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g 4 fl‘itlc Multlplng Data Processor for 'I‘arget Detiaction s "'” L oyt ; .
'f l)uring the pcevious quarter, the multiping processor design was finalized :x;r: p;.ram-
% elers selected for the detectior and tracking portions of the multiping processing algorithm.
§ r= Work al<o progressed and is continuing on 6btaining quantitative performance results on

§ m 20 mulidping processor through Monte—Carlo Lechmques -Preliminary performance res;ults
§ m will be obtained by January 30, 1970, thure 1 shos;s the klock d.a§£am of the m.it! ping
=i recciver configured with an output display and automatic detection device e. > An analysis of
B average (otal costs for multiping sonar decisions was made and will be uceful in comparing
; c competing decision algorithms. This analysis ig preaented in the attacked Technical Memo
‘; ‘ No. 1. Technical Memo No. 2 mvalopﬁhe Kalman filter equsations and doseﬁbeithe

% d: Vldaplation of the Kalman filter to our specific track detection problem.

During the next quarter quantitative performance results of the multiping processor
will be ohtained via Monte-Carlc methods using the digital tapes generated containing noise
and aignal plus noise with time and frequency spreading of axriving target associated pathe.
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i This data was generated using the target/environment model described ia the Second Pro-

& gress Report dated October 15, 1969. o o ‘ \
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Technical Memo No. 1 ‘
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January 2, 19790

T. G. Kincaid

Contract No. : N00024-69-C~1268
5‘ Title: _ : Average Total Costs for Multiping Scnar Decisions
L 1. INTRODUCTION '

[

'This report is a discussion of the average total cost of making a "target present' or

© "arget absent" decision from the information contained in a sequence of gonar pings. This
: cost i3 usefu} for comparing competing decision algorithms. The totel cost is computed

as a sum ¢ (i} the costs of terminal decisions, and (2) the cost of pinging.

The d: icussion is divided into two parts. The first part is the derivation of a formula
for the total cost of using any sequential decision aigoiithm in a8 multiping sonar receiver.
The derivation presented here i8 a straightforward extension of exliting cost computing
proccdures for one possible target track to the case of many possible target tracks. The
second part ie a description of three sequential decision algorithms, and a comparison of
their merits based on costs, error probabilities, and ease of implementation,

2. COMPUTATION OF AVERAGE TOTAL COSTS
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The multiping sonar receiver makes its "target present” or "target absent" decisions
on the basis of the returns from a sequence of sonar pings. We assume a recelver which
examines each possible target track after every ping, and chooses hetween three alt&;r::atives
for sach track: (1) decide "target present” in the track,' (2) decide ‘'target absent' in tho
track, or {3) make no decision and ping again. ‘

To evaluate this receiver, we consider the following experiment, The scvar svstem
continues to ping until a decision of "target present” or "target absent” is msde for every
track. The receiver is then evaluated on the basis of the averpge total cost of performing
: this cxperiment. ‘

In order to dorive a formula for this average total cost, we hitrodure ths following
notation.
z k

the track number

it

: K, ax the total number of tracks

the deotaton is

ik "= g randnm verisble wileh tokes on the value 1w
n 18 Viarys! ahoant”

R presest™ in track by snd 6 when the dant
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| = a random variable which takes on the vaiue 1 when & targ'st is actually
* present in irack k; and 0 when a target is a tually aisent in track k

¢ d“kjk) = the cost associated with the experimental outcome ikjk

¢ = the fixed cost of a ping, and is assumed the same for each ping (this
cost would include things like the cost of alerting the target and the energy
required to generate the ping)

¢ = the cost of processing a track for each ping, and is assumed the same
- P . for each track and each ping {unlike Cpr this cost disappears if a decision
. is made which terminates a track)
¢ = a random variable whose value is the total cost of the experiment
p (lkjk) = the a priori probability of the event lkjk
n, = a random varlable whose value is the number of pings required tn

make a decision in track k

n = = random variable whose value is the number of pings required to
perform the experiment, i. e., to make a decieion In all tracks (n is the
larglast value of n, at the end of the experiment)

The average total cost of the experiment is the sum over all tracks of the average
deciaion coat for each track, plus the cost of ping'=g required to perform the experiment.

