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PART I.

RECENT ADVANCES IN MATHEMATICAL MODELING OF THE MECHANICS
OF BIMODULUS, FIBER-REINFORCED COMPOSITE MATERIALS*

1. INTRODUCTION

The classical elasticity theory hypothesis [1] that the material obeys
the generalized Hooke's linear stress-strain relation is justified for appli-
cation to most metallic alloys loaded below the elastic limit. For more highly
flexible materials including polymers, various nonlinear constitutive relations
such as neo-Hookean, Mooney-Rivlin, and Ogden have been proposed; see [2]. a1
of these relations make use of extension ratio (A) rather than engineering
strain (c); note that A = 1 + €. Most of the relations have a different
elastic modulus at a finite value of compressive strain (g, < 0) than at the
same absolute value of tensile strain (| € | > 0). However, 1in agreement with
the careful measurements of various investigators (cf. [3]), these finite-strain
relations have no discontinuity in slope in going from compressive strain (A < 1)
to tensile strain (A > 1).

In contrast, certain materials demonstrate a distinct change in modulus
in going from compression to tension*; see Fig. 1. These materials apparently
are primarily composite materials, as listed in Table 1. Jn the literature,
this class of materials has variously been called bilinear, bimodulus, different-
modulus, and multimodulus. Here the term bimodulus is believed to be most de-
scriptive of a material having different linear stress-strain relations in
compression than in tension.

The first multidimensional model for bimodulus materials was proposed
by Ambartsumyan [8] for isotropic material, such as a composite material with
spherical particles. It was later extended to the orthotropic case [9].

The second and third models are the restricted compliance model due to
Isabekyan and Khachatryan [10] and the first-invariant model of Shapiro 511].
A fourth model is the weighted compliance theory originated by Jones [12].
The fifth model is the fiber-governed bimodulus symmetric compliance
model originated by Bert [6].

In the next section, criteria for evaluating bimodulus material models
are presented and in subsequent sections the criteria are applied in critically
evaluating the various models.

*
This part of the report is a slight expansion of a paper of the same title
presented at the 15th Annual Meeting of the Society of Engineering Science,
Gainesville, Florida, Dec. 4-6, 1978.

+

Saint-Venant [4] in 1864 made perhaps the earliest mention of material with
different behavior in tension and compression.
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Fig. 1 Bimodulus Idealization

Table 1. Some Bimodulus Materials

1 Tensile Young's Modulus
i Reinforcement Divided by
‘ Material Geometry Ref. Compressive Young's Modulus|
ATJ-S graphite Granular 5 102
: ZTA graphite Granular | ) 0.8
Glass-epoxy Fibrous 5 ! 1.25
{
Boron-epoxy Fibrous 5 ; 0.8
Graphite-epoxy Fibrous 5 1.4
Carbon-carbon Fibrous 5 2.0 to 5.0
Kevlar-rubber Fibrous 6 0.77 (transverse)
to 305 (longitudinal)
Polyester-rubber Fibrous = 0.75 (transverse)
to 16.7 (longitudinal)

Based on experimental results reported by Patel et al. [7].
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2. CRITERIA FOR EVALUATING MATERIAL MODELS

A linear material model can be characterized by either its compliance
matrix or alternatively by its stiffness matrix. The criteria used to evaluate
the various material models are as follows:

1. The compliances should be consistent with measured values for the
conditions specified, i.e. they should depend upon the nature of the multiaxial
stress or strain state as appropriate.

2. The shear modulus for an orthotropic bimodulus material should have
different values for shear stresses of same magnitude but opposite sign in any
coordinates other than the material-symmetry directionms.

3. It would be preferable to have the strain energy be positive
definite so that energy is conserved.

Criterion 1 is the main criterion and it requires that the model be able
to duplicate measured response upon changing the multiaxial stress or strain
state as appropriate.

Criterion 2 is clarified by Figures 2 and 3 due to Jones [5]. 1In Fig.
2, it is apparent that the fibers are loaded in exactly the same way by positive
and negative shear stresses, while in Fig. 3, it is clear that the fibers are
loaded in tension by a positive shear stress and in compression by a negative
shear stress.

