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This paper deals with he design and analysis of an adaptive array

processor for use in passive detection of directional stochastic signals

such as are found in sonar . The processor consists of a set of tapped delay—

line filters, one for each array element. The algorithm used for adjusting

the tap gains is a modification of the stochastic approximation method of

Robbins and Monto, and it utilizes knowledge of the signal autocorrelation

function and spatial direction of the target. It is shown that the final

form approached by the processor is that of a space—time filter optimized

in the direction corresponding to assumed target location.

> The sys tem performance is analyzed by considering a noise f ield

consisting of a spatially isotropic component and a single directional

component referred to as an interference. It is shown that although the

system initially cannot discriminate between the target and the inter—

ference, it eventually ac ts to eliminate the eff ect of the interference

almost completely. It is also shown how the useful signal to noise ratio

increases during adaptation. 0 0
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1.

I. Problem Statement and Objectives

The problem considered in this paper is the passive detection of a

noise—like signal waveform generated by a source located in a known direction

from the receiver. Typical applications of this general problem can be

found in sonar detection, seismic detection and radio communications. The

sonar application is the one that primarily motivates this study , and

examples will be taken from the sonar area. In order to take advantage of

the known directivity of the target signal, a directional receiver in the

form of an array is employed to distinguish signal from noise. In the

sonar application, the receiver consists of an array of hydrophones,

together with an appropriate processor. Generally speaking , the processor

consists of individual fil ters on each sensor output, a summer , a post—

summation filter, a square—law device and an averaging filter. The output

of the averaging filter is used to indicate the presence of a target

signal.

In the absence of a target signal, the averaging filter output is

the result of noise waveforms picked up by the array elements. The noise

is partly far—field noise and partly locally generated . The far—field

noise is often assumed to be directionally isotropic ; however , there may

also be directional noise sources. These directional noise sources are

referred to as interf erence sources while the direc tionally iso tropic

component is referred to as ambient noise. In the absence of interference

noise, detection of a target signal can be based simply on the presence of

a directional component in the received signal. However, if interference 

___
~sources can be expected to be present in the noise field , then it is

necessary to define the target signal in some way to distinguish it from

the directional noise components 

~~
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This paper is concerned with developing a system for processing the

outputs of a passive array of hydrophones under the following assumptions:

(1) Target, interferences and ambient noise are assumed to be Gauss ian

random processes.

(2) The sum of interferences , ambient noise, and local noise, are regarded

as the effective noise, which is assumed to be statistically indepen-

dent of the target signal.’

(3) The target—signal component s
i
(t) observed at the output of the 1

th

hydrophone is a linear time—invariant transformation of d(t), the

target—signal component observed at the output of an ideal isotropic

hydrophone located at the origin of the coordinates. The target

direction is known , together with its autocorrelation function (but

not necessar ily its power leve~).

(4) The statistics of the noise field are completely unknown. Interferences

may be present, but this is not known. If they are present, their

directions are unknown.

(5) The wavefronts of target and interferences are regarded as plane over

• the dimensions of the receiving array.

The proposed system consists of an adaptive linear multichannel

tapped—delay—line filter and algorithms for iterative adjustment of the

filter coefficients

on the tapped—delay lines. The adjustment algorithm is based on the

method of stochastic approximation , and it utilizes the knowledge about

target direction and autocorrelation function that is assumed to be

available. Thus a space—time filter optimum in a predetermined direction ,

and des igned to suppress Interference signals from other directions is

produced . By varying the azimuth for which the filter is optimized the

system produces a bearing response pattern which can be examined by an 



operator to determine whether a target is present. In many practical

situations, narrow peaks might be interpreted as targets, while broader

peaks might be classified as interference.

•II. Array Systems

The receiving array is assumed to consist of K omnidirectional receiving

elements (sensors). Each element has a total output

x1(t) 0
1
(t) + n~(t) (1)

consisting of a signal component s1(t) plus an undesired noise component

n1
(t).