The average decision cost {8

k 11

. max : ' '
<dacision cost> = Z Z 2 el i) D(ﬂklk) @
k=l j=0 §=0 | |
The average pinging cost is
, K max ‘ , Kmax o
<pinging cost> = <cpn + Z CBy> = o>+ E cp B> @
k=1 ' k=1
The g.v_ezage total cost of the experiment is therefore given by
. K max 1 1 | *mex M”f el

> = Z Z Z el by ) Pl ) + ¢, m> | = Z <c) > +cp <> @)
S k=L =0 4=0 k=1 '

where

o> = the average track cost

4
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This result shows that we must consider the average track cost >, plus the total
" cost of pinging, when comparing tihe cost of various multiping algorithms.

‘The expressicn for the track cost can be further broken down by noting that

m> = m Py
ny
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In order to study the average track cost foi a single track, wevdrop the suliscript k
and define the following.

TR I N W b o g gy e e e

pli =1/, =0] = probability of a false alarm = &

P

p[tkaﬁ,/jkzll = probability cf a false dismissal = B

p[ik-:x/jk-.-l] = pmb&bm&y of a true alarm (datection) = 1 -a
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p [xk-.-o/)k-.-o] =  probability of a true dismissal = 1 -8

p Ok = 1) a priori probability of a target prosent = p

p(jk = Q) = a priori probability of a taryet absent = q

, Substituting these quantities into <€ > rearranging texms, and expanding tho summa-

t - tions gives 1‘; / \ 'J).,W'
S -~ M W,
3 . <g>=c (00 &% p/[[(cd(l()) - c400)] & + c <y

b::/\;pv},ﬁw/ -t [((cd(f)l) - c4(1n] c + c <n(1) >] p ©
me assume the cost of a wrony, decision is greater thza the cost of a right decision,

i. e.,

e e 1

cy 10 > ¢ d(oo)

¢ (01 > c (1) | . o | , Cm

‘Therefore all the terms in Equatlon (6) are nonnegative.

MULTIPING SONAR SEQUENTIAL DETECTION ALGORITHMS

s AT T
-2
.

In this section we describe thxée secuential detectior'\ glgorithms, and compare their
relative merits on the hasis of costs, error preobabilities, and ease of implementation. The
three algorithms are optimum sequential, Wald sequential, and truncated Wald sequential.

Kach of these algorithms are developed in the literature considering only one track.
Fquaiion (3) shows how to evaluate these algorithms in the multiple track simation.
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a. Optimi‘m Sequential

The optimum sequential test is described by Birdsall and Roberts (Ref. 2). This
test assumes that a maximum nunber of pings D ax 3T€ allowed. Within this constraint,
the algorithm minimizes the average track cost < >. In the multiping sonar cese there are
usually a large number of tracks and a small maximum number of pings. Thig combination
makes it virtually certain that Boex pings will be required to make a decision In every
track. Thus <n> = n riax’ and the average total cost given by Equation (7) will be mini-
mized if the average track cost is minimijzed, i. e., if the optimum sequential test 18 . pa

used in each track. . : }/;;(

The optimum sequential test compares the likelihood ratio éf;:;‘;/,

robability of the received sonar echo given a target present

= ‘probability of the received sonar echo given a target absent (8)

to two thresholds after each ping. If A is above the ubper threshold, the decision "target
present” is made, and the test terminetes. If A is below the lower threshold, the decision
“target absent'f is made, and the test terminates. If Ais between the thresholds, no deci-
sion is made, and the test contiries to the next ping. The thresholds niova closer tc each
other on each successive ping, until they coincide on ping P oax’ which forces a decialon end
terminates the test. At each stage of the test, the tradeoff is between taking ancther ping to
improve error performance and vhe cost pf pinging again to obtain such an Improvement.

