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Contract No.: N00424-69- C-12~

-Title: I~MultipIn-g-D-a~ta Processor for Target Detection

During the previous quarter, the multiping processor design was firialized an,4 param-

eters selected for the detection and tracking portions of the multiping processing algorithm.

''Work aliKo progressed and ir continuing on o'btaining quantitative performance resultb on

' niul~iping processor tl-rough Monte-C'arlo technique s.-. Prel Iminary performan-ce 'results

will be obtained by January 30, 1970. Figure 1 shows the lo~ck diagram of the im.&plng

receiver configured with an output, display and automatic detection device. An analysis of

average total costs for multiping sonar decisions was made and will be useful in comparing

o competing decision algorithmrs. This analysis- is _preentedi h tahd Technical Memo
No.1. ecnicl emoNo 2 ~vlis"eop_% Kalman filter equations and doeerlbe~the

9dntaton of the Ka'nian filter to our specific track detection problem.

During the next quarter quantftative performance results of the multiping processor

will be obtained via Monte-Carlc methods using the digital tapes generated contaiti~ng noise

and jigna! plus noisp with time and frequency spreading of arriving target assoclated paý&

This dat~a was generated using the to rget/envi~roviment model described 'ai the Second Pro-

gress Report dated October 15, 1969.
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Technical Memo No. 1

January 2, 1970

T. G. Kincaid

Comtract No.: N00024-69-C-1268

Title: Average Total Costs for Multiping Scnar Decisions

1. INTRODUCTION

This report is a discussion of the average total cost of making a "target present" or
"target absent" decision from the information contained in a sequence of sonar pings. This

cost ia useful for comparing competing decision algorithms. The totet, cost is computed
as a sum c .i) ythe costs of terminal decisions, and (2) the cost of pinging.

The d: -cussion is divided into two parts. The first part is the derivation of a formula
for the totol cost of using any sequential decision aig.),ithm in a multiping sonar receiver.

The derivation presented here is a straightforward extension of exilting cost computing
procedures for one possible target track to the case of many possible target tracks. The
second part is a description oL' three sequential decision algorithms, and a comparison of

their merits based on costs, error probabilities, and ease of implementation.

2. COMPUTATION OF AVERAGE TOTAL COSTS

The multiping sonar receiver makes it9 "target present" or "target absent" decisions

on the basis of the returns from a sequence of sonar pings. We assume a receiver which
examines each possible target track after every ping, and chooses between three alternatives
for each track: (1) decide "target present" in the track, (2) decide "target absent" in the

track, or (3) make no decision and ping again.

To evaluate t'IJ receiver, we consider the following experiment. The sonar system
continues to ping, until a decision of "target present" or "target absent" is mnde for ever,
track. The receiver is then evaluated on the basis of the averegir. total cost of performtng

this experiment.

In order to derive a formula for this average total cost, we rttrodue thi following

k the track number

k = the totl n, number of tracks:i r, t,") X

i am, r•,•7,7a v r, ' wIJch t, ,N or th vb..." I ve' t te t .. in
!'V p n, in t r.4 C, V mi 0 ý 1'hor the d j I is I1 rg - F t"
In treUý k,



~k = a random variable which takes on the vaiue 1 when s targst is actuaily
present in track k; aud 0 when a target is s:.tually .iLsent in track k

cdWtkJk) the cost associated with the experimental outcome tkIk

= the fixed cost of a ping, and is assumed the same for each ping (this
ef cost would include things like the cost of alerting the target and the energy

required to generate the ping)

p = the cost of processing a track for each ping, and is assumed the same
for each track and each ping (unlike cf, this cost disappears if a decision

is made which terminates a track)

c f a random variable whose value is the total cost of the experiment

P (lkjk) = the a priori probability of the event ikJk

n = a random variable whose value is the number of pings required tn
make a decision in track k

a f random variable whose value is the number of pings required to

perform the experiment, I. e., to make a decision in all tracks (n is the

largist value of nk at the end of the experiment)

The average total cost of the experiment is the sum over all tracks of the average

deciaion cost for each track, plus the cost of pfng.• required to perform the experiment.

