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INTRODUCTION

The present work was stimulated in a quite indirect way by some
obstacles encountered in studies of weakly non-linear ship motions,
specifically ship rolling in random seas. The background will be
summarized in the following paragraphs.

The overall purpose of research on ship motions is to enable
improved quantitative predictions of real-world phenomena. In the
ultimate practical application, the real-world ship motions problem must
be considered to be stochastic; there seems no escape from this aspect
of the problem. In the last two and one half decades the methods outlined
by St. Denis and Pierson]* for the estimation of the magnitude of oscilla-
tory ship motions in irregular seas have become firmly established in
engineering practice. These methods apply strictly only to ship responses
which can be assumed to be a linear function of wave height, and they

involve as well the assumption that the wave process is Gaussian.

In this context the first recognized ship motions problem (ship
rolling) remains a problem to some extent. Roll damping at least for
low or zero ship speeds, has been considered to be a mixture of linear
and quadratic damping for about a century.z* No modern hydrodynamic
analysis has challenged the model--for that matter there appears to be no
completely theoretically based prediction method for roll which is altogeth-
er free of empiricism with respect to roll damping. However, if the
necessity for empiricism is accepted there is still another problem with
roll and this is the simple fact that a non-linearity often appears to
exist for low to moderate rolling amplitudes.

In the majority of applications to design what is most wanted

with respect to rolling is a measure of the statistics of rolling maxima

*1, St. Denis, M. and Pierson, W.J., Jr., ''on the Motions of ships in
Confused Seas, ''SNAME Vol. 61, 1953,

*2. "The Papers of William Froude', The Institution of Naval Architects
London, 1955
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to be expected in various hypothetical or realistic irregular sea condi-
tions for a variety of design alternatives. Ideally, what is needed (but
not available) for the prediction of ship rolling statistics in random

seas is a prediction framework analogous to the linear framework of

St. Denis and Pierson' in which: a) at least weak non-linearities could

be accomodated for the general multi-degree of freedom situation, b) multi-
directional seas could be considered as input, c) the hydromechanic data
required could be produced with conventional techniques, d) the prediction
or a major part could be carried out in the frequency domain for economy
(as well as to take advantage of the accumulating frequency domain descrip-
tions of real sea waves) and e) the statistics of maxima could be estimated
with firmly based theory in which the possible effects of non-linearities

are accounted for.

In the absence of this ideal, modern practice involves lineariza-
tion of the damping coefficient in some manner. With contemporary six
h degree of freedom ship motion algorithms the approach often taken is to |
| linearize the roll damping coefficient and thereafter to conduct the
| analysis and make the irregular sea predictions as though the system was
completely linear. Variations on this theme exist to the extent that it
is possible to make iterative solutions so that the linearized damping
coefficient is chosen to minimize errors in the final prediction for

i irregular waves.

? ‘ Early fundamental work on the problem of a frequency domain
prediction of non-linear rolling in irregular seas has centered upon the

4 problem of predicting the spectrum and the variance of zero speed rolling,

this hbeing the case in which the damping non-linearity has been found to be

most obvious, and the case for which it is plausible to reduce the probiem

to a single degree of freedom. Typically, a single degree of freedom

rolling equation not far different from that of W. Froude2 is ;glved in

some sense for the random excitation case. The work of Kaplan® and

*
| | Vassilopoulosh involve equivalent linerization techniques in the estimation

*3 Kaplan, P., '"Lecture Notes on Non-Linear Theory of Ship Roll Motion
. in a Random Sea Way, ITTC Transactions, 1966.

*4 vVassilopoulos, L., "Ship Rolling at Zero Speed in Random Beam Seas
‘ with Non-Linear Damping and Restoration', Journal of Ship Research,
Vol. 15, No. 4, December 1971.

|
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of the variance of roll and the roll spectrum. In this technique non-
linear elements are replaced by linear elements chosen so as to minimize
the resulting mean square errors for the case of random excitation.
Yamanouchis* approached the problem with a perturbation technique for the
solution to the non-linear differential equation. In this solution the
spectrum of non-linear rolling turns out to be the sum of the linear roll

spectrum and various convolutions of the linear roll velocity spectrum.

For practical purposes the result of both the above approaches is
the predicted roll variance. The implicit assumption is that the statis-
tics of maxima are adequately described by the Rayleigh distribution with
parameter equal to square root of variance. This assumption has been
partially vindicated by a studyG* in which numerical simulation of the
single degree of freedom rolling equation was carried out. The results
indicated that while the Rayleigh distribution is probably not a completely
proper assumption, reasonably good predictionsunder this assumption could
be expected for quantile averages up to average of 1/10 highest amplitudes,
despite inclusion of non-linearities within the nominal range of magnitude

observed in unstabilized ships and models.

