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CLASSIFICATION BY MARKOVIAN STRINGS OF PINGS

INTRODUCTION

In analyzing the per formance  of a decision scheme for  sonar echo
classification, C. S. Stradling and C. P. Schumacher (Reference 1)
experimentally found the probability of correct identification (PCI)
for a sequence of pings in a case in which the single ping detection
and false-alarm probabilities are known. 1 calculated (Reference 2)
the PCI for ping sequences of varying lengths on the assumption that
pings are classified independently one by one with final judgment being
based on the character of the entire string. I found that my answers
provided only upper bounds to Stradling ’s values. The conclusion was
tha t the decision on the previous ping is not independent of the decision
on the present ping. To account for the lack of agreement it was
decided to introduce a degree of dependence in the simplest way by
constructing a Markoy chain of decisions.

Let us suppose that a succession of pings is reflected from a target
which may be either a submarine S or some other object N . The
process of reflection imposes the characteristics of the target on the
reflected sound pulse so tha t, initially, we may regard a sequence of
pings as containing either the message

if reflected by a submarine, or else the message

N, N , N, ... N, N

if reflected by a non-submarine. The effect of randomness in the
environment and imperfections in the recognition system (whether human
or automatic) is to t ransform the above sequences into sequences
containing mixtures of symbols such as

S, S, N, S, S, S, N, N, S, N, S , S, S, N

Let us denote the sequence called out by the recognition system by

y Y  Y
1’ 2’ •‘  n ’ • 

- -:
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- 
- where Y . (1 = 1, 2, ...) is a random variable that can assume the values

S and N’. A fixed but unspecified realization of Y1 shall be denoted by
The origin of an observed sequence y 1, y2, , y1, will be judged

by the maximum likelihood rule: if the probability of the sequence on
the hypothesis S is greater than or equal to the probability on the
hypothesis N , then the judgment S will be made The cumulative
probability of sequences of length n for which the judgment S is made S

correctly ~s called the n-hi t  probability and the cumulative probability
of sequences for which the judgment S is made falsely is called the
n-false-alarm probability.

Let P5 ~Yi ’Y , ’  . . . Y 1~), denote the probability of the sequence on
the hypothesis ~ . PS ~“i~ ~ 2’ ‘ ~n~’ being a function of a sequence
of random variables, is then a random variable.

The maximum likelihood rule asserts that the n-hit  probability is
by

P
5 

(P
5 

(Y r ,  Y
2, , Y )  � TP

N ~~~~ ‘~
‘z~ 

‘

= ~ I (y 1, y 2, y )  P
5

(y 1, y 2, , y~ )

and that the n-false-alarm probability is given by

[P 5
(Y 1, Y 2, Y )  � TP

N ~~ i ~
‘z ‘

= E ICy 1, y2 , 
‘ ~~~ ~~N (y 1, y 2

where the summation is carried out over all sequences and the
indicator function I equals 1 for a sequence y~ , y 2. ... y~ for which
P5(y 1, y 2, •

~~~~
• Y~ ) � TPN (yi ,  y2 , . . . ,  y~ ) and 0 otherwise. Here

T is a threshold that depends on a priori probabilities and the loss fun c-
tion. The notation P5 [ J is used to denote the probability on the S
hypothesis of the event enclosed in the braces.

FORMULAS IN THE MARKOVIAN CASE
On the assumption that Y 1, Y 2, ... , Y~ , ... constitutes a Markov

4~:. process, the probabilities entering into the above formulas can be
expressed quite simply. Let us introduce the following notation. Let
p(S) and p(N) = 1 — p(S) be the probabilities that the decision scheme

.
5 

- judges an S to be an S or an N respectively. Let q(S) and q(N) =

1 — q(S) be the corresponding probability for judging an N to be an S
or an N . Let W(S, 5), W(S, N) 1 W(N, 5), and W(N, N) be transition

2

~
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probabilitie s F o r  example W(S N)  represents  the contht ional
probability that , if the ref lector  is an S and a g iven echo was jud ged
by the decision scheme to have been S, the next echo is jud ged to be
N. The corresponding quantitie s on the hypothesis  that the reflector
is an N are V(S, S), V(S , N), V(N , S), and V(N , N) .  Then with the
above notation

P
5(y 1,y 2, , y )  = p(y 1) W(y 1,y 2

)W(y
2,y 3

) W(y 1, y )

and
~~

Si
~~ 

- 
-

P~~(y
1~ y 2, . . . ,  y )  = q(y 1)V(y 1,y 2

)V(y
2,y

3
) ... V(y~~~ , y )

Since W(y 1, y1~~1) and V(y~, Yi+ 1) can assume only four different values
we can rewrite the above expressions in the form

P
5

(y 1, y
2
, ..., y )  =

W(N, 5)
K(N~ 5

~W(N, N) K(N
~ 

N)

P~~(y 1~ y 2
, . . . ,  y )  = q(y 1)V(S, S)~~~

5’ S)v(S N)~~~
5’ N)

v(N, S) K(N
~ 

S)
v(N ~~)l~~N~ N)

where K(S, 5) ,  K(S, N), K(N, S), and K(N, N) represent the number of
consecutive pairs (S, S), (5, N), (N , 5), and (N, N) in the sequence.

For example, for the sequence

SSNSNNSNNNSSSNN

K(S, S) = 3, K(S , N ) =  4, K(N, S ) 3 , and K(N, N ) = 4
S 

If the length of a sequence is n , then

K(S, S) + K(S, N) + K(N, S) + K(N, N ) =  n — 1

In order  to derive formulas  for  the n-hi t  probability and the n - fa l se -
alarm probability let us partition all sequences of length n into four
sets E(S, S), E(S, N), E(N , S), and E(N , N). The set E(S, N), for example ,
consists of all sequences starting with S and ending with N . The
contributions f rom the variou s sets to the n-hit probabilities are *

°See Appendix for derivation.

3 
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H
1. E(S~ S) K0 = N — l — K — Z L  - 

S

— 

S 

I(S,S, . . . , S) p(S) W(S, S) 
( N - l )

I (N - l ) f z l  N-ZL- l 
L-

_ _ _  + 

K 

~~ I(L , K) (K~ L) çc:
L l )

p(S)W(S , S) W(S, N) W(N , S) W(N, N)

2. E(S , N) K0 = N — 2 — K — 2 L

r (N- 2) /z ~ N-2L- 2- 

