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5; Abstract i
b .
P
The need to measure the volumes of all materials produced in the saw- i
milling process is becoming more important as the value of these materials
increases.

This paper introduces a geometric model with which to calculate the ¥
volumes of these materials with a minimum of data gathering. Methods to

calculate the volumes of green lumber, dry lumber, green chips, green

sawdust, and dry planer shavings are given.

The mathematical and geometric theory making up the model is illustrated
by equations and drawings.
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By

/(| PHILIP H/STEELE| Forest Products Technologist!/
P - s and
i HIRAH/&ALLOCK} Forest Products Technologist

Forest Products Laboratory.gl Forest Service
U.S. Department of Agriculture

Introduction

/

The importance of residues as a byproduct of sawmilling has been growing
yearly as their utilization increases. Utilization and the resulting
importance should continue to increase. The supply of commercially

: desirable sawtimber species is not keeping pace with demand and smaller
: diameter trees that at one time were being pulped are now being sawn for
lumber. Some products now made with lumber will in the future be made
with lower cost byproducts of the milling process--chips, planer shavings,
sawdust, and bark. As the prices of fossil fuels climb, mills are
increasing their use of residues as a source of energy.

i Historically, sawmill residues had little or perhaps even a negative
value, because their disposal often incurred a cost. As with all such
valueless or "free'" resources, the need to measure them did not arise.
With an increase in their value, however, accurate estimates of residues

] becomes important.

There are many ways that an accurate method for calculating residue
volumes can be used. For example: (1) mills with computerized lumber
tallying equipment can automate the inventory of the residues they
produce, as well as the lumber; (2) the economic feasibility of a sawmill
, in the planning stage can be determined more accurately if a good

[ & estimate of residue volumes is available; (3) the engineering design of

1/ Member of State and Private Forestry staff located at the Forest
Products Laboratory.

&
¢

2/ Maintained at Madison, Wis. in cooperation with the University
of Wisconsin.
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a sawmill in the planning stage can take into account the volume of
residue production and better estimate the requirements for conveyor
capacity and volume; and (4) energy production from residues for sawmills
currently operating and those in the planning stage can be accurately
estimated so expectations of energy output are met and equipment of the
proper capacity is built into the mill design.

This paper presents the geometric and mathematical theory making up a
model to calculate residue volumes. The model being presented allows
accurate calculation of the volumes of lumber, chips, planer shavings,
and sawdust. It is meant to be applied to a specific sawmilling
situation--to any mill with any type of operating characteristics sawing
any species. It can be used to analyze a currently operating mill or a

proposed mill.gf

Planning for the Model

Review of Literature

Residue studies made in the past entailed a considerable amount of labor
involving measuring and then weighing the log and all components produced
in the sawing process that are of interest. These studies have attempted
to bypass the labor involved in future studies by using regression

3/ When this model is used to predict residues generated by a pro-
posed mill, the necessary data have to be generated. This requires
assumptions about the operating characteristics of the mill (kerf,
variation, and fixed head planing cut) and the nature of the logs to be
sawn (diameter distribution, length, and percent of defect). A less
obvious requirement is the need to derive a lumber tally that fits the
log distribution sawn. Knowing the expected Lumber Recovery Factor (LRF)
of the mill, a reasonable lumber tally can be estimated. A more exacting
approach would be to use a computer program that calculates the maximum
yield from each log, such as the Best Opening Face (BOF) (12) program.
Again, these maximum yields would have to be adjusted according to the
expected LRF of the proposed mill.
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factors (1,2,5,9,10,17,19,20,24,30), mathematical models (3,13,29) or

reports of absolute residue volumes (16,'8) as predictors. These studies
based their predicting models on one or more mill studies.

The various methods used by all of these studies have one weakness in
common; relatively few of the many variables that can affect residue
volumes are considered. Most use only diameter or diameter and length
of the tree or log as their independent variables. Three studies (4,17,
24) include log grade and one study (28) includes log grade and taper as
additional variables.

An accurate prediction of a sawmill's residue production requires

4/

including in the analysis all important variables—’ that can affect this
production. Some of the more important variables that should be
accounted for, besides log or tree diameter, length, grade, and taper,
are:

Product mix

Kerf width

Sawing variation

Rough green lumber size

Size of planed lumber

Condition and maintenance of mill equipment

Ability, conscientiousness, and fatigue level of the sawyer and
other mill personnel.

An actual mill study takes all of these sources of variation into account.
The problem has been that such a mill study has required a large amount
of time and labor. The model presented here allows a mill study to be /
conducted with a relatively small amount of labor and data collection.>
No weighing of logs and residues is necessary. An accurate residue
analysis, considering all sources of variation, can therefore be run

with a minimum of effort.

4/ The model presented here takes certain variables into account
implicitly (log grade, condition of mill equipment, personnel factors).
This is because a mill study is required. Even though these variables
are not quantified and used as data in the calculations, their effects
show up in the lumber and residue recovery figures.

