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The ESR spectra of Mn_ in naturally and laboratory shocked calcite

crystals and coral core samples were studied and variations in several spec-
tral parameters were found to be correlative with shock pressure. The amount
of splitting in the central transition hyperfine component peaks was observed
to decrease in the upper levels of the Cactus Crater core and in core samples
shocked in the laboratory to progressively higher pressures. A comparison of
the splitting amplitude between the two types of samples allows pressure
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- 5m. Unshocked coral core samples showed no splitting amplitude variation
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the Miser's Bluff TNT experiment are generally inconsistent. Laboratory
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splitting but at pressure levels three times greater than those producing
comparable coral sample spectra. The decrease in peak splitting is interpreted
to reflect small increases in cation-anion distances produced by mechanical
energy input during the shock process. Another parameter, the non-central to
central transition peak amplitude, is observed to decrease with increasing
pressure in spectra of single crystal calcite, and may provide a means of
empirically correlating very low (-4.5 GPa) shock pressure levels in calcite.
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INTRODUCTLON

OQur investigations over the last six months have concentrated almost
exclusively on the re-examination and refinement of the electron spin resonance
technique as a means of detecting and placing quantitative pressure limits on
shocked carbonate materials.

An extensive series of analyses on naturally and laboratory shocked and
on unshocked samples of both single crystal calcite and mixed phase (calcite
plus aragonite) coralline materials have verified some of our previously re-
ported results (Vizgirda and Ahrens, 1977). Specifically, several spectral
features, related to the amount of crystal field splitting in divalent manga-
nese, a common trace element in calcite, show consistent variacions with shock
pressure.

Previously reported variations in the amplitude of the radiation damage
center peaks are no longer believed to be caused by shock induced annealing.
Control samples from an unshocked core (XRU-3) produced a radiation damage
center amplitude trend similar to that observed in the Cactus Crater core
(below the contaminated uppermost levels), i.c¢., a slight increase in the
deeper core levels. Consequently, it is concluded that the observed amplitude
increase with depth is caused by greater numbers of defects (hole centers and
QOK‘ 238

electron centers) produced by radiation from elements such as “7"U and

232, ; : -
Th, and, hence, merely represents the increasing age of the deeper core
rock. (A similar age variation has been observed in a stalacite by M. lkeya,

1975.) A low pressure shock history does not appear capable of modifying this

figure to any great extent.

EXPERIMENTAL

(3

All spectra were recorded at X-band frequencies (9.1 » 9.5 GHZ) on a
Varian V-4500 spectrometer.* Room temperature second derivative spectra were

recorded at modulation amplitudes ranging from 5 to 0.63 gauss to investigate

*The spectrometer used in this study is a facility of the Noyes Laboratory,
CIT. Previous spectra were recorded by F. Tsay at the Jet Propulsion Lab.

In comparing the two sets of data, allowance must be made for the instrumental
difference.
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the dependancy of crystal field splitting on this parameter. Peak splitting
remained constant at low modulation levels (0.63G » 1.6G) and increased at
higher amplitudes; a modulation amplitude of 1 gauss provided an optimum
signal to noise ratio in most cases and 907 of the measured spectra were re-
corded at this setting.

Most samples of Eniwetok core limestone were hand friable or easily
fractured and could be directly placed into 4mm diameter ESR quartz tubes.
Several samples required grinding with mortar and pestle, but there was no
correlation between the amount of grinding needed and the crystal field split-
ting amplitude. The single crystal calcite samples readily fractured and

required minimum handling.

RESULTS

All 16 samples of Cactus Crater core were re-analyzed using the CIT
spectrometer. Values of the hyperfine component peak splittings were consist-
ently 5 gauss lower than previously recorded values; however, the trend of
reduced splitting values in upper core level samples is verified upon re-
examination. For three of the samples, several aliquots were prepared and the
spectra measured; in all cases, splitting values for the various aliquots of
the same sample agreed to within less than 0.5 gauss. From the topmost
Cactus sample (8.1 meters), a fine pebble conglomerate, aliquots of both the
very fine grained matrix material and the clasts were analyzed; the clasts
(coral fragments) showed no resolveable Mn++ signal, and the reported spectrum
for this sample is of the matrix material.

