

14 REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
BEFORT NUMBER		DN NO. 3. RECIPIENT'S CATALOG NUMBER
HDL-TM-79-3		
TITLE (and Subtitle)	(9 5. TYPE OF REPORT & PERIOD COVERED
Design Study for an AURORA Mo		Technical Memotendum
Leading to a 100-Terawatt Nuclea Radiation Simulator	r weapon	S. PERFORMING ORS. REPORT NUMBER
AUTHOR(a)		S. CONTRACT OF GRANT NUMBER(+)
Alexander G./Stewart		
George A./Huttlin		
PERFORMING ORGANIZATION NAME AND ADDRES	is .	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Harry Diamond Laboratories	-	AREA & WORK UNIT NUMBERS
2800 Powder Mill Road Adelphi, MD 20783		Program Ele: 6.27.10.H
CONTROLLING OFFICE NAME AND ADDRESS		12. PEPOAT BATS
Director Defense Nuclear Agency	()	February 1079
Washington, DC 20305	<u> </u>	20
MONITORING AGENCY NAME & ADDRESS(II dittor	ent from Controlling Of	Ifice) 15. SECURITY CLASS. (of this report)
(12))	10.	UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING
	1 TAN	10/1 upph /
	37 I AX	r/x978
HDL Project: 201721 DRCMS Code: 36AA.7100.62710 This work was sponsored by the De AURORA, work unit 07.	fense Nuclear	Agency under subtask G37IAXYX970
HDL Project: 201721 DRCMS Code: 36AA.7100.62710 This work was sponsored by the De	fense Nuclear	Agency under subtask G37IAXYX970
HDL Project: 201721 DRCMS Code: 36AA.7100.62710 This work was sponsored by the De AURORA, work unit 07. KEY WORDS (Continue on reverse side if necessary High pulsed power High-intensity electron beams Accelerator technology	efense Nuclear and identify by block m converted to pr unce loads. The itensification. The tensification. The merator to inje From the point	Agency under subtask G37IAXYX970
HDL Project: 201721 DRCMS Code: 36AA.7100.62710 This work was sponsored by the De AURORA, work unit 07. KEY WORDS (Continue on reverse side if necessary High pulsed power High-intensity electron beams Accelerator technology AMTRACT (Continue on reverse side if necessary The AURORA machine can be of The AURORA machine can be of The AURORA machine can be of Never level into low impedant novel approach to pulse power in AURORA in differing configurations. charge capability of the AURORA ge into a toroidal oil-filled coaxial line.	and identify by block m and identify by block m converted to pr unce loads. The itensification. A device of tor enerator to inje From the point torus in opposit	Agency under subtask G37IAXYX970

. M

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Ent meet each other at the end of the torus diametrically opposite the injection point. As the electromagnetic waves overlap, that portion of their energy stored in the magnetic field will be transformed into electrostatic energy, and the voltage in this region will double. At some optimum preselected time t^i , where $t^i > t$, the toroidal line is then switched circumferentially into an oil-insulated three-electrode parallel-plate transmission line to the diode load. A transmission-line model for the complete system has been developed and analyzed by computer to determine energy transfer efficiencies and power inputs into a matched ohmic load. It has been determined that peak power levels of 90 TW are achievable in a pulse of 30 ns full width at half maximum. Accession For NTIS GRA&I DDC TAB Unannounced Justification By Distribution/ Availability Codes Avail and/or Dis special UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

CONTENTS

Page

iid

1.	INTI	RODUCTION		
2.	PRINCIPLE OF PULSE COMPRESSION AND IMPEDANCE TRANSFORMATION5			
	2.1 2.2	Application to Geometries Consisting of Right-Angled Coaxial Cylinders Discharginginto Triangular Strip Feed Lines.5Application to Toroidal Geometries6		
		2.2.1 Single-Ended Pulse Injection 6 2.2.2 Double-Ended Pulse Injection 7		
3.	LINES IN CASCADE			
	3.1 3.2	Combination of Straight Coaxial Cylinders with Torus 7 Combination of Straight Coaxial-Cylinder Geometries 8		
4.	4. DETAILED ANALYSIS OF TOROIDAL GEOMETRY FRONT-END CONVERSION AURORA			
	4.1 4.2	Combination of Existing Vacuum Coaxial Lines into Single Coaxial Line		
		4.2.1Torus Dimensions and Determination of Input and Output Impedances4.2.2Transmission-Line Analysis4.2.3Electric Fields in Torus10		
	4.3 4.4 4.5 4.6 4.7	Torus Switch Discharge Characteristics12Design of Strip Wedge Transformer12Prepulse Estimates and Effects13Analysis of Discharge Phase of Torus14Field Emission Diode Design16		
5.	CON	ICLUSIONS		
	DIST	TRIBUTION		

FIGURES

1	Discharge of pulse-charged longitudinal line into strip feed line
2	Pulse injection into torus7
3	Use of low impedance converter modules as torus pulse charge injector7
4	Pulse charging half torus from triangular strip feed line
5	Pulse compression by using three-stage series-connected straight coaxial geometries

3

FIGURES (Cont'd)

6	Junction of AURORA coaxial lines into single coaxial line9
7	Low impedance converter
8	Transmission-line model for charge phase10
9	Overlapping voltage pulses in torus10
10	Voltage profile in torus for 12-MV blumlein charging at time = 350 ns11
11	Statistical area for breakdown in torus11
12	Center electrode of wedge transformer
13	Representative circuit for discharge phase of torus
14	Diode voltage: blumlein stores charged to -12 MV and torus switched at 350 ns15
15	Diode current: blumlein stores charged to -12 MV and torus switched at 350 ns15
16	Power delivered to diode: blumlein stores charged to -12 MV and torus switched at 350 ns. 15
17	Low impedance diode

Page

.

