be expressed as
R
D = (18)
2R¢
‘\

where ¢ is a constant which can be identified by comparing eqn (18)

with the London intceraction:

" ey SISlidgui (193
London IRE(L +1.) :

s 1

In this expression ls and l.l are respectively the ionization

potentials of the outermost electron in the solvent and the ion.
The polarizabilities of the solvent and the ion are expressed by
the terms ag and N In eqn (19) it is apparent that the ioniza-
tion potential for the outermost e¢lectron in the ion is a quantity
which generally will be much lavger than the ionization potential

for the outermost electron in the solvent. Therefore, we can

simplify eqn (19) by writing
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The dissociation energy now is expressed as
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D = 3
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When this expression for D is substituted into the expressions for

the force constants, we tind
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and

In some instances it is difficult to determine the ionization
potential of a particular solvent molecule. Information about
the ionization potential of DMSO is scarce. Nevertheless,
these expressions for the force constant still can be used in a
slightly modified sense. In particular, we are interested to see
if it is possible to predict the value of the force constant for
another species (in a homologous series) given the experimental
value of an ion in the series. To do this, we simply form the

ratio of the ftorce constants:
ko/ky = (Ry/R2) P (a2/ay) (29

This ratio holds as long as both species have the same coordination.
The comparison between force constants tor four- and six-coordinated

species is the following:

/R b S

(6) l\‘((ﬂ/\\(-ﬂ)' (25)

(R

tia

Kie) k(1 (4)

In order to test eqn (24) we make use of the ionic refractions
(related to the polarizabilities by a common constant factor)

given by Smyth:lb

they are reproduced in Table §S. The results are
shown in Table 6. It can be seen from the Table 6 that for sodium
and potassium, as determined from lithium, there is no agreement

with experiment. The inclusion of any account ot dispersion
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interaction 1s not appropriate for these svstems., On the other
hand, the agreement between the calculated and experimental values
tor the torce constants for cesium as calculated from the rubidium
torce constants 1s very good. The increase in the value of the
torce constant tor all values of the coordination 1s correctly
predicted.

Fan (24) reasonably accurately predicts the force constant
tor rubidium trom potassium; this implies the coordination remains
the same. lhe ratio ot the force constants (9b) to (9Ya) is 1.5.

\s we discussed carlier, this ratio also gives a reasonably accurate
prediction of the rubidium torce constant from that of potassium.

In this case, however, the agreement is not quite as good as that
found with eqn (24). On the other hand, if we use eqn (25) to
attempt to predict the change in force constant in going from
potassium to rubidium, the predicted force constant is 30,000 dynes/cm:
too large. As Svmth notcsl“ the i1onic refractions are not

verv accurate quantities. Thus, there may be some uncertainty
associated with their use in this case. In any event, the
coordination ot the ions of rubidium and cesium remains a c¢loudy
1ssue.

We summarize the far infrared vibrational analvsis as follows.
Lithium and sodium behave as classical point charges which vibrate
within rigid solvent cages. The magnitudes of the force constants
for these two svstems are determined entirely by the form of the
short-ranged repulsion interactions which operate between the ion
and the solvent molecules. DPotassium also behaves as a classical
point charge. Its force constant depends only upon the short

ranged repulsion interactions. However, potassium has a mass
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which is approximitely half the mass of the solvent. Hence, it
is appropriate to consider the reduced mass in determining the
value of the ionic vibrational frequency. Rubidium and cesium
appear to bhe six-coordinated in DMSO, but, as noted immediately
above, this cannot be a detfinttive coordination on the basis of
the spectroscopic data alone. These ions of rubidium and cesium
depend importantly upon the operation of the dispersion forces of
the London type. The fact that the force constant increases in
going tfrom rubtdium to cestum 1s accounted for accurately when the
polartzation of the 1ons is taken into account. In effect, the
importance of these dispersion interactions simply points to the
fact that these tons cannot bhe regarded as simple classical point
charges. Quantum mechanical effects enter and must be considered.

Finally, we turn to a consideration of the breathing modes
for these svstems. Unfortunatelyv, the experimental picture is not
clear. !it"]\\l has been examined in ;lcotono.l" In the Raman
spectrum there is a shoulder on the active line of acetone which
1s about 14 cm'l greater than the 789 acetone line. It we assume
that this is due to a svmmetrical stretching breathing mode, then
for acetone we
Using the general formula for calculating the frequency for a

N

symmetric stretching mode,
v?' = k/m_ (20)
~
where m, is the mass of the solvent molecule in a tetrahedral XY4

: . = =]
system, we determine that the frequency should be 133 ¢cm 7,

Agreement with the assumption that the 14 cm-l shoulder is a

. - S 2
calculate the force constant to be 0.2 x 107 dynes/cm™.

Adeiia
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symmetric stretch is apparently not cood. However, it is not
necessarily reasonable to expect to be able to use the simple
solvent mass in this case. The symmetric stretch is a volume
non-conserving mode. Thus, the expansion against the remainder of
the svstem mayv, in effect, amount to an expansion of a much larger
effective mass. An effective mass of about 5384 gm gives agreement
assuming that the value of the force constant is accurate. In anv
case, the experimental situation is not definitive enough for us

to make any clear statement about these breathing modes.

One conclusion we can make, however, is that in the image
approximation, the effect of the image terms on the breathing modes
is insignificant. The variation of the force constant versus the
tonic solvation radius i1s shown for the cavity and the cavity
plus 1ts image contributions in Figure 1. As can be seen, there
is very little ditfference. (Consequentlyv, we helieve that these
terms, which are an additional burden to calculate, can be ignored.
It should be noted, nevertheless, that in certain applications,
in particular in the calculation of electron transfer activation
energies, these image contributions need to be considered. For

the vibrational problem alone, theyv are small.

Fhis work was supported bv the I, S, Office of Naval Research,

Arlington, Virginia, USA.
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Appendix 1: Electrostatics of ionic solvation

The derivation of the Carlson-Rushbrooke expansion has been
discussed in detail by these authors.8 Buehler and Hirschfelderlg

were the first to point out, however, the fact that the original

generalization of the original expansion, therefore, has been

|
|
‘ expansion is not a general formula. Further discussion and
|
‘ 20

19 21

given by Buehler and Hirschfelder, by Ruedenberg,” , by Sack;
1 and by Kay, Todd, and Silvorstonc.22 For our purposes, the original
expansion suffices. We are therefore limited to a region of
applicability such that the sum of the distance magnitude of the

1 dipole (viz., u/e) and the distance of the ion from its equilibrium
position is less than the distance between any solvent molecule and
the centre of symmetry. This 1limit is made mathematically clear

below.