Consider a general array configuration consisting of individual

filter 11
1
(w) on each sensor output x

i
(t), I = 1,2,. ..K, a post—summation

filter G(w), a square—law device, and an averaging filter h
5
(w). The

output of h (w) ~is used to detect the presence of a target signal in noisy

environment. See Figure 1.

Let 
~d
(u) be the signal power spectral density, a(w) be the steering

vector with elements exp (JwT~), i = l,...K, and let ~~~(w) be the spectral

1,2,3,4matrix of the input. It has been shown by many authors that the

optimum filters are given by

*
• 

.-l *H (w) (
~ 

(w) ] a (w)
(2)

1/2
G(w)=$

d (w)

for Gaussian processes and small input signal—to—noise ratios. The whole

• 
• system forms a likelihood ratio detector and at the same time the output

signal—to—noise ratio is maximized .

:
2 .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -
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III. Adaptive Delay Line Filters

In the proposed system the individual filters R~(w) are constructed

in the form of tapped—delay—line filters consisting of a tapped delay line,

adjustable gains whose input signals are the signals at the delay—line

taps, a summer to add the weighted signals, and machinery to automatically

adjust the gains. The impulse response of such a discrete system is

completely controlled by the weight settings.

Referring to Figure 2, let Cik 
be the weight at the k

t
~ tap on the 1

th

filter, and t
k 

the time delay at the kth tap. Let the delayed signal be

~ik ~ik 
+ V ik = x1

(t — t
k
)

where is the signal component and V
ik 

the noise component. Define

• w =

(3)
= [ f l f l f l f lr ) f l ]

The mean—squared error (mse) between the desired or target signal

d(t) and the summer output z(t), is minimized by setting the weights to

w = (R + R )~~~R = R 1 R (4)
• -op —

~~ —s’ —dc -i
~i —dc

where and are respectively the delayed signal and noise correlation

matrices of dimension K(M + 1) x K(M + 1). R~~ is the correlation function

vector between the desired signal and the various delayed signals.

The stochastic approximation algorithm used to adjust the filter weights

takes the form

= + 2Y~~~~ 
— 2Y~ Z~ n~ (5)

k In Eq.(5) , the y ’s satisfy — with < a< 1 and is completely

specified once correlation function and angular direction of the signal

___________________________ • • ~~~~~~~ •. • ~~~~~~~~~ 
.
~~~~~
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are known. A block diagram of the adaptive mechanism is shown in Figure 3.

The convergence properties of algorithm (5) have been studied in a

previous papers and more extensively in Ref. 6. It has been shown that

algorithm (5) converges in mean square and in probability as long as the

second order statistics of the input processes are bounded and if W of—op

Eq.(4) is a constant vector. The rate of convergence depends on the input

statistics, various system parameters, and training environment. The
inverse

mean—squared error is found to decrease approximately as the/first power

of the adaptation time. The rate of convergence is essentially independent

of the number of weights to be adjusted as the algorithm allows simultaneous

adjustments. The size of the error, however, depends on the total number

• of taps and the starting point.

In order to determine the perf romance of the adaptive receiver , the

mean values of the weights during the adaptation period are derived here

for reference.

Since the summer output in Figure 2 is

• T
Z
j 

= 
~~ 

(6)

we have
T

— (1 — 2
~aj.aj ) + 2

~
’j~~~ 

(7)

Taking the mathematical expectations on both sides of Eq.(7), and diagonizing

the input correlation matrix R such that-n
R = P ’A P  (8)
-n - --

we obtain

EI~~~1
] = (1 — 2Y~ P ’ 

.~~~ ~~.) 
E [~~~] + (9)

where P is an orthonormal matrix and A is the corresponding eigenvalue matrix .

Let us def ine a new weight vec tor

i? •P~~, 
(10)

—— — •- — ast~~ — — .e~~~~~~~~~ — a •~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



and a new delayed input vector

a’ iii . (11)
Since — R w , as seen from Eq.(4), we can transform Eq.(9) into

E[~~~11 — (1 — 2y~A) E(~~~] + A w ’ (12)

or

E(w ~~1
] — w ’ — (1 — 