1. INTRODUCTION

The effectiveness of strategic weapons systems depends on their ability to function in a hostile nuclear environment. For some years now, there has been a shift of emphasis away from systems hardening through underground testing toward laboratory testing in specially equipped simulation centers. These centers employ a variety of pulsed-power sources for the production of intense electron beams, electromagnetic waves, and gamma and neutron pulses. While these test facilities have proved invaluable in simulating certain aspects of a warhead's radiation output, there remains a need for a source more closely approximating the outputs of real weapons. One such source could be the radiation emanating from a highly compressed pellet. Recent studies' have shown that a relativistic electron beam with peak powers of 1014 to 1015 W would be required for this purpose, or, alternatively, ion beams at 1012 to 1013 W could accomplish this same goal. Techniques for the efficient conversion of relativistic electron beams to focused ion beams have been investigated by Humphries² and Verdeyen.3 Electron-to-ion conversion efficiencies as high as 50 percent have been reported.

One limitation to the extraction of very intense power pulses from the Harry Diamond Laboratories AURORA generator⁴ in its present form is the rather long discharge time of the blumleins. A second disadvantage is the high internal impedance of these lines (21 Ω), which makes them inefficient for energy transfer to low impedance loads. Studies conducted for the present AURORA Modification Project have shown that it is possible to use the AURORA Marx generator to charge a water-insulated pulse-forming network (PFN) to generate 20 TW. This approach, however, does not seem capable of extension to significantly higher power outputs. The purpose of this study is to demonstrate that it may be possible to extract power outputs closer to the 100-TW level and to operate efficiently into loads near 1 Ω .

2. PRINCIPLE OF PULSE COMPRESSION AND IMPEDANCE TRANSFORMA-TION

The principle of operation of the device is described in detail^s in U.S. Patent 4,003,007, so only the basic ideas are discussed here.

2.1 Application to Geometries Consisting of Right-Angled Coaxial Cylinders Discharging into Triangular Strip Feed Lines

Referring to figure 1, a pulse of duration To is injected into the left-hand side of the center conductor of the coaxial-cylinder element referred to as the longitudinal line. As generally assumed, when the pulse is transmitted into the line and then reflected from the open-circuit end of the line, the line is statically charged all along its length. It is also generally assumed that the length of this line is very much larger than its diameter. A second line, identified as the triangular strip feed line, is attached to the longitudinal line as shown in figure 1. The center conductor of the feed line is separated from the center conductor of the longitudinal line so that, during the charging phase of the latter, the former remains near ground potential. Since the right-hand side of the longitudinal line is an open circuit, the in-

¹M. J. Clauser and M. A. Sweeney, Charged-Particle Beam Implosion of Fusion Targets, International Topical Conference on Electron Beam Fusion, Albuquerque, NM (November 1975).

¹S. Humphries, J. J. Lee, and R. N. Sudan, Generation of Intense Pulsed Ion Beams, Appl. Phys. Lett., <u>25</u> (1974) 20

¹I. T. Verdeyen, D. A. Swanson, B. E. Cherrington, and W. L. Johnson, The Use of Electronic Space Charge to Accelerate, Focus and Bunch Ions for Pellet Compression, Appl. Phys. Lett., <u>27</u> (October 1975).

⁴B. Bernstein and I. Smith, Aurora, an Electron Accelerator, IEEE Trans. Nucl. Sci., 20 (June 1973), 294.

^AA. G. Stewart, High Power Pulse Compression Techniques, U.S. Patent 4,003,007 (11 January 1977).

jected pulse is reflected on arrival at this end, and the reversal doubles the amplitude of the incident pulse. This reflected pulse then is propagated back toward the point of origin. The voltage developed across the gap spacing between the two center conductors also is doubled. When the reflected wave has completed approximately two thirds of its travel toward the injection point, a controlled electrical breakdown between the two inner electrodes is initiated at the extreme right-hand side of the system. The propagation of this breakdown (switching) is such that, when the reflected wave finally reaches the point of injection, breakdown also is occurring at this time and place.

Figure 1. Discharge of pulse-charged longitudinal line into strip feed line.

The triangular shape of the strip feed line promotes the synchronous arrival of the discharge pulse at the output end of this line. This output end, known as the load end, is shown in coaxial geometry, but this is a convenience and is not necessary in principle.

The discharge pulse is of shorter duration than the injected pulse by the factor $(2\pi r)/(2L)$, where L is the length of the longitudinal line and r is its mean radius. This ratio assumes that switch effects can be ignored and also that there is no pulse spreading with propagation of the discharge to the load.

The input impedance, Z_i , of the longitudinal line is given by the relationship

$$Z_i = \frac{60}{\sqrt{K}} \ln \frac{b}{a} (\Omega)$$
,

where K is the dielectric constant of the medium between the coaxial cylinders and a and b are the inner and outer radii, respectively. The discharge impedance, Z_0 , of this line is, however, governed by the equation appropriate to a triplanar strip line, that is,

$$Z_{0} = \frac{1}{2} \cdot \frac{377}{\sqrt{K}} \cdot \frac{b-a}{L} (\Omega) . \quad (1)$$

Since Z_0 can be readily made to be significantly lower than Z_i , this technique of energy extraction is capable also of impedance transforming with very high efficiencies.

The impedance of the strip feed line can be readily matched to the discharge impedance of the longitudinal line.

2.2 Application to Toroidal Geometries

A second application is to inject the pulse into a toroidal geometry. Toroidal geometries have the advantage that they can be made more compact than the equivalent straight coaxial-cylinder approach. Also, the switching requirements are less stringent since all the switches are operated synchronously, rather than in a controlled rate of breakdown. Finally, the symmetry of the discharge line is less likely to lead to pulse spreading as the energy is propagated toward the load.

