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PART 1 ”
l{

The concept of adaptive power separation for single channel
applications based on the "leaky®™ LMS algorithm has now been extended
for adaptive array applications. A new algorithm designated as
*scheme 6A® has been shown to be potentially highly effective for
nulling strong jamming signals in an aircraft receiving environment.
The new scheme is substantially less noisy and more simple to implement

than ®scheme 6°® which was ana]ysed during our previous year's effort. _

Using scheme 6A, one could establish an omnidirectional quiescent
receiving pattern in order to accept incoming signals regardless
of their angles of incidence. This pattern is sustained as long as
all incoming signals are "weak". However, in the presence of "strong"
incoming signals (jammers), regardless of their angles of incidence,
the quiescent receiving pattern changes as deep nulls form in the
directions of the strong signals (jammers) as a result of the adaptive

process.

The adaptive algorithm sustains the quiescent pattern with a
“soft" constraint. A conflict develops with the incidence of a strong

input, which, if strong pnough, causes the soft constraint to be

violated and a null to form. The separation between a strong (jammer)




.

input to be rejected and a weak (signal) input to be accepted is
determined by a parameter y in the algorithm which, in an operational
system, could be controlled by a panel knob. The power gain of the

. receiving array in the jammer direction is reduced by the factor:

where og is the jammer power and N is the number of weights in the

entire antenna array processor.

PART 2

A1l real-time adaptive processes experience noise in the adaptive
parameters. The amount of noise depends on the nature of the adaptive
algorithm, on the number of parameters, and on the speed of convergence. 1

A fundamental study of parameter noise and its effects on the output

signal has been undertaken for stochastic and deterministic inputs to
weight-controlled adaptive filters driven by the leaky LMS algorithm.
Weight noise has been determined for the case of an input consisting
of a sinusoidal signal plus white noise, for wide ranges of SNR and

frequency relative to Nyquist. Broad operating regions have been found

e - et




vy
f\

where the output power due to weight noise is less than 5% of the
output signal power. _,
\

Weight noise also has a significant effect on stability of the

adaptive process. An exact analysis was performed of a special single- |

weight case. It was found that leaky LMS (and LMS) filters may not
; stabilize in the mean-square sense even though they converge in the
mean. It is known from previous work that convergence in the mean

is insured by:

1

(total input power) A

T

? A new criterion for u has been found which guarantees mean-square

stability:

0.288 5 V3

(total input power) 6 (total input power)
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PART 1

ADAPTIVE ARRAY PROCESSING FOR SEPARATION OF INPUTS BY POWER LEVEL,

FREQUENCY, AND ANGLE OF INCIDENCE

1-A. Introduction

Our research on adaptive techniques for antijam systems has con-
centrated on the application of a modified form of the LMS algofithm
to antenna arrays, permitting discrimination against received signals
on the basis of their power levels, using spatial and frequency E
filtering. This type of antijam system is applicable.tovsituations
where the desired signals are much weaker than jamming signals.
Knowledge of direction of arrival and of other specific characteris-
tics of the desired signal is not required beforehand since the adap-

tation process uses only signal power as the basis for discrimination.

1-B. Review of Scheme o

The goal of this activity has been the development of an adaptiv*
antenna array whose sensitivity is high and essentially omnidirection=
al to weak inputs, and whose sensitivity is low to strong signals re-
gardless of their angles of incidence. The objective has been to
cause high power jamming signals to be severely attenuated while lowesg
power communication signals are only slightly attenuated. We thereby

realize a substantial signal-to-jammer improvement.

Figure 1 éemonstrates the type of antenna reception patterns tha

are desireca (and whicn have been achicvea with the current algorithm)
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‘the direction of the jammer .

The patterns shown are directivity patterns, where the antenna array

itself is located at the origin of the pattern, and where the signal

or jammer is arriving directly from the right (along the axis shown).
Figure la shows directivity patterns corresponding to a set of weak ‘
incoming signals. It is evident that the patterns remain essentially
omnidirectional for all of the signal powers listed. Figure lb shows
directivity patterns for a set of strong jammers. It can be seen that

as the jammer power grows, the array places deeper and deeper nulls 1!

An adaptive system which behaves in the manner'just described is
diagrammed in Figure 2. The behavior of this system was examined and
reported in [1) and has been called "Scheme 6". We summarize its
behavior here. A six element circular antenna array (as an example) iJ
processed by six slave filters (TFi) to produce the array's output.
The weights of the slave filters are taken from a corresponding set of
adaptive or “training" filters. The input to each independent train-
ing filter (TF;) is the associated antenna element's signal plus a
white noise "pilot signal". The impulse responses are adjusted by the
LMS algorithm so as to best minimize (in the least squares sense) the

difference between the summed outputs of the six training filters and

the sum of the pilot signals.

This results in the following behavior: in the absence of incom=
ing signals or jammers, the pilot signals force the impulse responses
of all of the adaptive filtcrs to become zero-delay unit impulse

responses. In this situation, the antenna's pattern is essentially

omnidirectionzl (due to symmetry). Now when an extecrnal signal is re-f

|
{
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ceived, the LMS algorithm attempts to reject it by creating a null in
3 the sensitivity pattern in the signal's direction at the signal's fre-
quency, because this incoming signal is uncorrelated with the pilot
signal. However, the pilot signals and the adaptive process have
created a "soft constraint" that attempts to maintain uniform recep-
tion in every direction. The array pattern cannot be omni and null
simultaneously. Therefore the LMS algorithm computes a pattern that is
a compromise of the two. The compromise solution achieved is a func-
tion of the power of the pilot signals relative to the power of the
| received signal. As we can see from Figure 1, a strong received sig-‘
nal causes a deeper notch than a weak one, accomplishing the stated
beamforming goal. This intuitive argument has been confirmed analyti-

4 : cally.

The patterns shown in Figure 1 are the receiving patterns of the
i antenna array at the convergence point of the algoritam. 1In reality,
the algorithm never stops exactly at the convergence point, but moves

around it slightly in & random fashion due to weight vector noise

‘ (21.131.(4).

Figure 3 shows the effects of weight vector noise. We assume

that a single sinusoid is being received by the computer-simulated ars

ray. Figure 3a is the time waveform output (the "RF waveform®) of th]
array system for a stronj input, i.e. a jammer. Figure 3b is the tim

waveform output of the array system for a weak input. 1In each cese

the figure shows several cycles of the sinusoids before adaptation is

allowed to begin. Without adazptation, there is no rejection. Refer=—

ring to Figure 3a, we note that for the strong jammer, attenuation is
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rapid, but noisy. A portion of the time waveform is plntted on & mag-

nifiea scale. After convergence, noise in the weight vector randomly

modulates the strong sinusoidal 1nput, producing a substantial amount

of output noise. The jammer is thus not completely rejected. Its ef-

fects are manifested in the residual output noise. Referring to Fig-

ure 3b, we note that the low power sinusoidal input is attenuated more

slowly and to a much lesser extent, but that its essential charac-

teristics remain. However, a close examination of this time waveform

shows that its amplitude is varying somewhat over time. The array pro-

cessing algorithm has added some random modulation to the signal. Be-

cause of the noise in the weights, the amount of output power result-

ing (after convergence) from the incoming strong signal exceeds the

output signal power resulting from the weak incoming signal. This is

not a satisfactory situation, even though the jammer has been substan-

tially attenuated.

1-C. Introduction to Scheme 6A and its Characteristics

4 The behavior described in the previous section is excessively

noisy and is a result of the LMS algorithm being driven by a noise pi=-

lot signal. To alleviate the noise problem, a new system was proposed

ana tested. This system does not require the use of a pilot signal.