~~~~~~ &(E(~~~J — 

~~~~~ (13)

Now consider a particular component of W ’ , and for clarity no
subscript or superscript denoting the component is used. Then we obtain

a difference equation for

E(w~ ] =

— vi = (1 — 2Y~A)(~~ — w ’ )  (14 )
whose solution is

—

W
~+l — 

~~~~~ 
— w~~) 

k—i 
a — 2~~A) + w~~ (15)

If we choose

- 
2(j+1) (16)

[This means that is the ~th element of a diagonal matrix having
K(M + 1) elements], and note that

j 
1 1

k—l 
— 2y

k
A ) 

k—l 
— = (17)

we have

= + 
~~~ w~p (18)

Although the choice of Yj given by (18) results in the simplest express ion
for 

~~~~~~~~~
, other choices give similar results. See Ref. 6.
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Some Remarks on the Operations of the Proposed Sys t~m

(a) Choice of the Initial Weights

Although the adjustable weights can be set to any values at the

beginning of the adaptive process , it is desirable to set them not too

far from their optimum by using whatever information is available concerning

the statistics of the noise field . The formula for calculating the optimum

gains can be utilized to start the initial computation with inaccurate noise

statistics. This kind of choice will shorten the adaptation period and

thus reduce the cost of operation. In cases where absolutely no such

information is known, the gains associated with the input delays

= l,2,...K) are set to 1 and the rest to zero. This results in a

conventional power detector. As the adaptation proceeds, the whole system

will gradually be transformed into an optimum one.

(b) Problem of Signal Suppression

In adaptive detection systems such as those proposed by Glaser7,

or Jackowatz8, where adaptation depends on signal information produced by

the processor, there is a critical input signal—to—noise ratio below which

the system rejects the signal. This does not take place in our system since

the signal information utilized by the algorithm is that supplied by 
~~E ’ 

and

this is independent of input SNR. The adaptation process basically pro-

duces a space—time filter that is optimized in a given direction regardless

• of whether a signal is actually present in this direction or not.

(c) Unknown Signal Power

Although it may be reasonable to assume knowledge of the shape

of the signal spec trum, it would generally be unrealistic to assume anything

• ‘ •. • •

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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— 
to be known about the power level. It is shown in Appendix D of Ref. 6 that

if the assumed signal power differs from the actual value by a multi-

plicative constant then the filter weights converge to a value multiplied

by that same constant. Since a constant multiplier applied to a filter

leaves the filter unchanged (except if its output is compared to some fixed

threshold) lack of knowledge of the signal power level causes no real

change in the basic system.

• IV. Performance of the Adaptive Receiver

Our major concern is to deal with the passive detection of a sonar

target in the presence of ambient noise as well as interferences from other

targets.

In order to illustrate the essential procedures , we make the following

simplifying assumptions:

a) The array is linear with elements spaced a constant distance d apart.

b) The input spectra are identical in shape over a frequency range

(O ,w); above the frequency w the signal power is zero.

c) The array d.ements are sufficiently far apart so that the ambient

noise is statistically independent from element to element.

d) There is only a single interference source .

• The mean value of the detector output in the presence of the target

signal is easily found to be

è. flGI
2 HT~~~H*d (19)

-~~

where the explicit dependence of the integrand on w is omitted for

simplicity . A similar expression is obtained for <y>~ , the mean value of

the output in the absence of target signal , by rep lacing 
~~~ 

by 
~~~~~~~

-
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Hence the d.c. change of the output due to the presence of the target is

— 1 2 T  *

~
‘dc 

<
~
>
S+N 

— <
~
‘>N 

= ~ IGI H ~~~H du (20)

For small input SNR the output variance can be shown to be approximately

2 1 7 IG I
4 RT ~ H*)

2
dw (21)

y iT T — --un
• av —0°

where T
av 

is the averaging time. The output SNR is then defined by

y /0dc y

Let 0T’ 0I, and 0 be respectively the target and interference bearing

and the array steering angle. These angles are measured relative to a

line perpendicular to the array axis.