2.2.1 Single-Ended Pulse Injection

The single-ended toroidal pulse injection is illustrated in figure 2. Traveling waves are propagated around both arms of the torus, and their leading edges are allowed to overlap until the voltage reaches approximately one half of the peak amplitude before synchronous triggering is induced along the inside perimeter of the torus. The output line from the torus is shown in figure 2 configured in cylindrical geometry, which would make it compatible for matching to the type of diode structures which have been developed for other systems, that is, Blackjack and Pithon.* The discharge line need not be directed inward toward the axis of the torus. It could, with equal effectiveness, be directed outward (at 180 deg) away from the torus axis.

Figure 2. Pulse injection into torus.

2.2.2 Double-Ended Pulse Injection

Several studies have been made on the design of a low impedance conversion of AURORA charged directly from the AURORA Marx generator. The major design efforts in these studies were directed toward a twomodule output device. As shown in figure 3, it is conceptually feasible to use each of these modules as the pulse injectors into each of the two arms of a half torus and to extract the energy from this half torus in the same manner as described in section 2.2.1. This approach has an additional advantage in that the pulse injection time is very short (~ 60 ns), which would permit higher fields and, hence, smaller torus dimensions, for the same stored energy. This smaller torus would permit even shorter pulse outputs.

Figure 3. Use of low impedance converter modules as torus pulse charge injector.

3. LINES IN CASCADE

There are distinct advantages to be gained from making the pulse injection time as short as possible, especially if high-energy, ultrashort (<20 ns) pulse outputs are desired. By employing two or more of the injection devices in tandem, this goal of <20 ns can be achieved.

3.1 Combination of Straight Coaxial Cylinders with Torus

In figure 4, the two longitudinal lines A and A', pulse-charged from a singleended injection point, are discharged into the two arms of a half torus. Because the pulse duration at the output of the feed line is significantly shorter than the pulse duration at

^{*}Machines developed by Maxwell Laboratories and Physics International, respectively.

the input, the dimensions of the half torus can be considerably smaller than are necessary if the initial pulse alone is used to charge the torus. The smaller the torus, the faster the energy that can be extracted from it and the lower the output impedance of the system.

...

Figure 4. Pulse charging half torus from triangular strip feed line.

3.2 Combination of Straight Coaxial-Cylinder Geometries

In figure 5, the output of the first feed line is used as input to a second longitudinal line, which is similarly charged

Figure 5. Pulse compression by using three-stage series-connected straight coaxial geometries.

and discharged as the first element, but whose overall dimensions are smaller because of the higher permissible electric-field gradients. Further additions can be made, as shown in figure 5, each stage leading in principle to pulse outputs of shorter duration, lower impedance, and higher power.

4. DETAILED ANALYSIS OF TOROIDAL GEOMETRY FRONT-END CONVER-SION TO AURORA

The various options were reviewed for converting AURORA to a 100-TW generator suitable for the compression of pellets. Such additional factors were considered as ease of conversion to and from the bremsstrahlung mode, initial capitalization costs, and compatibility with existing s ate-of-the-art high voltage technology. It was decided that the preliminary design study should focus on one particular configuration to obtain first-order estimates of the important design parameters and energy transport efficiencies. The configuration chosen for this study was the toroidal geometry. The conversion system is assumed to be energized from the front end of the AURORA simulator and to be located in the existing test cell.

4.1 Combination of Existing Vacuum Coaxial Lines into Single Coaxial Line

The present AURORA simulator has four separate 50- Ω vacuum coaxial lines feeding four separate field-emission diodes. It would be necessary for these to be filled with some suitable dielectric and, for simplicity, to be the same insulating medium as used in the torus itself—oil. (For short pulse output applications, transformer oil (K = 2.3) is preferred to water as an insulant because of the higher velocity of electromagnetic waves in oil.) Filling each of these coaxial lines with transformer oil without changing either the inner or the outer radii of the coaxial cylinders would reduce their individual impedances to 33 Ω . To achieve single-point pulse injection into the torus, it is necessary to combine this array of coaxial lines into a single coaxial line (fig. 6). The parallel impedance of the four coaxial lines is 8.24 Ω , and, to eliminate reflections at the junction, the impedance of the single coaxialline output should be matched to this value.

Figure 6. Junction of AURORA coaxial lines into single coaxial line.

4.2 Design Considerations for Torus

To arrive at a feasible conceptual design for the torus, many factors must be considered and analyzed for self-consistency and compatibility with the state of the art of high voltage technology. Principal among these are the dimensions of the torus that determine its input and output impedances and the electric fields experienced within it.

4.2.1 Torus Dimensions and Determination of Input and Output Impedances

The preliminary design chosen for detailed study in this report is shown in figure 7. The dimensions are those that were arrived at after consideration of the various constraints, such as available space in the AURORA test cell, energy transfer efficiencies, and electrical breakdown conditions. The final dimensions of the preliminary study are presented here.

Figure 7. Low impedance converter.

The major diameter, D, of the torus is 13.7 m, and the coaxial cylinders have radii b and a of 1.091 m and 0.600 m, respectively, giving a gap separation of 0.491 m. The line impedance, Z_0 , of the torus is therefore given by

$$Z_0 = (60/\sqrt{K}) \ln (b/a) = 23.7 (\Omega)$$

For ideal matching to the pulse injection line, this impedance should be twice the impedance of the pulse injection line— 16.48 Ω —so some energy is lost due to reflections at this interface. In fact, for ideal matching to the four parallel blumleins (overall $Z = 5 \Omega$), the torus impedance should be even lower (closer to 10 Ω). This higher impedance torus, on the other hand, presents less stringent requirements on the fields to be sustained in the oil, and, since the intent of this preliminary study was to acquire only first-order design information, this trade-off was judged to be a reasonable one.