There are presently three additional approaches to the problem of
the prediction of the statistics of non-linear random processes, time
domain simulations (Monte-Carlo Methods), the Fokker-Planck Equation

7% < : . 8 9
Method (Caughy’ ) and the Functional Series approach (Wiener , Barrett” ,

5% Yamanouchi, Y., '"On the Effects of Non-Linearity of Response on Calcu-
lation of the Spectrum', ITTC Transactions, 1966.

6* Dalzell, J.F., ""A Note on the Distribution of Maxima of Ship Rolling",
Journal of Ship Research, Vol. 17, No. 4, December 1973.

7* Caughey, T.K., ''Derivation and Application of the Fokker-Planck Equa-
tion to Discrete Non-Linear Dynamic Systems Subjected to White Noise
Random Excitation', Journal of the Acoustical Society of America,
Vol. 35, No. 11, November 1963.

8% Wiener, N., '""Non-Linear Problems in Random Theory', The Technology
Press of MIT and John Wiley and Sons, lInc., 1958.

9% Barrett, J.F., '"The Use of Functionals in the Analysis of Non-Linear
Physical Systems'', Journal of Electronics and Control, Vol. 15,
No. 6, December 1963.
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*
Bedrosian10 ). Neither of the last two can be considered as having been

reduced to common practice.

The basic attraction of the time domain simulation approach is that
if the system can be described in terms of differential equations, a numeri-
cal solution for a particular realization of the excitation can be achieved.
The approach is definitely within state-of-art. There are two related
difficulties. First, if the non-linear system is extremely complicated,
the analyst is lucky to achieve a computer simulation which runs as fast
as real time. |If very long samples are required the approach can be pro-
hibitively costly. Secondly, long samples are required if good statistical
information is to be generated. Fundamentally, what is done in a Monte-
Carlo Analysis is to generate large time domain samples, extract the required
statistical information, derive the probable sampling errors, and then dis-
card the most costly part of the procedure. This is the essential reason
that the St. Denis and Pierson1 frequency domain approach to the linear case
has been so universally adopted--it is much faster and there are no crucial
sampling problems.

The attraction of the Fokker-Planck approach is that in principle
the statistics of the output are solved for directly. Haddaral'*"z*'IB*"“*

uses the approach to derive expressions for the variance of roll for the

10* Bedrosian, E. and Rice, S.0., "The Output Properties of Voltera Systems
(Non-Linear Systems with Memory) Driven by Harmonic and Gaussian
Inputs'', Proceedings of -the IEEE, Vol. 59, No. 12, December 1971.

11* Haddara, M.R., '""On Non-Linear Rolling of Ships in Random Seas'',
International Shipbuilding Progress, Vol. 20, No. 230, October 1973.

12* Haddara, M.R., '"A Modified Approach for the Application of Fokker-Planck
Equation to the Non-Linear Ship Motions in Random Waves'', Internation-
al Shipbuilding Progress, Vol. 21, No. 242, October 1974.

13* Haddara, M.R., "A Study of the Stability of the Mean and Variance of
Rolling Motion in Random Waves', International Conference on Stabil-
ity of Ships and Ocean Vehicles, University of Strathclyde, Glasgow,
Scotland, March 1975.

14* Haddara, M.R., '"On the Stationary Coupled Non-Linear Ship Motion in
Random Waves'', International Shipbuilding Progress, Vol. 23, No. 262,
June 1976.
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case that the excitation spectrum is white (flat), in some cases finds
it necessary to replace the quadratic damping with a cubic to facilitate
the analysis, but does not directly derive the statistics of response.
Evaluation of the statistics of response according to this approach are
extremely difficult when the excitation spectrum is not white. Dello-
Strittols* has come close to accomplishing this, but it was necessary
in his work to replace the non-analytic quadratic damping term with one

of cubic form.

