
rZ A D_AO71 338 STANFORD UNIV CALIF INFORMATION SYSTEMS LAD FIG ~ 
-

~~~~~ 

-

RESEARCH ON ADAPTIVE ANTENNA TECHNIQUES II.(U)
MAR 78 B WI DROW , R CHESTEK. T SAXE N00019—71— C—0194

UNCLASSIFIED NL

—7I~~~

U
‘C

___ 
_ _ _ _ _

—‘— I’ll..

ii I
END

DAT E

8 79
O A T  

-

a _ _  A



I -‘

INFORMATION SYSTEMS LABORATORY
1 k

STANFORD ELECTRONICS LABORATOR IES
OEF~RTMEN1 Of ELECTRICAL EtdGI~dEERItdG

STANFORD UNIVERSITY • STANFORD. CA 94305 
~~ 

p~j~ j~ EiL1~~ 
—

I IW flONUSIUMlT~~.

OLEVEL~~~~

Research on Adapt ive  Antenna  Techniques H

)

by~~

~ “ i- . B: �Nidrow,p 
R. Khes tek

T.j Saxe
I - )  /~~

‘
~~~~~~‘~~

D D C

~ M arch 14 1978

B

I ~~ FINAL REPORT.
“I

Prepared under

~~ Contract N~ø~ 19-77-C- Q 194 )

.1 
-; 

~ Li 039
~~~~~~~~~~~~

w—

~~~~~~~~
*

~~~~~~

----— ---- 
-
~~~s~~~~~~~

..
~~
;’ .

— - _ — :
~~ ‘

~ ~ ~~~~~~~~ ~.• P 
~~~ - ~~~ 4 — -.•

____ _____ 
___________ - —~~~~~-— -

~~~~~~~~~~~~~ TT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  ~~~~~~~~~~~
‘
~~~~~~~~~~~

--- —



~ •1~

Principle Investigator: Bernard Widrow (415) 497-4949

Name of Contractor: Stanford University v’
7

Effective Date of Contract: 15 February 1977 to 14 February 1978

Short Title of Work: Research on Adaptive Antenna Techniques

Amount of Contract: $54,426

FINAL REPORT

PART 1

Adaptive Array Processing for Separation of Inputs by Power Level,
Frequency, and Angle of Incidence

PART 2

Analysis of Adaptive Weight Noise Covariance

R Chestek
T Saxe B

1. This work was supported by the Naval Air Systems
E. Coniuand of the Department of Defense under contract

• N000l9-77-C-0194 J’&~..

The views and conclusions contained in this report are those of the
authors and should not be Interpreted as necessarily representing the
official policies, either expressed or implied , of the Naval A ir Systems
Coninand or the U. S. Government.

-•-‘
~

-- .-
~~~

• -
~~~~~ 

.‘.
~~ -~ ~~~~

•
~~~~~~~~

-.‘—-—.—~~~~~~~~~
. -,--- — — Ut

-~ ,• ,, • ~- t •  ,~

£1 : - ~~~~~ :.~~~
- hi~’



~~~.— ~~~ w-~-w ~~~~_— ~~~~~~~~~~~ --—--- ~~~ ‘ - - ~~ —=~~ 
— -  

~
—

~~
-

~~~~~~~
- — - - —

V ~~~~~ -—— ~--— -

*cc~sstc ’i to 
__________

NTIS Wh~ Section W
DDC Bit Section 0

ci
1us1I~

-C ,
~

- . .~ - -

SUMMARY BY
DtSILg!; -1L~ttJiJ ~Q(S

01St. l s .&! . . ‘ J/Or SPECIAL

PART 1

The concept of adaptive power separation for single channel

applications based on the leaky IMS algorithm has now been extended

for adaptive array appl ications. A new algorithm designated as

‘scheme 6A’ has been shown to be potentially hi ghly effective for

nullin g strong janining signals in an aircraft receiving environment.

The new scheme Is substantially less noisy and more simple to Implement

than scheme 6’ which was analysed during our previous year’s effort.

Using scheme 6A, one could establ ish an omnidi rectional quiescent

receiving pattern In order to accept incoming signals regardless

of their angles of incidence . This pattern is sustained as long as

all incoming signals are “weak”. However, in the presence of “strong”

Incom ing signals (jammers), regardless of their ang1es of incidence,

the quiescent receiving pattern changes as deep nul1s form In the

directions of the strong signals (janiners) as a result of the adaptive

process.

The adaptive algorithm sustains the quiescent pattern with a

“soft” constraint. A conflict develops wi th the incidence of a strong

t input , which, if strong enough , causes the soft constraint to be

violated and a null to form. The separation between a strong (jammer)
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Input to be rejected and a weak (signal) Input to be accepted Is

determined by a parameter y in the algori thm which , in an operational

system, could be controlled by a panel knob. The power gain of the

receiving array in the jamnier direction is reduced by the factor:

2

[

~

7

~ l

;

~ 

N]

where is the Janiner power and N Is the number of weights in the

entire antenna array processor.

PART 2 
-

All real-time adaptive processes experience noise In the adaptive

parameters. The amount of noise depends on the nature of the adaptive

algorithm, on the number of parameters, and on the speed of convergence.

A fundamental study of parameter noise and its effects on the output

signal has been undertaken for stochastic and deterministic Inputs to

weight-controlled adaptive filters driven by the leaky IMS algori thm.

Weight noise has been determined for the case of an Input consisting

of a sinusoidal signal plus white noise, for wide ranges of SNR and

frequency relative to Nyquist. Broad operating regions have been found
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where the output power due to weight noise is less than 5% of the