The average decision cozt is

<decision cost> • cY k) P(Yk) (1)

k-i J-O 1=0

The average pinging cost is

<pinging cost> - <cin + Cpnk> ef <n> + Cp, <nk> (2)

k-i k=i

Tho average total cost of the experiment is therefore given by

k - 1k f 1

i <e - .•Ž Z C(ik.Jk) P(k)+ cp <nk> - <Ck> + cfl' (3)

Sk=i Jk=O Vo k-i

where

�ck> = the average track cost
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This result shows that we must consider tVe average track cost <ck>, plus the total

cost of pinging, when comparing the cost of various multiping algorithms.

"the expression for the track cost can be farther broken down by noting that

Jnk P% k

cfk>

= x:~ 'k p (n k/ikJ Ok)

" k(Jk)> POO pk(4)
J

Therefore

<Ck > = d(dkJk)'P [lk/Jkk + c <nk0 k)> POOk) (5)
i 'iJk=°

In order to study the average track cost for a single track, we drop the subscript k

anid define the following.

Plik=If/Jk=O1 probability of a false alarm a

SPk- k1 probability cf a false dismissal =

SPfk•I/Jk~1l probability of a true alarm (drect|r•n. I -atPi, /

i - fierrW¶9t~SY<

- - - - - - - - - - - - ---- --.---. .i



P [k=0/sk 0] probability of a true dismissal =I - P

P O= 1) a priori probability of a target present = P

S= 0) = a priori probability of a target absent = q

Substituting these quantities in..to <Ck>, rearranging terms, and expanding tho summa-

tiono gives?

S > q + Cd( (Cd(O) d 0 + C q

[[(cd(Ol) - cd(11)] &+ p (6)

assume the cost of a wroni, decision is greater th.-n the cost of a right decision,

i.e.,

Cd(10) > Cd(O0)

Cd(O0) > Cd(ll) (7)

Therefore all the terms in Equation (6) are nonnegative.

3. MULTIPING SONAR SEQUENTIAL DETECTION ALGORITHMS

In this section we describe thxee sequential detection tlgorithms, and compare their

relative merits on the basis of costs, error probabilities, and ease of Implementation. The

three algorithms are optimum sequential, Wald seqiantial, and truncated Wald sequential.

Each of Lhese algorithms are developed in the literature considering only one track.f Equation (3) shows how to evaluate these algorithms in the multiple track sitation.
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a. Optim.r, Sequential

The optimum sequential test is described by Birdsall and Roberts (Ref. 2). This

test assumes that a maximum number of pings n are allowed. Within this co.nstraint,
max

the algorithm minimizes the average track cost <ek>. In the multiping sonar case there are

usually a large flnambr of tracks and a small umaimum numbe~r of pings. Thir combi-nation

makes it virtually certain that nma pings will be required to make a decision in every

track. Thus <n-,, = r" and the average total cost given by Equation (7) will be mini-

mized if th~e average track cost is minimized, I. e. , If the optimum sequential test Is

used in each track.

The optimum sequential test comnpares, the likelihood ratio

A probability of the received sonar echo given a targt prsnt
probabilit~y of the received sonar echo given a target a' nt

to two thresholds after each ping. If X is above the upper threshold, the decision "target

present" Is made, and the test terminetes. If A is below the lower threshold, the decision

"target absent" is made, and the test terminates. If A Is between the thresholds, no deci-

sioii is made, and the test contir'ies to the next ping. The thresholds niove closer to each

other on each successive ping, until they coincide on ping nmx which forces a deolalon vtnd

terminates the test. At each st-age of the test, the tradeoff is between taking another ping to.1 improve error performance and ~he cost of pinging again to obtain such an improvement.