As alluded to by Voigt [13] and shown by Eubanks and Sternberg [14] and
Lempriere [15], criterion 3 implies that: (a) the compliance matrix be symmetric
and (b) certain limits exist on the compliances so that the compliance matrix
is positive definite. Symmetry of the compliance matrix is necessary in order
for a material to be mechanically stable, as shown by Brun [16]. Furthermore,
compliance symmetry is highly desirable in that most structural analysis al-
gorithms are based on this assumption, i.e., they have no provision for unsym-
metric compliance or stiffness matrices.

In the sections to follow only the orthotropic versions of the various
material models are presented and these are limited to the plane-stress case for
brevity.

3. MODEL I: THE AMBARTSUMYAN MODEL

In this theory [9], the srains are expressed in terms of the stresses

as follows

€ = By 9 thyo

€, = b (1)

2 2191+,

2%
G2 M "V %
Here o), oz are principal stresses; e€j, €,, €15 are the normal and shear
strains associated with principal-stress directions 1, 2 ; bjj are the com-
liance coefficients which take on values as follows:
(+) i
b if > 0
13 G
b - (2)

13 bij') i o < 0
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In a bimodulus material, big-) # bi§+) by definition, while in a classical
material bi§-) = bi§+) . It is noted that in an orthotropic material the
principal-strain directions do not coincide with the principal-stress directions;
thus, the presence of €2 is necessary.

It should be noted that the lack of the explicit presence of a shear
stress does not mean that the principal-stress directions coincide with the
material-symmetry direction. It must be remembered that the principal stresses
and their directions depend directly upon the original stress state
(ax, oy. °xy) with respect to arbitrary axes x, y .

The major criticism of the original Ambartsumyan model insofar as it
applies to filamentary composite materials, is that it does not relate to material-
symmetry directions, which are of major importance due to the different mechanisms
of tensile vs. compressive stiffening or softening. Thus, the model does not .
meet criterion 1. 3

The Ambartsumyan model does meet criterion 2, as was pointed out by
Ambartsumyan [9] and Tabaddor [17].

Inspection of Eq. (1) shows that the Ambartsumyan-theory compliance
matrix is unsymmetric when © and 02 have opposite signs, as was pointed out
by Tabaddor [18] and Jones [5]. Thus, it does not meet criterion 3. To remedy
this disadvantage of the Ambartsumyan model, the variants due to Isabekyan and
Khachatryan [10], Shapiro [11], and Jones [12] were introduced. J

‘4, MODEL II: THE ISABEKYAN-KHACHATRYAN RESTRICTED-COMPLIANCE MODEL

This model was introduced by Isabekyan and Khachatryan [10] and is a
modification of the Ambartsumyan model in which the following limits are imposed
to enforce symmetry of the compliance matrix

T ST S T

12 12 21 21
(3)
+) ) Y
Pt " Yer T e bgo

Model II still has the same disadvantage as the Ambartsumyan theory in
that it does not meet criterion 1. 1In fact, the limitations imposed upon the
coefficients in Eqs. (3) make it less likely to meet criterion 1. Also, it
does not meet criterion 2, although it does meet criterion 3.

5. MODEL III: THE SHAPIRO FIRST-INVARIANT MODEL

This model was introduced by Shapiro [11] and can be considered to be
another variation of the Ambartsumyan model, Eqs. (1), in which now the bjj are
determined on the basis of the sign of a combination of stresses in the stress
state, namely, the first invariant of stress defined as

op = (U/3)(oy +0, +0,) = (1/3)(o + Sy +a,)/ (4)

I
For the plane-stress case considered here,
o = (@/3)(o; +0y) = (1/3)(o  + oy) (5)

I
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Thus, here
5.5 3¢ 0. > 0

b % : (6)
5. (-)
bij if OI < 0

Again the major disadvantage of Model III is the same as the Ambartsumyan
model in failing to meet criterion 1. Also, like Model II, it fails to meet
criterion 2 but does meet criterion 3.