It is much less noisy and has the additional &dvantage of being

simpler in its hardware requirements.

Th: system, and adaptation algorithm, are presented in Figure 4

and labelea as “Scheme 6A." Using tne same six element circular array

for iliustracion, the array signals are processed by only a single se
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of transversal filters in order to produce the system output (Scheme 6
required two sets of filters). 1In Scheme & the required performance

was accomplished by introducing a unique training signal. In this new
scheme, the effect of the training signal is accomplished directly by

the adaptation algorithm. As a result, no training signal is required,

significantly reducing system hardware requirements.

The adaptation algorithm of Scheme 6A is presented in Figure 4.
By examining this algorithm, its relationship to the standard LMS al-
gorithm is clear. However, the Scheme 6A algorithm includes one more
"driving"™ term which is necessary to produce the required behavior.
To use this algorithm, one must know what the desired weight vector
would be in the absence of any signals. We call this desired weight
vector the "quiescent weight vector" EQ' If for each zdaptive filter
we set EQ equal to the mean of the corresponding converged weight vec-
tor that Scheme 6 attains in the absence of inputs, Scheme 6A will au-
tomatically produce the same mean converged weight vector solutions as

will be produced by Scheme 6, in all signal environments.

For the Scheme 6A algorithm, )Y is equivalent to the power of each;
pilot signal used in Scheme 6. It is possible to choose any gquiescent
weight vector desired. To produce the receiving patterns shown here,
the quiescent weight vector was chosen to have a unit impulse response
at zero delay for a single filter, and zero impulse response fz. all
other filters. This results in a truly omnidirectional pattern in che

absence of any signals (assuming omnidirectional antenna elements).

By examining the second form of the Scheme 6A algorithm as writ-

12
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ten in Figure 4, we may notice a relationship to the "leaky LMS algo-
rithm" described in [1). The first two terms are identical. However,
the leaky LMS algorithm has a tendency to drive the weights to zero.
The new algorithm has a tendency to drive the weights to the gquiescent
weight vector. It is the third term in our algorithm, absent in the
leaky LMS algorithm, that causes this. Thus the new algorithm is a
generalization of the leaky LMS algorithm, since the leaky LM5 algo-
rithm can be obtained from the new algorithm by choosing the quiescent

weight vector to be zero.

To demonstrate that Scheme 6A eliminates most of the noise in the‘
weights and the associated random modulztion problems demonstrated
earlier with Scheme &, Figure 5 presents time waveform outputs of
Scheme oA. The same signals used with Scheme 6, which resulted in the
outputs of Figure 3, have been used with Scheme 6A in generating the
waveforms of Figure 5. We note once again that the strong jammer is
attenuated rapidly, and does not display the noisy output seen for
Scheme 6. The weak signal is attenuated only slightly, and it does
not display the random modulation distortion that Scheme 6 induced.

4

Finally, we note that the output response to the strong jammer is much

weaker at the output than is the response to the weak signal. The im-

provement in output jammer to signal ratio is evident. An array sys-
tem using the new Scheme 6A algorithm and receiving both information
signals and jamming signals would exhibit performance superior to that

of an array system based on the old Scheme 6.

In figure 6 we present the cntenna reception patterns attained

when the weight vector is at the convergence point for the adaptive

13
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algorithms (Schemes 6 and 6A converge to the same expected, or aver-

age, solutions -- it is only their dynamic noise behavior that is dif-
ferent). It is clear that low power signals are attenuated only
slightly, while strong jammers receive significant attenuation. The
stronger the jammier, the greater the attenuation. The mathematical

relationships are reported below.

In Figure 7, we present the theoretical curves for the gain of

the antenna array to a single directional sinusoidal input as a func-
tion of the power of the input. Since the array gain is also a func-
tion of the pilot signal power for Scheme 6 and of the equivalent pi-

lot power Y for Scheme 6A, we have plotted the gain curve for various

values of pilot signal power (or equivalent pilot power).

In figures 8 and 9, we present the receiving patterns for the an-

tenna array when two sinusoids of very close frequency and equal

powers are received (calculated at the converged weight vector). Ex-
cept for the necessary nulls, we see that the array maintains approxi-
: mate omnidirectionality, even including the space angle between the

g two jammers, where possible. Sharper angular resolution could be at-

tained, but more than the six antenna elements would be required.

1-D. Definition and Analysis of Scheme 6A.

In this section we define Scheme 6A and analyze some of its pro-

perties, to confirm the statements made in the previous section.

16
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1-D-1. Terminology, Notation, and Definitions

In this subsection we briefly introduce the terminology, nota- !

tion, and definitions to be used in the remainder of this section.

There are k antenna elements.

The output of each element is fed to a transversal filter. The
tapped delay line of the filter contains n taps. The weight vector of

the filter therefore also contains n elements.

The letter i will indicate that the quantity is associated with
antenna element i or transversal filter i. Thus i can take on values

from 1 to k inclusive. |

The letter j used as a subscript is a time index, and indicates a

sample taken at a specific time. 1

The output of sensor i at time j will be denoted by xj(i).

The contents of the tapped delay line (TDL) of transversal filte
i at time j will be denoted@ by the vector §j(i) . We see from the wa

a TDL operates that

by : : T
Ej(l) [xj(l) xj_l(l) coe xj_k+1(1)]

Tne output of the transversal filter i at time j is denoted by

. i .
YJ( )
The output of the entire system at time j is denoted by Y:.-

W2 will need to refer to the contents of all 1TDL's simultaneous-—

ly. To do this, we define an augmented TDL contents vector ij' which

20

.

s, i i




!'.
,t
{

——

is the set of all Ej(i) vectors "stacked up" to produce one vector.

Thus

- T G h T T
X. = . . ' T,
&4 lijn).gc_l(z).....§](k)1

Similarly, we define the augmented weight vector Ej as

- T ' ' T ,T
Wyo= DT R T (k)

We can now define the operatioé of the system: §j(i) is obtained
by doing the time shift of a tapped delay line, using as the new input
value xj(i). Thus ﬁj(i) is just Ej-l(i) with all elements shifted down
one position (discarding the bot;om element) and using xj(i) for the

top element. The output for transversal filter TF(i) is simply

DS .
Yj(l) -4 EJ (1)_&](1)

1-1
and for the entire system the output is
k
. T
Y;: = 2 y.(i) = W. X.
J jm) 9 3 [t
1-2

Notice that we have not discussed how Ej is determined -- this will be

described in a later section dealing with the adaptation algorithm.

We next define & covariance matrix for the contents of the tapped

delay lines as Bxx' where

= T
Exx =E l.x_J.x_J )

1-3
witn E denoting the expectation operator. We will assume that the
processes xj(i) are stationary so R is a2 constant matrix. Since we

will be referring to just one covariance matrix, R _, we will denote

XX

21
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it by R.

In the application of this array scheme, one flexible aspect open
to the designer's discretion is the shape of the directivity pattern
that one wants in the absence of input signals, desired signals or
jammers. This is the nominal pattern that will be notched by strong
incoming jammer signals as a result of the adaptive process. The
weight vector that provides the desired quiescent directivity pattern
when no signals (desired or otherwise) are being received is denoted

Wy the quiescent weight vector.

. ¢
Lastly, we define W to be the optimum value of the weight vec-

tor.