Let r = ~~sin 0 (22)
0 c T

=~~~sin O
~ 

(23)

• t =~~~sin 0 (24)

where d is the hydrophone spacing and c is the sound velocity . 0 is the

independent variable in the directivity pattern y
s÷N

(0). Then the signal

and interference delays at the i array element are

= (K — i)r (25)

= (K — i)p (26)

and the steering delay is

= (K — i)T (27)

• Let the interference delay vector be given by

T jwp
1 jwp2 JWPkb (w) = (e e ... e ] (28)

Then because of assumptions (c) and (d) at the beginning of this section

~~~(w) 
= + (w)U + +~ (w) 

*T (29)

• 
i i

• ,~~ fl& ’ j  ~- • r  - • • - -~~~ - •

L - •

~~~~~~~~~~ 

- -

~~~~~~~~~~

-
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where U is the identity matrix and where ~~(w) and q
1
(u) are the ambient

and interference noise spectral densities respectively . Also

= 
~~~(w) + ~nn~~~ ~~~~ 

*T 
+ (30j

Note now that if optimum expressic...-3 for H are substituted in Eqs . (19),

(20) , and (21) the scalar spectral functions 4 d (w) , 4 (w) , and ~~ (w ) appear

only as ratios 
~d

(w) /
~~

(w)  
~~~~~~~~~~ 

etc. Thus the assumption that the

spectral shapes of signal, noise, and interference are identical permits

us to replace these ratios by constant ratios S/N, I / N , etc. Also , since

the signal power is assumed to vanish for frequencies beyond w , the

integrals in (19), (20) and (21) are evaluated between the limits —w to w .

The effect of assumption (b) is therefore the same as if signal, ambient

noise, and interference spectra were assumed to have flat spectra of

height S/2, 1’1/2 and 1/2 respectively in the frequency range [~~0,w0] ,  and

to be zero otherwise. This assumption is the one that is actually used below .

Suppose now that the transfer function of the ith f i l ter  is

M —Jw~~~
H.(w) = E c e (31)

k=0 1k

Then Eqs . (19), (20), and (21)  become :

s K K M M wo jwt~~~ — A
ik)

= Z E E c4kchL .1 dw ~ e (32)
41T 

i=l h=l k=0 1=0 ‘ —~~~ 
X
i
X
h

0

— s2 K K M M W
o j w ( T . — T )  jw (A ~~~~~ 

— A ik)
= 

~~
— Z E E E c4 1 c~~ 

f  du e e (33).c. ~ 1=1 h=l k=0 1=0 ‘ —u
0

and

2 K K K K M M  M M
0 = E E I I c c~ , ,c c ,

~ i=li ’=l h=1 h’=lk=O k’=OR,=O ~~~~~~~ 
ik i k hi h I

2 t0o jw ( A  + A , , — A — A . ,  ,)
S hi h i  i i kI du O 0 e (3 4)41TT _

~~0 

ni
n
h ~

‘i”h’

--_--±-.~~~~

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In these expressions 0 (or 0 ) is the 1~ th element of the input (or
XjX

h
noise spectral matrix and Eq.(3-4) is valid for the case of small signal—

to—noise ratios.

(a) Initial Behavior

Assuming the worst case where absolutely no information about

the noise field is known, the gains associated with the input delayed by

= 1,2,.. .K) are set to 1 and the rest to zero so that a square—law

detector is used at the start. Hence the output of each array element is

delayed to provide maximum response in the signal direction , i.e.,

1 *
H~(w) = a (35)

• The weights and spacings are simply

c = c5
4 1 /N  

-

it ~ (36)
A ik 

= T
j~~~jk

where 
~ik is the Kroneker delta.

Substi tuting Eq. (36) into Eq . (33) gives the d. c. change of the

• output 2
K u  2

— o S
~‘d c  

= 
iTj =1 N

where we have assumed that the integral of ~~~~ 2~ 0 for A ~ 0. Similarly,

the output variance is

2
K u  K—i sin u ip

~Y~~
j l  

= 
~~~~~~~~~~ 

