

L. will MOST Project - V NE 199201 UNCLASSIFIED SUBTASK 15 PROBLEM NEL F technical i nemorand HH 10. 21-237 10 6, April 1 14 NEL - TM - 237 AD A U 71348 -----TTOAL TO title TARGET POONED LOBAD ZONES Joy-Lait 110 2233 utbor code Theoretical Time Resolution of Sound Energy Returns from a Target in the First and Second Lorad Zones, ment contains information affecting the national defense es within me meaning of the Espionage Laws, Title 193 and 194. The transmission of the revelation of U.S.C. the in the problem of a unauthorized person, is prohibited by law. aration of other Department of Defense Publications. It is forbidden to make extracts for any other purpose without the specific approval of the Chief of the Bureau of Ships, except as provided for in the U.S. Navy Security Manual for Classified Matter. DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited U. S. Navy Electronics Laboratory, San Diego 52, California The opinions expressed herein are those of the author(s) and are not necessarily the official views of the Navy Electronics Laboratory. If cited in the scientific literature, this document should be described as an unpublished memorandum. 4190665-57 ASSIFIED 253 550

UNCLASSIFIED

Theoretical Time Resolution of Sound Energy Returns from a Target in the First and Second LORAD Zones

by

Alice Joy-Keith

Preface

This memorandum describes results using a method developed by the author and M. A. Pedersen in work on underwater sound propagation. This memorandum has been prepared because the information herein is believed to be useful in this form to others in NEL and to a few persons or activities outside of NEL. This memorandum should not be construed as a report as its only function is to present for the information of others a small portion of the work which was done on NEL Problem L1-5.

	ACCESSION for		7
	NTIS OBC UNANNOUNCED JUSTIFICATOR JEAN TON/AT DISTRIBUTION/AT Blet. AVAIL	White Section Buff Section AriLABILITY CODI L and/or SPECI/	
l	<u>H</u>		
UNCLA	SSIFIED		

2.3

Table of Contents

Methods and Results for a Target at 100-Foot Depth Procedure for Use of Figures 1 and 2 Results for Target at 1000-Foot Depth Results for 100-Foot Target in Second Zone Conclusions 1. Round-Trip Travel-Time Differences in Milliseconds vs. Range in nautical miles for Sound Energy from a Source 50-Feet Deep to and from a Target 100 feet deep in the First LORAD Zone.

UNCLASS

- Relative Intensity of Sound in the First LORAD Zone along each of 8 paths from a 50-foot Source to a 100-foot receiver. I/F is the Ratio of Intensity at the Zone to that 1 yard from the Source.
- 3. Round-Trip Travel-Time Difference in milliseconds vs. Range in nautical miles for Sound Energy from a Source 50 feet deep to and from a Target 1000 feet deep in the First LORAD Zone.
- 4. Relative Intensity of Sound in the First LORAD Zone along each of 8 paths from a 50-foot Source to a 1000-foot receiver. I/F is the Ratio of Intensity at the Zone to that 1 yard from the Source.
- 5. Round-Trip Travel-Time Difference in milliseconds vs. Range in nautical miles for Sound Energy from a Source 50 feet deep to and from a Target 100 feet deep in the Second LORAD Zone.
- 6. Relative Intensity of Sound in the Second LORAD Zone along each of 8 paths from a 50-foot Source to a 100-foot receiver. I/F is the Ratio of Intensity at the Zone to that 1 yard from the Source.

Tables

- I. Signal strength to be expected with sonar of 1.6 yds (2millisecond) resolution. Source 50 feet deep, target 100 feet deep in first convergence zone.
- II. Signal strength to be expected with sonar of 1.6 yds (2millisecond) resolution. Source 50 feet deep, target 1000 feet deep in first LORAD convergence zone.
- III. Signal strength to be expected with sonar of 1.6 yds (2millisecond) resolution. Source 50 feet deep, target 100 feet deep in second convergence zone.
- IV. Signal strength to be expected with sonar of 16 yds (20millisecond) resolution. Source 50-feet deep, target 100 feet deep in second convergence zone.

UNCLADSIFIED

Method and Results for Target at 100-foot Depth

^S In connection with a report on underwater sound propagation⁴, 1. M. A. Pedersen and Alice Joy-Keith, "Comparison of Experimental and Theoretical Sound Intensities for Convergence Zone Transmission in 3100 fathom Water", NEL Report <u>738</u>, 1956 (Confidential).

several studies were made of the relative travel-times required for refracted rays of sound from a 50-foot source to reach a given point receiver. These follow at least four possible paths: (1) up from the source to a reflection at the surface, thence down to the ocean depths and refracted up to be surface-reflected to a receiver; (2) a similar ray of slightly different angle caught by the receiver on its way up, before this second surface-reflection; (3) down from the source to the depths and refracted back to the receiver before, or (4) after, reflection at the surface near the receiver. Other similar groups of four will be mentioned later.

) The phase differences of such arrivals were studied over the range of the first zone for a 50-foot source and a 100-foot receiver. This led to a further study, the results of which are presented here in a technical memorandum as being perhaps timely to investigations in signal processing for LORAD and in neighboring fields.