The advantages of the optimum sequential test are: (1) the ability to set an upper

limit on the numltwr of pings, and (2) the fact that costs are less than any other sequmential

test with this feature. The disadvantages of the optimum sequential test are: (11 the, d~fri-

cultylof cotnp&iting the thresholda, which are based m~ uncertain costs and prior probabilities,

and (2) the difficulty in relatihng threshold settings to posterior error probibilities a 9n6 6,

jIwhich are ofte-n the only meaningful performance measures when eosts and pfior probbli~ns

are unknown.

b. Wald Sequential

The Wald tv~eriatt (l,&d. 3) Is the sereial case of the op~t sn, a ri l'hTz t,ý~

for which n Is lnflrilte, L~e., therea is no llnft to th'O nurmber of Pin~'gs 1 3 C'-

pared to -.ny ot.%er tseat 'vOth tbt q p".swtn or error prt abebfl"ies -,, and P, Vt'3~ wal.

qaeritial tefit minimntzn tbný sver!.P~~ of pin- r~ WO > wd < nýUi' req z,'redl V rni±7,

deebi,43ýr inl o~~ ee P~ y ba -i~z~~V~'- !fe ed(- '

prmJMftlr and q, nrld tho r n hm o .ý,f~t ,;,dP V-- VV'O

tialtcs 'F--wx~t', ofan ~r,-nr r;



of pings could be a considerable disadvantage when the algorithm is being used for a large

numb r or tracks. The value of <n > could be very large, and the cost term cf <n bm

Equv;ion (3) migh., be intolerable.

In the Wald sequential test. the likelihood ratio A given in Equation (1) is compared

with two fixed thresholds, and decisions made in the same manner as in the optimum se-

quential test. These thresholds can be set to achieve any desired posterior error proba-

bilitles e and 3, or they can be set to minimize average costs.

The advantages of the Wald sequential test are: (1) no other test has fewer average

pings to decision per track for the same posterior error probabilities a and 8, and (2)- te

thresholds are simply related to a and 0, and remain constanthUrQJ~gbut the test. The

main (lispdvantage of the Wald sequential test is the lack of an upper bound on the number of

pings, which can be quite costly when there are a large number of tracks, and a high fixed

cost of pinging cf.

c. Truncated Wald Sequential

The truncated Wald sequential test is the same as the Wald sequential test except

that an ,ipper limit nmax is placed on the number of pings. If a decision is not made by ping

number nmtx, then a single threshold is set and a decision made. The truncated Wald se-

quential test is an attempt to combine the sImpFicity of the Wald sequential test with the

limited number of pings feature of the optimum test. If the maximum allowed number of

j4ngs Is large enough, it is reasonable to expect that the performance of the truncated Wald

sequential test wvill be approximately the same as the Wald sequential test.

Comparing the truncated Wald sequential test with the optimum sequential test and

cost than either of the other tests, (2) has a higher average total cost than the optimum se-

iqentla) test with the aame r. m , (3) can be made to have a lower average total cost thenm

the Walt sequential test In most situations where C is much higher than c, and (4) is sirnp-

let to Implement than the ortimum sequential test.-A_,d A- A&
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Tecliekal Memo No. 2
I January 2, 1970

I1)..L. Jordan

j Contract No.: N00024-69-C-1268
Title! Kalman Ftering Applied io Track Detection

In any track detection function, the problerr.3 of detection and estiantt.x. mast, be

addressed. The best estimate o. a pote.•tial track's future position and velocity are needed

for association of the many target-lcke returns with their individual tracks as they are ob-

served. This technique requires placing a gate (search area) around the predinted position

of a particilar target, and if a signal return falls within the gate, it is ussorieted with that

target. The optimum size and shape of the gates require a soluticn to thd so called

association prober.', we have used the gain matrix- from the Kalman filter %long with a

velocity sensitive component tW 3t the gate size. The gate size versus ping number with

and without this velocity component appears in Figure 1.

The predicted position and velocity is needed for both the positioning of the gate and

the detection of the target. In this teclutial memo the optimal processing of the sonar

returns to extract range' and velocity information will be reviewed using the approach

first described by Kalman (Refs. 1,2).

