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FINITE-ELEMENT ANALYSIS OF LAMINATED COMPOSITE-MATERIAL PLATES
J. N. Reddy
School of Aerospace, Mechanical and Nuclear Engineering
The University of Oklahoma, Norman, OK 73019

SUMMARY

A finite-element formulation of the equations governing the laminated
anisotropic plate theory of Yang, Norris and Stavsky is presented. The
theory is a generalization of Mindlin's theory for isotropic plates to
laminated anisotropic plates and includes shear deformation and rotary in-
ertia effects. Finite-element solutions are presented for rectanqular plates
of antisymmetric angle-ply laminates having material properties that are
typical of a highly anisotropic composite material. Two sets of material
properties that are typical of advanced fiber-reinforced composites are &sed
to show the parametric effects of plate aspect ratio, length-to-thickness
ratio, number of layers, and lamination angle. The element is also employed
to study the bending of laminated, anisotropic bimodulus-material plates.
Results are presented for single-layer and two-layer cross-ply rectanqular
plates subjected to sinusoidal loading.

The report also presents a C° finite element for the von Karman equa-
tions of thin elastic plates. The slope-displacement relations are treated
as constraints using the so-called penalty method of Courant. The resulting
element contains the transverse deflection and two slopes as nodal degrees
of freedom. By selecting an appropriate value of the penalty parameter,
solutions for thin as well as thick plates are obtained. Numerical results

are presented for rectangular piates with various edge conditions.
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1. INTRODUCTION

The classical thin-plate theory assumes that normals to the midsurface
before deformation remain straight and normal to the midsurface after de-
formation, implying that the transverse shear deformations are negligible.

As a result the free vibration frequencies calculated using the thin-plate
theory are higher than those obtained by the Mindlin plate theory [1], which
includes transverse shear flexibility and rotary inertia effects; the devia-
tion increases with increasing mode number. The transverse shear effects

are even more pronounced, due to the low transverse shear moduli relative

to the in-plane Young's moduli, in the case of filamentary composite plates.
A reliable prediction of the response characteristics of high-modulus com-
posite plates requires the use of shear deformable theory.

A number of shear deformable theories have been proposed to date. The
first such theory for laminated isotropic plates is apparently due to Stavsky
[2]. The theory has been generalized to laminated anisotropic plates by
Yang, Norris and Stavsky [3]. A good review of various other theories (e.g.,
[4,5]) can be found in [6]. It has been shown (see, for example, [5-8]) that
the Yang-Norris-Stavsky (YNS) theory is adequate for predicting the flexural
vibration response of laminated anisotropic plates in the first few modes.
Whitney and Pagano [9] applied the YNS theory to the cylindrical bending
of antisymmetric cross-ply and angle-ply plate strips under sinusoidal
lading and free vibration of antisymmetric angle-ply plate strips (see also
(10,11]. More recently, Bert and Chen [12] presented, using the YNS theory,
a closed-form solution for the free vibration of simply supported rectangular
plates of antisymmetric angle-ply laminates.

While considerable effort has been expended in the finite-element vibra-

tion analysis of isotropic plates, only limited investigations of laminated




anisotropic plates can be found in the literature [13-16]. Exploiting the
symmetries exhibited by anisotropic plates, Noor and Mathers [13,14] studied
the effects of shear deformation and anisotropy on the accuracy and convergence
of several shear-flexible displacement finite-element models based on a form

of Reissner's plate theory. The analysis was limited to symmetrically Tlami-
nated cross-ply plates. In [15,16] vibration of only cross-ply laminated
plates was considered.

A1l of the plate bending elements based on the displacement type formu-
lations are algebraically complex (recuire C]-continuity; see Kawai and
Yoshimura [22]) and are computationally too expensive to use in nonlinear
analyses. Several C° elements have been developed in the last decade in
the interest of computational efficiency in large nonlinea} problems. These
inlcude the so-called mixed finite elements (see, Hermann [23], Nemat-Nasser
and Lee [24], Kikuchi and Ando [25], and Reddy and Tsay [26]), and elements
based on the discrete "Kirchhoff hypothesis" of Wempner, Oden and Kross
[27] and Fried [28], and on the “reduced integration" techniques of Fried
[29], Zienkiewicz and Hinton [30], and Hughes, Cohen, and Haroun [31]. In
these works only linear plate bending problems were considered.

The purpose of the present investigation is two-fold: to develop a finite-
element model based on Yang-Norris-Stavsky (YNS) theory, and to present a
penalty-finite element that treats the slope-displacement relations as con-
straints. The relationship between the penalty formulation and Reissner-
Mindlin thick-plate equations is established. Numerical results are presented
for free vibration of antisymmetric, angle-ply laminated-composite plates
(based on YNS theory), and for nonlinear bending (based on von Karman theory)
of thin plates. Results are compared with the closed-form and other approxi-

mate solutions.




Following this introduction, we review the equations of the Yang-forris-

Stavsky theory, and present an associated variational formulation, which is

required for the finite-element modeling.

2. GOVERNING EQUATIONS AND VARIATIONAL FORMULATION

Consider a plate of constant thickness h composed of an even number ;

of thin anisotropic layers oriented alternately at angles & and -2. The

origin of the ccordinate system is located at the middle plane of the plate I

with the z-axis being normal to the mid-plane. The material of each layer |

is assumed to possess a plane of elastic symmetry parallel to the xy-plane.
We shall denote the middle plane with 2.