It was assumed that the sound rays above referred to impinge upon, not a receiver, but a small scattering target, located in the first convergence zone, each impingement constituting, then, a new source from which the sound energy would return, by four differ-

ent paths, to the original source.

One speaks of 4 ray paths. There are, for most ranges, in fact, 8 paths, due to the phenomenon of "caustics". As the inclination angle at which a ray leaves a shallow source increases from that of the ray grazing the lower boundary of the surface channel, the range at which it next appears at the surface decreases at first to a minimum value at the caustic, then increases; so that in general there are at a given range 8 arrivals of sound, from rays which leave the source at 4 smaller and 4 larger angles respectively.

Each of these 8 arrivals striking the target may, then, give rise to 8 rays returning by similar paths to the source, giving in general 64 routes by which sound may make the round trip. In considering the travel-time required for each of these 64 round trips, one finds reciprocal paths with identical in figure 1 travel-times, as A_1C_3 and $C_3A_1/$. There are 26 such pairs. The other 8 paths are unique, as A_1A_1 , C_3C_3 . Thus there will be 28 + 8 or 36 distinct times of arrival for an echo.

The travel times for each of the 36 possible arrivals back at the source were calculated for the ranges to a target somewhere in the first convergence annulus, i.e., between 32 and 35 miles from the source. The <u>differences</u> in travel-time were found to be of the order of 10 milliseconds or one tenthousandth of the actual travel-time. So a plot was made, <u>travel-time difference</u> vs range, figure 1, using the travel

2.

times of the fastest ray as datum line and plotting differences from this line.

To consider the relative intensities of these arrivals, reference was made to the <u>intensity</u> vs <u>range</u> plots from the NEL report above cited. The appropriate plot is reproduced here as figure 2.

With these two figures, then, it was possible to determine for any chosen range of target within the first zone what portion of the total energy carried via the 64 routes could be received by a system of any chosen range-resolution. For example, for a system of about 1.6 yards resolution (2-millisecond pulse) the proportions, expressed in db down from the total, are given in column 2 of table 1.

A system of about 16 yards resolution (20-millisecond pulse) can be seen from figure 1 to receive all the energy from a target in the first half of the zone and an amount less than 3 db down from total in the remainder of the zone.

In both of these systems one notes that entries such as those in column 2 of table I represent losses in the two-way propagation. These same losses will appear as decrements in echo-level if target strength remains constant. There are further questions concerning the effect on echo-to-background ratio, but these can not be discussed here because of their great variety.

Procedure for Use of Fugures 1 and 2

The procedure for making these comparisons is as follows: In figure 1, at any chosen range, say 33.25 miles, a group of

3

COTTIDENTIAL

lines clustering within a 2-millisec-travel-time interval estimated to have the greatest density (say the group between 15 and 17 ms) is spotted. Each line in this cluster represents a round-trip route for sound following outgoing and incoming paths identified by the letters and subscripts printed at the end of the line, arriving by echo from a 33.25-mile target within a 2-millisecond interval for the whole cluster.

These paths may be identified by their letters A_i , C_i , on the intensity-vs-range chart, figure 2, in which points B_1 to B_4 simply identify caustic ranges and may be disregarded. The intensities as there read, multiplied together, give the intensity of the arrival back at the source. It is then necessary to sum these products, remembering to double all except those where outgoing and incoming routes are the same. The ratio of this sum to the similar sum for <u>all</u> lines crossing this 33.25-mile range, expressed db-wise is the figure given in column 2 of table I opposite Range 33.25 miles. In these calculations the intensities have been added assuming a random phase relationship. Phase information was retained in part of the original study (1), but it did not materially affect determination of propagation losses. <u>Results for Target at 1000-ft Depth</u>

An examination of the graphs in the NEL report above cited, from which those of this memorandum are taken, enables one to surmise further conclusions for a shallow source and other depths of target. It can be seen that deepening the target separates the caustics both in range and travel-time difference,

40

reducing the clustering and also reducing the overlapping totals. As a check on such surmises, results were worked out in full detail for a source at the same fifty-foot depth with a target 1000 feet deep. These results are given in figure 3 and 4 and in table II.

Results for Target in Second Zone

In order to permit limited consideration of zones of higher order, the shallow target case has been studied for the second zone. Results drawn from figures 5 and 6, are presented in tables III and IV. Terminations when shown for plotted relative travel-times and intensities in all figures are at the geometric range limits of the rays. Other range limits beyond borders of drawings are indicated by arrows. The presence of only a single ray in a certain range interval indicates two-way spherical divergence.

Conclusions

Considering a 50-foot E/R transducer and a small scattering target in the first or second LORAD zone, the effect of resolution varies in such a way as can best be noted by dividing the zone into thirds. In the third of the zone nearest the source the effect of resolution is negligible. In the middle third the additional propagation loss due to resolution rises to a maximum. In the outer third of the zone, this effect decreases as the convergence decreases. The greatest increase in propagation loss due to resolution in either zone will be 8 or 9 db for 100-foot depth of target and 1.6-yards resolution. It will be about half that much for either a 1000-foot target depth or for a 16-yard resolution at 100 foot depth.

