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PART I.

RECENT ADVANCES IN MATHEMATICAL MODELING OF THE MECHANICS
OF BIMODULUS , FIBER-REINFOR CED COMPOSITE MATERIALS *

1. INTRODUCTION

• The classical, elasticity theory hypothesis [i] that the material obeys
the generalized Hooke’s linear stress—strain relation is justified for appli—
cation to most metallic alloys loaded below the elastic limit. For more highly
flexible materials including polymers1 various nonlinear constitutive relations
such as neo—Hookean, Mooney—Rivlin, and Ogden have been proposed; see [2]. All
of these relations make use of extension ratio (A) rather than engineering
strain (c); note that A — 1 + c. Most of the relations have a different
elastic modulus at a finite value of compressive strain (c0 < 0) than at the
same absolute value of tensile strain (I c > 0). However, in agreement with
the careful measurements of various investigators (cf. [3]), these finite—strain
relations have no discontinuity in slope in going from compressive strain (A < 1)
to tensile strain (A > I,) .

In contrast, certain materials demonstrate a distinct change in modulus
in going from compression to tension+; see Fig. 1. These materials apparently
are primarily composite materials, as listed in Table 1. Jn the literature,
this class of materials has variously been called bilinear, bimodulus, different—
modulus, and multimodulus. Here the term bimodulus is believed to be most de-
scriptive of a material having different linear stress—strain relations in
compression than in tension.

The first multidimensional model for bimodulus materials was proposed
by Ambartsumyan [8] for isotropic material, such as a composite material with
spherical particles. It was later extended to the orthotropic case [9].

The second and third models are the restricted compliance model due to
Isabekyan and Khachatryan [10] and the first—invariant model of Shapiro iii].
A fourth model is the weighted compliance theory originated by Jones [12].

The fifth model is the fiber—governed bimodulus symmetric compliance
model originated by Bert [6].

In the next section, criteria for evaluating bimodulus material models
are presented and in subsequent sections the criteria are applied in critically
evaluating the various models.

*
This part of the report is a slight expansion of a paper of the same title
presented at the 15th Annual Meeting of the Society of Engineering Science,
Gainesville, Florida, Dec. 4—6, 1978.

1’ Saint—Venant [4] in 1864 made perhaps the earliest mention of material with
different behavior in tension and compression.

1’~
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Table 1. Some Bimodulus Materials

Tensile Young ’s Modulus
Reinforcement Divided by

• Material Geometry Ref. Compressive Young ’s Modulus

ATJ—S graphite Granular 5 1.2

ZIA graphite Granular 5 0.8

Glass—epoxy Fibrous 5 1.25

Boron—epoxy Fibrous 5 0.8

Graphite—epoxy Fibrous 5 1.4

Carbon—carbon Fibrous 5 2.0 to 5.0

Keviar—rubber Fibrous 6 0.77 (transverse) 
*to 305 (longitudinal)

Polyester—rubber Fibrous — 0.75 (transverse) 
*to 16.7 (longitudinal)

* Based on experimental results reported by Patel et al. [7].
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2. CRITERIA FOR EVALUATING MATERIAL MODELS

A linear material model can be characterized by either its compliance
matrix or alternatively by its stiffness matrix. The criteria used to evaluate
the various material models are as follows:

1. The compliances should be consistent with measured values for the
conditions specified, i.e. they should depend upon the nature of the multiaxial
stress or strain state as appropriate.

2. The shear modulus for an orthotropic bimodulus material should have
different values for shear stresses of same magnitude but opposite sign in any
coordinates other than the material—symmetry directions.

3. It would be preferable to have the strain energy be positive
definite so that energy is conserved.

Criterion 1 is the main criterion and it requires that the model be able
to duplicate measured response upon changing the multiaxial stress or strain
state as appropriate.

Criterion 2 is clarified by Figures 2 and 3 due to Jones [5]. In Fig.
• 2, it is apparent that the fibers are loaded in exactly the same way by positive

and negative shear stresses, while in Fig. 3, it is clear that the fibers are
loaded in tension by a positive shear stress and in compression by a negative
shear stress.

As alluded to by Voigt [13] and shown by Eubanks and Sternberg [14] and
Lempriere [15], criterion 3 implies that: (a) the compliance matrix be symmetric
and (b) certain limits exist on the compliances so that the compliance matrix
is positive definite. Symmetry of the compliance matrix is necessary in order
for a material to be mechanically stable, as shown by Brun [16]. Furthermore,
compliance symmetry is highly desirable in that most structural analysis al-
gorithms are based on this assumption, i.e., they have no provision for unsym—
metric compliance or stiffness matrices.