1-D-2. Performance Criterion

e
The adaptive system Scheme 6A presented in the previous section

will be developed in this section from first principles. It will be
shown in a later subsection that this system and Scheme 6 produce the

same mean converged weight vectors.

We will first define a performance criterion for the adaptive

system. In accord with this criterion, the current performance is

used by the system to mouify its parameters to improve future perfor-

mance.

Let the performance criterion be defined &s:

3 = Ely?] + Is-ight?

22
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Recall from section B that:

y is the system output

W is the weight vector

EQ is the quiescent weight vector
2

-0, 1|

is the magnitude squared of the difference betweeni
the two vectors.

It is our goal to have the adaptive system find W such that J is

minimized.

To gain a clear understanding of this criterion, let us first ex-
amine it in the case wnen no signals are received by the system. In
this case no input means no output, i.e. y = 0. So it is the task of ‘
the system to find W such that II_Vj—_QII2 is minimized. This is clear=-
ly accomplished by setting W = EQ. In other words, the performance
criterion J is minimized in the no signal case by the adaptive process

attaining the quiescent reception pattern.

In the case where an input is available, the following tradeoff
occurs: by making a change in W, the magnitude of Ilﬂ-ﬂollz increases,
while E{yzl decreases. If the decrease in E(y2] is greater than the
increase in IIE—EQIIZ, the performance criterion J is decreased. What
the adaptive system will do then, is find W such that any decrease
that woulad occur due to a decrease in Elyzl is exactly balanced by any
increase that would occur due to an increase in llﬁ-ﬂcllz. What w.-

sec huppening is that the systeam will attempt to have W stay close to

EQ, only moving away when the output power E[y2] grows large.




> 'gﬁt -

To allow the system designer to influence this tradeoff, we in-
troduce a designer controlled parameter Y into the performance cri-

terion:

3 = Ely?) + yl1w-ug112

1-5

As such, the designer can control the relative tradeoff between B[y2]

and ll_@-_&gqll2 in the performance criterion.

1-D-3. Optimum solution to the problem

The problem as stated in the previous section is to minimize

2 2
= + J—
J = E[y°] YIIw EQH
1-6
by proper selection of W. Using gradients, we can determine the op-

timum value of W -- that is, the W which yields the minimum J.

We begin by rewriting J, using the fact that

Hvii? = vly ;
1-7
(for V a vector), and using the system equation for y (1-2):
T b & o b
= W % an + - N—
J = E[W XX W] Y(W-H,) " (H-W)
1-8

We see that J is quadratic in W, so that a unique minimum exists. We
find this minimum by setting the gradient of J with respect to W to

zero. The gradient is
ViJ= ZE(X.X?]W + 2Y(W-W.)

=99
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Beamformer with Injected Noise (ABWIN for short).
to show that the ABWIN and the scheme just presented yield the same

convergzd meun weight vector. Let us denote the convergzd mean weight

vector for the ABWIN as EABWIN‘ Then [1] showed that

The optimal weight vector that causes the gradient to be zero is

. . 2 .
designated as W , and is obtained from

T * *
2E[X.X. + W - =
[X;X510° + 2Y(W -Ho) = 0
1-10
Recalling that E[§j§§] = R, and gathering terms in E* yields:
*
(R+YI)W - YEQ =0
1-11
Now we can solve for E*:
* -1
W = Y(R+)YI) ﬂQ
1-12
or
* 1 -1
W = =8
W= (GRI) M
1-13

So the optimum weight vector is a function of the quiescent weight

vector and the covariance of the inputs signals.

1-D-4. Comparison to Scheme 6

In reference [1]), Scheme 6 was also referred to as an Adaptive

It is now our goal

*

* E - T |
Bapwin = (R*o,1) “P

1-14




where the R is the same as we have defined, ci is the power of the in-
jected noise used for the pilot signal for the ABWIN, and P is the
correlation between the contents of the tapped delay lines lgj] and
the pilot signal. This can beﬂrewritten as:

o 1 1

- -1 1
Bawn - (R D - 5 E
n n
1-15 |
In [1), in the earlier sections, it was shown that j
m Lerp-=po.c.010--0l-ccil 0o 07 |
] o |
n
1-16
and that the guiescent weight vector for the ABWIN was P. 1In a

:qwb‘

later section of [1], a method was proposed for altering the pilot
signal formation so that any value for the cross-correlation vector P

could be attained, and 35 P would be the quiescent weight vector.
log

Thus we showed in [1] that

! Kyonzn = 8 + 1) -le
1 o, ABWIN
1-17
where EQ = J? P could be chosen beforehand by the system
ABWIN (o4
n
designer. Now if we compare our new system
: ."_’* 2 (_1)75 % -I-)-IEQ

* 1-18

* *
with the above relation for the ABWIN, we sce that W = W,o. 0 if we

) 2 - '
make the assignments Y = o, and EQ = WapuIn® So the new system can

i 26
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obtain the same solution weight vectors as the original ABWIN.

1-D-5. Adaptation Algorithm

It remains to present the adaptive algorithm itself. The

development follows directly the development of the LMS algorithm,

which is a steepest descent algorithm.

The basic idea is: assume we have a weight vector W. at time j. |

P We want to find a weight vector for time j+1 that is closer to the op-%
; timum weight vector. To do this, we compute the gradient of J with

respect to W, and evaluate it at the current weight vector W.. This

gradient (denoted \/ J) defines the direction that Hj should be altered
W

to increase J. Since we are interested in minimizing J, we go the op-

posite direction. Mathematically, we set

Bge) =03 8 VWJ

1-19

! where p governs now far in the direction specified by V J we go. (If
‘ w

B is too large, we could overshoot our goal so much that J increases

again!)

Froim section 1-D-3 we already have an expression for V J:

: W
VO - 1B ¥y ¢ 2PN
| | i 1-20
E Using this in the expression above (1-1Y) we obtain
§ Bjep = By - 20[R Wy + Y5-HQ) |
Z 1-21
d- §
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Now in general we do not know R. Instead we use an instantaneous but

unbiased estimate of R. The estimate is §j§T Using this in the above

j.
expression we obtain

T
w~ = ‘v- - 2 x- . . - .
T3+l T Ay T NRE M, - 20V(H,-Hy)
1-22
5 L A
Now since yj = Ejhj (1-2) we have
W. = W. - X. - o
2341 © By - WKy - 20V(85-0,)
1-23 §
which may also be rewritten as 3
W. 'y = (1-20))W. - X i
¥y = Q1 uY)_J 2uyJ§J + 2uYW, |
1-24 |

This is the adaptation rule used in Scheme 6A. 1

1-D-6. Convergence of the Adaptation Rule

We must now demonstrate that‘the adaptation rule presented in the
previous section converges, and that it converges to the optimum
weight vector. The quantity we will study to indicate convergence is
the mean of the weight vector. Other criteria are possible, as in sto=
chastic approximation techniques. However, many algorithms based on
stochastic approximation have a tendency to “"turn themselves off"
after a time span, ignoring later data. While this may be suitable
for a truly stationary environment, it does not allow any capability

for following changes in a nonstationary environment.

First we will show that with a stationary input environment, if

the algorithm converges, the mesn of the weight vector has only one

28
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point to converge to--the only stationary point of the per formance
criterion J, which is therefore the optimum. :

To find the stationary point, take the expectation of both sidei
of the adaptation rule (1-23): 1
E[W, = E(W.] - 2pE[y.X.] - » ’
LIPR (%] ME(y;X;] - 2uVE(W;-Wol |
1-25
Now, at convergence, (which has yet to be demonstrated) we would havq
®
lim E(W.] = W
j=>o00 4

‘ 1-26
Recalling that W denotes the optimal weight vector. Thus we write:

W' =W - 20 lim E(x.xTW.) - 20y(wt-w.)

