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CLASSIFICATION BY MARKOVIAN STRINGS OF PINGS

INTRODUCTION

In analyzing the performance of a decision scheme for sonar echo
classification, C.S. Stradling and G.P. Schumacher (Reference 1)
experimentally found the probability of correct identification (PCI)
for a sequence of pings in a case in which the single ping detection
and false-alarm probabilities are known. I calculated (Reference 2)
the PCI for ping sequences of varying lengths on the assumption that
pings are classified independently one by one with final judgment being
based on the character of the entire string. I found that my answers
provided only upper bounds to Stradling's values. The conclusion was
that the decision on the previous ping is not independent of the decision
on the present ping. To account for the lack of agreement it was
decided to introduce a degree of dependence in the simplest way by
constructing a Markov chain of decisions.

g e e e

Let us suppose that a succession of pings is reflected from a target
which may be either a submarine S or some other object N . The
process of reflection imposes the characteristics of the target on the
reflected sound pulse so that, initially, we may regard a sequence of
pings as containing either the message

5.8.8, ... 58 | ?

i i

o

if reflected by a submarine, or else the message
N,N,N, ... N,N

if reflected by a non-submarine. The effect of randomness in the
environment and imperfections in the recognition system (whether human
or automatic) is to transform the above sequences into sequences
containing mixtures of symbols such as

S,S,N,S,S,S,N,N,S,N,S,S5,S,N .

Let us denote the sequence called out by the recognition system by

.A ! Yl’Yz’ AN Yn, Q‘R‘Q
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where Y, (i=1,2, ...) is a random variable that can assume the values
S and N'. A fixed but unspecified realization of Y; shall be denoted by
yi- The origin of an observed sequencey,;, y,, ..., ¥p will be judged
by the maximum likelihood rule: if the probability of the sequence on
the hypothesis S is greater than or equal to the probability on the
hypothesis N , then the judgment S will be made. The cumulative
probability of sequences of length n for which the judgment S is made
correctly is called the n~hit probability and the cumulative probability
of sequences for which the judgment S is made falsely is called the
n-false-alarm probability.

Let Pg (y),y,, ...Y,), denote the probability of the sequence on
the hypothesis é . Pg (Yl' Yo sdvs Yn), being a function of a sequence
of random variables, is then a random variable.

The maximum likelihood rule asserts that the n-hit probability is
by

Ps {PS (Yl' YZ’ olerely Yn)z TPN (Y., Y

g Tpne, TH

=TIy, ¥y »ees Y ) Pgly vy v v )

and that the n-false-alarm probability is given by

PPy 7 e TP Y, ¥, oo T

=21(y1. Vys voes yn) PN (Yl' Yo oees Yn)

where the summation is carried out over all sequences and the

indicator function I equals 1 for a sequence y), Y+ +++ ¥, for which
’n

Pgly1, Y25 c - Yn) 2 TPN (Y1, ¥, -+, Yp) and O otherwise. Here

T is a threshold that depends on a priori probabilities and the loss func-

tion. The notation Pg { } is used to denote the probability on the S

hypothesis of the event enclosed in the braces.

FORMULAS IN THE MARKOVIAN CASE

On the assumption that Y;, Y,, ..., Yn' ... constitutes a Markov
process, the probabilities entering into the above formulas can be
expressed quite simply. Let us introduce the following notation. Let
p(S) and p(N) = 1 = p(S) be the probabilities that the decision scheme
judges an S to be an S or an N respectively. Let q(S) and q(N) =
1 = q(S) be the corresponding probability for judging an N to be an S
or an N . Let W(S,S), W(S, N), W(N,S), and W(N, N) be transition
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probabilities. For example, W(S,N) represents the conditional
probability that, if the reflector is an S and a given echo was judged
by the decision scheme to have been S, the next echo is judged to be
N. The corresponding quantities on the hypothesis that the reflector
is an N are V(S,S), V(S,N), V(N,S), and V(N,N). Then with the
above notation

Py sV, «oes v ) = PO Wy Ly )Wy ,y,) oon Wiy, 10 y))
and
Py ¥ ceen v ) =aly IVl Ly, )Vly,uy,) oon Vi, 1uy)

Since W(yi, Vi+l) and V(yi, Yi+1) can assume only four different values
we can rewrite the above expressionsin the form

K(S, S) K(S, N)

Ps(yl, Ypr vees yn) = p(yl)W(S,S) W(S, N)

K(N, s) K(N, N)

W(N, S) W(N, N)

K K
Py Y, oo y,) = aly VIS, 85O Slyis, K5 N

K(N, S) K(N, N)

V(N, S) V(N, N)
where K(S, S), K(S, N), K(N, S), and K(N, N) represent the number of
consecutive pairs (S, S), (S, N), (N, S), and (N, N) in the sequence.