There are several attractions of the functional series approach.
Among these are that as a conceptual framework the model is suitable for

any reasonably well behaved wave input (regular, transient, or random),

g

and since it contains the completely linear system as a <pecial case it

appears to have the potential of being a logical extension to present

practice. In addition, theoretical prediction methods for spectra may

be derived, and it appears that it may be possible to approximate the

! statistics of maxima. Finally, it is possible in principle to relate
the functions required by the model to the results of hydromechanical
analyses and experiment. Apart from complexity, there is a serious
mathematical obstacie in appiying the approach to the conventional ship
rolling equation. This was pointed out some time ago by Vassilopoulosls*
It is that if the functional expansion and a differential equation are

| to be related, it appears that the equation must be analytic for small
values of the variables. This is not the case for the ''quadratic"

f 5 term ordinarily used to represent the damping non-linearity. Some degree

of success in applying this approach to single degree of freedom rolling

" . 17% ; 5 "
was obtained in 7 by replacing the quadratic damping with a cubic term.

{ 15% DelloStritto, F., "An Analytical Approach to Non-Linear Ship Roll in
j a Random Sea'', PhD Dissertation, Stevens Institute of Technology,

1978.

| i 16* Vassilopoulos, L.A., "The Application of Statistical Theory of Non-
Linear Systems to Ship Motion Performance in Random Seas'',
International Shipbuilding Progress, Vol. 14, No. 150, 1967.

17* Dalzell, J.F., "Estimation of the Spectrum of Non-Linear Ship Rolling:
The Functional Series Approach', SIT-DL-76-1894, Davidson Laboratory,
Stevens Institute of Technology, May 1976, AD A031 055/7G1.
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There is a common thread running through most of the cited work.
It is that the quadratic roll damping form, which has been accepted for
the last century, is a serious analytical obstacle which needs to be
overcome if improvements in the prediction of roll in irregular seas are
sought. The form is awkward in perturbation analyses (Flowerla* dispensed
with it in his recent work), it apparently makes the full exploitation of
Fokker-Planck methods next to impossible, and is inadmissible in the
Functional Series approach. It seems permissible to speculate that the
quadratic damping form may pose as much of a problem to alternate, better

(but as yet unformulated) approaches.

No particularly conclusive general theory has been advanced for

the inclusion of quadratic damping in the description of ship roll dynamics.

The representation seems to have arisen as an intuitive extrapolation of

real-fluid steady state drag theory to the unsteady case.

The validity of and justification for replacing quadratic roll
damping by a linear plus cubic representation was addressed inlg* (a
slightly shortened version of the first part ofzo*). As near as could
be found out, nearly the entire justification for the linear plus quadratic
representation for roll damping is that it appears to work empirically--
in the sense that curves of roll decay may be reasonably well fitted under

19

this assumption. The results in show that a linear plus cubic represen-

tation works just as well or better, at least within the limits of roll
angles achievable in ship sallying experiments and within data scatter.
If there are two analytical models which fit the observable data with

roughly the same magnitude of error, the choice between the two must be

18* Flower, J.0., "A. Perturbational Approach to Non-Linear Rolling in a
Stochastic Sea'", International Shipbuilding Progress, Vol. 23,
No. 263, July 1976.

19% Dalzell, J.F., "A Note on the Form of Ship Roll Damping', Journal
of Ship Research, Vol. 22, No. 3, September 1978.

20* Dalzell, J.F., "A Note on the Form of Ship Rol!l Damping'', SIT-DL-76-
1887, Davidson Laboratory, Stevens Institute of Technology,
May, 1976, AD-A031 048/2G1.
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made on bases other than the fit itself. |In absence of such other consid-
erations, the models may be considered equally good within the limitations

of observable data--outside the range of data both are extrapolations.
Physically, it is expected that the roll damping function be odd in roll
velocity and positive for positive roll velocity. Both the mixed quadra-

tic and cubic models can be made to fit this criterion through choice of
coefficients. The historical preference for the quadratic model is apparent-
ly very simple; there has been no need to consider alternatives to a plaus-

ible and usable empirical concept.

All of the known attempts at improvement of prediction of roll
statistics in irregular seas involve the assumption of differential equations
L and non-linearities of quite specific form. In view of the nature of the
‘ justifications advanced for the particular forms chosen, it seemed fair to
speculate that the refinements possible in any of the noted statistical
approaches may over-reach the validity of the assumed physical model when
rolling throughout the range of practical interest is considered, and that
some more attention paid to the fundamental physical nature of the non-
linearities and their coupling with other modes of motion might be more

profitable than the further work on the statistical methods themselves.