5/ The Henley and Hoopes publication (13) provides a computer
program to calculate residue volumes. It appears to use a model and
requires data similar in some respects to the one described in this
paper. Their model differs in that planer shavings volume is not
calculated and the methods used to calculate lumber volumes and residues
appear to be less exacting.
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With these data, the calculations for an accurate estimate of residues
can be made. As can be seen, the data are relatively easy to gather
with no special equipment necessary.

Data Needed for Model |

Length of each sample log and maximum and minimum diameters of both large
and small ends are measured. Lumber resulting from the sawing of sample
logs is tallied. Sample lumber is measured for size and variation. The
thickest and thinnest measurements for each of 100 boards of each thick-
ness cut, and the widest and narrowest measurements for each of 20 boards
of each width cut, are considered to be an adequate sample. In mills
planing their lumber, the depth of cut made by the fixed heads in the
planer is needed.

For extreme accuracy in mills planing dry lumber, the moisture content
of dry lumber can be measured, but an estimate is usually adequate. The
tangential shrinkage value ftor each species studied is necessary and can E
be found in the Wood Handbook (11) published by the U.S. Forest Products
Laboratory.

Abbreviations of Variables
Used in Hodel

Abbreviations will be used for simplicity in the equations that describe
the model. The following is a list of these abbreviations and their
meanings as used in the equations.

ACTVOL = Actual Dry Dressed Volume of Lumber
DDT = Dry Dressed Thickness
DDW = Dry Dressed Width
DDVOL = Dry Dressed Volume of Lumber
F = Conversion Factor = 1/144 = 0.0069444
FHC = Fixed Planer Head Cut
LH = Nominal Lumber Length + MLTA
LO = Nominal Lumber Length + MLTA + Average Log Overlength
MLTA = Minimum Lumber Trim Allowance
! NOMVOL = Nominal Volume of Lumber
? NSVTHK = Negative Sawing Variation--Thickness
NSVWTH = Negative Sawing Variation=--Width
_ PLNSHV = Dry Planer Shavings Volume
i PSVTHK = Positive Sawing Variation--Thickness
| PSVWTH = Positive Sawing Variation--Width
' RDT = Rough Dry Thickness
RDW = Rough Dry Width




RDVOL

Rough Dry Volume of Lumber

RGT = Rough Green Thickness
RGW = Rough Green Width
RGVOL = Rough Green Volume of Lumber
(100 - Tangential Shrinkage for
SHRINK = Shrinkage Factor = Specxeslggalyzed)
SKPVOL = Volume of Skips in Planing
TSVTHK = Total Sawing Variation--Thickness
TSVWTH = Total Sawing Variation--Width
WTDKRF = Weighted Average Kerf

Specifics of the Model

Introduction of Model

All of the calculations shown are based on the assumption that the mill
being studied is of the typical softwood type that planes its lumber dry
and produces dry dressed lumber.

There are three other possible conditions in which a mill can sell its
lumber: Dry rough, green dressed, or green rough. The residue calcula-
tions for these three cases can be made with minor modifications to the
calculations given here.

A geometric model was created to make practical the application of
mathematical calculations to obtain the volume of each product produced
in milling a quantity of lumber. This model of the lumber produced is
based on the following assumptions:

(1) Each thickness and width class of lumber can be represented by a
theoretical piece of lumber made up of the total lengths of lumber in
that class. For example, if the nominal 2 by 4 thickness and width
class contains 10 pieces of lumber each 10 feet long, then the entire
class is treated as one 2 by 4, 100 feet long.




(2) This theoretical 2 by 4 has its smallest dimensions on one end and
its largest on the other. In gathering data each piece of lumber
sampled is measured for maximum and minimum thickness in both dimensions.
From these measurements, a total sawing variation, positive sawing
variation, negative sawing variation, and average width or thickness are

calculated.é/ Knowing these values, the small end dimensions are equal
to the average dimension minus negative sawing variation; the large end
dimensions are equal to the average dimension plus positive sawing
variation. Figure 1 illustrates this, showing some hypothetical dimen-
sions and variations applied in the 2 by 4 example given above.

Lumber Length (l.H and LO)

In many of the equations to follow, the total length of lumber for each
thickness and width class must be known. Two lengths will be used in
these solutions. LH is the total nominal lumber length plus minimum

lumber trim allowance (MLTA) per thickness and width class. Ly is Ly
plus average overlength per log. — ——
l.H reflects the true length of trimmed lumber, since each piece of lumber

is at least the nominal length plus the MLTA.

[.M = (Nominal Lumber Length + MLTA) x (Number of Boards (1)
per Nominal Lumber Width and Thickness Class)

LO reflects the length of each piece of lumber prior to end trimming.

This length is used when the distance of the travel of the saw through a
log is necessary in an equation.