output signal power. 
~~~~~~~~~~~~~~~~~~

_— -

Weight noise also has a significant effect on stability of the

adaptive process. An exact analysis was performed of a special single—

weight case. It was found that leaky IMS (and LMS) filters may hot

I ~tabiUze in the mean—square sense even though they converge in the

- 
mean. It is known from previous work that convergence in the mean

is Insured by:

1

- (total Input power) 
-

it- •
A new criterion for- n has been found which guarantees jnean.squ~re

stability:

L > ~~~~~~

(total input power) 6 (total input power)
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PART 1 

-

ADAPTIVE ARRAY PROCESSING ~~~ SEPARATION OF INPUTS BY POWER LEVEL,

FREQUENCY, AND ANGLE OF INCIDEL~CE

1—A . Introduction

Our research on adaptive techniques for antijam systems has con-~
centrated on the application of a modified form of the LMS algorithm

to antenna arrays , permitting discrimination against received signals

on the basis of their power levels, using spatial and frequency

filtering . This type of antijain system is applicable to situations

where the desired signals are much weaker than jamming signals.

Knowledge of direction of arrival and of other specific characteris-

tics of the desired signal is not required beforehand since the adap-

tation process uses only signal power aS the basis for discrimination.~

1—B. Review of Scheme 6

— The goal of this activity has been the development of an adaptiv~
antenn~i array whose sensitivity is high and essentially omnidirection-.

al to weak inputs , and whose sensitivity is low to strong signals re—

gardless of their angles of incidence. The objective has been to

cause high power jamming signals to be severely attenuated while lowe

power comgaunic~ tion signals are only slightly attenuated . We thereby

realize a substantial sigr1al—to—jammer improvement .

Figure 1 demonstrates the type of antenna reception patto~~s tha

are th.sirt.ó (anJ vjhjcfl have been achicveó with the current algorithm)
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The patterns shown are threctivity patterns, where the antenna array

itself is located at the orig in of the pattern , and where the signal

or jammer is arriving directly from the right (along the axis shown).

Figure Ia shows directivity patterns corresponding to a set of weak

incoming signals. It is evident that the patterns remain essentially

omnidirectional for all of the signal powers listed . Figure lb shows

directivity patterns for a set of strong jammers. It can be seen that

as the jammer power grows, the array places deeper and deeper nulls I
•
the direction of the jammer .

An adaptive system which behaves in the manner just described is

diagrammed in Figure 2. The behav ior of this system was examined and

reported in (1] and has been called “Scheme 6”. We sumr~arize its

behavior here. A six element circular antenna array (as an example) i

processed by six slave filters (TF~) to prod uce the array ’s output.

The weights of the slave filters are taken from a corresponding set o~
adaptive or “training ” filters. The input to each independent train—~
ing filter (TF1) is the associated antenna element’s signal plus a

hhite noise “pilot signal” . The impulse responses are adjusted by thE

LMS algorithm so as to best minimize (in the least squares sense) the l
difference between the summed outputs of the Six training filters and l

the su~n of the pilot signals.

This results in the following behavior: in the absence of incom~
ing signals or jammers , the pilot signals force the impulse responses~
of all of the adaptive filters to become zero—delay unit impulse

res~ons~.s. In this situation, the antenna’s pattern is essentially

omni~’trectional (due to symmetry) . Now when an external signa l is re— I
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ceived , the LMS algorithm attempts to reject it by creating a null in

the sensitivity pattern in the signal’s direction at the Signal ’s fre-1

quency, because this incoming signal is uncorrelated wi th the pilot

signal. However , the pilot signals and the adaptive process have

created a “soft constraint” that attempts to maintain uniform recep-

tion in every direction. The array pattern cannot be omrii and null

simultaneously. Therefore the LMS algorithm computes a pattern that i~
a compromise of the two. The compromise solution achieved is a func—

tion of the power of the pilot signals relative to the power of the

received signal. As we can see from Figure 1, a strong received sig-

nal causes a deeper notch than a weak one , accomplishing the stated

beamforming goal. This intuitive arg ument has been confirmed analyti-~
cally.

The patterns shown in Figure 1 are the receiving patterns of the

antenna array at the convergence point of the algorithm. In reality,

the algorithm never stops exactly at the convergence point, but moves .

around it slightly in a random fashion due to weight vector noise

I
Figure 3 shows the effects of weight vector noise. We assume

that a single sinusoid is being received by the computer—simulated at

ray. Figure 3a is the time waveform output (the “RF waveform”) of th

array system for a strong input , i.e. a jammer. Figure 3b is the tim

waveform output of the array system for a weak input. In each case

the figur e shows several cycles of the sinusoids before adaptation is

allowed to begin. Without adaptation , there is no rejection. Refer—

ring to Figure 3a , we note that for the strong jammer , attenuation is
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rapid , but noisy. A portion of the time waveform is pl’tted on a mag —

nifieá scale. After convergence , noise in the weight vector randomly

modulates the strong sinusoidal input , producing a substantial amoun t

of output noise. The jammer is thus not completely rejected . Its ef-

fects are manifested in the residual output noise. Referring to Fig-

ure 3b, we note that the low power sinusoidal input is attenuated more

slowly and to a muc h lesser extent , but that its essential cnarac—

teristics remain. However , a close examination of this time waveform

shows that its amplitud e is vary ing somewhat over time. The array pro-

cessing algorithm has added some random modulation to the signal. Be-

cause of the noise in the weights , the amount of output power result-

ing (after convergence) from the incoming strong signal exceeds the

output signal power resulting from the weak incoming signal . This is

not a satisfactory situation , even thoug h the jammer has been substan-

tially attenuated .

1—C . Introduction to Scheme 6~ and its Characteristics

The behavior descr ibed in the previous section is excessively

noisy an d is a resu lt o f the U4S al gorithm being driven by a noise pi-

lot signal. To alleviate the noise problem , a new sys tem was proposed

• anô testcd. This system does not require the use of a pilot signal.

It is muc h less noisy arid has the additional advantag e of being

sigiplcr in its h&rd~~ r e r eq u i r ern~nts.

1h.~ Sy~ tdfft , an~1 adaptation ulgor ithm , are presented in Figure 4

and labelea as “Scheme 6i~.” Using the same six element circular array

for illu sirution , the array signals are processed by only a single set
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of transversal filters in order to produce the system output (Scheme 6

required two sets of filters). In Scheme 6 the required performance

was accomplished by introduc ing a unique training signal. In this new

scheme, the effect of the training signal is accomplished directly by

the adaptation algorithm . As a result , no training signal is required ,

significantly reduc ing system hardware requirements .

The adaptation algorithm of Scheme 6A is presented in Figure 4.

By examining this algorithm , its relationship to the standard LMS al-

gorithm is clear. However , the Scheme 6A algorithm includes one more

“driving ” term which is necessary to produce the required behavior .

To use this algorithm , one must know what the desired weight vector

would be in the absence of any signals. We call this desired weight

vector the “quiescent weight vec tor” ~~~~~~~. If for each adaptive filter

we set equal to the mean of the corresponding converged weight vec-

tor that Scheme 6 attains in the absence of inputs, Scheme 6A will au-

tomatically produce the same mean converged weight vector solutions as

will be produced by Scheme 6, in all signal environments.

For the Scheme 6A algorithm , Y is equivalent to the power of each
pilot signal used in Scheme 6. It is possible to choose any quiescent

weight vector desired . To produce the receiving patterns shown here,

the quiescent weight vec tor was chosen to have a unit impulse response

at zero delay for a single filter , and zero impulse response f~~ all

other filters. This results in a truly omnidirectional pattern ir the

absence of any signals (assumir.g omnidirectional antenna elements).

By examining the second form of the Scheme 6A algorithm as writ—

‘4 - 

12
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ten in Figure 4, we may notice a relationship to the “leaky LZIS algo-

rithm ” described in [11. The first two terms are identical. However ,

the leaky LMS algorithm has a tendency to drive the weights to zero.

The new algorithm has a tendency to drive the weights to the quiescent

weight vector. It is the third term in our algorithm , absent in the

leaky LMS algorithm , that causes this. Thus the new algorithm is a

generalization of the leaky LMS algorithm , since the leaky LMS algo-

rithm can be obtained from the new algorithm by choosing the quiescent

weight vector to be zero.

To demonstrate that Scheme 6A eliminates most of the noise in the

weights and the associated random modulation problems demonstrated

earlier with Scheme 6, Figure 5 presents time waveform outputs of

Scheme bA . The same signals used with Scheme 6, which resulted in the

outputs of Figure 3, have been used with Scheme 6A in generating the

waveforms of Figure 5. %~e note once again that the strong jammer is

attenuated rapidly, and does not display the noisy output seen for

Scheme 6. The weak signal is attenuated only slightly, and it does

not display the random modulation distortion that Scheme 6 induced.

Finally, we note that the output response to the strong jammer is much

weaker at the output than is the response to the weak signal. The im-

provement in output jammer to signal ratio is evident. An array sys—

tern using the new Scheme 6A algorithm and receiving both information

signals and jamminy signals would exhibit performance superior to that

of an array system based on the old Scheme 6.

In figure 6 we present the antenna recept ion patterns attained 
-

when the weight vec tor is at the convergence point for the adaptive
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algorithms (Schemes 6 and 6A converge to the same expected , or aver—

age, solutions —— it is only their dynamic noise behavior that is dif-

ferent). It is clear that low power signals are attenuated only

slightly, while Strong jammers receive significant attenuation. The

stronger the jammer , the greater the attenuation. The mathematical

relationships are repor ted below.

In Figure 7, we present the theoretical curves for the gain of

the antenna array to a single directional sinusoidal input as a func—

tion of the power of the input. Since the array gain is also a func-

tion of the pilot signal power for Scheme 6 and of the equivalent pi-

lot power )I for Scheme 6A . we have plotted the gain curve for various

values of pilot signal power (or equivalent pilot power).

In figures 3 and 9, we present the receiving patterns for the an—

tenna array when two sinusoids of very close frequency and equal

powers are received (calculated at the converged weight vector). Lx—

cept for the necessary nulls , we see that the array maintains approxi—

mate omnidirectionality, even including the space angle between the I
two jammers, where possible. Sharper ang ular resolution could be at-

tained , but more than the six antenna elements would be required.

l—D . D e f i n i t i o n  and Analys i s  of Scheme 6A.

In this section we define Scheme 6A and analyze some of its pro—

perties, to confirm the statements made in the previous section.
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1—D--l. Terminology, Notation, and Definitions

In this subsection we briefly introduc e the terminology, nota—

tion , anu definitions to be used in the remainder of this section.

There are k antenna elements.

The output of each element is fed to a transversal filter. The

tapped delay line of the filter contains n taps. The weight vector of

the filter therefore also contains n elements.

The letter i will indicate that the quantity is associated with

F antenna element i or transversal filter i. Thus i can take on values

from 1 to k inclusive.

The letter j used as a subscript is a time index , and ind icates a

sample taken at a specific time .

The output of sensor i at time j  will be denoted by x
3
(i).

The contents of the tapped delay line (TDL) of transversal filtei

i at time j will, be denoted by the vector X
3
(i) . We see from the wa~

a TDL. operates that

X
3
(i) = (x~ (i) x~_1 (i) ... x j_k+l (i))T

Tne output of the transversal filter i at time j is denoted by
Y3

(i).

t . The output of the entire system at time 3 is denoted by y
3
.

W2 will need to refer to the contents of all ‘lDL’s simultaneous—

ly. To do this , we define an augmented TDL Contents vec tor which

20
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is the set of all X
3
(i) vectors “stacked up” to produce one vector.

Thus

=

Similarly, we define the augmented weight vector as

W

We can now define the operatior~ of the system : X3
(i) is obtained

by doing the time shift of a tapped delay line, using as the new input

value x
3
(i). Thus X)(i) is just ~~~ ..l, (i) with all elements shifted down

one position (discarding the bottom element) and using x
3
(i) for tne

top element. The output for transversal filter TF(i) is simply

- . T .Y) (t ) = !~ 
(i)X

3
(i)

1—1

and for the entire system the output is
k

y. ~ y.(i) = ;g T~
~ ) 3

1—2

Notice that we have not discussed how is determined —— this will be

described in a later section dealing with the adaptation algorithm .

We next define a covarionce matrix for the contents of the tapped

delay lines as 
~~~ 

