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I
SUMMARY

This report presents and studies a computational method called “Climm’s
method” from the point of view of applications to blast wave problems. The
report includes the results of preliminary numerical studies. This work was
performed by the author who is a member of the Applied Mathematics Branch of
NAVSWC/WOL. Conversations with Professor Alexandre Chorin, Professor Gary Sod ,
Dr. Hy Sternberg , and Dr. Greg Shubin are gratefully acknowledged.
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INTRODUCTION

Glimm ’s method is a numerical technique for solving hyperbolic systems of
conservation laws in one space dimension. It has been extended to problems with
more than one space dimension and to systems in weak conservation form. The method
does not involve finite differences; its unique features are a random choice at
each time step (which implies that the solution is a random variable) and the
explicit solution of a Riemann (shock—tube) problem for each pair of adjacent mesh
points. The main advantage of the method is its ability to resolve discontinuities
(both shock waves and contact discontinuities) exactly without smoothing. Further-
more, this takes place automatically——no special shock tracking procedures are
required. In particular, the method recognizes the formation of a discontinuity
and correctly resolves the interaction of discontinuities. The price that the user
pays for this property is the imposition of a statistical error in the computed
solution.

A precursor of Glimm’s method is the finite difference scheme of Codunov.
Riemann problems are solved as in the Glimm algorithm; however, there is no random
choice element and the solution is advanced in time by a deterministic scheme
[Reference 1]. The complete algorithm was introduced by Glimm [Reference 21.
Glimm used the algorithm as a theoretical tool to be used in obtaining existence
(for all time) proofs for (weak) solutions of hyperbolic systems of conservation
laws. As he defined the algorithm, the convergence rate is too slow for numerical
computations; nevertheless, the paper represents a major theoretical advance. This
state of affairs did not change substantially until Chorin’s work was published in
1976 [Reference 3]. In this paper , Glimm ’s algorithm was modified in such a way
that it became acceptable from the point of view of computational efficiency, and
yet its theoretical properties remained unchanged.

This report will not consider the theoretical aspects of the theory of
hyperbolic conservation laws, the existence and uniqueness of solutions to Rietnann
problems, or the convergence properties of Glimm ’s method applied to such conserva-
tion laws. There is an extensive literature on these topics and we refer the
reader to two papers of Lax [References 4 and 51; the later paper contains a
substantial bibliography.

1. Godunov , S. K., “Finite Difference Methods for Numerical Computation of
Discontinuous Solutions of the Equations of Fluid Dynamics,” Mat. Sbornik 47,
1959, p. 271.

• 2. Glimm , J., “Solutions in the Large for Nonlinear Hyperbolic Systems of Equations~’
C.P.A.M. 18, 1965, p. 697.

3. Chorin, A. 3., “Random Choice Solution of Hyperbolic Systems,” J.C.P. 22,
Dec. 1976, p. 517—533.

4. Lax, P. D., “Hyperbolic Systems of Conservation Laws II ,” C.P.A.M. 10, 1957,
• p. 537 566.

5. Lax, P. D., Hyperbol ic Systems of Conservation Laws and the Mathematical Theory
of Shock Waves , Society for Industrial and Applied Mathematics, 1973.

I
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Our main objective is to indicate how Glinun’s method can be applied to blast
• wave problems. The advantages given above for Glimm ’s method indicate why such

an application would be desirable. In a blast wave, it is the discontinuous
portions of the flow field which are of the greatest importance; any method specif—

• ically designed for -these regions should be quite useful. Furthermore, the - 

-

statistical error which is inherent in the method will not be important in most
applications. These points will again be taken up in the last section of this
report.

Blast wave problems can be formulated as systems of hyperbolic conservation
laws, either strong or weak depending on the geometry of the problem. We refer,
of course, to the conservation laws of gas dynamics—conservation of mass, momentum,
and energy. Thus, the equations of gas dynamics will be the only application of
Glimm’s method to be considered here in any detail. In the next section, the
basic Glimm algorithm for the one—dimensional planar case is described. Our
treatment is based on two papers of Chorin [References 3 and 61. However, we
include a discussion of some very simple examples to motivate the technique. The
next scct ion takes up the two—dimensional planar case and follows Chorin [Reference
31. The equations of gas dynamics are in strong conservation form for planar
symmetry. This is no longer the case for spherical, cylindrical, and axisyinmetric
symmetry and the extension of Glimm’s method to the weak conservation form case is
taken up in the following section. Throughout these three sections, the results
of numerical tests will be presented; this will include some new results. In the
final section, some blast wave problems will be discussed from the point of view of
Glimm’s method . One interesting point in such applications is that the equations

L of state which are of interest can be quite complicated. However, Glimm ’s method
has thus far only been applied to a y—law gas. We hope that this gap can be
considered partially filled by the appendix to this report where we show how
Riemann problems can be solved for an arbitrary equation of state.

GLIMM’S METHOD

In this section, the Glimm algorithm for solving initial value problems for
strong conservation laws in one space dimension is presented. The problem to be
solved is

(1)
u(x ,O) given

where U — u(x,t) is a function defined on the half—plane t ~ 0. Physically, the
vector U represents the conserved quantities and the vector f represents the
fluxes . The system (1) is the differential version of the integral conservation
laws. The equations of one—dimensional gas dynamics with planar symmetry are

6. Chorin, A. 3., “Random Choice Methods with Applications to Reacting Gas Flow,”
J.C.P. 25, Nov. 1977, p. 253—272.
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~ 

= 
(2)

e = Pc + ½pu
2
, c = F(p,p)

where p density, u — velocity, e = energy per unit volume, c — internal energy
per unit mass, and p pressure. The equation c = F(p,p) is the equation of state
and we assume that this relation can be inverted to find the pressure p as a
function of c and p. If we set u (p,pu ,e)T , it is clear that the system (2) can
be put in the form (1) after using the equation of state to eliminate the pressure
terms. A computation shows that the system (2) is hyperbolic for any reasonable
equation of state.

The method of computation for solving the system (1) is as follows. Let k be
an increment of time and h a spatial increment. The solution is to be obtained at
the times t — nk at the points x = ih, i = O,±1,±2,•~ • and at the times t = (n+½)k
at the points x = (i+½)h, i = O,±1,±2,..~ is here n ranges over the nonnegative
integers. Let ~~ ‘~. u( ih ,nk) ,  n+½ 

~~ u((i+½)h, (n+½)k). To define the algorithm,
—1 —i+½ 

~~~ ~it is necessary and sufficient to describe how to find U j .~~~ given j~~~~

Consider the initial value problem for the system (1) with initial data

for x~~~ O
u(x,O)

for x < 0.

This is called a Rietnann problem. Let v(x,t) denote the solution of this problem
and let e1 be a value of a random variable e equidistributed in [—½,½1 . Let
u v(Oih,k/2) — the value of the solution of the Riemann problem at the point
(O ih,k/2). Set

n+½

This procedure is repeated for each i and a similar construction takes place from
t (n+½)k to t — (n+1)k.

This construction is illustrated in Figures 1, 2, and 3. Figure (la) is a
schematic diagram of a shock tube at t — 0 with constant states ~~~~~~~ to the leftP and right of a membrane located at x = 0. Figure (lb) shows the same shock tube
at some later time t — t* after the membrane has been burst. In this illustration ,

• a shock is moving to the right and a rarefaction is moving to the left. Figure (lc)
shows the solution in the (x ,t)—plane; note that the solution depends only on the
ratio x/ t .  Of course , Figure 1 is only one example of a solution to a Riemann
problem ; which waves form, their velocities, and the values of the state variables
in the *—state must be determined by some means. Figure 2 illustrates the
situation in the (p u)—plane. There is a one—parameter family of states
(p,u) which can be connected to each of (p&,uf), ~~r”r~

I
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( ib) CONFIGURATION AT A LATER TIME
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V 1

(P.~u,) /
N’\

\ 

/ A~
SHOCK FRONT
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‘Ip .2 / ~.
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/ “

‘I

(ic) THE SOLUTION IN THE (x. t) PLANE

FIGUR E 1. SOLUTION OF THE SHOCK TUBE PROBLEM FOR THE CASE OF A
FORWARD SHOCK AND A BACKWARDS RAR EFACTION .
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P

(PQ, UQ)

(P., 0.)