The output impedance of the torus is inversely proportional to the length of the element being discharged and, for this case, was chosen to be three quarters of the circumference—270 deg. As will be shown, this gives a discharge impedance of 1.89Ω , which is not an optimum value in terms of basic design goals, but is sufficiently close to provide valuable baseline data for development of the concept.

4.2.2 Transmission-Line Analysis

The primary tool for the electrical analysis of the system is a transmission-line model of the blumleins, the oil-filled "vacuum" coaxial lines, and the torus itself. The model is shown in figure 8. The flow of electromagnetic waves through the model was calculated with an expanded form of a computer code supplied by J. Shipman of the Naval Research Laboratory. Since it is assumed that each of the four blumlein subsystems is identical, the entire array of blumleins is represented in the model by elements of one blumlein, each element having one fourth the impedance of the corresponding element in the actual blumlein.

Figure 8. Transmission-line model for charge phase.

A similar simplification is done for the torus. In actuality, a single oil coaxial line divides at the torus into the two arms, one directed to the left, the other directed to the right. At 180 deg from the torus entry point, these arms join. Because what is happening in the left arm of the torus is assumed to be identical to what is happening in the right arm, the two arms can be replaced in the model by one arm having half the impedance of either actual arm and an identical one-way transmission time from 0 to 180 deg. Waves having passed the 180-deg point in the real torus are produced in the model as reflections from the open end of the single arm in the model.

The charge and the discharge phases are treated as two separate problems in the present analysis. During the charge phase, the calculation shows the appearance given in figure 9 of the two waves overlapping in the torus. At about 350 ns after blumlein switching, the waves in the torus overlap to form the net voltage profile shown in figure 10. At this time, the current throughout the torus is negligible, and almost all the energy is stored electrostatically. This is the time chosen for switching the torus into its discharge configuration.

Figure 9. Overlapping voltage pulses in torus.

4.2.3 Electric Fields in Torus

At a given time and angular position in the torus, the maximum field, F, exists at the surface of the inner coaxial cylinder and is given by the relation

$$F = V_0 / [a \ln (b/a)] ,$$

where V_0 is the voltage. The negative impulse breakdown strength for transformer oil is given approximately by the relation

$$F_{-} = 0.875 A^{-0.07} t^{-0.333} (MV/cm)$$

where F_{-} is the maximum permissible field, A is the area of the inner electrode in square centimeters, and t is the time in microseconds that the voltage exceeds 63 percent of its breakdown value. This equation is most readily applied in situations where a large area of an electrode is exposed uniformly to the same timedependent field. This uniformity, however, is not the case in the torus as suggested by figures 9 and 10.

Figure 10. Voltage profile in torus for 12-MV blumlein charging at time = 350 ns.

To assess the ability of the torus to withstand breakdown, the function V(t) was considered at each of 13 positions in the transmission-line model of the torus (every 15 deg from 0 through 180 deg). In using these functions V(t), it was assumed that the torus would switch at 350 ns, thus drastically reducing the voltage within about 15 ns of the switching time. (Fifteen nanoseconds is the approximate transit time during the discharge phase of the torus.) For argument, it was assumed that the maximum field given by a particular V(t) was the breakdown field. These peak fields range from 0.47 to 0.90 MV/cm. The time parameters, t, were obtained from V(t) and ranged from 0.065 to 0.185 us. Then, A was derived for each position by using the relations above.

Figure 11 relates A, as determined from the breakdown formula, to angular position in the torus. The horizontal axis is labeled also in terms of area measured along the center conductor. From this graph, the likelihood of an electric breakdown at any position in the torus is determined as follows:

Consider the voltage/time profile V(t) at a given position in the torus. For this V(t), A has been calculated (by use of the breakdown formula) over which V(t) can be

sustained without breakdown. This A is compared with area B in the torus over which V(t)'s of the same or greater severity are experienced. If A is significantly greater than B, the spacing of the inner and outer conductors of the torus is adequate to prevent breakdown at the position under consideration.

As can be seen by looking over the entire torus, the design is favorable. For most positions, tolerable A is well in excess of the total area $(1.62 \times 10^6 \text{ cm}^2)$ of the torus. From about 145 to 180 deg, however, the present design is only marginally adequate.

4.3 Torus Switch Discharge Characteristics

ì

Experience on the AURORA simulator has shown that reproducible, multichannel switching in oil can be achieved by using positive-field enhanced-edge electrodes, for average fields in the main gap of approximately 25 MV/m. The main gap separation on the AURORA electrodes is typically about 0.46 m. which is almost identical to the gap spacing between the inner and outer cylinders of the torus studied here. Calculations also show that the field in the torus switch region would be about 50 to 100 MV/m. It is not known for certain whether this higher-field operation leads to an overall degradation or improvement of the switch performance. If the switchbreakdown characteristics follow the same general development as that observed for switching in water, then the faster pulse charge coupled with these higher fields should give improved operation with lower impedance and lower jitter. The overall switch inductance should be considerably smaller here than that estimated for AURORA (200 nH) since channels form around three quadrants of the torus perimeter, a distance of more than 30 m, as compared with the 3.7 m of edge of the AURORA midplane. These figures suggest an inductance of ~ 20 nH for the torus switch. This inductance is incorporated into the discharge phase of the transmission-line calculation. No further development of this triggered switch concept has been undertaken in this study.

4.4 Design of Strip Wedge Transformer

The function of the strip wedge transformer is to transport the energy from the discharging torus to the diode. For maximum energy transport, the wedge impedance should be constant all along its discharge path, and, in the present study, this was the design criterion used. However, the wedge could be designed to transform the impedance from a relatively high impedance at the wedge input to a lower impedance at the wedge output with small energy penalty. The impedance can be transformed by taking advantage of the higher fields that can be sustained in the wedge compared with those in the torus primarily because of the shorter times of applied voltages, thus reducing the gap dimensions, and by locating the diode structure at a location other than the axis of symmetry of the torus. This latter technique may be useful also for obtaining higher peak power outputs than the output obtainable from a completely symmetrical discharge. These considerations are not investigated further, however, in the present report.

