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ANALYSES OF PLATES CONSTRUCTED OF ~
FIBER-REINFORCED BIMODULUS COMPOSITE MATERIAL

ABSTRACT

To implement the structural application of the recently introduced fiber-
governed symmetric compliance model for bimodulus composite materials, both
classical closed-form and finite-element solutions are being developed. This
paper summarizes the results obtained for deflection of single-layer ortho-
tropic and two-layer, cross-ply plates of the following configurations and
loadings:

TR

1. Thin elliptic plates clamped on the boundary and subjected to
uniform pressure.

2. Moderately thick rectangular plate freely supported on the boundary

b and subjected to sinusoidally distributed pressure.

NOMENCLATURE
Aij = stretching stiffness (i,j=1,2,6)
a,b = plate semi-axes
Bij = bending-stretching coupling stiffness (i,j=1,2,6)
Dij = bending stiffness (i,j=1,2,6)
dx = a( )/ax
F1 = finite-element force components (i=1,2,...,5)
h = total plate thickness
Kij = stiffness coefficients in the finite-element formulation
LuB = linear differential operators defined in equations (2)
Mi’Ni = stress couples and stress resultants (i=1,2,6)
Ni = finite-element interpolation functions
n,n = number of nodes per element, number of layers in laminate
PsP, = normal pressure, intensity of normal pressure
Qx'Qy = thickness shear stress resultants

This paper is to be presented at the Symposium on Mechanics of Bimodulus
Materials, sponsored by the Applied Mechanics Division, at the ASME Winter
Annual Meeting, New York, NY, Dec. 1979 and will be published in the
symposium volume.
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| Qij = plane-stress reduced elastic stiffness (1,j=1,2,6)
{ | Qijk = Qij for tension (x=1) or compression (k=2)
! Qijkl = Qijk for layers 1 or 2 (2=1 or 2)
: Sij = elastic compliance coefficient (i,j=1,2,6)
E
5?9 = finite-element matrix coefficients
U,V ,W = midplane displacements in x,y,z directions
U,V = total displacements in x,y directions
] UgiVgiWy = coefficients in expressions for u,v,w
X,y = in-plane rectangular position coordinates
Zx'zy = an/h‘ zny/h
2 = thickness-direction position coordinate, measured from
midplane
znx,zny = 2 coordinates of neutral surfaces based on €y and ey
; €¢ = fiber-direction strain
€; = strain (j=1,2,6)
o = stress (i=1,2,6)
] = angle between fiber direction of an individual layer and
reference direction for the laminate
wx,wy = slope functions

= middle plane of the plate
= a typical finite element

INTRODUCTION

An elastic plate is an important structural component in a wide variety
of engineering systems. Thus, it is not surprising that the first modern
development of the basic constitutive equations of bimodulus! materials by
Ambartsumyan (1)? was followed only one year later by Shapiro's analysis (2) of
static deflection of a circular plate constructed of such a material and sub-
Jjected to a pure radial bending moment. However, in his analysis, he used
Love's stress-function formulation rather than plate theory.

Unfortunately, there have been relatively few more recent analyses of
bending of bimodulus plates. Notable exceptions are the series of papers by
Kamiya (3-5). In (3), he treated large deflections (geometric nonl1near~ty)
of circuTar nlates, using an iterative finite-diffarence technique, while in
(4) , he applied the energy method to large deflections of a rectangular plate.
The(e;fect of thickness shear deformation on the linear problem was treated
in (5).

Ponomarey (6) considered bending of a square plate made of a nonlinear
elastic material of a slightly mere general nature than bilinear, namely one
with a third-deagree polynomial stress-strain relation such that the ratio of
tension stress to compression stress at the same absolute value of strain
remains constant.

A1l of the analyses mentioned above are limited to isotropic materials
with different properties in tension and compression. Apparently, the first

! Here a b1modu1us material is understood to be one having different elastic
properties in tension (T) and compression (C). Materials with same properties
in T and C are referred to herein as grdinary materials.