The YNS theory is based on the following assumed displacement field:

U= ug(xyst) + 2 v (xy,1)
v VO(X,y,E) + Z vy(xayaf) (])

w(x,y,t)

w

where u, v, and w are the displacement components in the x, y and z-directions,

respectively, u_. and v, are the in-plane (stretching) displacements of the

Q

middle plane, and Yy and Yy are the shear rotations. Recalling the strain-

displacement equations of linear elasticitv, we have
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Owing to the existence of a plane of elastic symmetry, the constitutive

relations for any laver in the (x,y) svstem are given by
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where Qi‘ are the plane-stress reduced stiffness components of the layer material.

Introducing the stress and moment resultants per unit length,
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The laminate stiffnesses A.., B

The stiffness coefficients Q
orientation of the m-tn layer. The parameters K;; are the snear correction

coefficients. Note that for antisymmetric laminates, coefficients A,., A,.
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are identically zero.
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of body forces, the equations of motion associ

are (see [31),
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With the finite-element discretization in mind, we give a variational

form of the equations in (7). The kinetic energy and the strain energy

associated with the problem are,
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It can be verified that the first variation of the Lagrangian functional, L=T-V
(i.e. Hamilton's principle) leads to the equations of motion (7) expressed

in terms of the displacements and slope functions. Here V denotes the total
potential energy (i.e. sum of the strain energy and energy due to applied

Joads) of the plate.

3. FINITE-ELEMENT MODELS OF THE YNS THEORY

The first variation of the Lagrangian functional, L = T-V, gives the
variational form of the equations of motion governing the layered aniso-
tropic plates. This variational form is convenient for the finite-element
formulation. Since we aré primarily interested here in the free vibration
analysis, the potential energy due to the applied loads is zero.

Let the domain @ be decomposed into a set of finite elements. The
restriction of the Lagrangian functional L to the finite element g is

denoted by Le‘ We have
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where N denotes the total number of finite elements in the mesh. Over each
e e
)

o y can be represented

element ne, the field variables (uoe 5 Vs 9 we, wxe s W

by the following approximation
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where :f (x,y) are finite-element interpolation functions (also called shape
functions). For simplicity, the same interpolation is employed for all of
the five fields. Substitution of equation (12) into the first variation

:‘Le of Le gives (omitting the algebraic details) the following set of equa-

tions for a typical element gt
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vector, and
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and M }j of the mass matrix are defined by
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Note that in the above derivation, the parameter AJR is set to zero for
simplicity.
For free vibration, the (discrete) equations of motion (13), after assem-
bly of the elements, take the form of a standard eigenvalue problem:
5|
(K] - «“[MDa} = (O 16)

where . is the frequency of the natural vibration. Egquation (16)

—

can be solved, after imposing the boundary conditions of the problem, by any

standard eigenvalue program.
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Several comments are in order on the finite-clement equations (16). In
theory, each layer of the plate can have its own material properties and

angle of orientation. The material properties of each laver are generally
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known in its own coordinate system. Hence, they must be transformed, using

the angle of orientation, to the plate coordinates (see [17]) to get QE?)

for each lamina. To obtain Aij’ B.., and Dij one must use equations (10).

iJ
For example,

E ;m+1

(m)
| Qij dz (17)
7

) J -
~t/2 m=1 .

where Zq is the distance from the mid-plane, along the thickness, of the lower

surface of the mth layer. Thus, once Ai B.. and Dij are known for the layv-

3" i)
ered composite plate, it can be viewed as a plate made of single material

having behavior characterized by the constants Aij’ B:. and Dij' Con-

iJ
sequently, the finite element procedure becomes the one that is used in
Mindlin's plate theory.

In the present study the eight-node (r=8) rectangular elements (of the

serendipity family) are used. The element stiffness matrix is of order

40 by 40.

4. FREE VIBRATION ANALYSIS BASED ON THE YNS THEOQRY
Numerical results are presented for antisymmetric angle-ply rectangular
plates with all four edges simply supported. All of the layers are assumed
to be of the same thickness and made of the same orthotropic material.

Hence, the coefficients Q.. referred to the material -symmetry axes are
1]

given by
9y SpRe ¢ s T
avyoy o, 0 0 0 |
z , -1
Q'] = 0 0 Gy, 0 0 |, k=5/6,0a= (T-vpvy)
0 0 0 KkGyjq 0 |
0 0 0 0 kGyy ‘
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In addition to the isotropic properties, the following two sets of dimension-
less material properties (typical of two kinds of graphite-epoxy) are used:

s Isotropic: E]/E2 = 1.0, G]Z/EZ = 1/2(1+v) , v= 0.3

2. Material I: E]/E2 40 , G]Z/EZ = 0.6 , G]3/E2 = G23/E2 = (0.8, v]2=0.25

3. Material II: E]/E2 2% G]Z/EZ = 0.8 , G-|3/E2 = (ol Ypa = 0.25

A1l of the computations were carried out on an IBM 370/158 in double precision.

Due to storage limitations, onlyaquarter plate (exploiting the biaxial

v=w=wx=0 v=w=wx=0
u=0 | i ST 5 u=0
w=0 %——~—?-—o——§ ; w=0 u=w=wy=0
:Vy=0 S i—o—-& 1 4,20
v=yy=0
(a) half plate (b) quarter plate

Figure 1 Boundary conditions and the finite element mesh for
the simply supported plate.

symmetry) is used to compute the fundamental natural frequencies and a half-
plate model is used to obtain the symmetric and antisymmetric higher order
modes. The finite-element mesh and the boundary conditions for the simply
supported edges are shown in Figure 1.