~~~ 
K 

~~~ 

::‘: 

(K +L)(K 0÷1~
)

p(S)W(S , S) W(S, N) W(N , S) W( N, N)

3. E(N , S) K 1 = N — 2 — K — ZL

r ( N_ 2) ,2 )  N -ZL-Z 
K L

L=0 K=0 

K) ( )
p( N)W(S , S) K JW(S , N) LW(N , S) U - ’4 ’)W(N, N)K

4. E(N , N ) K 1 =N - 1- K - ZL

I(N, N, ..., N)p( N )W (N , N)~~~~~
[(N— 1) 12 ] N —2L— 1 /K +L— 1 -

+ 

~~~

‘ 
K 1 

~~~~ 

I(L , K ) ( ~~~’~~~ L-1

p( N)W( S, 5) W(S , N) W( N, S) W( N, N)

In the above fo rmulas , I(L , K) denotes the value of the indicator
function for  sequences charac te r ized  by parameter values L and K

A corresponding l is t  could be written down for  n - fa l se -a la rm
probability contributions in the four d i f ferent  cases. There is , how-
ever , no need since the formulas are obtainable from the ones above by
replacing p(S) and p(N) by q(S) and q(N) and by replacing W(S, 5), W(S , N),
W(N , S) and W(N , N) by V(S , S), V(S, N ) ,  V(N , S), and V(N , N).

4
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CONVERGENCE

Let H~ denote the n-hit probability and F~ the n-false-alarm
probability . We shall show that as n becomes large H~ and
approach limiting values H and F and that these numbers are
either 0 or 1 .

If the Markov chain approaches limiting probabilities ~4 and (1 — es)
under the S hypothesis and V and (1 — t’) under the N hypothesis, then
for large n , approximately,

k n-k
P

5
(y 1,y 2

, 
~~~~~~~ 

(1-is )

for a sequence with k S-decisions and n— k N-decisions.

Therefore

P1, (p
5

(y 1, ..., Y )  � 
~ N~~

’l’ Y ) J  =

~~ ( log P5
(Y 1, Y )  � log 

~ N~~ 1’ ..., Y ) i

P~, t~ log ~ ! log oj

P1~ £~ log ~ + (i -is)  log � oi = 1

The last equality arises f rom the universally true inequality

~~~p. log ~~~~~ � 0

for all pairs of sets of positive numbers (p 1, p2. . . . ,  p i  and

[q 1, q2, . . . ,  qn1 whose sums equal 1 ; i .e . , for which Pi +p Z +. . .

= q 1 +q 2 + . . .  ~ qn = 1

In the above derivation, the notions were used that limiting probabil-
ities exist for the Markov process and that if in fact  the target was S ,
then k /n~~ ~s by the law of large numbers for Markov processes.  It
is of course apparent that if the hypothesis N is in fact true , then
k/n~~I1 and the inequality is reversed with the consequence that the
probability equals 0.

5
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NUMERICA L RESULTS

A computer program was written to calculate the probabilities 1
~
1n

and 1 — Fn . Thi s program was applied to the particular numerical  case
discussed by Stradling and Schumacher (Reference 1) in which a priori
probabilities of S and N are given as P(S) = . 565 and P(N) . 435.
The 1-hit probability was H 1 = . 671 and the 1-false-alarm rate uses
F 1 = .408. Threshold values of T = P(N)/P(S) = . 77 and T = 1 were
used. The f i rs t  case that was tried was that of independence in which
the transition matrices were:

f . 3 2 9  .67 1

w = (
329 . 6~~1

/ . 408 . 592

v =~
. 408 .5 92

The results are shown in Figures 1 and 2 and show an interesting
phenomenon of discontinuity. Points for odd and even n ~eem to be
smoothly connected except for points of discontinuity at n = 12 and
n 2 5 , for example, for the threshold value T=  1.

The conjecture stated in the introduction (tha t a possible explanation
of the data presented by Stradling and Schumacher might lie in a lack
of independence) is borne out by a calculation of the probability of
correct  identification P~~= . 565 H + . 4 3 5  (l~~Fn ) for transit ion
matrices

w = (
. 329 . 6 7 1

/ . 5 9 2  .408
v = (

. 5  . 5

on the S hypothesis. Figure 3 contains a plot of values of 
~~n calculated

on the Markovian assumption and superposed on the plot of Fi gure
9 of Reference  I and shows good agreement.  These matrices say about
the decision process tha t if the last symbol was called incorrec t ly the

6
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0 5 10 15 20 25 30 35
NUMBER OF PINGS USED

Figure 1. Plot of n—hit probability case of independence with 1=0.77 .

1_ c —
S

.9—  _

10 15 20 25 

~ I—F

NUMBER OF PINGS USED

Figure 2. Plot of n—hit probability case of independence with T 1.
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INDEPENDENCE ASSUMPTION 
—T———-—

_____Jr_ilI
~
III(r1UIIIUI 

