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~~~ ANALYSES OF PLATES CONSTRUCTED OF 
*FIBER-REI NFORCED BIMODULUS COMPOSITE MATERIAL

ABSTRACT

To implement the structural application of the recently Introduced fiber—
governed symmetric compliance model for bir nodulus composite materials , both
classical closed-form and finite-element solutions are being developed. This
paper summarizes the results obta i ned for deflection of single-layer ortho-
tropic nd two—layer , cross-ply plates of the following configurations and
loadings:

1. Thin elli ptic plates clamped on the boundary and subjected to
uniform pressure .

2. Moderately thick rectangular plate freely supported on the boundary
and subjected to sinusoidally distributed pressure .

NOMENCLATURE

= stretching stiffness (i ,j=l,2,6)
a,b = plate semi-axes
B~ bending—stretching coupling stiffness (i ,j=l,2,6)
D1~ 

= bending stiffness (i ,jl ,2,6)
• d

~ 
= Q( )/czx

F1 = finite-element force components (i~ l ,2,...,5)
h = total plate thickness

= stiffness coefficients in the finite-element formulation

LaB 
= linear differential operators defined in equations (2)

M11 N1 stress couples and stress resultants (i=l ,2,6)
N1 = finite—element interpolation functions
n ,~ = number of nodes per element , number of l ayers in laminate
p,p0 

= norma l pressure , intensity of norrn~l pressure
= thickness shear stress resultants

* This pape r is to be presented at the Symposium on Mechanics of Birnodu lus
Materia ls, sponsored by the Applied Mechanics Division , at the ASME Winter
Annual Meeting , New York , NY , Dec. 1979 and wi ll be published in the
symposium volume .
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I
plane -stress reduced ela sti c stiffness (1 ,j=l ,2 ,6)

for tension (~~l) or compression (k=2)
for layers 1 or 2 (i~l or 2)

— 5~ . = elastic coi p li ance coeffi cien t (i ,jl ,2~6)

S~~ finite— elem ent matrix coefficients
u ,v ,w = mi dp lane displace ments in x ,y,z directions

= total displace ments in x ,y directions
u01 v0,w0 coefficients in expressions for u ,v,w
x ,y in-plane rectangular position coordinates
Zx~

Zy z
~~

/h , z~~/h
z = thickness -directio n position coordinate , measured from

midp lane
Znx *Zny z coordinates of neutral surfaces based on and
C f fiber-direct ion strain

= Strain (j=1 ,2,6)
= stress (1=1 ,2,6)

o ang le between fiber direction of an individual l ayer and
reference direction for the laminate

= slope functions
= mi ddle plane of the plate
= a typical finite element

INTRODUCTION

An elastic plate is an important structural component in a wide variety
of engin eering systems . Thus , it is not surprising that the first modern
development of the basic const itut ive equations of bimodul us 1 materials by
Arnbartsuniyan (1)2 was followed only one year later by Shapiro ’s analysis (2) of
static ~ef~ection of a circular plate constructed of such a material and sub—
,jected to a pure radial ben ding moment. l~owever , in his anal ysis , he used
Love s stress-function formulation rather than plate theory.

Unfortunately, there have been relatively few more recent analyses of
bending 0f bimodu lus plates. Notable exceptions are the series of papers by
Kami ya (3-5). In (3), he treated large def lections (geometric nonlineari ty)
of circular ola~es , us ing an iterative finite —d ifference technique , wh.i~ e in
(4) , he appl ied the energy method to laree deflections of a rectangular olate.
The effect of thickness shear deformation on the linear problem was treated
in (5).