6. THE JONES WEIGHTED-COMPLIANCE MODEL

This model can also be considered to be a variant of the Ambartsumyan
model. It was introduced by Jones [12], who elaborated upon it later [5]. For
the plane-stress case [5],

(+)
bij if oj > 0

b.. = ij = 1, 22, 61, 62
iJ )
bij if °j < 0
[ . (+)
b12 if 01 > 0 & 02 > 0
+) )
) klbl2 + kzb12 if °1 > 0 & 02 < 0
b,. = b = €))
21 12 (-) +)
k1b12 + kzblz if % < 0 % > 0
wEl o < b e 20
. 12 ¥ 2
where
o, | aay |
K = E LT 2 (8)
oy [+ 10| oy |+ 10, |

This model still does not meet criterion 1, but it meets both criteria
2 and 3.

7. MODEL V: THE BERT FIBER-GOVERNED COMPLIANCE MODEL

This model was introduced by Bert [6] and differs from all of those
previously discussed in that it relates stresses and strains in material-symmetry-
axis coordinates (L, T) rather than principal-stress coordinates. Thus, instead

of Eqs. (1), we have [6]:

€, = by 9 * Br %

€ = b

T it L + 9)

bpr 97

es = Dbgg




where subscript S refers to shearing action relative to the L, T axes, and

+)
By M 0y 2 0

s 13 = LL, LT, IT (10)
= =)
byy @ 1f oy < 0

and bgg 1is independent of stress. Here O0f] refers to the fiber stress in
the fiber direction. A variety of approaches, based on different micromechanics
assumptions, can be used to approximate the critical angle, i.e. the angle at
which an applied uniaxial stress system must be oriented (with respect to the
fiber direction) to achieve Og, = 0 . Two such approaches were presented in
[6]. However, it is not necessary to know this angle a priori; the test data
can be reduced directly in such a way that the critical angle can be found
directly [6].

In view of the success of this model in predicting the behavior of such
a severely bimodular material as aramid-rubber (see Table 1), it is believed
that this model comes closer to meeting criterion 1 than any of the other models
proposed to date. Also, it meets criteria 2 and 3.

{ It should be noted that the Voigt or rule-of-mixtures model is an

i excellent micromechanics model for representing the stresses and modulus in the

i fiber direction for a single layer of filamentary composite material. This
model is based upon the assumption that the fiber-direction strain in the fiber,
matrix and composite all coincide. This affords a simple, practical criterion
(the strain in the fiber direction) to determine the sign of the fiber stress
at any given point in a‘laminated-composite-material structure.

8. FURTHER DISCUSSION

Three other unsymmetric compliance matrix approaches have been used in
reduction of experimental data. As an alternative to Model V, Bert [6] also
applied a nonsymmetric monomodulus model in reducing aramid-rubber data. How-
ever, he demonstrated that this model was not as satisfactory as Model V. Jones
[19] applied both the original Ambartsumyan model (Model I) and an unsymmetric
orthotropic bimodulus modification of the Jones-Nelson nonlinear model [20]
in reducing biaxially-stressed ATJ-S graphite data. He also specifically studied
the significance of lack of compliance-matrix symmetry and found that for the
material considered only 1 to 2% difference could be attributed to this effect.
Although in [5], Jones considered compliance-matrix symmetry a necessary criterion
for a consistent material model, in [19] he considered the unsymmetric compliance
matrix to be "correct'". Regardless of the validity of an unsymmetric compliance
matrix, since it makes only 1 to 2 % difference, it is clear that for practical
engineering structural computations, a symmetric matrix is to be desired.

-
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PART II.

MICROMECHANICS OF THE DIFFERENT ELASTIC BEHAVIOR OF
FILAMENTARY COMPOSITES IN TENSION AND COMPRESSION

ABSTRACT

It has been known for a long time that certain kinds of fiber-reinforced
composites exhibit quite different elastic and thermal-expansion characteris-
tics depending upon whether the fibers are in tension or compression. The most
dramatic differences have been noted for tire cord/rubber composites. Two dif-
ferent micromechanistic approaches have been proposed to explain these observed
differences in tension/compression behavior: the mean-fiber-angle approach and
the elastically supported tie-bar/column approach. In this paper, the previous
work along both of these lines is reviewed and extended.