As a check for the numerical accuracy of the finite element method,
natural frequencies were first obtained fora thick isotropic plate (v = 0.3)
with side-to-thickness ratio of 10. The finite-element results are compared
with 3-D linear-elasticity solution, Mindlin's thick-plate theory, and the
classical thin-plate theory in Table 1. The finite-element solution was
obtained using 2x2 and 4x2 quadratic element meshes in the half plate.
Clearly, the results obtained by using the 4x2 mesh are closer to the thick-
plate theory indicating that further mesh refinements could yield better

accuracy. However, with the increasing mode number, the finite-element results
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Table 1 Comparison of nondimensional frequencies \ = .a“(./€t7) }

of a square simply supported isotropic plate (v = 0.3, a/t = 10)

Y T T e
f f | 3-0 Linear | Mindlin's | Rock and [ Present FEM | Clas>1gal! f
{ | !Elasticity Th\ukPiatL‘ Hinton | Half Plate Model { Plate '
' Solution | Solution ' —7 Theory |
m | [8] T Bl 8 ) [30o0F(axe)] s DoF(ax2)| " |
11} 6.780 ; 5,767 i 5.774 | 5.793 | 5.920 l 5.973
| | ! z | | ‘
t1 20 13.805 | 13.755 | 13.749 | 14.081 | 15.251 I 14,934 | |
K 2 | { .
113] 25.867 25.700 | 27.207 | 27.545 28,133 | 29.867
| | \ | !
213| 32,491 | 32,230 | 34.010 |35.040 | 33.087 | 38.829
| , ! ! i :
303 2724230243609 | 49.693 | 49.723 { 53.868 | :
joa) ] i 3
L% si 57.476 | 56.758 - 74.823 ? 74.041 | 77.652 | '3
N s P | [ CLaE R DN s S et e 14

Table 2 Effects of in-plane displacements, lamination angle, and the
finite~element mesh on the dimensionless fundamental frequency,
\ = udz(Q/E:C:)H,Of a simply supported square plate

(a/t =10, a/b = 1, 4 layers)
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‘ _,‘t-, - I p—
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| | | { | ; 4

L_.__.,._,..,-,_.4_..,‘,-..,__,...___.,»...__._. SmESL A | S | TR R SEm——
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seem to deviate more from the 3-D elasticity and Mindlin's thick plate solu-
tions.

Figure 2 shows a plot of the dimensionless frequency versus the side-to-
thickness ratio for three aspect ratios of layered composite plate consisting
of four Material I layers oriented at 45°/-45°/45°/-45°. The results are
compared with the closed-form solution of Bert and Chen [12]. For a given
aspect ratio, the finite-element results seem to approach the closed- form
solution with a decreasing side-to-thickness ratio. The figure also indicates
that the finite-element solution converges to the exact with decreasing
aspect ratio. Figure 2 also contains a plot of the fundamental frequency
versus the side-to-thickness ratio of a square plate consisting of four
layers of Material II. All of the results were obtained using a 2x2 mesh
of quadratic elements in the quarter plate.

Table 2 shows the effect of in-plane displacements, the lamination angle,
and the mesh on the fundamental natural frequency of square laminated plates
consisting of four layers (a/t = 10). The three-degree-of-freedom (NDF = 3)
solution is obtained by suppressing the inplane displacement degrees of
freedom (u,v). It is clear that the fundamental frequency increases with
the lamination angle (results are symmetric with respect to 45°, i.e.,
results for 90°- 9 are identical to those of ¢), and the 3-degree-of-freedom
(w,wx,,y) prediction results in higher frequencies. Due to storage limita-
tion further refinement of the mesh was not possible; however, the finite-
element solution seems to converge toward the closed-form solution.

The effects of the lamination angle and the number of layers on the

dimensionless fundamental frequency are shown in Table 3. The finite

element method predicts the lower values for the frequencies compared to the closed

form solution of Bert and Chen [12] as the number of layers is increased.

A Wil
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30.0 |
)
29.0 |
cPT ~ -
a/b=1.2
20.0 |
a/db=1.0 A——-——"""A A
/
15.0 [ 4
a/b=1.0
& 3
o] WA g Mat. § Mat. 11 ase | 5
a Present FEM —a— Present — <
L —o— Bert & Chen(12] FEM o 4 :
s e — 4
0.0 10.0 20.0 30.0 20.0 50.0 60.0 :

Figure 2 Comparison of fundamental frequency for a four-layer antisymmetric
angle-ply (2=45°) simply supported square plate by classical plate

theory (CPT) and shear deformation theory of Ref. [3]. b
y . 5 ]
3 Effects of lamination angle (5) and number or\]ayers on the ’
dimensionless fundamental frequency «a-{o/E.t=) "~ of a simply 1
supported sguare plate (i/-6/3/.../-¢, a/t = 10)
| 1 . . i .
‘ [ Material Type I Material Type II | :
E No. ' ] ; ( E 1
| of 1 30° a5° .
|Layers | i , | . : 5
% | Present* | [12] |Present® [121! Present* l |
! | { "
2 i 15.001 | 12.68 | 15.715 | 13.04 | 11.35] }11 752 j
4 | 17.689 | 17.63 | 18.609 | 18.46 | 12.739 | 13.303 ;
I ’ |
6 | 18.002 | 18.23 | 18.925 19.09 | 12.898 } 13.471 | |
|

|
{
e |
| |
8 | 18.104 4 18.42 ' 19.028 ! 19.29
} ' : |

10 | 18.150 | 18.51 | 19.074 1 19.33 |12.973 13.580 |

| 12 : 18.175 | = | 19.098 | ~ [12.98513.862 | |
14| 18189 |~ [ 19.m3) ~  [12.993 [ 13.589
16 | 18.199 | 18.60 | 19.122 | 19.48 112,998  13.575