The foregoing considerations were the direct stimulus of the pre-
sent work. Since ships with bilge or bar keels usually have the strongest

evidence of non-linearity in their roll decrement curves, it has appeared

i
S S S

reasonable to consider the unsteady forces on oscillating plates as fund- ,
amental to the roll problem. In investigations of forces on oscillating

% 2%
plates which were initiated in this connection (HartinZI : Ridjanovic2 )

the results were derived on the basis of the decay of amplitudes of a

{ 21* Martin, M., '"Roll Damping Due to Bilge Keels', PhD Dissertation,
: State University of lowa, June 1959.

22* Ridjanovic, M., ''Drag Coefficients of Flat Plates Oscillating
Normally to their Planes', Schiffstechnik, Bd 9 ~ Heft 45, 1962.
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pendulum upon which the plate was fixed, and the quadratic damping
assumption was implicit in the final analyses. Data generated in the
23%

. The

fundamental nature of the oscillating plate problem is implicit in 24%,

latter reference is used in contemporary application, Cox

to cite an additional example.

Iln a broad sense, the quadratic model is by no means restricted
to ship rolling. Indeed the Morisonzs* approach for forces on fixed
piles is exactly this and is extensively used in Ocean Engineering.
Keulegan and Carpenter26* undertook a laboratory investigation of forces
on cylinders and plates in an oscillating fluid with the objectives of
clarifying the accuracy of the Morison predictor equation, and of attempt-
ing a correlation of mean experimentally determined drag coefficients.
It is evident (Wiegel27*) that there is exactly the same amount of theo-
retical justification for the Morison equation as there is for the quadra-
tic roll damping model. The Morison equation is an intuitive model which

is extensively used to produce useful engineering results.

An initial examination of the force data of26 was made in20 to see
how well the quadratic component in the Morison equation was reflected in
the actual data. |t appeared from the analysis ofZO that the quadratic
model for forces on an object in oscillatory flow has no particular magic.
In fact it appeared that the use of the model could at times create

apparent deviations from observation. The analysis also implied that a

mixed linear plus cubic model might also fit the data for oscillatory forces.

23* Cox, G.G. and Lloyd, A.R., '""Hydrodynamic Design Basis for Navy Ship
Roll Motion Stabilization', Trans. SNAME, Vol. 85, 1977.

2L4* “'Studies on Developing Accuracy in the Estimation Methods of Ship
Propulsive Performance in a Seaway''. Report of Ship Research
Project No. 161, Japan, March 1976.

25*% Morison, J.R., et al, "The Force Exerted by Surface Waves on Piles',
Petroleum Trans., Vol. 189, 1950, pp 149-157.

26* Keulegan, G.H. and Carpenter, L.H., '""Forces on Cylinders and Plates
in an Oscillating Fluid', NBS Report 4821, Sept.1956; Journal
of Research of the National Bureau of Standards, Paper No. 2587,
Vol. 60, No. 5, May 1958, ;

27* Wiegel, R.L.,"Oceanographical Engineering', Prentice-Hall, Inc.,1964.
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This finally completes the exposition of the path leading from
the problem of prediction of roll in irregular seas to considerations

of the forces on oscillating plates.

It is realized that forces on isolated plates in oscillatory motion
do not by themselves provide even a partial picture in-so-far as ship roll
damping is concerned; interactions between bilge keel and adjacent hull
are to be expected, etc. |f the primary purpose of the present work had
been to develop directly applicable numerical estimates, a physical
situation much closer to that of an installed bilge keel would have been
considered. However, since the interest in the present work is in the
form of things, not necessarily the quantitative description, it was
thought vital as a first step to consider only the simplest physical

situations and the most fundamental of data.

The overall concern in the present work was thus with examining
alternatives to general concepts which have long been in use. The previous
review of data concerning plates in oscillatory flow suggested that there
may be alternatives to the conceptual quadratic model for the oscillatory
forces. The immediate purpose of the present work was to continue this

review using that fundamental data which is already available.

-
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SCOPE OF THE DATA OF INTEREST

Since only qualitative theories appeared to exist for the unsteady
flow about bluff bodies, it was important as a first step to consider
only the simplest situations, lest too many complications prevent progress.
On the other hand, the possibility that suitable data on oscillating plates
would be extremely sparse had to be taken into account.

Since the form of the force response was the item of interest, it
was decided to consider data wherein either the plate or the fluid was in
motion (but not both). To avoid the complication of lift, interest was
restricted to fluid or plate motion in a direction normal to the plane

of the plate. Under these circumstances plates of any geometric aspect

3 ratio in oscillatory flow would be of interest if the nominal flow was
spatially uniform in the immediate vicinity of the plate. Similarly,

; plates attached normal to a splitter plane were considered of interest
so long as overall flow or motion was parallel to the splitter plane.
Finally, to emphasize the unsteady response and remove a complication of
considerable significance, interest was restricted to cases in which the

mean flow, cr the mean motion, of the plate was zero.

