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I EXECUTIVE SUMMARY

In severely disturbed propagation environments, the scintillation
structure asymptotically approaches a form that can be characterized by
simple formulas. For example, the intensity statistics are accurately
approximated by a Rayleigh distribution, Since the performance of both
coherent and non-coherent systems in a Rayleigh fading environment is
critically dependent on the fade coherence time, the second-order
statistics must also be specified to complete the phenomenology-systems

analysis link.

This report presents a complete treatment of the second-order
statistics of intensity in a power-law scattering medium. A three-
dimensional striation model is used, so that the propagation angle de-
pendence in a three-dimensional anisotropic medium can be properly evalu-
ated. For completeness, however, the special forms that apply to a
strictly two-dimensional medium are also included. Thus, the results of
the study are applicable to the Wideband satellite data base as well as

the various numerical simulations that have been performed.

An important finding from this study is that the asymptotic behavior
of the second-order statistics of intensity under strong scatter condi-
tions is critically dependent on the power-law index. The theory admits

three-dimensional striation spectral densities of the form q-a

where

2 < 3y < b, When 5 < 4, the contribution of large-scale structures is
strongly suppressed by Fresnel filtering., When o 2 4, the large-scale
structures are only weakly suppressed, and that the strong-scatter be-
havior begins to show some characteristics of scattering in a medium that

contains a single dominant scale size.
When 5 < 4, the second-order statistics asymptotically approach a
form that is independent of the Fresnel radius, and a simple expression

for the fade coherence time can be obtained. In light of data from the

S
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Wideband satellite, it appears that the effective three-dimensional
spectral index is indeed somewhat less than 4. Thus, the simpler asymp-
totic results are applicable. When o 2 4, the intensity statistics re-
tain a dependence on the Fresnel radius, and simple limiting forms cannot

be obtained.

A detailed summary of the results is given in Section VI as is a
comparison with earlier results based on a gaussian spectral density
function. Under conditions of weak scatter, the results converge to the
weak-scatter forms that were independently derived in Rino and Matthews
(1978). The intermediate range between weak and strong scattering must

be treated by numerical computations or more elaborate asymptotic ap-

proximations.
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II INTRODUCTION

A full treatment of multiple scattering in an extended three-
dimensional medium is now well formulated [see, for example, Rino (1978)
and the references cited therein]. However, it is impractical to solve
the necessary vector differential equations numerically except in certain
special cases. Thus, simplified models and/or asymptotic results are in-
variably used to interpret data. Fante (1975) has reviewed the various
asymptotic results that have been applied to laser beam propagation where

isotropic scattering is an appropriate idealization.

Ionospheric scattering, by comparison, is complicated by the fact

P

that the irregularities are highly anisotropic., Moreover, the ionospheric
outer-scale cutoff, q.» is sufficiently small that the condition

q, /Z << 1, where Z = \Z sec §/(4m) is the Fresnel area, holds for all 4
observing geometries at the lowest frequencies of interest (A £ 3m). i

This fact can be used to greatly simplify the theory.

In Rino and Matthews (1978) (hereafter Paper I), the weak-scatter
theory was reformulated to show explicitly the ramifications of the very
large outer scale ﬂo = Zn/qo. In particular, a closed form analytic ex-
pression for the intensity scintillation index S4 was derived by taking
the limit of the integral expression as qo approaches zero, The result-
ing expression is valid when qO/Z << 1, which is a very good approxima-

tion as noted above.

In this paper, the results for the second-order statistics of in-
tensity are extended to accommodate strong scattering. The analysis is
based on the formulation of the gaussian phase-screen model developed by
Gochelashvily and Shishov (1971). The general results are reviewed in
Section III, where it is shown that, to calculate the second-order sta-

tistics of intensity, only the phase-structure function need be specified.




In Section IV of this paper, the limiting forms of the general re-

sults are computed as qO approaches zero, as was done in Paper I for

weak scatter. The analysis is identical to that presented by Rumsey (1975).
For completeness, however, the special forms for a one-dimensional phase
screen are also included. The scattering from a power-law phase screen

is governed by a single

'universal' strength parameter, U, which combines
the effects of perturbation strength and distance from the scattering
medium, The relationship between U and the intensity scintillation in-

dex is discussed.