For example, for the sequence
SSNSNNSNNNSSSNN ,
K(S,S) = 3, K(S,N)=4, K(N,S)=3, and K(N, N)=4 .
If the length of a sequence is n , then
K(S,S) + K(S,N) + K(N,S) + K(N,N)=n = 1

In order to derive formulas for the n-hit probability and the n-false-
alarm probability let us partition all sequences of length n into four
sets E(S, S), E(S,N), E(N,S), and E(N, N). The set E(S, N), for example,
consists of all sequences starting with S and ending with N . The
contributions from the various sets to the n-hit probabilities are®

*See Appendix for derivation.
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1. E(S,S) K0=N-1—K-2L

IS, s, ...,s) p(s) w(s,s) NV

[(N-1)/21 N-2L-1 ol
+ z 2 (L, K) (K;L)(K °L_l )
L=1 K=0

K
psW(s, 5)Xwis, mTwin, syFwin, Ny ©

2. E(S,N) K0=N-2—K—ZL

[(N-2)/2] N-2L-2 oy
e
L=0 K=0

K
p)w(s, s)5w(s, 0 win, 5B win, vy 0

3. E(N,S) K1=N-l—K-ZL

[(N-2)/2] N-2L-2
) S awx (KHL) G e
: s L L
L=0 K=0
p(NW(s, S)K1w(s, NLw(N, s)(L+Dw(N, N)K
4, E‘NI N) K1=N- l=-K-=2L

N, N, ..., Npmw(N, Ny N

j 1
[(N-1)/2] N-2L-1 K. +L-1\
+ z ; I(L, K) (KI‘:L)( 1L-l ) ;
L=1 =0

K
p(NIW(s, s) ‘w(s, MEw(n, s)Fwin, o

In the above formulas, I(L, K) denotes the value of the indicator
function for sequences characterized by parameter values L and K .

A corresponding list could be written down for n-false-alarm
probability contributions in the four different cases. There is, how-
ever, no need since the formulas are obtainable from the ones above by
replacing p(S) and p(N) by q(S) and q(N) and by replacing W(S, S), W(S, N), i
W(N, S) and W(N, N) by V(S,5), V(S,N), V(N,S), and V(N, N). »
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CONVERGENCE

Let H, denote the n-hit probability and F, the n-false-alarm
probability. We shall show that as n becomes large H, and F,
approach limiting values H and F and that these numbers are
either 0 or 1 .

If the Markov chain approaches limiting probabilities 4 and (1 - u)

under the S hypothesis and V and (1 = V) under the N hypothesis, then
for large n , approximately,

k n-k
PS(YI’YZ: ooy Yn)~“ (l'“)

for a sequence with k S-decisions and n-k N-decisions.

Therefore

P, {PS(YI, Yn)z PN(YI, Yn)} =

" {log Py(Y,, ..., Y )2log P\(Y,, ..., Yn)} ~

k n-k (1-)
PV {; log%+T log(—l—.%)z 0} ~

P, {u 1og§ + (1-p) 10g:1T:';-;z 0f =1

The last equality arises from the universally true inequality
n
2 p; log p;/q; 20
i=1

for all pairs of sets of positive numbers [pl, Py oes pn} and

{ql, Q2 v iy qn} whose sums equal 1 ; i.e., for which pj +p, +... +pn

=q1+qz+...+qn=l

In the above derivation, the notions were used that limiting probabil-
ities exist for the Markov process and that if in fact the target was S ,
then k/n~ g by the law of large numbers for Markov processes. It
is of course apparent that if the hypothesis N is in fact true, then
k/na~V and the inequality is reversed with the consequence that the
probability equals 0.

TR R———————
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NUMERICAL RESULTS

A computer program was written to calculate the probabilities H,
and 1-F, . This program was applied to the particular numerical case
discussed by Stradling and Schumacher (Reference 1) in which a priori
probabilities of S and N are given as P(S)=.565 and P(N)=.435.

The 1-hit probability was Hj =.671 and the 1-false-alarm rate uses
F)=.408. Threshold values of T= P(N)/P(S)=.77 and T=1 were
used. The first case that was tried was that of independence in which
the transition matrices were:

. 329 L 671
W =

.329 671

1 .408 . 592
: V=

: 3 . 408 .592

The results are shown in Figures 1 and 2 and show an interesting
phenomenon of discontinuity. Points for odd and even n 2¢em to be
: smoothly connected except for points of discontinuity at n=12 and
: n=25, for example, for the threshold value T =1.