2 Underlined numbers in parentheses designate References at end of paper.
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analysis considering bimodulus materials other than isotropic is due to Jones
and Morgan (7), who presented a closed-form solution for cylindrical bending of
a thin, cross-ply laminate of finite width but infinite length. They presented
numerical results for examples of both antisymmetric and more generally un-
symmetric cross-ply constructions.

Apparently, the first analyses of anisotropic bimodulus plates finite in
both directions are those recently carried out Ly the present authors and their
colleaques and summarized here. The planform geometries, boundary conditions,
loadings, lamination schemes, degree of nonlinearity, and methods of solution
are listed in Table 1.

Table 1. Specific Plate Bending Problemns Considered
For Anisotropic Bimodulus Materials®

fProblemE Planform 4} Boundary I Lamination fDegree of :Method of
No. . Geometry | Conditions| Scheme - Nonlinearity Solution
: ! P
1 | Elliptic } Clamped | Unidirectional | Linear | Closed form (8)
i thin i orthotropic i
2 | Ellaptic Clamped | Unidirectional = von Karman | Perturbation
| thin | orthotropic & | geometric | (9
! | cross-ply nonlinearity |
3 | Elliptic Clamped ! Arbitrary Linear Closed form
i thin | cross-ply
4  |Rectangular | Freely t Unidirectional | Linear Closed form
i thick supported | orthotropic & and finite
t [ cross-ply element
* *
5 [Rectangular | Freely ; Cross-ply Linear Finite element
[ thick supported‘L
i

GOVERNING DIFFERENTIAL EQUATIONS

Classical small-deflection theory of thin, unsymmetrically laminated, ani-
sotropic plates was originated by Reissner and Stavsky (10). Apparently, the
first display of such a theory for the completely arbitrary anisotropic lamin-
.ated piate was due to Whitney and Leissa (11). These same equations govern the
small deflections of thin, laminated, bimodulus anisctropic plates and thus
they are presented here in concise form for completeness:

Lin Liz2 Lj; u 0
Liz L2z La; vy=10 (1)
Liz Lz23 Li; W p

where the L 8 are symmetric linear differential operators (L, =L _) defined
as follows:® B &b

L
L1z

"

Appd? + 2A1gdydy, + Agedd

Argd2 + (Ayp + Age)dxdy + Azedd

The program can handle arbitrary lamination arrangement and boundary cond-
itions. However, the results for only cross-ply laminates and freely supported
edges are included here,

Uniform loading is considered in all clases, except in Problem 4, in which
sfnusoidal loading is used.




-5-
Ll3 z - Bll R 38]6(!" - (ﬂl°+ 230()(. d - B’Udy
Loz = Aggd? + 2hyed,dy + Nopd? (2)

REAEECE 3. age ol 3
L. Bigdy = (Bi2 + 285)djd - 38y,d 42 - Bypd3
Lyz 2 Dyidg+ 40,502, + 2(Dy; + 2Dgg)dle + aDyed 3 + Dypdy

Here u, v, w are the midplane cdisplacements in the x, y (in-plane) and z
(normal) directions, dy = d( )/dx, P is the normal pressure, and the plate
stiffnesses are defined as

h/2

(Ayp i3 030 = [ (Lzaztloyy(adez (1,521,2,6) (3)
-h/2

Here h is the total thickness of the laminate and z is measured from the mid-
plane by convention. The Q .(2) are the plane-stress reduced elastic stiff-
nesses defined as follows:

= (Qij](cj} (i,3=1,2,6) (4)

Here the contracted notation of composite-material theory (12) is used. Thus,
subscripts 1 and 2 refer to normal stress (or strain) action in the x and y
directions and 6 refers to shearing stress (or strain) action with respect to
the x,y axes. Due to thermodynamic considerations, the [Q..] matrix is
symmetric. H

PLATE STIFFNESSES FOR BIMODULUS-MATERIAL LAMINATES

Even in laminates made of ordinary materials (those having the same
elastic properties in tension and compression), the stiffnesses Qij; are piece-
wise-constant functions of the thickness-direction coordinate z. The indivi-
dual layers generally consist of unidirectional fiber-reinforced composite
material which is orthotropic with respect to its material-symretry axes: the
fiber direction and the two directions orthogonal to it. Thus, when the
individual layers are oriented parallel to either the x or y axes of the plate,
all of the Ajj, 8ij, and Di; stiffnesses involving shear-normal coupling (all
of those with subscr1pts Té and 26) identically vanish.