In Section V, asymptotic results are derived for weak and strong
scattering. The weak-scatter results were, of course, already deduced
in Paper I. Under conditions of strong scattering, the asymptotic forms
are critically dependent on the power-law spectral index, y. [The three-

-(2v+l) *

dimensional SDF has the form CSq for q >> qO]."

When VY < 1.5, simple asymptotic formulas can be derived for the
autocorrelation function of intensity. Indeed, the S4 scintillation
index approaches unity from below and (II’) - 1 = exp {-2D(y)}, where
D(y) is the phase structure function, Thie behavior is demonstrated for
a special case of one-dimensional scattering in which an exact result

has been obtained.

When v 2 1.5, however, the intensity statistics retain an explicit
dependence on the Fresnel parameter Z, and SL,+ can exceed unity. This
particular finding is evidently new, In effect, the behavior of the
scattering for the more steeply sloped spectra (1.5 < v < 2,5) is transi-
tional between that for a power-law environment in which large-scale
structures are strongly suppressed by Fresnel filtering (0.5 < Vv < 1.5)
and a medium dominated by a single scale size where strong focusing can

occur,

The form of the three-dimensional index q-a where ¢ = 2v + 1 is largely
historical. The corresponding one-dimensional spectral index is o - 2 =
2v - 1. For scintillation studies, it is the one-dimensional phase
spectral index, p, that can be measured. In terms of v, p = 2v, Thus,
if v = 1,5, o =4 and p = 3.
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In Section VI the results are summarized and compared to the earlier

results (e.g., Salpeter, 1967) that apply strictly to scattering in a
medium dominated by a single scale size, as opposed to a power-law con-
tinuum of scale sizes. A simple formula for the intensity coherence time

is derived that fully accounts for angle effects in a highly anisotropic

medium,




III GENERAL RESULTS FOR A GAUSSIAN PHASE SCREEN

Mercier (1962) developed a mathematically cumbrous but general
formula for the second-order statistics of the intensity fluctuations of
a wavefield as it propagates away from a phase~changing screen. A more
compact formulation was developed by Gochelashvily and Shishov (1971).
Alternative derivations of the Gochelashvily and Shishov result have been
presented by Taylor (1972) and Rumsey (1975)., Here we review only the

principal results.,

In the phase-screen model, a phase perturbation, é@(g), is imparted
to a wavefield at some plane, say z = z .. Diffraction effects cause in-
tensity fluctuations (scintillation) to develop as the wavefield propa-
gates beyone z = z e The structure of intensity scintillation is charac-

terized by the correlation function
Ri(8p3z) = {Ip,2) I(p',2)) (1)

s % 2 - , -.
where I(p,z) = ]u(a,z)[ , u(p,z) is the complex wavefield at z, and the

angle brackets denote mathematical expectation.

The free-space propagation of R[(Zp;x) from 2, to z can be calcu-
lated from the integral expression [the Gochelashvily and Shishov (1971)

result |:

2
— k_ y R —1 — . = ~ = — ;
Rp(8p,2) =:.[///”A(Q’L°-E’0;z ) exp {-ig-8 k/¥}da d3 (2)
3 (8]

A o (30 =L
where k = 27/) and z = z=2 The quantity Mﬁ(a(z),a( ),akq);zo) is the

fourth-order coherence function of the wavefield in the plane z = Z s
C

evaluated in terms of the variables
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5L (3b)

—-(4) l——'(l) _=2€2) | =(3) (4], ;
o 7 =5l g " pEpd = pEe (3¢)
Two assumptions are used in deriving Eq. (2)., First, the scattering
of the principal components of the angular spectrum must be confined to a
narrow cone about the direction of the reference wave. Under this assump-
tion, the propagation effects are governed by the free-space form of the

parabolic wave equation

P o 2 —
) - L2uGe (4)

where 3u/34Z is the directional derivative along the propagation path

(Rino, 1978). Second, M, cannot depend on the "centroid" variable J
— — ={ 2 — —( /4
a(l) = %:o(l) = p(“) + pzj) s 9(4)]. That is, M4 is statistically homog- A

eneous, or independent of where it is measured., Note that this neither

implies nor requires that lower order moments be statistically homogeneous.