The advantages of the optimum sequential test are: (1) the abllity to set an upper
limit on the number of pings, and (2) the fact that costs are less than any other sequential
test with this feature. The disadvantages of the optimum sequential test are: (1) the diffi-
culty of computing the thresholds, which are based on uncertain costs and prior probahiiities,
and (2) the difficulty in relating threshold settings to posterior error probabilities o and 8,
which are often the only meantngful performance measures when costs and prior probahiliiies

are unknown,
b. Wald Sequential

The Wald sequential test (Raf. 3) is the special case of the optimur sequentis! tost
for which LN is infinite, f.e,, there {3 no limit to the number of pings allowsd, Com-
pared to any other test with the game peatorior error prehabliitles o and B, the Walt B
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quentinl teat minimizes the aversse numbor of pings <n{d) > sod <n{i} > remived to make o
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of pings could be a considerable disadvantage when the algorithm ts being used for a largs
numb r of tracks. The value of <n > could be very large, and the cost term Cg<n> 11
Equs:ion (3) migh. be intolerable. ‘ '

In the Wald sequential test the likelihood ratio A given in Equation (1) is compared
with two fixed thresholds, and decisions made in the same manner as in the optimum se-
quential test. These thresholds can be set to achieve any desired posterior error proba-
billltles @ and 8, or they can be set to minimize average costs,

The advantages of the Wald sequential test are: (1) no other téat has fewer average
pings to decision per track for the saﬁxe posterior error probabilities o and 8, m’:@
throsholds are simply related to o and 8, and remain constant throughcut the test. The
main disadvantage of the Wald sequential test is the lack of an upper bound on the number of

pings, which can be quite costly when there are a large number of tracks, and a high fixed
cost of pinging c. '

¢. Truncated Wald Sequential

The truncated Wald sequential test is the same as the Wald sequential test except
that an apper limit B ax is placed on the number of pings. If a decision {8 not made by ping
number LN then a‘single threshold is set and a decision made. The truncated wald se-
quential test is an attempt to combine the simplicity of the Wald sequential test with the
ﬁl:ﬁlted number of pings feature of the optimum test. If the maximum allowed number of

pings is large enough, it i3 reasonable to expect that the performance of the truncated Wald . N

sequential test will be approximately the same as the Wald sequential test.

Comparing the truncated Wald sequential test with the optimum sequéntlal test and
the Wald sequential test, the truncated Wald sequénﬂal test (1) has a higher average track
cost than either of the other tésts. {2) has a higher average total cost than the optimum se-
quentiai test with the same Bax’ (3) can be made to have a lower average total cost than
the wWalt sequential test in most situations where ¢, 18 much higher than c_, and (4) is simn-
ler to implement than the optimum sequential test.—f,ﬂﬂ“ /ﬁ’ {”" b ,
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Teacinnical Memo No. 2
January 2, 1970
D. L. Jordan
K l Contract No.: N00024-69-C-1268
Titlo: Kalman Fltering Applied w Track Detection

In any track detection function, the problema of detection and estimativrn. rusi be
addressed. The best estimate of a poteutial track's future position and velecity are needed

for association of the many target-like returns with their individual tra:ks as they are ob-
served. This technique requires placing a gate (séarch area) around the p;‘edinted position
: of a pal‘tiél':nt target, and if a signal return falls within the gate, it is ussoriated with that
t.aéget. The optimum size and shape of the gates réquire a soluticn to the so0 called |
association probler.,. we have used the gain matrix from the Kalman filter dong with a
velocity sensitive component tu aet the gate size. The gate size versus ping number with
and without this velocity cofnponent appears in Figure 1. '

5 ‘The predicted position and velocity is needed for both the positioning of the gate and
| ~ the detection of the target. In this techuical memo the optimal processing of the sonar
returns to extract range and velocity information will be reviewed using the approach ‘
first described by Kalman (Reis. 1,2). ‘ :