= - m XIW. - -

= BT i T aegRg) T TEEAE Ry
1-27

where we have reexpanded yj as §§ﬂj (1-2) . Continuing,

MR W = -2upW + 2up
BR W = -2pyw ny¥g

1-28

where we have assumed that, with Ej converging as j->oo0,

: T : T
lim E[X.X:W.] = 1lim {E[X.X.]E[W.]}
j=>00 37373 j->o00 73 J
3 *
B =RNK

= Wy

:
¢
;
3

S e e
Finclly, after grouping terms, we can find W :

(ReYDE = Vg
* -1
8 = yReyD g
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1-30

which is the optimum solution found in section D.

We must next show that the adaptation rule causes E[ﬂj] to con-
verge to a single value, which must necessarily be the stationary
point found above. Since the proof of convergence is directly paral-
lel to that of the LMS algorithm, and is rather lengthy, we will not
produce it here, but will point out the modifications needed to the
proof of convergence for the LMS algorithm. (A proof of convergence
of the LMS algorithm is contained in references 5 and 6). The major
difference is that the term which appears as

[1+2k A ]

in reference 6, must be modified to be

[I + ZKSYI + 2kg\ )] = [(1+2RSY)I + 2kg\ ]

1-31 |
Notice that the eigenvectors in matrix Q have not changed. (Also nott

that ks in [6]) corresponds to p in this report).

The other change required is the replacement of the term g(k,d)

by 2k VW,

With these modifications, the proof of convergence follows the
same steps leading to the conclusion that the adaptation rule causes

B(gj] to converge to the optimum solution so long as
1

0 < p K«
;‘Xmax
1-32

where )m'

uy 18 the maximum eigenvalue of the matrix R.
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1-D-7. Response of Scheme 6A to single sinusoids

In this subsection we analyze the gain that a single sinusoid

impinging on a Scheme %A array would encounter.

We represent the sinusoid being received at the individual anten-

na element as a phasor. Let us denote the phase of the sinusoid at

antenna element i as ¢i. Let the phase difference of the sinusoid at

two adjacent elements of a tapped delay line be 6. If the sinusoid has

power oﬁ then X. may be written as:

J
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1-33

Notice that we have defined the vector V to be the above coiumn ma-

trix,

Next we note that the weight vector W consists of n real weigh

However, using complex notation, we replace the n real weights by n

complex weights which produce the same output.

Henceforth, we
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represent all weight vectors as vectors of n/2 complex weights, and X
as a vector of n/2 complex samples, with autocorrelation matrix

2 +
Beu " Y Y

1-34

(where !+ denotes the complex conjugate of V).

Using this notation, we can express the expected output power of
the array for a single sinusoidal input as:

2 +

Ely’) = o2u'v v'u

s
1-35

for any steering vector V, signal power oﬁ, and weight vector W.

Now, if adaptation is not allowed and the weight vector is set t4
an initial valiue EQ, then the expected output power is:

2 2 _+ +
E(y”]) = oW,V VW
- =

1-36

Consider next the expected output power at convergence. We have

shown that the weight vector at convergence is:

* -
W= e DT
1-37
Thus, we have
2
* as + -1

1-38
By epplying the matrix inversion lemma (Theorem 5.22, reference 7] we

caen obtain

33
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1-39.
Now, from the definition of V, we can see that
vy = 1yn? = Bk
1-40
(recalling that k is the number of antenna elements, and n/2 is the
number of taps in each tapped delay line (complex samples)). Let us

define N = nk/2. Then we can use these formulas to give us a con-

verged weight vector of

2
e ¢t
TR e L

| o e 2 o
* s
| 1% N
" k!

1-41
l' - .

| i Now we may compute the expected power output at convergence (using W
‘ b
E ; in 1-35):
r §
, A 2
| 5 Ely?] = o2ty vt
‘ : * e R

{ . k=q
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( Oc 7 o
g2+ _-_! + '—svv+
USEQL-—L}_!! I—_L:_Z-:—-EQ
o
s o ’
| 1+ N 1+75u
[— 2 0’4 i
o S + + +
S, ot —
- o2ty vt LYYy T YIVNY
st[L ¥ - 2 = ) LA
. o
_ 1+ 2w (1+75-N)2J
1-42
) again gives us:
[ 4 y
02 o ‘
—-§N ._ZN
= o2utlv vt- 2 ¥ _ o v*, Y Y .
_w* sQ|- —~ 0’2 - - 02 . 44 .EQ
. 1+ (1+—7“-N)2
T 2 4 |
ol 5,2
B § 2
= ogwovil - 2—Y A vty
o o 2 i
1+7—N (1+-75-N)J
I 2 g
9s
— N
2 Yy +, ot
= O l] -
[ 02 EQ! - EQ
s
4+ —
i o
2
2 1 + + H
= O v
S| Hov ¥'ug
s
1l + y N
rewritten (using 1-36) as:
35
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1-44

Thus we see that the expected output power of the array at convergence|
is the expected output power of the array initially, multiplied by an

attenuation factor. This factor is always less than (or at most equal

2
o
? to) one since T; N > 0. This attenuation factor is independent of the
; antenna geometry, arrival direction of the sinusoid, and of the quies=

cent weight vector. The attenuation factor depends only on the i
sinusoid's power (oﬁ), the total number of taps in the array filters
(N) , and the equivalent pilot noise power (Y). Thus, if we know the
response of the quiescent unadapted array to a single sinusoid, we can

easily calculate its response at convergence of the adaptive process.

& | s %

W
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1-E. Conclusions of Part ‘ : o

We have proposed and studied a new adaptive algorithm which has

;

been designated Scheme 6A. It is related to the leaky LMS algorithm
previously studied. When applied to an antenna array, it yields a
method of antijamming based on attenuation of received signals on the
basis of their input power levels. No a priori knowledge of the signal
characteristics is required. This algorithm replaces a previously
studied algorithm, Scheme 6. It exhibits improved noise behavior and

reauires less hardware for implementation.
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PART 2

ANALYSIS OF ADAPTIVE WEIGHT NOISE COVARIANCE

2-A. Introduction

Previous work [1] introduced the concept of using an adaptive

line enhancer [8, 9) to separate signals by power level. Although the

original proposal required injected noise and ‘slave' filters, a re-

fined version was developed that eliminated the need for injected

noise by replacing the LMS adaptive filter with a 'leaky' LMS filter.
Because an adaptive line enhancer using the 'leaky' LMS algorithm can
separate signals by power level it is called an adaptive power separa-

tor (APS).

During the past year we have been engaged in analysing the per-

formance of the APS. Performance in the mean has already been

3

described in [1] ; however, performance in the mean does not complete=

ly characterise an adaptive filter. Specifically it is important to

know about the noise in the weights since, by a modulation process,
weight noise causes noise components in the filter output (9, 10]
which degrades the performance of the APS. The first step is to charac=

terise the variance of the noise in the weights.

Analysis of weight noise covariance has proceeded in four main
phases:
1) a deterministic analysis with the input consisting of a sinusoid

2) a statistical analysis with the input consisting of a sinusiod
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3) statistical analysis with the input consisting of only noise and
then approximate extensions to sinusoids in noise
4) exact analysis of a single weight APS for comparison with the

previous approximate analyses.