To evaluate M,, the phase-screen model is used to obtain
4

]_-.)—-~_3-—~ - TR = = e s
m, G525 30y = (ewplilseGp - Gy + BBy - 8GN, ()

(6}

If i¢(s) is a zero-mean gaussian field, then Eq. (5) can be evaluated by

using the well-known result

8.

{exp {x}) = exp {- 5 . (6)

The final form of Eq. (5) can then be conveniently written in terms of

the phase structure function,

D(Lp = /Css(p(i)) - ‘*(p(J) "2> ; (7)
i
9 3
)
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D(&p,5) + D(83,,)

- D(8p,,) + D(8py,) +D(lp,1} . (8)

By making the appropriate substitutions from Eq. (3D, 4t follows
Sy
o . Moreover,
— -y
3y _ Ly 4 53,
(9)

immediately that M, does not depend on
2) -
P Dle

,0;z ) = exp (D(E(
5 i

Mg(a
=9
lD(a(“)

%

=(2) =(3)
£

e

o ))3

Thus, the homogeneity of M, follows from the assumption that the structure
4
function depends only on the difference variable Apij. It will be shown,

(2) takes a particularly simple

however, that because of the symmetry of the variables in Eq. (9), Eq. €2)
is well defined even if D(Ap) does not exist.

The spectral domain version of Eq.

form. By direct computation
Ql(_;) =//I<I(Zp) exp {i¥ * L) dlg
=’//}1_,+(-:‘%,€;0,zo) exp {-i¥ ° _g'} dg : (10)
(9) into Eq. (10), one obtains
K+ € d (11)

By substituting Eq.

5 () =”vxp f—;(g,'—’.i‘)} exp {-1

g

- 1)

where

iy =iy = oty 1. =
g€, = D(®) + D(T) - 5D(E +7T) - 3D(E
which is the principal result that will be used in later sections.

To investigate the general behavior of g(g,7), the spectral repre-

sentation,




D(E) =f [L-cos@+ D8, @ da/em? (13)

can be used where 654(6) is the two-dimensional phase SDF. If this form
o)
is substituted into Eq. (12), after some straightforward manipulations,

one obtains the equivalent representation

g = Sv/:/‘é‘; (@ sin® (7 - q/2) sin? G- @2 =25 L 14)

(2m”~
From the form of Eq. (l4), it follows that if @6 (a) o« q-a, then g(g;ﬁ)
o
is well defined as long as 2 < o < 6, From Eq. (13), however, it is

clear that the structure function itself is only defined for 2 < o < 4,

To carry the development one step further, consider the special

: : o e - L& = -
case in which |g(g,7)| << 1 for all significant T values. The necessary
conditions are stated in Section V. By using the approximation
exp {-g} =1 - g, substituting from Eq. (l4), and finally using the

7
identity sin” x = (1l - cos x)/2, it follows from Eq. (ll) that

-1 £ o 9 T L
§.(K) = 8(k) + 43, (k) sin® [k~ 2/(2k)] : (15)

which is the well known weak-scatter result.

[o summarize, in the gaussian phase-screen model, the intensity SDF
can be computed by evaluating a single integral, Eq. (1ll1). Only the
phase structure function need be specified for the computation. However,
the diffraction effects, in conjunction with the size distribution of the
irregularities, are completely characterized by the function g(g,? Z/k)
[Eq. (12)], which is well defined independently of an outer-scale cutoff

. - - - . SN
for phase SDFs of the form q with 2 < o < 6,

LE
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IV  SCATTER IN STRICT POWER-LAW ENVIRONMENTS

In Section III, we showed that the second-order statistics of in-
tensity are completely characterized by the function g(g,T), as defined
by Eq. (l2) in terms of the phase structure function. If the power-law

model in Paper I is used,

abC
p

o qv+l/2
[ o’

where

The coefPlcients A’, B’, and C’ are defined in Paper I (Eqs. 26a, 26b,
and 26c¢). The three-dimensional irregularity SDF has the same form as
Eq. (16), except that ahcp is replaced by Cg. The parameters a and b are
axial ratios along and transverse to the principal irregularity axis. A

complete discussion of this model is given in Rino and Fremouw (1977).