Consistent variations in spectral features from the top to the bottom of
the core can be observed in Fig. 1. (The spectra were taken at a uniform 1
gauss modulation amplitude, therefore line shapes can be directly compared.)
he lowest field Hn++ hyperfine component (the left-hand arrow in the figure)
is observed as a single peak in the 8.1, 11.8 and 12.2 meter samples; below
this depth it is clearly split into two sub-peaks and this splitting is in-
creasingly well-defined in lower core samples. The highest field hyperfine
component (right-hand arrow in figure) remains split throughout the extent of

the core, but the amplitude of the splitting decreases approximately 30% from

the bottom to the top. In addition, the highest field hyperfine peak displays
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a more complex substructure; the lower field "sub-peak'" of this component is

observed to be further split in the three upper core samples. The amplitude

of this splitting is 4.5 + 0.5 gauss in the 8.1 and 11.8 meter and 3 *+ 0.5 gauss
in the 12.2 meter samples; no such small scale splitting is observed in other
XC-1 samples. Splitting (large scale) is, in fact, observed in all 6 hyperfine
peaks in samples taken from below 12.2 meters. For the 12.2 m sample, however,
splitting can be resolved for only the 3 upper field components. The highest
field hyperfine peak shows splitting for all samples; the amount of this split-
ting has been measured and the results are plotted in Fig. 2. The equation for
the power curve fit for the XC-1 data is:

HPS = 8.074°° 16 (1)

where HPS is the highest field Mn++ hyperfine peak splitting, measured in gauss,
and d is core depth in meters; the correlation coefficient, rz, s 0,85,

Coral core samples shock-loaded in the laboratory at pressures up to
3.3 GPa have also been re-examined; resolveable spectra have been obtained for
only three samples and these are reproduced in Fig. 3. Note the similarity in
the spectra of the 2.0 GPa laboratory shocked coral and the XC-1 12.2 meter
sample; in both cases, only the three high field hyperfine peaks are resolveably
split, and the measured amplitude of splitting of the highest field component
is 12 + 0.5 gauss. The two sub-peaks of the highest field component are some-
what difficult to isolate in the 3.3 GPa shocked sample spectrum, but slightly
higher modulation traces give a reading of 11 * 2 gauss. Results from these
experimentally shocked samples are superimposed on the power curve fit to XC-1
data in Fig. 2. Uncertainties in assignment of pressure levels to certain
depths were determined by calculating the standard deviation of the XC-1 data
residuals.

Eight samples from the XRU-3 core were analyzed and measurements made on
the splitting in the highest field hyperfine component. The results are
plotted in Fig. 4. No trend is observed in the data; in particular, the upper
core levels do not show any decrease in the amount of splitting. A least

squares fit line to the data provides the relationship:

HPS

-0.008d + 14.42 (2)
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The XRU~3 data (together with the experimentally shocked samples) substantiates

the observed splitting variation in the XC-1 core as a shock deformation

feature and not a reflection of trends in lithology, cementation, compaction,

etc.

Miser's Bluff Samples

6 calcite and 6 coral, shocked in the

ESR spectra of twelve samples,

Miser's Bluff TNT blast of December 1977 were obtained and measured. Six

cylindrical sample assemblies were emplaced in two different holes in alluvium.

As discussed below these appear to not have been dynamically loaded in a very

uniform or monotonic manner. This is probably a consequence of inherent local

inhomogeneities in the environment.

Results for the coral samples do not entirely agree with the calculated

experimental pressures. On the basis of the onsct and progression of splitting

ranked, in order of decreasing shock effect, as follows: cylinders #2, #3, #1,

#4, *5 and f{#6. The calculated pressures for these cylinders (in that order)

are .3, 0.03, 1.0, 0.5, 0.1 and 0.005 GPa. Hyperfine peak splitting amplitudes

follow a bimodal distribution; samples from cylinders #2, #3 and #1 show a

11 te 12 gauss, while those from #4 and #6 show values of 15 and

splitting of

The spectra for sample #5 shows very well defined peaks and

14.5 respectively.

the splitting ampli-

generally resembles unshocked crystalline calcite spectra;

tude of the highest field peak is 9.75 gauss. The anomalous absorption in this

spectra may represent one orientation of a large single crystal of calcite

e

dominating the average powder pattern. ‘hus except for sample #5, the two types

of ESR criteria ("qualitative" and measured splitting) divide the samples into

cylinders #2, #3 and #1, and

a definitely shock affected group consisting of

cylinders #4, #5 and #6 whose coral samples show little or no shock damage.

Curiously, these two clusters correspond to the two holes in which the cylinders

were emplaced. Direct comparison with laboratory data is possible in only one

case; spectra from coral sample #3 resembles that of coral laboratory shocked

to 2.0 GPa levels.