where

E(X ~~X~~ )

1—3

witn F denoting tne expectation operator. We will assume that the

processes x~ (i) are stationary so is a constant matrix. Since we

will be referzing to just one co~ariance matrix , we will denote

21 
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it by R.

In the application of this array scheme, one flexible aspect open

to the designer ’s discretion is the shape of the directivity pattern

that one wan ts in the absence of input signals, desired signals or

jammers. This is the nominal pattern that will be notched by strong

incoaiing jammer signals as a result of the adaptive process. The

weight vector that provides the desired quiescent directivity pattern

when no signals (desired or otherwise ) are being received is denoted

the quiescent weight vector.

Lastly, we define to be the opt imum value of the weight vec-

tor.

l—D-2. Perform ance Criterion

if
,

The adaptive system Scheme 6A presented in the previous section

will be developed in this section from first principles. It will be

shown in a later subsection that this system and Scheme 6 produce the

same mean converged weight vectors.

We will first define a performance criterion for the adaptive

• system . In accord with this criterion , the current performance is

used by the sys tem to mouify its parame ters to improve future per for-

manc e.

Let the performance criterion be defined as:

• 
J = E (y2J +

1—4

22
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Recall from sec tion B that:

y is the sys tem output

W is th~ weight vec tor

is the quiescent weight vector

is the magnitude squared of the difference betweer

the two vectors.

It is our goal to have the adaptive system find W such that J is

minimized . -

To gain a clear understanding of this criterion , let us first ex—

amine it in the case when no signals are received by the system . In

this case no input means no output , i.e. y = 0. So it is the task of
the system to find W such tha t $ IW— ~~ ll 2 is minimized. This is clear—

ly accomplished by setting ~~ = ~~~~~~ in other words , the per formance

criterion J is minimized in the no signal case by the adaptive process

attaining the quiescent reception pattern.

• In the case where an input is available , the following tradeoff

occurs: by making a chang e in W , the magnitude of Il W— ~~~I t 2 increases ,

while E~y
2j decreases. If the decrease in E[y2J is greater than the

inct ease in j i ~~
_
~~~,i

2, the performance criterion .1 is decreased . What

th~ adapt ive sys tem will do then, is f ind W such tha t any decrease

7 th~ t would occur due to a decrease in ELy 2) is exac tly balanced by any

L increase that would occur due to an increase in II ~~
_
~~~,I

2. What ~~•-

5~~ t. heppening is that the syste.~ will attempt to have W stay close to

h~~, only moving away when the output power Ely grows large.

23
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To allow the sys tem designe r to influence this tradeoff , we in-

troduce a designe r controlled parameter Y into the per formance cri—
ter ion:

J = E[y~ j + Y I I~~~
—

~~.Q I I 2

1—5

As such, the designer can control the relat ive tradeoff between E[y 2J

and IU~~W0H 
in the performance criterion.

l—D-3. Optimum solution to the problem

The problem as stated in the previous section is to minimize

3 = E[y~ J + Y i Iw— ~~II 2

1—6

by proper selection of W. Using gradients , we can determine the op—

t imum value of W —— tha t is , the W which  yi elds the mi n imum 3.

We begin by rewriting 3, using the fact that

I I!1 1
2

4 
1—7

(for V a vec tor ) , and using the system equation for y (1—2):

J = E [WTX .XTWJ + y(w~4~Q)
T(W_ ~~ )

1—8

We see tha t 3 is quadra tic in %~~~, so that a unique minimum exists. W~

find this minimum by setting the gradient of 3 with respect to W to

zero. The gradient is

VJ = 2E (X
3
X~ IW + 2Y(~ -WQ)

1—9
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The optimal weight vector that causes the gradient to be zero is

*designated as W , and is obtained from

T * *2 E(X
3 x J w  + 2y(W 

~!~
) = 0

1—10

Recalling that E (X
3
X~

’
J R, and ga thering terms in yields:

(R+ yI)W* - )‘W = 0

1—11

*Now we can solve for W

=

1—12

or

* ], —lW = (
~>~

R+I) 
~~~~~

1—13

So the optimum weight vector is a function of the quiescent weight

vector and the covariance of the inputs signals.

l—D—4 . Comparison to Scheme 6

In reference (11, Scheme 6 was also referred to as an Adaptive

Beamformer with Injected Noise (ABWIN for short) . It is now our goal

to show that the ABWIN anô the scheme just presented yiel d the same

con v e r y~ d ine~ n wei ght vector. Let us denote the converged mean weigh

vectcr for the A3~ lN as Then (ii showed that 
-

* 2 — 1= (R+a I) P

1— 14
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where the R is the same as we have defined , cr~ is the power of the in-

jected noise used for the pilot signal for the ABWIN, and P is the

corr elation between the contents of the tapped delay lines (X
3

J and

the pilot signal . This can be rewritten as: -

*

—ABWIN - — —
1—15

In Cl), in the earlier sections, it was shown that

= ii 0 ... ü i i  0 ... o i . . . i i  o ... 01T
o•

n

and that the quiescent weight vecto r for the ABWIN was P. In:

later section of Cl), a method was proposed for altering the pilot

signal formation so that any value for the cross—correlation vector P

could be €ittained~ and P would be the quiescent weight vector.
o•
n

Thus we showed in (11 that

1 —l
~AB~*JIN 

= (—ZR + ~~) 

~~ABW IN

1—17

where = P could be chosen beforehand by the system
AB~ IN

designer. Now if we compare our new system

* 1 —l= (yR + I )  ~~

1— 18

with the above relation for the ABWIN , we see that 
~~BWIN ~~ we

make the ussignmentS )f and So the new system can

4
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obtain the same solution weight vectors as the original ABWIN .

1—D—5. Adaptation Algorithm

It remains to present the adaptive algorithm itself. The

development follows directly the development of the LMS algorithm ,

which is a steepest descent algorithm .

The basic idea is: assume we have a weight vector at time j .
We want to find a weight vec tor for time j+l that is closer to the op-

timum weigh t vector. To do this , we compute the gradient of J with

respec t to W , and evalua te it at the curren t we ight vec tor W
3
. This

gradient (deno ted S7 3) defines the direc tion tha t W . should be altered

to increase J. Since we are interested in minimiz ing 3, we go the op—~

posite direction. Mathematically, we set

W .  - pV J
—3 —3

1—19

wher e ~i gov erns how f ar in the d irec tion specified by~~~J we go. (If 
-

~

-
5;

p is too lar ge , we could overshoot our goal so much that J increases I
again!)

From section ]—D—3 we already have an expression for V 3:
w

V 3  = 2R W~ + 2Y (W~
_
~~ )

1—20

Using this in the expression above (1—19) we obtain

= - 2 p ( R  W~~ + Y(~~~~Q ) J 
-

•

1—21

- 4
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Now in general we do not know R. Instead we use an instantaneous but

unbiased estimate of ~~~. The estima te is ~~X~ • Using this in the above-

expression we obtain

= - 2J1X~X~W) 
- 2PY(W~~~~)

1—22

Now since y
3 

= X~~W~ ( 1 — 2 )  we have

~j+l 
= 

~!-j 
— 2PY)~~ 

— 2PY(
~~

_
~&

1—23

which may also be rewritten as 
-

~j+l 
= ( l — 2

~ Y) ~!~ 
— + 2p)4~ 

1—24 

-

This is the adaptation rule used in Scheme 6A .

l—D— 6. Convergence of the Adaptation Rule

We must now demonstrate that the adaptation rule presented in the

previous section converges , and that it converges to the optimum

weight vector . The quantity we will study to indicate convergence is

‘1 the mean of the weight vec tor. Other criteria are possible , as in sto-.~
cnastic approximation techniques. However , many algorithms based on

r
stochastic approximation have a tendency to “turn themselves off”

af ter a t ime span, ignoring later data. While this may be suitable

r for a truly stationary environment , it does not allow any capability

— for following changes in a nonstationary environment.

- - First we .~i1l show that with a stationary input environment, if

- the algori thm converges , the mean of the wei gh t vector has only one

28
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point to converge to——the only stationary point of t’~e performance

criterion 3, which is therefore the optimum .

- , To find the stationary point, take the expectation of both sidel

of the adaptation rule (1—23) :

E(W~÷1I = E (W
J
) — 2P E [Y

)
X~~~ J — 2P YE [W ~ —~~~J

1—25

Now, at convergence , (which has yet to be demonstrated) we would hav4

*u r n  E (W.J W
j—>oo ~

- 

1—26

*
- 

- Recalling that W denotes the optimal weight vector. Thus we write:

* * T *W W - 2p u r n  E (X.X .W.J - 2p y (w  -
~~~~))— >oo —V

1—2 7

— where we have reexpand ed y) as X~
’W
) (1—2). Continuing ,

2pR %~i = -2pyW

1—28

where we have assumed that , with W~ converging as j— oo,

u r n  E (X .X~ W .J = l int (E[X.X T)E (W.J)
~ ~ j—>oo 3 3 3

*R W

1-2~

Fjflally, after grouping terms , we c:n ~~~

H (R+ Yfl~
* —J_

= Y (R + y I )

4
29
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1—30

which is the optimum solution found in section D.

We must next show that the adaptation rule causes E(W~ J to con-

verge to a single value , which must necessarily be the stationary

point found above. Since the proof of convergence is directly paral-

lel to that of the LMS algorithm , and is rather lengthy, we will not

produce it here , but will point out the modifications needed to the

proof of convergence for the LMS algorithm . (A proof of convergence

of the LMS algorithm is contained in references 5 and 6). The major

differ ence is that the term which appears as

tI+2ks/\ ~ 

-

in reference 6, must be modified to be

(I + 2k5y1 + 2k/\ ) C (l+2k 5Y) I + 2kg~\

1—31

Notice that the eigenvec tors in matrix Q have not chang ed . (Also not~

that k8 in 16) corresponds to p in this report)

The other change required is the replacement of the term Ø (k,d)

by 2k5YW~.

— with these modifications, the proof of convergence follows the

same steps leading to the conclusion that the adaptation rule causes

LIW)) to converge to 
the optimum solution so long as

wax
1—32

where Is the maximum elgenvalue of the matrix R.

-- 
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1—D—7. Response of Scheme 6A to single sinusoids

In this subsection we analyze the gain that a single sinusoid

impinging on a Scheme 6A array would encounter.

We represent the sinusoid being received at the ind ividual anten—

na element as a phasor . Let us denote the phase of the sinusoid at

antenna element i as Let the phase difference of the sinusoid at

two adjacent elements of a tapped delay line be 0. If the sinuso id has

power cr~ then may be wtitten as: 
-

4 31
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j ( Ø 1—29)

S

j(01— (n--l)O)e

e

j (02 9)

~~~~ 

=
~~~~~

°
~~ 

e

e

~e

1—33

Notice that we have defined the vector ! to be the above column ma-

trix .

Nex t we note that the weight vector W consists of n Keal weight

However , using complex notation , we replace the n reQl weights by n/
complex weights which prod uce the same output. Henceforth , we

4 
~~

- 32

A —
---- - — 

‘
—

7-
- 

—p.-—- - - - — -- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — —N- -

~~

a1’ 
~

-
~

- - -
- 

7- -~ I,. 

_ _ _ _ _ _ _  - —~~ 
- —a—.- —~~~~ — -



- - -

represent all weight vectors as vectors of n/2 complex weights, and X

as a vector of n/2 complex samples, with autocorrelation matrix

2 +

1—3 4

(where denotes the complex conjugate of V).

Using this notation, we can express the expected output power of~
the array for a single sinusoidal input as:

Ely 2) = ci2W ”V V~
7-W

1—35

for any steering vec tor V, signal power Ø~~ , and weight vector W.

Now , if adaptation is not allowed and the weight vector is set t~

an ini tial v€~iue ~~~~~~~~, then the ex pec ted output power is:

= a2W~ V V~W
--Q

1—3 6

Consider next the expected output power at convergence. We have~

shown that the wei ght vec tor at convergence is:

* R —
- y - + I )  ~~

1—37

Thus , we have

+ -l
H - h = ( — ~- V V + I )  ~~

1—3 8

By applying the matri x inversion l erama LThaorem ~.22, refe rence 7) w

c~ n obtain

33
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a
S + -11+  V I  V

-
-

1—3 9
Now , from the definition of V , we can see tha t

!

7-”

!=  II!I l
2 = !~~ -

1—4 0

(recalling that k is the number of antenna elements, and n/2 is the
number of taps in each tapped delay line (complex samples)). Let us
define N = nk/2. Then we can use these formulas to give us a con-
verged weight vec tor of

or2
5 +

*W = I -  W— — 

or2 ~~~S+ 7-
1—41

*Now we may compute the expected power output at convergence (using W

in 1—35):

2 2*+ + *E ( y ) a a 5W V V W
*

h W
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or~ + 
o-~ +

= 1. - ! V~ ! - _ _ _ _ _ _ _

.4

+ + _!v v +v v +V V +

~~~V V
7-’- 2~~~~~~~” 

~~~~ 

1 + -~~N (1

1—42

Using (1—40) again gives us:

2as
Ely 2) 

* 
a’~~~~V V ~

’- 2  
~~—!!~~- y

2 v v +
~~

I + —~~ N (1 + —~~ N)~

42 0’05
= 1 - 2— +

1 + - ~~ N (1+- ~~ zg)2

2

= a ’~~~~~~ W V V W

2

= a’

1—43

27-his c..n be rewritten (using l—3b) as:
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Ely 2) = E(y 21
* 2 w=w

y
1—44

Thus we see that the expected output power of the array at convergence

is the expec ted output power of the array initially, multiplied by an -

attenuation factor. This factor is always less than (or at most equal

to) one since -~~~ N > 0. ‘This attenuation factor is independ ent of the

antenna geometry, arrival direction of the sinusoid , and of the quies—

cen t weight vec tor. The attenuation factor depend s only on the

sinusoid ’s power (o~ ), the total number of taps in the array filters

(N), and the equivalent pilot noise powe r (Y) . Thus , if we know the

response of the quiesc ent unadapted array to a single sinusoid , we can

easily calcul ate its response at convergence of the adaptive process.