Furthermore, when a laminate is composed of individual layers of ordinary
material arranced sywmetr1ca11y with respect to its midplane, all of the so-
called bending-stretching coupling stiffnesses (811) vanish. Thus, a s1ngle-

-layer ordinary composite has no B1j terms present, However, as discussed in

(7) and (8), even a single-layer bimodulus composite, as well as a so-called
symmetrically laminated multi-layer laminate, has certain Bij terms present by
virtue of the nature of the bimodulus action. Thus, the terms symmetric, anti-
symmetric, and unsymmetric have no significance for bimodulus laminates.

A popular lamination scheme is the so-called balanced angle-ply laminate.
This is one consisting of an even number of layers of identical material and
thickness and having an equal number of layers oriented at an angle +8 and -8
with respect to an arbitrary reference direction.. When such a laminate is
made of ordinary material, the shear-normal coup11ng effects (Q¢ and Qpg
terms) for +¢ are exactly balanced by the ones at - Hence, Ajg = Aag = 0
and the term "balanced". In contrast, if this same laminate is made of bi-
modulus material and undergoes sufficient bending action that the fiber-dir-
ection strains at the top and bottom surfaces of the laminate are opposite in
sign, then the terms at +8 are not balanced by those at -8. Thus, for this
bimodulus laminate, A,¢ and Azs do not vanish and the term balanced is
inappropriate.

Even in the case of a sc-called symmetric balanced angle-ply (SBAP)

A s S 5
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laminate, such asone havina a lamination scheme 6/-0/-9/9, of ordinary composite
material, even thouch Ay, and A,, vanmish, D, and D, do not.
rivation of general expressions for U, and D., for such a laminate with an
arbitrary even nuwber of layers is given in (13).
tions, 1t is clear that for an angle-ply laminate of bimodulus material, there
are no venishing plate stiffnesses.

A detailed de-

In view of these considera-

A listing of all of the plate stiffnesses that vanish for a variety of

lamination arrangements of both ordinary and bimodulus composite materials is
presented in Table 2.

Table 2. Plate Stiffnesses for Some Popular Lamination
Arrangements of Ordinary and B8imodulus Composite Materia
{ Name of ! Example ?List of Vanishing Plate Stiffnesses |
Case Arrancement Laminate | Ordinary Materia! | Bimodulus Material,
' 1 Ah'gned Siﬂg1e \ 0 or E AlG'AZS'D!G’DZS’ \ AISlAZG’BIG' !
| ply or aligned | 990/90 all B, 826,016,026 i
! parallel ply | J
| !
5 Cross-ply: i )
i =t * |
f 2 n = odd | 0/90/0 AIG.A26|DIG'DZﬁ’ Ale,Azs,B!G,
' ‘ all By B26:016:026 |
| 2 I
‘ 3 n = aven { 0/90 AlS’AQS'BISi ! A181A26!816D l
I B2610164026 i B2gsD1g,D26 }
Alternating ; |
| i angle-ply: i
4 | n = odd | 30/-30/30 | Ayg.Aze, all Bij None
5| n = even | 10/-10 | A16+A26,B11,812, None
! 2240161026 '
6 | SBAP 30/-30/-30/30 Ayg,Azg, all Bij None
i
7 | Quasi-isotropic | 0/-45/+45/90 A16,A26,016,026 None
|
8 0/: 8 | -30/0/30 AXG’AZG'BXI’BXZ’ None
B22,0161026
9 | (0/+ e)S -30/30/0/30/-30 | A;g,Az¢, all Bij None

governed-compliance model.
follows:

[Sj1] =2

eg) = [8541(sy)

()
([sji] if 020

[5,1)¢) 1f o, <0

Here o, denotes the fiber stress along its axis.