Poncmarev (6) considered bending of a square plate made of a nonlinear
elastic material o~ a slightly more general nature than b ilinear , na~ely one

~~~~~ with a third—degree pol ynom ial stress -strain relation such that the ratio of
tension stress to compression stress at the same absolute value of strain
remains constant.

All of the analyses mentioned above are limi ted to isotropic materials
with different properties in tension and compression . Apparently, the first

1 Here a b imodu lu s ma terial is understood to be one having different elastic
propertte s 1n te~~Ton (T) and compression (C). Materials with same properties
in I and C are referred to herein as or a!~~nateria1s.2 Under lined nutr~ers in parentheses cesignate References at end of paper. 
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anal ys is cons iderin~ bi odul us ma ter ials other than isotro pic is due to Jones
and ~organ ( 7 ) ,  who 2’~ ~ted a c lo~td-forrn so lut ion for cylindr~cai bending of
a thin , cro ss — p ly la~ i nat e of f in i t e  width  but in f in i te  length. They presented
numerica l resu lts for ex a ” p les of both a nt isynniet r ic and ore generally un—
symmetric cro~s- p l j  constr uct ions.

— Appar ently, the first analyses of anisotropic bi nodu lus plates finite in
both directions are those recently carried out by the present authors and their
colleagues ~ne su m’arized here . The planform geometries , boundary conditions ,
loadings , lam ination schemes , degree of nonlinearity , and methods of solution
are listed in Table 1 .

Table 1. Specific Plate Bending Problems Considered
For Anisotropic Bi odulus l~ate ria ls

t

i~~~~iem~ Planform 
~ 

Boundary 
- 

Lam ination r Degree of Method of
No. Geometry Conditions Scheme Nonlinearity 

- 
Solution

Elliptic Clamped Unidirectional linear Closed form (8)
thin orthotropic

2 Elliptic Clamped Unidirectional von Karnan Perturbation
thin orthotropic & geometric (

~)
cross-pl y nonlinearity

3 Elliptic Clamped Arbitrary Linear Closed form
thin cross—pl y

4 Rectanaular Freely Unidirectional Linear Closed f orm
thick supported orthotropic & and finite

* 
cross-ply element

5 Rectangular Freely Cross-ply Linear Finite element
thick supported

GOVERNING D I F F E R E N T I A L  E QUAT IONS

Classical small-deflection theory of thin , unsymmetrically laminated , an i—
sotropic plates was ori ginated by Reissner and Stavsky (10). Apparently, the
first display of such a theory for the completely arbitrary ani sotrop ic l arnin-
-ated plate was due to Whitney and Leissa (11). These same equations govern the
small deflections of thin , laminated , bi nodulus anisotropic plates and thus
they are presented here in concise form for completeness :

L~ 112 113 U 0

112 122 123 v = 0 (1)

113 123 133 W

where the L are symmetric linear differ ential operators (1 1 ) defined
• as follows :a Ba

L i~ S A 11 d~ + 2A l6 dxdy + A~6d~
112 z A 16 d~ + (A12 + A 66)dxdy + A 26 d~

* The program can handle arbitrary lamination arrangement and boundary cond-
itions. However , the results for on~y cross—ply la m inate s and freely supported
edges are included here .
~ Uniform loading ~s considered in a1~ .ases , except in Problem 4, in which
sinusoidal loading is used .

- — — — —-.-- - 
— 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

, . ~~~~~~~~~~ ~~~~~~~~~~~ ~~
— 

~~~~



-.5... 

- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L 13 a - B 11 d 3 — 3B i& d~d~ — (B12 + 2B~~)dd ~ - B~~d~
L22 a A 66 d~ + 2A 2~

d
~
d
~ 

+ fl2 ,d 2 (2)

L23 - B lb d3 - ( B 12 + 2B~~ )d~d - 3B2~d d ~ - B22 d~
133 5 D 11 d~~~40 16 d~d~ + 2(D~

.
~ + 2D66)d~d~ + 4D 26 d

~
d
~ 

+ D22 d~

Here u , v , w are the mldp lane displa cem ents in the x , y ( in — plane) and z
(normal) directions , d~ a d( ) /dx , p is the nor mal pressure , and the plate
stiffnesses are defined as

~h/ 2
(A1~ . B~~, D~~) = J ( l 1z.~~2 ) Q 1~ (z )d z (i ,jl ,2,6) (3)

—h /2
Here h is the total thickness of the laminat e and z is measured from the mid-
plane by convention . The Q

~
.(z) are the plane-stress reduced elastic stiff-

nesses defined as follows : ~

= CQ 1~ ](c~
) (i ,~=l ,2,6) (4)

Here the contracted notation of composite—material theory (12) is used. Thus ,
subscripts 1 and 2 refer to normal stress (or strain) action in the x and y
directions and 6 refers to shearing stress (or strain) action with respect to
the x ,y axes. Due to thermodynamic considerations , the [Q~.] matri x is
symmetric.

PLATE STIFFNESSES FOR BIMODULUS—MATER IAL LAMINATES

Even in laminates made of ordinary materials (those having the same
elastic properties in tension and compression), the stiffnesses Qji are piece-
wise—constant functions of the thickness-direction coordinate :. ‘the indivi-
dual layers generally consist of unidirectional fiber-reinforced composite
material which is orthotropic with respect to its materia l—symnmne try axes : the
fiber direction and the two directions orthogonal to it. Thus , when the
individual layers are oriented parallel to either the x or y axes of the plate ,
all of the ~~~ ~~~ and ~~ stiffnesses involving shear—normal coupling (all
of those with subscripts 16 and 26) identically vanish .

Furthermore , when a laminate is composed of individual layers of ordinary
material arranged symmetrically with respect to its mid plane , all of the so-
called bending—stretching cou pling stiffnesses (B.~ ) vanish. Thus , a sing le—
-layer ordinary composite has no Bi~ terms present .~ However , as discussed in
(7) and (8), even a sinole— layer b imodulus composite , as well as a so—called
sy mmetrically laminated multi—layer laminate , has certain ~~ terms present by
virtue of the nature of the bimodu lus action. Thus , the terms sym metric , anti-
symmetric , and unsy imnietric have no significance for binmodulus laminates.