4 36
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1— E. Conc1u~ ions of Par t 1 -

- We have proposed and studied a new adaptive algorithm which has

been designated Scheme 6~. It is related to the leaky LMS algorithm

previously studied . When applied to an antenna array,. it yields a

method of antijainming based on attenuation of received signals on the

basis of their input power levels. No a priori knowledge of the signal

characteristics is required . This algorithm replaces a previously

studied algorithm, Scheme 6. It exhibits improved noise behavior and

reauires less hardware for implementation. 
-
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PART 2

ANALYSIS OF ADAPTIVE W EIGHT NOISE COVARIANCE

2—A . Introduction

Previous work [1] introd uced the concept of using an adaptive

line enhancer [8, 9) to separate signals by power level . Although the

or iginal proposal required injected noise and ‘slav e ’ filters , a re-

fined version was developed that eliminated the need for injected

noise by replacing the LMS adaptive filter with a ‘leaky ’ LMS filter .

Because an adaptive line enhancer using the ‘leaky ’ LMS algorithm can

separa te signals by power level it is called an adapt ive power separ a-

tor (APS).

During the pas t year we have been engaged in anal ysing the per-

formance of the APS. Per formance in the mean has alread y been

described in [1) ; however , performance in the mean does not complete—

ly characterise an adaptive filter. Specifically it is important to

know about the noise in the weights since , by a modula t ion process ,

weight noise causes noise components in the filter output [9, 10)

which deg rades the performance of the APS. Tne first step is to charac—

ten se the variance of the i~oise in the weights.

Analysis of weight noise covariance has proceeded in four main

phases:

1) a determinis t ic anal ysis with the input cons is t ing of a sinusoid

2) a statistical analysis with the input Consisting of a sinusiod

38
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3) statistical analysis with the input Consisting of only noise and

then approximate extensions to sinusoids in noise

4) exact analysis of a single weight APS for comparison with the

previous approximate analyses.

Figure 2—1 depicts the APS and helps to define the quantities

weak signals

Input d~

~~ / 

~~~ ;trong signals

ADAPTIVE POWER SEPARATOR

Figure 2-1

used throug hout this section :

is the system input at time j
is the filter input at time j

is the filter output at time j
- 

is tne ‘error ’ signal ~t t ime j. This signal is used to modify,

or upJ~ te , the fill er weights according to the ‘leaky ’ LMS al—

39
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gonithm .

The opera t ion of the ‘leaky ’ LMS (LLMS) filter is defined as follows:

If L leng th of filter (number of weights)

W= weig ht vec tor = (wl,w2,...,wLJ
T

S= state vector of filter = LX j~
Xj...l?...S Xj.L+l J

T

then

y]=wTs =

2—1

=

2—2

Wj.f], = V W~+2Ii€iS~
2— 3

p = a constant controlling rate of adaption

V = the tleak’ factor (generally less than 1)

1-2pY

2—4

= the equivalent injected noise power. That is, the effec t of

the lea k is the same as add ing noise of power Y to the input

and tnen using a conventional LMS filter. (Note: LMS is a Spe

cial case of LLMS where V =1)

To characterise the averag e performance of the APS we have to in

troduce scveral new quantiti~~ which define th.2 composition of the in

put signal

power o~ inpu t nois-_
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02+), ef fec tive powe r of input noise

p = power of input sinuso id

SNR’ = —E~. = effect ive signal to noise ratio
a’

- 

Witn these definitions we can draw a gain curve from input ,d
3
, to th~

gaIn 1. 
_

d3 t~

’7-

~~
’ 

~ 

— 

SNR 

-

APS used to reject low powered inputs
Figure 2-2

filter output , versus SNR’ (see figure 2—2). Alternatively we c~

- 

draw the gain curve from the inpu t , d
3
, to the error output ,

versus SNR’ (see figure 2—3).

Thus to d isc r iminate against weak signals we use the y output,

and to discriminate against strong signals we use the € output. Not~
- that SNR’ can be v aried by select ion of (I sinc e:

SNR = 
~~

2
~~~~~~~~~

’ 

2— 5  1
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2—B. Deterministic Analysis of Sinusoidal Input

One case of interest is the behavio r of the APS when the input

consists of a sinusoid and little or no noise. This might occur in

practice if an APS were used in a jam resistant mobile communication

system and the base station were close to the mobile receiver , or the

mobile receiver were very close to a power ful narrowband jammer . By

assumption the sinusoidal component of the input is either the desired

signal (say narrowband FM or AM) or a narrowband jammer —— the differ-

ence is power level .

For thi~ case we let tne delay , ~~~~~~ 
be one unit and so:

d) = a cos[Gj)

2—6

= a cosfej-O)

2—7

8 = wT

2—8

w = frequency of sinusoid

T = sampl ing interval

From previous analysis of the mean performance [1] we know that the

output will be approxima tely:

y
~ 

= b cos[ejJ

2-9

Substituting for d~ and y. in equation 2—2 yields:

4 43
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(a—b) cos[9j~
- 

2—10

Using this we compute:

(€)S)) .  = ~~~ (cos[eiI -+cos[20j—ei)}
2—11

Notice that the first term of equation 2—li is not a function of time

j ,  only of weight index i. The second term is a function of time and

weight index . In previous analysis of the APS, when the mean perfor-
mance was desired , the second term was ignored on the basis that it

“averages Out ” over a period . Hence only the first term contributes

to the mean weight vector. Indeed the mean value of the weight vector

can be found by using only the first term of equation 2—li. 
- 

We see

tha t the second term causes t ime changes in the weight vec tor and

therefore is undesirable.

We can model the LLMS filter , which is the heart of the APS, as
an “id eal” filter whose weights are fixed at the averag e weight vec—

A tor , in parallel wi th a “perturbation ” or “error ” fil ter (Figure 2—4)

whose weights have zero mean and vary according to the fluctuations

abou t the averag e of the actual adapting weights.

The “good” update term is ~j -~cos[9iI and the “bad” term is

~j-~cos[2ej—GiI. Both “good” and “bad” update terms are present in a

filter usiny the LL~-13 al gorithm . The “good” term drives the filter

towards the m in int u~n rne~ n square error solution; the “bad” term is at

t W j c C  the input frequency and c~ u~.es th~ weig hts to churn , which is

4 44
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ERRORS 
—

Weight perturbation model of an ILMS filter

Figure 2-4

nonproductive and causes output distortion . To determine the weight

variations of the weight error filter we apply the “bad ” update term

to the LLMS update scheme (equation 2-3).

To make the problem solvable , note that equation 2-3 can be

Z— transforrned to give :

= V Wj+2u€ jS]

(Z—~ )W (Z) = 2pe(Z)S(Z)