NOMENCLATURE
A = fiber cross-sectional area
c = constant of proportionality between &__ and d
d = fiber diameter o
Ef = axjal Young's modulus of the fibers
E = major (fiber-direction) Young‘s modulus of the composite
F = axial force in fiber
f. fo = BH’ Bouo
6 = shear modulus of the matrix material
Glz = shear modulus of the composite relative to 1, 2 axes
I = area moment of inertia of fiber cross section
l].....l4 = jnvariants defined in equations (37)
k = foundation modulus of matrix material
k]. kz = fiber-direction and transverse thermal conductivities
L = half-wave length of fiber deflection modal shape
M = bending moment acting on a fiber
m, n = cos 6, sin @
Sij = elastic compliance coefficients (i,j = 1,2,6)
v = transverse shear force acting on a fiber
W, “o = amplitudes of w and wg, respectively
Wy W, = fiber lateral deflection due to loading, initial fiber displace-
ment from a straight line
Xy ¥ = position coordinates parallel and normal to nominal fiber direction
a = thermal-expansion coefficient
LTI = o of fiber and matrix constituents, respectively
*

This part of the report is to be presented at the Symposium on Mechanics of
Bimodulus Materials, sponsored by the Applied Mechanics Division, at the
ASME Winter Annual Meeting, New York, NY, Dec. 1979, and will be published
in the symposium volume.
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8, eo = fiber sinusoidal parameter and its initial value
'\ temperature change from the strain-free temperature
€0 € = fiber-direction and transverse strains, total

c(?) = measured fiber-direction strain

0 = axial normal stress on fiber

m = Poisson's ratio of the matrix material

Vigs Vo3 * major (axial-transverse) and transverse-transverse Poisson's ratios
(] = angle between local fiber direction and the nominal fiber direction

Superscripts:

) & d( )/dx
e indicates that this is a property of the wavy-fiber composite

indicates that this is a mean value
Subscript:
cr denotes critical condition at which onset of buckling occurs
INTRODUCT ION

In 1864, Saint-Venant (l)‘ presented a mechanics-of materials analysis of

" a beam made of a material having a different stress-strain relation when load-

ed in tension than when loaded in compression. Although this phenomenon has
been observed in certain porous cellular media such as sintered metals (2), it
has been observed most dramatically in fiber-reinforced materials, either man-
made (3-6) or biological (7); see Table 1.

A number of mechanistic models have been proposed to explain the different
tension-compression behavior for loading in the fiber direction. A1l of these
models are based on the assumption that there is some initial curvature in the
fibers, so that they are straightened and thus stiffened by tensile loading
and curved more and thus made less stiff by compressive loading. All of the
mechanistic models may be characterized into two general classes:

1. Tie-bar/column on elastic foundation model

2. Mean-fiber-angle approach

Table 1. Some Examples of Different Elastic Behavior
in Tension And Compression

Investigator fef. Material EC’Et
Kotlarski & Karbasova 53 Fabric/rubber 0.38
Ducheyne et al. Sintered, porous 0.1
stainless steel
Zolotukhina & Lepetov (4) Various 0.07 to 0.50
fabric/rubber
Patel el al. (S) Polyester 0.017
cord/rubber
Aramid 0.0034
cord/rubber :
Péstalvi (6) Rayon 0.0036
: cord/rubber
Pearsall & Roberts (2) Myometrium 0.2

(uterine muscle)

In the ensuing sections both of these models are described, critiqued,
and extended.

6 B
Underlined numbers in parentheses designate References at end of paper.
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METHOD A: TIE-BAR/COLUMN ON ELASTIC FOUNDATION

Review of the Literature

——re—

Although earlier analyses had been concerned with the fiber buckling under
compressive loading (8-10), perhaps the first analysis which specifically add-
ressed the different fiber-direction stiffnesses in tension and compression was
due to Herrmann et al. (11) in 1967. They were concerned with a relatively
isolated wire in a flexible elastic medium, i.e. a low-fiber-volune-fraction
(V¢) one. The application with which they were concerned was a wire-reinforced
so{id-propellant rocket grain. They developed two different analytical pro-
cedures, both of which considered the matrix as a three-dimensional elastic
solid.