Lo = (Nominal Lumber Length + MLTA + Average Log Overlength) (2)
X (Number of Boards per Nominal Lumber Width and Thickness Class)

Rough Green Lumber Volume (RGVOL)

Before calculating green lumber volume, it is necessary to break down
the geometric model of lumber into two separate geometric solids. The
volumes of these solids can then be mathematically determined. Figure 2

6/ An explanation of the meaning of negative, positive, and total
sawing variation is contained in Appendix 1.
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Figure 1.--Geometric model of a nominal 2- by 4-inch width and thickness
class of lumber with hypothetical variations used to calculate large
and small end dimensions.

i Width Thickness

: (In.) (In.)
Total Sawing Variation = 0.300 0.225
Positive Sawing Variation = .200 .100
Negative Sawing Variation = .100 125
Average Dimension = 4.250 1.750

Small End Dimension = Average Dimension - Negative Variation

Width = 4.250 - .100 Thickness = 1.750 - .125
= 4.150 = 1.625
Large End Dimension = Average Dimension + Positive Variation
Width = 4.250 + .200 Thickness = 1.750 + .100
= 4.450 = 1.850
(M 146 633)
5. c‘
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Figure 2.--Breakdown of lumber model (a) into a wedge (b) and a
trapezoidal solid (¢).

(M 146 634)
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g illustrates this breakdown, and equations (3), (4), and (5) are derived
; from the variables defined in these figures.

The volume of the trapezoidal solid (fig. 2c¢) is given by the
general equation:

ool ]

Ho + H
Y i,
Wily( —5—)

(3)

The volume of the wedge (fig. 2b) is given by the general equation:

2= 0, + S (4)

x
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H. + H W H, - H
= 1 2 ZLM 2 1
RGVOL = [WILH ( 5 ) + 5 (Hl + 3 )J x F (5)

where:
Hl = RGT + PSVTHK
H2 = RGT - NSVTHK
Wl = RGW - NSVWTH
Wz = (RGW + PSVWTH) - (RGW - NSVWTH)

Rough Dry Lumber Volume (RDVOL)

Rough dry lumber volume is calculated in the same manner and using the
same equations as rough green lumber volume but with dry dimensions
replacing those for green. Dry dimensions are obtained by multiplying
the shrinkage factor (SHRINK) times the rough green dimensions as in
equation (6).

RDW
RDT

SHRINK x RGW
SHRINK x RGT

"

(6)
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The equation for rough dry lumber volume becomes:

H, + H WL H, - H

0t i OB 2N A .
RDVOL = WLy ( 5 ) + 3 (Hl + 3 ) | x F (7)
where:
H] = RDT + PSVTHK
"2 = RDT - NSVTHK
w] = RDW - NSVWTH
W, = (RDW + PSVWTH) - (RDW - NSVWTH)

Dry Dressed Lumber Volume (DDVOL)

Dry dressed lumber volume is calculated using the target widths and
thicknesses the planer is producing. For example, the dry dressed
volume of a class of lumber that is 1.50 inches by 3.50 inches and
100 teet long would be 1.50 inches x 3.50 inches x 100 feet x 1/144 =
3.65 cubic feet.

The general equation to calculate dry dressed lumber volume is:
DDVOL = DDW x DDT x LM x E (8)

Actual Dry Dressed Lumber Volume (ACTVOL)

Actual dry dressed volume is equal to the total amount of wood present
in the particular piece of lumber being discussed.

It is important to distinguish between this value and that of dry dressed
volume. The dry dressed volume of 3.65 cubic feet of the lumber class
given above (1.50 x 3.50 in.) would in most cases not be the actual dry
dressed lumber volume. The two would be equal only if there were no
planing skips on the lumber. This equality is unlikely because the
lumber from most mills will have some surface skips. Thus, the actual
dry dressed volume in the example above will probably be something less
than 3.65 feet.

Actual dry dressed volume is a useful concept and serves to remove
scantness (planing skips) as a variable when comparing the conversion
efficiencies of mills. [t provides a precise basis on which a comparison




can be made because actual dry dressed volume gives the true volume of
lumber produced. Neither lumber recovery factor (board feet of lumber
as a percent of total log volume) nor dry dressed volume as a percent of
total log volume are as precise.

No equation has been developed to calculate actual dry dressed lumber
volume directly; the volume depends on the skips present on the lumber
after planing. One method is given in the next section, along with the
equations to calculate planer shavings.

s e

Planer Shavings Volume (PLNSHV) 1

- T
D oLy

The possibility of a mill undersizing its lumber introduces some diffi-
culties into calculating planer shavings volume. To simplify this
initially, the discussion will be limited to situations that could occur
on one face of a piece of lumber.

To illustrate what is occurring on a single face with reference to planing
lines intersecting that face, it is useful to show the adjacent face.

The dimension of the adjacent face determines how the planer head inter-
acts with a given face. That is, the variability and dimensions of the
narrow face of a piece determine the amount of planer shavings taken

from the wide face and vice-versa. Figure 3 shows the face adjacent to
the single face dealt with when illustrating how the variability and
dimension of the piece interact with the lines of planing.

Three possible situations can occur on a single face with respect to the
intersection of planing lines with that face:

(1) The variable plane can be in wood the entire length of
the face. When there is enough oversizing to compensate for any
variability, no planing skips are produced. Figure 3a illustrates
the path of a plane intersecting the face of a piece of lumber under
this condition. The side view shows that the plane remains in the
piece on its entire pass. This situation will be referred to here-
after as OVERPLANE.