~~~~~~ U,)

U

FIGUR E (2a). THE CASE OF A SHOCK MOVING TO THE RIGHT AND A RAREFACTION TO THE LEFT.

P

(P,. U,)

(Pg .  U2 )

(P.. U0)

U

FIGURE (2b). FOR THIS CONFIGURATION . RAR EFACTION WAVES MOVE BOTH TO THE RIGHT A ND

TO THE LEFT.

FIGURE 2. THE ITERATION IN THE PRESSURE-PARTICLE VELOCITY (p - u) PLANE.
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by either a uniform shock or a simple wave (centered rarefaction fan). A general
proof of this fact may be found in Reference 5. These one—parameter families are
represented by the curves in Figure 2. The intersection of the two curves through
(p~ ,u~) and (pr,ur) must be (p*,u~

); once the latter is known , the complete
Riemann problem solution is easy to find . The analytical method used to find

• (p*,u*) — the Godunov iteration — is explained in detail in the appendix to this
report after which the complete solution Is constructed . Most of the ideas
involved are explained and very well motivated in Reference 7. The theory for
general hyperbolic systems of conservation laws may be found in References 4 and 5.

Assume now that Rlemann problems can be solved for the system (2). The
mechanics of G].imnt’s method ar~ illustrated in Figure 3. At time t = n~t, the
Riemann problem , setting the values of the state variables at x = lAx and
x = (i+l)Ax to be ~~~~ is constructed with the membrane at x = (i+½)Ax. The
solution to this Riemann problem is found (see the appendix) and is then sampled
along the line t = (n+½)At where the sample point has the uniform distribution on

4 the segment [iAx ,(i+l)Ax]. The values of u at the sample point are then assigned

to ~~~~~~~~ This procedure is then repeated for each pair of adjacent mesh points

along the x—axis ; then a new random number is selected and one proceeds to the next
• time step. For a more thorough discussion of the algorithm and its properties ,

see References 3 and 6.

Glimm ’s method is unconditionally stable. Nevertheless, the Courant condition
must be satisfied ; if not, waves will leave the sampling interval which implies
that the sampling probabilities will be incorrect. In effect , this changes the
problem being solved . The success of the method is dependent on the choice of
random numbers ~~~~ Chorin introduced two new features here——first , only one
value of ü for each time step (instead of choosing a new random number for each
mesh point every time step as Glinnn did in his paper) Is used and , second , special
techniques are used to insure that the sequence approaches rapidly the uniform
distribution . A recent result of Liu [Reference 8] has shown that it is not
necessary to use random numbers at all; all that is necessary is that the sequence
used approach equidistribution . Thus, in the near future , it will be possible to
use predetermined sequences which are chosen to optimize the approach to equi—
distribution ; this development will improve the solutions obtained with Glimm ’s
method .

Glimm ’s method is only first—order accurate but has infinite resolution in a
sense to be described by a few simple examples. In Figure (4a), we have chosen
two constant states U Q arid Ur In such a way that the sciution to the associated
Riemann problem is a unit speed shock moving to the right (with no wave at all
moving to the left and no contact discontinuity). This is an easy case to analyze.

7. Courant , R. B . ,  Friedrichs , K. 0. ,  Supe rsonic Flow and Shock Waves, ~1ley—
Interscience , 1948.

8. LIu, T. P., “The Deterministic Version of the Glimm Scheme,” Comm. Math. Phys.
57 , 1977 , p. 135—148.
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USHOCIC - 1

Pr (W Q ) - ~
r( V )— — Se • 5 • • 5 — e a

0’

-~~~x x

2 2

(4a) THE CONFIGURATION FOR A REIMANN PROBLEM WHOSE SOLUTION IS A SHOCK~
THIS IS A LIMITING CASE IN WHICH THE LE FT WAVE AND CONTACT DISCONTINUITY
ARE NOT PR ESE NT.

4 /

* / 4  / / * i/i, IL
(4b) LEFT . LEFT CHOICE (4c) LEFT, RIGHT CHOICE

* * * I . * * * * ‘ * * */ /  ~~~~~~~~~/ /
\ *\ i\

*

\ \ \ *\ 1\ *
\ 

*
\

* * * 1 *  * * * * 1 *  * *
14d ) RIGHT , LEFT CHOICE (4.) RIGHT . RIGHT CHOICE

FIGURE 4. THE SOLUTION FOR A UNIT SPEED UNIFORM SHOCK WAVE USING GLIMM’S METHOD.
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t4hen choosing the random number in Glimm ’s method , there are only two possibilities
——either U f is obtained or Ur is obtained . These occur precisely when the random
choice lies to the left  or the right of the shock , respectively. For two
consecutive half—time steps, there are fcur possibilities and these are illustrated
in Figures (4b) — (4d). For example, Figure (4b) illustrates the fact that if two
consecutive random numbers are chosen to the left of the shock, then the shock
moves forward one mesh point . From Figure (4a) it is clear that pr(~~) probabil-

i ty that the random number lies to the lef t  of the shock — ~ + ~~~~
— and

At 2Ax
pr (~~.) = — -

~
-
~
--. Hence ,

2 2 AtPr (u f ) — pr(u ) —

This says that the net probability of the shock advancing one mesh point per full
time step is At/Ax. The velocity inherent in an advance of one mesh point is just
Ax/At. Therefore, the

mean shock speed (At/Ax)~~(A x/A t )  = 1.

• Hence, on the average the shock moves at the correct speed. At least as important
as this result is the fact that the shock remains a shock without smearing and the

• va lues of the flow field on either side of the shock remain exact (up to the
tolerance used in solving the Riemann problems). I.e., the resolution of the
method is infinite for this example. Even though the location of the shock will
generally be in error , one will always see a shock, it will be the correct shock,
and no new unwanted waves of any kind will be introduced .

This argument involving the shock and rarefaction curves in the (p,u)—plane
can be generalized to show that any Rletnann problem will be solved by Glimm ’s
method with infinite resolution despite inherent statistical errors. That is,
the information content of the waves is never lost.

A somewhat more difficult problem is the interaction of the waves from two
adjacent Riemann problems. The setup and analytical solution of a problem of this
type is illustrated in Figure 5. The various waves remain uniform throughout the
solution . We have also solved this problem using Clinun’s method (for the treatment
of the boundaries, which is straightforward here, see Reference 3). As in the
previous prob lem , the wave speeds are subject to statistical error and yet the
constant states are computed exactly to the precision of the Rietnann problem
solver. The Interaction zone just below state E contained only a few mesh
points; still state E was computed exactly. This illustrates, in this more
complicated case, the infinite resolution of the algorithm and the property that
it does not lose information.