(~)
2 [~ + (2 + 

~ 1=1 u0i~ 0 
~ (K-i) ]

2 K—l sin w ip
+ L t 1 ÷~~ . 

1 
~~ ° (K— l)2 K w ipN i=l 0 0

K—]. K—i sin u (i—h)p sin u (i+h)p 1
÷ -

~~
--- I I [ ° ° + . ° ° ] ( K — i ) ( K — h ) } l  ( 38)
K
2 i=l h= l u (i—h)p u (i-1-h)p J

- - -- -  - - -

• 
~~~~~~~~~~ ~~~~ ~~~~~~ 

. _-1_~_~~~ _ - - •__~ -~~

-.~~~~~—--•—~~~~~ — -~~~ —-~~~~~~ -— — -k—-—. ~~~~~~~~~~~~~~~ 
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Dividing Eq.(37) by the square root of Eq.(38) gives the output signal—

to—noise ratio , which becomes approximatel y [10]

T u 1/2 2 —1/2
SNR

1~~~~~
(a~~

0
) ~~~~~~~~~~~~~~~~~~~~~~~~~~~ (39)

if the maximum frequency processed is very high such that u p  ~ > 1 and

the terms associated with p make neg ligible contributions except for  I = h .

For most cases of pract ical interest , the number of hydrophones in

an array is large , K > >  1, so that for ambient—noise—dominated environment

SNR1 K(~ ) when (~ ) 2 >> -
~~ K (4 0)

and for interference—dominated environment

SNR 1 Kh/24)  when (N ) 2 
<< 2 K (41)

The average output of the squarer , y ,  y ields the so—called directivity

pattern , which may be obtained by varying the electrical time delays .

In the signal direction = and for u p  >> 1 Eq. (32)  becomes :

¼ 0 = °T~ ~ 
K [1 + + K (42 )

In the interference direction r = p , hence
0 0

0 = O~ ) ~ K ~ [(1 + ~ ) + K ~~] (43)

and in any other direction

(4 4)

These expressions indicate quite clearly that there are peaks in the

directivity pattern in the signal and interference directions (0 O
T
and

0 = O
~
) and that the system does not discriminate in any way against

the interference.

~~~~~~~~~~~~~

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  _ _  ~i. ~
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(b) Final Behavior

1. Optimum Gains

Since the adaptive processor converges to the optimum

detector , the final values of the gains are given by E q . (4 ) .  If the input

signal—to—noise ratio is small R 
~ also it can be shown

6 that if

all the spectra are similar R = K R where K > 1 is a constant. Hence— n 1—v 1 —

we may use ¶

—1

This equation is not suitable for obtaining analytical expressions for

the optimum gains , and therefore we approximate the gains by a simple
Fourier integral expression:

1 jWtk
Cik ~ ~~~~ 

I H
1

(u)e du (46)

where H .(u) is the 1th optimum filter given In Eq. (2) with 
~~~ 

replaced

~~~~~~

Then , using Eq . (29) in (2) we find that the final expression for the

entire f i l ter  is given by 
-

H ~ (u) = [~~ T ]-1~~ l/2 * 

= (U - 
K + N / 1  

* 

( )

The 1th row of }100(u) is 

b1
* Z bkak

*

• H
1
(u) = -j-— [a~ — 3 (4 )

K+ N/ I

so that the impulse response is

K j u ( t_ p
i+p k

_ -r
k)

h1(t) = ~~
-

~~-- ~~~~~~
— / [e l 

- 
k-i 

]du (49)
it -= K+ N / I

It is clear that the impulse response of the individual filters can be

completely specified by setting the gains according to

- - ---— - -~~~~~~~- - - -~~~~~~~ - -~~--~~~~~ --- -~~~~~
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— 
C
ik ir ~~ik 

— 

K + N/I~ 
(50)

a t delays

~ik 
= ~i 

— 

~k 
+ T

k 
(51)