The Kalmau filter will be applied to a linear system. A linear system ie one that obeys
the principle of superposition. Physically, superposition linpliee that the pfeaence of one
excilation does not affect the responses due to other excitations; there are no interactions
among regponses of diffarent excitations within a linear system. In the analysis of the
i combirad returns of different excitations, one can begin by considering each individusl
cavse and effect separately ag though all other causes were absent and then sum over all the
individual excitationa and corresponding effects. | Linearity as applied to the randon

il R i Sl TR

i varieples vy, y {messured range and rate rate) means that as independent measurements
they will define the total measured state or tha system. With this in mind the sei of linear
difirrvential cquations describing the p* ysical system can be wrilten as

W5 e
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where x, 18 the set of random veciors that d-fiue the states of the system and u i8 related
to some randon noise generstov or forcing fun iion that adds a ncise component to the
measured states. The measured stata vector is then expregsed ss,

y = Hxi +yv
where v is the gausslan zero mean noise vector. ‘
Equation (1) can be written in matrix notation as follows.
x® = F() x@) + D(t) U
with =olution to the discrete~-time system (see Aprendix B)' given by
A4 =R L, Hx® +AE+ 1, b U : @

Depending on the number of state variables used to describe the linear dynamic system,
Equations (1) and (2) take on different forms.

The two-state case I8 represgented by the following set of linear diffsreatial equations.

In matrix representation, thase equations hecome

. '.‘ l \
x

1201 x1 +100 E(
x2 0 0 X \01 Y

2 x

where Xy is the position and Xy the range-rate of a target. Solving these aquaticns for
the atale vector, we find tha! ths tranaition matrix $ and distribution matrix & besoms,
respectively ‘see Appendix A),

2
t
1t 0 -2-\
S(t+1,1t) - ,A(E+1, )= ‘

0 1 0t
and
. t2
Xyt ) \ 1t X, () | ,! e % \ 0
- + -
EWTERY o 1 o () \ 0t n,




IV vm—,

e e R S ey

s i,

'The three-state case {8 represented by

X, = U
3 x

Xy ¢ 1 0 x1 0 6 0 0
’_‘2 = 6 01 'x2 4 0 0 0O 0
X 0 0 O x 0 0 O u

3 : 3‘ x

where Xy is the targét's acceleration. For the threc-state case, the state vector cén be

shown to have the following form.

2

x (k41 Pt ot
&
t

t3
Xl(t) ¢ 0 5
t2
xZ‘(t + 1 / =1 0 1 x2(t) + 00 5
"3(‘* 1 0 0 1 xa(t) 0 0 t uy

Having described the equations of motion for the linear dynamic system, some px;o~
verties of the random varizbles that ace required by the filter equation will now be given.

N

; : As mentioned sbove. while defining the rsmdurh §*ariah!es in Equation (2, u(f) i5 a

‘ gangsinn random vector, This means that the sequence of randum vectors x{t ~ 1y,
x¢t : 1), generated by Eqguntion (2), {8 & Gause~Markov sequence, Thersgfore, the hegt .
estirate of a futura state can be made without knowledge of all previcus biztery. Sines
the dovelopmant of the envations {n the Kalinan filter depended on this proparty, it is not

aurprizing that this fillor gives 2 beat eatimate of g fulvre atute based on the lust oheap-

vativm of the stutes. To complote the picture of the model for the syvstem, since ufd) is

3

gouasion., the sequence of readoers veotors wit - 1, o1, end uft + 1) ars normally distel-
htod such that the oross-covariance maltrix, '

cov {u(tl). u{?,:z)] = 0

&

This tmpiies tha., u{il) and w{i )y eve Indepondent,
-~
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Furthermore, it is assumed that E[u(t)] = 0. Since ‘his noise generater is present,
the output vector y(t) of the measured signal alone musat be modified by some additive white
‘nolse (gaussian), v, with E[v()] =0, E[v¢t,) ‘f(tz)] =0, and E[v(t) - v()T] = cov[vit))] =R(v).

Physically. this means that v(tl) and v(tz) are independent and that a considerable
{ amount of inaccuracy is present in the measurement of the signai. In fact, the further one
1noks hack intc the state's Mafory. the'larger the indeterminacy.