Of course , If one is faced with arbitrary initial data, the solution will
rarely consist of uniform waves. In view of the fact that the basic idea of
ClImm ’s method is to approximate the flow field by a collection of simple waves ,
the question ar ises as to how useful the method will be for strong nonuniform
waves. Before proceeding to a numerical experiment, we comment that as the mesh
spacing becomes smaller, the approximation of the flow field by piecewise constant
data, hence the simple wave approximation to the solution, becomes better. Thus,
we expect more accurate solutions with more mesh points——just as with any finite

_ _ _ _ _ _ _ _ _  
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• t /
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/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
D D

,

/
c\

FIGURE 5. AN EXAMPLE OF THE INTERACTION OF UNIFORM WAVES. THE CONS-
TANT STATES A AND B ARE THE INITIAL DATA; THE PICTURE IS SYM-
METRIC ABOUT THE CENTER OF STATE B. THE STATES C AND D ARIS E
FROM THE SOLUTION OF TH E RIEMANN PROBLEM GIVEN BY A AND B.
A’ IS A CONSTANT STATE GIVEN BY THE SHOCK REFLEC TION EOUA-
TIONS. STATE E, WHICH A RISES FROM THE INTERACTION OF THE
RARE FACTION FANS, IS ALSO A CONSTANT STATE. FOR AN IDEAL GAS
WITH -, - 3, THE SOLUTION MAY BE OBTAINED ANA LYTICALLY.
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difference scheme. Still, this was not the case in the above simple examples
where no informat ion was lost so long as there were as few as two or three mesh
points for each distinct wave present in the solution. The question of
convergence and convergence rates for Glinun ’s method in such prob lems are
unanswered; neither Gliimn’s original proof nor any of the later theoretical work
on the method apply to the case of gas dynamics with general Initial data. Thus,
we pursue a numerical example.

Fortunately , exact analytical solutions are available for purposes of testing
the method . We have pursued an example of an exponential shock path pushed by a
piston due to Sternberg. The wave pattern between the shock and the piston is
about as nonuniform as possible. The exact solution may be found in Reference 9.
A comparison of this exact solution with a computation using Ch ime’s method is
illustrated in Figure 6. Observe that both the piston and the shock have moved
correctly and that the wave profile is correct, We hope to do further work with
similarity solutions along these lines, especially in the reactive flow case (see
Reference 6 for an extension of Chines’s method to this case; also, the operator
splitting idea to be presented in a later section can be applied). Two papers of
Sternberg [References 9 and 101 will be the basis for these computations.

This completes our survey of the basic Cu min’s method for strong hyperbolic
conservation laws in one space dimension. As a final remark, we note that both
the theory and the practice of the method are easier to understand for single
conservation laws than for systems. Burger ’s equation , Ut + uu~ — 0 is a good
example. The situation considered In Reference 11 is especially interesting in
this regard.

GLIMM ’S METHOD - EXTEN SION TO TWO INDEPENDENT VARIABLES. The extension of
GlIrgn’s method to systems of strong conservation laws in more than one space
dimension would be straightforward if multidimensional Riemann problems could be
solved . For example, the two—d imensional Riemann problem consists of the
specification of four constant states, one for each quadrant of the plane, at
t — 0; and the solution to this problem would consist of using this configuration
as the initial state and finding the complete solution of the equations in a
neighborhood of the singularity at the origin for all t ~ 0. Unfortunately, very
little is known about this problem. Also , if an exact solution (or iteration
procedure) is ever discovered , it is bound to be considerably more difficult than
the one—dimensional case.

The procedure developed by Chorin [Reference 3] is to use the one—dimensional
Glimm algorithm as a building block in a fractional step method . In place of the
two half—steps of the one—dimensional method , one takes four quarter steps for the
two—dimensional method ; each quarter step is a sweep in either the x or y direction.

9. Sternberg, H. M., “Similarity Solutions for Reactive Shock Waves,” Quart.
J. of Mech. and Appl. Math. 23, Feb. 1970, p. 77—99.

10. Sternberg, H. M., “Constant Velocity Reactive Shock Waves for Testing
Numerical Methods ,” preprint , 1978.

11. Concus, P. and Proskurowski, W., “Numerical Solution of a Nonlinear Hyperbolic
Equation by the Random Choice Method ,” Lawrence Berkeley Laboratory Report
LBL—6487 Rev., Dec. 1977.
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This idea can be generalized to more dimensions, but the discussion here will be
restricted to the two—dimensional case. The equations of two—dimensional
compressible flow with planar syimnetry are

+ (PU) + (pv) — 0

• 
- 

(Pu)
~ 
+ (pu2 + p) + (puv) — 0

(Pv )
~ 

+ (PuV) x + (pv + p) — 0 (3)

e
~ 

+ ((e + P)U) x + ((e + P)~’) y = 0
• 2 2
• e — Pc + ½p (u + V ) ,  c F(p,p).

This is clearly of the form

+ 

~~0x + £(&y °

where the conserved quantities are u — (P,PU ,PV,e) T. As before, it is assumed that
• the equation of state may be inverted to find p as a function of c and p, hence as

• a function of the conserved quantities. In this manner the flux vectors f and ,~may be found from (3). The equations to be solved in an x—sweep are

(p u ) = O

(Pu)
~~ 

+ (Pu2 + P) x = 0
(4)

+ (Puv ) = 0

e
~ 

+ ((e + P )U ) x —

That is, all y—derivatives are set equal to zero. The third of these equations
becomes

v~ + (uv) = 0 (5)

after application of the first equation. This means that the y—component of
velocity v is transported as a passive scalar in an x—sweep. This is a particularly
simple situation for Chines’s method ; the solution of a Rieinann problem for the
1st, 2nd , and 4th of equation (4) is independent of equation (5). Hence, an
x—sweep reduces to the system (2) of one—dimensional flow. In view of the third

• of equations (4), v is conserved in the mean which implies that

e — p c +½ p u 2 + k  (6)

• where k is a constant. The constant plays no role and we are indeed in the
situation of system (2). Equations similar to (4), (5), and (6) hold in a
y—sweep.

Two questions are fa irly ob~iou~ concerning this procedure. Is the two—
dimensional Rieinann problem consistently approximated by the fractional step
procedure? Whether the answer to the first question is yes or no, does the

‘7
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• technique converge to the solution of the general initial value problem, assuming
that the one—dimensional Glinen method does so? Unfortunately, the answers to
these questions are not known. The best that one can do is to obtain numerical
results for the technique. In the case of smooth solutions, a general theory is
available concerning the accuracy of operator splitting [Reference 12).

There are only two such tests available at present in the literature.
Concus and Proskurowski [Reference ill consider the case of a single conservation
law; their initial conditions are somewhat specialized. We shall not take up
their results here except to note that they are good. The system (3) has been
solved by Chorin [Reference 3] for the case of a channel with a ramp. Figure (7a)
shows the geometry and the initial conditions (uniform flow). It is assumed that

• the gas is polytropic. There are two adjustable parameters, M Mach number and
y — ratio of specific heats. Two cases are studied for which an analytical steady
state solution is known to exist. These analytical solutions are illustrated in
Figures (7b) and (7c). There is a qualitative bifurcation in the solution from a

• regular to a Mach reflection pattern as the parameters are varied. The results for
this problem reported by Chotin arise from using Glimin ’s method for the equations of
unsteady gas dynamics (i.e., system (3)) and waiting for the approach to the steady
state. The results are very encouraging; the qualitative features are correct in
both cases, quantitative results are very close, and the number of mesh points is
small.