Measured hyperfine peak splitting values for the Iceland spar calcite

samples shocked in the Miser's Bluff blast are all very similar and fall in

)

the "unshocked range' of 14.25 to 15 gauss. In order to investigate other

10




spectral features which may be sensitive to shock pressure levels lower than
those necessary for annihilating splitting of hyperfine component peaks, un-
shocked and laboratory shocked calcite samples were analyzed. These features
are labeled on a spectrum of unshocked Iceland spar in Fig. 5. The 6 most
prominent peaks are the hyperfine components due to the central spin transition,
Ms = +1/2 Sy ok ‘\m] = 0. (It is variations in these features we have been
considering up to now.) Absorption peaks due to non-central spin transitions
are indicated on the high and low field ends of the spectrum. Another set of
absorption lines in the central portion of the spectrum are those corresponding
to forbidden transitions, Mq = +1/2 s _l/_" f\ml = & I,

Four spectra of experimentally shocked single crystal calcite are re-
produced in Fig. 6. Absorption peaks due to non-central transitions are
indicated by arrows on the top spectra. The amplitude of these peaks has de-
creased significantly in the sample shocked to 3.5 GPa and has completely
disappeared in the 5.5 GPa sample. Note also that, even in the highest shocked
sample (6.5 GPa) splitting is evident in all 6 central transition hyperfine
peaks.

Three of the Miser's Bluff shocked calcite spectra are shown in Fig. 7.

All show clearly resolved splitting in the central transition hyperfine peaks.
However, shock deformation is indicated by the reduced amplitude of the non-
central transition peaks, particularly in the highest shocked sample (cylinder
#1). Looking at the ratio of non-central to central transition peak amplitudes,
the calcite samples can be grouped into those showing reduced ratios indicative
of shock detormation, cylinders 1, 2 and 3, and those with approximately constant
ratios comparable to unshocked Iceland spar, cylinders 4, 5 and 6. C(learly,

the Miser's Bluff sample spectra all indicate shock deformation levels signifi-
cantly less than 3.5 GPa; however, not enough samples experimentally shocked in

the 0.5 » 2.0 GPa range are available to more precisely quantify deformation

levels.
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DISCUSSION

In the discussion of both Eniwetok core and Miser's Bluff sample results,
variations with shock pressure were observed in two spectral parameters, i.e.,
in the amount of splitting in the Mn++ central transition hyperfine component
peaks, and in the non-central to central transition peak amplitude ratios.

The first of these features, the splitting amplitude is due to absorption
at two extreme resonance positions, occurring at = 45° (high field peak) and

= 90" (low field peak), for each hyperfine component. The transition energy

term describing the amplitude of the separation (in gauss) is:

)
2 75 1‘\[)“!"l

il » g - e (3)

—
re

Where D (gauss) is the crystal field splitting parameter, A (gauss) is
the hyperfine coupling constant, H (gauss) is the magnetic field corresponding
to an unshifted resonance line, © is the Bohr magneton, g is the (isotropic)

spectroscopic splitting factor, and m_  the nuclear spin of Mn (Tsay et al.,

I
1977). Since the ml dependent term in Eq. 3 will change sign in going from the
low-field to the high-field side of the spectrum, the amount of splitting
increases in the higher field hyperfine peaks. Our observations are consistent
with theoretical variations; the decrease (and eventual disappearance) of
splitting in the lowest field hyperfine peak is invariably linked to a similar
decrease in the highest tield peak.

According to electrostatic theory, the crystal field splitting parameter
is approximately proportional to the inverse of the fifth power of the cation-
anion distance (Orgel, 1957); this inverse relationship has been veritfied in
an ESR investigation of forsterite (Rager, 1977). The following can thus be
concluded from our observations of decreasing crystal field splitting parameters:
recovery from increasing shock pressure has the effect of, on the average, in-
creasing the cation-anion distance in the calcite lattice. This increase can-
not at present be quantified, but is probably of the order of thousandths of
angstroms. A similar in rease in lattice parameter with shock deformation has
been reported by Chao, 1968 in heavily shocked quartz from the Ries Crater in

Germany, using X-ray techniques.

e ————————
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Thus, it is possible that what thc ESR method is detecting in shocked
carbonate samples is a very slight enlargement of the unit cell resulting from
input of mechanical energy in the shock and rarefaction process.

The second observation, that is the decrease in non-central to central
transition peak amplitudes with increasing pressure, is not readily understood
on theoretical grounds, but has been observed by other workers (Gager et al.,
1964).

A curious aspect encountered in investigation of the Miser's Bluff samples
is the difference in results between the calcite and the mixed phase coral
samples. The latter clearly showed a shock effect as measured by the decreased
splitting of the highest field hyperfine peak. The calcite samples, on the
other hand, showed a constant amount of splitting; however laboratory samples
shocked to higher pressure levels than those in the Miser's Bluff blast did
show a measureable decrease in this splitting. Thus, it appears that mixed
phase carbonate materials are more readily deformed at a given stress level, by
the shock process than single crystal calcite.

High precision level X-ray powder diffraction studies are being undertaken
to see if there has been any change in the lattice parameters of the Miser's

Bluff calcite and aragonite samples.

16
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