All calculations in this memorandum have neglected possible increases in zone width caused by surface channeling.

CONFIDENTIAL

5.

TABLE I

Signal strength to be expected with sonar of 1.6 yds (2-millisecond) Resolution

Source 50 feet deep, target 100 feet deep in first convergence zone

Range to Target (Nau. mi)	Energy Received to Total Energy (Ratio, db.)	Descriptive Remarks
32.08	0	At first caustic
32.30	0	Between caustics
32.36	~0 。 3	At Second caustic
32.50	∞1.5	Between caustics
32.62	-2.02	At third caustic
32.75	-2.5	Between caustics
32.85	-2.2	At fourth caustic
32.92	4.04	
32.95	~3.4	
33.12	-4.0	
33.16	-3.9	At first drop-out
33.25	~6° 1	
33.54	-7.0	
34.40	8.3	
34. 70	0	Only one arrival remaining
35.51		End of zone.

6.

TABLE II

Signal strength to be expected with sonar of 1.6 yds (2-millisecond) resolution

Source 50 feet deep, target 1000 feet deep in first LORAD Convergence zone

Range to target (Nau. mi.)	Energy received to total energy (Ratio, db down)	Descriptive remarks
27 02	0	At first complia
31.02	0	Botween coustics
31.05	0	it accord coustion omitting it
31.41~	0	At second caustic, onlitting it
31.41*	-0.3	Reference analise
31.50	~1.00	between caustles
31.63	-3.05	As route Al drops out
32.00	-3,20	between caustics
32.26	-3.02	As route A2 drops out
33.00	-3.01	between caustles
33.57-	-2.99	At third caustic, omitting it
33.57+	-1.18	At third caustic, including it
33.74-	-2.50	As route C1 drops out, including it
33.74+	-1.37	As route C1 drops out, omitting it
33.78-	-1.51	At fourth caustic, omitting it
33.78+	-0.96	At fourth caustic, including it
33.84-	-2.65	As route Co drops out, including it
33.84+	-2.03	As route Co drops out, omitting it
34.00	-3.14	After last caustic
34.50	-4.33	After last caustic
35.26-	-3.58	As route Ca drops out, including it
35.26+	-2.94	As route C2 drops out, omitting it
35.35-	-2.73	As route C, drops out, including it
35.35*	-2.05	As route G, drops out, omitting it
36.00	-0.84	Only four routes remaining, one pre-
36.42-	-1,20	As A2 drops out
36-42+	0	One route only remaining, to
37,30		End of zone

1

TABLE III

Signal strength to be expected with sonar of 1.6 yds (2millisecond) resolution

Source 50 feet deep, target 100 feet deep in second convergence zone

Range to target (Nau. mi.)	Energy received to total energy (Ratio, db)	Descriptive Remarks
64,60	0	At first causbic
64.85	-0.5	At second caustic
65.10	-1.6	At third caustic
65.35	-3.1	At fourth caustic
65.50	-4.04	Before dropouts begin
66.00	-4.0	After first dropout
67.35	-6.0	After second dropout
68.15	-8.8	Approximately steady at this value until
69-15	-8.8	Fifth dropout, then loss decrease as number of possible routes diminishes to one at
69.85	0	End of zone.

TABLE IV

Signal strength to be expected with sonar of 16 yards (20-millisecond) Resolution

Source 50 feet deep, target 100 feet deep in second convergence zone

Range to target (Nau. mi)	Energy received to total energy (Ratio, db)	Descriptive Remarks
64.60	0	At first caustic
64.85	0	At second caustic
65.10	0	At third caustic
65.35	0	At fourth caustic
66.15	0	Before dropouts begin
66.70	-0.6	
67.00	-1.2	H II H
67.15	-1.8	11 11 11
67.60	-2.14	After first dropout
68.00	-4.7	Approximately steady at this value until
68.95		Third dropout, then loss decreases as number of possible routes diminishes to one at
69.85	0	End of zone.

CONFIDENTIAL

8.

CONFIDENTIAL 0 CICI CICz ______C_2C2 C1C4 C2C3 10 C3C3 C2C4 C3C4 20 CAC4 TRAVEL - TIME DIFFERENCE (MS.) CIA3 C2A3 C2A4 30 C3A3 C3A4 4A3 40 CAA4 50 A3A3 A3A4 60 L 32 A 34 35 33 RANGE (NAUTICAL MILES) Fig. 1. Round-trip travel-time differences in milliseconds

vs range in nautical miles for sound energy from a source 50 feet deep to and from a target 100 feet deep in the first LORAD zone.

Fig. 2. Relative intensity of sound in the first LORAD zone along each of 8 paths from a 50-foot source to a 100-foot receiver. I/F is the ratio of intensity at the zone to that 1 yard from the source.

2

3

.

)

. Relative intensity of sound in the first LORAD zone along each of 8 paths from a 50-foot source to a 1000-foot receiver. I/F is the ratio of intensity at the zone to that 1 yard from the source.