The impedance of the wedge may be shown to be approximately 2 Q as follows:

In its discharge phase following switchching, the torus behaves like an openended triplanar strip line with a plate spacing equal to the spacing between the inner and outer conductors of the torus, namely, S =0.491 m. For this triplanar strip line, with an effective torus diameter D = 13.7 m and switching over 270 deg, the width W is $(270/360)\pi D = 32.3$ m. By use of equation (1), this gives an impedance of 1.89 Ω for the triplanar strip line as formed by the torus itself.

The torus discharges into another triplanar strip line, the wedge transformer of

figure 7. Neglecting end effects, the impedance of the wedge remains constant for the wave front converging on the central load as long as the ratio S/W remains constant. That is, at smaller radii, proportionately smaller spacings are desired. At sufficiently small radii, this spacing results in fields in excess of breakdown conditions. However, as can be expected by looking at figure 12, the path of the wave front does not converge radially near the extremes of the discharge. This lack of convergence effectively increases W(r), the length of the wave front at radius r, beyond the value for a strictly radial discharge. Now, considering end effects, the effect on W(r) is further enhanced by the larger height of the central electrode (fig. 12) approaching the diode. The overall effect of the actual shape of the wedge transformer is to require that S decrease only by a factor of two instead of three to maintain the constant $1.89-\Omega$ impedance as the wave front approaches the diode. Alternatively, we could have Z increase by a factor of two instead of three as the wave front approaches the diode if we maintain a fixed S between the central electrode and the outer conductor.

Figure 12. Center electrode of wedge transformer.

4.5 Prepulse Estimates and Effects

Because of capacitive coupling between that portion of the center conductor of the torus and the inner conductor of the strip line wedge transformer in the switch region, some fraction of the voltage impressed on the torus center conductor during the torus charge phase appears on the wedge transformer's inner conductor. This voltage in turn is transmitted to the diode cathode as a prepulse. Depending on the amplitude and the duration of this prepulse, the current emission and beam dynamics in the anode-cathode gap region can be significantly affected. Most of the information on prepulse has been empirically derived, and no comprehensive theory has been developed to predict its effects. It is known that large prepulses can induce premature pinching in the anode-cathode gap of high current diodes, and it is generally desirable to keep this voltage small. It is known also, however, that prepulse effects are sensitive to diode structure; that is, an identical prepulse injected into two dissimilar diode structures produces markedly different effects. Further, some workers have suggested that a well-controlled prepulse of small amplitude can even have beneficial effects on diode performance through preconditioning the cathode. It is not the intent of this study to make a comprehensive review of the literature to investigate these effects in detail, but rather to make an initial first-order calculation of the amplitude and the duration of the prepulse anticipated for the geometry chosen for this study.

When the geometry is considered as a parallel-plate capacitor, the capacitance, C_1 , between the inner conductor of the torus and

the inner conductor of the wedge transformer is, to a first approximation,

$$C_1 = K \epsilon_0 \frac{\text{area}}{\text{separation}}$$

 $= K\epsilon_0 \frac{2\pi rwf}{S} = 0.35 \quad (nF) ,$

where

$$K = 2.3,$$

$$\epsilon_0 = 8.854 \text{ pF/m},$$

- f = 270/360 deg, the fraction of the torus circumference of interest,
- $r \cong 6.0$ m, the effective radius of curvature of the torus at this gap,
- $w \cong 0.3$ m, the approximate width of the gap,
- S = 0.491 m, the spacing of the inner conductor in the torus from the inner conductor of the wedge.

This value of C_1 is to be compared with the capacitance, C_2 , between the central conductor of the wedge transformer and the outer conductor (assumed to be at the constant S = 0.491 m),

$$C_2 = 2K\epsilon_0 \frac{f\pi(r_2^2 - r_1^2)}{S} = 5.5 (nF),$$

where $r_2 = 5.76$, the outer radius of the wedge, and $r_1 = 2.2$ m, a reasonable value for the inner radius of the wedge. The factor of two accounts for both upper and lower gaps in the wedge transformer. Capacitances C_1 and C_2 appear in series dividing the voltage applied to the torus. This fact implies that the fraction $C_2^{-1}/(C_2^{-1} + C_1^{-1}) = 6$ percent

of the torus voltage appears as a prepulse.

This fraction could be smaller either if the spacing between the central wedge conductor and the outer conductor were to decrease at small radii or if the switch gap were to be increased.

4.6 Analysis of Discharge Phase of Torus

The discharge phase of the torus was treated as a problem separate from the charge phase. At the time (350 ns after blumlein switching) chosen for torus switching, the current throughout the torus was found to be negligible. At this time, almost all the energy is stored in the electric field, and this energy is distributed among the 12 transmission-line elements in the model. Since the torus switch ing has been restricted to 75 percent of the torus, only 9 of the 12 elements partake in the switching.

The discharge of each of the nine elements is handled by a separate circuit. This simplification assumes that there is no flow of energy from one sector of the wedge to the next. In reality, this is not expected to be the situation; nevertheless, for this first-cut analysis, this assumption seems reasonable.

Since each of the nine discharge circuits behaves identically, the calculation was done only for one representative circuit. The impedances of 1.8 Ω and an inductance of 20 nH used in the representative circuit were scaled to apply to the entire 270 deg of the discharging torus and are shown in the circuit of figure 13. This analysis assumes that the impedance of the strip-line wedge is matched to that of the torus and is constant right up to the load. The one-way transit time of the element representing the torus is 13.04 ns and is the effective transit time given by

a condition that must be imposed so that the electrostatic energy of the torus in its charge configuration equals the electrostatic energy of the torus in its discharge configuration. Here Z_{charge} is 23.7 Ω and T_{charge} is the transit time for 75 percent of the torus circumference $(T_{charge} = 81.5 \text{ ns})$.