- RS SR RANTONEC, ROTy SRR D e s WA T 1 TR

(2) The variable plane can entirely miss hitting wood when the
piece passes through. This situation (fig. 3b) rarely occurs for
it would indicate that the rough dry lumber size is less than the
dry dressed size plus fixed head cut. Such lumber would be planed
on two sides only by the planing heads making the fixed cut.

This situation does indicate a lower limit to the volume of planer
shavings that will be produced when lumber is planed. This lower
limit exists because, as lumber passes through the planer, the

fixed heads will take their cut from one wide face and one narrow

-]l
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PATH OF
VARIABLE PLANE |
a
PATH OF
FIXED PLANE |

VARIABLE PLANE

b

PATH OF
FIXED PLANE

B A A S ARG, + <o TR DR S

PATH OF |
VARIABLE PLANE

C

PUTH OF |
FIXED PLANE

Figure 3.--Path of variable plane: (a) in wood the entire length of
face (OVERPLANE); (b) entirely missing wood (UNDERPLANE); (c) passing
through wood and air alternately (PARTIAL PLANE).

(M 146 635)
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face. Therefore, the minimum amount of shavings produced is equal
to that taken off by the fixed head cut on one thickness and one
width. This situation will be referred to hereafter as UNDERPLANE.

(3) The variable plane can pass through wood and air alternately,
producing skips on the lumber. Probably the most common and

usually desirable situation encountered in a mill is shown in

figure 3c. Because some skips are allowed under the grading rules,
maximum LRF will be produced when the skips are produced up to the
limits of these rules. This situation will be referred to hereafter
as PARTIAL PLANE.

Each of the three cases can occur on each of two faces on the geometric
model of lumber because all variation in each dimension is represented
as occurring on a single face. The result is that each piece of lumber
can be described by one of nine possible situations when it is planed:

Case Thickness Width
(1) Overplane Overplane
(2) Underplane Underplane
(3) Partial plane Partial plane
(4) Underplane Overplane
(5) Overplane Underplane
(6) Partial plane Overplane
(7) Overplane Partial plane
(8) Partial plane Underplane
9) Underplane Partial plane

Each of these nine cases requires a specific equation to calculate the
volume of planer shavings produced. Before the appropriate equation can
be applied, a test must be made to determine which case has occurred.
The tests for each case are given below followed by the appropriate
equations to be used if a lumber thickness and width class fits a case.
Figures illustrating the geometric relations involved in each case are
included as an aid to understanding the derivation of the equations.

Two types of planing paths are referred to--variable and fixed. The
variable head removes a variable thickness of wood from the lumber
surface being planed. The fixed head removes a constant amount from
each piece--usually just enough to remove saw marks, or 1/32 to 2/32 of
an inch. The fixed heads always remove shavings from two faces of each
four-sided piece. There are always one fixed and one variable head for
thickness and another fixed and another variable head for width.




Because the path of the fixed head cut (FHC) is a constant, it will be
illustrated in the figures to follow only when it is necessary in calcu-
lating planer shaving volume. Usually the volume of planer shavings

can be calculated without it. The path of the variable head cut, in
relation to the two faces of the model within which all of the variation
has been represented, determines which of the nine cases is involved and
is the one that it is important to illustrate.

Case 1.--Thickness overplane; width overplane (fig. 4).
Test for case--
IF: (RDT - NSVTHK) > (DDT + FHC)

AND:  (RDW - NSVWTH) > (DDW + FHC)
THEN: Use this equation to calculate volume of planer

shavings:
ACTVOL = DDVOL
PLNSHV = RDVOL - DDVOL

Case 2.--Thickness underplane; width underplane (fig. 5).

Test for case--

IF: (RDT + PSVTHK) < (DDT + FHC)
AND:  (RDW + PSVWTH) < (DDW + FHC)
THEN: Use these equations to calculate volume of planer
shavings:
PLNSHV = [(ZRDT LESVINR - NSVIHK, mc]
3 Ezm)w * PSVNTH - NSWTH _ gy , mc]}

X LH x F
ACTVOL = RDVOL - PLNSHV
Case 3.--Thickness partial plane; width partial plane (figs. 6-10).

In the five cases where partial planing is involved, the calculation of
planer shavings volume becomes more complex. Figure 6 illustrates why.

<Ll
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Figure 4.--Lumber prior to planing showing (a) geometric solids produced
when overplaning occurs in both thickness and width; planer shavings
volume by variable plane on (b) wide face; and (c) narrow face.

(M 146 636)

=15~




§
1
:
!
;
:

Figure 5.--Lumber prior to planing showing (a) geometric solids produced
when underplaning occurs in both thickness and width; planer shavings
volume cut by fixed head (b) on wide face; and (c) on narrow face.

PATH OF
VARIABLE PLANE

ORY DRESSED
SIZE

}

Figure 6.--Path of plane intersecting model, illustrating partial plane
situation.