In the sections to follow only the orthotropic versions of the various
material models are presented and these are limited to the plane—stress case for
brevity.

3. MODEL I: THE ANBARTSUMYAN MODEL

In this theory [9], the srains are expressed in terms of the stresses
as follows

— b11 a1+ b 12 a2

£2 
— b21 a~ 

+ b22 °2 (1)

£12 
— b61 ~i 

+ b62 °2

Here oj,, 02 are principal stresses; £1, ~~~~~ ~12 
are the normal and shear

strains associated with principal—stress directions 1, 2 ; bij are the corn—
liance coefficients which take on values as follows:

1b ii’~ if ~~, 0

b~ — 
~ 

(2)
.1 ( b ~~~ ’ if < 0
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In a bimodulus material, b # b by definition, while in a classical
(—) (+)material ~~~ — bij . It is noted that in an orthotropic material the

principal—strain directions do not coincide with the principal—stress directions;
thus, the presence of £12 is necessary.

It should be noted that the lack of the explicit presence of a shear
stress does ~~~ mean that the principal—stress directions coincide with the
material—symmetry direction. It must be remembered that the principal stresses
and their directions depend directly upon the original stress state
(a, a , a,~,) with respect to arbitrary axes x, y

The major criticism of the original Ambartsumyan model insofar as it
applies to filamentary composite materials, is that it does not relate to material—
syi~~etry directions, which are of major importance due to the different mechanisms
of tensile vs. compressive stiffening or softening. Thus, the model does not V

meet criterion 1.

The Ambartsumyan model does meet criterion 2, as was pointed out by
Ambartsumyan [9] and Tabaddor [17].

Inspection of Eq. (1) shows that the Ambartsumyan—theory compliance
matrix is unsyimnetric when °k and 02 have opposite signs, as was pointed out
by Tabaddor [18] and Jones [5j. Thus, it does not meet criterion 3. To remedy
this disadvanta~e of the Ambartsumyan model, the variants due to Isabekyan and
Khachatryan [10], Shapiro [11], and Jones [12] were introduced.

4. MODEL II: THE ISAREKYAN-KHACHATRYAN RESTRICTED-COMPLIANCE MODEL

This model was introduced by Isabekyan and Khachatryan [10] and is a
modification of the Ambartsurnyan model in which the following limits are imposed
to enforce symmetry of the compliance matrix

• b — b — b b

• ~~~~ — b6~~ — b6~~ — b
6~~~~

Model II still. has the same disadvantage as the Mnbartsumyan theory in
that it does not meet criterion 1. In fact, the limitations imposed upon the
coefficients in Eqs. (3) make It less likely to meet criterion 1. Also, it
does not meet criterion 2, although it does meet criterion 3. p

V 5. MODEL III: THE SHAPIRO FIRST—INVARIANT MODEL

This model was introduced by Shapiro (11] and can be considered to be
V another variation of the Ambartsuxnyan model, Eqs. (1), in which now the bjj are

determined on the basis of the sign of a combination of stresses in the stress
state, namely, the first invariant of stress defined as •

01 
— (1/3) (ai + 02 + 03) — (1/3) (0 + a + a) / (4)

For the plane—stress case considered here,

01 
— (l/3)(al + 02) (l/3)(a + a) / (5)

V 
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Thus, here

I” ij 
j~ ~i: ~bi — .

~ 
( 

(6)• 1~’ii if <

Again the major disadvantage of Model III is the same as the Ambartsumyan
model in fail.ng to meet criterion 1. Also, like Model II, it fails to meet
criterion 2 but does meet criterion 3.

V V 
6. THE JONES WEIGHTED-COMPLIANCE MODEL

This model can also be considered to be a variant of the Ambartsumyan
model. It was introduced by Jones [12], who elaborated upon it later [s]. For
the plane—stress case [5],

~ 
b~~

’
~ if a~ > 0 

1

b .. 
~~~~~~~~ ~ 

~~lj = 11 , 22 , 61, 62

~ 
~~~ If a~ < 0 J

(+)
• b12 if a > O & 0 2 > 0

b b — - 

k1b1~
”
~ + k2b1~~ if a

~ 
> 0 6 < 0

+ k2b12 if 01 
< 0 02 > 0

b1~~~ if a~, < 0 & 02 < 0

• where

_ _ _ _ _ _ _ _ _  

1 0 2 I
, k2~~~ (8)

1 0 1 1 + 1 0 2 1 1 0 1 1 + 1 0 2 1
This model still does not meet criterion 1, but it meets both criteria

2 and 3.