~~~~~~~
x 

— _______ — 

MEDJUM PULSE (See Reference I)

MARK OVIAN ASSUMPTION

SHORT PULSE (See Referen e 1)

0 4 8 12 16 20 28 32 36 40

NUMB ER OF PINGS USED

Figure 3. Probability of correct identification versus number of p igs used .

present symbol is no more likely to be called correctly than incorrectly.
If the last symbol was called correct ly, howeve r , the assignment of the
present symbol is unaffected, i. e .,  is made independently of the last
symbol.

CONCLUSI ONS

The agreement  demonstrated in Figure 3 between the observed
mul t i -ping hit and false-alarm rates indicates that the Markovian assump-
tion provides a tenable model for  the way that n-ping decisions were
actually arrived at . It should be noted that the decision procedure
could be improved by enforcing ping-to-ping independence in decisions.

8
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APPENDIX

THE NUMBER5 OF BI NARY SEQUENCES OF TYP E
K(N,N), K(N,S), K(S,N), K(S,S)

We divide the calculation into four  cases depending on the initial
and final symbols in the sequence. 

S

CASE SS S

The number  of s t r ings  of S’ s = K(S , N) + 1

The number of s t r ings  of N’ s K(N , S) = K(S , N)

The number  of S’s = K(S , S) + K(S , N) + 1

The number  of N’ s K( N , N) + K(N , 5)

The number of way s in which the S’ s can be apportioned among the
appropriate numbe r of s t r ings  equals the numbe r of composi t ions

(K( S, s) + K(S , N)

K(S , N )

where  the symbol

/ a~I a !
\b 1 (a-b)!  b!

is the binomial  coe f f i c i ent  .

Similarly ,  the n u m b e r  of ways in which the N ’ s can be appor t ioned  is

(K(N , N) + K (N , S) -l  
5

\ K(N , S) -1

The re fo re  the total number  of sequences  of the above type is g iven
by the product  of the two binomial c o e f f i c i en t s

(K(s , S, )  + K(S , N) ’\ 
. 

( K N , N K (N , S) - l
K(S , N) / K(N , S) - l

10
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CASE SN

The number  of s t r ings  of S’ s = K(S , N).

The number  of s t r ings  of N’ s = K(N , S).

The numbe r of S’ s = K(S , S) + K(S , N).

The numbe r of N’ s K(N , N) + K(N , S).

There fore , the number  of sequences of the above type is

(K(S , S) + K(S , N)~~l\ /K(N , N) + K(N , S) -l

K(S , N ) - l  / K(N , S) -l

where  now K(S , N) = K(N , S) + 1.

The formulas for  the remaining  two cases are derived f rom sym-
m e t r y  considerations .

CASE NS

fK(N, N) + K(N , 5) ~i\  (K( s. S) + K(S , N ) - l

K(N , S)-1 / K(S , N )- l

with K(N , S) = K(S , N) + 1.

CAS E NN

(K(N, N) + K(N , S)\ f iq s, 5) + N(S , N ) - l

K(N , S) / K(S , N ) - l

S with K(S , N) = K(N , S).

11 5
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The probability of correct  target  identification is calcu-
lated for sequence s of pings. The inputs to the calculation
are single hit and false a larm probabil i t ies  as well as
transition probabil i t ie s . The inclusion of transition proba

• bilities allows for the possibility that the decision with
regard to a g iven echo may affect the decision about subse
quent echoes. Probabili ty of correct  target identification
for sequences of n pings is calculated by using the maxi-
mum likelihood cr i ter ion.  Numerical  resul ts  are shown
that indicate excellent agreement  with the empirical find-
ings of Stradling and Schumacher in connection with the
TRESI evaluation . To achieve this agreement  it is neces-
sary however to take advantage of the Markovian assump-
tion since in the special case of independence the resu l t s
of the calculations do not agree with experiment.
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