(M 146 638)
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E 2 Figure 7.--Path of plane intersecting wide face and definition of E
¢ unknown dimensions necessary to solve for volume of skips. (Shown $
! from perspective of narrow face.) : i
'j (M 146 631) ;
PSVWTH o i NSVWTH
PATH OF- .
L —_— —
VARIABLE f%LAMNE?__L___.q_-____ —— —_——
TSVWTH ROW AT THIS // uz
INTERSECTION DOWHFHC
PATH OF s :
FIXED PLANE ¥
FHC L
o

Figure 8.--Path of plane intersecting narrow face and definition of
unknown dimensions necessary to solve for volume of skips. (Shown
from perspective of wide face.)

(M 146 639)
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Figure 9.--Lumber prior to planing showing (a) geometric solids produced
when partial planing occurs in both thickness and width; (b) planer
shavings volume by variable plane on wide face; planer skips volume
defined by (c) wide face and path of plane and (d) narrow face and path
of plane; (e) shavings volume shown as planing skips; and (f) planer
shavings volume by variable plane on narrow face.

(M 146 629)




Figure 10.--Lumber showing (a) geometric shape of wood after solids
removed in planing are broken away; (b) planer shavings volume by
variable plane on wide face; planing skips volume defined by (c) wide
face and path of plane, and (d) narrow face and path of plane;

(e) shavings volume shown as planing skips; and (f) planer shavings
volume by variable plane on narrow face.

(M 146 640)




Note that the path of the plane in a partial planing situation (fig. 6)
cuts the sloping line connecting the largest dimension of the trapezoid
and its smallest dimension at an undefined point. This leaves the two
triangles labled planing skips volume and planer shavings volume.
Projecting these two triangles into three dimensions produces two
wedges, the volumes of which represent the volume of planer shavings
and the volume of planing skips, respectively.

Planing skips volume must be determined. To do this, some geometric
relationships must be defined. The first step in defining these will be
to define those that can be defined in two-dimensional views of first,
the thickness and second, the width of the lumber model (figs. 7 and 8).

Figures 7 and 8 will both be valid only for Case 3 where both thickness
and width are partially planed. In the other four cases, where partial
planning occurs on only one face, one or the other will be valid as the
situation dictates.

For Case 3, figure 9 illustrates in three dimensions the complexities
this interaction causes.

In Case 3, as in several others, it is more convenient to calculate the
volume of skips on the piece. For this reason, the geometric solids
defined by the path of the plane and the piece of lumber are shown.

To solve for the volume of planing skips on the dry dressed lumber, the
volumes of the wedges shown in figures 9b, d, and e must be calculated.
The volumes of figures 9b and 9d are given by the general equation (9)
where the variables represent dimensions illustrated in figures 9b and d.

(Hl + ——*§~——) 9)

The volume of figure 9ez/ is given by equation (10) where the vari-
ables represent the dimensions illustrated in figure Ye.

WLH
& % (10)

7/ Note that the geometric solid depicted in figure 9e and 10e is
planed off as the plane passes through the wide face and is a volume of
planer shavings, not skips. Its volume must be calculated and subtracted
from the total volume of skips.

-20-




To derive the values of the variables to use in general equations (9) T
and (10), figure 9 was redrawn with variables included in figure 10.

Where partial planing occurs in the cases to follow, certain variables
defined in this section will again be referenced. The reader should
refer to this section, and especially figure 10, for an understanding

of their meaning.

The calculation of planing skips (SKPVOL) for Case 3 requires the defini-
figure 10.1/

i

|

|
tion of variables not previously defined. These variables are shown in i'

The test and equations to solve for Case 3 can now be given.

Test for case

IF: (RDT -
AND: (RDT +
AND: (RDW -
AND: (RDW +

NSVTHK) <
PSVTHK) >
NSVWTH) <
PSVWTH) >

(DDT + FHC)
(DDT + FHC)
(DDW + FHC)
(DDW + FHC)

THEN: Use the following equations to calculate volume of
planer shavings:

4 Ha X
SKPVOL = (

ACTVOL
PLNSHV

e

(Vol. of fig. 10c)
e 0
L x DDW
: )
)

‘w x L
a

(—3

(Vol.

( 6

3 wb b Lc X Hb ]}>
—— )|/ x F
.

DDVOL -
RDVOL -

(Vol. of fig. 10d)
A - —————

(DDT + H ) - (DDT - H )Y
= {(DDT - H) + b 5 2 }:]

of fig. 10e)

s

SKPVOL
ACTVOL

«dl=




I EE—————.,

where:

H. = (DDT + FHC) - (RDT - NSVTHK)

H, {[(RDT + PSVTHK) - (DDT + FHC)] Lc} /Ly

H. x LH

a = TSVTHK

o
]

by - I,

Ll
]

c LH v (Ld x La)

Ld " LH . Le
S H. X LH
e ~ TSVWTH

W. = (DDW + FHC) - (RDW - NSVWTH)
Hb = (Lc X w.) / I.e

Case 4.--Thickness underplane; width overplane (fig. 11).