The remainder of this discussion is limited to the particular bimodulus-
material model originated by Bert (14,15) and known as the symmetric fiber-
This model can be expressed mathematically as

(5)

where the compliance takes on different sets of values as follows:

(6)

The symbol A denotes the total number of layers in the laminate.

1s
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To implerent the material model in plate theory, we introduce a third sub-
script (k) to the Qpy plane-stress stiffness matrix in which k=1,2 denote ten-
sion and comnression”proserties, respectively.  Then by ‘nvok‘nq the well-known
Voigt hynotnesis of uniformity of fiher-direction strain in the fibers and
matrix of each respective individual laycr, one obtains the following criteria
for use of tne appropriate QiJ“

fQ,,,] if e >0
1 e : (7)

e,
jk ;
[QLJZ] if €g < 0

where e¢ denotes the ftber direction strain at any arbitrary point. The locus
of po1nts at which c¢¢ = 0 is traditionally called the neutral surface.

Depending upon the plate geometry, boundary conditions, and loading, even
in the case of a single-layer plate, the neutral surface in general is not a
horizontal plane surface. Since the properties (Q! ..) depend upon the sign of
c¢ and the plate stiffnesses (A B,;,Dij) upon the 3,1L as in equations (3),
it is clear that in general a bxwoduTus plate is nonhomogeneous in its plane,
i.e., the plate stiffnesses depend upon position (x,y). It is noted that,
unlike a plate with linearly taperinc thickness, here the plate stiffness in
general is not only not a simple function of pos1'1on, its functional form is
not even known & priori. In this recard, there is a qualitative analogy be-
tween a bimodulus problem and an elastoplastic problem, for which the elasto-
plastic boundary is unknown & priori.

From the above discussion, it is clear that in order for a finite element
to be applicable to any arbitrary combination of planform geometry, boundary
conditions, and loading for a bimodulus laminated plate, it must have a full
array of plate stiffnesses (none zero).

SMALL DEFLECTIONS OF THIN, CLAMPED ELLIPTIC PLATES

In studying structural mechanics problems involving new classes of mat-
erials, it is often quite instructive to obtain closed-form solutions for cer-
tain special cases. Then there are no questions regarding numerical approxi-
mations, convergence, etc. In the case of plates laminated of ordinary mat-
erials, the closed-form solutions due to Kicher (16) for elliptic plates and to
Whitney and Leissa (11) for rectangular plates are most outstanding. Thus, it
was decided to investigate the applicability of these forms of solutions to
plates laminated of bimodulus materials.

Kicher's solution (16) is the closed-form solution for a uniformly-loaded,
clamped-edge elliptic plate of cross-ply construction with an even number of
layers (Case 3 in Table 2). The form of this solution is

u=u (1 - (x/a)2 - (y/b)2](x/a) 5 v = vi[1 - (x/a)2 - (y/b)2](y/b)

2
w= w1 - (x/a)? - (y/b)?]

Here the displacement coefficients are readily determined by direct substitution
into governing equations (1).

(8)

In view of the Xirchhoff hypothesis, upon which the present theory is
based, the x-direction normal strain at any arbitrary location (x,y,z) is

(9)

€ = U,x - zw.xx

Thus, if one sets e, = 0 and solves for z, one obtains the neutral surface
position z,, associated with the normal strain in the x direction. [t can
readily be shown that when this procedure is applied to the Kicher displacements,
equations (8), the resulting expression for 2z, is incepencdent of x and y.

—




This means that for this particular problem, the plate stiffnesses are uniform
throughout the plate surface of a single-Tayer bimodulus plate nrovided that

the fibers are aligred in the x direction.

(A similar conclusion can be reached

for z,, and thus, a single-layer bimodulus plate with the fiders in the y

direction.)