Other analyses of the different tension/compression (T/C) behavior of
filamentary composites have been concerned with more closely spaced unidirec-
tional composites. Both Bazant (12) and Swift (13) used two-dimensional models
analogous to those used by Rosen {J) and Chung and Testa (14) for the study of
fiber buckling. Of course there are two distinct fiber-buckling modes: ex-
tensional and shear.

It has been shown by Lager and June (15), Greszczuk (16), Davis (17), and
Kulkarni et al. (18) among others, that advanced composites, consisting of
boron, graphite, or aramid fibers in an epoxy matrix, under compressive loading
fail in the shear buckling mode rather than the extensional one. However,
these same composites are not the ones which exhibit large differences in T/C
behavior at relatively small strains. These latter ones are characterized by
low V¢. A simple analysis more appropriate to the latter case is presented in
the next section.

Before leaving the topic of fiber buckling of high-V¢ composites, it
should be mentioned that Hayashi (19), Davis (17), and Wang (20) all found it
necessary to take into account the effect of axial compressive stress on the
shear modulus in order to obtain good agreement with experimental results. |,
Also, the recent work of Schaffers (21) on intralaminar fiber buckling under
cylindrical bending should be mentioned.

Recently Baer and associates (22-24) have conducted extensive research
on uncalcified collagen tissues and have developed a mechanistic model based
on the theory of an extensible elastica. However, their model does not take
into ac$?unt the support provided by the surrounding soft tissue (matrix
material).

A Simple Model

The analysis presented here can be considered as an extension of the work
of (11) to include thermal-expansion/contraction effects due to temperature
change, with a considerably simplified expression for the foundation modulus

; The'equations of equilibrium are:
F' =0 ; 1
V = kw 2
M -V+F (wb +w)' =90 3

Mere F3 axial force (+ for tension/compression), kz elastic foundation modu-
lus for the matrix, M = bending moment, V = transverse shear force, wz lateral
deflection of fiber,w, = initial deflection, ( )'= d( )/dx, and x = axial
position coordinate.

Assuming the fiber to be a Bernoulli-Euler 1inear elastic member, the
constitutive relations are:

M=« Efl w" (‘)
F = AE, (e - (uf - °m) aT) (5)

Here A= fiber cross-sectional area, Eet Young's modulus of the fiber along




-13-

its axis, 1 = area moment of inertia of fiber about its centroid, AT = temper-
ature change measured from a strain-free temperature, ag and oy i fiber and
matrix lineal coefficients of thermal expansion.

In view of equation (1), F is constant. Combining equations (2), (3),
and (4), one obtains the following governing equation:

eflw"’ <Fw tkwm P (6)

It is very likely that the initial deflection (w_ ) is caused by a buckling
of the fibers. Thus, it is reasonable to assume the sdme modal shape (dimen-
sionless deflection distribution) for the initial deflection and deflection
under loading.

w, = ¥ sin gx , w= W sin B,X (7)

Here W_and W are the respective amplitudes of " and w , 'o 2 /2 ,and 2=
nalf-wive length of deflection modal shape.

Substituting w_ and w from equations (7) into equation (6), one obtains
the following result?

& 2
W/, = - F 8, /(Egls, + k) (8)

Finally, the following kinematic relationship is used to obtain an ex-

pression relating the fiber-direction strain ¢, to the deflection amplitudes:

4 2

+F 8

w/8
¢ = (8/7) ]o O 4 dx (9)
Here
2 = (172) w2 - ()2 + (F/agy) (10)
Substituting equation (10) into equation (9) and integrating, one obtais
& = (o/Eg) + (o, - og) oT + (8.2/8) (47 - ) ()
Finally, substituting W/W from equation (8) into equation (11), one ob-
tains:
= (g/E;) + - ag)aT 12
5 i: :)/2);cm 1 “f[a AEg[(0/Eg) + (ap, - "f)AT]ao2 | Z}f )
B -
sl { ; Efls°4* REL(a/E,) + (um-uf)AT]S‘:z +k

Special Cases

1. No initial curvature (Bb“o sz 0): Then equation (12) reduces to the
following linear relation:

= (u/Ef) + (°m - af) aT (12a)

This is the linear thermoelastic constitutive relation. Since the residual
thermal strain (a_ - a.) AT is not ususally measured, it is customary in ten-
sile tests to refirencé the strain from the value of zero at the beginning of
the test. Thus, the measured strain fs

o™ o, (12b)

2. High tension stress (o ~ large): Then ¢, approaches the straight
1ine of equation (12a) asymptotically from the right.