A popular lamination scheme is the so-called balanced angle-ply laminate .
This is one consisting of an even number of l ayers of identical material and
thickness and having an equal number of layers oriented at an ang ie +6 and -e
with rescect to an arbitrary reference direction. . When such a laminate is
made of ordinary materia l , the shear-normal coupling effects (Q16 and Q26
terms) for +0 are exactly balanced by the ones at -e . Hence , A 16 = A 26 = 0
and the term balanced ” . n contrast , if this sa me laminate is made of bi—
modulus mate rial and undergoes sufficient bending action that the fiber -di r-
ection strains at the top and bottom surfaces of the laminate are opposite in
sign , then the terms at +0 are not balanced by those at — e. Thus , for this
bim odulu s laminate , A 16 and A26 do not vanish and the term balanced is
inappropriate.

Even in the case of a so-called symmetric balanced angle -ply (SBAP)

-- — ------——-.—-—-
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l a m i n a t e , suc h as one iav inn a l dm ’minat ~on sch e m m e u / — ~/ — O / u  , of ordinary cor m m posi te
r ’ ater ”al  , eve r th~ j l m  A~ a m id f , , v ar m i ~km , ,, and 3 , do r iot.  A det a i led d o—
r iva t ion of r2r m c r ~m l Cxm ) res ~ ions for ~~~~~ and D-~, for such a la i m mir mate w i t h  an
a rbr tra ry ev~ im i - ~ ier of idyers is g iv en in ( 13) .  !n vi ew Ut th e Se cons ide ra —
t ioni s , i t  i~ c lea r  t m m d t  fur ’ ar m ar mg le — p ly lam in at e of bi m ’ modulus - a t e r m al  , there
are rio V,jIl m sh n.j phi te s tm  f fnies ~~s

A listing of all of the plate st i f fne sses that vanish for a variety of
lanninatio ni arr angemr ments of both ordinary and binmodulu s composite materials is
presented in T abl e 2.

Table 2. Plate Stiffnesses for Some Popular Lami nation
Arrangements of Ordinary and Bimno du lus Co mposite Materials

Na me of Exa m ple List of Va n ish ing Plate St i f fnesses
Arran gement Laminate Ordi nary t~ater i a l  Bimodu lus Material

1 Aligned sing le 0 or A 16,A2 5,D16,D26, A 16,A 26,816,
ply or aligned 90/90 a l l  B~ . !326 , 0 16, D26
parallel pl y 3

Cross-ply:
2 ~ = odd * 0/90 /0 A 161 A 26 1 D 16, D26 , A 161 A 26 , B 16,

a l l B~ B26,D16,D26

3 = even 0/90 A 16,A ,6,816, A 16,A26,816,
826 , D15, 326 826 , 0 16, 026

Alternating
ang le—ply:

4 ~ = odd 301-30/30 A 16,A 26 , a l l  ~~ None

5 ~T = even 10/— 10 A 161 A 26 , B 11,8 12, None
822 ,D 16, D26

6 SBAP 30/—3 0/-3 0/3 0 A 16 ,A 26 , a l l  B~ None

7 Quasi-isotro p ic 0/-45/ +45/90 A 16, A 26 , D16, D26 None

8 0/+ 6 -30/ 0/30 A 16,A 26 ,8 11,B 12, None
822 ,016,026

9 (0/+ e)~ -30 /30/0/30 / -30 A 16 ,A 26 , a l l  B~ None

The remainder of this discussion is limited to the particular bimodu lus—
material model orig inated by Bert (14 ,15) and known as the symmetric fiber-
governed -compl iance model. This model can be expressed mathe matically as
fol lows :

• 
(ci
) = [S~1~ (o 1} (5)

where the compliance takes on different sets of values as follows :

([s. j(~ o 0
— (6 )

If < 0

Here o
~ 

denotes the fiber stress along its axis.

* The symbol ~ denotes the total number of layers in the laminate.

I. ’ 

— - —  
—, 
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~o i n l  C L I  t the ma ten al “odd ni p i,t~ e theory , we intro duce a third sub—
scr ’ Pt ( k to the Q 1 rm 1 am mo —s tress st ff ,’.~ ma tr x in wh ’ cii k~ , ~ den ote ten—
st or m and co’-~’rLSi omn ~pn ’o’.erti es , reY ct i - ie l y.  Then t~j  ~nvok~irj the ~-,el 1—knownVo i gt ~my n ot ’m e is of uni tor m i ty  of fi ’ n r— , rt ’~~t 1O,m s t ra  ‘i in t i me  f i~ ica rs and
m a t r i x  of e~ch re~pe c t ’ v e  mn i d iv i du i l  layer , onm e ob t ,in s the fo l low i ng  cr i ter ia
for use of t’me ap2r opriat e

-

- (~ J if c ‘ 0
(Q J • ~ 

i j l f~~. 
( 7 )u k  

~[Q ’  ~f C~ < 0

where i~~ denotes the f iber-di rect ion st ra in at any arbitrary point.  The locus
of points at wh ich 0 is traditionally called the neutral surface.