The general formula is given by

l/r12 2 z ('1) BQQvYQm(rl)Yvav(r2)Y2+Qv m+mv(R)
2 ,m : ’
2',m' 1
T%rzz
T =)

and R>r; + r,. The B-coefficient is given by

mm' _ (‘l)m(4ﬂ)3/2 [ (2+2'+m+m') ! (2+2"'-m-m"')! %
Y T T A i i Vi e AL G R

(1.2)
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The coordinate svstem applicable to eqn (1.1) is shown in Fig. 2.

When one of the interacting particles is a point dipole of
magnitude u = cry, for example, the expression can be applied to
the types of svstems we have discussed in the main body of this paper,
The remaining coordinate ry now specifies the location of the
1on with respect to the origin as shown in Fig., 2. This 1s precisely
the tvpe of coordinate which is needed in order to specity the
vibrational excursions of an iton awav from its centre of symmetry
in the solvated system.

For a system with tetrahedral solvation, we outline the steps
necessary to determine the torm ot the electrostatic contribution
to the svstem potential encergy function.

The B-coefficient in this case is specifically

' /2
Rl;\ ‘m U"_)E“ b (m'm) {(1.3)
- V3.5.7
where
(3 SRS 3! N
' N 50 4 Ll LG 6 R T 11 s LU L RS ‘
b(m'm) (o™ (™Y T 2+mY T m) ! e

The b-coefficients are listed in Table 7.
For the tetrahedral system 1t is convenitent to place  the solvent
dipoles at the tollowing locations:
(Ll o X ] (Gl SR B ), (I,-1;~1) o T SR
By mcans of scaling, the solvation radius can be inserted into
the potential energy function. In the same orvder as locations are

listed, the direction cosines tor the dipoles are chosen to be




(-a,-a,-a) (a,a,-a) (~a,a,a) (a,~a,a)

where

lhe tirst contribution to the electrostatic part of the potential

eneryy tunction s the obvious one: —dpe /R, F'he next contribution

which can be constdered 14 order o D o(which would give r, harmonic
terms tor the ton with respect to the centre ot svmmetry) and
Ve Soan Y (R). \s g result, we taind that the contribution

im

to the potential due to the interaction between the rton and the

solvent daipole at (1) s

i 3 L‘
\lll == {xy +xZz * yz) (1.>)
R* /2 ’
[he rematning tevms tollow castly by svamet vy
: Lo 5
¥oje13 L Bt s # ve) (1.0)
R /3
\ > ‘( AV \ b V) (L7}
b=k-4 RY 2
b 3 g ; ’
\ (=xXv * xz vz). (1.8)
ll l l{l' Y -

The net second ovder contribution s the sum of (1.5 to (1.8),
hus, there s no o second order contribution,

he next ovder contribution s thied ovder an v, 'he result
is given in the text of the paper, eqn (l}). Fhe values of b(m' ,m)
needed in that calculation arve listed an Table 8.

Cubire solvation (cireght coordination) can be shown eastly to

vietd a zero thipd ovder term.  The vertices of a regular cube
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can be regarded in terms of the vertices of two inter-penetrating, I

identical tetrahedra. The rotation about any (, axis takes one

3

tetrahedron into the other. The sum of the contributions from

the two tetrahedra cancel. Thus, the first order contribution
in the cubic svstem is of order O(rd).

The remaining general type of solvation to consider is that

of the linear "triatomic" tvpe considered before by Edgell, et ul.,'t

il D Tk e

8
and by Maxev and l‘opuv." Although the authors indicate that the

use of this model is to an extent suggestive only of the tvpes
of forces which need to be considered, Maxey and Popov™ give linear

solvation considerable credence on the basis of their NMR solvation

SRR T s ye SHOVI -G B NCNE W

P s T A : J 5 e
study. Fheir analvsis suggeests that in DMSO Li is strongly

associated with two molecules of the solvent. Their analvsis also

b s,

suggests that tor the ions of sodium through cesium, the coordination
1s less well detfined.

There are difficulties associated with the use of a linear
solvation model which have to do with the problem of the agreement
between theory and experiment., In particular, the linear solvation

y
model vields two non-vanishing contributions of order O(r7) to
the svstem potential energv function. One of these contributions
is an exponential repulsion term, and the other is clectrostatic.

Specifically, the electrostatic contribution can be written as

\‘t‘\' 1in .'\;.(‘(\“ + 2 '.‘.:‘:)/R", (1.9)

omitting the zeroth order contribution. The repulsion contribution

has a similar functional dependence on the coordinate variables,




It 1s ¢lear trom the torm of this potential function t
contains the appropriate harmonic oscillator potential
Morcover, it is clear that there are two infrared acti

modes tfor the solvation svstem.  The vibration along t

ot symmetry i1s one mode, and the motion of the 1on per

hat 1t alrcady
terms.,
ve vibrational
he axis

pendicular

to the axis about the bond mid-point 15 the other mode.  Consequently,

this model predicts that the experimental spectrum of

svstem should show two vibrational peaks associrated wi

the solvation

th the solvation

structure.  Although 1t 15 possible that the second peak 1s present

(with perhaps verv weak intensitvy) o the authors who have examined

these spectra have not reported anv additional structure. 1t

seems to us, thervetore, that an spite of the sugpeestion that the

solvation number of the lithium cation in DMSO 1< two,
conclusion does not sceem to be substantiated by the ta

The analvsis in this paper 1 based on the assump

.
& 3

this
v anfrared spectrum.

tion that

the clectrostatic interactions can be modelled in terms of the

familiar point charge interactions, [t is possible to test the

reasonableness of this assumption by comparison with a

energy function which 1s derived on the basis of the a

potential

ssumption that

the charge distributions have a dittuse nature. In this manner 1t

is possible to enter turther account of the ionic polarizability

into the potential energy tfunction., It will be eviden
form ot the potential tunction that there are non-vani
static contributions to the force constant. Here, in
paragraphs of this appendix, we consider only the gene
of the interaction.  The derivation of the clectrostat

to the force constant is considered later in appendix

t trom the
shing clectro
the remaining
ral form

1c contributions

4.