W ( Z )  = 2p
~~~( Z ) S ( Z )  Z—(/

2—1 2

Since the Input to the system det1n~d by equation 2-12 is a sinusoid ,

we know that the output will be a sinusoid of the same frequency.

The complex gain of the difference equation at this frequency is:

4 .
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= 
2~ig29

The amplitude of the weights , W~ , of the weight error filte r will be:

a-b
—2—I g28I

2—13

Figure 2—5 shows 1g 291 vs. 0 for a variety of V’s. Using equation 2—1

we can compute , in the time domain , the output of the weight error

filter as:

= 
i=l

= ~ (~j_Ig29 I COS[29j_ei+ø)1(aCOS (ei_9iJ 1
i= 1

L
= a(;~b) 

~~20’ ~ ~ tCOS1aj-ø)+COS [39j-29i+~~~)

= 
a(

~~
_b)

Ig 29 IL cO St ej ØJ+
a(

~~
_b)

Ig 29 I~~~~co$ [3a j_ 2ej +ØJ

2—14

Where 0 = A R G ( g 29) tan_l [Im~~e~~~~~~~~].

The f i rst term of y~~ is at the same frequency as the desired

output and has ampli tude amp 1 = a(a—b) Ig 29IL. We note that b < a, so
2

a—b < a which implies amp1 < , bu t this can be made arbi—

trarily small by selection of p which controls ~y2,~J unless 0 is very

small. If we restrict our attention to a reasonable rang e of frequen—

ci~~s , say 2u—&U% of Nyquist (see also 18) where Treichler wakes this

same ~.ssun~ tion in analysing the mean performance) , then:

ar.tp1 < ~-~-~iy 2,~i < ~3a~
2L 

VV

2—15
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The second term of 2—14 will cause an output at three times the

original frequency. ihi1~ the expression for the ampl i tud e  is ra ther
complicated we can easil :- 5ound it:

‘a

~ cos(39j—20i+Ø) ( L
i=l

-4
47
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2—16

from which we see that the amplitude of this third harmonic distortion

is also bounded by equation 2—15.

Looking at the filter model (figure 2—4), we notice that the out-

put of the weight error filter , which is part of the total filter out-

put, was not subtracted from the desired signal d). If y0 were sub-

tracted from d
3 
as well as y1, it woul d cause a new componen t in the

error signal , C
3
, equal to —ye. To account for this, another weight

error filter should be added . This filter is updated using

= V W
~~

2PY
~
S
i 

an d causes a new ou tpu t y
~2 which will have terms

at the fund amen tal , third harmonic and fifth harmonic . These outputs

con tribute to and so on. However , note that y~ can be mad e arbi.—
ay
~trarily small , and y

~2 < —4-—(Ig29I+ I g4~~l) 
( 
~-~—fI g 29t+I g49). The

weakn ess of this  an alys is  technique  becomes apparent here. Previously

we restricted 1g 20I by selec ting a reasonable rang e of values for 0.

Simil iarly we could selec t a range of 0 to restrict 1
~ 4a 1 • But , i.t is

evióent that 
~e2 

wi ll g ive rise to other error terms which will cas—

cade to create an infinite number of error terms of all different fre-

quencies. Some of these error terms must surely have very large Ig i

since they will be near some multipl e of the sampling frequency. How—

ever , exper imen ta l r esul ts in d ica te tha t i f  0 is between 20% and 80%

- of Ny~uis t frequency, then the only ou tpu t compo nen t of any signifi—

c~..nce is the third harmonic. Ik~nce for pr actical purposes only the

f i rs t “weight error ” filter need s to be analysed .

4
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Computer simulations were performed to verify these analytic

pr edictions. The frequency of the input sinuso id was set at 4% of Ny—

quist. The results are graphed in figures 2—6 throug h 2—li. Each

plot shows percent power not at the fund amental versus p. Thus each

plot relates total distortion power to p. From 2—6 we see that in all

cases the total distortion power was less than 0.2% of the output

power at the fund amental frequency. From 2—7 we get the same shape of

curve but now the total distortion is less than 0.06% of the desired

output power. In 2—8 the fund amental frequency has been increased to

81 of Nyguist. The error power is substantially lower than for the

prev ious cases, as is to be expected .

In an a ttempt to stress the APS to cause sign i f i c a n t dis tor tion ,

three  simula t ions were run  in which  the fund amen tal f requen cy was 1%

of Nyguist as opposed to being in the 20—80% range. The results are

plotted in figures 2-9,2—10 and 2—il. No te tha t the g rea test observed

distortion power is 4% of the power of the desired signal.

A final point to consider is at what frequencies the distortion 
-

~

power occurred . Analytic efforts indicate that the 3~~ harmonic

should be dominant. In fac t, the simulations supported this. Even I
when the fund amental frequency was 1% of Nyquist , over 9~ % of the dis-~
tortion powe r was in the 3~~ harmonic . -
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2—C . Statistical Analysis of Sinusoidal Input

From previous work El) the general form of tha APS output is

known. If we use equations 2—6,7 & 8 to define the input , then we

know that the output will be approximatel y:

y. = bCOS(9j) = a COS(9j1

L SNR’

2—1

If we de f ine  ~~q. as W~_E (W

2—2

and then notice that (i— (/)E{W) = E (2ji€SJ,

so by taking the expectation of 2—3 and 2—18 we get:

=

- 2 — 3

hence

~ W(Z) — 1
—

but if we know V1~R (2~i€.S.} then we know

vARfL~7-w~ } ~~~~~~~~~~~~~~~~~ 

2—4

VM (211€ .S.} = VM~{2ei[aCOS (aj)- 
a
2 cOs (a j ) J s . )

3 3 1+ )
L SNR’

= 4p 2VAb(- a , cos(9j)S.}

2

(vAR{2~ E~ S~ ))~ = 4
L

d

S
~~~~~~~~~~~~~~~~ VAR ((CCS [~~jJ)(uCOS(9j-6iJ))

-4 
- 
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= 
4~i
2a2 

— u
2a4

~~1~~~L SNR ’)2 8 
— 

2
~~~~

1
~~~~L SNR’

)
2

2—5

Tb us

(VARL&~))1 = _ _ _ _ _ _ _ _ _ _ _

2
— 1 ~i

2a4
- 

ei29 — V 2~ 1÷ L SNR )2

2— 6

These formulae are in close agreement with experimental results

as Table 2—1 shows. In the cases where w is 12.5% of Nyquist, there

is a 15% e r r o r  in dete r m i n i n g VAR ( 2PE~S)}. althoug h VAR (.~~W1 is still

given by equation 2—19 if we use the obser v ed valu e for VA R (2 P€~ S~ }.

To suminarise we used a simple statistical analysis to determine

the va r i anc e  of the d r i v i n g func t ion , 2~ €~S~ (equation 2—21). Then we

considered how this affected the weight vec tor (equation 2—19) and

derived a relationship (equation 2-22) for the weight variance in

terms of the input quantities. These equations (2—21 & 22) will give

a good idea of the weig ht variance (note VAR (W
3
} = VAR ( provid—

• I in g the inpu t f r e quency is not to near DC. A reasonable range of in—

pu t f r equenc ie s  appe ars to be f rom 20% to 80% of Nyquist.
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*Thi s va lue almost certainly incorrect due to numerical
inaccuracies in the computer simulation .

w Is measured in % of Nyquist frequency

CVAR is the calculated variance

MVAR -is the measured variance

% error = MVAR-CVAR x ioo~

Table 2-1
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2-D. Statistical Aalysis of the Adapt ive  Power Separa tor (APS) wi th
Noise Input

In a real communication environment the input to an APS might

well consist of both sinusoidal components (either signal or nar—

rowband jammers) and broadband noise (thermal noise or wideband jam—

mets). Thus we wish to understand the behavior of the APS to a

sinusoid in broadband noise. The first step is to characterise the

weight vector var iance when the input consists only of noise.

Note that:

VAR (X} = E{XX T
}_ E { X) E ( x} T

2—7

also

oj =n j

x .=n .
3 3— 1

where

is from a whi te, zero—mean Gaussian process with variance cr2.

2—8

From equations 2—2 ,3 & 4

W~~1= (I_2IJ YI_2~JSS
T)W~ + 2e.zd~ S~

2— 9

If we assume E(SWTI = 0, which is a common assumption (well support

by expt~rier.ce If ~ Is small enough) , then we find :
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= W ~~ ( I — 2~~Y I— 2~icr2 I)~~ + 0

2—1 0

VA R tW ~~~~1
) = ELW~ ÷1W~+1) — W

j
~~~1

W~
j
~~~

1

= (1—21iY)2V!~lR(W~ )—4Ii (l-2J1Y)a
2VAR (W~ 1+4II2a4I

+ 4il2E(SSTVAR (W~ }SS
T}

( l— 4 ~1Y+4P 2 Y2 —4I .I c72 +8M 2 Yo7-2 ) VA R (W ~~J+4 P 2cT4 I+O

2—11

Where we have assumed :

i1E (SSTVA R { W~ )SST}<<O 2VAR( W~ }

2—1 2

If we now assume stead y sta te so tha t V A R ( W~ ) = VA R(W~ +i 1 P  t h e n :

- 
- 4p 2a4
4~io +4~~iY+4ei Y -8ji } ‘a

= 
pa2

7-i

PC.