Depending upon the plate geometry , boundary conditions , and loading , even
in the case of a sing le-layer plate , the neutra l surface in genera l is not a
horizontal p tm ane s’jr~ace. Since the properties (Q, 

~
) deoend upon the si gn of

~ 
and the plate stY~

’nesses (A m~ ,B 4 . Djj) upon timê~
’
~ 1,. as in equations (3),

it is clear that in general a birodu~us plate is nonhor~geneous in its plane ,
i .e., the plate sti f~nesses depend upon position (x ,y). It is noted that ,
unlike a p tm ate with linearly tapering thickness , here the plate stiffness in
general is not onl y not a simp le function of position , its functional form is
not even known ~t priori . n this regard , there is a qualitative analogy be-
tween a bini odulu s problem and an elastoplastic problem , for which the elasto—
pla stic boundary is unknown ~ priori .

- 
‘ From the above discussion , it is clear that in order for a finit e element

to be appli cable to any arbitrary combination of planfor mn geometry , boundary
conditions , and loading for a bim ’iodulus laminated plate , it must have a full
array of plate stiffnesses (none zero).

SMALL DEFLEC TIO NS OF THIN , CLA~MPED ELLIPTIC PLATES

In study ing structural mechanics problems involving new classes of mat-
erials , it is often quite instructive to obtain closed-form solutions for cer—

- - tam special cases. Then there are no questions regarding num erical approxi-
mations , convergence , etc. In the case of plates laminated of ordinary mat-
erials , the closed—form solutions due to Kicher (16) for elliptic plates and to
Whitney and Leissa (11) for rectangular plates are most outstanding. Thus , it
was decided to investigate the ap p licability of these forms of solutio ns to
plates laminated of bimn odulus materials.

Kicher ’ s solution (16) is the cl osed-form solution for a uniformly-loaded ,
clamped-edge elli pti c plate of cross-p ly construction with an even number of
layers (Case 3 in Table 2) .  The form of this solut ion is

u u ~1 — (x/a)2 — (y/b)2~(x/a) ; v = v Cl — (x/a)2 — (y/b)2](y/b)
2 (8)

w w0[1 — (x/a)2 — (y/b)2J

Here the d i so ’acement coeffic ients are readily determi ned by direct substitution
into governing equations ( 1) .

- 
In view of the Kirchhoff hypothesis , upon which the present theory Is

based, the ~-d ’ rect ion normal strain at any arbitrary location (x ,y,z) is

C 1 = U , — ZW Ixx
Thus, if one sets 

~1 = 0 and solves for z, one obtains the neutral surface
position 2 nx associated with the norma l strain in the x direction . It can
readil y be shown that when this procedure is applied to the Kicher displacen’ents ,
equations (‘3), the resulting expression for ~~ is independen t of x and y. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~IitS n’rians that for t h is particular prob leim i , time p late s t i f fnes se s  are uniform
t roucm ’mC ~~t t i e  p la te  surf ace of a s i n g le— layer  bi”m~ulus p la t e  urovi dc d that
t i e  fm :e r s  a ’ e  a l i gned in t i me x dire cti on. (A s i i lar  conc lusion Ca r l be reache d
for am md t u s  , a sing le—layer bimodulu s plate wit h the f i be rs  in the y
d i rec t m omm .

For the single - layer plate , it can be shown (8) that the p late s t i f fne s ses
depend upon Z ( z ~/h) in the fol low ing mar iner:

A~~/h = + Q . . 2 ) + 

~~~~ 
- Q~J1

)Z

B~~/h2 = ( l/ 8 ) ( Q~~1 — 0ij2 ~ 
+ (Q 1~ 2 

— Q 1~ 1 ) (Z?/2) (10)

D~~/h3 = (l/24)(Q 1~ 1 + 
~~~~ 

+ 
~~ij2 

— Q 1, 1 (Z 13)

The only thing remaining is the determ im inat ion of the neutral—surface loca-
t ion 2 . tn principle , an equation in Z can be obtained by coni’bining equations
(10) with the expression for u9/w0 as required by solution of equations (1).
Althou gh the resulting express ion is onl y cubic in Z , the al gebra ic structure
of the expressions for the coefficients of the cubic is so lengthy that it ‘was
found to be more expedient cemi mpetation al ly to obtain Z by direct iteration .
From physical cons iderati ons , onl y one uni que solution for 2 is meaningful
(i .e. real , w ith Zk 1/2). In (3), nummmerical results were presented for a
composite nmaterial with considerable bim nodulus action , namel y aramnid-cord/
rubber which has the properties listed in Table 3, taken fron exoerimental data
of Patel et al. (17). The exact binno du lu s results were compared with those
obtained by ordinary theory using average properties. The necess ity of us i ng
bimodu lus theory is clearly demonstrated as shown in Fi gures 1 an d 2,