*  2x2 quadratic element is used
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thickness ratio on the dimensionless fundamental frequency (recall Figure 2)

{

!
Tables 4 and 5 show the effects of plate aspect ratio and length-to- y

|

{

»

|

for Material [ while Tables 6 and 7 contain similar results for Material II.

The results are obtained using 2 by 2 mesh of quadratic elements. From

il

Table 4, it is clear that the finite-element results are closer, but higher,

e bl

than the closed-form solution of Reference [12].

Finally, Table 8 shows a comparison of nondimensional frequencies, for a
four layered laminated sguare plate (45°/-45°/45°/-45°, a/h = 10), obtained
by various investigators. The table includes the closed-form solution of
Bert and Chen [12], classical plate theory [20], and the finite-element

solutions obtained using various meshes and with and without in-plane dis-

placement dearees of freedom (DOF). While the 4 by 2, 3-D0F model qives
better results than the 2 by 2, 3 DOF model, the 2 by 2, 5-DOF model qives
more accurate results when compared to the closed-form solution.

While the present study concentrated on the antisymmetric, angle-ply
laminated piates with simply-supported edge conditions, the theory oresented
(and the computer program developed) is valid for general laminated plates, and

for various other edge conditions (see Reddy [21]).

5. PENALTY FORMULATION QF VON KARMAN PLATE EQUATIONS 3

|

Let the middle plane wcR< of the plate coincide with the (x,y) plane, j

and let 3o be its piecewise smooth boundary. The strain-energy functional i

associated with the nonlinear (von Karman) theory of thin, isotropic plates is
T > i g
Uc\w) * > j\ L(w'xx)L - (w.yy)~ + Sy MWy + 2(1-v) (w‘xy)':] dxdy

+U W;wa ) \

Y

P
(¢5]
~—

it

where Un(') is the contribution due to the large-deflection assumption,




[Z1] 434 Wo4y BJe SIBYDRUG ULSAN[RA

e o P [ |
(62°25) m L (LLo6g) | (L€°¢€€) (90°82) | (vz'€2) | (68°81) Aqo.m_v* (28°1L) | (L05°6) |

| 686°€G [ [90°Ly | £59°0Y "Nqﬂ.vm 12€°62 _ €VE'¥Z | 65461 | 689°GL | 082°2L | 918°6 | 05 |

ﬁ | , _ , _ { w

| (25°19)| ((2s78e) | (s0°ee) | (e8722) | (80°€2) | (8478L)) (86WL)| (8L LL) | (SBY6) | m

% ZL0°ES | G0E'9Y | LLOTOY | LOE'VE | €00°62 | 8LL'¥2 | ¥09°6L | €85°GL S0zl | 656 oy |

| | w _ _ |

. | (86°6Y)] (28°L€) | (8£°2¢) Amm.Nva (v£°22) | (95°8L)| (v8°vL)| (0L LL) | (9¥°6) | “

- | 2ELTLS | 2€8°WY  O¥6°8E mhmq.mm 18€°82 | 9/9°€2 | YOE'6L | SBE'SL | v/0°ZL | £99°6 | 0€ |

| | m | | ,

| (92°99), | (95°6€) | (89°0€) | (2L°92) | (£8°12)| (L6°LL) (5v°v1)| (9v°11) | (00E°6) &

| 68479y | 2LE°Ly | 0v2T9E | LOVTLE | £S8792 | vBG'ZZ | [SS7BL | 968°YL | [9L7LL | SL¥6 02 |

i i i ! | |

| (L879E)] (s6°22) | (£9'v2)| (15°12) | (9v°8L) | (v5°c1)! (28°21)] (2v-0L) |,(¥99°8) m

LYvE'YE | 18670 | 9EL°L2 | 209°v2 | £95°1Z | 609°8L | 2LL°SL | S96°2L | SESOL T v2L'® oL |

1] |

0°2 8L w 91 vl A 0L 80 9°0 \& v°0 2°0 'l

b q/e ™|

“(,SY-/.G9/.5%-/-GF) 1 Letuadiry 40 3apew ajejd ae|nbueidau
pajaoddns-A|duLs e j0 Nﬁwgmu\uvmmz = ¢ “AouanbaJy |PJuU3WRPUNS SSI|UCLSUBWLP
3y} uo (3/e) OL3e4 SS3UYDLYY-03 -y3bua| pue (q/e) _o1ed 123dse 3je(d 40 S323343 § 3(19e}




Table 5

Effects of plate aspect ratio (a/b) and
ratio (a/t) on the dimensionless
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lenath- to- thickness

fundamental frequency,

2
\ = &az(v/Ezt‘)? of a simply-supported rectangular plate made
of Material I (30°/-30°/30°/-30°).