3. 2ero stress (0 z0): Even when aT = 0 also, ¢, is positive.

4. High compression stress (- ¢ ~ large): The 1]miting case is

24k¢0

4
Eflﬂ +F8




thus,

- FaEle? +k g (13)

Differentiating equation (13) with respect to s, one finds the initial
value of B to be ]

1/4
Ber = (W/EGD) (14)
Since I = wd4/64 , where d is the fiber diameter, equation (14) implies
’cr d = const.
or

by ® cd (15)
This result is consistent with the experiments of Rosen (9) and the elegant
analysis of Sadowsky et al. (25).
To evaluate the constant C , we apply the following expression for the
elastic foundation modulus of an infinite, isotropic medium surrounding a rigid |
fiber (8): !

: k = 16%6,/(1 + 6(1 - 2v)] (16)
for a rubber matrix, v ¥ 1/2. Then i
k % 1646, (16a)
Thus
8., d=2/8 (66" (17) y
and
e 4(6,,,Ef)”2 (18)

5. Decrease in temperature only (6 0, aT <0): For aT =0, ¢, > O.
Since a_ > af for practical composites, as AT is decreased (AT <0), c‘ also
h

decreas®s. The 1imiting case is when
Eple® + AE, (o - )62 AT + K+ 0 :
Then
o 1-aT] = (Eg18% + k 8"2)/AE, (o - af) (19)
This has a critical value of 8 given by equation (17) and
et = (BN ey, - ag) ¥ 4108 /E0) %/ (ay - ap) (20)

METHOD B: MEAN-FIBER-ANGLE APPROACH

Review of the Literature

i
i
Although an earlier analysis was concerned with inftially wavy layered
medfa (26), the first analysis specifically addressed to the use of this ap-
proach to fiber-reinforced composites was due to Tarnopol'skii et al. (27).
They assumed that the fibers are initially sinusoidally curved, equation (7a).
Then the inclination at an arbitrary axial position x is

o = arctan (8N, cos 8.x) (21)




=15~

Using equation (21) in the well-known transformation equations for Young's mod-
ulus and integrating over a half-wave length ¢, they obtained the following
result for the fiber-direction initial Young's modulus of a wavy-fiber-rein-
forced composite:

(VE)) = (1726))(2 + 1,21 + 1,2 ¥2
o (6,7 - 2v 8,7 e 22000 + 1272
s (V26,02 - (2 + 36.2)01 + £.2)792) (22)

Here E, and E, are the major (fiber direction) and minor Young's moduli of a
unidir ctiona? composite with straight fibers, is the major Young's modulus
of the wavy-fiber composite, f_= g W _, and 512 lnd vyp 3re the respective
major shear modulus and major PoissBn% ratiol2of the Straight-fiber composite.
For fo << 1, the following approximate expression was suggested in (27):

Ey/E, ¥ 01 + (£, 2/2)(E /6,17 (23)

This expression is consistent with Bolotin's result (26).

The disadvantage of using either equation (14) or (15) is that it requires
prior knowledge of a straight-fiber composite having the same fiber volume
fraction. For the glass-fiber reinforced plastic investigated experimentally
in (27), it was found empirically that an initial composite prestress of ap-
proximately 10% of the ultimate tensile strength was necessary to assure that
the fibers are sufficiently straight.

In an alternate approach to that of (27), Nosarev (28) considered the
curved fiber as a finite number of straight-Tine segements. He obtained nu-
merical results which predicted reasonably well the decrease in major Young's
modulus and increase in major Poisson's ratio for a copper-wire-reinforced
epoxy composite as the fiber curvature is increased.

The work of (26-28) can be used to predict only the initial modulus (or
Poisson's ratio). However, in certain composites with a highly flexible ma-
trix (such as rubber), the composite modulus may change quite significantly
with loading (especially in compression, as discussed in the preceding sec-
tion). Thus, the analysis of Tabaddor and Chen (29) is quite important for
such composites, since it permits computation of the complete stress-strain
curve in both tension and compression for the composite in the fiber direction.
In their work, they replaced f_ in equation (22) with f (= 8W) and developed
a relationship between f and f_.