Table 3. Binmodulus Properties of Aramid Tire-Cord /Rubber
Composite , Reduced from Experimental Data in (17)

L Property ~Unit s Tension Comoression l
Major Young ’ s modulus MPa 3 ,580 12. 0
Transverse Young ’ s modulus MPa ‘ 9.09 12 .0
Inplane shear modulus MPa 3.70 3. 70

(3.83 ) (3. 83)
Major in—plane Poisson ’s ratio — 0.416 0.205
Minor in—plane Poisson ’ s ratio~ — 0 .0l 1O5~ 0. 205

In view of the nature of Cases 2 and 3 in  Table 2 , one would ex pect the
Kicher displacement functions to be appl icable to an arbitrary cross-ply plate
of bimodulus material.  In (18), this is shown to be true and it is imp lemimented
for the “most unsyrtmetric ” layer , namely the case of n2. In this case ,
equations (10) are replaced by -

A
d
/h = (l/2)(Q

~~ii
-
~ 
Q1~zz) 

+ (Q
~j2i 

— Q
~~

ii)Z
~ 

+ (Q j j 2 2  — Q i i l 2 )z y

B~~/h2 (1/8)(Q1~ ii — Q
~J22 ) 

+ (Q.~ 2i — Q~~ii)(Z~/2) + (Q j j 2 2  Q~~12)(Z~/2)

D1,~/h3 = (1/24)(Q 1~ ii + Q j~~22) 
+ (Qij21 — Qiju)(2~

/3) + (Q 1~~22 —

(11)

Here the last subscript L In stiffnesses Qj~kL denotes the layer number (either
layer 1 or 2) and the ijk subscripts have t~e san e mean ing as before .

In the case of cross- o l y laminates , the elast ic properties used for the
l ayers havin g the fibers oriented in the x direct ion are deternmined by the x-
direction neutral surface, while those for the other layers are deter~mm n e d by
the y—di re c t io n neutral sur face. Thus , to a certa in extent a two-layer cross-

-~~ - -~~ -~~~~~~~~ - - ~~~~~~~~~~~~ ~~~~~ 
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Fig. 2 Maximum deflection vs. p late aapec r ratio
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modulu s iolu tions for fibers parallel (0°)
and perp endicular (90°) to the x axis.
Da~~cd Line represents 0 0 case based on
average of tension and compression properties.
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p ly binmodu lus lam’ii nate is l ike a four-layer , cross-ply ordinary lanm in ate (with
un de te rm mn me d indi vidual layer t h i cknesse s ) .  Thus , there a r i ses  a question as
to ttm me proper ord e r o t ime t e n s i l e  an d cor mp ress iv e  r ec m ions.  T o determ i ne time
correct order , the fo l lowing cr i ter ia were used in ( 18 ) :

1 . For bendin cn—o roducing loadings , the neutral surface s to which the
iteration rrocedur e leads n:ust lie within the plate thickness , i .e. 

—

‘ 1/2 .
2. Tim~ rnaxii ”umn p late def lect ion must be in the same direction as the

normal-press ure loading.

In the case of an aramid/ rubber plate , it was found th~.t an order ofstr ess -s ta te  tension T or co mpression C ( l i s t ed  fro ii m too to bot tom) of C/ T/T / C
resulted in a negative mn ax in ’ui mm deflection (uoward for a downward pressure),
while an order of C/T/C/T met both of the criteria listed above and thuS was
j udged to be the correct solut ion. On the other hand , for the case of a poly-
e ster/rubber plate , it was found that C/T / C/T resulted in a neutra l  surface
ly ing outside of t~e plate , wh i le C/T/T/ C gave resul ts meeting both of the
abov e cr i ter ia.

In attempting to find a closed—form solution for an ang tm e—p l y bimnodu las
plate , the second author found a closed-form solution for an arb i t rar i ly  lamin-
ated ordinary laminate (19). However , it did not result in a constant value of
neutral surface and thus , apparently it cannot be extended to a closed-form
solution o the angle- pl y bimodu lus plate . Alternate approaches to this prob-
lem are currently being investigated.

NONLINEAR DEFLECTIONS OF THIN , CLNIPED ELLIPTIC PLATES

The geometrically nonl inear midpl ane strain-displacement relations origin-
atec by von Kar”an were incorporated into thin , laminated , anisot ropic plate
theory by Whitney and Leissa (11), alt hough they did not solve the resulting
nonlinear partial differential equations. Although the Ritz-Ga lerkin and
Rayleigh— Rit z (energy) ~ethods are probably equally oopular , i n (9) i t was
elected to use a serturoation procedure first used for plates by Na s h , Cooley 

~~
)

for clamped , e l l ip t i c  isotropic plates under uniform pressure . The only change
in the procedure is the addit ional i terat ion procedure (necessary to take into
account the bimn odulus stiffnesses ) and the additional elastic constants due
the birnodu lus act ion .