[ a/b [-— [ RO e o o
faitd 02 ) 0 Lo o0l TG Nl hel sl 18] 20
} - -,‘-,;L S ._.--a-_,T ——ee e ]
1 | |
10 11.106§ 12,172 13.734I 15.615 |17.689 1 19.880 | 26.275 \24.460 26.836 :29.398
| | | |
i | ! i | [
20 12.595 | 13.950 | 15.969 | 18.457 (21.281 | 24.362 | 27.645 ;31.0885 34.680  38.4281
| f : ; f ‘ ‘ |
| 30 | 12.972 14.401 | 16.543 | 19.204 |22.253 ‘ 25.619 | 29,244 | 33.086| 37.132 4 390}
: | | | | : i l
[ 40 I 13.136 ; 14.591 | 16.779 | 19.507 122.646 | 26.128 | 29.896 !33.909! 38.154 [ 42.641
l i ' | | ' | ‘ t | '
50 ! 13.233 | 14.700  16.908 | 19.667 |22.850 | 26.389 | 30.229 ! 34.330| 38.677 i-13.23.1'
; : ‘ ; a | i . ! '
60 ] 13.301 | 14.773 | 16.992 | 19.767 |22.974 | 26.545 | 30.426 | 34.577 38.985 | 43.663
WRELE, SRS P TE | L kb IR el SEEEEER ISR S o
Table 7 Effects of plate aspect ratio (a/b) and Tlength-to-thickness
ratio (a/t) on the dimensionless fundamental frequency,
p 'y
V= wat(0/E,i7) 2 of a simply-supported rectangular plate made
of Material II (30°/-30°/30°/-30°).
0.2 | 04| 06| 08 | 1.0 12| 1.4 | 16! 18 20|
U " . e —— NS N———— Y SRS
T T !
| | |
8.198 | 8.937 _10.019 Tl 3Ve | 12739 | T 237 | 15,485 | 17,382 19,038 | 20,771
‘ - ;
9.788i 10.819 112.351 14.233 16.363 i18.674 21.126 1 23.69 26.383 | 29.791
10.214 | 11.333 | 13.009 | 15.088 | 17.471 120.094 22.913 {25,905 ' 29,064  32.397
10.392! 11.545 :13.277 15.439 (17.929 | 20.688 | 23.673 |26.859 | 30.242 | 33 Sjli
| 5 | l .
10.490 | 11.659 | 13.418 | 15.619 18.163 ;20 992 | 24.062 127.3512 30.855 | 34.582 |
10.555 | 11.731 | 13.508 | 15.728 |18.302 | 21.770 | 24.291 |27.640 | 31.216 | 35.026
NGy T SRR TN ST S § R T SN

B T w——




19

e g i i e e e e e s~ g

ﬂ:f-}::..
| — ll2s¢e| By 2e 99L7(2 (SOV'EZ | L2076L| ¥BLISL| 955721 65876 | 226°L |
b05 25 | LOL°LE | £40°26 BYbTLZ 9BLUTZ £2°61 619751 vevezl 902°6 | £88°L |
ety | 222°9¢| olv 1 ¥v6°92 618°22 21076l LOS'SL)| 59721 0EL'6 | 8287 |
992765 | 1S5°VE LIL°0E | [96°52 OOL°2Z 66v°al  LGL°GL| LEL'ZL| ¥95°6 | £54°L
bOL 96 | 098°0E | £61°(2 | LOL°EZ | L0b"Q2 @@N.:mew.ﬁwim.:w 262°6 | 115°L |
209°62 | LEYTLZ) OLE'6L 952°LL 652°SL EUE'EL BLETLL| £EG76 Sm.ﬁﬁo.g |
o e (v v (e e [we v [ v e [
SR MRS AT B SN SReAl p R SRS il SIS o

{.9%-/.50/.50=/.5Y) 11 (2t433%y 40 3peu aje(d ae|nbueldad

pajsoddns-£(duts e 40 .Auﬁmw\;vnm: = « “f3unnbady | PIUBLEPUNS SS3LUDLSUIWLD 343

>

uo (3/e) oLied 553U4I1Y3 -03-yibua|

pue (q/e) oiLjes 323dse ajeid jo $393343

i AT TR

1/e

L RS,

m

9 3lqel




L

‘as

)

.-\
X S A 1%
. 3 - 2 " il R o o a . L -\ .
adble 8 Comparison Of nondimensional frequencies & a™( o/E,t 3
P
- > - mn Y - . ¥
of a four-laver laminated simply supported plate
A Al %8 L L ‘e 10
(Matertal [, 45 /=458 /35 /=45 |, a/t = 10}
LI s O e . ST - s =
Mrageant FEM mased on the YNS tnanyey) . ey
Bert & i Present FLM (dased on the YNY theory! . Classical
- N 5 &3 ;) P s Y& m) MaYd s DY ad
Chen Quarter plate, Malf plate | Half plate | Half plate| Plate