The general form of the two-dimensional phase SDF corresponding to
Eq. (16) is
GC qy S

. Xt ) 0
R =T+ 7D 2

2u-1
K 7 19
v-l/Z(qu})/qo (19)
where the geometric factor G is defined by Eq. (10) in Paper I. Hereafter,
we shall consider only isotropic irregularities (a =b = 1). The general
case is easily retrieved by reintroducing G and interpreting y appropriately.

By using the small-argument formula,

Koaqyat®) ~ M2 Iy = 1/2)|x/2|""‘1/2>

12
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it is readily shown that

C I'(v - 0.5)
P

R, Q) = . (20)
8¢

¢ 4nr(v +0.5) ¢2 7"

For completeness, a one-dimensional phase screen for which

CI
5 = L L o1
AOQ(Q) 2 2 p/2 ) ( )
[qo + q ]
p-1
3 __Eé_____ qy 2 et
Reg ) = Fn (ol D) =21 Kpaa ¥4, : (22)
2
and
o p =1
C %
R S ke ( 2 (23)

8¢ -1

2/nT(p/2) af

will also be considered., The one-dimensional model is appropriate for
propagation across highly elongated irregularities. The relationship

between p and Vv is p = 2V,

Whenever the phase autocorrelation function (ACF) exists, the phase

structure function can be written as

D(8p) = 2R, (0) - R, (Bp)] . (24)

Thus, from Eqs. (19) and (20),

v=1/2
g - qoy 5 0
e € v = 0.5) J1 = 2jes=| kv_l/z(qoy)/r(v - 0.5) o
() * 30T + 0.5) 21
(8]

el

e




(p=1)/2
» o e
l\(p_l)/_,((lo.\)/.(}—',_, ) Al
p-1 e

qo

As q, approaches zero, the correlation functions R_ (y) and Ri_(y) be-

come singular. However, for a limited range of v and p values, D(y) and
D'(y) remain well defined,
The limiting forms of D(y) and D’ (y) as q, approaches zero are not
; i . lim - ;
immediate, since & D(y) = 0/0. Thus, one applies L'Hospital's rule,
Q0
whereby the limit s obtained as the limit of the ratio of the separate

derivatives of the numerator and the denominator. The results are

val/2
4
" ) e ? ;
lim Lp “‘ 2 P 3/_"(10)) y
v O 2nbey F 0.5 2v=2
b

It follows from Eqs. (27) and (28) that the
are well defined as q approache: zero,
O

F € P < 35

However, it was shown

beyond v = 1. Similariv.

Hence, the most general limiting
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Eq. (27) or (28) into Eq. (12). Two methods of avoiding this dilemma have
been discussed by Rumsey (1975). The most straightforward procedure is
to apply the finite q_ form of D(y) or [D'(y)] and use L'Hospital's

— -
rule to evaluate the limiting form of g(§,M). Thus,

€ = &
g _ p (Y - 0,5) A i- o 5 V=1/2,
8(5:M = 3 F(v+0.5 : (v - 0,5) 'Iqoy 1/2| l\\/-1/2((10),1)
va1/2
+ 2|q y2/2| K,_1/2045Y )
1 =LA 2
B |q\»\J/J / k\‘v-l/;_’(q()}'.;)
” "J-L/._' - 2\«-1
- la y4/2| Kv-[/z‘qoya)] /9, ’ (29)
where Wy lf\, Y, = |*|, Yy = !f = '|, and i ™ |§ s ~‘|. A similar ex-

pression can be generated for g'(*.f). To evaluate Eq. (29) and the
corresponding expression for g/(7.7), L'Hospital's rule must be applied

twice. The results of this computation are summarized in Table 1.

lhe results in Table 1 for g(g,:) agree with Rumsey's (1975) Egs.
(18) and (19) for B.5 < v < 1.5, but not for 1.5 < v € 2,5: The limiting
forms of g(%,7) for v < 1,5 and v > 1.5 cannot be simply combined. A
term has evidently been omitted in Rumsey's computation for v > 1.5
(¢ > 4)., In any case, v = 1.5 marks an important transition in the scat-
tering behavior, which will be shown in Section IV.