Figure 13. Representative circuit for discharge phase of torus.

In the representative calculation, a unit voltage was used for the initial voltage on the charged torus in its discharge configuration. The final scaling was later provided by normalizing to the appropriate average over the initial voltages on the nine segments of the torus model in its charge phase. The output voltage shown in figure 14 is scaled according to the average of the individual V_i , and the total current shown in figure 15 also is scaled according to the average of V_i . The power, however, scales according to the average of V_i^2 , and it is this scaling that is used in figure 16.

The effect of the prepulse was included in the calculation by imposing an initial voltage on the wedge equal to 6 percent of the unit voltage on the torus. In the calculation, it was assumed that the distribution of the prepulse throughout the wedge corresponds exactly with that of the voltage on the torus, which is not expected in actuality. Nevertheless, the trend of the effect is approximately accounted for and, since the effect of the prepulse on the overall pulse shapes is small anyway, this assumption causes no concern.

Figure 14. Diode voltage: blumlein stores charged to -12 MV and torus switched at 350 ns.

Figure 15. Diode current: blumlein stores charged to -12 MV and torus switched at 350 ns.

Figure 16. Power delivered to diode: blumlein stores charged to -12 MV and torus switched at 350 ns.

4.7 Field Emission Diode Design

A conceptual design for a low impedance diode integrated into the strip-line wedge transformer is shown in figure 17. The insulator rings proposed for this application are identical to those used on the existing AURORA simulator. The vacuum flashover strength for these insulators is given approximately by the relation

$$E = 552d^{-1/6}t^{-1/3} (kV/cm) ,$$

where

E =flashover strength,

d = surface path length in centimeters,

t = pulse duration in nanoseconds.

Each insulator ring has a path length of 14 cm,

uniform field grading is more difficult for larger stack lengths, this increase still suggests that the torus diode may be marginally designed in terms of voltage hold-off capability. Lengthening the stack, however, does not present any obvious difficulties, and, lacking further corroborating data, we continue to assume that the proposed 3.1-m stack height is adequate for this study.

5. CONCLUSIONS

and the applied pulse duration is 40 ns, giving E = 104 kV/cm. If we assume an applied pulse of 14 MV and assume a 70-percent design factor (giving 20 MV), we require a total path length of 20 MV/104 (kV/cm)—that is, 192 cm. Hence, the total number of rings required per side is 14 for a total stack of 28 having a height of 2.84 m. Allowing for the thickness of the gradient rings, a practical stack height of 3.11 m would be required; that is, each side of the diode would be about 1.6 m long.

The existing AURORA system has a total stack height of 4.6 m for an applied voltage of 18 MV for about 200 ns. The time factor is the only important difference, and this would suggest a 60-percent increase in length over the torus diode per megavolt of applied voltage. Even allowing for the fact that good

A novel approach has been conceived for the production of short duration, ultrahigh power pulses into low impedance loads. The concept has been shown to be extremely versatile and can be adapted to AURORA in a wide variety of configurations. A selected toroidal geometry has been investigated, and analysis has shown that power outputs approaching 1014 W can be delivered to a low impedance load (1.89 Ω) in 30 ns full width at half maximum. Further manipulation of the design should give a factor of two increase over these power output levels. With the exception of the diode, all of the design criteria are known to be compatible with the existing state of the art of high voltage pulsed-power technology.

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER CAMERON STATION, BUILDING 5 ALEXANDRIA, VA 22314 ATTN DDC-TCA (12 COPIES)

COMMANDER USA RSCH & STD GP (EUR) BOX 65 FPO NEW YORK 09510 ATTN LTC JAMES M. KENNEDY, JR. CHIEF, PHYSICS & MATH BRANCH

COMMANDER US ARMY MATERIEL DEVELOPMENT & READINESS COMMAND 5001 EISENHOWER AVENUE ALEXANDRIA, VA 22333 ATTN DRXAM-TL, HQ TECH LIBRARY

COMMANDER USA MISSILE & MUNITIONS CENTER & SCHOOL REDSTONE ARSENAL, AL 35809 ATTN ATSK-CTD-F

COMMANDER US ARMY ARMAMENT MATERIEL READINESS COMMAND ROCK ISLAND, IL 61299 ATTN DRSAR-LEP-L, TECHNICAL LIBRARY

DIRECTOR US ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MD 21005 ATTN DRDAR-TSB-S (STINFO)

DIRECTOR US ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY ABERDEEN PROVING GROUND, MD 21005 ATTN DRXSY-MP

ASSISTANT TO THE SECRETARY OF DEFENSE ATOMIC ENERGY DEPARTMENT OF DEFENSE WASHINGTON, DC 20301 ATTN ATSD (AE)

DIRECTOR DEFENSE ADVANCED RESEARCH PROJECTS AGENCY ARCHITECT BLDG 1400 WILSON BLVD ARLINGTON, VA 22209 ATTN DIR, MATERIALS SCIENCES