GLIMM’S METHOD - EXTENSION TO EQUATIONS IN WEAK CONSERVATION FORM. In the
case of one space dimension, the problem to be solved is

u + f(u) — —w(u)
~~ r —

~ (7)
u(r,O) given.

As before, u represents the vector of “conserved” quantities. The main situation
of interest is the equations of one—dimensional gas dynamics with spherical or
cylindrical symmetry. Explicitly , we have

Pt 
+ (PU)~~ (n — l)pu/r

(Pu)
~ 

+ (pu 2 + 

~~~ 
— (r~ — l)pu2/r

e
~ 

+ ((e + p)u)
r 

= — (n — l)(e + p)u/r

e — pc + ½pu
2, c = F(p,p)

where r is the radial coordinate, u is the velocity in the radial direction, and
n is a constant which is equal to 2 for cylindrical symmetry and 3 for spherical
symmetry. The remainder of the notation Is as before. The new feature here is
the appearance of the inhomogeneous term w(u) ;  it is not possible to put the
system (8) in strong conservation form . Another new problem is that w(u) depends
explicitly on r; for problems involving significant phenomena near the origin, the
equations become singular.

12. Gottlieb , II . ,  “Strang—Type Difference Schemes for Multidimensional Problem ,”
Siam .1. Mum. Anal. 9, Dec. 1972 , p. 650 & 661 .
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//////////~~~~~~~~ ////
P — p — 1, V —

u - M ( yP/p)

///7///////////////////
(7.) cONFIGURATION FOR REGULAR TO MACH REFLECTION TRANSITION , a - tan~ (1/5)

~~ / / 7 / /7 ~~~~7 7 7 / 7 / / / 77 ~ 7 7 T / 7 / / / /7 / / 7 / 7~~~~7

(7W THE REGULAR REFLECTION SOLUTION (7c) THE MACH REFLECTION SOLUTION FOR
FORM - 2 .O .nd7 1.4 M-1.6 .nd ’y 1.2

FIGURE 7. TRANSITION FROM REGULAR TO MACH REFLECTION. THE BOTTOM TWO DRAWINGS SHOW THE
FLOW PATTERNS RESULTING FROM ANALYTIC SOLUTIONS WITH M, y AS INDICATED.

I

I

19

i-i~ ~~~~~~~~~~~~~~~~~~~ ..~~..:; iT— -



_ _ _ _ _ _

NSWC/WOL TR 78—211

Application of Glinun’s method to the system (7) involves the notion of
operator splitting. In the general case, given a system U t = A( u) + 1(u) ,  one
may consider solving Ut = A(u) and Ut = 1(u) in sequence; as the time step
approaches zero , one hopes that the solution of the latter problem approaches the
solution of the original problem. In special cases (usually linear operators) this
can be proved, for smooth solutions, using functional analysis (product formulas),
or a simple error analysis [Reference 12]. The reason for using operator splitting
is that one can solve 

~~ 
= A (u) and ut = 1(u) separately but not the original

equation. This remark applies to the system (7); consider the splitting

• = 0r 
(9)

of (7). The first half of (9) is now in strong conservation form and the basic
Cu min’s method applies to its numerical solution. The second half of (9) is a
system of ordinary differential equations, one for the value of each conserved
quantity at each mesh point. Observe that conserved quantities at different mesh
points are uncoupled in this system; however, for the case of gas dynamics —
equations (8), the three conserved quantities at a given mesh point are coupled .
In any event, it is a fairly easy system to solve (numerically). The h r  term is
treated as a constant given by r = iAx for the ith mesh point (other alternatives
are available which are not treated here). Note also that the origin is a

- • boundary condition for the first half of (9); therefore, equations for u(x = 0) do
• not appear at all in the second half of (9) because they are not needed. In other

words, the singularity at the origin has disappeared (at least numerically). The
ideas involved here were first presented by Sod [Reference 13].

The natural question here is whether the splitting (9) converges to the full
operator (7) as the time step approaches zero, under the assumption that the
Ghlmm operator itself converges (of course, there is no question about the
convergence of numerical approximations to the system of ordinary differential
equations). There are some positive results for the case of a single conservation
law (private communication with C. Sod). However, little is known for the case

‘1 
of gas dynamics, equations (8).

An alternative to Sod ’s splitting procedure would be to solve the Riemann
problem for the full system (7). This is substantially more difficult than the
corresponding planar problem , but it appears that a mathematical analysis would
yield results——this is not clear for the two—dimensional Riemann problem discussed
in the previous section. Indeed , through the use of power series expansions, the
Riemann problem for the system (8) of gas dynamics with spherical sytmnetry
(n — 3) has been solved approximately in the strong shock case (i.e., the ratio

is large). Details may be found in References 14 and 15. Figure 8 is a

13. Sod, C. A., “A Numerical Study of a Converging Cylindrical Shock,” J.F.M. 83,.
1977 , p. 785—794.

14. Friedman, M. P., “A Simplified Analysis of Spherical and Cylindrical Blast
Waves,” J.F.M. 11, 1962, p. 1—15.

15. Holt, M., “The Initial Behavior of a Spherical Explosion. I. Theoretical
Analysis,” Proc. of the Royal Society, A, 234, 1956, p. 89—109.
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FIGURE 8. A SCHEMATIC ILLUSTRATION OF THE GENERAL SOLUTION TO THE ONE-
DIMENSIONAL RIEMANN PROBLEM IN SPHERICA L GEOMETRY .
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schematic illustration of the solution in the strong shock (moving away from the
origin) case. One sees immediately that the solution is no longer simply a
function of n t , but depends on r,t separately . This makes the application of
this solution to Chiinm ’s method awkward and inefficient. Also, for such an
application to be considered , It will be necessary to extend the analysis to the
entire spectrum of pressure ratios; however, p~ /p~>>l is probably the most
difficult case. Hence, for the time being, the splitting algorithm is the only
way to apply Ghinun ’s method to systems in weak conservation form. Even if tech—
niques involving exact or approximate solutions of the full Riemann problem (e.g.,
Figure 8) prove infeasible, it would be useful to have these solutions available
as a test problem for the splitting method .

We now present the available numerical evidence for the splitting algorithms
applied to the system (8), one—dimensional gas dynamics. Sod studies [Reference

• 13) the case of a converging cylindrical shock induced by a cylindrical shock
tube problem ; this problem has an extensive literature from both the computational
and experimental sides. The singularity at the origin (pressure approaches
infinity as the shock approaches the origin) makes this a difficult problem for
standard finite difference schemes. The results presented by Sod are in good
agreement with experimental data and are an improvement on prior computations.
The method handles the singularity accurately and without difficulty, the correct
sequence of waves is formed ; wave interactions appear correctly, and the reflection
of waves from the origin is as expected . In short, the results for this problem
have all of the desirable properties that we have seen for Glimm ’s method in the
plane case, despite the added complication of the nontrivial symmetry terms.

In the case of spherical symmetry, the Primakoff problem provides an exact
solution. The derivation of this similarity solution may be found in Reference 7.
The solution consists of a curved , nonuniform waveform, which decays to zero at
the or igin , behind an expanding shock wave front  which is sharply peaked .
Analytically, the solution is given by

u(r,t) O.lrt 1; p(r,t) = c 0r
3t~~

2/5/25k; p (r,t) = 4p
0rt

_2
~
’5/ 3k (10)

where p0 is the constant ambient density and k is a constant. The location of the
shock is given by

R(t) = kt2~
’5. (11)

We chose (arbitrarily) t = 1 for the initial time in our computations and used the
disc retized ve rsions of equations (10) and (11) for initial conditions. At
t — 5.6, R(t) is roughly double R(l) and so this was chosen as the final integra-
tion time. Figures 9 and 10 reproduce density and pressure profiles, respectively,
at t — 5.6, for both the exact and numerical solution. Figure 11 is the peak
pressure vs. distance profile for the wave from t = 1 to t = 5.6; this is an
important function in evaluating blast wave effects. It can be seen that the
numerical results for Glimm ’s method are in agreement with the exact solution ; in
the run i.~,resented here the shock location is exact, but in other runs it is off a
few mesh points. It Is not clear at this point whether this error is caused
by the random choice element or by the operator splitting; in any event ,
we can report that reducing t~~e mesh will reduce the error in shock
location indicating that convergence is obtained for this problem. Using a new
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idea reported in Glimm & Marchesin1’6 (1978), it may be possible to track the shock
• front (almost) exactly , yet within the context of the random choice method ; we

have not tested these techniques as yet.

The case of two dimensional axisyinmetric compressible flows can be handled by
combining the fractional step approach of the last section with the operator
splitting of this section. The equations are of the form

+ -~-~~-~r 
+ = —w(u). (12)

The idea is to use operator splitting and solve in sequence

• 
‘~~t 

+ -~~~~r 
+ £(!‘)

~ 
= 0

• (13)

• The first equation is solved using the fractional step approach of Chonin ;
the second equation is simply a system of ordinary differential equations. At
the present time , there is no published work available on C u m i n ’s method applied
to this situation.

Operator splitting can also be applied to the equations of gas dynamics with