It appeared prior to any serious attempt at literature searching
that a great deal more fundamental unsteady flow experimental work has
been done with circular cylinders than with plates owing to the importance
of circular cylinders as elements of ocean structures. |t was thus also

f of interest to examine recent work of this nature. In accordance, the

scope of data was enlarged to include circular cylinders in oscillatory
flow normal to their axes, or oscillating in a fluid in a direction normal
to their axes, with the same restrictions upon flow as previously mentioned

for plates.

Effectively the restrictions imposed upon the data imply three types
of experimental situations: 1) A stationary plate or cylinder positioned
P at the node of a standing wave and parallel to it as in Keulegan 6,

2) A stationary plate or cylinder in an artificially induced plane
oscillatory flow as might be done in a U-tube, 3) Submerged plates or cyl-

[ - inders mechanically oscillated.
|

-10-
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The restrictions exclude the most prevalent situation for circular
cylinders wherein the cylinder pierces the fluid free surface and
oscillatory flow is induced by propagating surface waves past it, as well
as all forms of hydroelastic response, arrays of elements, and all cases

in which there was a mean flow.
LITERATURE SEARCH

Though a few sources of fundamental data on forces on oscillating
plates and cylinders were known at the outset, it was thought important
to try to make the study as inclusive as possible. Toward this end both

a manual and an automated literature search was carried out.

The details of the procedures followed and the initial stages of
the elimination of inapplicable references is detailed in Appendix A.
Though in principle the search encompassed approximately four million
citations in the literature, the foregoing restrictions on the type of
data of interest resulted in only a relative handful of experimental
references which could be of conceivable use in the present study. To
be specific, the search ended with 14 experimental references having to
do with unsteady forces on plates, 13 involving experiments on oscillat-

ing forces on cylinders, and six or eight analytical references.

In general, it appears that little or no fundamental experimental
work on oscillating plates has appeared in the English literature since
1971, and that the purely analytical problem has remained as intractible

as it was two decades ago when Keulegan and Carpenter26 completed their

experiments.
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DIMENS IONAL ANALYSES

In the initial reviews of those references which were considered
of conceivable use in the present effort there appeared to be a great
variety of non-dimensional forms of dependent and independent variables
used both for thinking and correlation purposes. Though it was realized
that part of this situation was likely to be simple differences in
notation, there seemed some point in making the first step in the present
study a general review and correlation of non-dimensional forms rather
than of data.

The purpose of the present work is to try to look at the problem
from alternate points of view. All previous work in the field of current
interest has involved dimensional analyses explicitly or implicitly. The
reason for embarking upon the present analysis was not that previous
analyses were considered incorrect, but that for any given non-trivial
problem there exist an almost unlimited number of valid sets of dimension-
less groups. Which particular set of dimensionless groups are employed
depends as much upon the analyst's pre-conceived notions as upon the
problem. The objective was thus to see if there really were dimensionally

divergent points of view in the Iliterature.

The point may possibly be clarified by noting that in a given
problem the first step in an analyses is make up a list of all variables
and parameters which influence matters. This step is under complete
control of the analyst and depends entirely upon his understanding of the
problem. Further, suppose that a valid set of dimensionless variables is
developed from the specified list. The formal mathematics of dimensional
analysis shows that so long as the operations are carried out one at a
time:

1) Any member of the set of dimensionless variables may be replaced by
itself raised to any non-zero power; and

2) Any member of the set of dimensionless variables may be replaced by
itself multiplied by any or all of the other members of the set,

each raised to any power.

In general, while two analysts performing a systematic dimensional analysis
of the same set of variables may come up with valid sets of dimensionless

groups having different form, they will each have the same number of groups,

-12-
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and it will be possible to transform the results of the first analyst

into those of the second; in other words, the formal methods of analysis
imply that alternate sets of dimensionless groups are not independent

and hence no one of them can be expected to contain any essential informa-
tion not common to the others. The differences between the results of
different analyses arise only when the formalities are over; correlations
of empirical data may appear quite different when done according to

different sets of dimensionless parameters.