For the single-layer plate, it can be shown (8) that the plate stiffnesses
depend upon Z(:z,/h) in the following manner:

A5/ = (1/2)(0
(1/8)(q
(1726)(0;

2
Bij/h

3
Dij/h

From physical considerations, only one unique solution

ij

i

1

ijl

i QijZ) % (Qijz = Q )Z

= QijZ) + (QiJZ % Q

pan

13

)(22/2) (10)

j] & QijZ) it (QijZ = Qi;])(23/3)

The only thing remaining is the determination of the neutral-surface loca-
tion Z. In principle, an equation in Z can be obtained by combining eguations
(10) with the expression for Ug/wo as required by solution of equations (1).
Althouch the resulting expression is only cubic in Z, the algebraic structure
of the expressions for the coefficients of the cubic is so lengthy that it was
found to be more expedient computationally to obtain Z by direct iteration.

for Z is meaningful

(i.e. real, with iZ!< 1/2). In (8), numerical results were presented for a
composite material with considerable bimodulus action, namely aramid-cord/
rubber which has the properties listed in Table 3, taken from exnerimental data
of Patel et al. (17). The exact bimodulus results were compared with those

obtained by ordinary theory using average properties.

The necessity of using

bimodulus theory is clearly demonstrated as shown in Figures 1 and 2,

Table 3. Bimodulus Properties of Aramid Tire-Cord/Rubber
Composite, Reduced from Experimental Data in (17)

Property

Major Young's modulus

Inplane shear medulus

{

Transverse Young's modulus

Major in-plane Poisson's ratio
Minor in-plane Poisson's ratio

Units Tension |Comoression |
MPa | 3,580 | 12.0 |
MPa §,00 | 12,0 |
MPa 310 | ot

(3.83) |  (3.83) |
- 0.416 | 0.205 |
- | 0.01105 0.205 |

In view of the nature of Cases 2 and 3 in Table 2, one would expect the
Kicher displacement functions to be applicable to an arbitrary cross-ply plate
of bimodulus material. In (18), this is shown to be true and it is implemented

for the "most unsymmetric" layer, namely the case of n=2,

equations (10) are replaced by

A = (172)(Q4 1% Qj22) + (Q4521
Bij/hz = (‘/8)(Qij11 - Qijzz) i (Qij21
D;5/h% = (1/28)(Q4 11 * Qyy22) * Q4421

In this case,

= Qy511)2, * (Qg522 - 0451202,

- Qijlx)(zi/z) &2 (Qijzz -
- Qijll)(2:/3) it (Qijzz -

0;512)(22/2)
Qijlz)(Z;/3)

(amn

Here the last subscript 2 in stiffnesses Qqsyy denotes the layer number (either
layer 1 or 2) and the ijk subscripts have the same meaning as before.

In the case of cross-nly laminates, the elastic properties_used for the
layers having the fibers oriented in the x direction are determined by'the X=
direction neutral surface, while those for the other layers are cetermined by
the y-direction neutral surface.

Thus, to a certain extent a two-layer ¢ross-
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Dasted line represents 0° case based on
average of tension and compression properties.
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ply bimodulus laminate is like a four-layer, cross-ply ordinary laminate (with
uncetermined individual layer thicknesses), Thus, there arises a question as

to the proper order of the tensile and compressive reqions. To determine the

correct order, the following criteria were used in (18):

Y. for bendina-nroducing loadings, the neutral surfaces to which the
3teratlon procedure leads must lie within the plate thickness, i.e.
[Zyl < 1/2.

2. The maximum plate deflection must be in the same direction as the
normal-pressure loading.

In the case of an aramid/rubber plate, it was found thut an order of
stress-state tension T or compression C (listed from top to bottom) of C/T/T/C
resulted in a negative maximum deflection (uoward for a downward pressure),
while an order of C/T/C/T met both of the criteria listed above and thus was
judged to be the correct solution. On the other hand, for the case of a poly-
ester/rubber plate, it was found that C/T/C/T resulted in a neutral surface
lying outside of the plate, while C/T/T/C gave results meeting both of the
above criteria.

In attempting to find a closed-form solution for an angle-ply bimodulus
plate, the second author found a closed-form solution for an arbitrarily lamin-
ated ordinary laminate (19). However, it did not result in a co~stant value of
neutral surface and thus, apparently it cannot be extended to a closed-form
solution of the angle-ply bimodulus plate. Alternate apporoaches to this prob-
lem are currently being investigated.