SMALL DEFLECTIONS OF RECTANGULAR PLATES INCLUDIN G
THICKNESS-SHEAR DEFORMATION

It has been demonstrated (21 ) that fiber—reinforced comoosite materials
exhibit  muc h larger thickness shear effects than do plates having t~e same
geometry but constructed of homogene ous , isotropic raterials. The explanation
for t h i s  is due to the relat ively low thickness shear mn oduli relative to the
in-plane nmodu li. The numerous theories incl uding these effects for laminated
an isotropic plates were reviewed in (12), It suffices here to nention that the
two most widely used of these theories are those due to Yang et al. (22) and
Whitne y and Pagano (23). It was shown in (24) that the latter theorjis nmore
accurate.

In (25), the modal shapes used by (26) for free vibration and buckling
ana lyses ~r shea r  defor mab le cross—pl y re ctangular plates are use d to anal yze
the s t a t i c  de Flec tion of similar plates constructed of bin iodulu s co~”~os ite
mater ia l s  and subjected to a sinusoid ally distributed nor nal pressure . Again ,
as in the case of the elliptic plate problem discussed in the preceding
sect i on , the two cr i ter ia for constancy of the neutral -surface nosition are
sa t i s f i ed ,  and thus the solut ions are exact , closed-for m so lu t ions.  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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F !NITE-ELE~ EN T FOQN ’ULAT IO~ FOR PLA~~S INCL’JD ING
TRAN SVEP~ E S L tc G[rOR,~T : c :

While considerab le effort has bee nm expended in n t’ e ~imm ~ te -e le” -e nt  analysis
of isotro pic p l a tes , onl y l imi ted i nv es t i oa t i ~-n s o~ l a m i n a t~ e a rm ~ sotropi c
plates can he found in the l i te ra ture . Pryor and !3arker ( 2 7 ) ,  and Oa r ke r , Lin
and Dara (2~m ) used the conventiona l di so1~ c~~’ e r m t f i n i t e — & e ent ‘ e ~~od to a r i a —
lyze thick l a munm a t ~d pla tes. The element has seven dcir~us o~ fre~ c ci m (three
disp lace rents , two ro t a t io nms , and two She ar ro ta t ions )  per node. E~o lo it ~ng
t ime symmm’etr ies exhib i ted by an isotropic p la tes , Noar and ‘a t h ers  (29-31) st~ d~ed
the e f f ects of shear defor mation and anisotropy on the accuracy and ccjr ve r~ o”ce
of several shear-~ iexib le displace m ent finite —ele ment no dels base c on a for-fl of
Reissner ’ s p late theory . The anal ys is  was limi ted to sy ’~ e t r ica l l y 1 ar ’ m nat ed
cross-p ly plates and the elenment used in volved 80 degrees of reedo oer ele m ent.
The conventional finite element , when applied to relatively tru ck lam inated
plates , either has failed to predict accurately the local deform ations and
stresses of a plate under bending or is too expensive to use due to large de—

~rees of freedom involved for even re la t i ve ly  s imm u ple proble m s. ~au and Witnmer
(32), and Maj , Tong, a nd P i an (33 )  have e m p loyed the s o -ca l l ed  hy br id-st ress
finite-element method to anal yze composite olates including shear deformation.
The hybrid elements have proven (see Gallagher (3d)) to have Some converge nce
p roblems , an d in some cases they g ive erroneous results. Most recently, Pa nda
and Nata rajan (35) used , f o l l o w i ng Mawe nya and Davies (36), the auadrat ic shell
element of Ahrnad , Irons and Zienkie wicz (37) with the same normal rotation
through the thickness to cla im improved accuracy over ‘- aw e nya  and ~avies (36).
The ‘thickness concept mentioned in there is essentiall y the s e e  as that used
in the YNS theory (21). The authors were primarily concer red with tne accuracy
of the element , and~~o attempt was made to solve new pro blems for which there
do nn~ exist  any c l osed-form , or exact so lu t ions.  In an effort to relax the
continuity reauiremrents on the shape funct ions , Reddy (3l) recentl y devised a
simple finite element and success fully tested the closed-form solutions of
Bert and Chen (39). Only investigation that concerns with the finite element
formulations of bi nm odulus materials is due to Crose , et al. (s o ) .  Here ,
following (38), we prese’~t the finite —e lement formulation.

Consider a plate of constant thickness h composed of thin anisotropic
l ayers oriented at angles ~~~ The origin of the coordinate system is
l ocated within the middle plane (x—y) with the i-axis be 4 ng no rm al to the m il d -
plane . The mater ial of each layer is assumed to possess a pla ne of elastic
symnimmetry parallel to the xy—p lane . We shall denote the middle p l ane wit h ~~ .