Makarov and Nikolaev (;ﬂ) conducted a series of experiments on aluminum-
wire-reintorced natural rubber in which the wires were provided intentionally
with controlled amounts of initial curvature. The ratio of Young's moduli of
fiber and matrix was 13,700 and the fiber volume fraction was 0.06. éhey found
that curvature had a negligible effect on the minor Young's modulus (E,), the
transverse-transverse Poisson's ratio (v,,], and the transverse thermal-expan-
sfon coefficient (a,). However, for the?? test gondltions they measured as-
proxjmately 50% decgease in E]. 48% increase in Vi2° and 15% increases in 12
and a

]-

I'4
Vishnevskii and Shlenskii (31) 1nvestigated.xhe effect of sinusoidally
curved fibers on transverse thermal conductivity (K,) of the composite. They
derived an expression for the transverse thermal coaductivity which is equiv-
alent to the following one in the present notation:

R, = (/212 + ky(2 - £,2)] (24)
Here kl and k?dare the conductivities in the fiber and transverse directions.
t

shoutd be mentioned here that the companion equation to equation (24)
can be written down immediately, from symmetry, as follows:

Ry o= (2)ky(2 - £0) ¢kt 2] (25)
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Also, 1t {is noted here that, in view of the fact that the angular transforma-
tion equations for thermal expansion are identica! (second-rank tensor) to those
for thermal conductivity, equations (24) and (25) are also appiicable to ther-
ma) expansion provided that the k's are replaced by a's.

Tarnopol‘skii et al. (32) investigated the effect of fiber waviness fn
composites with anisotropic fibers (specifically carbon fibers). They found
that for such composites, it is necessary to use the ful) equation (22) rather
than the simplified equation (23). Van Dreumel and Kamp (33) investigated ex-
perimentally the effects of fiber waviness on both tensile strength and major
Poisson's ratfo of carbon-fiber reinforced plastic.

In order to completely characterize a thin sheet material for use in
stress analysis and structural design, one needs a complete set of elastic
stress-strain relations, for fiber-direction tensfon and compression (34-35),
not just the Young's moduli. A rational analytical basis for such a complete
characterization is developed for the first time in the following section.

Complete Characterization of Planar Compliances

A typical repeating element is assumed to consist of a segment of a sin-
usoidally curved fiber and its surrounding matrix material. The fiber curva-
ture is assumed to be planar in a single plane (xy) with a path given by

y = W, sin gx (26)

Following the general approach used by Tabaddor and Chen (29), it is as-
sumed that when the fiber is subjected to a positive (tensile) strain in direc-
tions 1 and 2, respectively parallel and normal to the fiber direction, it
takes on a new sinusoidal form given by

y = W sin gx . (27)
where the relationship between g and 8 and between W and wo are given by
(25/8,)() + ¢;) = 2v/8 (28)

It is assumed that shear strain has no effect on these inter-relationships.
Combining equations (28) and (29), one obtains

fu=ol=gM (1+e)/0+¢) (30)

In view of the definitions of f_ and of Pofsson's ratio (v,, = - ‘2/‘1)'
equation (30) can be rewritten as folfows for the unfaxial case Aaly

e fo (1 - V12 c])/(1 + c‘) (31)

Equation (31) expresses the effect of ¢, on f(= gW). This is a different
approach than in the tie-bar/column one (Methsd A), in which it is assumed that
8~ B, and W is found by solution of the governing differential equation.

The woPk that follows is based on the elastic compliance rather than the
planar stiffnesses or the engineering moduli (Young's modulus, Poisson's
ratio). There are several reasons for this choice:

1. Permits direct comparison with experimentally measured complf{ances.

2. 1Is not restricted to a particular stress state (such as uniaxial, bi-

axial, or even triaxial) but can be applied directly to any stress
state.

The transformat1$p §quat1ons relating the elastic compliance coefficients
with respect to axes (I, Z2), oriented at an angle 9 with respect to the ortho-

trongs?aterial-snnmetry directions (1,2), to those with respect to (1, 2)
are (36):

A b
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g" [ Siy 2515 * Sgg S22 n?