Figure 2-1 depicts the APS and helps to define the quantities

weak signals

“3

v

input d,
~_ J

- fl
\|+
///r o, strong signals
) &
zﬂ& J ] LLMsS Y;

£
delay FILTER

ADAPTIVE POWER SEPARATOR

Figure 2-1

used throughout this section:

d. is the system input at time j

X, = dj_A is the filter input at time j

Y. is the filter output at time j

€. is tne 'error' signal at time j. This signal is used to modify,

or updute, the filter weights according to the 'leaky' LMS al-
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gorithm.

The operation of the 'leaky' LMS (LLMS) filter is defined as follows:

If L= length of filter (number of weights)
W= weight vector =[w1,w2,...,wL]T

= i = T
S= state vector of filter [xj'xj—l"°"xj-L+1l

then
L
T
y;=W'S = 3 w.x. .
j j=1 13 i+l
2-1
€. = d.-y.
e i
2-2
W. = W.+2u€E]jS.
j+1 v 3720835, _
2-3 =
u = a constant controlling rate of adaption
(/ = the ‘leak' factor (gsnerally less than 1)
= 1-2py
2-4

Y = the equivalent injected noise power. That is, the effect of
the leak is the same as adding noise of power Y to the input
and then using a conventional LMS filter. (Note: LMS is a spe-

cial case of LLMS where (/ =1)

To characterise the average performance of the APS we have to in#
troduce scvercl new quantities which define the composition of the ins

put signal dj:

02 = powcr of input noisc

40
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2 . 02+y = effective power of input noise

c-.
p = power of input sinusoid

SNR' = —25 = effective signal to noise ratio
0.

With these definitions we can draw a gain curve from input,d., to the

J
ideai filter
gain ]-" —--ﬁ{---—--'—---

from
dj to yj

ro|=

APS

— e,
SNR'

NZ deceaae

APS used to reject low powered inputs
Figure 2-2
filter output, yj, versus SNR' (see figure 2-2). Alternatively we ci

draw the gain curve from tne input, d.

3’ to the error output, ej,

versus SNR' (see figure 2-3).

Thus to discriminate against weak signals we use the y output,
and to discriminate against strong signals we use the € output. Notf

that SNR' can be varied by selection of (/ since:

SNR' = —P___
0,2 . lz-ug

2=3

4]




§
:
E
]

gain
from
dj to €5

(B ideal filter

N| =

APS

o '
]
'
]
’ e ———
! ————Sp
N
2 SNR'

APS used to reject high powered inputs
Figure 2-3
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2-B. Deterministic Analysis of Sinusoidal Input

One case of interest is the behavior of the APS when the input
consists of a sinusoid and little or no noise. This might occur in
practice if an APS were used in a jam resistant mobile communication
system and the base station were close to the mobile receiver, or the
mobile receiver were very close to a powerful narrowband jammer. By
assumption the sinusoidal component of the input is either the desired
signal (say narrowband FM or AM) or a narrowband jammer -- the differ-

ence is power level.
For this case we let tne delay, A, be one unit and so:

dj = a cos[8j)

2-6
xj = a cos[0j-9]

2-17
6 = wT

2-8
w = frequency of sinusoid

-3
n

sampling interval

From previous analysis of the mean performance {1] we know that the

: output will be approximately:

yj = b cos[©]]

Substituting for dj and yj in equation 2-2 yields:

43
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Gj = (a-b) cos[©j]

2-10

Using this we compute:

(€55,); = 2P {cos[@i]+cos[205-0i] }

2-11

Notice that the first term of equation 2-11 is not a function of time .
J, only of weight index i. The second term is a function of time and
weight index. 1In previous analysis of the APS, when the mean perfor-
mance was desired, the second term was ignored on the basis that it
“averages out" over a period. Hence only the first term contributes
to the mean weight vector. Indeed the mean value of the weight vector
can be found by using only the first term of equation 2-11. We see
that the second term causes time changes in the weight vector and

therefore is undesirable.

We can model the LLMS filter, which is the heart of the APS, as
an "ideal" filter whose weights are fixed at the average weight vec-
tor, in parallel with a "perturbation" or "error" filter (Figure 2-4)
whose weights have zero mean &nd vary according to the fluctuations

about the average of the actual adapting weights.

The "good" update term is Eégcoslei] and the "bacé" term is

2%—Ecoslzej—ei]. Both "good" and "bad" update terms are present in a

fiiter using the LLMS algorithm. The "good" term drives the filter
towards the minimun meen square error solution; the "bad" term is at

twice tne input freqguency and causes the weights to churn, which is
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input x. AVERAGE Y

WEIGHTS

"goodli

update terms SPLITTER

"bad” update terms

£

WEIGHT

ERRORS

y

Weight perturbation model of an LLMS filter

Figure 2-4

nonproductive and causes output distortion. To determine the weight
variations of the weight error filter we apply the "bad" update term

to the LLMS update scheme (equation 2-3).

To make tne problem solvable, note that equation 2-3 can be

Z-transformed to give:

> = .+ 05
W]+1 v WJ ZuGJ 3

(2-¢V )W(Z) = 2p€(2)S(2)

_W(z) _ _2p
€(2)s(2) -y

2-12

Since the input to the system defined by equation 2-12 is o sinusoid,
we know that the output will be a sinusoid of the same frequency.

The complex ygain of the difference equation at this frequency is:
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26 T 326_

v

The amplitude of the weights, We, of the weight error filter will be:

a-b
5 19,5]
2-13

Figure 2-5 shows lgzel vs. © for a variety of (/'s. Using equation 2-1
we can compute, in the time domain, the output of the weight error

filter as:

Yej Yei*j-i-1

i

M Eme
[
—

319!9 ICOs[20)-8i+g) }{aCOs (8)-8i]}

i=p 2 28

a(a-b) - 1

=5—1lg,g! 2 5(COS[38)j-4]+COS[30]-20i+¢] ]
1

n

L
= alazb) |5 |L cos(ej-p1+28 L g | 5 cos[38j-20i+g]
4 20 4 =)

29'

i
2-14
l cosioncllustos ARG(gzg) 5 tan—l Im‘;gelanla(rgy)(g)].
4 The first term of yej is at the same frequency as the desired
output and has amplitude amp, = éi%fgllgzelb. We note that b < a, so

a-b < & which implies amp; < E?£|929| , but this can be made arbi-
trarily small by selection of u which controls '926| unless 6 is very
small. If we restrict our attention to a reasonable range of frequen-
cies, say 20-5U% of Nyquist (see also [8]) where Treichler makes this
same essumption ip analysing the mean performance), then:

H 2 2
L
ea 5 B 925'929' 5 “3a4 A4

2-15
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v=1.0 > s

0.7
6 ]
\ 0.
|9l 6
*0.5
/ 0.4
,/ “0.3
e S y.. ~0.2
N y//
v
. T )
* 0 50 100
]
frequency (as % Nyquist)
Gain vs. Frequency |
i as a function of leak
& Figure 2-5
'

The second term of 2-14 will cause an output at three times the

original frequency. While the expression for the emplitude is rather

complicated we can easil' dSound it:

: L

1 2 cos(39j-20i+g) <L

g i=1

: 47
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2-16

from which we see that the amplitude of this third harmonic distortion

is also bounded by equation 2-15.