chemical reaction . In this case, the vector w(u) in equation (7) or (12) will be
zero except in the last component where a term for the net energy gain from
chemical reaction will appear. Of course, it would be poss3ble to combine
chemical reaction with nontrivial spatial symmetries by including a more complicated
vector w(u). The problem with the operator splitting approach is that the time
scales for hydrodynamics and chemistry are (typically) off by several orders of
magnitude leaving the investigator with the choice of either using an extremely
small time step , or using a very inaccurate integration of the chemical phenomena.
(This dilemma is inherent in the problem , not just the C.llmm approach to the
problem.) An ingenious technique avoiding this difficulty is presented by Chorin
[Reference 61; the idea is to explicitly solve Riemann problems with chemistry
using the assumption that any reaction that takes place during a time step takes
place instantaneously at the beginning of the time step. This preserves the self—
similar nature of the solution to the Riemann problem , which now may consist of
Chaprnan-.Jouguetdetonations and/or strong detonations as well as hydrodynamic shocks,
rarefaction waves , and contact discontinuities. (The deflagration case can be
handled as well , but a heat conduction term must be added to the system of equa-
tions on physical grounds.) In the paper , numerical evidence is presented fox’
both strong and Chapman—Jou~uet detonations with excellent results. However, the
reaction rate used is in close agreement with the unphysical hypothesis necessary
In Chorin’s construction of the solut ion. Thus, further work is necessary in this
area , but it does appear that Glimm ’s method can be used rather efficiently in
problems involving chemical reaction .

APPLICATIONS TO BLAST WAVE PHENOMENA. In the field of numerical modeling of
blast waves, one may perceive two long—range goals. The first is to develop
methods , based on the governing partial differential equations, which are
sufficiently accurate and reliable that experimental confirmation of the results

16. Glimnmn , J. and Marchesin , D., “A Random Numerical Scheme for One Dimensional
Fluid Flow with High Order of Accuracy,” preprint , May , 1978
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is not required ; the achievement of this goal has obvious practical importance.
The second goal is to develop the methods to suc : an extent that they are useful
in a theoretical analysis of blast wave phenomena——a field of study which is by
no means completely understood . These two goals are clearly interrelated ;

• however, the exact relationship is not obvious at this time .

The difficulties in solving blast wave problems can usually be traced to the
• existence of discontinuities in the flow field——this includes shock waves, slip

surfaces, and material interfaces. The calculation in a neighborhood of the
discontinuities is both the most difficult part to solve numerically and the most
important part from a practical point of view. Indeed , the solution is almost
useless unless it contains peak pressure vs. distance plots , shock trajectories,
interface trajectories , etc. Furthermore, a typical phenomenon in blast wave
computations is the formation , interaction , and disappearance of discontinuities in
the midst of the computation ; this includes bifurcations of discontinuity patterns
such as the transition from regular to Mach reflection . The physical effects of
this behavior are critical in the applications .

The development of numerical techniques to handle these problems began in
World War II and continues today . Reference 17 contains a recent review of
several of these methods. Most rely on artificial viscosity and “shock capturing”
while some -.mse shock fitting either with or without the usual techniques in other
parts of the flow field . The basic problem with the former method is that it
smears out shocks over several mesh points; the resulting distortion near the
front is very undesirable in itself and can easily lead to further errors in
interaction problems. On the other hand , shock fitting would be ideal for the
problems at hand if it could be implemented in a straightforward fashion. However,
the necessary theory is not available to track multidimensional discontinuities
(in general, curbed) and their interactions and transitions. Even if this were
feasible, it would be still necessary to anticipate discontinuity formation
(either automatically or otherwise) and prepare special algorithms for each along
with the interactions which occur ; this can be a very ad hoc procedure.

The advantages of Glimm ’s method are clear ; discontinuities are tracked
without smearing, and the formation , interaction , and transition of discontinuities
is computed automatically . This, at least, is the situation in one space
dimension . The most important open question for the method Is its utility in
higher dimensional problems (this , of course , is also the case for most other
numerical techniques in compressible fluid flow). The results of Chorin presented
in the section on the fractional step approach are extremely promising in this
regard ; they indicate that the sharp resolution of discontinuities of the one—
dimensional scheme is also a property of the two—dimensional fractional step
approach.

We intend to apply the method to a variety of multidimensional blast wave
situations beginning with the problem of a spherical or cylindrical charge at
height of burst. This becomes axisymmnetric (two—dimensional) at the moment of
impact of the shock on the ground . This problem contains transitions from regular
to Mach reflection in addition to the initial strong shock wave followed by a
contact discontinuity. If the initial energy is high enough , there is a further

• transition to multiple Mach reflection——this is amply documented by experiment
• although not understood theoretically . In a closely related problem , we will

study the two—d imensional plane ramp problem with an incident plane shock as
T7~ Sod, C. A., .rA Survey of Several Finite Difference Methods for Systems of

Nonlinear Hyperbolic Conservation Laws,” J.C.P. 27, April 1978, p. 1—31.
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initial data (this is the “shock tube” problem whereas Chorin studied the “wind
tunnel” problem) ,  see Figure 7. There is a large body of experimental data
available for this situation and the resulting unsteady flow fields are similar
to the axisymmetric charge at height of burst problem . For the final applications,
it will be necessary to use realistic equations of state; the appendix indicates
that this will be feasible. This will also be very important in the more difficult
charge at height of burst above water problem. In addition to the physical
phenomena listed above, this problem also contains refraction of discontinuities
as well. An advantage of Glimm ’s method for this problem is that as the leading
shock approaches the water , there is no reason for the time step to approach zero
as is the case for any Lagrangian scheme used on the problem ; as the ambient atmos-
phere gets squeezed between the shocked air and the water , the probability of a ran-
dom number lying In that portion of the Riemann problem solution corresponding to
ambient atmosphere will approach zero and eventually the ambient atmosphere must
disappear. Since water is only slightly compressible, its equation of state will
not even resemble that for a y—law gas and the development of a Riemann problem
solver for water will be Important.

Other problems involving material interfaces include a charge impacting on a
solid surface and the design of shaped charges (which include a metal liner inside

• the charge). On the one hand , these problems should be amenable to the approach
embodied in Glimnm ’s method and the advantages of the latter indicated above will
be important . On the other hand , the method has not yet been tested in problems
of this type involving nonreflecting material interfaces. In one space dimension,
this type of complication is not a problem ; indeed , Chorin [Reference 31 points
out that Interfaces can be tracked with the same accuracy (in the mean) as can be
attained by the method for shocks. In higher dimensions, this property remains to
be tested.

We note also that research is ongoing to apply Climm ’s method to problems
involving combustion and detonation. We have outlined this development in the
preceding section. Thus, it may be possible in the near future to use the method
to model the detonation wave from an explosive instead of simply using experimental
data to set up initial conditions for a hydrodynatnic shock wave.

Finally , it is possible to couple Glimtn’s method to other techniques in
separate flow regions. Chorin studies the interaction of a laminar Incompressible
boundary layer with an inviscid compressible interior flow (Reference 181. Of
course, a completely different method is necessary for the boundary layer. Glimnm
and Marchesin [Reference 16] consider “random shock tracking.” This adaptability
of the method may prove useful in future applications.

18. Chorin, A. J., “Vortex Sheet Approximation of Boundary Layers,” J.C.P. 27,
June 1978, p. 428—462
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APPENDIX

THE GODUNOV ITERATION FOR SOLVING RIEMANN PROBLEM S

Figure 1 contains most of the notation which we shall use. In addition , set
c internal energy, and U = shock speed. Solving a Riemann problem

means: given u
~ 

= (p~ ,uf,p~) and !~r 
= (Pr,Ur,Pr) ,  calculate 