The conjecture stated in the introduction (that a possible explanation
of the data presented by Stradling and Schumacher might lie in a lack
. of independence) is borne out by a calculation of the probability of
4 ‘ correct identification P, =.565 H +.435 (1-F,) for transition

matrices
“5 .5
W =
. 329 . 671
i .592 .408
V =
’ .5 .5

on the S hypothesis. Figure 3 contains a plot of values of P, calculated
on the Markovian assumption and superposed on the plot of Figure

9 of Reference 1 and shows good agreement. These matrices say about
the decision process that if the last symbol was called incorrectly the

CONFIDENTIAL
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Figure 1. Plot of n-hit probability case of independence with T=0.77.
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Figure 2. Plot of n-hit probability case of independence with T=1,
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e DEPENDENCE ASSUMPTION i
IN P
/0“——‘ 1
/4
.8 T -
> MEDIUM PULSE (See Reference 1)
= 6 \——} 1 t
3 MARKOVIAN ASSUMPTION
<
8 SHORT PULSE (See Reference 1)
& 4
2
0 4 8 12 16 20 28 32 36 40

NUMBER OF PINGS USED

Figure 3. Probability of correct identification versus number of pi-gs used.

present symbol is no more likely to be called correctly than incorrectly.
If the last symbol was called correctly, however, the assignment of the
present symbol is unaffected, i.e., is made independently of the last
symbol.

CONCLUSIONS

The agreement demonstrated in Figure 3 between the observed
multi-ping hit and false-alarm rates indicates that the Markovian assump-
tion provides a tenable model for the way that n-ping decisions were
actually arrived at. It should be noted that the decision procedure
could be improved by enforcing ping-to-ping independence in decisions.

CONFIDENTIAL
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APPENDIX

THE NUMBER OF BINARY SEQUENCES OF TYPE
K(N,N), K(N,S), K(S,N), K(S,S)

We divide the calculation into four cases depending on the initial
and final symbols in the sequence.

CASE SS

il

The number of strings of S's = K(S, N) + 1

The number of strings of N's = K(N, S) = K(S, N)
The number of S's = K(S,S) + K(S,N) + 1

The number of N's = K(N, N) + K(N, S)

The number of ways in which the S's can be apportioned among the
appropriate number of strings equals the number of compositions

(K(S, S) + K(S, N))
K(S, N)

where the symbol

is the binomial coefficient .

Similarly, the number of ways in which the N's can be apportioned is
(K(N, N) + K(N, S) -1>
K(N, S) -1

Therefore the total number of sequences of the above type is given
by the product of the two binomial coefficients

<x(s, S,) + K(S, N)) : (K(N, N) + K(N, 5)-1>
K(S, N) K(N, S) -1

10
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CASE SN
The number of strings of S's = K(S, N).
The number of strings of N's = K(N, S).
The number of S's = K(S, S) + K(S, N).
The number of N's = K(N, N) + K(N, S).

Therefore, the number of sequences of the above type is

K(S, S) + K(S, N)-1 K(N, N) + K(N, S) -1
K(S, N) -1 K(N, S)-1 >
where now K(S, N) = K(N, S) +1.

The formulas for the remaining two cases are derived from sym-
metry considerations.

CASE NS

(k(N, N) + K(N, S) -1) (K(S, S) + K(S, N)-l>
K(N, S)-1 1 K(S, N)-1

with K(N, S) = K(S, N) + 1.

CASE NN
K(N, N) + K(N, S) K(S, S) + N(S, N)-1
K(N, S) ; K(S, N)-1

with K(S, N) = K(N, S).




FOR USE OF G.E. EMPLOYEES ONLY

-

GENERAL @ ELECTRIC

TEMPO

P.O. DRAWER QQ ® 816 STATE STREET
SANTA BARBARA, CALIFORNIA

TECHNICAL INFORMATION SERIES

AUTHOR SUBJECT NO.
Ty L 6 -74
H.P. Kramer Target Classification fe 6TMP
18 July 1966

TITLE G.E. CLASS (se bock)

Sonar Echo Classification by Markovian TR

Strings of Pings Confidential
RERODUCIDECOW FILED AT TEMPO-TECHNICAL INFORMATION OPERATION, NO. PAGES
P.O. DRAWER QQ, SANTA BARBARA, CALIF.

e

[SUMMARY

> The probability of correct target identification is calcu-
lated for sequences of pings. The inputs to the calculation
are single hit and false alarm probabilities as well as
transition probabilities. The inclusion of transition proba -
bilities allows for the possibility that the decision with
regard to a given echo may affect the decision about subsew
quent echoes. Probability of correct target identification
for sequences of n pings is calculated by using the maxi-
mum likelihood criterion. Numerical results are shown
that indicate excellent agreement with the empirical find-
ings of Stradling and Schumacher in connection with the
TRESI evaluation. To achieve this agreement it is neces-
sary however to take advantage of the Markovian assump-
tion since in the special case of independence the results
of the calculations do not agree with experiment.
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