Looking at the filter model (figure 2-4), we notice that the out-
put of the weight error filter, which is part of the total filter out-
put, was not subtracted from the desired signal dj’ If Yo Were sub-
tracted from dj as well as Yir it would cause a new component in the
error signal, ej, equal to “Ye- To account for this, another weight
error filter should be added. This filter is updated using ‘
wj+1 = ( wj-zuyesj and causes a new output Yeo which will have terms

at the fundamental, third harmonic and fifth harmonic. These outputs

contribute to ej and so on. However, note that Yeg can be made arbi-
gty aye a3L
trarily swall, and yg, < —Z—{|929'+'g49l} 5'T?T{|929'+|949]' The

weakness of this analysis technique becomes apparent here. Previouslyi
we restricted '929| by selecting a reasonable range of values for ©.
l Similiarly we could select a range of © to restrict Ig4a|. But, it is
4 evident that Yeo will give rise to other error terms which will cas-
cade to create an infinite number of error terms of all different fre-
quencies. Some of these error terms must surely have very large |gl
since they will be necar some multiple of the sampling frequency. How-
) ever, experimental results indicate that if @ is between 20% and 80%

of Nyguist frequency, then the only output component of any signifi-

B - caunce is the third harmonic. Hence for practical purposes only the
; first "weight error” filter nceds to be analysed.
, % 48
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Computer simulations were performed to verify these analytic
predictions. The frequency of the input sinusoid was set at 4% of Ny=-
quist. The results are graphed in figures 2-6 through 2-11. Each
plot shows percent power not at the fundamental versus p. Thus each
plot relates total distortion power to u. From 2-6 we see that in all
cases the total distortion power was less than 0.2% of the output |
power at the fundamental frequency. From 2-7 we get the same shape of
curve but now the total distortion is less than 0.06% of the desired |
output power. 1In 2-8 the fundamental frequency has been increased to

8% of Nyguist. The error power is substantially lower than for the

previous cases, as is to be expected.

In an attempt to stress the APS to cause significant distortion,i

three simulations were run in which the fundamental frequency was 1% 1
of Nyquist as opposed to being in the 20-80% range. The results are !

i
i
plotted in figures 2-5,2-10 and 2-11. Note that the greatest observeq

distortion power is 4% of the power of the desired signal.

A final point to consider is at what frequencies the distortion

power occurred. Analytic efforts indicate that the 3rd

harmonic
should be dominant. In fact, the simulations supported this. Even
when the fundamental frequency was 1% of Nyquist, over 95% of the disi

tortion power was in the 31'd harmonic.
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Figure 2-7
% distortion vs. p
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Figure 2-8
% distortion vs.
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2-C. Statistical Analysis of Sinusoidal Input

From previous work [1] the general form of tha APS output is

known. If we use equations 2-6,7 & 8 to define the input, then we

know that the output will be approximately:

y; = bCos (9j) = ———i%r—- Cos [8]]
oS A

If we define Aﬁj as Wj—E{w}
and then notice that (1-{¢ )E{W} = E{2ue€sS},

so by taking the expectation of 2-3 and 2-18 we get:

W o= W.+20€.S.-E .S.
AW VAJ M 355 (?JIGJSJ}

hence

AW(z) _ 1
20€(2)S(2) ~ z-¢

but if we know VAR{Zpeij} then we know

: 1 |2
VAR{AW.} = l———l VAR 2 S
) = |72p] Pvariane s )

vaa{zuejsj} = VAR{2u[aCOS (87) - ———i%r——COS(aj)lsj}
I+ —sRRT
= 4u°VAR{——2—c05(83) 5.}
L SNR',; 3
Ceg
2 a2
= Ac a4 & o  _C3
(W\R{ZnGij})i = 4p X ) VAR{ (CCS[6]])) (aCCS[8)-61i]) }

(1425)
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p?a? a2 12,4
. =
(1+L SNR )2 8 2(1+L SNR')Z
2-5
Thus
2.4
! 1l ]2 pa
(VAR{AW.}) . = I = I
&b z-{ 2(1+L SNR')Z
2
} 1 u2a4
L) []
e)29_v 2(1 L SNR )2
2-6

These formulae are in close agreement with experimental results
as Table 2-1 shows. In the cases where w is 12.5% of Nyquist, there

is a 15% error in determining VAR{Zuejsj}, although VAR{A W} is still

given by equation 2-19 if we use the observed value for VAR{2u€.

JSj}.

To summarise we used a simple statistical anzlysis to determine
the variance of the driving function, 2p€.S. (equation 2-21). Then we

J )
‘ considered how this affected the weight vector (equation 2-19) and

1 derived a relationship (equation 2-22) for the weight variance in
terms of the input quantities. These equations (2-21 & 22) will give
a good idea of the weight variance (note VAR(wj} = VAR{ Aﬁj}) provid-
ing the input frequency is not to near DC. A reasonable range of in-

put frequencies appears to be from 20% to 80% of Nyquist.




e

m v W CVAR MVAR % error

| T T 25U d.505ky © Gendaly” 5 g
- g A . <11 T 2

g * L 25.9 .54%00 " 4.55x1u 11 0.2

1 -t 4, =2 = A =G ;! -5 " '
v iy Z3.v 3.54x10 1w 3G L1 PR

. 3 -3 -2 oo o -9

iu Lo 12,5 4.2:x1u 5.22aku 15.98

- _"l -l » -1i -~ - o

iv 10 125 d.94x10 i Ye22x1iv 11 la.s
= -5 . L A% i L *

| DR LZe5 &.54x06 " Y. 38xlu 12 9.4

107 3077 0.0 45680077 4. 5531077 J.8

T B o R T T TR e T TN Y vou

*This value almost certainly incorrect due to numerical
inaccuracies in the computer simulation.

w is measured in % of Nyquist frequency
CVAR is the calculated variance
MVAR is the measured variance

_ MVAR-CVAR
% error = TCVAR x 100%

Table 2-1
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2-D. Statistical Aalysis of the Adaptive Power Separator (APS) with

Noise Input

In a real communication environment the input to an APS might

well consist of both sinusoidal components (either signal or nar-

rowband jammers) and broadband noise (thermal noise or wideband jam-
mers). Thus we wish to understand the behavior of the APS to a
sinusoid in broadband noise. The first step is to characterise the

weight vector variance when the input consists only of noise.

Note that:

VAR{X} = E{XXT}-E{X}E{x}T

2-7 1§
also
d.=n
J ]
where
nj is from a white, zero-mean Gaussian process with variance 02.
2-8
From equations 2-2,3 & 4
T
i =2pyYI-2uSST)W. + a8,
WJ+1= (I-2p)I-2p ) j 2u 355
2-9

If we assume E{SWT} = 0, which is a common assumption (well supporte$

by experience if u is small enough), then we find:
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Ele+1) =W = (1-2uy1-2p021)ﬁj + 0

2-10
= - 'T ol = —T
VAR{W 1} = ElW W) - Wo i Win
2 2 2 4
= (1-2pYy) VAR{wj}-4u(l-2uY)c VAR{wj}+4u o'l
+ 4u2ElSSTVAR{Wj}SST}
= (1-4uy+4u2y2-4pc2+eu2yc2)VAR(wj}+4p2041+0
2-11
Where we have assumed:
uB{SSTVAR{wj}SST}<<02VAR[wj}
2-12
If we now assume steady state so that VAR{wj} = VAR{wj+1]' then:
: 2 4
VAR(W] = . 4n g 1
4uoc“+4py+4p yz—ap yo
|
= 3 1
- By 1+L-uXo-2uy
o o
= ___paz I
1+J%
o
2-13
i >
{ . Providing ny<<1+)y and plpecaeds
q o (o o
: 2
. 2 g l o
=> pdlot—s and N o=
: v ol v Y2
‘ ¢ 2-14
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Notice that for LMS Y = 0, and so VAR{W} = uozl which correspgonds to
earlier analysis [9) of the LMS filter. Also note that the 'leaky’
algorithm never increases the weight variance, in fact it actually
reduces the variance. This supports the conjecture [1] that algo-

rithmically simulated noise (via 'leaky' LMS) is more desirable than

actual noise injection, even though the converged mean weight vector

solution is the same in both cases.