fo illustrate the significance of these results, let

- - D\ -
€ = C(w) 1/(2v-1) f in Eq. (11) where

15

— L P E— A



g2@ = 4 - d)(z/d)1

au)N_M

5 = < _ 4 u/
3+ glblz - glsle @/d - 793 mw
P
- N n il =l el 2/
-5 sot i - 512+ |u] so1 Ju| - |3] so1 3] -| —=
29C
z(1 - d)(z/d)J ,
& { & -d u
_ E Alm_C 3 w_ T Hla_k_N e Aua_w_N 1 z ' M
(=M D
8 JeuoTsSuUdWI(=-2UQ
5C(2= aZ)(1 = a2)(n + S°0)]
Lz - . M5l -] &= -~
1-aZ2'= 1-nZ'= (&= ¢ 2)d L
& S N | e 2 e o7
+ _h 3 W_ 801 m_h = M_ﬂ + _h_ 3071 N_h_ = _N_ 801 N_M_ = Nw
2(1 = a2)(n + 6°0)d
o G 5= > 1-a¢ “e
m_ A->N_H_n 4 n = S0 NM

(L¢3)8 TePUOTSUDWIQ-OML

(9,8 awv (L

2)8 d0 S04 ONTLIWIT

“
—

T 219®el

N e

Ll !
LTl

16




.
. ['(l.5 - v)
= S s 0.5 < v < 1.5
r(0.5 + v)(2v - 1)2
C
C(v) =<—)B- v = k.5
s [(2.5 - v)
2 T
L:T r(0.5 +v)(2v - 1)(2v - 2)22v . 1.5 <V < 2,5 (30)
Then, with an appropriate substitution for a,
1/(v-0. 1/(2v-1
c(v) /( 5) ¢I«5/)C(V) /(2v )) )
'/:/‘expl_h('-_b‘/’ %Ik C(\;)]‘/(V-O'S) a’/)i oS (;/ 3 a’/) d_'E/ (31)
where
b I — s V)= — =y P = I 0.7 S
e (B2 2 ot 2 @ - HP 2 B A # 1.5
h(E,T) =
=2 = =2 = - B - o
- [8)% tog [E] - (7| tog [F] + 1/2[F - 7| 1og [E - T
e =2 = =
+l/2lg+“ﬂ| log |:v+”“ o= 1.5
(32)
The form of Eq. (31) suggests the definition
v =GV e = cpz“'o'5 F(v) (33)

where

DWW Ve




The reason for introducing the new definitions, Z and F(v), will become

clear shortly.

[t now follows that the second-order statistics of intensity are

- < i e~

completely characterized by the integral

(=53
- wap ‘«-O. - o 3 = =
| 1(q:V) =/]wpl*1(&v ; q') cos (C-q)d . (36)

Similarly, for the one-dimensional phase screen

=
1'(q"5u") =/oxr» -h’(;m’ & q) cos (Cq ) dC (37)

completely specifies the second-order statistics of intensity, where

v’ = @ P2 ¢ p)
E = CI Z(p-l)/z F/ (P) - (38)
1 5
ol r (-J:;‘“)
t li_, & — |~
r(p/2)(p-1)2F
JL:
'p) v & =k Koo
LI
\l:— [(5/2 - p >_2 j<pes N (39)
L(p/2) (p-1)(p-2)2P
and
‘ ' (p) = Q(P-l)/g 5’(p)/c; 3 (40)

The definition of h'(.") is readily deduced from Table 1.

‘ 7 ! 18
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The single parameter U determines the general behavior of the second-

order intensity statistics. In Section V asymptotic results will be de-
rived for weak-scatter conditions (U << 1) and strong scatter conditions
(U >> 1). Before doing so, however, it is instructive to compare the U

parameter to the intensity scintillation index §

Paper I showed that for isotropic irregularities

._(2.5-\")
sj = cpz”'o'5 e . (41)
— \  MAl L—.—
2/m (v-0.5) 1( 2 )
Thus, from Eq. (33),
= [2.5=y
52 - U i ( 2 ) 42)
4 % \1+O-5 4 (

2/ T(=5=)F(™)

Similarly, for the one-dimensional phase~screen,

op (2R
g
T (p-1) l(ﬂil

\ 4

£ N

. (43)
! ()

2
£

For a fixed value of v (or p), S, and U admit the same functional dependence

4

]
on C and Z. However, the functional dependences of S, and U on v are
4

radically different.