.
'
n [12] | 2x2, NDFs5 | 232, NOF=5 _ 2x2, NDFs3 | 4x2, NDF=3 Theor

1 18. 46 18,609 18,2589 19,044 19.183 3.3

2 34.87 ~ 35.58% 36.512 35.408 83.74
3 S4.27 a4, 360 54,3678 8§.727 55,390 98.87
R 67.17 70.315 70,895 87.03 147,685
{
4 715.58 AR R 79.882 76.4812 160.35
3 RIRE 83,975 RISIREEY 100.012 84,72 211,75
5 97.56 108.570 108. 665 109,792 105,057 238.72
4 Q9,02 182,285 109,292 e38.76
5 104.95 226,432 116.385 297.30
- "
) \ ( . \ \ 1a )
\ a J - * . .
kn | N\\\‘t\“\\\\ \\‘\ \\‘-\\‘\\ -.\ ‘\\-\\\n) * N \“-‘\ \\\‘n\ | \‘.\\n,“ Al )
- \ * 1 )
Here w denotes the transverse deflection, and N_. \\\. and N are the
\
stress resultants,
| ) . . Yy , .
No o= =& (wro + wws ) K o) =t (ws . o+ Wt ) )
' \ J i = W N h W AL -\
N P, \ ‘X --\ . \‘\\ \.\\.\‘ l}, ’ \{\ .\ \ |'\ \\ \
radiyn A N - \ N \ .
where D = [t l..\]'\"‘ v G W ¥Q \’n-\"‘ , and C. = Gt , £ being the
o , " : . Badad Vg w0 3
Young's modulus, G the shear modulus, v the Poisson's ratio, and t
the thickness of the plate. Introducing the slopes 2, and 2,
W W 3 "y
AR - \\ < . - a { < \

the strain energy in (18) can be writtan in terms of 3, and 3

£
|
|
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D, - ’ (1-v) %
) {o._ .8 ) = 2 a: o Vi (' 3 : ,
Ugloysdy) =7 | o2  + 02 +2ve, .0  + g0,  +0, )2 dxdy
ia L |
+ ¢ ¢ f ey
Un(‘x.ey) L22)

Variation of the functional in (18) leads to the equilibrium equation in
terms of the deflection w, while that of (22) leads to equilibrium
equations in terms of the slopes. The strain energy associated with the

thick plate (Reissner's) theory is given by

r -V .
kgl 3 2 o L vy X)J dxdy

Yy, xYy,y 2 X,y

ktG : ~
» i [lws. - 0y )’ +,(w’v - ,y)-] dxdy + U (v

where ¥y and v, are the slope functions and k is the shear correction factor.
Note the similarity of the expressions in (22) and (23).

In the penalty method the problem of finding the critical points (fx,éy)
of the functional Uo subject to the constraint conditions (21) is formu-

lated as one of seeking the critical points (ax,ev) of the modified function-

al,

Up(i\'\o'\\ytw) = U'\\\.\\X’;\_y) % ':" : [(W‘ i K“y):] d\dy \:‘1\

€ |s
/g

o OX): + (w,

X J

without constraints. Here ¢ is the penalty parameter. The penalty para-
meter ¢ plays a crucial role in the accuracy of the method. In theory, as

- goes to infinity, the solution (9‘(5). av(c)) to the penalty problem

approaches the true solution (u‘. ey) (see Reddy [33]). The shear force
resultants can be identified as

e oo e o §

u
(4
-
w
w|Z
€
"
[
.53
Y
~
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—
ro
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Also note that the penalty functional Up is of the same form as the function-

al US associated with shear flexible theory with the following correspondence:

~ 8y s vy~ :'-y » ¢ ~ktG (26)

Thus, for a very large value of ¢ we recover the strain energy of

the thin-plate theory from equation (24), and for ¢ = ktG, U_ represents

p
the strain energy associated with Reissner's thick-plate theory.

6. PENALTY FINITE-ELEMENT MODEL
The total potential energy associated with the penalty formulation of
the equations governing the large deflection of elastic (isotropic) plates

is given by

v if ( [ k f » aw =
8 £ = ¢ w ) - - | — &F
ip(Wa2,8 ) = Up(a,,0 W) J WP dxdy - | - quds s W, o i (27)
de \>.q s —m
where 3:q + };m = 32, P is the distributed load, and n is the unit outward
normal.

We seek the finite-element solutions of the form
. = val
w "wiNi e @ = LGXN-

where Ni are the (finite element) shape functions. Substituting (28) into

(27), we obtain the following equations for a typical element:

k%] + :[s"] (X7 (52X ] (8] (8%
T e e e e = == :
(] + es"] | -5 {ioy) = {8Y) (20)
sSymmetric 4+ ~ = s = - - - - b ed)
5 | CoelK]l (W} Q)

where

g i
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(4
il
3
(€] = O((S"] + (1-0IYD) + (641, s§]= | w, N dsen £
¥ Xy va N s :
(k'] = D([SY] + (1-v)[S*]) + (6¥] , [KYY] = D[S + [6¥] (30)
-,»5.:( T NN g oy o : 2 Xy e E
¥4 Q |3
(K] = (57 + [, 8% = [ nds, 8 =[ fnd ]
I < ’ ‘ 'l nx i s 1 = lyl.i S

A0 AN

Computational Aspects. Several comments are in order on the computa-

tional aspects of the penalty finite-element model developed herein. First
Tet us examine the consequence of the limit 5-1 going to zero. The penalty
ement equation (12) can be expressed in the form