NONLINEAR DEFLECTIONS OF THIN, CLAMPED ELLIPTIC PLATES

The geometrically nonlinear midplane strain-displacement relations origin-
ated by von Karman were incorporated into thin, laminated, anisotropic plate
theory by Whitney and Leissa (ll), although they did not solve the resulting
nonlinear partial differential equations. Althouch the Ritz-Galerkin and
Rayleigh-Ritz (energy) methods are probably equally popular, in (9) it was
elected to use a perturdation procedure first used for plates by Nash, Cooley (20)
for clamped, elliptic isotropic plates under uniform pressure. The only chance
in the procedure is the additional iteration procedure (necessary to take into
account the bimocdulus stiffnesses) and the additional elastic constants due
the bimodulus action.

SMALL DEFLECTIONS OF RECTANGULAR PLATES INCLUDING
THICKNESS-SHEAR DEFORMATION

It has been demonstrated (21) that fiber-reinforced composite materials
exhibit much larger thickness shear effects than do plates having the same
geometry but constructed of homogeneous, isotropic materials. The explanation
for this is due to the relatively Yow thickness shear moduli relative to the
in-plane moduli. The numerous theories including these effects for laminated
anisotropic plates were reviewed in (12). It suffices here to mention that the
two most widely used of these theories are those due to Yang et al. (22) and
Whitney and Pagano (23). It was shown in (24) that the latter theory is more
accurate, ¥

In (25), the modal shapes used by (26) for free vibration and buckling
analyses of shear deformable cross-ply rectangular plates are used to analyze
the static deflection of similar plates constructed of bimodulus composite
materials and subjected to a sinusoidally distributed normal pressure. Again,
as in the case of the elliptic plate problem discussed in the preceding
section, the two criteria for constancy of the neutral-surface position are
satisfied, and thus the solutions are exact, closed-form solutions.
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FINITE-ELEMENT FORMULATION FOR PLATES INCLUDING
TRANSVERSE SHEAR DEFOR™ATION

While considerable effort has been expended in the finite-element analysis
of isotropic plates, only limited investigations of laminated anisotropic
plates can be found in the literature. Pryor and Barker (27), and Barker, Lin
and Dara (2:4) used the conventional displacement finite-element method to ana-
lyze thick laminated plates. The element has seven dearces of freedom (three
displacements, two rotations, and two shear rotations) per node. Exploiting
the symretries exhibited by anisotropic plates, Noor and Mathers (29-31) studied
the effects of shear deformation and anisotropy on the accuracy and convergence
of several shear-flexible displacement finite-element models based on a form of
Reissner's plate theory. The analysis was limited to symmetrically laminated
cross-ply plates and the element used involved 80 degrees of freedom per element.
The conventional finite element, when applied to relatively thick laminated
plates, either has failed to predict accurately the local deformations and
stresses of a plate under bending or is too expensive to use due to large de-

rees of freedom involved for even relatively simnle problems. Mau and Witmer
?gg), and Mau, Tong, and Pian (33) have employed the so-called hybrid-stress
finite-element method to analyze composite plates including shear deformation.
The hybrid elements have proven (see Gallagher (34)) tohave some convergence
problems, and in some cases they give erroneous results. Most recently, Panda
and Natarajan (35) used, following Mawenya and Davies (36), the guadratic shell
element of Ahmad, Irons and Zienkiewicz (37) with the same normal rotation
through the thickness to claim improved accuracy over Mawenya and Davies (36).
The 'thickness concept' mentioned in there is essentially the same as that used
in the YNS theory (21). The authors were primarily concerned with the accuracy
of the element, and no attempt was made to solve new problems for which there
do not exist any closed-form, or exact sclutions. In an effort to relax the
continuity regquirements on the shape functions, Reddy (32) recently devised a
simple finite element and successfully tested the closed-form solutions of

Bert and Chen (39). Only investigation that concerns with the finite element
formulations of bimodulus materials is due to Crose, et al. (40). Here,
following (38), we present the finite-element formulation.