-
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The form of the interaction between a continuous charge
distribution and a point dipole located at the centre of a conducting
sphere of radius a is developed with the use of the Fourier
convolution theorem as discussed by Silvorstono.24 The general

form of the interaction can be expressed as

1

2me

V(?,;) = (k)exp(is-flz), (1.10)

I
L - ‘
Jd k k Osoft(E)odipolo %

where r;; is the vector separation between an element of charge
in the continuous distribution and the point dipole. The Fourier
transforms of the charge densities are signified by the p-quantities.

The general expression for the transform is
0(5) = Id’r O(Y)OXp(iE°§). (1.11)

In the following discussion we assume that the continuous
charge distribution is modelled as a Slater-type distribution, as
has been discussed in connection with the free energy of ionic

solvation elsewhere (¢cf. ref. 25). Thus, the transform of the

: 25
charge density can be expressed as

N xe S O )
Paope (K) = DY/ (0 + k) (1.12)
corresponding to a coordinate-space distribution of

A}
Peoft (T) = E;exp(-pr) {1.13)

where

POV USRS am———
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P = 2/b (1.14)

- . . H : . : 25

and b 1s the effective Bohr radius for the distribution.”"
The transform for the dipolar distribution can be expressed

as

e *
(N) = dmi(u/a)iy(ka) § Y

! lm(ﬂ)Ylm(k) (1.15)

“dipole

where 7y (ka) is the spherical Bessel function of the first kind of
order 1. 1)
When the above transform expressions are substituted into the

expression for the interaction, we find

V(ryz) = ;;EB: ) Y* (Q) Jd‘k _Jda(ka) Y (i)oxp(ik'rlz).

a - Im k?(p:¢kp)3 Im gl

(1.16)

We now consider the expansion of this function with respect to
two arbitrary centres O and S (for the origin of the centre of
svmmetry and the location of the solvent). Thus, if R is the vector
from O to S and r i1s the vector from O to the location of the
centre of the charge density, we can write Tis = R ~ T The
exponential function in (1.16) now can be written as a product of
exponentials. The Ravleigh expansion can be used for each of these

exponential functions:ll

" . o = L4 c v * .\ . . % . * -~
exp(ikex) 4n Cym i \Qm(\]\cm(k\Jq(k\]. (1.17)

..._..-_Lm‘
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The anpular integrations can be carried out easily., As a result,
R 320 1/2
e SR BL v 3R ey ns0000,0 . x
\ - ] —-ﬁm‘ (1¢; (IG,(HIme;IQ,m;)

T I : . P j‘(k:ﬂjC (kr)i, (KR)
Y @Y Y ‘(m) K ——— . (1.18)

Ihe k- space radial antegral has a pole at k=0, The contribution

of this part of the integral to the whole expression is identical

! . h] . o .
to the Carlson Rushbrooke’ expression as we have used it for

dipolar svstems. The remaining terms arise from the pole at
A=ip. As a result, denoting by V' all terms different from the 4

Carlson-Rushhrooke expansion, we can write

k
\ (A i R IRCY ) (R ) L (m[ :1

NI, 00] E,0) (10 mmy !\‘.-m_.)l(x‘,n‘;\i\(ap\ih\rp\k\, (Rp)

0(;\\\H,\L.\|\h\.ln‘p\l\‘,:\Rp\ + U'p\'\,\;\)ﬂi“” ll';‘\\“ {Rp)

(Rl‘\i;\.m\i\.l(rp\k\,:.l(Rp\N. (1.19)
The angular dependence of this expression is the same as the
Carlson-Rushhrooke expansion, However, there ts an important
distinction between this term and the Carlson-Rushbrooke formula

in that the zeroth order contribution is non-vanishing in its
r-dependence. Thus, as we show in appendix 4, therve is an clectro

static contribution to the force constant.,
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Appendix 21 Flectrostatic image effects

With J. M. McKinley, Department of Physics, Oakland University

In discussing ionic solvation, so far we have concentrated
onlv on the vibrational degrees of freedom which exist for the
svstem of the 1on and its primary solvation shell. This subsvstem
is considered to be located inside a cavity within the bulk of
the solvent. In this section we examine the consequences of
adding electrostatic image effects to the basic cavity interaction
terms .,

lrivdm;m”‘(‘ has considered the image approximation to the
diclectric reaction field. His approximation methods are particularly
usceful for the consideration of complicated collections of solvent
and ions within a solvation cavityv. Although Friedman considered
the image approximation to the monopole field in detail, he only
quotes the results for the dipolar field. For the sake of complete-
ness in our Jdiscussion, we outline the electrostatics of the
dipolar reaction ficld and the application of the image approximation
to 1t.

Consider a single charge q located at s on the s-axis inside

a spherical cavity of radius a.  The potential Jdue to this charge

- 26 .27
inside the cavity 1s given by ¢
= 1 _crc]
. By = ¥l e EL_‘\_‘, \ cosd SrY s 2
v”‘(l. L l"},] EYUACTIR] l»f. l\‘(\tm‘. ar>r>s {(2.1)
\ S

where l‘n(ﬂ is the lLegendre polvnomial or order n.  Qutside the

spherical cavityv, the potential is
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fout (0) = Ieirry ey Peleoso). SO

We now imagine a single image charge q. blaced at z = r._ > a.
! ! ! 5 im

The potential produced by this charge at r<a is given byv

im = :.Y ;—é'jT “c[\'l‘.\'(‘). (:'3)

We would like to make the tdentification

q. .
im <l qs
rcd ¥ e+ U/ ( 0+ ,.“e‘d
im ’
t'~l \*l
T Ty 1@/ ﬁ* (2:4)

This identification will be valid for all sufficiently large values

f 8. Thus, r._ and aq. 3t e identified as
ot ¢ I'hus, Fig ane Qi San be identified

. = al/g 2.5
Tim 1°/s ( )
and
=i €=] @8 )
‘Ilm - €+] s q (2.0)