DIRECTOR DEFENSE INTELLIGENCE AGENCY WASHINGTON, DC 20301 ATTN DTICI, ROBERT I. RUBENSTEIN ATTN DB-4C, F. O'FARRELL ATTN RDS-4B ATTN RDS-3A, TECHNICAL LIBRARY DIRECTOR DEFENSE NUCLEAR AGENCY WASHINGTON, DC 20305 ATTN STVL ATTN TISI ATTN TITL ATTN RAEV COMMANDER FIELD COMMAND DEFENSE NUCLEAR AGENCY KIRTLAND AFB, NM 87115 ATTN FCPR DIRECTOR JOINT STRAT TGT PLANNING STAFF OFFUTT AFB OMAHA, NB 68113 ATTN JSAS CHIEF LIVERMORE DIVISION FLD COMMAND, DNA LAWRENCE LIVERMORE LABORATORY P.O. BOX 808 LIVERMORE, CA 94550 ATTN FCPRL UNDER SECY OF DEF FOR RSCH & ENGRG DEPARTMENT OF DEFENSE WASHINGTON, DC 20301 ATTN S&SS (OS) COMMANDER BMD SYSTEM COMMAND P.O. BOX 1500 HUNTSVILLE, AL 35807 ATTN SSC-TEN COMMANDER BALLISTIC MISSILE DEFENSE ADVANCED TECHNOLOGY CENTER P.O. BOX 1500 HUNTSVILLE, AL 35807 ATTN ATC-D, LARRY HAVARD DEP CHIEF OF STAFF FOR RSCH DEV & ACQ DEPARTMENT OF THE ARMY WASHINGTON, DC 20310

ATTN DAMA-CSM-N

DISTRIBUTION (Cont'd)

COMMANDER

REDSTONE SCIENTIFIC INFORMATION CTR U.S. ARMY R & D COMMAND REDSTONE ARSENAL, AL 35809 ATTN CHIEF, DOCUMENTS

COMMANDER US ARMY MISSILE R&D COMMAND REDSTONE ARSENAL, AL 35809 ATTN DRCPM-PE-EA

COMMANDER US ARMY NUCLEAR & CHEMICAL AGENCY 7500 BACKLICK ROAD BUILDING 2073 SPRINGFIELD, VA 22150 ATTN LIBRARY

COMMANDER US ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GROUND, MD 21005

ATTN DRSTE-EL

CHIEF OF NAVAL OPERATIONS NAVY DEPARTMENT WASHINGTON, DC 20350 ATTN ROBERT A. BLAISE, 604C4

COMMANDER NAVAL ELECTRONIC SYSTEMS COMMAND NAVAL ELECTRONIC SYSTEMS CMD HQS WASHINGTON, DC 20360 ATTN CODE 5032

COMMANDING OFFICER NAVAL INTELLIGENCE SUPPORT CTR 4301 SUITLAND ROAD, BLDG 5 WASHINGTON, DC 20390 ATTN NTSC-45

DIRECTOR NAVAL RESEARCH LABORATORY WASHINGTON, DC 20375 ATTN GERALD COOPERSTEIN, CODE 7770

OFFICER-IN-CHARGE NAVAL SURFACE WEAPONS CENTER WHITE OAK, SILVER SPRING, MD 20910 ATTN CODE WR43 ATTN CODE WA501, NAVY NUC PRGMS OFF ATTN CODE F34, R. A. SMITH

COMMANDER NAVAL SURFACE WEAPONS CENTER DAHLGREN, VA 22448

COMMANDER NAVAL WEAPONS CENTER CHINA LAKE, CA 93555 ATTN CODE 533, TECH LIB

AF WEAPONS LABORATORY, AFSC KIRTLAND AFB, NM 87117 ATTN CA ATTN NT ATTN SUL ATTN DYP HQ USAF/RD WASHINGTON, DC 20330 ATTN RDQSM SAMSO/DY POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (TECHNOLOGY) ATTN DYS SAMSO/IN POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (INTELLIGENCE) ATTN IND, MAJ DARRYL S. MUSKIN SAMSO/MN NORTON AFB, CA 92409 (MINUTEMAN) ATTN MNNH SAMSO/SK POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (SPACE COMM SYSTEMS) ATTN SKF, PETER H. STADLER UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY P.O. BOX 808 LIVERMORE, CA 94550 ATTN L-18 ATTN L-153 ATTN JOHN NUCKOLLS, A DIV L-545 ATTN TECH INFO DEPT, L-3 SANDIA LABORATORIES P.O. BOX 5800 ALBUQUERQUE, NM 87115 ATTN DOC CON FOR 3141 SANDIA RPT COLL ATTN DOC CON FOR 5240 GERALD YONAS AVCO RESEARCH & SYSTEMS GROUP 201 LOWELL STREET WILMINGTON, MA 01887 ATTN RESEARCH LIB, A830, RM 7201 BDM CORP 7915 JONES BRANCH DRIVE MCLEAN, VA 22101 ATTN TECHNICAL LIBRARY

DISTRIBUTION (Cont'd)

BOEING CO. P.O. BOX 3707 SEATTLE, WA 98124 ATTN AEROSPACE LIBRARY

DIKEWOOD INDUSTRIES, INC. 1009 BRADBURY DRIVE, S.E. ALBUQUERQUE, NM 87106 ATTN L. DAVIS

EG&G WASHINGTON ANALYTICAL SERVICES CENTER, INC. P.O. BOX 10218 ALBUQUERQUE, NM 87114 ATTN TECHNICAL LIBRARY

FORD AEROSPACE & COMMUNICATIONS CORP FORD & JAMBOREE ROADS NEWPORT BEACH, CA 92663 ATTN TECH INFO SECTION

FORD AEROSPACE & COMMUNICATIONS CORP 3939 FABIAN WAY PALO ALTO, CA 94303 ATTN LIBRARY

GENERAL ELECTRIC CO. SPACE DIVISION VALLEY FORGE SPACE CENTER P.O. BOX 8555 PHILADELPHIA, PA 19101 ATTN J. PEDEN VFSC, 4230M

GENERAL ELECTRIC CO.-TEMPO CENTER FOR ADVANCED STUDIES 816 STATE STREET (P.O. DRAWER QQ) SANTA BARBARA, CA 93102 ATTN DASIAC