In equation 2-28 we assumed that

pE{ssTvar{w}ssT}<<o?var(w}

To check this assumption we note that:

E{SSTVAR{W}SST} = ofvar{W} + o®Diag(VAR{W}] + o*Trace[VAR{W)]I

2-15
where Diag[ . ] means the matrix consisting only of the diagonal ele-

ments of the operand.

—

Assuming that 2-29 is substantially correct leads to the following

conclusion:

6 6 6
T T, _ 2u0c ,Luno _ u(L+2)o
E{SS VAR{W]}SS"} = ==——+—=-1 = I
o (o4 o

2-16

Therefore 2-28 reqguires:

uz(L+2)cs<<a2u02
1+J% 1+J%
o o
s 61




which implies n<<JL

)

2-17

This condition is often assumed in adaptive filtering and it im-

plies slow, low-noise adaptation.

Extension to the case of a sinusoid in noise is unfortunately not

obvious. Intuitively it is appealing to argue that the correct formu-

la should be:

uE_ .
VAR{W} = —mi0 ,

1{.E_L_
min
by analogy with the conventional LMS formula of:
VAR{W} = p§ . I
Experiments indicate that this is not the case, in fact it is

easy to see that this would not be true since in the no noise case the

formula is substantially incorrect.

Ancther approximation assumes that the noise and sinusoid affect

the weights independently, which results in the curve of figure 2-12.

This approach is not strictly correct either. However, if the
weignt variance due to noise alone is substantially greater than the
variance due to the sinusoid alone, then tne formula is indicative of
the &ctuzl varience. This result has been checked experimentally, and
some rcsults are presented in Teble 2-2. An important point to con-

sider is that computing weight variance by using the formula:
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weight 1
variance éonbined ’
variance
variance due
to noise only
'
i s variance due to
sinusoid only
s et
I R
noise power
Weight variance obtained by assuming independent effects of
noise and sinusoid
Figure 2-12
VAR{W} = p(error-output-power)
or

VAR{W} = u(error-output-power)
1+

(error-output-power)

(as was done in [1lV]) for example) is apparently very conservative.
The power due to sinusoidal components does not contribute to weight
variance as much, proportionally, as power due to rcndom components.

We are currently working to gquantify this effect.
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T —— = m . . — e
notse 1-y u weight approx. #1 approx. #2
power variance
1.17x107 103 103 3.27x1078 9.31x107° 1.37x1077
- e o o -4
1.0 2x10° sx07t  17sa0t 3.27x107* 2.5x10
1.0 103 sa0 5.67x107° 3.27x1074 2.5x107°
1.0 0% sx0™? 2.56x107% 3.27x107% 2.5x107%
1.0 103 10® 5.81x10"° 6.55x10"7 5.0x10"7
5x10™4 w* w? 1.29x10°8 9.18x10"8 2.5x1010
1
Frequency: 25% of Nyquist
Power of sinusoid: 1.0
Number of weights: 20
ug? .
approx. #1 VAR = ;’r‘”’
] y & R
2
Emlln
u o?
E | approx. #2 VAR =
l '|+ _L
1 o*
Table 2-2
Comparison of measured weight variance and
two approximate expressions
|
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2-E. The Single Weight Power Separator

Analysis of a single weight adaptive power-separator is of great
interest for many reasons. Among them is that a complete analysis can
be performed with no need for epproximations. 1In this report the mean
weight value and weight variance are analysed, which leads to some
surprising results that further illuminate the performance of an LMS
filter. The results show that previous approximate analysis of
multi-weight filters by Widrow [9, 10) , Senne [11]) , Brown [12) , and

Davisson [l13] to name a few, are accurate enough for useful results in

most cases, with the greatest errors occurring during fast adaptation.

The configuration of the adaptive power-separator is a leaky-LMS
filter in a line-enhancer as shown in fiqure 2-1. Note that in this
case wj=wj has a single element; and Sj=xj, a single element. The in-
put, dj=nj' is composed of a DC value, a, which is the 'signal'; and
white, zero-mean Gaussian noise with variance oz. Physically this may

be thought of as a degenerate (zero-frequency) sinusoid of power a2 in

’ 2
noise of power o”.

By substituting Eg. 2-2 into Eq. 2-3 and then expanding Eg. 2-3, we

fina:
N-1 H 2
W = 2un.n, 4 + 20 3 [(n;n;_ (¢ -2un;_1)1
N+1 N N-1 j=g 13 1 j=i+l -1

- 2

3=0

)

2-18

Using this relationship we can derive the expected (or average) weight
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value as:

N-1 N
E{W, .} = E{2unn. } + 20 3 E{n, n. [ (¢ -2un2 .)}
N+1 N"N-1 i o i T <1

- 2
+ WeEL I (¢ -2pny 1)}
)=0

2-19

Using the following properties of white, Gaussian noise with the de-

fined parameters:

Pea® i)

E{n.n.} =
173 a2 i#j

B{f(ni)f(nj)} = B{f(ni)lﬁ{f(nj)} it 1)

we get:

2 N-1 5 N 9
E{Wg,,} = 2na“ + 2u.§ (aE{n, (¢ -2un})} 'ﬁn qE{V -2pnj_l}1
1=0 J=i+2

- 2
+ wo M E{¢ -2pns .}
3=0 e

N-1 N
2ua2 + 2u_S [a(ay —2ua3-6p02a) n (v -2u02—2ua2)]

i=0 j=i+2

i

= 2 2
+ w0 I (¢ -2pna“-2u0c°)
3=0

[(a2V ~2ua4~6u02a2)(v —2u02—2ua2)N-i—1]

0
+ WU(V —Zpal—chz)N+l

L}

2 . _2.N
et 3 2ptely ~zuatesiotel; |ioIY <2no ?;uai) ]
1-¢ +2p(c“+a“)

7o e O st S,




+ Wy (¢ -2na%-2u0?) N

2-20

This equation (2-36) expresses the mean value of the weight as a

function of the emount of data, or time, used in adaption. An in-

teresting result is the final mean value of the weight. We see that

2

if |¢ -2po —2pa2|<1 then the adaptive process is stable (convergent),

and so we can find:

: 2 4 2 2
' - —_—
, lim Ef{wg} = 2pal + 2@y 2ua2 6uc72a )
N->00 1-¢ +2p0“+2na
a2—4u02a2

i a2+(02+l:£:)
2n
2-21

The Wiener solution (minimum mean-square-error) for the converged

weight value can be shown to be:

2-22

s

The adaptive power separator based on the leaky LMS algorithm gen-

erates a converged solution similiar to a Wiener solution for a prob-
lem in which the variance of the noise is 02+l%gl. However, the &dap-
tive solution given by equation 2-36 is not quite equal to the Wiener

—4u02a2

a2+(oz+l%§L)

demonstrated by experiment that LMS filters do not converge, in gen-

solution since there is an extra term of Senne [11]

erazl, to a Viener solution if the inputs are correlated, and since the

input has a DC component it is correlated over time. Still, we note

6/




that if p<<—17 the adaptive solution will be essentially the Wiener
4o '

solution.