([Ky1 + elKo1){a} = (F} (31)
For very large values of ¢, the second term (i.e. penalty term) in the

parentheses dominates and we have,

(93]
ra
i

‘2]:L‘ , and lim [K,){a} = {0} (
s - x s

Thus, for a very large value of =, the bending-energy contribution-to the
stiffness matrix is lost (and the energy due to transverse shear dominates),
and equation (32) yields, in an attempt to satisfy the constraint conditicns
exactly, the trivial solution (i} = {0} (if [Kz] is nonsingular). If the
equations in (15) are linearly dependent (i.e. [Kz] is singular), then the

numter of independent (constraint) equations are less than the number of

unknowns and the remaining equations are provided by [K]]. Thus, it is
necessary to have nonsingular [X;] and singular [K,] in order to obtain a
nontrivial solution. The same conclusion can be reached from a mathematica!l

point of view. The aexisten:a and uniaueness of solutions to any finite

e s b, s o i i . - e
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element model requires the asscciated bilinear form to satisfy certain con-
tinuity and coercivity conditions (see Oden and Reddy [34 For the pen-

alty finite-element model, these conditions impose restrictions on the choice
of interpolation used for w, and S and Qy to make the parameter appearin
in the coercivity condition be independent of the mesh size, h.

Uel

-

The latter

can also be achieved by employing reduced integration on the penalty (or

shear) terms, which makes the matrix [ﬁ:] singuiar. Reduced integration is

employed in the present study to evaluate the elements of [K:]. For example,

if a bilinear quadrilateral element is used, a 1x] Gauss rule must be used

for [K,] in place of the standard 2x2 Gauss rule. As for the value of =,
it should be equal to kGt for thick plates (in which I vy FoaWlox (2]

and an order or two greater for the thin-plate analysis (to satisfy the

constraints & = 3w/3x, and 3, = 3w/3y).

G

7. NONLINEAR BENDING AND FREE VIBRATION RESULTS

The penalty finite element described above is used in the (static)
oending analysis of square plates under uniformly distributed load for
various edge conditions. In these studies a value of 3.3 is used for tne
Poisson's ratio, and ¢ is taken to be Gt/nh, where h is the element (mesh)
size. Due to the biaxial symmetry of the problems considered here, only
quarter plates are analyzed in the interest of computational efficiency and
convenience. The following iterative scheme is used to obtain the con-
vergence of the transverse deflections. Beginning with the zero solution,

the linear solution is obtained after the first iteration. Tnis solution :

is used to compute the nonlinear {geometric) stiffness coefficients for the

next iteration. Only a weighted average of the following form is used to

el e e

calculate the geometric stiffness coefficients:

L a3+ (1-a) a3t (33)
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where (A is the solution vector, n is the iteration number, and « is a
parameter, 0 < x < 1. Preliminary investigation showed that a value of

+ = 2/3 gives, in the present formulation, the fastest convergence. The

convergence criterion used is of the form,

Ll ;'1.‘)33:/3 <e=1p™ (34)

A1l of the computations are carried on an IBM 370/158 model in double pre-
cision. Due to the space limitation only limited results are included here.

Figures 3 and 4 show the plots of the (normalized) center deflection
for simply-supported and clamped plates, respectively, under uniformly
distributed loading, and corresponding stresses are shown in Figures 5 and
6. The present solutions are in good agreement with those of Way [35],
Wang [36], Levy [37], and Yamaki [38]. The present solutions (for various
meshes and elements) are bounded by Yamaki's solution from above, and
dang's solution from below for simply-supported plate.

Table 9 shows a comparison of the penalty (present) solution with
the mixed solution of Reddy and Stricklin [39] for the clamped-hinged square
plate under uniformly distributed load. The mixed finite element in [39]
was based on the von Karman equations. The bending moments (Mx = My)
are compared, for the same problem, in Table 10. The values of the bending
moment are obtained at the nodes in the case of the mixed method, whereas
they are computed at the Gaussian points in the case of the penaity method.
The locations of the Gaussian points are given in parentheses.

ODue to the simplicity of the present element, it is very economical
to use in nonlinear problems which require large numbers of elements. The

complicated conventional bending elements (i.e. elements based on displacement
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type formulations) are only marginally more accurate when the linear solu-

tions are compared but computationally very expensive.

Table 9. Comparison of Center Deflection (w/t) Obtainea by the
Mixed and Penalty Metnods for Clamped-Hinged Square

3 -

Plate Under Uniformly Distributed Load (. =0.3, a/t = 10)

[ { MIXED FEM [39] [ eenaLTy Fen |
| LOAD ~—TINEAT T QUADRATIC T TINEAR | gUADkn {4
Pya~*wf'“mrf~fcﬁfﬁw“ 8x5 | | Ryl
25.0 | 0.494 0.451 | 0.436 | 0.437 | 0.440 | 0.441
50.0 {0.804 | 0.724 | 0.697 | 0.699 | 0.707 . 0.707
75.0 1.021 | 0.916 0.881 0.882 | 0.895 0.893
100.0 | 1.190 1.066 | 1.025 | 1.026 | 1.043 1.040
125.0 | 1.330 1.192 1.146 1.145 | 1.167 1.163
150.0 | 1.450 1,301 1.252 1.249 | 1.275 1.27
175.0 | 1.557 1.398 1.345 | 1.341 { 1.3n 1.355
200.0 | 1.652 1.386 1.23] 1.425 | 1.158 1,352
2250 | 1.741 | 1.566 1.509 1.501 | 1.539 1.532
| 250.0 {1821 | 1641 | 1.581 1.672 | 1.6l2 s