The problem at hand has been considered in all the cases reviewed
to involve unsteady, relatively low velocity flow of a fluid in the
general vicinity of a rigid body. No thermodynamic, magnetic, elastic,
or electrical effects are considered. As a consequence, the problem is
assumed to have four dimensional categories; Force, Mass (M), Length (L),
and Time (T) which are related through Newtons second law, so that three
of these four categories are considered to be independent, basic dimensions.
In the present case mass, length and time were taken to be the three

independent dimensions.

The geometry of the present problem is conventionally denoted by
a characteristic length which is taken to be the diameter of the cylinder
or width of a plate. For the two-dimensional flow situation this is the
only constant geometric length parameter. All analyses reviewed involve
the assumptions that the fluid is incompressible and viscid, and that there
is no free surface. As a consequence the gravitational field is not con-
sidered to be an important parameter, and the fluid itself is considered to

be completely defined by a mass density and kinematic viscosity.

The last paragraph defines three parameters which seem always
to be taken as constants in problems of the present type. There seems

no argument about their general relevance. The three are summarized as

follows:
Quantity Symbol Dimension
Characteristic Width

or Diameter D L
Fluid Mass Density ) M/L3

Fluid Kinematic Viscosity v L2/T
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It may be noted that the dimensions of these three variables contain each
basic dimension at least once, that no pair of the three have the same
dimensional form, and that it is not possible to form a dimensionless
group from these three variables alone. These are the conditions required
for the three variables to be a valid choice of repeating variables in a ;
dimensional analysis. Assuming three basic dimensions, the simplest way
to produce a valid set of (N-3) dimensionless variables from a list of N

is to pick three ''repeating'' variables satisfying the above conditions

and use them consistently to non-dimensionalize the remaining variables by

inspection.

For the purposes of the present analysis the foregoing variables
will be chosen to be repeating. In the context of what appears in the
literature, this choice is rather un-conventional. These three variables
are really just constant parameters for any given physical experimental
situation. Once the experiment is set up they are fixed, and do not vary
with time or with any of the other independent variables of the problem.

By picking these three variables no pre-supposition of the form of the

result is made; this being the general objective of the present analysis.

To complete the formal analysis a general (and redundant) list of
additional variables of possible consequence is written. These appear
in the left half of Table I. First on the list is the only dependent
variable of interest, the unsteady force (F) on the plate or cylinder.
L' The next three items on the list involve time: ''t'' denotes on-going time;
"Tm" and '"w'" denote characteristic constants having time and frequency
dimensions. In a similar fashion Nm, Um and A denote characteristic

constants having acceleration, velocity and displacement dimensions

respectively. The time dependent displacements of the oscillating plate
or cylinder from its mean position are represented by X(t), and the first
two time derivatives of X(t) are also included. (X(t) may alternately
represent the motion of a fluid particle if the plate or cylinder is
stationary). Finally, to be complete, other fixed geometric parameters
(1ength, thickness of plate, etc.) are denoted by dj‘

-14-
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TABLE |
List of Variables and Dimensionless Groups
(Repeating Variable D,p,V)
Quantity Symbol i r, I,
Force (Dependent Variable) F 1 F/pv2 F/pv2
§ Time Constant 8 2 Tv/02 T v/D?
Frequency, Circular w 3 wb?2/v Wl /2w
Time (ongoing) t 4 tv/0? t/T
Acceleration Constant W 5 NmD3/v2 wm03/v2
Acceleration (Function of Time) X(t) 6 X (t)D3/v2 i(t)/wm
Velocity Constant Um 7 UmD/v UmD/v
Velocity (Function of Time) X(t) 8 X(t)o/v )'((t)/Um
Displacement Constant A 9 A/D A/D
Displacement (Function of Time) X(t) 10 X(t)/D x(t)/A
4 Other Fixed Geometric Parameters dj 1 dj/D dj/D




R-2031

? The eleven dimensionless groups resulting from the use of the
repeating variables D, p, and v to non-dimensionalize the list of
remaining variables are shown in Table | under the heading "ri". So
long as the variables are all considered quantities necessary to express
the physical relationships involved,'the conceptual relationship between
the variables may be written:

f(ry,rp....T11)=0
This is essentially the end of the formal analysis.

Once having a consistent set of dimensionless variables, arbitrary

manipulations of the set may be performed according to the rules previously

noted. The column labelled “Hi” is the result of such a completely arbitrary
manipulation. Variables I'; and T, are replaced using T; TI'g is replaced by
use of I's; and I'g is replaced by use of TI'y

Thus far, nothing has been said about which ones the independent

variables are, or what the various characteristic constants mean; the

ﬁ variables noted could apply to practically any incompressible fluid flow
problem. There is one glaring redundancy in the Fi list in Table I. It is
| that X(t), X(t) and X(t) are mathematically related. In terms of dimension-
less groups, T'g and T'g are derivatives of I'jo with respect to I'y. Thus only
one of the three is really needed. |If X(t) (and t) are considered the ‘
| independent variables, and the various characteristic constants are assumed

bl to be unrelated, the essential functional relationships could be written:
‘ F/ov? = £ (x(t)/D,tv/D?)