Y
Alternatively, I’ricdm;\n‘h has noted that

f __T k () )K ; k&+23

e+l

Thus, the identifications (2.58) and (2.6) amount to the assumption
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that only the k=0 term in (2.7) needs to be considered. It is
equivalent to sav that for sufficiently large values of ¢, the
k=0 term is the dominant contribution. It should be noted, however,
that also for sutficiently large values of the dielectric constant
term S % L : 2
¢ the k=0/also suftfices regardless of the size of ¢,
[t we consider onlv the k=0 contribution to (2.7), eqn (2.3)

can be written as

= - :-%um__‘l-— yu-/nfs)%c(cosm (2.8)

\:‘ :
el (a®/s) ¢

7 ¢

; ol . 20 . .
which, as Friedman has pointed out, is equivalent to the Laplace

expansion ot

/|r

. Sl pes
qlm ~ ~1m

!

tor r<rp. .
im

In order to consider a dipole located in the cavity and its
image, we next consitder the superposition to two solutions:

one, &, is the potential produced by ¢y = +q located at z=s, and

s-d

ti
"
Si

two, ¢ is the potential produced by q» -q located at .
The potential inside the cavity produced by q, is given by eqn (2.1).

The potential produced by g, is
1

(
{ N
- ‘q(.\‘-\ﬂ\ &1 qQ(s-8) r T > Q
02in = L L MY VACED D) 20 Py (cos8). (2.9)
The total potential inside the cavity is
¢ (¢y *+ ¢2), 2.10)

total(in) in
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which is the sum of (2.1) and (2.9). Now, we write

|‘ I’ \‘ " l . = N )
S ~fsS=¢) = g {R{8/5) i~ ){8/s)*+ ...}, {210 )
and
A\‘ \ ) o v l Y Y
lim{s - (s-8) ") 08 s . (2.12)
Ve Q)
lhus,
s & 0
\""‘L\."I ! £=] .‘ic,.‘\."l!
$ : —— * —— ey — —{ P, (cosd). 2.135)
*total (in) ¢ r'q e+ 0/ (+1) l.'ul ¥ g e {
\L . |
furning now to the image, we superimpose a second image charge
A5 q at zs=r Yoo The potential produced by the second
2im 1m itm - im
image charge is
{
- Yim!
" - TR . S Al ) .,\) . : - J)
“2im z t+T P (cos?) (.1
(r. 5= )
Im im

Fhe potential produced by the two image charges is

L N S I R+lan fench 3 e
“Atnt;ll(im\ ‘\‘qiml [ “im 1 i im “(“0‘\” (2.13)
= .“/.\‘.l S . s 03 - \ -8 / 3
Qi U1 Yim ”\‘“0‘\“{1 [1-(8+1)( Sim Tim

-7 % e 5
:-!(\‘1)(\‘-)( ‘\im l'im\' . AN IR

In the limit as the distance between the charges vanishes, an image

dipole moment is defined.  The potential can be written as




lim : . y
total(im) b
& b A
im
As before with eqn (2.3) an

want to establish a similar

and location 1n terms of

cavity, Thus, in eqgn (2.13

d

means of

the dipole moment and

)

X

q 0, F
m in
+1) e — P, (cos8) (2.16)
1m

the i1dentification (2.4), here we
’

identifying the dipole image
location inside the

we add and subtract the same quantitv:

(1qsst! Lortetol
. V 2, it o A ,:,',._. —{ 2+ )t . =
‘total(in) ~ §| T o1 TIVACE ) Rt T g
| .
v_t-1)
-1 qér s 3 -
+ — Y v (P (cos0) (2,179
r* 0 :01\ ey | | \
: N & |
I'he second term 1s identitied as the image dipole:
Tim . (R - L ?Lf\' s
r{b_‘ el l.‘¢ls l—:."[
im ;
l"_:
. el S (a/s) S 2.18)
" Ty 98(a/8) oy Pt

As before for the monopole case, in the

location of the

and the dipole moment of the

Finally, the third term in

limit of large & or e, the

image 1s given by

(2.19a)
image 1s, given by
(2.19b)
image

17) is identified as an added
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\\im ;—-"{(J(S"‘\\f. l.‘.l‘)C)
l'he purpose of the image approximation is to simplify the
calculations involving the use of the reaction field. This is done |
by replacing the complicated solutions to the laplace equation
by simpler expressions which involve the interaction of discrete
charges or multipoles. The image approximation amounts, simply,
to the assumption of the k=0 term in egqn (2.7).
The enerpy of interaction of a charge with its own image, or

more exactly its reaction field, defines the self energy of that

F . > *»

charge with respect to the dielectric. The self energy Thad i
4 _ N hl \)
\.\'(‘lt _\‘l"1|'1' (2.20)

he interaction of anv other charge with this image charge can be
expressed as
4 - ' Y Py
\ 2 4 «lY'l. (-.-l)
Thus, we are now in a position to calculate the image contribution
to the ionic potential energv function for the solvated ion.
In this manner we can approximate the contribution of the remainder
of the solution svstem to the vibrattional modes of the ion and
its primary solvation svstem.

In the following, we illustrate the image approximation

with the use of the tetrahedral solvation model.
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Within the solvation cavity, the terms which contribute to the
breathing mode force constant are the following: (1) the ion-dipole
interaction, (2) the dipole-dipole interaction, (3) the short-
ranged interactions (repulsions) which operate between the species
in a pair-wise sense, and (4) the interaction between the solvent

i molecules and the cavity surface. Outside the cavity, in the bulk
of the dielectric, the various image quantities are located.
We consider first the electrostatic interactions which operate between
species within the cavity.
The ion-dipole interaction has been discussed earlier. For the

tetrahedral solvation it is simply

. 2

| \id(c) due/R°. (2.22)
We next calculate the dipole-dipole interaction which operates

between each pair of solvent molecular dipoles within the cavity.

To carry out this calculation, we assume that the dipoles can

be regarded as ideal point dipoles. Thus, the general form of the

interaction is given by

Vg = MatH2/R% - 3(urR) (u2-R)/R® (2.23)

and the vector R is given by

R=PR - R (2.24)

The vectors Ry and R, are referred to a common origin at the centre

of symmetry for the svstem.