S2 L .| %2 St S Ses 512 al - ot

55 S22 2552 * Sg6 S | L1 - 2n ¢ md

66 L Se6 451 * 4522 = 8512 - B6  Sge (32)
{gw [ s e s 25025, 5 ] “'33‘}

S | =252 * 25y, * Sgg 25y = 25, - S "

Here mz cos 6, n 3 sin @.

In writing equations (24), the contracted index notation was used. Sub-
scripts 1 and 2 refer to normal stress/strain action in directions 1 and 2 re-
spectively, while subscript 6 refers to shear stress/strain action related to
axes 1 and 2.

To average the properties over one wavelength of fiber waviness, it is
necessary to relate direction ¢ to the curved-fiber geometric properties W and
8. Working toward this objective, we take the derivative of both sides of
equation (27):

tan 6 = y' s Wg coS Bx (33)
Thus »
m=cos 6 = [1+ (W8 cos ax)z]']lz

34
n = sin 0 = W8 cos gx/[1 + (W8 cos sx)2]1/2 £

The average values of the functions of m and n appearing in equations (32)
are

L/4 Ly

w2 I ol MY 0+ (F272)101 + £2) 32
-L/4 J /s

Rz (146 12 S

m

wn = mnS = 0
It is now possible to express the curved-fiber composite compliances ?11
in terms of the straight-fiber unidirectional compliances siJ as follows:

gn :zz :1 iz 1
glz 3 s1z 12 l1 b J (36)
22 n 3 2 7
356 S66 Iy -l m

Here the invariants are
12255 - 2509 * Sgg » 1p% Sy = 2515 + Spp = Sg¢

3= 3

It 1s noted that since m°n = mn°~ = 0, the wavy-fiber composite remains

orthotropic. Use of equations (30), (35), and (36) in an iterative manner per-
mits development of complete nonlinear strain versus stress relationships for
the composite.
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OISCUSSION AND CONCLUDING REMARKS

In both of the mechanistic analytical methods presented here, no pro-
vision was made for transverse shear deformation of the fibers. In fact, there
{s some controversy as to which is the best way to incorporate such action; see
the work of Roze and Kintsis (37). However, a suitable one of the approaches
described in (37) could de fncorporated into Method A, if desired. It is noted
that in Method B flexural, mchover shear, properties do not enter explicitly

into the equations.
The experiments of Patel et al. (5) showed that the difference between

tension and compression properties were much more pronounced for rubber re-
inforced with aramid cord than when reinforced with polyester cord. This is
probadly related to the very low compressive strength of the aramid fibers
themselves, which Greenwood and Rose (38) suggested is due to separation of the

microfibrils comprising the fibers.
Moncunill de Ferran and Harris (39) found experimentally that the buckling
rather than planar as assumed in all

mode of steel wire/polyester was helica
known analyses. It has been suggested that the more pronounced difference be-

tween tenstle and compressive behavior exhibited in the tire-cord/rubber com-
posites of (5-6) as compared to that of ordinary wire-reinforced rubber (8)
may be due to the inherent twisting action present in tire cord, which has a
helical geometry (40). However, in (5), steel-cord/rubber was also investiga-
ted and no appreciable difference between the tensile and compressive stress-
strain behavior was noted.
From the review and methods presented here, it can be concluded that the
field of micromechanics of fiber-reinforced composites with different proper-
ties in tension and compression is in its infancy. Considerably more work needs
to be done, among which the following appear to be the most pressing: i

1. Definitive experiments to determine which of the two methods (A and
8) presented here are the most successful in predicting composite
material behavior (not only in uniaxial loading but alsc under multi-
axial conditions) and to help refine or even combine them.
Experiments to determine the role of fiber-matrix interfacial adhe-

sion on the gross behavior.
Fracture mechanics analyses and carefully controlled experiments with

controlled flaws.
Analyses incorporating more realistic models of the helical-strand

action in tire cords (40).
Simple means of incorporating the different T/C behavior into static

and dynamic analyses of structural components such as plates and
shells (41).

O&PN
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