7. MODEL V: THE BERT FIBER-GOVERNED COMPLIANCE MODEL

This model was introduced by Bert [6] and differs from all of those
previously discussed in that it relates stresses and strains in material—symmetry—

V 
axis coordinates (L, T) rather than principal—stress coordinates. Thus, instead
of Eqs. (1), we have [6]:

C
L 

— bLL oL +b LT OT

— bLT 0
~ 

+ b~~ 0T

£ — b aS SS S

~~

—- -• •--- -—— ~~~~~~~~~~ ~_•__~i.

__
~~~ .~~~~~ •— —.-—- -- —V 

~~~~~~~~~ 
— -~~~~ ~~~~~~~~~~~~~~~~~~ —.-— __V i:_ 

—



~~~- -~~~ — -~~~~~~ 
-
~~ —~- --~--- _

F —••_______ V •V V • •~~~~• - ~•~•V ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—8—

where subscript S refers to shearing action relative to the L, T axes, and

~ 
b1~~

’
~ ~ 0fL ~ 0 1

b — LI — LL, LT , TT (10)IJ 
L b i~ ~~ °fL < oJ

and bSS is independent of stress. Here 0fL refers to the fiber stress in
the fiber direction. A variety of approaches, based on different micromechanics
assumptions, can be used to approximate the critical angle, i.e. the angle at
which an applied uniaxial stress system must be oriented (with respect to the
fiber direction) to achieve °fL 0 . Two such approaches were presented in
[6]. However, it Is not necessary to know this angle a priori; the test data
can be reduced directly in such a way that the critical angle can be found
directly [6].

• In view of the success of this model in predicting the behavior of such
a severely bimodular material as aramid—rubber (see Table 1), it is believed
that this model comes closer to meeting criterion 1 than any of the other models
proposed to date. Also, it meets criteria 2 and 3.

It should be noted that the Voigt or rule—of—mixtures model is an
excellent micromechanics model for representing the stresses and modulus in the
fiber direction for a single layer of filamentary composite material. This
model is based upon the assumption that the fiber—direction strain in the fiber,

• matrix and composite all coincide. This affords a simple, practical criterion
(the strain in the fiber direction) to determine the sign of the fiber stress
at any given point in a laminated—composite—material structure.

8. FURTHER DISCUSSION

Three other unsyinmetric compliance matrix approaches have been used in
reduction of experimental data. As an alternative to Model V, Bert [6] also

• applied a nonsyminetric monomodulus model in reducing aramid—rubber data. How-
ever, he demonstrated that this model was not as satisfactory as Model V. Jones
[19] applied both the original Ambartsumyan model (Model I) and an unsymmetric
orthotropic bimodulus modification of the Jones—Nelson nonlinear model [20]
in reducing biaxially—stressed ATJ—S graphite data. He also specifically studied
the significance of lack of compliance—matrix symmetry and found that for the
material considered only 1 to 2% difference could be attributed to this effect.
Although in [5], Jones considered compliance—matrix synunetry a necessary criterion
for a consistent material model, in [19] he considered the unsymmetric compliance

• matrix to be “correct”. Regardless of the validity of an unsymmetric compliance
matrix, since it makes only 1 to 2 % difference, it is clear that for practical
engineering structural computations, a symmetric matrix is to be desired.
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PARE II.

NICROMECHANICS OF THE DIFFERENT ELASTIC BEHAVIOR O~• FILAMENTARY COMPOSITES IN TENSION AND COMPRESSION

V ABSTRACT
It has been known for a long time that certain kinds of fiber—reinforced

composites exhibit quite different elastic and thermal-expansion characteris-
tics depending upon whether the fibers are in tension or compression. The most
dramatic differences have been noted for tire cord/rubber composites. Two dif-
ferent micromechanistic approaches have been proposed to explain these observed
differences in tension/compression behavior: the mean-fiber-angle approach and
the elastically supported tie—bar/column approach. In this paper, the previous
work along both of these lines Is reviewed and extended.

NOMENCLATURE

A • fiber cross—sectional area
= constant of proportionality between £ and d

d — fiber diameter cr

Ef — axial Young ’s modulus of the fibers
major (fiber-direction) Young’s modulus of the con oslte

F’ — axial force In fiber
f, f0 BW , B0W0• shear modulus of the matrix material
G12 

a shear modulus of the composite relative to 1, 2 axes
I — area moment of inertia of fiber cross section

— invariants defined In equations (37)
k’ a foundation modulus of matrix material
k1, k, — fiber-direction and transverse thermal conductivities

& • half-wave length of fiber deflection modal shape
N • bending moment acting on a fiber
in, fl a cos e, sin a
S~ — elastic compliance coefficients (1,j • 1,2 ,6)

a transverse shear force acting on a fiber
W , W0 • amplitudes of w and w0, respectively
w, w fiber lateral deflection due to loading, Initial fiber displace—

mont from a straight line
x, y • position coordinates parallel and normal to nominal fiber direction

a thermal-expansion coefficient
• • a of fiber and matrix constituents , respectively

* This part of the report Is to be presented at the Symposium on Mechanics of
Bimodulus Materials, sponsored by the Applied Mechanics Division, at the
ASME Winter Annual Meeting, New York, NY , Dec. 1979 , and will be published
In the symposium volume.
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B, B • fiber sinusoidal parameter and its Initial value
AT ~ • temperature change from the strain-free temperature
c1, £2 • fiber—direction and transverse strains , total

• measured fiber—direction strain
a ‘ a axial normal stress on fiber

a Poisson’s ratio of t~e matrix material
V12) “23 • major (axial-transverse) and transverse-transverse Poisson’s ratios
a • angle between local fiber direction and the nominal fiber direction

Superscripts:

~~~‘ d ( )/dx
— 

Indicates that this is a property of the wavy—fiber composite
indicates that this is a mean value

Subscript:

cr denotes critical condition at which onset of buckling occurs

INTRODUCTION

• In 1864, Saint—Venant (1)1 presented a mechanics-of materials analysis of
• a beam made of a material having a diffe rent stress-strain relation when load—
V ed in tension than when loaded in compression. Although this phenomenon has

V 
been observed in certain porous cellular media such as slntered metals (b, It
has been observed most dramatically in fiber-reinforced materials, either man—
made (3-i) or biological (7); see Table 1.

A number of mechanistic models have been proposed to explain the different
tension-compressIon behavior for loading In the fiber directIon. All of these
models are based on the assumption that there is some initial curvature in the
fibers, so that they are straightened and thus stiffened by tensile loading

• and curved more and thus made less stiff by compressive loading. All of the
• mechanistic models may be characterized into two general classes:

1. Tie-bar/column on elastic foundation model
• 

. 2. Mean-fiber-angle approach

Table 1. Some Examples of Different Elastic Behavior
in Tension And Compression

Investigator Ref. Material Ec/Et

Kotlarskl & karbasova (2.) Fabric/rubber 0.38
Ducheyne et al. (

~
) Sintered, porous 0.1

stainless steel
Zolotukhlna & Lepetov (j) Various 0.07 to 0.50

fabric/rubber
Patel ci al. (j) Polyester 0.017

cord/rubber
Aramid 0.0034
cord/rubber

• P6sfalvl (j) Rayon 0.0036
cord/rubber

Pearsall $ Roberts (2) Myometrium 0.2
(uterine muscle)

• In thi ensuing sections both of these models are described, critiqued ,
and extended.

1 UnderlIned numbers in parentheses designate References at end of paper.

• _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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METHOD A: TIE-BAR/COLUMN ON ELASTIC FOUNDATION

Review of the Literature

• Al though earlier analyses had been concerned w ith the fiber buckling under
• compressive loading (~-j Q), perhaps the first analysis which specif ically add-

ressed the different fiber-direction stiffnesses in tension and compression was
due to Herrmann et a). (11) in 1967. They were concerned with a relatively
Isolated wire In a flexibTe elastic medium , i.e. a low-flber-volume-fractiOn
(Vf) one. The application with which they were concerned was a wire-reinforced
solid-propellant rocket grain . They developed two different analytical pro—

• cedures, both of which considered the matrix as a three-dimensional elastic
V solid.

Other analyses of the different tension/compression (TIC) behavior of
filamentary composites have been concerned with more closely spaced unidirec- V

tignal composites. Both Bazant (12) and Swift (13.) used two—dimensional models
— analogous to those used by Rosen ~

) and Chung and Testa (B.) for the study of
fiber buckling. Of course there are two distinct fiber-buciling modes: ex-
tensional and shear.