Consider a plate of constant thickness h composed of thin anisotropic
layers oriented at angles 9,,8, .... The origin of the coordinate system is
located within the middle plane (x-y) with the z-axis being normal to the mid-
plane. The material of each layer is assumed to possess aplane of elastic
symmetry parallel to the xy-plane. We shall denote the middle plane with Q.

The YNS theory is based on the following assumed displacement field:

U= u(x,y) + zy, (x,y)
Vo= vix,y) + 2y, (%,y) (12)
w = w(x,y)

where U, V, and w are the displacement components in the x,y and z-directions,
respectively, u and v are the in-plane (stretching) displacements of the middle
plane, and Yy and wy are the slope functions.

The equations of motion associated with the YNS theory are,

oo L, S
TR T
aN 3N
P S

X dy




where p = p(x,y) is the transversely distributed load, and Ni’ Mi, Qx' and Q
are the stress resultants per unit length, J

\ (h/Z {h/2
(NyaNouNg) = ] (cx,oy,rxy)dz > (Qx.Qy) & (sz”yz)dz (14)
-h/2 -h/2
(h/Z
M =
(MI,MZ,J6) | (cx,cy,rxy)zdz (15)
-h/2

A thin orthotropic material with provision for a shift of the neutral sur-
face (due to different properties in tension and compression) has the following
plate constitutive relations:

le} Aiy A2 0 0 Ay By By 8167 [U.x A
? |
| Na | Az Az O 0 Ay Biz Bpp By v,
|
Qyé E 0 Ay Ays O 0 0 0 w,y + ¢y
Q. | o0 e A o OIS O O fw,  +u |
! x L i % r k=1 or 2 (16)
; NG( Als AZG 0 0 AGG BIG st BSGi lu,y * v,
i Mli Biz B2 O Bis D11 Dy2 Ony ‘¢x,x
| M | Biz Bz 0 0 By Dy D22 Dlﬁi {¢y’y
{0 0 1 D D | 1 +
L“s] (Bie By O Bs D1s D26 Des | t#x'y Yy,
where the material ccefficients Aij' Bij and Dij are given by
il % " )
(A'I‘]'BTJ’D'!J) =J QTJ (5 Z52) 2 (i,3=1,2,6)
-h/2

(17)

Zn d % Zg'+l d
=5 f it Tk, f Q52,02
Zi dn

Here Q4,0 denote the stiffness coefficients in the plate coordinates of the
t-th layer in tension (k=1) or compression (k=2), and Zn is the distance from
i the midsurface to the neutral plane (which is unknown a priori).

We assume, over each element @, the same kind of interpolation for all of
the variables,

n n
u® =z SN, v® =1 v®° , etc. (n=nodes per element) (18)
e i V1
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where Ny are the element interpolation (or shape) functions, and uf, and v are
the nocal values of uS and v , respectively. Substituting (18) into the first
variation of the tota) potencial enercy associated with (12) and collecting the
coefricients of the variations (sui, Wi etc.) we obtain .

[x%1ta®) = (F%} (19)
qe

i] are given by

} &y = ¢ ( e e
where {a°) k(ue}. ~ve}, (we). {L;}. (,;,). and K

B X xy Xy s
K1‘ f\”Sij o AIG(SIJ ) SJ]) + A(JGS*lJ

~

K3 = AnSTy + AueSYy + Azss{j + Asss§§

T X Xy xy y
Kij Bllsfj * Ble(sij + Sji) i Bessij
K%g = Blzs?§ + 816S¥j + 825$¥j i B6GS§¥

22 . XY 4 oXY y x
K33 = Aae(STy + S33) * A2aSi; + AeeSiy

)

24 = b3 b 3% xy ¥
Kij Blssij + Bessij + Blzsji it stsiJ

25 = Xy xy X y
K2 = Bag(SY] + SY) + BesSTy + 82089

33 = X 2 gY Xy Xy
Kij A“usij * €5 Sij - Aqs(sij i ij)