- - a
2—1 3

Providi ng p~ <<l +-~ and

> 

a a

2—14
-4

60

4 ~~

-_—— 

~~~~~~~~~~~~~~~~

-.---

~~~~~~~~

. - I
Lu -.c~ ~ - ‘~1 

- -



Notice that for Lt’IS Y = 0, and so VA R(W} = po21 which correspond s to

earlier analysis L 91 of the LMS filter. Also note that the ‘leaky ’

algorithm never increases the weight variance , in fact it actually

reduces the variance. This supports the conjecture (11 that algo-

rithmically simulated noise (via ‘leaky ’ LMS) is more desirable than

actual noise injection , even though the converg ed mean weight vector

solution is the same in both cases.

In equation 2—28 we assumed that

PE{SSTVA R ( W } SST}<<a2vAR(w)

— To check this assumption we no te tha t :

E{ SSTV A R ( W ) SST} = O4VAR{W) + o-4Di ag [V AR{W} ) + a4TracetvAR (w1JI

2—1 5

where Diag [ . I means the matr i x  consisting only of the diagonal ele-

ments of the operand .

Assuming that 2—29 is substantially correct lead s to the following

conclusion :

E{SSTVAR (WISST) = 2pa
6
~~Lpa

6

1 
p (L+2)a

6

1

a a a

2— 16

Therefore 2-28 requires:

_ _ _ _ _ _ _ _  ____

t
a a
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which implies

- 

2—17

This condition is often assumed in adaptive filtering and it im—

plies slow, low—noise adaptation.

Extension to the case of a sinusoid in noise is unfortunately not

obvious. Intuitively it is appealing to argue that the correct formu—

la should be:

VAR (W} = ~~min ~~ -

mm - - -

by analogy wi th the conventional. Lf4S forn~u1a of:

VAR (W) =

Experiments ind icate that this is not the case , in fact it is

easy to see that this would not be true since in the no noise case the

formula  is substan t ial ly incorrect.

Ano the r approx imation assumes that. the noise and sinusoid affect

the weights independently, which results in the curve of figure 2—12.

~hi s approach is not strictly correct either. However , if the
— weight. variance due to noise alone is substantially greater than the

vari ance due to the sinusoid alone , then trie formula is indicative of

the ~~tu~.1 variance . This result has been checked exper imentally, and

some results are presented in Table 2—2. An important point to con—

sider is that cor~puting weight variance by using the formula:

4 
5
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, ~,I / ~~~~~~weight ? ‘varlancel combined
variance

/ variance due

/ 

,
# 

, 
to noise only

-‘ variance due to
sinusoid only

noise power

Weight variance obtained by assuming independent effects of
noise and sinusoid

Figure 2-12

VAR (W) = p (error—output—power )

or

V A R ( W )  p (error—output—power)

1+ (error—output—power)

(as was done In (it)) for example) is apparently very conservative.

The power due to sinusoiual components does not contribute to weight

variance as muc h , proportionally, as power due to r~ ndoin components.

he are currently wor king to quantify this effect.
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noise 1-y p weight approx. #1 approx. #2
power variance

1.l7xlO 3 10~~ 10~~ 3.27xl0 8 9.31x 10 6 1.37x10 9

1.0 2x10 3 5x10 4 1.75x10 4 3.27x 10 4 2.5x10
4

7- 1. 0 io~~ 5x10~
5 5.67x10 6 3.27x10 4 2.5x10 ’5

1.0 l0~~ 5x10 4 2.56xl0 4 3.27xl0 4 2.5x10 4

1.0 10~~ 10
.6 5.8lxlO 9 6.55x10 7-7 5.0x10 7

5x10 4 ~~~ 10~ 1.29x10 8 9.18x10 6 2.5x10~~°

Frequency: 25% of Nyquist
Power of sinusoid: 1.0
Number of weights: 20

approx. #1 VAR = -—

1+ —
“men

Ii

approx. #2 VAR =

1+ 7-r

‘1

Table 2-2

Comparison of measured weight variance and

two approximate expressions
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2—E. The Single height Power Separator

Analysis of a single weight adaptive power—separator is of great

interest for many reasons. Among them is that a complete analysis can

be performed with no need for approx imations. In this report the mean

weigh t val ue and weigh t var iance  are analysed , which leads to some

surprising results that further illuminate the performance of an LNS

filter. The results show that previous approximate analysis of

mul ti—weight filters by Widrow (9, 10) , Senne [111 , Brown [1 2) , and

Davisson [131 to name a few , ar e accura te enoug h for useful  resul ts in

most cases, wi th the greatest errors occurring during fast adaptation.

The configura tion of the adaptive power—separator is a leaky—LMS

filter in a line—enhancer as shown in figure 2—1. Note that in this

case W~=w~ has a single element; and S3
=x~~, a sing le element. The in-

put , d
3
=n~~ is composed of a DC value , a, which is the ‘s igna l ’ ; and

white , zero—mean Gaussian noise with variance cr2 . Physically this may

be thought of as a degenerate (zero—frequency) sinusoid of power a2 in

noise of power or2 .

By substituting Eq. 2—2 into Eq. 2-3 and then expanding Eq. 2—3, we

find :

N-i N
W = Z~n n ,_1 + 2~i ~ (n.n._1 fiN-f N ~s 1 1 j=i+1

N
+ W 0 f l  ( V —2pn~~1)3

2—18

Using this relationship we can derive the expected (or average) weight
-I
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value as:

E ( W N+l
) = E{ 2

~
1nN:N...l J + 2ji~~~ E (n. 1n . fl ((/—2~in

2
1)J

+ WQE( II (V —2pn .
1)}j=0

2—19

Using the fo l lowing prope r ties of whi te , Gaussian noise wi th the de-

fined parameters:

2 2
1 )

E{n .n.} = 
21 ~ a i~j

E ( t (n~ )f(n~ )} = E{f(n1)}E{f(n.)} if i~ j
we get:

N-i N
E {W = 2~ia

2 
+ 2p ~ [aE(n.((/ —2pn~ )) fl E-( (,/ -2j~n~~ 1))N j 1-f- 2 3

N
+ Wa fi E {V  — 2~in~~ 1}

j=O

2 N—l 3 2 N 2 2= 2pa + 2p ~ [ a ( a (/  -2~ia —6~.ia a) f l  ( ( ,f —2iia -2~ia ) J
i=O j=i+2

N .-~

+ W~ f l  (V —2~ a’—2~icT’)j =o

+ 2p~~ ((a 2
V -2~ a 4 —6~ cr 2 a 2 ) ( V

+ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

= 2~ n 2 + 2~~(a
2
V -2 

4-b~~
2a2) [ i_ c v  _ 2~~~~Cr

2
2~~~~~~~~

:
)

N]

I l— (,/ +2p (o- +a

-4
66
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+ W
0

( (/  
_ 2jJa2_2po.2)N~

7-]

2—20

This equation (2—36) expresses the mean val ue of the weight as a

funaPion of the amount of data , or time , used in adaption. An in-

teresting result is the final mean value of the weight. We see that

if I V  —2~.zcr
2—2~ia

2I<l then the adaptive process is stable (convergent) ,

and so we can find :

u r n  E{WN} = 2pa2 + 
2~i(a

2
~ — 2pa4-6èici2a2)

N->oo 1—V +2p~ +2j a

— a2— 4pcr2a2

a2+(a21-~~~”2~i

2—21

The Wiener solution (minimum mean—square—error) for the converged

weight value  can be shown to be;

* a2W = -)
a +0

2—22

The adaptive powe r separator based on the leaky LMS algorithm gen-

erates a converged solution similiar to a Wiener solution for a prob-

lem in which the variance of the noise is ~
2+1~~~ . However , the adap-

tive solution g iven by equation 2—36 is not quite equal to the Wiener

solution since there is an extra term of 2 2 1— ”  . Senne (11)

dcrnori~~tr~~ted by exp€~r itnera t that LMS filters do not converge , in gen-

eral , to a %~iener solution if the inputs are correlated , and since the

input has a DC component it is correlated over time. Still , we note

a
6/

.4 - 
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that if p<<—.i~ the adaptive solution will be essentially the Wiener

solution.