SUPE—— Y LR ]

The mterlﬁg préblem then is defined as giving the best estimate of all statea of the
i ' system based on the noisy observation of the observable states. Since the system is linear,
the cstimated states are expressed as: o
A -~ ~ . . '

Xy = X, t KO, -HX) | @
where K(t) is a continuously updated weighting factor imposed on the variance between the
observed and predicted states and as yet has not been defined explicitly. Qn(t) is the best

" estimate of x n(t) based on the current observation y_(t).

In order to determine K(t) it i8 neceasary to minimize the mean squared estimation
error

| A , |
L=Elx-x)- x-x)7] - \ @

' Since the errors are gaussian, mii-hnizing Equation (4) wili produce an optimal weight-
ing {gnin) matrix. it is (n this sense that the Kaiman filter is optimal; however, this pro-<
perty alone will not necessarily achieve considerably higher levels of periormance than
rome less "optimal” filtering method, By performance other authors usually refer to the
ratc at which the elemerts of the covariance matrix decreass. In other words, with in-
creasing time the estimates of the system are said to improve, Foi' the case when thore
are soveral data sample sets lowever, tho updated eatimate of the gate sizes ("upia
here mcans that the size of the gates is dicreasing) can in effect be reducing the probability
of declaring a false track, by eliminating cortair nonconsistent tracks. At the same time,

if the target motion 18 not consistent w'th the system equations of motion, the detection
probability of the system will be decreased.

e e M SRR, JE i

{ : Uising Eauation {3}, the loss function becomes

Flo - %) ix - 911 =2l -5 - ) T] + Bl - BRY (Ko - 17)T)

x)7] - Elx - x) KTy - H%) ']

- E{K(y ~HX) X - x)
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Using the following equations, y = Hx + v, and noting that Elix - x) vT] = 0, the loss

function now becomes

T

A A
E[x -x)(x -x)T] = P - KHP - PHY K? + KHPHY + R) KT

'

In order to minimize the loss function we set the derivative of L, w- r- t« K, dL/JK,
equal to zero. In so doing,

-2PHT 4+ 2(HPH' +R) K = 0

Solving this equation for the gain matrix,

K=pu' aipu® +m)!

With this value for the gain matrix the estimated covariance matrix becomes
. .

P=@-KHP

In order to complete the filtering problem a recursive relationship for the conditionzal
covariance matrix P(t + 1, t) must bo derived.

PR+1L 9 =E[(xt+ ) -X@+1, 0), (xt+ ] -xe+1.9)7) ®
but .

x(t+ 1) =8¢+ 1, )y xt) + At + 1, &) ult) , | | )
. |

;au.n-mu.‘q:(nx.t) - ®

After substituting Eq;uaticma () and (8) into Equation (8), the predicted covariance
matrix becomes ‘
" :
PR+1) = 8t+1, H P+ 1, 07 + aEfu-uT] AT

For the two-atate case where the modsl error is azsumed ématam. the predicted co-
variance matriz becomes

- 1 t)[e} o \/1 o o 0 9
PR+l = init +
o 1/l o o [lt 1 o 1f |o?
it
_ [P Pre
P21 Po2
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With thesc values, the following can be defined.
o%® =Py

"vm = P22

-

Ty = P12 = Py

The gate sizes (see Appendix B) for this mode! appear in Figure 1. Curve A contains -
no model errox, .5, vz =90. Curve B contains the model error contribution, cvz. but its
value is obtaineé N om the predicted range rate . '

For the two-state case with nonconstant model errurs, the predicbed covuriance matr!x
has the form (set uvz = 0),

2 [
¥ T
- Piu P2 Y B
Pt+1) = + &) T
Pay Py | T !

(]

where X, is the expented range rate.