I = X0 Yo 35 = X0 __cYo
Kij A“ksij + Aqs)ij 9 hﬁj A“Ssij + A.JSij

4y - X xy xy ¥ o
Kij Dllsij + 016(51j £ sji) + DEGSij & A“5sij

K43 = Dlgs?g + DGGS§¥ + Dlﬁs¥j + DZSS{j + Auss?j

iJ

55 = Xy Xy X Y o

Kij 026(51.j + sji) + 06651.3. + 02251.1' + AssSy;

13 = k23 = %’}:( N. N. =

ki3 = K33 0 533 ko 6N dxdy , (&,n=0,x,y)

’

= P 1 =
Fi JQE p Ni dxdy , Fi F

—_n

= = 5:
By =fr s (21)

The element stiffness matrices are assembled in the usual manner, and
boundary conditions of the problem are imposed before solving for {a}. In the
present study, the four-node quadrilateral element of the serendepity family
is used. The element stiffness matrices for this element is of order 20x20.

Figure 3 shows the influence of the aspect ratio (b/a) and side-to-thick-
ness ratio (a/h} on the location of neutral surfaces for a single-layer, iso-
trooic, bimodulus, simply supported rectangular plate subjected to sinusoidal
loading,

p = Po sin(wx/a) sin(ny/b)

The following elastic properties are used:

¥, = 3.584 GPa , ES, = 1.792GPa , E5, = E}, , E5, = Ef,

65, = 65, = 1.27 GPa, viy = w5, = 0.4, vf, = v5 =0.2
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Fig. 3 Neutral-surface location vs. plate aspect ratio,
and side-to-thickness ratio for single-layered
rectangular plate under sinuscidal loading,
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Fig. 4 Neutral-surface location vs. plate aspect ratio
for two-layer, cross-ply (0°/90°) square plate
under sinusoidal loading.

Note that for b/a = 1, the neutral surfaces associated with x- and y-directions

coincide (i.e., 2y zny)'

Similar results are presented in Figures 4 and 5 for a two-layer, cross-ply
(0°/90°", rectangular plate under sinusoidal loading. The bimodulus properties
used are the same as those listed in Table 3. Note from Fig. 4 that the
neutral-surface location, z,, is virtually unchanged for aspect ratio greater
than 1, while the neutral-surface location, z,, increases proportional to the
aspect raio. It should also be noted that the neutral surfaces do not coincide
in the cross-ply case for b/a = 1.

Figure 6 shows the influence of the aspect ratio, and side-to-thickness
ratio on the transverse deflection for single-layer, and two-layer cross-ply
probiems discussed above. The effect of thickness on the deflection is more
pronounced than the effect of the aspect ratio.
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Fig. 5 Neutral-surface location vs. side-to-thickness
ratio for two-layer, cross-ply (0°/90°) rect-
angular plate uncer sinusoidal loading.

CONCLUDING REMARKS

A theory of plate bending for laminated, anistropic bimodulus materials
were presented. This theory is based on the fiber-governed symmetric compliance
model for bimodulus materials.

Closed-form and finite-element solutions have been presented for selected
problems involving different plate geometrics, lamination arrangements,
boundary conditions, both without and with thickness-shear deformation.

It was shown that even for single-layer bimodulus plates, the neutral-sur-
face location may vary considerably from the geometric midplane, depending upon

0.4 [ T T T =" P ~y T T Y

'r Single-layer /
{ w vs. b/a :
!.. o i

et

0.3 -
> | |
@ |

o r 4
8. | {
- | o/ Single-layer |
& 2 o ALt
s 0.2 ¢ / w Vs, b/h\

w b S
2 : :: N
" r ——— ¢
i | = 7S
0.1 | o Tv ayer, w vs. b/h/ -
//// Two-layer, w vs. b/a
- ° \ T
, ) ?”jfn——;-Q" . : 2 S N ?
b/h -+ 10 20 30 40 50
b/a - 0.4 0.3 1.2 1.6 2.0

Fig. 6 Transverse deflection vs. plate asoect ratio,
and side-to-thickness ratin for single-layer
and two-layer cross-ply plates under sinusoidal
loading.




~16=

the degree of bivodularity. Also, the plate deflection is significantly
affected by tne biwoculus action.
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