'rho Kalmau filter will be applied to a linear system. A linear system ir one thAt obeys

the principle of superposition. Physically, superposition implies tLat the presence of one

excitation does not affect the responses due to other excitations; there are no interactions

among responses of different excitations within a linear system. In the analysis of the

combired returns of different excitations, one can begin by considering each individual

catyse and effect separately as though all other causes were absent and then sum over all the

individual excitations and corresponding effects. Linearity as applied to the randoin

varitbles y, y (measured range and rate rate) means that as Independent mensurementa

they *ill define the total measured sthat ox t•i system. With this in min.,d the set of lInemr

dxffeivitti equatons describing the yelcal system can be wrl~n as

di i

:• 10
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where x. Is the seat od.fle the states of the system and u is related

to some randomi noise generator or forcing tu,• ion that adds a noise component to the

measured staten. The measured stata vector is then expressed is,

Y, = Hx + v

where v Is the gaussian zero mean noise vector.

Equation (1) can be written in matrix notation as follows.

&(t) = F(t) x(t) + D(t) U(t)

with eolution to the discrete-time system (see Appendix B) given by

xlt 41)= 4t + 1, t) x(t) + A(t + 1, t) l(t) (2)

Depending on the number of state variables used to describe the linear dynamic system,

Equations (1) and (2) take on different fnrms.

The two-state case is represented by the following set of linear differential equtions.

xI =X 2

K2 =u

In matrix representation, these equations become

x2 0 0 x20 1 u x

where x1 Is the position end x the range-rate of a target. Solving these equations for

the aML vector, we find thal the transition matrix 4 and distribution matrix A be.,tma,

respectively (see Append!x A),

0i!.:4, (t + 1, t) - , A (t÷ 1, t)=
S0 1 0 t/

and

\X (t t"" I( 0 t

-"'-77 77-7-



The three-state case is represented by

xl xZ

X2  x 3

x 3 uX3 = x

In matrix representation these equations become

S-- 0 0 1 x2 4 0 0 0

x 3 0 0 0 ' 0 00) u

where x3 is the target's acceleration. For the three-state case, the state vector can be

shown to have the following form.

x/(t I t t x 1 (t) 0 0

x3 (t P 1) 0 0 1 x 3 (t)/ 0 u

Ilaving described the ecmitfons of motion for the linear dynamic system, some pro-

nertles of the random variables that are required by the filter equaticn will now be given.

As mentioned above. while defining the random variables in Equation (2), u(t) is a

gjssla random vector. This means that the sequence of randum vectors x(t - 1),

x(t 1. generated by Eqc,7,l:i (2), is a Gauss-Markov sequence. Therefore, tOe bcst

estimate of a fubure sta.te osm be made without knowledge of al prevous hin-ory. SWce

the 6wvctlopirent of thie em~ntiýr'- In the TKih~ran filter deperded on Ohm, Popar~ty. It is reat

surpri.;nm thrit this fillkor '~~ a benst efstmat~ of a future nt,ýted on the lrf:1

vation of the states. To con-plte the Pýture of th. mon4el for the system, 8fnee u"t) Is

gi .th~o sequ~ence of rý,ýdorn vectorn Wt. - 1), jt1), anid u~t 1) are notal dlnri-At

badiad euch that the ma r c rianee rntrix,

r ch y s _. (t1), u(t 2 )y t e

- -.if- ---- ---- --.--



Furthermore, It is assumed that E [u(t)] = 0. Since this noise generator is present,

the output vector yMt) of the measured signal alone must be modified by some additive white

noiso (gausslan), v. with E [v(t)J = 0, E[v(t,) ",(t2)] = 0, and E v(t) v(t)TJ = cov[v~t l )j = Rlit).
Physically. this means that v(tl) and v(t2 ) are independent and that a considerable

amount of inaccuracy is present in the measurement of the signal. In fact, the ,'urther one

looks back into the state's history, the larger the indeterminacy.

The filtering problem then is defined as giving the best estimate of all states of the
system based on the noisy observation of the observable states. Since the system is linear,

the estimated states are expressed as:

A
_ =x +K(y -Hx) (3)in =- nln --x n)

where K(t) is a continuously updated weighting f3ctor imposed on the variance between the
Aobserved and predicted states and as yet has not been defined explicitly. xn(t) is the best

ostlnate of x n(t) based on the current observation yn(t).