Test for case --

IF: (RDT + PSVTHK) < (DDT + FHC)

AND: (RDW - NSVWTH) > (DDW + FHC)

THEN: Use the following equations to calculate volume of
planer shavings:

H, _H

ACTVOL = WL, (25—2%) x F ;.

i
|
H
i }
| §
3
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Figure 11.--Lumber prior to planing showing (a) geometric solids produced
when underplaning occurs in thickness and overplaning in width; (b) planed
lumber; and (c) planer shavings volume by variable plane on narr

(M 146 641)
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PLNSHV = RDVOL - ACTVOL

E where:

Hl = RDT + PSVTHK - FHC
H2 = RDT - NSVTHK - FHC
W = DDW

Case 5.--Thickness overplane; width underplane (fig. 12).

Test for case --

IF: (RDT - NSVTHK) > (DDT + FHC)
AND: (RDW + PSVWTH) < (DDW + FHC)
THEN:

Use the following equations to calculate volume of
planer shavings: ¥
%
i
H +H, 5
ACTVOL = WLM (———5———) x F i
PLNSHV = RDVOL - ACTVOL ;
where: ;
H, = RDW + PSVWTH - FHC
H, = RDW - NSVWTH - FHC i
W = DDT {
Case 6.--Thickness partial plane; width overplane (fig. 13). :
Test for case -- E
IF:  (RDT - NSVTHK) < (DDT + FHC) :

AND: (RDT + PSVTHK) > (DDT + FHC)

AND: (RDW - NSVWTH) > (DDW + FHC)

THEN: Use the following equations to calculate volume of
planer shavings:

=24~
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Figure 12--Lumber prior to planing showing (a) geometric solids produced
when overplaning occurs in thickness and underplaning occurs in width;
(b) planer shavings volume by variable plane on wide face; and
(c¢) planed lumber.

(M 146 643)
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Figure 13.--Lumber prior to planing showing (a) geometric solids necessary
to calculate planer shavings volume when partial planing occurs in

thickness and overplaning occurs in width; (b) planer shavings volume

by variable plane on wide face; and (c) planing skips volume defined by
wide face and path of plane.
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H x L x DDW
a a

5 SKPVOL = > x F

| ;
ACTVOL = DDVOL - SKPVOL
PLNSHV = RDVOL - ACTVOL

%agg Case 7.--Thickness overplane; width partial plane (fig. 14).

\\ Test for case --

T

IF: (RDW - NSVWTH) < (DDW + FHC)

AND: (RDW + PSVWTH) > (DDW + FHC)

AND: (RDT - NSVTHK) > (DDT + FHC) ]

THEN: Use the following equations to calculate volume of
planer shavings:

W x L x DDT
a e

! SKPVOL = - x F
ACTVOL = DDVOL - SKPVOL
PLNSHV = RDVOL - ACTVOL

Case 8.--Thickness partial plane; width underplane (fig. 15) shows solids
before breakaway; figure 16, shows solids after breakaway.

Planer shavings volume is obtained in this case by direct calculation
of the volume of the wedge of shavings removed on the wide face where
partial planing occurs plus the amount of shavings removed by the fixed
head. Calculating the volume of shavings in the wedge of shavings
requires definition of variables not yet defined. These variables are
shown in figure 16.

Test for case --

IF: (RDW + PSVWTH) < (DDW + FHC)

AND: (RDT - NSVTHK) < (DDT + FHC)

AND: (RDT + PSVTHK) > (DDT + FHC)

THEN: Use the following equations to calculate volume of
planer shavings:

=27~
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ROW+PSVWTH - FHC

ROT+PSVTHK - FHC

Figure 15.--Lumber prior to planing showing (a) geometric solids produced
when partial planing occurs in thickness and underplaning occurs in
width. Planer shavings volume from fixed head (b) cut on wide face;
(c¢) cut on narrow face; and (d) partial planing by variable plane on
wide face. (The geometric solid produced by underplaning in the width

is not shown since its volume does not need to be calculated for this
case.)

(M 146 645)
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ROT+PSVTHK - FHC

ROW + PSYWTH-FHC

\ ﬂ; ROW-NSVWTH - FHC
o

TSYWTH

ROT- NSV THK -
ROTHPSYTHX - W~ FHC

Figure 16.--Lumber showing (a) geometric shape of wood after solids
removed in planing are broken away; planer shavings volume by
(b) fixed head cut on wide face; (c) fixed head cut on narrow face;
and (d) variable plane on wide face. (The geometric solid produced
by underplaning in the width is not shown since its volume does not

need to be calculated for this case.)

(M 146 630)




Vol. of fig. 16d

L N\
w Lb H -H
- _cb c d
PLNSHV -{[ 3 (Hd + 3 J

Vol. of fig. 16c¢

A
i) K, + x2
+|FHC x Ly ( )

Vol. of fig. 16b

s B

ACTVOL = RDVOL - PLNSHV

where:
TSVWTH (L, - L )

H = RDW - NSVWTH - FHC + LH Lb

; Ty

"d = RDW + PSVWTH - FHC

K1 = RDT + PSVTHK - FHC
K2 = RDT - NSVTHK - FHC
K3 = RDW + PSVWTH
KA = RDW - NSVWTH

TSVWTH x Lb

W = —2

e

Case 9.--Thickness underplane; width partial plane (fig. 17).