Note that since a practical delay line can supply only discrete delays it

is generally not possible to obtain the exact values required by (51). It

is assumed that the delay lines have a sufficient number of taps so that

the performance degradation produced by this is negligible.

ii. Signal—to—Noise Ratio

If we substitute Eq.(50) into Eqs. (33) and (34), and follow the -
•

same steps leading to Eq.(39), we obtain the signal—to—noise ratio of the

detector output: -

SNR - ! 
T w l / 2  

S K(K-l) N/I
2 ii N K+N/ I

K—l sin u ip
I (K— i) i

° 0

K(K—l N/I)2 i=l 
p
0

2 K-l K-i
+ 2 2 ~ I (K— i)(K—h)
K (K-1+N/I) i=l h=l

Esin w (i—h)p sin u (i+h)p 1/2

[wo
i~h P o 

+ 
u ( i+h)p °j (52)

If w p > >  1, then

SNR~~~;4(~~~~°) ~(K-l) ‘“~~~~~~ [1 + 
1(K i)(2K i~~1/2

T w 1/2
>

1
~ 

av 0
) ~ (K—l) (53)

Equation (52) or (53) gives the asymptotic performance of the

adaptive array processor. Since the training period is finite, the actual

I..—
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signal—to—noise ratio is lower than that given by Eq.(52) or (53). As

would be expected Eq.(52) is just the output signal—to—noise ratio of an

optimal (likelihood ratio) detector first investigated by Schultheiss
9

and then by Tuteur1° from a simpler formulation , but under the same

assumption of similar input spectra over (0,w).

iii. Directivity Pattern

Although the directivity pattern can be obtained by using Eq. (50)

in (32) , the fact that (50) represents essentially the optimum filter makes

it possible to use Eq.(47) in (19) to put the result into a more compact

matrix notation:
w *T *T

— l S  ° ,*T 
_ _ _  

I *T S *Ty,,(0) = ~~—~~~~f d w a  
~~~~~~~

- 

K+N/I ] E
~~~~ N~~.k  ~~~~~ ~~~~~~~~~~~ ~~~~~~~ 

(54)

where it is to be understood that the a’s and b’s are functions of u.

Expansion of the integrand results in twelve terms typified by the term

~*T *T *T~~ -2a b b b b a (K + N/I) . The vector product that remains after re—

*T
moving b b Kis

K K jw (th
_p

h+p 
1~~-t

1
)

I l e  -

1=1 h=1

We consider the integral of the summand to be approximately zero except

for i = h, in which case it is 2w . Thus the contribution of this term

is 2K2w .  The other :leven terms ar: evaluated similarly except that in

combination such as a a a a or a bb a one must consider also whether

the independent variable it is near it or near p respectively . Thus, if
.~*T *T~. 2

it = it , a a a a = K , if it differs from it the contribution of
0 0 0 0

— *‘r *T...
a a a  ais only K.

By utilizing considerations of this sort we obtain the following

approximate expressions for the directivity pattern:

_____________ ______________

-

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~
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a) For angles for away from target or interference