In order to determine K(t) It is necessary to minimize the mean squared estimation

error

Since the errors are rwssian, nit•finizing Equation (4) will produce an optimal weight-
lan (gain) matrix, it is In this sensE thot the Kaiman filter is optimal; however, this pro-

perty alome will not necessarily achieve considerably higher levels of performance than
some less "optimal" filtering method. , y tarformance other authors usually refer to the
rate at which the elements of the covartance matrix decrease. In other words, with In-

creasing time the estimates of the system are said to improve. For the case when there
are several data sample sets however, t-e updated estimate of the gate sizes ("upiated"
here means that the size of the gates Is direastng) cAn in effect be reduclng the probability

of declaring a false track, by eliminatlng cartair noermststent tracks. At the esm tivi.e,

If the target motion Is not consistent w'th the system equations of motion, the detection

probability of the system will be decreased.

Using Equation (3), the loss furnction becomes

F A) A 1  Ix--*( -- T
(X -x •-x "x- I +E[(K(y-Hx))(K~y-Hx))T

tI -E[Ky -Hx) c -x)T -Ef: - •)KT(} - •1T
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Using the following equations, y H x + v., and noting that E [(x - X) ^ Tj 0. the loss

functioi now becomes
A AT

A T T T T T
E((x-1)(x-x) P =P-KHP-PH K +K(HPH +R) K

In order to minimize the loss function we set the derivative of L, w . r. t. K, dL/dK,

equal to zero. In so doing,

-241T 4 2 H4PHT + R) K 0

Holving this equation for the pin matrix,

K = Pit (11111 + R)-1

With this value for the gain matrix the estimated covartance matrix becomes

A
1 = ( - KH)P

In order to complete the filtering problem a recursive relationship for the conditionai

covartance matrix P(t + 1, t) must be derived.

P(t+ 1. t - E[(x(t + 1) (t + 1, t), (x(t + 1) (t + 1, t))T (6)
i ~but

X(t 4 1) =4(t 1, t) X(t) + A(t + 1, t) u(t) (7)

A

and (t+1, t)Q-(t+ ,1 0X(t .+ t) (8)

After substituting Equations (7) and (8) into Equation (F), the predicted covarianm
matrix becomes

P(tI +) = Oft. +. t) PTM)4(tt+ 1, t+A (u u AT

For the two-state case where the model error is assumed constant, the predictM co-

variance matrix becomesI )t )r 2) 0(::)0 0 1
P (t + 1,• r intt +

0 1 0 tS 1t ]
vlnlt

Pit P 12

lP2 1 "2 3lSlot'



wbere

2p 12 P2 1=7v ~t

22 2 2
P2 f ,st +0 v

I 1 12i r( 11  P12  f1

P21 P22 0 1 P 22 0/

Pit WitI

A p(1j Orr ~ 1

P W1,?~it

P21

S 21 1  P22 P2lp 2

T iii + 0WýBi

K I2
4 112PH arnt4l+l

P2 1 2 1
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With these values, the following %'an be defined.

ar M . P

OV(t) 2 P22

r-r 4= P12 lP21

The gate sizeb (see Appendix B) for this model appear in FIgure 1. Curve A contains

so mwxdel error. 1. re, 2 = 0. Curve B contains the modiel error contribution, a , but tts
value is obtainet; 7i om the predicted range rate

For the two-state case with nonconstant model errors, the predicted covariance matrix
2ha's the form (set a 2 ).

P11  12 -2 T"i + 1) =+ x)

P21 P22\/

where x2 is the expeeted range rate.

Eqtpatiom (2), as it sta•ids, does not give bae predicted estimate of the system. Since on

the average, ex-pected values will result the pvedicted estimale of the state vector is gvln

by

+ 
A•( I -(t 4 ,t x Mt + A(t + ;, t) Yi, rum)

However, sinee E [u)] - O for all t, then

A

X(x +1) -*(t+ .1,t) 3r

A summary of U4e filter fqutions is Siven in Figure 2.