—




Fach solvent dipole has the same magnitude. Furtheemore,
the angle between cach parre ot dipoles 1s the same, the tetra
hedral angle ot 109.47% 0 Consequent iy, cach scalar product peR
is easily calculated. The interaction tor anv pare of dipoles

rS

this itnteraction is a repulsion, Fhere are six terms of this type

which contribute to the total. Hence,

\ l‘\ ra bt ; ( v V)
» - . g e WY

llllll ‘ ’

ln additron, between cach solvent molecule operates a short
ranged repulston interaction, he veneral torm of the interaction
we uzé itn our calculations is exponential, UIn Fact, in the spirit

: o .

ot the Stochkmaver model ot an electrolvte, ’ we o assume, tor
simplicity, that the repulsion between the solvent molecules ts the same
as the repulsion which operates between the ron and the solvent
molecules.

Therve is a vepulsion intevaction which operates between the
solvent molecules and the wall of the cavitv., Recause it i1s possible
for solvent molecules to pencetrvate the cavity wall with veasonable
case, it is not reasonable to assume that this repulston tevm s
very large. \ reasonable expresston to approvimmate this intervaction,

‘ s

theretore, s the Woolk Saxon potental which 18 used extensively

in dealing with collective models of the atomic nue leus, he

torm ot the potential s



v P, (2.26)
wall T+exp [ (R-AY/a]
where A is the cavity radius and a is the half width of the barrier.
The thickness of the barrier, and the extent of its influence into

the cavity, is determined by the magnitude of the constant a. For

a value of V, of the order of several eV (a magnitude which corresponds

roughly to the solvation well depth), the effect of the potential
term (2.26) is very small, Its effect on the breathing mode force
constant i1s even less.

The contribution of these cavity potential terms to the
solvation shell harmonic breathing mode force constant is easily
found by direct differentiation. Thus,

exp[(Ro-A)/a]-1 =

> 2 y
kK = -24 M 4 457377 B 420B/p? L - (2.27)
¢ RS RS a? (exp[(Ro-A)/al+1)]

where B and p, associated with the repulsion interaction, are defined
in the text: cf. eqn (3).

We now turn to a consideration of the image contributions to
the potential energy function and to the force constant. These
terms show a complicated structure, and their ultimate effect on
the force constant is small. Thus, we will show that they generally
need not be considered further, especially when one is interested
only in the vibrational structure of the system.

There are a number of contributions to the potential energy
function for the system which arise from the interaction of the ion
and the solvent dipoles with images in the bulk of the solution.

Two of the interactions vield no contribution to the harmonic force




rm———

40 -

force constant, although they may be of considerable importance [ §

in matters concerned with solvation and free energy changes.

In particular, the ionic self energy (the interaction of the ion 'i
1

with 1ts image) depends only upon the solvation shell radius A, |

Also, the interaction between the ion inside the cavity and the |

itmages of the dipoles vields no contribution to the force constant., |

These terms, and others, will be illustrated in the following

paragraphs,

dielectric, the ionic self energy is given by
V. 1-1/6)5¢ °
1(s) { N
: ; - . ! i: ‘O
In the image approximation of this expression, we find

Vi(s\

Born self energy by about 2.5%., For water, the
differs from the Born self energy bv only 1.3%. Thus, fo

solvent svstems, the image approximation is reasonable.

it is clear from the torm of eqn (2.28) and

CaAse,

can be no contribution arising from these terms to the

constant.

In the image approximation, the selt energy of the d

relatively casvy to determine, Making use of the location

dipole 1mage,

and 1ts image as

For the classical, non-spatially and temporally disperse

the Rorn expression

(Z2.28)

(2.29)

For DMSO, for example, the image approximation differs from the

image approximation

r polar

In anv

(2.29) that there

force

18

ipole

of the

we can write the vector separation between any dipole
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o

Ryz = (1 - A?/R7)IR (2.30)
where R is the vector drawn from the centre of symmetry to the

dipole in the cavity. The image dipole, and its source, lie along
the vector R (and its extentions), but these dipoles are directed

in the opposite sense. From the general form of the dipole-dipole

interaction, we find

--1 e

\dd(l)(\) = gt (A2_Rl‘)3

. 3 26
As we discussed above, and as Friedman also notes, co-located

with the dipole image is an effective charge with a magnitude given

by

NP ot \ 7 29
(I m— UIT?‘ . (_.3..)

The interaction between the source dipole and this part of the image

can be written as

a2

-1 e 1

YA i Y Eey - T B ’ (2.33)
dt(l)(\] €+1 2:\] (I_R?/A?)?

When (2.33) is combined with (2.31), we can write
. I e=1 p* lx?
\ B = Bl N 2.34
dd(8) © T ST 4§ [yenys )

in which x is defined by




x = R/A. {2.35)
This quantity is always less than or at worst equal to unity.
By means of a direct differentiation (with respect to R)
of (2.34) we find that this term contributes
Kie) = - T o7 s —l2xt enxt -1 (2.36)
d il A* (1-x%)°

to the force constant. Interestingly enough, this term contributes

maximally (viz., zero) to the force constant when R = 0.28A.

Generally, however, a solvation radius as small as 0.28A is unlikely.
The interaction between the ion and the dipole images is

casily found. It is given by

t'-l}_l_(: >
JFTT v " 2.37)

Wi oy T
1d (1)
As remarked earlier, this term does not make a contribution to the

force constant (it is independent of R).
Next, we consider the interaction between the ion and the
effective charges associated with the dipole images. This term

is given simply by

. « -1 e >
Vii(i) © &¢T AR" (2.38)

The interaction between a dipole and the dipolar image which

arises from another dipole in the cavity is fairly complicated.