INSTITUTE FOR DEFENSE ANALYSES 400 ARMY-NAVY DRIVE ARLINGTON, VA 22202 ATTN IDA LIBRARIAN R. SMITH

ION PHYSICS CORP SOUTH BEDFORD STREET BURLINGTON, MA 01803 ATTN H. MILDE

IRT CORP. P.O. BOX 81087 SAN DIEGO, CA 92138 ATTN R. MERTZ

JAYCOR 1401 CAMINO DEL MAR DEL MAR, CA 92014 ATTN E. WENAAS JAYCOR 205 WHITING STREET, SUITE 500 ALEXANDRIA, VA 22304 ATTN R. SULLIVAN KAMAN SCIENCES CORP. P.O. BOX 7463 COLORADO SPRINGS, CO 80933 ATTN A. BRIDGES ATTN J. HOFFMAN ATTN D. BRYCE ATTN W. WARE LOCKHEED MISSILES AND SPACE CO., INC. 3251 HANOVER STREET PALO ALTO, CA 94304 ATTN LLOYD F. CHASE MAXWELL LABORATORIES, INC. 9244 BALBOA AVENUE SAN DIEGO, CA 92123 ATTN A. RICHARD MILLER ATTN PETER KORN ATTN ALAN C. KOLB MCDONNELL DOUGLAS CORP. 5301 BOLSA AVENUE HUNTINGTON BEACH, CA 92647 ATTN STANLEY SCHNEIDER MISSION RESEARCH CORP. 735 STATE STREET SANTA BARBARA, CA 93101 ATTN WILLIAM C. HART ATTN C. LONGMIRE MISSION RESEARCH CORP.-SAN DIEGO P.O. BOX 1209 LA JOLLA, CA 92038 (VICTOR A. J. VAN LINT) ATTN V. A. J VAN LINT NORTHROP CORP. NORTHROP RESEARCH AND TECHNOLOGY CTR ONE RESEARCH PARK PALOS VERDES PENN, CA 90274 ATTN LIBRARY NORTHROP CORP. ELECTRONIC DIVISION 2301 WEST 120TH STREET HAWTHORNE, CA 90250 ATTN VINCENT R. DEMARTINO PHYSICS INTERNATIONAL CO. 2700 MERCED STREET SAN LEANDRO, CA 94577 ATTN DOC CON FOR BERNARD H. BERNSTEIN ATTN DOC CON FOR GEORGE FRAZIER

ATTN DOC CON FOR PHILIP W. SPENCE ATTN DOC CON FOR SIDNEY D. PUTNAM

DISTRIBUTION (Cont'd)

PULSAR ASSOCIATES, INC. 11491 SORRENTO VALLEY BLVD SAN DIEGO, CA 92121 ATTN CARLETON H. JONES, JR.

R & D ASSOCIATES P.O. BOX 9695 MARINA DEL REY, CA 90291 ATTN C. MACDONALD ATTN W. GRAHAM, JR. ATTN LEONARD SCHLESSINGER

SCIENCE APPLICATIONS, INC. P.O. BOX 2351 LA JOLLA, CA 92038 ATTN J. ROBERT BEYSTER

SPIRE CORP. P.O. BOX D BEDFORD, MA 01730 ATTN ROGER G. LITTLE

SRI INTERNATIONAL 333 RAVENSWOOD AVENUE MENLO PARK, CA 94025 ATTN SETSUO DDAIRIKI

SYSTEMS, SCIENCE & SOFTWARE, INC. P.O. BOX 1620 LA JOLLA, CA 92038 ATTN ANDREW R. WILSON

TEXAS TECH UNIVERSITY P.O. BOX 5404 NORTH COLLEGE STATION LUBBOCK, TX 79417 ATTN TRAVIS L. SIMPSON

TRW DEFENSE & SPACE SYS GROUP ONE SPACE PARK REDONDO BEACH, CA 90278 ATTN TECH INFO CENTER/S-1930

VOUGHT CORP. MICHIGAN DIVISION 38111 VAN DYKE ROAD STERLING HEIGHTS, MI 48077 ATTN TECH LIB

US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND ATTN WISEMAN, ROBERT S., DR., DRDEL-CT ATTN PAO HARRY DIAMOND LABORATORIES ATTN 00100, COMMANDER/TECHNICAL DIR/TSO ATTN CHIEF, 00210 ATTN CHIEF, DIV 10000 ATTN CHIEF, DIV 20000 ATTN CHIEF, DIV 30000 ATTN CHIEF, DIV 40000 ATTN CHIEF, LAB 11000 ATTN CHIEF, LAB 13000 ATTN CHIEF, LAB 15000 ATTN CHIEF, LAB 22000 ATTN CHIEF, LAB 21000 ATTN CHIEF, LAB 34000 ATTN CHIEF, LAB 36000 ATTN CHIEF, LAB 47000 ATTN CHIEF, LAB 48000 ATTN RECORD COPY, 94100 ATTN HDL LIBRARY, 41000 (5 COPIES) ATTN HDL LIBRARY, 41000 (WOODBRIDGE) ATTN CHAIRMAN, EDITORIAL COMMITTEE ATTN TECHNICAL REPORTS BRANCH, 41300 ATTN LEGAL OFFICE, 97000 ATTN LANHAM, C., 00210 ATTN WILLIS, B., 47400 ATTN CHIEF, 22100 ATTN CHIEF, 22300 ATTN CHIEF, 22800 ATTN CHIEF, 22900 ATTN CHIEF, 21100 ATTN CHIEF, 21200 ATTN CHIEF, 21300 ATTN CHIEF, 21400 ATTN CHIEF, 21500 ATTN HUTTLIN, G. A., (15 COPIES) ATTN STEWART, A. G., (15 COPIES)