In order to start fthe flltcrl"ng problern some Inlttaifzaticz of tbi cov~r~ork mrtix

Pýo),, for tCe b,.t eiates of t~e ib al dates of the mel rnustbe reit L,. ie., some

syste-nmtic set, km of Va fný!.Li of Vhý cavartrsc m.aintrix. 'M,% 0!0ýt~ctlm of

elcmeats &pM--da 13"i a "_*Nqg of~ oth~e proWem Lie., 6,e tr,ýPk drtos,9,R Mffox$ 4p

ate-ly, a huratti t'e do'-za nt vocrp-rt In rtw revý n; It Iln. a n lo te It

aemrs UI1that beld P A't 'io lr- to A~vt tvzt err ~ to Tito. Thta it

wAIl In no v'my ov t.h~aI't A vn½Aty, Lae.' k"Y'l r a ~c
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FIt should he noted that the covariance matrices are predetermined, i.e., their values

\~ame Independent )f any measurements. Clearly this mea.ns that the gates are updated

(narrvywed) for both false arod fading targets. In order to rectify this Insensitivity to the

real world, as a prelimina'ry imprevement to the covarlance matrix, the calculated pre -

dicted ra•ge-rate is used iii the mpatrix. Quittatively, this seems to have reduced the

root-mean squared error between the predicted a'•d measured state vector more quickly

than when no velocity terms were used in the model errors. More work on this point is

presently in progreas.

In con-Ausion., one of the main functions of the Kalman filter is to update the me-aured

'state vectors obtained frcan previ xs instants of time to a set of values corresponding to

the present instant. Thece updat.- raeasurermenta are used along with the current meas-

urements to form an optinum estimate of the state vector. Sinte a random disturbance

term exists in the canoralcal equations of motion there Is an tmcertainty In txpdating the

measurements of the previous instants. The Kalman filter takes this fact into account by

wasigning weighting frictors to the contributions of the previous instants. The fact that i. a

mean squared estimrition error is minimized and that the Kalban filter uses matrix welY*;--

Ing factors so that each component in the state vector can be weighted individually, aceo~ i

in part for Its superiority as a filter.

19
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APPENDIX A

DERIVATION OF THE TRANSITION AND DISTRIBUTION MATRICES
FOR THE TWAO- AND THREE-STATE CASES

Trhe two-state case-

X2 (9)

X ux (10)

Integrating Equation (10) first w - r - t -'t

x2(t +,I) =ux T + C1  U

and Equation (11) becomes

x 2 (t +1) = u T +x 2 (t) (12)

Substituting Equation (12) Into Equation (9N and integrating over t, keeplug x2 Mt constant,

aaT 2

xjt+I + x2 Mt T + C2  (13)

Again, applying the boundary conditions,

x1(t +41) = n.+ xc2 (t T + x1(t) (14)

where x1(t) Is some initial position at T =0.. There-ore, the canonical equations of motion

becoetwT 2

V~V +p +1) x 4 T,ý + 15

x (t-11) O+x +u T

In order to put there equations Into matrix notation, first examine the case where u x 0$

I.e.. there areno moded errors.

xft 4 1) - X, +TX

X x(t 1) 0 + x

2~11



Clearly, these equations in matrix notation become

_- . t4it + 1, t) x (t) •7
x 2 0 1 x2 t

From the comparison of Equation (15) with Equation (16), it can be seen that another

matrix must be added to account for the model errors. These cav be represented by the

following matrices. (0 (0
Model Contribution = (t + 1, t)u(t) (16)

S0 T ux

The derivation of the equations in the three-state case follows the exact same procedure.

iiI
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APPENDIX B

Am a preliminary note on the application of the continuous-time Kalman filter to the

discrete-timc model, it seems that if the gates close down to their asympt(tic value after

one ping, then either large model errors have to be included or a nonlinear approrch to the

fliterinV, problem adopted.. The application of the filter to the nonlinear problem is forth-

corning.

17
I
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