— it ]

P

—
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The derivation is sketched as follows. The distance between any

dipole and the image of any other dipole is given by
- b o pb 2p291/2
Ry, = [3(.‘\ +R*)+2A“R ] //XR. (2.39)

For a system of tetrahedral solvation, the scalar product of the

dipole with the other-dipole-image is

e-1
e+1

uieue = (A/R)? %; ‘ (2.40)

The scalar product of the image dipole moment with the radius vector

between the dipole and the other image is

b1eRiz = SUR(AZ/R?+1/3) (A/R)®. (2.41)

Similarly, for the cavity dipole we find
uzeR = uR[%(A/R)2+1]. (2.42)

The general dipole-dipole interaction is now evaluated to give

. Y 2p? u
2/3 €+i u2A3 3A*"+14A°R 4'3R5,2 (2.43)
* (3A%+2A%R2+3R")

Yaar (1)

Finally, in a similar manner, we find that the interaction between

a dipole inside the cavity and the effective charge co-located with
the dipolar image arising from a separate dipole in the cavity is

given by

PR W
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e e=k p? o x*(x*+3) : > 44)

T B 7y -
de (1) e+ BY (Se2x¥e3x)"7 "

The quantity x is detined by eqn (2.35). ;
From all these contributions to the potential energy function,
L
we find the image contribution to the force constant is given by 1
g
K, = -xL%?L-—;u—unw«nxplw-f“@ {
’ AS[(1-x3)° X0 ;
+ /I[26"(x0) g"(\o\]r (2.458)
wvhere
o L, = ] - 2 1 i Ty &
f"(x,) = ——— iy 4 (7+9x3) - - 40x5 (1+3x3)

3 - ~ - Al -
A7 (3+2x35+3x}) (3+2x5+3x0)

PESENIENTIENITEIEN LN MR ENCERN o)

\("03\'(‘,) +
(3+2x8+3x )

(2.40)
and
] \ X = -
g (Xy) = —— g 2%8 4 1 = Bl I3 (5+24x§+11x))
(3+2x8+3x8)"" © (3+2x3+3x3)
XA(3+19x3+33x8+9x§ -
+ 1()__0,“__]_”____0_,"-_.(1_‘\_&_)_ . (2.47)

(3+2x5+3x3%) '

The quantity xp is Ry/A where Ry is the equilibrium solvation radius.

I'he ditfference between the cavity contributions to the force




L

constant and the total form of the force constant as a function
of the solvation radius of a tetrahedral solvation svstem is
illustrated in Figure 1. The difference is not significant.
The image contributions to the force constant for the breathing

mode are small, and probably can be ignored in most cases.

<
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Appendix 3: The lLaplace expansion of the exponential repulsion

As we indicated earlier in this paper, in order to be able
properly to consider the vibrational modes associated with the
motion of an ion within its solvation shell, it is necessary
to make use of an appropriate form of the potential energy function.
For the electrostatic terms the (‘.arlson-Rushhrooke8 expansion was
used. The scalar exponential repulsion which operates between
the ion and any of the solvent molecules can be expanded in a
similar appropriate manner. It is the purpose of this appendix
to outline the construction of this expansion.

The scalar exponential, Born repulsion has the form
V(riz2) = B exp[-(ry2-a)/p]. (3.1)

The expansion of this function in terms of the coordinates r, and
r_. (where r_ is the greater of r, and r,) is carried out in a

<
4
21,22 for the

5

manner similar to that of Ruedonherg,"0 and others,

Laplace expansion of the free-space Green function (viz., AT ysils
We make use of the Fourier transform of eqn (3.1) which is

given by

v(k) = 8mB exp(a/p) 1 ; (3.2)
g p(1/p%+k?)?2

Given

f(k) = Id’r F(r)exp[iker], (3.3)

it is well known that one can write

el

LRy
a2l

in et il

oo _AIJ



T, o
F(r-R) = —3 Id’k F(k) exp[-ik+(r-R)] (3.4)

' (2m)?

Thus, for example, if f(g) = 4n/k? and the exponential function in
eqn (3.4) is written as a product of two exponential functions,
then the Rayleigh expansion can be used in place of each exponential.
When, in the resulting expression, the various integrations are
carried out, one recovers the familiar Laplace expansion of
1/|r-R|.

We now make use of v(k) in place of f(k) in eqn (3.4) to
write

5 A A (® 3, (kT)j, (KR)

V(r-R) = 16 = exp(a/p) } Ylm(r)YQm(R)I dkk? e
0 (1/p%+k*)

There is no pole at k=0. Therefore, we need only evaluate the
residue of the radial integral at k=i/p. The general form of

the expansion of (3.1) now is written as

V(r-R) =-dmbexp(a/e) Yy (F)Y, (R) [ (2241)1, (r /oYKy (1,/0)
,m

¢ (1 /0)ig, (T /) (r,/0) = (r,/0)ig(r /p)ky,q (x,/0) (3.6)
where r, is the larger of r and R.

The expansion of the Morse potential is merely an application of

eqn (3.6). The Morse potential function is given by




-
"

N D{1 - 0.~<p[~(r~re)/:|]}2

2
1
i

D{1 - 2 cxp[-(r-rcl/u] + cxp[—_‘{rﬂ'v)/:)]}. E5

The Fourier transform of the first term, D, vields the Dirac delta
function. Consequently, the inverse transform vields the constant
D in return. The remaining terms in eqn (3.7) behave in a manner
identical to the Rorn-type repulsion. Thus, the expansion of these
terms is accomplished directly with the use of eqn (3.0). When

the contributions from the two exponential terms are grouped, the

form of the expansion given in eqn (7) results.
) ]
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\ppendix 4: Harmonic force constants
Appenaiy

Given a potential energy function for a svstem, the second order
term in the Tavlor series exnansion defines the harmonic oscillator
potential energy tunction. This second order term is determined
bv the differentiation of the original function, followed by the
evaluation of the resulting expression in terms of the equilibrium
values of the coordinates. This is the obvious route to the force
constant quantities.

However, for a number of complicated functional forms of the
potential, the use of differentiation can be cumbersome. In
particular, when one seceks the torm of the oscillator potential
which operates on the ion inside the rigid cage, the differentiation
of the complicated angular dependencies is not necessarily
straightforward. Indeed, 1, instead of the svmmetric, regular
systems considered in this paper, one were to consider svstems
in which the solvent molecules were arbitrarily placed in the solva-
tion cavity, the determination of the oscillator potential would be
extremely difficult. Such differentiations, as would be carried

out by this method, could be pursued with the use of the formula

: 31
derived by Rose.

On the other hand, as we have shown in Appendices 1 and 3,
often the potential encrgy tunction can be expressed in terms of
the Fourier convolution integral. 1In this case it is simpler to
differentiate the integral. The analvsis then proceeds with the
evaluation of the integral. We will show that in this manner the

calculation often can be simplified.
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In the following paragraphs we will derive the integral repre-
sentation of the

second order Tavlor series term. The first order
term can be found in a similar manner. However, here only the

result will be quoted.