Table 10. Comparison of Maximum Sending Moment \-A‘ x 107°) Obtained

by the Mixed and Penalty Methods rfor Clamped- 11nueu
Under Uniformly Distributed Load (. = 0.3, a/t =] ;
’ MIXED FEM [39] PENALTY FEM ‘
LOAD v et ]
| LINEAR | QUADRATIC LINEAR QUADRATIC
o , ; T 6x6 | dxé ‘
| Pa“/Et* | 2x2 | 4xd 2x2 dx4 | (.4583,.4583)/(.4375, 4375)
25.0 | 1.450 | 1.53% | 1.617 1.572 1.094 | 0.874
50.0 | 2.400 | 2.653 | 2.829 2.72 1.827 1.420
| 75.0 | 3.076 | 3.558 | 3.833 3.683 2.381 1.810
! 100.0 | 3.616 | 4.342 4.717 | 4.527 2.839 | 2.118
125.0 | 4.067 | 5.043 5.518 5.300 3.234 2.375
150.0 | 4.458 | 5.683 | 6.256 6.023 3.585 2,53
175.0 | 4.806 | 6.275 | 6.942 6.707 3.903 2.792
200.0 | 5.117 | 6.827 7.530 7.359 4194 | 2.967
225.0 | 5.407 | 7.346 8.1%9 7.986 4.464 | 3.126
250.0 | 5.671 7.83% | 8.777 | 8.592 l 4.717 | eeee-
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8. APPLICATION TO PLATES MADE OF BIMODULUS MATERIALS '

The finite element model developed herein can also be applied to the

Sa

analysis of plates constructed of bimodulus composite material. Due to

different elastic properties in tension (T) and compression (C), the

it s Cosine.

material coefficients Aij‘ Bij’ and Dij are now defined by (see [40]),

|
|
(1/2 ;
= 2 - 1 i = o |
(Aij’Bij’DiJ) " Qij (].Z'Z )d-. ) (]y.] ]v‘-061 "
-t/2 j
r’n 1-:\‘+1 q
a ¢ | cay.dz % T | ,.dz 35
g=1 ";'.\ Q“]]“ =1 J:n 01‘]": L

Here Qijk; denote the stiffness coefficients in the plate coordinates of
the (-th layer in tension (k=1) or compression (k=2), and Z, is the distance
from the midsurface to the neutral plane (which is unknown a priori).

Figure 7 shows the influence of the aspect ratio (b/a) and side-to-
thickness ratio (a/t) on the location of neutral surfaces for a single-layer,
isotropic, bimodulus, simply supported rectangular plate subjected to
sinusoidal loading,

p = P0 sin(+x/a) sin(ry/b)

The following elastic properties are used:

Ef; = 3.584 GPa , ES, = 1.792 P2 , E5, =€}, , €S, = ES,
(36)
Gf_‘ - Gk;: = 1.27 GPa ) \‘E.‘ = \‘_t\l = 0.4 % \‘L{: - \'f‘.l = 0.2

Note that for b/a = 1, the neutral surfaces associated with x- and y-directions

{o il e iy
coincide (i.e., z ny)
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Fig. 7 Neutral-surface location vs. plate aspect ratio, 1
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Similar results are presented in Figures 8 and 9 for a two-layer,
cross-ply (0°/90°) rectangular plate under sinusoidal loading. The bi-
modulus properties used are the same as those listed in Table 3 of [40].

Note from Fig. 8 that the neutral-surface location, T is virtually un-

changed for aspect ratio greater than 1, while the neutral-surface location,

Zny‘ increases in proportion to aspect ratio. It should also be noted

that the neutral surfaces do not coincide in the cross-ply case for b/a = 1.
Figure 10 shows the influence of the aspect ratio and side-to-

thickness ratio on the transverse deflection for single-layer and two-

layer cross-ply problems discussed above. The effect of thickness on the

deflection is more pronounced than the effect of the aspect ratio.

9. SUMMARY AND CONCLUSIONS

Using the penalty function concept of Courant, a simple finite element o
for the Yang-Norris-Stavsky (YNS) theory of composite plates is developed.
The idea is also extended to the nonlinear theory of thin elastic plates
(due to von Karman). In these formulations the slope-deflection relations 1
are treated as constraints. Rectangular isoparametric elements of the
"serendipity" family are developed. Numerical results of natural frequencies 1
are presented for rectangular plates of antisymmetric angle-ply laminates.
In the nonlinear analysis, only thin, isotropic, rectangular plates are con-
sidered in order to compare the accuracy of the present element with other
approximate solutions. Finally, the penalty finite element based on the YNS
theory is employed to study the bending of laminated, anisotropic bimodulus-
material plates.

In the study of free vibrations, the present element gives very accurate

results for natural frequencies. The results are verified against closed-
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form solutions. In the case of nonlinear bending of thin plates, the results

are compared with those obtained by a mixed finite element method, and other !

i s aakiatl

approximate solutions. The present solutions are in close agreement with

those obtained by the mixed method, and are bounded (above and below) by
other approximate solutions. For the bimodulus plates, it is shown that ‘
the neutral-surface location, even for single-layer plates, may vary consid-

erably from the geometric midplane, depending upon the degree of bimodularity. .
Also, the plate deflection is significantly affected by the bimodulus action.

The penalty element developed herein is computationally simple and

accurate, and saves large amounts of computing time in nonlinear analyses
which require iteration. [t is straight forward to extend the present element &

to a combination of von Karman and YNS theory. OQbviously, the element can

also be used in the analysis of shallow shells. It is the purpose of this
investigation to employ the present element in the analyses of plates and i

shells constructed of bimodulus-material layers.
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