From Eq. (41) it follows that Sj is a continuous monotonically in-
creasing function of v, This happens because as the slope of the phase
spectrum steepens with CP fixed, the spectral intensity of wavenumbers
corresponding to the Fresnel radius rapidly increases relative to the

smaller~scale structures. The parameter U, by comparison, is sharply
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discontinuous at v = 1.5 [U’ is discontinuous at p = 3]. This is il-

2
lustrated in Figure 1, where SA/U is plotted as a function of v.

In Section III it was shown that Fresnel filtering suppresses the
influence of large-scale structures in intensity scintillation as long
as v < 2,5, The behavioral transition at v = 1,5 can be interpreted as
a boundary between regimes in which large-scale structures are strongly
suppressed (v < 1,5) and those in which they are weakly suppressed
(v > 1.5). The asymptotic behavior of RI(Ep;z) for large U is very dif-

ferent in these two regimes, as we show in Section V.,
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FIGURE 1 RATIO OF S, TO U vs. ¥ SHOWING DISCONTINUITY AT » = 1.5
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V.  ASYMPTOTIC RESULTS FOR LARGE AND SMALL VALUES OF U

Following the work of Gochelashvily and Shishov (1971), a number
of authors have derived asymptotic formulas for él(?;z)and/or RI(Zp;z)
by using series expansions of q(E;ﬁ) (e.g., Taylor and Infosino, 1976;
Buckley, 197la, 1971b). Difficulties can arise, however, if g(%,7) is
defined in terms of an implicit structure function. For example, moments
do not exist unless an inner-scale cutoff is introduced. To do so, how-
ever, does not give physically meaningful results, since the basic inte-
gral [Eq. (11)] is well defined independent of either the inner-scale
or the outer-scale cutoff,.

Proper treatment of this problem demands that series approximations
be applied to Eq. (32) directly, as Rumsey (1975) did for the special
case of vV =1 (¢ = 3)., First note that h(g,O) = 0 irrespective of v.

Hence, for sufficiently small H,

1

{ o V=U. T = v-0,5 =
exp -h<§, g Bao q> =1 - h<é, u v" q> ‘ (44)

Substituting Eq. (44) into Eq. (36) gives the so-called low-frequency

approximation

ERCHOR S(q) -/‘_/h( T ">cvsw{ .

o . =i Y =(3Ve1y . 2 {.®<G.5 _2..1
§(q) + 4{C_ C(v) gl sin” | q/2)
P \

o
Note that the product C C(v) is independent

)
'

The low-frequency

This is essentiallv equive




when v = 4/3 (o : The situation is more complicated when E >> q.

For v # 1.5 and 7 e starting point is

(v-0.5)8% + 2(v-0.5)(v-1.5)(E + 4)°

3-2
0 v

T 2

—

where 4_ = '/l*}. Ordering the terms in Eq. (46) and retaining only

the lowest order terms in E/7 gives the result

5
[ 0.5 <9 < 1.5

(2v-1)[g% + (2v-3)E + 3)°] °¥7 Bl 9 < g5 AET

For v < 1.5, the high-frequency approximation takes the particularly

Lp(350) ﬂcxx>i-2|§ M Ueos (@ B dF

It follows from Eq. (48) that IHF(E;F) converges rapidly to zero for

H >> 1, Thus, if U << 1, the bulk of the intensity SDF is contained in

simple form

the low-frequency approximation. For U >> 1, § is very small, and the

bulk of the intensity SDF (except the singularity at q = 0) is contained

in the high-frequency approximation, Thus,
I -.. 1
Lplay)

1(q;U)

g o s 1 4
(@) + I,..(q;0) (49)

This behavior is nicely illustrated by the one-dimensional model

with p = 2, wherein I(q;U) can be evaluated exactly., Indeed, for p = 2

<

2| lgl < |nl




By substituting Eq. (50) into Eq. (34), it is readily shown that .
u?|ql
I'(q;U’) = 5(q) + 2 exp {-2|5]} cos (qf) dE
o
2 2 2 2
A 8 sin U 2 2 e
= §(q) + ( — /2) , 2q sin (q; lah) fn 3021l
4 + q 4 + g
4 2
: + Fepeatny [1 - exp {-2v’ Iq’?] > (51)
. 4 + q

(7.
For U/ << 1. and q small, the first sin~ term dominates Eq. (51) in agree-
ment with the low-frequency approximation. For U’ >> 1. the third term
dominates and there is no further dependence on U’. The second term in

the square brackets is significant only in the intermediate q range.