To reconsider the conditions under which we can find the limiting
value of the weight, we note that (/ is chosen in the range 0 < ¢ < 1

for normal use, and hence from the convergence conditions that:

(N4 -2u02—2pa2|<1
B “'lgg‘é"
2(c”+a”)

2-23
will guarantee that the mean weight value converges. Note also that

transients die geometrically as ((¢ —Zuaz-Zpaz)k.

While the averaje, or expected, solution is very useful in under-
standing the behavior and utility of the filter (see for excmple pre-
vious final report [1]) ), it is not the complete story. In this sec-
tion we shall analyse the variance of the single weight. From this
information we can determine how much extra noise (misadjustment [1])
appears in the output due to the adaptive process. Also, we will find

a new convergence criterion.

The first step is to find E{w§+1}, the mean-square value of the
weight. Knowing this, we can determine the variance of the weight by

using the following formula:

2

VAR (W N+1}

= E{W (E{W

2
n+1!) n+1))

2-24

For N>3 w¢ Can show that:




——— i - i 0 I AR 231 9 S 01

- N-1
2 2 . -
E[w:+1} = 4u°p”° + Suza‘c + 8p2a2q2 lj%E—J

N N-1
N 2 1-r 2 l=r
+ 4uwoaqs + 4 pv[T:?] + 8p aut[—T:?-J

2..2. 17 _N-2 N-1__ N-2 ™
+ 8B_&q u[} r _ s st ] = 4pw0uqsh 1

l-s 1-r S-r
+ 4pw0qu[%2%£§;::] + wé:“*l
2-25
Where

p - a’+o?
q 2 ¢ a-2u(a3+3a0?)
rt - ¢ 2-4uV (a2+02) + 4p2(a4+6a202+304)
s =y - 2u(a2+02)
t =t/ (a2+02) - 2u(a4+6a202+304)
u =y 2a - 4uy (a3+3a02) + 4p2(a5+10a302+15a04)
v =y 2(a2+02) - 4uy (a4+6a202+3o4)

+ 4u2(a6+155402+45azoﬁ+150§)

NOTE: this result was reported earlier in Quarterly Report §3 for this
contract. However, due to an algebraic error the original equation,
equation §8, is incorrect. Thus Eq. 2-41 and 2-42 of this report sup-
plant aga 8 and 9 of Quarterly Report #3, "Exact Analysis of a Special

Adaptive Power Separator".

This 1is formidable expression! However, if |s|<l and |rl<1,

then lim E{WS} = E{wz} will converge to:
N->00
2 2.2 2.2, . aulaq? . appy
E{W®} = 4p“p” + 8u“a“t + e e
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8u2aut 8u2aq2u

bl vl ) = ) 3

2-26
Furthermore, if we take a to be zero and (/ to be 1, then

2 4 2

cz(az—lzuc +60n 06) .
4po“-12p“oc

VAR[{W} = 4p2ct + 4n

il 2[1-8uoz+48u20A]
=00 2
1-3u0

2~-27

This case is that of a conventional LMS filter, and was analysed
by Widrow in [5] The approximate analysis used by Widrow indicated
that the variance of the weight should be ucz. This agrees very well

-

with the exact analysis if we recall Widrow's stipulation that

uaz << 1, wiich corresponds to slow, low-noise adaptation.

Recall that convergence of B{Wﬁ} required that |s|<l and |rl|<l.

The first condition becomes:

Isl<1 =>|¢ -2u(a%+0?)| < 1
2(a"+07)

Which is the same condition as for convergence of the mean weight

value. The second condition becomes:

lel<l => |V 2-4py pran?(ad+6a20?430t)) <1

2 2

=> 0 > 2-1-4pV p+4p2(a4+6a o +3c4)

v (52+02) +V€Z;6a202+3a4—4v 2a202—2V 254

=> u <
2(a4+6a202+304)
2-28
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if gum = &,

5 < Y (SNR+1) + /SNR2+6SNR+3-4 ¢/ 2SNR-2(/ 2
2 (a’sNR+6a%+302)

2-29 |
|

Again, this is not a particularly simple expression. Figure 2-13

is a plot of the maximum possible u vs (/ for various SNR's (holding

total input power = 1, maximum u assuring convergence of mean and
100,000
| B
100
maximum 10
u
SNR |
1
0.5 0.1
0.288 i 9 !
0 .
. 1

Maximum u for convergence of variance vs. v, as a function of SNR
(holding total input power at 1).

Figure 2-13

variaence
limiting
equation

M

of the weight vector).

From this we sce that there are two

cases: a) high SKR and b) low SNR. In the high SNR case

2-44 simplifies to:

< V +1

2 x total-input-power

n

Pl AN 3 N < DR 4 TR AT A - T e




2-30

X - 1
2 x total~i1nput-power input-power
from 0 to 1. In the low SNR case equation 2-44 simplifies to:

v+ Vi-2y 2

6 x total-input-power

which varies from

as (/ varies

n <

v3 1

6 x total-input-power b total-1input~power a8 ¥
varies from 0 to 1. The most stringent requirement on u occurs when

which varies from

¢ = 0 (although in actual practice (/ is rarely less than 0.99) and ‘

; Vi3 0.2838
88K 1z low. ' For Wais efse W S e total-input-power input-power’

If u is selected by this criterion, the variance will always converge

P T T ———— R

and remain finite. Note that this condition is more stringent than
the condition for guaranteed convergence of the mean which required

that:

1
total-i1nput-power

p <

in the worst case. Also, note that the conditions for convergence in

: e e 1
the mecan presented in [9, 5) for an LMS filter (u<input-power) where
V =1 is not sufficient to guarantee convergence of the variance in

low SNR regions. Of course, in normal practice u is very much smaller

than the bound so this problem does not arise. However, if a p is

selected so that the filter converges in the mean but not in variance,
then we would expect the weight to oscillate randomly about the mean
value with ever larger oscillations. This analysis of a single-weight
filter corroborates Senne's earlier experimental work with multi-
weight filters: that to guarantee convergence of the weight noise
variance reguires p to be several times smaller than the value needed

to assure convergence of the mean weight vealue.
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2-F. Conclusions of Part 2

We have studied the second order effects of the Leaky LMS (LLMS)
algorithm. The LLMS algorithm causes the weights to vary about the
mean or expected salution. This will modulate the output of the
filter, causing added undesirable noise components in the filter's
output. For sinusoidal inputs with frequencies between 10% and 90% of
Nyquist frequency we found that the distortion power was less than
0.2% of the desi:able output power. For very low frequency inputs the
distortion power increased, but even at 1% of Nygquist the distortion
power was still less than 5%. Furthermore, most (98%) of the distor-

tion was in the third harmonic.

For white noise inputs to a LLMS based Adaptive Power Separator
(APS) we have derived an equation for the variance of the noise in the
weight vector. This equation (Eq. 2-29) agrees with previous analysis
(5, 9, 11) of weignt vector noise in LMS filters, a special case of
LLMS in which ¢ = 1. This analyﬁis also confirms an ealier conjecture
(1] that the LLMS algorithm would have less weight noise than an

equivalent injected noise scheme.

Finglly, an exact analysis of a special case (single-weighti of
the LLMS driven APS was performed. This analysis confirms Senne's
(11) observation that LMS does not converge to the Wiener solution if
the input is correlated. However, the bias from the Wiener solution
can be made arbitrarily small by decreasing u. Also, we found that
LLMS (and LMS) filters may not stebalize in a mean-square sensc even

though they converge in the mean. A new criterion for p is presented
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which guarantees mean-square stability.
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