This case is identical to Case 8 except that the partial planing is on
the narrow face rather than the wide face. Figure 17a and 4 show the

additional variables necessary to be defined to calculate shavings for
this case.
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Test for case --

1F:
AND:
AND:

THEN:

(RDW - NSVWTH) < (DDW + FHC)

(RDW + PSVWTH) > (DDW + FHC)

(RDT + PSVTHK) < (DDT + FHC)

Use the following equations to calculate volume of
planer shavings:

Vol. of fig. 17d

r- A -~

de Hf - Kl
PLESHV =] &~ (X, + =)

Vol. of fig. 17b

o -
FHC v ot
X LM (—*—i—““)

Vol. of fig. 17c¢
—

K
Ky + KD
+] FHC x LH (—~—5————i] x F

ACTVOL = RDVOL - PLNSHV

where:
TSVTHK x L

2 et

ST Ty

Hf = “e + RDT - NSVTHK - FHC
Kl = RDT + PSVTHK - FHC

K2 = RDT - NSVTHK - FHC

K3 = RDW + PSVWTH

K& = RDW - NSVWTH

L8 = LH - Le

=33«




It is necessary to carry out the calculations set forth here for each
thickness and width class according to which of the nine cases each
situation falls in. The sum of the volumes calculated for each class
gives total planer shavings volume for the run of logs and lumber
studied.

Actual dry dressed volume is summed in the same manner for each thickness
and width class to obtain total volume.

Weighted Sawkerf (WTDKRF)

In a mill that uses more than one thickness of saw to break down its
logs, a weighted average sawkerf must be determined. The calculation

of this weighted kerf depends on an estimation of how much of the sawing
is done on each machine.

The estimations as to percentage of sawing each machine is respousible
for in breaking down a mill's logs can be made by any convenient method.
The method used depends entirely on the accuracy that is desired in the
estimate of sawdust volume. It must be stressed that the accuracy of
this volume calculation is a function of the accuracy with which the
sawkerf is weighted and the relative difference in the kerf widths.

Once the estimate is made, equation (11) gives the weighted sawkerf.

WIDKRF = (Estimate of Percentage Sawn on
Machine 1 x Kerf of Machine 1) +
(Estimate of Percentage Sawn on (1)
Machine 2 x Kerf of Machine 2) + .
+ (Estimate of Percentage Sawn
on Machine n x Kerf of Machine n).

Adjacent Board Kerf

To determine the volume of sawdust removed when the saw makes a cut
adjacent to each piece of lumber, LO must be used in the equations.

This is because the saw cuts the adjacent kerf from the log and the log
length or Lo determines the length of the cut.

o T




Equation 12 solves for the volume of kerf adjacent to pieces of lumber
by width and thickness class.

(Adjacent Board

Kerf Volume) = |[RGW + (2 x WTDKRF)
+ (2 x RGT)) x WTDKRF (12)
X LO x F

The amount of kerf that is accounted for in the log by the above equation
can be seen in figure 18 for live sawing and for cant sawing. The total

adjacent board kerf is the sum of the solutions for each width and thick-
ness class.

Edgings and Adjacent Kerfs Volume

As seen in figure 18, a significant amount of kerf shown as dotted is
contained in the edgings of the logs as diagramed that is not accounted
for by equation (12). The actual amount of sawdust contained in the
kerfs shown there is approximated by equation (13):

(Total Kerfs Adjacent
to Edgings Volume) = [WTDKRF/(RGT + WTDKRF)]
X (Total Edgings and (13)
Adjacent Kerfs Volume)

To solve equation (13), it is first necessary to know the volume of
edgings and adjacent kerf.

(Total Lumber and Adjacent
Board Kerf Volume) = (Total Green Lumber Volume)

+ (Total Adjacent Board (14)
Kerf Volume)

(Total Edgings and Adjacent
Kerfs Volume) = (Total Log Volume)
- (Total Lumber and (15)
Adjacent Board Kerf
Volume)

The solution to equation (15) is then placed into equation (13).

-35-

- ———

L pae X r AR g

oy I X

< AR N AR,

e e T

§




Figure 18.--Kerfs created in sawing log by:
(b) cant sawing method.

(M 146 647)
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An additional problem will be encountered if more than one thickness of
lumber is produced by a mill. When a mill does produce more than one
thickness, calculate an average lumber thickness by the following equa-
tion.

(Average Thickness
of Lumber) = [(Number of Pieces of Lumber of

Thickness 1) x (Thickness 1)] +
[ (Number of Pieces of Lumber of (16)
Thickness 2) x (Thickness 2)]
+ [(Number of Pieces of Lumber of
Thickness n) x (Thickness n)] +
(Total Number of Boards of Thick-
ness 1 + 2 ... + n)

This average thickness should then be placed in equation (13) where rough
green thickness appears.

Trimmer Kerf Volume

The amount of kerf removed by the trim saw can be accurately calculated
when the kerf is known. An estimate of this kerf will be acceptable if
the kerf width is not known since the amount of trim sawdust is a rela-
tively small part of the total.