• It has been shown by Lager and June (15), Greszczuk (16), Davis (17), and
• • Kulkarn i et al. (18) among others, that advanced composites, consisting of

boron, graphite, or aramid fibers in an epoxy matrix , under compressive loading
V fai l  in the shear bucklin g mode rather than the extensional one. However,

these same composites are not the ones which exhibit large differences In T/C
behavior at relatively smaTVstrains. These latter ones are characterized by
low Vf. A simple analysis more appropriate to the latter case is presented in
the next section.

Before leaving the topic of fiber buckling of hlgh-V f composites, it
should be mentioned that Hayashi (19), Davis (17), and Wang (20) all found it
necessary to take into account the effect of a~Tal compressive stress on theshear modulus in order to obtain good agreement wi th experimental results.
Also , the recent work of Schaffers (flj on intralaminar fiber buckling under
cylindrical bending should be mentioned.

Recently Beer and assoc iates (~~-~j) have conducted extensive researchon uncalcified collagen tissues and have developed a mechanistic model based
on the theory of an extensible elastica . However, their model does not take
Into account the support provided by the surrounding soft tissue (matrix
material).
A Simple Model

The analysis presented here can be considered as an extension of the work
of (fl) to include thermal-expansion/contraction effects due to temperature
change, with a considerably simplified expression for the foundation modulus
(i).

The equations of equilibrium are:

F ’ O  • 1
V •kw 2
M’ -V +F(w0 +w)’ 0 3

Here F~ axial force (± for tension/compression), ka elastic foundation modu-
ius for the matrix , M a bending moment, V a transverse shear force, wa lateral
deflection of flber,w0a initial deflection, C )‘ a d( )/dx, and x a axial
position coordinate.

Assuming the fiber to be a Bernoulli-Euler linear elastic member , the
constitutive relations are:

M - E fIW ~ (4)

F • AEf (c — (e q - am) AT) (5)

Here A a fiber cross-sectional area, E~ a Young’s modulus of the fiber along
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Its axis, I a area moment of inertia of fiber about its centrold, A T a temper-
ature change measured from a strain-free temperature, eq and Sm i f r and
matrix lineal coefficients of thermal expansion.

In view of equatIon (1) , F is constant. Combining equations (2), (3),
V and (4), one obtains the following governing equation :

EqIW~ - F w ’’ + kw • F w0
’’ (6)

It is very likely that the initial deflection (w ) is caused by a buckling
of the fibers. Thus, it is reasonable to assume the sQme modal shape (dlinen-
sionless deflection distribution) for the initial deflection and deflection
under loading.

• w0 W0 5in 80* p w — W s l n B 0x (7)

Here W and W are the respective ampl itudes of w and w , B a w/t , and £ a
half-Jve length of deflection modal shape. ~

Substituting w and w from equations (7) into equation (6), one obtains
the following result?

w/W0 • - F 80
2/(Ef Ia~ 

+ F e 2 + k ) (8)

Finally, the following kinematic relationship is used to obtain an cx-
press ion relating the fiber-direction strain c, to the deflection amplitudes:

• (80/t) &‘ dx (9)

Here
— (1/2) ((w0’)

2 
- (w ’)2) + (F/AEf) (10)

Substituting equation (10) into equation (9) and Integrating, one obtains

ci (a/Er) + (e, 
- sq) aT + (a~

2/4) w0
2 

- (11) V

Finally, substituting W/W0 from equation (5) into equation (Ii), one ob-tains:

ci = (a/Es) + (a - a~)aT 2 (12)
2 ( AE f((o/Ef ) + (a - a~)aT)e 2

+(B W /2) ( 1 -  E m 
2 ]

° ° I. E~qI~~ 
+ AE~ (o/E~) + (a- -aq)~T]~0 + k

Special Cases
1. No initial curvature (BoWo a 0): Then equation (12) reduces to the

following linear relation:

9 = (a/Eq) + (as, — aq) ~T ()2a)

This is the linear thermoelastic constltutive relation. Since the residual
thermal strain (a — a~) aT is not ususally measured , It is customary in ten-sile tests to ref~rencè the strain from the value of zero at the beginning ofthe test. Thus, the measured strain is

~~(m) a/Eq (12b)

2. High tension stress (a ~ large): Then c approaches the straight
line of equation (12a) asymptotically from the rig?it.