~~~~~~~~~~~~ 
the

slopes of the shock (or shocks), contact discontinuity, and the leading and
trailing edges of the rarefaction fan (or fans), and the solution inside the fan.
In the application to Glimmn ’s method , it is never necessary to calculate the
entire solution ; one always finds p,,, and u~ and certain other parts of the
solution depending on the random number selected . In particular , it is never
necessary to explicitly find the entire rarefaction fan.

The first step in the solution is the Godunov iteration for the determination
of p,~. This will be presented in some detail for a general equation of state.
Next , the explicit formulas in the iteration will be derived for a y—law gas and
the complete solution of the Riemann problem will be set down in this case. This
material is taken from References 3, 6, 7, 18, and 19. Finally, the Godunov
iteration will be repeated for more complicated equations of state which arise in
the study of chemical explosives. It will follow from this analysis that Glinun’s
method can be extended in a straightforward fashion to problems involving general
equations of state. The remaining question is the (numerical) efficiency of the
method for complicated equations of state. This is not resolved here except for
a few general comments. In particular , we do not address the possibility of
replacing Godunov ’s iteration scheme (which is very efficient in the y—law gas
case) by some other scheme. It will be clear that the iteration for p,~, is the
bulk of the computing time in the application of Rlemann problem solutions to

4 
Glimm ’s method . Thus, we will not repeat the derivat ion of the complete solution
to the Riemann problem for these equations of state.

Given p,,, and 
~r’ 

it follows that the *—state and the right state are
separated by either a shock wave or a centered rarefact ion fan according as
P* ~ Pr or p,,, 

~ ~r’ 
respectively (entropy condition). The same result holds for

and p
~
. So, in order to proceed in the iteration , we set down the governing

equations for a shock wave and for an isentropic rarefaction wave. To begin,
suppose that the equation of state is of the loris

k 19. Sod , C. A . ,  “The Computer Implementation of Glinun’s Method ,” Lawrence
Livermore Laboratory Report UCID—17252, 1976
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p — p(p,c),  (Al)

and that equation (Al) may be solved explicitly for the internal energy c,

C c(p,p). (A2)

By using the thermodynamic identity

(.~2) = (!2.) — (A3)
~ T S a t c  ~~C T

and the equation of state (Al) and (A2), the equation for an isentrope can always
be put in the form

or 

h (r,p) (A4)

p = p(’r) 1
T h(r ’,p’)dr ’. (A5)

The solution of (A5) may or may not be obtainable in closed form; in any event,
this solution will contain a constant of integration which depends on the isentrope.
Additionally, there are also Riemann invariants which are of the form

2, ( p)  ± u = const. (A6)

where

= ~~~ -~~--~~~ —— = .1~
’ 

~~~~
—-

~
-. (A7)p

The cons tan ts of integration in (Al) may always be taken to be zero for gases;
see Reference 7. The constant in (A6) depends on the value of the entropy. The
sound speed c may be determined from

— 
~~~~~~~~~~~~ 

(A8)

the ri ght—hand side of equation (A8) is obtainable from equation (A3). Therefore,
for the case of a rarefaction wave between the *—state and the right state,

— U = ~~ l:I~~) — us,, (A9)

H(P
~~

Pr
) — H ( p

~
,p
~

) (AlO)

where H is obtained from integration of equation (A5). Equations (A9) and (AlO)
follow because the rarefaction wave is isentropic . Now , cons ider the case of a
shock wave between the *—state and the right. We have the Rankine—Hugoniot condi—
tions which are completely independent of the equation of state:

P r
(U

r 
— U) — p

~
(u
~ 

— U) — N (All)

~r~~r 
— U) 2 + 

~r 
— p

~
(u
~ 

— U) 2 + (A12)
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C — C~~ — ((r
* 

— T )/2)(P
~ 
+ “r~ 

(Al3)

From equations (All) and (Al2) ,  it follows that

M2 - - - Pr
)t (T

* 
- T ) .  (Al4)

The exact analogues of equations (A9) — (Al4) hold f or the waves between the left
state and the (*)—state.

After an initial guess for p,,~ has been made, the Godunov iteration proceeds
by defining

Mr = 
~~r 

— p*)/ ( ur — u~ ) (Al5)

Mt = - - p*) / ( u
~ 

- u
*
). (Al6)

Observe that equations (Al5), (Al6) imply

(ut - U + Pr /Mr + pt /M
~

) / ( ( l / M ) + (l/M
~
)). (Al7)

Given an iterate p
~ , 

the Godunov iteration updates Mr and M to obtain the
next iterate p~~

1. This is repeated until convergence is reached . Convergence
criteria, accelerated convergence techniques, and the optimal choice of the initial
guess p~ will not be discussed here; see Reference 6. The quantities M1. and Mt
cannot be used in the form given in (A15), (A16) for this process because they
involve the unknown u~. The main idea in the iteration is to rewrite Mr and M~ as
functions of (Pr ,Pr,P*), (p~ ,py,,p*) respectively, using equations (Al) — (Al4).
This is now carried out for the wave connecting the *—state with the right state.
The wave moving to the left may be handled similarly.

Suppose that this wave is a shock. From equation (All), ur — U~ = — M(rr — T*)
which implies that Mr = M by equation (A14). This means that

M~ - 

~~r 
- P* / T

r 
- T

*
) .  (A18)

This eliminates ui,, but introduces T
* into the equation f or Mr. However, we can

obtain t* = T*(Pr,Pr,p*) by using the Rankine—Hugoniot condition (Al3) after
expressing Cr Cr(Pr ,pr ) ,  C

* = c~
(p *,p~) through the equation of state (A2). This

involves the solution of a nonlinear algebraic equation. We are assuming that the
equation of state is such that this nonlinear equation has exactly one root which
satisfies the governing physical laws. Inserting this expression into equation
(A18) , we have Mr — Mr (pr ,p*,p r ) as desired .