Given a function which can be expressed in the form

G(r) = l'(r\\\ s

(4.1)
we wish to find an integral representation of the second order
term which can he expressed as
1
: M TR S ‘ b
ta({r) = 1im x{r=¥Y }oGla), {4.2) i
S 2 a
a*To {

where ry is the equilibrium value of r. The notation implies simply

DU SO

that in G(r), r is replaced bv a, but the functional form remains
unchanged. The differential operators now operate only on the
function G. As a result, it is possible to write

s C7

to(r) = 1lim I"I‘.\'l'\.'ll:((l)

{(4:3)
a>*To -

As the eftfect of the differential operators now has been established,

we can drop the distinction between the coordinates a and r without

risk of confusion,

The Fourier transtform of G(r) is written as (\U\'\- (k1. Thus,

equn (4.3) can be written as

( \
! p . '
ta(r) = er:)'---l-~— ;d‘k Kk £(KIY (Mexp[-iker]}, (4.8)
. S Gy e . il
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Fhe integpral is evaluated at ro. It is clear that the functional

form of this result also can include additional coordinate dependencies

as long as these coordinates are independent (314 e

H
The vector k can be cxpressed in terms of the basis vectors
. . 31
i for the spherical tensors:
| -
1)
& | " O
k= A%/3 k § (-1)7Y, (k)& . (4.5)
Im -m
m=- 1|
e product of the k vectors can be expressed in terms of the
product of the summations in cqn (4.5). The use of the Rayleigh
.. ; . : 3
cxpansion (1.I7) together with the contraction formula
|04
: : (2% D)2 Gaelll) ) :
s Bk S Ry ,00] RO)(L, ot 2 1%
\\"m?ﬁ‘,m; : T (201 (04 €,00]00)(0, .lnm.l amaq )}
)
; 1.
\\\“m\ h~8)
allows us to write
e 1/2
, g ] . R R A S R . 2X+1
V.V _G(r) ) (1) £ o8 cvlmror
- 2w 1,0 M, m,m! meomt (2T
~\'Hl(l')(lInnn'l(‘mom')(llm)l\‘(H(\\‘mn*m'II.M)(\\‘H(\II.U\
! . . 4.7
5 h (r) (4.7
4
3 where
ll(l'l {\lk k"l'(k)il(kr). (4.8)

0

O R—




'he evaluation of the dvad product pives

ta(r) e v (- by (\:\H" ut\\'* (r)
J O 3 =g i mn s i AR S Im'
L/ 2
l\l\:” lll\\(\|\'(\)(llmm'I\',mnn')(\\'U(\Il(H(X\'hll\’m'|l-\”
“‘ (I‘“\. l"'

he contraction cquation (4,60) can be used to write

" l/l.‘
: u oy 3 D 5l wleo !
f_-(l\ - l( 1) {“(‘l'l\l\\\"\ (ll((l\()
\ \' . ] * )
00T, (o) ‘(\\1:\'||\H\)“(r.\\\\.\.(1’\. (4.

Mo

It is cevident from the Clebsch-Cordan coettictents that for
any value of X the imdex ¢ can only have the value of ¢ ov 2

Morcover, oVl even.  Consequently, eqn (1. 10) can be separated

into two parts:

e \ f ) ]
ta(r) Ty 1 \\‘n“\‘,\““(l)l\“\“

On
' |7
s )RR |\l ;\’” (VOO T0Y (Ve | M

. ¢ 3 . g .I.l|

3y 6 I M,v
. " .

\\l\‘(l“‘\.‘\‘(r‘ II(‘\\\- (’.

Generallyv, tor the svatems we constder, and their associated
potential encrgy tunctions, only the tirst term an eqn (4.11)

te needed. We dllustrate this with the exponential vepulsion and

9}

10)

1LY

U 4_.._J
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i with the interaction between the continuous charge distribution and
the point dipole which was discussed in Appendix 1.
'he Fourier transform of the exponential repulsion is given
by eqn (3.2). We are interested in the harmonic term with respect

to the r-variable in the general expression v(r-R): c¢f., eqn (3.4)

and (3.5). Thus, we write

VEr=R) » o fd"]\ lv(k)vxp(ilgl\l)](‘xp(-il‘\'l“). (4.12)

b (2m)

Difterentiating this expression twice with respect to r vields

\'r\’l_\‘(rrR) .G f‘l‘k Kk [v(K)exp(ik+R)]exp(-iker). (4.13)
o (Zm)3 i : . s
The integral in (4.13) has the same form as the integral expression

in eqn (4.4).  Subsequent evaluation of eqn (4.13) proceeds with

the expansion ot the exponential term. Thus,

[v(KYexp(ik=R)] = \‘)“ |~\(k)\'\”(l\)
N ) = N ;
v ‘32n°Bexpla/p)——teaie § i\\.\“(m\'\utm

pl1/p**k%)* 2,0

‘_i\(I\K). (4.14)

I'he 1| (ro) detined by eqn (4.8) now has the specific form




'.-.-'-'-llllllllIllllIl!!E!!!!---.----.--‘"f

B
X EEE T DL j[(km)j\(kR)
ll(ro) = 32n°B exp(a/p) 2 1 Y\‘(R)J Sl (4.15)
~ Kl 0 (1/p%+k?)?
The integral is evaluated for s < R, which will alwavs be true
(the limit is taken as ry+0). There is no pole at k=0 unless
\>L+4, which will not happen. As a result , we: find
£ jllkro)j\(kR) b &
ok LT3k T ((+1e) i) (r/0)k, (R/0)
l 0 (1Zp=+k*)* '
*Ar/e)ip  (r/0)K (R/p) (R/n)iL[r/n\kA*l(R/p)}. (4.10)
The equilibrium value of ro is 0. As a result, the integral (4.10)

vantshes for all values of 1

o 3

one term lqo(rgel:

o 5 *
Lol(ro) =8m%(B/p*)exp(a/p) [ Y,

Consequently, there is only

W (RVEGH IR (R/0) - (R/0)Ky, (R/0))

Xl
(4.17)

However, the first term in (4.11) is I\(ro). That is, the firs:
term in (4.11) corresponds to .=\, Rut, since 1.=0, onlvy one term
in (4.17) contributes. Thus, the first term in (4.11), evaluated
for this svstem, is

ti(r) = r:(B/hu’]vxp[~(R—n)/o](l-lp/R). (4.18)
When this quantity is evaluated at the svstem cquilibrium point
ot R=J=ch, we find

t2(r) = r’(R/hn’\(l-lv/qu\. (4.19)
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The second term in eqn (4.11), evaluated for this repulsion,

has the form

t3(r) = "X (B/p?)exp(a/p) § YZXFT(1200]00) (A2u-u00)
o 3/5 A,u

) (RIY, (1) L(R/0)ky, (R/P) - (3+2)k, (R/e)}. (4.20)

Clearly, the sum collapses to one term, the term for X=2Z. For
any system with simple cubic symmetrv, the summation of the
repulsion terms, in the same sense as the summation of the dipole
terms in the electrostatic case, yields a zero contribution.
Hence, only the zeroth order term survives; that term is given by
eqn (4.19).