Equation (2), as it stands, doez not give tie predicted estimate of the syatem. Since on
the avorage, expected values will result the predicted estimsale of the atale vecior is given

by .‘
Xt+1) - S+1, §x® + A + 3, 4 & [u)]
However, since Efu®)] = 0 for alit, then
3(.(x+1) = 8¢+ 1, ‘t):(t)
A summary of he filter sguations is given in Flgure 2.
In order to start the filtaring problem some initlanzation of the covariznce matrix,

- PR ), for the best estimatea of the Inltial states of the model must be madae, L.e., some
syatomntic selectizn of tha Initial valuzx of the covarianee metrix, The selsction of thesme

ze of the probiem, L. e, the troek dvoamics, Unfovian-
ately, a hostitle targst dozs rot oogporats Iy revenling fte manouvera, In $s foztance, &

eloments dopends upin & knowled

sooma that the bezt salection wonld b 8o a0t $os off dingonal elomente o rarn, Thin la
reasonshie becanae keowladse of e intlsl ropee {m elthar the frsl ving or fixet returm

gt walon o

aat a pote shoot n B-bnot ¢
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INITIALIZE COVARIANCE MATRICES P, AND Q

AT o

Compute the predicted

state vector xnﬂ. from

tha eatimate of the pre-
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1t should be noted that the covariance matrices ares predetermined, i.e., their values
are indeperndent of any measturements, Clearly this means that the gates are updated
garrowed) for both false ard fading targets. In order to rectify this insensitivity to the
roxl world, as a preliminary improvement o the covariance matrix, the calculated pre-

‘dicted range-rate {8 used ta the matrix. Qualitatively, this seems to have reduced the

root-mean squared error hetween the predicted and measured state vector more quickly
than when no velocity terms were used in the model errors. More work on this point is
‘presently in progreas. | ' ‘

In conclusion, one of the main functions of the Kalman ftiter is to update the meesured
‘'state vectors obtzined from previous instants of time to a sat of values correaponding to
“he present instant. Theee updatod measurernents are used along with the current meas-
urements to form an optimum estimate of the state vector. Since a random disturbance
term exista in the canonicat equations of motion there i3 an uncertainty tn updhting the
measurements of the previous instants. The Kalman filter takes this fact into account by

- assigning weighting fuctors to the contributions of the previous instants. The fact that ¢ 2

meszn squared estimstion error ts minimized and that the Kalman filter uses matrix wel,*- -

" ing factors so that each component in the state vector can be weight;od individually, acco_ns

in part for its supericrity as a filter.

[
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APPENDIX A

DERIVATION OF THE TRANSITION AND DISTRIBUTION MATRICES
FOR THE 'I'WO- AND THREE-STATE CASES

The two-state case:

? | X '\ “ | | - | - (10)
i Integreting Equation (10) first w-r-t. "t" |
Xy + 1) =u T+C) S (i1
and Equation (11) becomes .

Xpt +1) = u T+x(t) ' (12) |

Substituting Equation (12) into Equation (9 and tntegratlng over t, keepiug xzct) constant,

Ly T ' o N
’ xl(t+l=—-5—-+xzm'r+cz. | (13)
Again, applylng the boundary conditions,
L T '
X @41 = Fm x0T+ x(0 | (14)
5‘ | where xl(t) is some initial position at T = 0, Therefore, the canonical equations of motion
:'u v become
. R
t+1)=x+T_
T : 15)
* xz(t-rl)=0+x2+ux'l‘

- In order to put theee equations into matrix notation, first examine the case where u‘x'= 0,
{ i.e., there are no meded errors.

xl(t4 1) = xl + sz
(18)

xz(t-+ 1) = 0+x2

2%
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Clearly, these eqﬁatlons in matrix notation become

1T x ,
. A .
= 4 =§(t+ 1, ) x(t) . : an

x2 0 1 xzt

From the comparison of Equation ('15) with Equation (16), it can be seen that another

_ matrix must be added to account for the mnodel errors. These can be represented by the

following matrices.

0 == 0
‘ 2
Model Contribution = o =A(t+1, Hu) ‘ (18)
O T u

X

The dértvatlon of the equations in the three-stzte case follows the exact same procedure,

21
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APPENDIX B

As a preliminary note on the application of the continuous-time Kalman filter to the
discrete-time model, it seems that if the gates close down to their asymptctic value after
one ping, then either large model errors have to be included nr a nonlinear approech tc the

filtering problam adopted. The application of the filter to tlie nonlinear probiem is forth-
coming. '
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