ft {K-l +(K~~~I)2 + 2 + N 
[K-i + 

~~~~~~~~ 
(55)

In the signal direction (0 —

~ ~ ft {ic-i. + 
~K+N/I )

2 
+ 

(K-s-N/I)
2 + ft K[K- N~~+K + ( N ~I~

2 I } (56)

and in the interference direction (0 — O i )

0~ ) ~ —~~ ft {K( K~~~I
) 2 + 

(K+N/ I ) 2 + 
~ 

K(
K~~~I

)
2 } (57)

Note that If the noise is ambient—dominated N/I >> K, and in this case these

three expressions are essentially the same as Eqs.(42),(43), and (44). This

is to be expected since in the absence of interference, and if all spec tra

have the same shape the simple filter of Eq .(35) is optimum . On the other hand ,

if the interf erence noise is large N/I << K, the three equations above become

respectively: -

~(0) ~ft(K-1)~f t +  1) (55a)

= 0T) ~~~2.ft K_l~~ K f t +  1) (56a)

~,,(O - 0~~~~) ~~—~~ftK [(~~
i)2(ft+ 1) + -

~~ 0 (57a)

• Thus the optimum filter tends to suppress the interference noise in all

directions, and for large I/N it produces a dip in the response pattern in the

interference direction.

(d) Adaptive Behavior

Duringthe adaptation period the transfer function of the jth filter

is given by Eq.(3i). The c’s appearing in this equation are represented by

the vector w of Eq.(3), which changes with time according to Eq.(5). The

variation of the elements of w during the training period therefore deter-mines

__ _ _  _ _

_ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~
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the adaptive behavior- of the processor. Since in Eq .(5)  Z
j 
and Yj are

rando., the are also random. Thus we consider only the expected values

of According to Eq.(18) the expected values of is related to the Initial

and final value by the general formula

— Pj!l + qjwo, (58)

where w is the initial value of w and w the final value, and where the p—l — —
~~ 

j

and q
j 
are functions of 3 that depend on the choice of the weighting sequence

of the stochastic approximation algorithm . It is clear that p
1 

1,

— 0, p~ 0 , q,, — 1.

Coithining Eqs.(3l) and (58) we can write

• !j+l p
3
0
1

(w) + q
3
H.~(w) (59)

where 11
1
(w) and H~(w) denote respectively the initial and final forms of

the transfer function vectors. For the particular example considered here,

is given by Eq.(35) and II ,,(u) by Eq. (2).

Basically , we are required to evaluate the following three integrals
(*3

— -
~~~~

-
~~ 

f  IGI
2(p

~H1 + qj
~,,)

T$ (p
3
}1
1 

+ q
j
Hoo)*du (60)

— 
it 

~ 
1 1 G 1 4 { (p

3
H 1 + qj

~~~)T~~~~(pj H1 + qj H ,,) *}2dw (61)

C
~ s-1 

— -
~~~~

-
~~ I IG {~~(p~

H
1 
+ qj

H~)
T
~ (p

3
H
1 

+ q
3
H0,)dw (62)

where in Eq.(61) the H’s use the steering vector a rather than the signal

delays a.

Note that in general

(p
3!1 

+ q 1 1 )T !(p
3!1 

+ q
j
~~)* = 

2
H
T
~ H1 

+ ~j
2
~~ !. L

T *+ 2p
3

c1
3!11 ±! (63)

_ _ _ _• • —~~~~--• - ~~ - - - •-- —- .--~~~ - - — — - •--—--—---—---—----- .- - -
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The first two terms of Eq.(63) are already available from the previous two
• 3 (I)

sections on the initial and final behaviors. Thus, if we set A
j+1 

I
i—i

(1) 2 1  2 T  *
A

3~~1 
— p

3 
j— I I G I  !i ~~~~~ 

du = p3 ~d c • (64)

~~~ 2
— o Swhere 
~d 

—i- by E q . ( 3 7) .  Similarly•c~ 3 1  N

(2) 2 1  2 T  * 2—
q
3 ~~~~~~~~ I I G I  L !88�L dw = q

3 ~d.c. J (65)

A~~j 2p
3
q
3 ~~~ 

flGI
2
H
1
T 
~~5H: 

du

~ 2p3
q
3 

K2w
0 
(!)

2 K-l + N/I (66)

Similar expressions can be obtained for ~~~~ and C
3+1

; B
j+i 

requires the

• evaluation of six terms, C~~1 the evaluation of three terms. For details see

[6). Then the output signal—to—noise ratio Is

A
+SNR = (67)3+1 (B ) ] 4 2

3+1

and the directivity pattern is

— C
3÷1 (68)

Eqs. (65) and (66) have been computed by means of a digital computer , using

the optimum given by Eq.(l6). Figure 4 shows the variation of output signal—

to—noise ratio. Figure 5 shows the variation in the directivity pattern

for target and interference well separated in bearing. The way in which the

interference is suppressed during the adaptation is clearly evident in Figure 5.

_ _ _ _  ______— ~~~~~~~~~~~~~~~~~ -- • - -~~~~~~-- -
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