The YNS theory is based on the following assunmed displacement field:

- u(x ,y) + z~~ (x .y )

= v(x ,y) + z:~ (x ,y) (12)

w = w(x ,y)
where D, 7, and ~ are the displacement co mponents in  the x ,y and i—directions ,
respectively, and v are the in—plane (stretching) displacements of the middle
plane , and 

~ 
and 

~~~ 

are the slope functions.

The equat ions of nmoti on associated with the YNS theory are ,

aN, aN c
— +— = O3x ay
aN aN6 ,, 2

-~~~~ - - 
j
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~~
—~~

+ -
~~~~ Q = O  (1 3)Dx ~y x

S

~~~r3 7
— + — — -

~
- - Q 0Dx Dy y

u-h e’- t p = p(x ,y ) is t ime t ran sverse m y d~ st r ibuted load , and N. , ‘, , Q , and Q
are the stress resul ta n ts per u m m i t  lengt h , 1 X Y

rh/2 1h/2
= 

x~
0y~

txy)~~ ~~~ 
= xz~~yz~ uZ (14)

—h/2 —h/2

~h/2(M 1, M 2 , M 6 ) = (o x~
oy~

T xy
)Z dZ (15)

— lm /2

A thin ortho trop ic ~-at er ia l with provision for a shift of the neutral sur-
face (due to di fferent properties in tension and compression) has the following
plate constitutive relations: 

-

I Nil [A u A 12 0 0 A1 6 ~~ 812 B161 

{

u ,~

I N 2 A 2 A- . 2 0 0 A 26 812 822 B21 ~~

Q~i 0 0 A~~~~A~ 5 O 0 0 O 1 . W~y +~
)y

0 0 A~ 5 A 55 O 0 0 0 ~W , +~~) I
X X X 

~, k =l  or 2 ( 16 )
A i& A 26 0 0 A 66 ~~ 8 26  B66 ~~~ 4

6~~ B 12 0 0 8 16 D 11 D 12 ~~ 
- 

~x ,x

M 2 ~~ ~22 o 0 B26 0 12 022 O 16~ ~y,y

L M G J L6 16 826 0 0 666 D 16 026 O 66~ ~v x ,y +

where the “‘aton al coefficients ~~ 81j and Dii are given by

rh/ 2(A 1~~B 1~~.D1~ ) = Q~ (l ,z,z2)dz , (i ,j= 1 ,2 ,6)

—h /2

=
~~~~ 

Q~~1~dz +~,t J Q~~2~dz (17)

~ere ~~ den ote th~ stiffness coefficients in the plate coordinates of the
Q— th l~t~er in tension (k= ’) or compression (k 2), and Z

~~ 
is the distance from

the nnidsurf ace to the neutral plane (which is unknown a pr ior i).

We assume , over each ele”’ent 
~
1e ’  the sane kind of interpolation for all of

t~’e va riab les ,

~ U
eNe , y e = ‘

~
‘ v C N~ , etc. (n nodes per element) (18)

I i 1 =

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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‘ ar c t o  e le ” e ’ m t  ~nmt er po la t i c ~m (or s i m a pe )  m un m ct i : ’s , ~ uV , a n d  v~ are
t o  r c il nI ~es o~ u’ a ! mc ~ ‘/

‘
~ , ruspoct I volj .  Su bst ’  t - ‘ n c  ( l~ ) in ~O t o  nrs t

- nm ~~ 4 t o  tot~~ pot u’ Li ~l o ’ o ’ j  ussoci ated ,-~~‘ ~ ( 1  
~) and col lect ’ mi’~ the

cco ’’~ cr~ n:s ~1 t o  v ’m ’ra tmon s ( ~u
1 , - v 1 , etc . ) we obt i i n

= (F ’~) (19)

~.-~ ere {~~} = { ( U
e

)
~ ~~e 3 ’  