The application of this analysis to the Morse potential is
striaghtforward. We proceed from eqn (4.19).

The Morse potential can be seen to yield two terms to the
force constant. The force constant contribution associated with

the attraction term we label k_, the term associated with the

repuslion contribution we label k_. Thus,

k, = - 28 (1-2/aR) (4.21)
and

k = -4—r—)§—2-(1-1/aR). (4.22)

The sum of these two terms gives

ek
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k = 2Da?/3 (4.23)

We turn now back to a consideration of the interaction between
the soft ionic charge distribution and the collection of point
solvent dipoles which was discussed in the first appendix. At
this point we need to assess the contribution this type of electro-
static intéraction makes to the force constant.

In eqn (1.16) we expand the exponential, exp(ig-flz), in terms

of r and R: ry, = R-r. Therefore, consistent with eqn (4.4), we

write

. 4 A A _i)(]\a)
101:1112 7 \"Tm("wlm(k)_——- exp (ik*R)
m k?(p?+k?)* A

1/2 R
] (1300[x0) (1jmk [Aw)i%Y{, (a)

_ 64ndiup" 3(23+1)
-t o3 (S
o, m jL,k
x o~ A j:(ka)ji(kR1
x\jk(R)YAu(k) kz(p2+k;)2 (4.24)

= 3 £, 00y, ().
AU

The radial quantity l](ro) is

m i,k 4 (2A+1

3733 4 e 1/2 i
| a 5 “k (2 )

(4.25)

s o~ x Ao ji(kadj, (kR)j[ (kro)
le (H)Y'k(R)J dk k-* ) -
m ] s (pzﬂ(z)z
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We now evaluate the first term in eqn (4.11). Here, as with
the repulsion term examined above, we note that IL(ro) vanishes
as ro * 0 for L. # 0. Note, however, that the integral in eqn (4.25)
does not depend upon M. Nevertheless, the first term in eqn (4.11)
requires that L=i=0. We find that the first term in (4.11)
vields

3 A A A ~ A A
t3(r) = 2ne?kl (v @)Y, (R - Y @IV (R) + Y (@)Y (R)]

ll(

x{3iy (ap)ky (Rp) + (ap)iz2(ap)ki(Rp) - (RpYii(ap)k2(Rp)}.

(4.26)
For a tetrahedral svstem, this becomes
3
t?(f) = 2 £§~ {3i;(ap)k: (Rp) + (ap)i.(ap)k,(Rp)
- (Rp)ig(ap)ka(Rp) ). (4.27)

There is another possihle contribution to the force constant
for the case when L=0, ¢=X=2. However, it is relatively easily
shown that the form is similar to the Carlson-Rushhrooke expression
for ¢=2. Thus, for simple cubic svstems, these additional terms
vanish by syvmmetry.

The behaviour of the force constant contribution (4.27) as
a function of solvation radius is shown in Table 10. The first
three values, which correspond roughly to the solvation radii for
lithium, sodium and potassium, can be seen to be decreasing.
On the other hand, the last two values, which correspond approximately

to the solvation radii for rubidium and cesium, increase. The
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contribution to the force constant has a negative value as a result
of the attraction between the soft charge and the point dipoles.
The repulsion contribution will continue to be a positive valued
contribution to the torce constant. This term generally will
decrease with increasing solvation radius. As a result, the first
three force constants for lithium, sodium, and potassium will be
expected to decrease, as observed. lHowever, because the electro-
static contribution increases from rubidium to cesium, the overall
force constant for these two species should at worst decrease
slower than is the case for lithium to potassium, and at best, they
should increasce, as the experimental data indicate.

This soft charge contribution to the force constant does
support the results of our analyvsis., The softness of the charge
distribution is connected to the polarizability of the atom or ion.
Hence, the result we find for this electristatic contribution
is not surprising.

Finallyv, to complete this discussion of force constant problems,
we quote the integral form of the first order Tavlor series term.
This term generally is needed any time a particular distribution
of solvent dipoles deviates from the equilibrium svmmetry and
arrangement of some reference state.

The first order contribution to the Tavlor series expansion

1s written as

; A " 5 1/2
tyx) = o \\ (—nl"\‘lm(r)\‘m(ro\[fll%}-] (1N00 ] L0O)

2n? L.,M,m

\(I\lvltlllﬂl)lll(l‘t\). (4.28)
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lable 3: Solvation radii

o
lon radius (A)
L 3.24
Na 3.50
K 5.79
Rb 3.91
Gs 4,12
Table 4: Calculated force constants according to eqn (9a) and (9b).

The results are presented in the following manner: the first number

is the force constant; the first number in parentheses is the

: . ; : =1 :
calculated vibrational frequency (in cm ) using the reduced mass

associated with the coordination; the second number in parentheses

is the calculated frequency assuming a rigid solvation cage (¢ = «).
fTon J-coordination tb-coordination
1.1 78181 (452) (427) 1X2772(527)(-~~)
Na 57353(213)(206) 86092 (258)(---)
K 47877 (153) (144) PSS E8d F L=~}
Rb 43752 (10S) (---) 05027 (124)(114)
Cs 37602( 83)(---) 56403( 90) ( 85)
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Lgure captions:

Figure 1: A comparison of the variation of the breathing mode
:

torce constant with solvation radius for (a) cavity contributions
|

alone and (b)) with dielectric image effects included.

| :
| Figure 20 The relationship between the various vector quantities
‘..
El used in the bipolar, Cuarlson Rushbrooke expansion of the free
i space Green function 1/1y» For the systems we consider, 0 is the
i
£l orrgin at the centre of symmetry and S is the location of a
1
: solvent molecule.
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