3. Zero stress (a sO): Even when AT a 0 also, c1 is positive.
4. High compression stress (— c ‘

~~ large): The limiting case is

E~IB
4 + F B 2 +k .0

V 

-

~~
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thus,

— F. Ef18
2 
~ k 82 (13)

Differentiating equatIon (13) with respect to g~, one finds the Initialvalue of 8to be

8cr • (k/E~I)1’~
4 (14)

Since I — wd4/64 , where d is the fiber diameter , equation (14) implies

0cr d • const.
or

tC~
. = C d  (15) 

V

This result is consistent with the experiments of Rosen (9) and the elegant
analysis of Sadowsky et al. (25).

To evaluate the constant C , we apply the following expression for the
elastic foundation modulus of an infinite , isotropic medium surrounding a rigid
fiber (a,):

k • l6tGm/(l + 6(1 — 2”m~ 
(16)

For a rubber matrix, “m~ 
1/2. Then

k 
~ 

l6lGm (16a)
Thus

8cr d • 2 PT (Gm/Ef)~~
4 (17)

and
• ,~~~~ ~1/2 110 %— °Icr “m’f’

5. Decrease in temperature only (a- a 0, aT 0): For aT • 0, c~ ~• Since a > a~ for practical composites, as AT is decreased (AT ~ 0), Cl also
decreas~s. The limiting case is when

E~IB4 + AEf (am - af )B aT + k • 0

Then

1—AT I — (EfIB
2 

+ k 0 2)/AEf (am - aq) (19)

This has a critical value of a given by equation (17) and

I~ATlcr (k/Eq)~~
2/(a

~ 
- af) ~~ 

4(lIGm/Eq)
1”2/(cim - aq) (20)

METHOD B: MEAN-FIBER-ANGLE APPROACH
Review of the Literature

Although an earlier analysis was concerned with Initially wavy layered
media (n). the first analysis specifically addressed to the use of this ap-
proach to fiber-reinforced composites was due to Tarnopol ’skli et ci. (27).
They assumed that the fibers are Initially sinusoidally curved, equation Cia).
Then the inclination at an arbitrary ax ial position x is

S • arctan (~0W0 cos a~x) (21)
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Using equation (21) in the well known transformation equations for Young’s mod
ulus and integrating over a half-wave length a, they obtained the following
result for the fiber-direction initial Young’s modulus of a wavy—fiber—rein-
forced composite:

(lIE 1) = (l/2E1 )(2 + f0
2)(i +

+ (612
_i 

— 2v12E1~~)(f0
2/2)(l + f 2)312

+ (l/2E2)(2 - (2 + 3f0
2)(l + f0

2Y312] (22)

Here E and £ are the major (fiber direction) ~nd minor Young’s moduli of a
unldli4ctlona? composite with straight fibers, E, is the major Young’s modulus
of the wavy-fiber composite, f a a ‘.4 , and G~, £nd v,, are the respective
major shear modulus and major ~oiss8n

0s ratio”of the’ttraight-fiber composlt .
For f~ “ 1 , the following approximate expression was suggested in (~j):

~ /E1 ~ + (f 2/2)(E1/G12)T
1 (23)

This expression is consistent with Bolotin ’s result (~j).The disadvantage of using either equatIon (14) or (15) Is that It requires
• prior knowledge of a straight-fiber composite having the same fiber volume

fraction. For the glass-fiber reinforced plastic Investigated experimentally
in (n), it was found empirically that an initial composite prestress of ap—

J proximately 10% of the ultimate tensile strength was necessary to assure that
the fibers are sufficiently straight.

In an alternate approach to that of (27), Nosarev (
~) considered the

curved fiber as a finite number of straight:Tine segements. He obtained nu—
merical results which predicted reasonably well the decrease In major Young’s
modulus and increase In major Poisson’s ratio for a copper-wire-reinforced
epoxy composite as the fiber curvature is increased.