~~e~~’ 
~~~~~~~~~ { ,-

~~
} ) ,  and K~~ are g iven by

+ A 1 6 ( S ~~ + S~~) + A~ G S~~

K~ = A 1 S~~ + A i6 S~ + A 2~ S~’~ 4-

KU ~~~~ + B l6 ( S~~ + S~~) + B66 S~~

K~ B 12 S~~ + B 16 5~j 
+ 8 25 S~~ + 866 S~

’

K~~ = A 26 ( S~~ + S~~) + A i2S~ + A 66 S7~

KU B i6 S~ + B66 S~~ + B 12 S~~ + 826 S~~

KU = B26(S~~ + S~~) + B 65 S~1 +

= A~ + S~ + c~ S~~ 
4 At~s(S7~ 

-,, S’~ )

KU = ~~~~~ + A 45 G~~ K~~ = A L,5 S~~ + A~1S~~

K~ = D11S~ + D 16(S ~~ + 5~
’) + D66 S~ + A~s S~

= D 12 S~~ + 066 S~~ + D 16 S~ + D25 S~’,~ +

= D26 (S ~J + Sn’) + DGs S~ + Dii S~ + A ssS?~

KU = KU = o . s~ = J ~~~~~~ dxdy , (~ , n 0 ,x ,y)

= 
J e  

p N1 dxdy , F~ F~ F~ = F~ = 0 (2 1)

The element s t i f fness matrices are assembled in the usual manner , and
boundary conditions of the problem are i r’posed before solving for { ‘ } .  in the
present 5tudy , the f~au r-node q~adri lat eral e l e c remmt of the seren depi ty f a i  ly
is used . The e lemmment s t i f fness matrices for this element is of order 20x20 .

Figure 3 shows the influence of the aspect ratio (b/a) and side-to-t h ick-
ness ratio (a/h) on the location of neutra l surfaces for a sing le-i 3/ e r , is o—
troo ic, bimodu lus , s imply supoorted rectangular p la te  subjected to sir u soi cal
loading,

p = P
0 si n(’.x/a) sin(mn y/b)

The following elastic properties are used:

E~ 1 3.584 GPa , E?1 1.792 GPa , E~2 E~~ , E~ 2 E~ 1

G 12 0 12 — 1.27 OPa • “ ' 12 — “2 1 0.4 , “12 — v 21  — 0. 2
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Fig. 3 Neutral—surface location vs. plate aspect ratio ,
and side —to— thickness ratio for single -layered
rectangular plate under sinusoidal loading .

z /h _________________________________________________ hnx , zny/

0.6 - .07
Two-layer cross-ply

0.5 
Zny

•______\~
,__
~,,
,_D -I .05

o_ __0__
~~~

77
~~

0 / 0 0

0.4 ~ 7’ ~ 
,j .03

nx

0.3 ‘ 1 .01
b/a — 0. 4 0.8 1.2 1.6 2.0

Fi g. 4 Neutral—surface location vs.  plate as pect ratio
for two-layer , cross-ply (00/90e) square plate
under sinusoidal loading .

Note that for b/a = 1 , the neutral surfaces associated with ~~- and y—directions
coincide (I.e., Znx = Zny ).

Similar results are presented in Fi gures 4 and 5 for a two—laye r , cross-ply
(0°/90°~ . rectangu lar p la te  under s inusoidal  loading. The bi nn odu lus properties
used are the same as those l is ted in Table 3. Note from Fig. 4 that the
ne ’jtral_ sur~ac e location , z

~,< is v i r tual ly unchanged for aspect rat io greater
than 1 , w hi l e the neutral-surface location , ~~ increases proportional to the
aspect ralo . It Should also be noted that the neutral surfaces do not coincide
in tne cross—p l y case for b/a 1 .

Fi gure 6 the.is the in f luen ce o the aspect  rat~o , and s ide- to- th ickness
ratio c- n t~e transverse deflection for sin g l e— 1 ayer , and two-layer cross-pl y
pn -c5le ~ d~sc’ussed above. T ie effect o~ thickness on the de flection is more

t a n  t ’ m e ~~-~ ct of time is noc t  ra t io .

L - ,
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Fig. 5 ‘~eutra 1—su rface loc atr on vs. side-to ~ t,’c~ ’ro ss
ratio ~or tuao— ’aye’- , cross— ol y (00 / 0 0 0 )  r o c t —
angular p la te  u’ m Ler s ’ nu so i4a l  load~ng.

C 0N CL UD ~~0 ~E”i 0KS

A theory of p la te  be r d i ’ m 7 ~or la- m a ted , a n i s t m o i l c  b’n’odu l us ~‘ater~ais

~~re p rese’ t~~. Thrs t’eo ’y -s base d o n t ” e ‘‘uer-ou -,nr ’ ed sy r ’  etr’c cor~ol~ a nce
~ocel for 5’’odu lus “ater ’aT s.

C’osed- ’o’-~ 3mi cj 1”’tr - e1 e’”ent so ’utio n s ~‘a , e  beer o res e r t e d  ~~ s&ected
o rob l e ’ s  invol~~rn g di~ ’erent p u to  ceo - - v t r ’ c s , le’- ’ ” it ~cn ~rr a r o e ” n ’ t s
bo u”dary condi t b ’  s , vo: - out  a nd ~~

‘ t’ th~ckness-s e~ r ce o” --at ’on .

It ~as shown th at ever ~~r s e — a ~~ r b n ” o ~~i u s  o ’ a: es , Y e  r eu t r a l _ s ~~r_
face ‘ocat ’or - o j  v a r y  cons’~’n’~~ ’j  rc Y e  vec ~t ’ ’c  n~~o ’ a r e , :onerdinq upon
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tm ~n dcgre~ nf hi c r i l r m t y . A l so ,  the pl ate def lect ion is s i~ r iu i ca nt ly
a f f e c t e o y t im e c ,~~Cn ll uS ucti 0mm .
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