(Trimmer Kerf
Volume) = 2 [RGW x RGT x (Trimmer Kerf) (17)
X (Number of Boards per Width and
Thickness Class)] x F

The sum of the calculations for each width and thickness class will equal
the total volume of sawdust produced from the trimmer.

Chips Volume from a Chipping Headrig

When a chipping headrig is used in a mill, it is necessary to take this
factor into account in the algorithms to prevent an overestimation of
sawdust volume and a corresponding underestimation of chip volume. An
equation to calculate the volume of chips can be written if two vari-
ables in addition to those already known can be determined. These
variables are the average number of log faces chipped and the average
width of the faces.
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As with percent of sawing done at each breakdown machine in order to t
weight the kerf, the number of log faces chipped and the average width |
of each face chipped is an estimate. The accuracy of the calculations
of chips depends on the accuracy of this estimation, so relative care
should be exercised in obtaining it depending on the accuracy desired

in the study.

Equation (18) calculates the amount of kerf produced in chips by a
chipping headrig.

"x (Number of Faces Chipped) x (18)
WTDKRF x (Total Length of

(Kerf Volume Produced in Chips)= |(Average Width of Faces Chipped) !
Logs Milled)} x F {

Total Sawdust and Chip Volumes
' -

Given the equations above and total rough green lumber volume calculated ;
previously, it is now possible to solve for total sawdust and chip 3

volumes.
5

(From equation 12)
(Total Sawdust Volume) = (Total Adjacent Board Kerf Volume)

(From equation 13)
+ (Total Kerfs Adjacent to Edgings Volume)

I3
:
*
&
g
(From equation 17) (19) %
+ (Total Trimmer Kerf Volume) %

g

(If applicable, value from equatien 18)
- (Kerf Volume Produced in Chips)

(Total Chip Volume) = (Total Log Volume) - kTotal Sawdust (20)
Volume) + (Total Green Lumber Volume)]

Kerf Exclusion and Overestimation
of Kerf

In figure 18, a segment of kerf is shown in hatch marks that is not
calculated by any previous equations. This results in a small under-
estimation of total adjacent board sawdust volume. Figure 19 illustrates
that equation (13) overestimated the volume of kerfs adjacent to edgings.




s

The dark portions of the figures represent slabs that were included in
the volume of adjacent edgings. Because this extra slab volume was
added to adjacent edgings volume, the overestimation of kerfs adjacent
to edgings occurred. This overestimation can be calculated and is equal
to the amount arrived at by equation (21).

[ WIDKRF/(RGT + WIDKRF)] x (Total Volume of Slabs/2)  (21)

From the data available in a mill study, the width of the cut that
produces the slabs and last uncalculated kerf are not known. This makes
impossible an accurate mathematical calculation of the underestimation
and overestimation involved. The solution followed here was to consider
these compensating errors. For the limits of accuracy of this study,
this is a reasonable assumption.

An examination of figure 19 shows why. When a thick slab is produced,
the vertical length of the kerf that produced the slab increases as well
as the volume of the slab. Similarly, when a thin slab is cut, the
vertical kerf length is reduced. When slab volumes are high, as in
figure 19a, an overestimation of kerf results from including slab volume
with adjacent edgings volume but an offsetting underestimation of
adjacent board kerf also occurs, since the uncalculated kerf next to

the slab is longer and therefore has a larger volume. The same reasoning
applies when slab volumes are low (fig. 19b). A low slab volume causes
a smaller overestimation of kerf but the underestimation of the uncalcu-
lated adjacent board kerf volume is smaller as well. (The volume of
slab overestimated is not the total darkened area, but a small fraction
of this volume--the fraction being WTDKRF/(RGT + WIDKRF), as shown in
equation (21). If kert equals 0.25 and thickness equals 2.0, this
fraction would equal 0.111.)

The relationship between slab thickness and kerf length is not a direct
one. The volume of sawdust involved, however, is very small and the
errors largely compensating. An error of no more than 1 percent in

the total volume of sawdust produced would be expected.

-39-




b

Figure 19.--Kerfs produced from: (a) thick slab; (b) thin slab. '

(M 146 646)
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Appendix I

The calculation of negative, total, and positive sawing variations assume
a normal distribution of maximum and minimum measurements. A statistical
test is then made to an appropriate confidence limit.

The model has been used successfully with a 95% confidence interval.
When extreme variation occurs in the tails of the distribution, however,
this limit should be reduced to avoid distortion of the model. Tests
are now being conducted to determine the level this confidence limit
should be for a given amount of variation found in the distribution.

Given the proper choice of confidence interval, total sawing variation

is the distance between the lower and upper confidence limits of the

distribution. Negative sawing variation is the distance from the mean )
size of all measurements to the lower confidence limit. Positive sawing
variation is the distance from the mean size to the upper confidence

limit. If a perfectly bell-shaped normal distribution were being dealt

with, negative and positive sawing variations would be equal. This is

rarely the case, however, for the distributions are most often somewhat

skewed.
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