The work of (~~-~~) can be used to predict onl/ the initial modulus (or
Poisson’s ratio). However, in certain composites with a highly flexible ma-
trix (such as rubber), the composite modulus may change quite significantli
with loading (especially in compression , as discussed in the preceding sec-
tion). Thus, the analysis of Tabaddor and Chen (29) Is quite important for
such composites, since it permi ts computation of The complete stress-strain
curve in both tension and compression for the composite in the fiber direction.
In their work , they replaced f in equation (22) wIth f (a 8W) and developed
a relationshiø between f and f~.Makarov and Nikolaev (3~

) conducted a series of experiments on aluminum-
wire-reinforced natural rubber in which the wires were provided Intentionally
with controlled amounts of initial curvature. The ratio of Young’s moduli of
fiber and matrix was 13,700 and the fiber volume fraction was 0.06. Zhey found
that curvature had a negligible effect ~n the minor Young ’s modulus CE,), the
transverse-transvey~se Poisson ’s ratio Cv J ,  and the transverse therinat-expan-
sian coefficient (a,). However, for thefl test LoildItlons they measured a -

prox~,mately 50% decPease in E1, 48% increase in v12, and 15% increases In 12and a1.

Vlshnevskii and Shlenskil (31) InvestIgated ~he effect of sinusoidallycurved fibers on transverse thermal conductivity (E,) of the composite. They
derived an expression for the transverse thermal cotlductlvity which Is equiv-
alent to the following one in the present notation:

(l/2)(k1f0~ 
+ 112(2 - f0

2)] (24)
Here Ii and k are the conductivities in the fiber and transverse directions.

It shou?d be mentioned here that the companion equation to equation (24)
can be written down ininediately, from symnetry , as follows :

• (1/2)(k1(2 - f0
2) + k2f0

2] 
- 

(25) 

7
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Also, it is noted here that, in view of the fact that the angular transforma-
tion equations for thermal expansion are identi ca’ (second-rank tensor) to those
for thermal conductivity , equations (24) and (25) are also applicabl e to the r-
mal expansion provided that the k’s are replaced by a’S.

Tarnopol ’skII et al (32) investigated the effect of fiber waviness In
composites with anisotropic ?Tbers (specifically carbon fibers). They found
that for such composites, It Is necessary to use the full equation (22) rather

V than the simpl ified equation (23). Van Dreumel and Kemp (
~

) Investigated ex-
perimentally the effects of fiber waviness on both tensile strength and major
Poisson ’s ratio of carbon-fiber reinforced plastic.

In order to completely characterize a thin sheet material for use in
stress analysis and structura l design, one needs a complete set of elastic
stress— strain relations , for fiber-directi on tension and compression (~.j- 35),
not just the Young ’ s modu li. A rational analytical basis for such a compu te
character izat ion is developed for the first time in the following section.

Complete Characterization of Planar Compliances

A typ ical repeating element is ass umed to co nsist of a segment of a sin—
uso idal ly curved fibe r and its surroundin g matrix material . The fiber curva-
ture is assumed to be planar In a single plane (zy ) w ith a path given by

— sin 00x 
- 

(26)

~oli owIng the general approach used by Tabaddor and Chen (
~9), it is as-

sumed that when the fiber is subjected to a positive (tensile) strain in direc-
tions 1 and 2, respectively parallel and normal to the fiber direction, It
takes on a new sinusoidal form given by

y • W s l n 8x (27)

where the relationshi p between B and B
~ 

and between V and V
~ 
are given by

+ • 2n/$ (28)

w~(l + = w (29 )

It is assumed that shear strain has no effect on these inter-relationships.
Combining equations (28) and (29), one obtains

f — SW • Bow0 (1 + e2)/(l + Cl ) (30)

In view of the definitions of f and of Poisson’s ratio (v a c2/c1),
equation (30) can be rewritten as follows for the uniaxial case ~~ly

f f0 (1 - v12 c1 )/(l + Cl) (31)

Equation (31) expresses the effect of c. on f(a IV). This is a different
approach than in the tie-bar/column one (Method A), in which it is assumed that
5 a 5 and W is found by solution of the governing differential equation.0The wo9k that follows is based on the elastic compliance rather than the
planar stiffnesses or the engineering modul i (Young ’s modulus, Poisson’s
ratio). There are several reasons for this choice:

1. Permits direct comparison with experimentally measured compliances.
2. Is not restricted to a particular stress state (Such as uniaxial , bi-

axial , or even triaxial) but can be applied directly to any stress
state.