The above form does not really help much with the present problem
(which is the examination of existing data). All of the fundamental data
in hand involves simple harmonic motion of the plate or cylinder; or of
the fluid. To specialize the analysis to this case let the motion of the
plate be:

X(t) =A sinZwt/Tm
(t) = (ZnA/Tm) cosZwt/Tm

X(t) -'(Zw/Tm)2 A sin2nt/T (1)

‘ | -16-

e —————— W ——

e & e pova— e s - AR e M D e o S e P,




R-2031

and define:

c
L}

21!A/Tm

=
]

(Zn/Tm)zA

€
"

Zn/Tm : (2)

The harmonic assumption allows specific definition of the arbitrary
constants assumed. Tm is the period of the motion, A the displacement
ampli tude, Um the velocity ampli tude, wm the acceleration amplitude

and w is the circular frequency corresponding to Tm.

Substituting the above relationships into the "i’ Table I,
it may be observed that:

n3 =1

Ts = (2m)2 ny/m
g =-sin2nlly

I, = 2mly4/MN,

llg = cos 2wl

My = sin 2nlly

Since IIg and T; may be replaced by pure constants by utilizing M, and
Mg, and Ty, Mg and Mg are functions of N, all of these terms in the

original analysis, Table |, are redundant under the harmonic motion

l assumption. The basic result of the analysis for harmonic motion becomes:

' | F/ovZ = fy (N, My, Mg, Mj;)
! 2
fy (Tw/D3, /T , A/D, dj/D) (3)

In a roundabout way the analysis has come down to exactly what must be
expected in an experiment involving harmonic inputs or excitation. Exactly
three independent variables completely define the input; period, phase

and ampli tude.

In one respect Equation 3 is quite unlike any of the similar
expressions in the literature. This is the form of the dimensionless group

involving the dependent variable. |[f this group is multiplied by
wd al
[n% Mg nll] however, the result is:

(2n)2 F

pDd Umz
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(after substituting U_ = 2nA/Tm). The dependent variable in Equation 3
may be replaced by the product of the above expression and any pure constant,

so that Equation 3 becomes:

2 ~ 2
F/oU_ de = fu(va/D ,t/Tm,A/D,dj/D) (4)

The form of the dependent variable in Equation 4 is that uniformly adopted
in the literature, apart from minor differences such as replacing p by
p/2, and the assignment of dj which is usually the length of the plate or

cylinder, and is sometimes absorbed in F to produce force per unit length.

Considering the groups within the right hand side of Equations 3 or
L it may be noted that under the harmonic motion assumption:
Zn% = Em%m = "The Keulegan-Carpenter Number''
Thus by pure substitution the A/D term in Equations 3 or 4 may be replaced
by 27A/D or by Ume/D. All three forms appear in the literature with ''D"
sometimes defined as a half width. When the 2nA/D form is used it is often

denoted "K' or N for ""The Keulegan-Carpenter Number''.

The first term on the right hand side of Equation 3 or b is seen

in at least three different forms which are trivial manipulations:
2Y = p2/
17(T_v/D?) = D2/T v
l/"va/D2 = D/Vva

Zﬂ/(va/Dz) = wb2/v

The most common form of the first right hand term of Equations 3 or 4 is

obtained by inverting it and multiplying by 2n times the third term:

zn(oz/va) (A/D) = 2mAD/T v

= UmD/v

This last form is unformally called the ''"Reynolds Number'' because of its
similarity in form to the steady flow Reynolds Number.

The phase term in Equations 3 or 4 takes care of temporal variation
within one period by the harmonic assumption. In the few cases where some-

thing other than (t/Tm) is explicitly noted, the term is effectively

-18-
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replaced by sines or cosines of (2nt/Tm). For example, under the harmonic
assumption: two variations were noted in the literature:
X(t)/A = sinZﬂt/Tm

and:

X(t)D
Vv

= [QHLELJ cos2nt/T
v m

It was thus seen that all of the non-dimensional forms used in
the available references are derivable from the present analysis. This
shows only that no analysts have made fundamentally different assumptions
about what is important. For harmonic oscillation all seem to come down
to amplitude, period, and phase parameters, and implied strict geometrical

similitude.