To reconsider the conditions under which we can find the limiting

value  of the wei gh t , we note that V is chosen in the rang e 0 V ( 1

for normal use , an d hence from the conver gence cond itions tha t:

IV  —2~ior
2—2pa 2I<l

2(a +a

2—23

will guarantee that the mean weight value converges. Note also that

transien ts die geometrically as

While the average , or expe cted , solution is very useful in under-

stand ing the behavior and utility of the filter (see for example pre-

vious final report [11 ) ,  i t is not the compl ete story .  In thi s sec-

tion we shall analyse the variance of the single weight . From this

informa tion we can dete~rmine how muc h extra noise (misadjustment (1))

appears in the output due to the adaptive process. Also , we will find

a new convergence criterion.

The first step is to find E{W
~+i

) ,  the mean—square value of the

weight. Knowing this , we can determine the variance of the weight by

using the following formula:

4 . VAR {~~ ,~~1} E(~~~41} 
— (E{W N+u }) 2

2— 24

For N)3 wc ~~n show that:

I
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E(W~~1} = 4i~
2p2 + 8~i

2a’~c + 8p 2a 2q 2[1js ]

+ 4pW 0aqs t~ + 4~~2pv [1_rN] + 812aut [~7-j~ r ]

+ 
8J~~a~~2u [l_ r~~~2 s 1 _srN_ 2] 

+ 4~ w0uqs~~~
1

+ 4 0qu[~~~~~~~_] + w~ rN+l

2—2 5

Where

q (I a—2Ja (a3+3aa2)

r 
~ 
2
—4

~.&V (~~
2~~.2) + 4~.1

2(a4+6a2ci2+3o-~)

s -
~~ 

(I — 2~i(a
2+a2)

~ V (a2+cr2) — 2p(a 4 +6a 2a2+3cr4 )

u 
~ V 2a — 4~iV (a 3+3acr2) + 4~1

2 (a 5+l0a 3a2+l5acr4 )

V V 
2 (a 2+cr2) — 4

~-’V 
(a4+6a2a2+3o4)

+ 4p2(a6+15a4a2+45a2a4+l5c16)

NOTE: this result was reported earlier in Quarterly Report ~3 for  this
-

- contract. However , d ue to an algebraic  e r ror  the or i g in al equa tion ,

equa tion i&, is incorrect. Thus Eq. 2—41 and 2—42 of this repor t sup-

plant E~q.. 8 and 9 of Quarterly Report ~3, “Exac t Analysis of a Special

Adaptive Power Sejarutor ” .

This is a formidable expression ! However , i f IsI<l and Ir I<l ,

then u r n  E (W~ } = E ( W 2} will converge to:
N->oo

E(W21 = 4~i
2p2 + 8p 2 1~

2t + ~-~~1
a

S
c1 + 

4~.i
2pv
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+ 
8i.i2aut 

+ 
8~i

2ag 2u
l—r (1—s) (1—r)

2—26

Fur thermore , if we take a to be zero and V to be 1, then

VAR EW} = 4p2cr4 + 
4p2a2 (or2_l 2pcr4+6W.i2or6) 

— E{WJ
4por —l2p a

=uo2 [l_8Mor
2+4~~

2a4

l-3jior

4 2—27

This case is that of a conventional rIMS filter , and was analysed

by Widrow in [5 ) Th e approxima te analy sis used by Widrow ind icated

that the variance of the weight should be pa2. This agrees very well

wi th the exac t analysis  it  we recal l  Wi d ro w ’s stipulation that

<< 1, whi ch correspon ds to slow , low—noise adaptation.

Recall that convergence of E(W~ } required that IsI<1 and rI<l .

The first condition becomes:

IsI< l =>I V —2p (a2+cr2)I < 1

2(a +0
Which is the same condition as for convergence of the mean weight

value . The second condition becomes:

IrI < 1 => I V  2 4pV p+4p2(a4+6a2a2+3a4) I < 1

= a > ~ 
2—l—4p (/ p+4p 2(a4+óa2o~

2+3o4)

~ 
V c

2+a2) +v~~+~a
2or2+3a4_4y 2a2o2—2V 2~ 4

- 
- 2 ( a  +6a a +3o-

2—28

4
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2
if SNR

a

~ 
(/ (SNR+1 ) + ~/~NR 2+6SNR÷3—4~~ 

2SNR—2~~~
2 (a2SNR+6a2+3cy2)

2—29

Again , this is not a particularly simple expression. Figure 2—13

is a plot of the max imum possible ~i vs (I for various SNR ’s (holding
total inpu t power = 1, max imum p assuring convergence of mean and

100,000

Maximum p for convergence of variance vs. V, as a function of SNR
(holding total input power at 1).

Fi gure 2—13

vari ..n~~ ot the wei ght vector). From this we see that there are two

cases : a) hi gh St~R and b) low SNR. In the high SNR case

cqu~.tt osi 2—44 simplifies to:

( V+l
I x tota1—ir~put--powe r4
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2—30

wh ich varies from 2 x total—input—power to input—powe r as V varies

from 0 to 1. In the low SNR case equation 2—44 simplifies to:

~~‘ 6 x total—input—powe r

2—31

which varies from 6 x total—input—powe r to 3 x total—input—power as V
varies from U to 1. The most stringent requirement on p occurs when

V 0 (although in actual practice V is rarely less than 0.99) and

SNR is low. For this case ~ ~ ~ tot ~put—pow~
é7-
~ inp ower ’

If p is selected by this criterion , the variance will always converge

and remain finite. Note that this condition is more stringent than

the condition for guaranteed convergence of the mean which required

t h a t :

~~‘ < total—input—power

in the worst case. Also , note that the conditions for convergence in

the mean presented in [9, 51 for an LMS filter I< input~power) where

(1 = 1 is not s u f f i c i e n t to guarantee convergence of the variance in

low SNR regions. Of course , in normal prac tice p is very much smaller

than the bound so this problem does not arise . However , if a p is

selected so that the filter converges in the mean but not in variance ,

then we would expect the weight to oscillate randomly about the mean

value with ever larger oscillations. This analysis of a single—weight

filter corroborates Senne ’s earlier expe r imental work with multi—

weight filters: that to guarantee convergence of the weight noise

variance requires p to be several times smaller than the value needed

to assure convergence of the mean weight value .
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2—F. Conclusions of Part 2

We have stud ied the second order effects of the Leaky LMS (LLMS)

algorithm . The LLMS algorithm causes the weights to var y about the

mean or expected solution. This will modulate the output of the

filter , causing added undesirable noise components in the filter ’s

outpu t .  For sinusoidal inpu ts wi th f requ enci es between 10% and 90% of

Nyquis t f requ ency we fo und tha t the d istor tion power was less than

0.2% of the des~ .able output power. For very low frequency inputs  the

distortion power increased , bu t even at 1% of Nyguist the distortion

power was still less than 5%. Furthermore , most (96%) of the distor-

tion was in the third harmonic .

For whi te noise inputs to a LLMS based Adaptive Power Separator

CAPS) we have derived an equation for the variance of the noise in the

weight vector. This equation (Eq. 2—29) agrees with previous analysis

(5, 9, 1]) of weight vec tor noise in [1MS filters , a special case of

LLMS in which V = 1. This analysis also confirms an ealier conjecture

( 1 ) tha t the LLM S a lgor i thm woul d have less wei gh t noise than an

equivalent injected noise scheme.

Finally, an exac t analysis of a special case (single—weight) of

— the LLMS driven APS was per formed . This analysis confirms Senne’s

Ill ) observation that LMS does not converge to the Wiener solution if

the input is correlated . However , the b ias f rom the hiener solution

can be mad e arbitrarily small by decreasing p. Also, we found that

LLMS (and LMS) filters may not stabaliz~� in a mean—square sense even

though they converge in the mean. A new criterion for p is presented
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which guaran tees mean—square stability.
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