The transformati9n gquatlons relating the elastic compliance coefficients
with respect to axes (r, 2), oriented at an angle 0 wi th respect to the ortho-
tropic material-sytnuetry directions (1,2), to those wi th respect to (1, 2)
are (i): 

V

- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ _ _ _ _
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• 1~it ) S11 2S12 + S ~ S22 1’ rn’

• ~ ~l2 ~, 
S12 S11 + S 22 - S 66 S12 ~ 2~~~4

1 ~~22 I s22 2S22 + S ~ tj
I ~~ J S66 4S11 + 4S22 — 8S12 - 2S66 ~~ (32)

.f~ 16 1 f 2S11 - 2S12 - - 2S22 + 25i~ 
+ s~ 1 ~

I~26 J L -2S22 +2s 12 + s 66 2Sii -2S12 - S66J I,um

Herema cos e, n a  sin e.
In writing equations (24), the contracted index notation was used. Sub-

scripts 1 and 2 refer to normal stress/strain action in directions 1 and 2 re-
spectively, while subscript 6 refers to shear stress/strain action related to
axes 1 and 2.

To average the properties over one wavelength o~ fiber waviness , It Is
necessary to relate direction o to the curved-fiber geometric properties V and
5. Working toward this objective, we take the derivative of both sides of
equation (27):

tan e • y’ • wa cos ax (33)

Thus,

m a cos • • (1 + (W~ cos• (34) L
n • sin e — wa cos 0*1(1 + (W~ cos Bx) )

The average values of the functions of m and n appearing in equations (32)
are 

~~a2 j
L/4 
.~ dx/2 ~ 

1/4 
dx (1 + (~~/2)](1 + 

~~~~~ 

-3/2
—1/4 ~ -1/4

a (1 + f2) -1/2 (35)

It is now possible to express the curved—fiber composite compliances
In terms of the straight-fiber unidirectional conipliances as follows:

S22 I~ 12 1

~~ 
• 

~~~~ 

.•
~i ] {

~
} (36)

~66 ~66 
14 14 II

Here the Invarlants are

I~~a 2S12 - 2 S 22 + S 66 , Z~ a S11 - 2S 12 + S 22 - S 66
13 a - 2S11 + 2S12 + 

~66’ 
14 £ 

~~l1 - 8S12 + 
~ 22 ~ 66 -

It Is noted that since a a 0. the wavy—fiber composite remains
orthotropic. Use of equations (30), (35), and (36) in an iterative manner per-
mits development of complete nonlinear strain versus stress relationships for
the composite.

N 

-
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DISCUSSION AND CONCLUDING REMARKS

In both of the mechan1~tic analytical methods presented here, no pro-
vision was made for transverse shear deformation of the fibers. In fact, there
Is some controversy as to which is the best way to Incorporate Such action; see
the work of Roze and Kintsis (j r). However, a suitable one of the approaches
described In (37) could be Incorporated Into Method A, if desired. It is noted
that In Method 1 flexural,muchover shear, properties do not enter explicitly
Into the quations.

V The experiments of Patel et al. (
~) showed that the difference between• tension and compression properties were much more pronounced for rubber re-

• inforced with aramid cord than when reinforced with polyester cord. This Is
probably related to the very low compressive strength of the aramid fibers
themselves, which Greenwood and Rose (j~) suggested is due to separation of the
microfibrils comprising the fibers.

Moncunill de Ferran and Harris (
~) found experimentally that the buckling

mode of steel wire/polyester was hellcaT rather than planar as assumed in all
known analyses. It has been suggested that the more pronounced difference be-
tween tensile and compressive behavior exhibited in the tire-cord/rubber con—
post tes of (5-6) as compared to that of ordinary wi re-reinforced rubber (!)
may be due to the inherent twisting action present in tire cord, which has a
helical geometry (SQ) . However, In (~

), steel-cord/rubber was also investiga-
ted and no appreciable difference between the tensile and compressive stress-
strain behavior was noted.

- • ‘ From the review and methods presented here, it can be concluded that the
field of micromechanics of fiber-reinforced composites with different proper-
ties In tension and compression is in its Infancy. Considerably more work needs

• to be done, among which the following appear to be the most pressing:
1. DefinItive experiments to determine which of the two methods (A and

B) presented here are the most successful i~ predicting composite
• materIal behavior (not only in uniaxial loading but also under multi—

axial conditions) and to help refine or even combine them.
2. ExperIments to determine the role of fiber-matrix interfacial adhe-

sion on the gross behavior.
3. Fracture mechanics analyses and carefully controlled experiments with

controlled flaws.
4. Analyses incorporating more realistic models of the helical-strand

action in tire cords (~9).
5. Simple means of incorporating the different T/C behavior into static

and dynamic analyses of structural components Such as plates and
shells (~j).
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