Now suppose that the right wave is an isentropic rarefaction. Then, equations
(Al5) and (A9) lead directly to

N — 
~~r 

— P* /aPr — ~~~~ (A19)

It follows from equations (A2) ,  (A7), and (A8) that 
~~~r
) is a function of Qr and

p
~
, and that t(p*) is a function of 

~* 
and ps,. The remaining task is to eliminate

o
~~

. This may be accomplished by solving the isentropic law (AlO) for P
~ 

in terms

31
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of Pr ’0 r ’ and p*. Once again , this is a nonlinear algebraic equation and we make
the same assumption about its solution as was made above. Having solved this
equation, one sees that equation (Al9) exhibits the quantity Mr in the appropriate
form.

Specializing to the case of a y—law gas , the equation of state is

(A20)
y—l p -

Application of the thermodynamic identity (A3) leads to

dp/d’r —yp lt (A21)

and the solution of this ordinary differential equation is

pp~~ = A(S) (A22)

where A(S) is a constant of integration (which depends on the entropy, S). This is
the isentropic law, and equation (AlO) takes the form

PrP r~~ 
= - (A23)

Similarly, one uses equations (A3) , (A8), and (A20) to show that the sound speed
satisfies

c2 - yp/p . (A24)

By inserting equation (A24) into equation (A7) for t (p )  and using equation (A22),
we see that equation (A9), which expresses the constancy of the right Riemann
Invariant across the right wave, may be put in the form

2cr 2c5
— U

r 
= — u~. (A25)

V t

Therefore, if the right wave is a rarefaction, equations (A15), (A24), and (A25)
lead to

2 ½ 1~ ½ p~~~~½l
M
~ 

— 

~
‘r 

— P*)/
~~j [(~

) — (‘i—) j (A26)

Using the isentropic law (A23), it follows (after some algebra) that

½ -l / P*\ / /p~ \y-l/2y~M
r 

— (PrOr ) ~~~~~~~~ (,,
l — ~._) I~l — 

) 

. (A27)

Thus, the general case (A19) for M
~ has reduced to a simple algebraic formula.Suppose now that the right wave is a shock. Using the equation of state (A20) and

the Rankine—Hugoniot condition (A13), one obtains

32
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/ 2~~~
Pr + U

where U
2 

— ~~~~ When substituted into equation (Al8),

M
r 

- 

~~~~~~ 
~9i + 91 _!) . (A29)

Equation (A29) is of the required form. Once again , it is merely an algebraic
expression for M

~
. Collecting our results, we see that

N = 
~~~~~~~~~~~ 

(A30)

where

(~
±i 

+ %1) ½ , ci ~ 1

= (A3l)
y— l 1—cm

2 i~~
ri
~

1/2 y 
cm — 1

Observe that ~ is continuous at cm = 1; indeed ~~l) — ‘y ’ . Formula (A30) also holds
f or M t except that 

~r 
is replaced everywhere by P~

. Thus, formula (A30), (A3l),
and (Al7) define the iteration for p,~ in the case of a y—law gas. The question of
convergence will not be taken up here except to note that the iteration converges
very quickly in practice. Reference 6 may be consulted for further details.

The remainder of the solution to the Riemnann problem is now derived. The
equations will be for a y—law gas, but the procedure easily generalizes to an
arbitrary equation of state. One notes immediately that

u
~ 

— 
~r 

+ M u  + M
~
u
~

)/ (M + M
~

) (A32)

upon elimination of p,~, from (A15), (Al6). Observe that the equation for the slip
• line is dx/dt — u~. Suppose there is a shock wave on the right (i.e., p~ > Pr)~Equations (All) gives us the shock speed U and the density to the right of the

slip line P*~~. since the quantity H is known from the iteration for p~~. A left—
facing shock is handled similarly. The remaining case is a rarefaction. Suppose
it is the right wave. The rar~faction is then bounded on the right by the linedx/d t — U~. + Cr — U~ + (Ypr Tr) and so this line is known a priori. It is bounded
on the left by the line dx/dt — u* + c~ — u~ + (yp*T*)~~. The quantity r~ (i.e.,
l/p*r) is not known but can be found immediately from equation (A25). Thus, the
lef t slope and the density 

~*r 
are solved for simultaneously. If the solution

is desired at some point p inside the rarefact ion, one equates the slope of the
characteristic dx/dt u+c to the slope of the line connecting p and the origin.

~~~~~~~~~~ 
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This is correct because the rarefaction fan is centered at the origin. Hence,
u+c — B where B is the slope. Also, the constancy of the right Riemann
invariant and the isentropic law are available to give two more equations for
the unknowns p,p,u. Hence, there is a total of three equations in three unknowns
and the solution can be found. Observe that knowledge of the *—state is not
necessary to find the solution inside the fan after one knows what the fan
boundaries are (which does require information from the *—state).

In summary, it has been shown that the general solution of the Riemann
problem can be reduced to simple algebraic formulas in the case of a rny—law gas.
For applications to blast wave problems, there will be many situations when a
y—law approximation to the equation of state will be inappropriate either for the
detonation products, the ambient atmosphere (e.g., after radiant heating has
raised the temperature to a very high level), or some other media in the problem
(e.g., in a blast above water , the water should be treated as a compressible
medium if the blast strength is great enough). Hence, it is important to be able
to efficiently solve Riemann problems for more complex equations of state in order
to be able to apply Glimm ’s method to such problems. In addition , it is necessary
to be able to solve Riemann problems across a material interface (e.g., the detona—
tion product—ambient atmosphere interface). In this situation, the left  and
right states will have different equations of state.

Ritter  [Reference 20 1 considers an explosive—metal system. For the
compressible metal plate, Murnaghan ’s equation of state is used——

c (v—l)~~
’[(p+’Ib)T—vbT

0
] (A33)

where v > 1, b, rç~ are constants. The isentropic law is given by p b[(~—)
’
~—lJ

and c2 — v(p+b)t gives the sound speed. An analysis similar to that leading up
to equation (A36) shows that for the equation of state (A33), the quantity Mr is
given by

M = [( p + b)p ]~~
((p*+b) / ( p + b) )  (A 34)