By using the high-frequency approximation it is easily shown that

for large U

B(E) = exp {-2]€]" 21 +1 . (52)

In terms of the original variables

2v=1.
Rl(y) - 1 =exp {-2C(V)y }

' = exp {- D(y)} (53)

)
[see Eq. (27)]. It follows that S, = RL(U) - 1 approaches unity as U
= - A

becomes arbitrarily large. Moreover, upon recalling Bramely's (1954)

result for a gaussian phase screen,
/* l /,
{uu’ ) = exp (- =D(y) 5 (54)
i )
{ it follows from Eq. (53) that (II’) - 1 = (”uu”sl , again as U becomes

arbitrarily large.

-
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If u = x + iy, where x and y are uncorrelated, equal-variance
Wk 25 .
gaussian processes, then it is well known that I = |u| is Rayleigh

‘(uu*)lz. Moreover, the phase of U is uni-

distributed and (IIL’) - 1
formly distributed. Now, while Eq. (53) alone cannot guarantce uniformly
distributed phase (modulo 2m) and Rayleigh statistics for intensity, ex-

perimental results (Fremouw et al., 1978; Rino, 1978) suggest that the

Rayleigh model is a good approximation.

For v > 1.5, the high-frequency approximation [see Eq. (47)] is
considerably more complicated. In particular, IHF(H;U) retains an
explicit dependence on U such that numeric computations must be used,
Intuitively, however, it is clear that as VvV increases from 1.5 to 2,5,
the intensity statistics tend to behave more like the medium is being
dominated by a single scale size, even though strictly speaking the outer

scale is not important until v exceeds 2.5,

When a single scale size is dominant, strong focusing can occur
(Pisareva, 1958), which causes S4 to exceed unity. The form of
IHF(E;U) for v > 1.5 does not exclude this from happening in a power-law
environment, although the conditions that lead to S4 > 1 have generated

some controversy (Rumsey, 1975; Taylor and Infosino, 1976).
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VI SUMMARY AND DISCUSSION

In this paper the power-law phase-screen model has been generalized
to accommodate strong scattering. The intensity SDF Ql(q) was derived in

terms of a single integral expression I(q;U):

500 = gt 0 1[& T e L'] ; (55)

where

U = cpz“'o‘5 F(Vv) (56)

has the same functional form as the weak-scatter formula for the scintil-

<

2
lation index, S [Recall that Cp = re\ (L sec 8) CS; where CS is the

x
strength-of-turbulence as defined by Eq. (7) in Paper I.] In general q
1
iy N = S S
54 = I(q,U) dg(2m)” - 1 3 @57)
whereas for U << 1,
7_(3.5-\/)
2 v=0,5 G 2 4
i % i J ] o
SRS 2/m (v-0.5)r(522)

where J is defined by Eq. (34) in Paper I.

It was shown in Section IV that as long as v does not lie in the
range 1.4 v < 1.5, then Sz > U, where Sz is evaluated using Eq. (58).
Thus, the weak-scatter condition U << 1 need not require that Sa << 1,
This is consistent with the experience of most experimentalists, namely

that the weak-scatter S, formula accurately reproduces their data, even

4
for moderately large scintillation levels.

As v approaches 1.5, F(v) approaches infinity. The v = 1.5 point

marks an important transition from a scintillation behavior regime in

which the contribution of structures larger than the Fresnel radius is
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strongly suppressed (v < 1.5) to one in which the contribution is only .
weakly suppressed (v > 1.5). When v < 1.5, the phase-structure function,
for example, is well defined in the limit as the outer-scale wavenumber :

approaches zero,
In Section V an asymptotic analysis of I(H,U) was performed for
large and small q values. For U << 1, the low-frequency approximation x