where

cm > 1

acm) = (A35)
v—l 1—ci

~~~~~~~~~~ 

, ci ~~ 1

Hence, this equation of state is no more difficult to work with than that of a
y—law gas. Climmn ’s met hod for this problem is compared with previous experimental
results in Reference 20.

20. Ritter , Z . W . ,  “A New Met hod for Calculating Hydrodynamnic Behavior of Plane
One—Dimensional Explosive—Metal Systems,” 1977 , preprint
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Kury, et al [Reference 21] use the equation of state

-Ri -RiI + B(l —~~~ —) e 2 (A36)

11 21
~ 

T

for a chemical explosive known as Comp B, Grade A. In equation (A36), the
quantities A , B, R1, R2, w are constants. Apply ing equation (A3), the following

- I ordinary differential equation is obtained for the isentrope (after some algebraic
manipulations using the equation of state (A36)):

+ p = A (~~
1 - R

1)e
1 

+ B(~~~ - R2)e
2
. (A37)

The integrating factor for equation (A37) is and one obtains after a
straightforward calculation that the solution of (A37) is

— R i  — R i
p Ae + Be 2 

+ c ~~~~~~~~~~~~~ (A38)

Here , C is a constant of integration which plays the same role as the constant
A(S) in equation (A22) for the y—law gas isentropes; that is, C is different for
different isentropes. Combining equations (AS) and (A37), it is easy to see that
the sound speed is given by

2 — R i  —R i
c = (l+w)p-r — A-r (l+w — R

1
r)e 

1 
— Bi- (l+w — R

2
i)e 2 (A39)

m.ibstituting the expression (A38) for the pressure p in equation (A39), one
obtains

2 — 2 —R 1r 2 — R 2t
c = Di W 

+ AR1-r e + BR 2i e (A40)

where D is another constant depending on the isentrope. Equation (Al) for the
quantity t(p) appearing in the definition of Riemann invariant becomes

w-2 _
~~ 

_ R~ /p 4 -R~ /p ~t (p ’)  = f P (Dp + ~~ 1
p e + BR 2 ç~ e ) 2dp . (A4 1)

(Note : the constant w is always greater than zer o so that 2- ( p)  does not blow up
near p — 0. Indeed , according to Courant and Friedrichs [Reference 7], one may
take t (p )  = 0 for p = 0, at least for gases.) The analogue of equation (AlO) for
the isentropic law (A38) is

T ü

~~~
(p — Ae l r  — Be 2 r ) = i

~~~
’(p

~ 
— Ae l *  — Be 2 * ). (A42)

a.

21. Kury, .J. W., et.al., “Metal Acceleration by Chemical Explosions,” Fourth
Symposium (m t. )  on Detonation, Oct . 1965, p. 3—13.
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Hence, if the right wave is a centered rarefaction, Mr is found from equation (A19)
which , in view of equation (A41), takes the form

~~~* 
P ‘~~ ‘P * —R I ... D Ir r 2 —4 ~4 2’~Mr = 

~~r 
— p~ ) /  

J 

(flpW + AR1Q e + BR
22 

e )~ dp (A43)

where p ,~ = P*(P r,Pr,P*) is the solution of equation (A42). On the other hand , if
the right wave is a shock , Mr is found from eq uat ion (A18) ,

H
2 

= (p - p
*
)/(ir 

- i
~
(p,p ,p~

)) , (A44)

— where i~~~ is the solution of the Rankine—Hugoniot condition (Al3) ; the quantities
Cr,C

* 
are easily elimin ated In favor of Pr ’~ r and p*,P~ by direct use of the

equation of state (A36) and the result is a nonlinear algebraic equation for i,,~
in terms of Pr’~ r’ 

and p,,,. Similar results hold for the left wave. In summary,
solving the Riemann problem for Comp B, Grade A will involve the solution of a
nonlinear algebraic equation, either (A42) or (Al3), and possibly a quadrature
(equation A(43)), at each step in the Godunov iteration .

Thus , Comp B, Gr ade A is an example of an equation of state for which
nontrivial numerical procedures must be introduced at each step in the iteration.
However , it does not represent the worst possible case——in general, the
differential equation for the isentrope (A4) will not be reducible to quadratures
and it will be necessary to use a numerical ordinary differential equation solver
in order to obtain the isentropic law. The situation for the equation of state
of water illustrates this eventuality. Among other possibilities, we will
consider the y—law type and the Sternberg—Walker equations of state which are
both presented in Reference 22. The former is given by

[p0
i
0 
+ yA(i0—i ) + (

y—l)c] (y—l)c/-r (A45)

4 where y,A ,p0, i0 are constants. A computation shows that the isentropic law (A4)
takes the form

+ [(y-l)(p 0i0 + yA( i 0-i) )  + lip/i

= ½(p 0i0/t 2 - yA/ i) [- (p 0i0 + yA(i
0-i)) ± ~~(p0i0+yA( i 0_ i ) ) 2+4pT 1. (A46)

The square root arises because the internal energy, c, must be eliminated using
the equation of state (A45) which exhibits an c2 term in the equation for p.
Thus, in an iteration of the Godunov method which contains a rarefaction as the

- - right wave, the only way to find the value of i~~ corresponding to Pr,Tr and the
updated p~ is to numerically solve the ordinary differential equation (A46) using

22. Enig, J. W., “The Unsteady Regular and Mach Reflection Resulting from the
Interaction of Spherical Explosion Shock Waves in Water,” Sixth Symposium
(m t.) on Detonation 1976, p. 570—590. 
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P = Pr at t = ir as the initial data until p = p~ is reached at which point the
integration is stopped and i s,, is set equal to the current value of i. Also, one
can proceed as in the previous example and obtain the sound speed as a function of
p and -r by combining equations (A8) and (A46); unfortunately , equation (A46) must
be used to eliminate p in terms of i which means that the equation for the Rlemann
invariant will involve the solution of an ordinary differential equation instead of
a simple -quadrature as was the case In equation (A41) for Comp B, Grade A. On
the other hand, the case of a shock wave will differ little in complexity from the
situation for Comp B, Grade A. The Sternberg—Walker equation is

= + f~ (c)/i
3 

+ f
3

(E ) /i
5 + f

4
(c)/i

7 (A47)

where the fj, i=l,.-” ,4 are polynomials. In this case, it may even be necessary
to use numerical methods to eliminate c in order to obtain the differential
equation for the isentrope. In any event , unless the choice of the polynomials

are extremely fortuitous , the analogue of equation (A46) will be far more
complicated . Although we could set down some more equations , the foregoing brief
analysis should in~~ ate the problems to be solved in the case of a general
equation of state.

One factor left to be considered is that an equation of state is sometimes
available only in the form of a graph or table. This may be the case for
accurate computations involving real air at extremely high temperatures. Two
approaches are available in this event for constructing solutions to the Riemann
problem . First , the data can be fitted by an equation of state in functional form
and the problem can be solved as before. Second the data can be preprocessed into
a format usable for table lookup in the various steps of the Godunov iteration.
Parenthetically, we note that this option is also available for a very complicated
functional equation of state. The choice between these two alternatives is
clearly a matter of computational efficiency.

Finally, we point out that the Riemann problem is not necessarily well—posed
for an arbitrary equation of state. This is an area of current interest in the
mathematical literature. For example, recall that in the foregoing we have
occasionally imposed various conditions such as unique solvability of nonlinear
equations arising from the equation of state (unique in the physical sense, not
mathematically unique——that is the solution must satisfy the equation and satisfy
entropy and possibly other compatibility conditions). It will be of interest to
obtain theorems showing the Riemann problem is well—posed for the equations of
state that are used in blast wave theory. It might be of even greater interest to
obtain negative results. Since the Riemann problem is a reasonable initial

-I 

- 

configuration , this would show that the equation of state is unphysical.
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CONCLUSIONS

We have shown in this report that Glimmn ’s method is applicable to a variety
of problems involving strong shocks, material interfaces, and blast waves.
A priori, the method has significant advantages over currently available finite
difference techniques for problems of this type. Whether or not these advantages
outweigh disadvantages must await further numerical tests and possibly theoretical
algorithm development , especially in multidimensional situations . The last section
outlines the directions that we would like to see this research take. The
nun~erical tests reported here using strongly nonuniform waves are very promising
and we expect similar results for two—dimensional analogues. The appendix shows
that the extension of the method to a general equation of state is straightforward,
but (potentially) very tedious from the point of view of developing an efficient
computer code. In summary, there is an excellent chance that Glimm ’s method will,
in the near future , be able to yield qualitatively superior results and thereby
advance the field of numerical analysis of blast wave effects.

a 38
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