-(2v+l) i

(@) = 5(q) + 4cC ? (za®) (59) |

P
accounts for all significant Fourier components. As U increases, the
high-frequency approximation accounts for all the significant Fourier
components, except the delta function at q = 0, The form of the high-

frequency approximation, however, is very critically dependent on Vv,

When v < 1.5, the high-frequency approximation is independent of U,
Thus, under conditions of strong scattering, the intensity statistics
converge; ultimately there is no further change with increasing Z., When
this happens, a simple analytic form for QI(E) cannot be obtained. None-

theless, the intensity correlation function takes the particularly simple

form
I1') = exp {-D(y)} (60)
where
C aTr 2v-1
l.5-v
D(y) =G 7& s ) o) |y : (61)
ST vH0,. 5)i(2v-1) 2"
o evaluate the temporal autocorrelation function of intensity, y is
replaced by v __8t, where v __ is defined by Eq. (13) in Paper I. Thus,

eft ekx
1£ T1 is defined to be the time separation to achieve an intensity decor-

e S i
relation of e ', then

¢ : £
= 3 ] &l-Jl( 2L (Le5=~V) e (62)

\ F(v40.5)(2v=1)2"
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The formula becomes meaningless as v approaches 1.5. For v = 1.5, no
simple formula such as Eq, (60), exists and numeric computations must
be employed. Indeed, in that case Tr will depend on Z, as it does under

conditions of weak scatter, in which there is also no simple formula.

It is instructive to compare these results to the earlier results
; ; ; 2,2
for a gaussian phase screen with a gaussian ACF of the form exp {-Lp /ro}.

For the gaussian ACF, the rms phase ¢, can be computed from the expression
2 Lo

2 o rekz (L sec 8) G (ANi) 2m 37 r . (63)

Under conditions of weak, isotropic scattering (@0 << 1)

B L SR
54 = 290 1 - cos (zle(nro)) » (64)

If Az/rg << 1,

ro

2 2 DE
S, =2 | ~—5
4 ol -2 ) (65) 4

which is similar to Eq. (58). 1If, on the other hand, fZ/rs >> L,

B
ro

= 2p . (66)

Moreover, Mercier (1962) has shown that the intensity statistics are
Rician in this limit., By comparison, in a strict power-law environment,
Az cannot be increased indefinitely without SA approaching unity. Put
another way, in a strict power-law environment one always encounters
strong scattering with increasing distance from the scattering region

before S, saturates independent of Z, ]
[43

Under conditions of strong scattering, the relationship (II’)

exp [-2D(y)} where {

D(y) =92 (1 - exp {-y*/r?}) ®7)
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will ultimately apply. However, it is known that when 9, > 1 and

z
Q. .~ 1 - (68)

where Qg is the fourth-order moment of the gaussian spectrum, the scintil-
lation index S, exceeds unity (Salpeter, 1967). This is the strong focusing
effect. This phenomenon has a counterpart in a power-law medium. However,
since neither wo nor Qo exist, the strong focusing condition cannot be

simply characterized as with Eq. (68).

The scintillation behavior in a gaussian ACF environment is con-
veniently summarized in diagram form, as was done initially by Cohen et
al., (1967). Figure 2, the usual representation, is reproduced from
Singleton (1970). Regions I and II correspond to the near and far zones,
respectively. Region III is the '"fully modulated'" or saturation region
where 34 is unity and the relationship (I1’) - 1 = exp {-2D(y)} holds.

Region IV is the strong focusing region where S, > 1.
g g =3 4

In a strict power-law environment, by comparison, there is no
characteristic scale size akin to ro, and the magnitude of the rms phase
is irrelevant to the scattering behavior, Contours of constant S, have

4
the form U = const.,, or, from Eq. (56),

CPZV-O') = const, (69)

Thus, if one were to make a diagram similar to the Cohen-Singleton dia-
gram for a power-law medium, the phase strength-of-turbulence, Cp’ would

replace 9 and the Fresnel area \z/4m would replace Az/rj.

The degree to which Region IT1 is present depends critically on the

spectral index v, If v <« 1.5, S, does not significantly exceed unity.

4
For v =2 1.5, however, Sa values substantially larger than 1 do occur.
When this happens, the contours are still given by Eq. (69). Thus, the
scattering behavior in a strict power-law environment can be similar

to that predicted by the Cohen-Singleton diagram for Kz/rz <

In fact, if a finite outer-scale is introduced, then the Cohen-

Singleton diagram for a power-law medium is similar to that of a gaussian
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3 medium with the outer scale playing the role of r . Because the outer
)

scale is at best indeterminant in the ionosphere, however, such an

extrapolation is not useful for data interpretation,
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