Correlations of the various forms with one-another indicate that in
the literature there are about six alternate permutations of the non-
dimensional forms obtained by various investigators; three of which are
dominant. These alternate permutations are summarized in Table |l, and
the essential form of the present generalized analysis is included as a
seventh. In all cases, the geometric parameter (dj/D) is assumed to be
the same, present notation is utilized, and all pure number factors are

omi tted.

| The first form shown in the Table is that of Keulegan and Carpenter26

They evidently (at least initially) considered U, to be the '"amplitude',

{ and used it as one of their repeating variables. Accordingly, they called
(Ume/D) the 'period parameter' and (by elimination) considered the un-
steady Reynolds Number to be the amplitude parameter. The second form shown
in the Table takes account of the mathematical equivalence of (Ume/D)
and (2nA/D) and indicates the amplitude parameter as A/D and the unsteady
Reynolds Number as the I.'period“ parameter''. Either Form 1 or Form 2 are
derived, or noted, as the results of dimensional analysis in the bulk of

6 | the literature.

Essentially, the unsteady Reynolds Number (UmD/v) of Form 2 is a
mixed parameter; both amplitude and period are involved. It is of consider-
able importance in controlling experiments to have each independent variable
which can be regulated occur only in one of the independent dimensionless

‘ parameters. Thus if the amplitude ratio (A/D) is considered of prime

-19-
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TABLE LI

Alternate Forms of the Results of Dimensional Analysis

Form Force Amp i tude Period Phase
1 F/pU _2Dd, U D/v UT/D t/7T
m m mm m
2 L A/D U D/v L
m
" " 2 "
3 D /va
[’ " " sz/\) "
5 . s UmD/v X(t)/A
6 o Ume/D D/Mva X(t)D/v
7 F/pv? A/D wb?2/v /T
-20-
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importance (one main conclusion of Keulegan and Carpenterze) it follows
that it ought to be eliminated from the period parameter of Form 2.
Forms 3 and 4 in Table Il arise from just such a replacement operation
utilizing the non-dimensional independent variables of Form 2. Form &4
differs from Form 3 only in that circular frequency of excitation is
explicitly noted. Though possibly not the first to make this transition,
Sarpkaya28*, o advance something beyond the above for the period
parameter of Form 3. He calls it the frequency parameter, denotes it by
B, and notes that the same parameter is important in laminar boundry
layer theory. He notes further that in the case of oscillations of a
cylinder without separation in a fluid otherwise at rest, the unsteady
forces should be uniquely determined in terms of B. This seems quite

an important observation in the present context since it implies that
the organization of the independent variables implied by Forms 3 and 4

would be valid as A - 0; that is, for the linear case, Tuck3ox.

Forms 5 and 6 of Table Il are rather isolated instances. Form 5
is that of Garrison 31*, and as has been shown, is fundamentally no
different than Form 2. Form 6 (Dalton32*) is essentially Form 3 with
the phase parameter multiplied by the unsteady Reynolds Number. This
latter approach was developed in support of attempts to represent force

on a cylinder as a continuous function.

*28. Sarpkaya, T., "In-Line and Transverse Forces on Cylinders in
Oscillatory Flow at High Reynolds Numbers'', Journal of Ship
Research, Vol. 21, No. 4, December 1977.

*29. Sarpkaya, T., ""The Hydrodynamic Resistance of Roughened Cylinders
in Harmonic Flow', The Naval Architect, March 1978, Transactions
RINA, Vol. 120, 1978.

*30. Tuck, E.O., '"Calculation of Unsteady Flows Due to Small Motions of
Cylinders in a Viscous Fluid', California Institute of Technology.
Report 156-1, December 1967, AD-829877.

*31. Garrison, C. J.Field, J.B., and May, M.D., ''Drag and Inertia Forces
on a Cylinder in Periodic Flow'', Journal of the Waterway, Port,
Coastal and Ocean Division of ASCE, Vol. 103, No. 2, May 1977.
pp 193-204.

*32. Dalton, C., Hunt, J.P., and Hussain, A.K.M.F., ""Forces on a Cylinder
Oscillating Sinusoidally in Water--2. Further Experiments'',
O0ffshore Technology Conference Paper 2538, May 1976.
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It may be noted that the independent variables of Equations 3 or 4

are the same as those of Form 3 in Table |l, apart from an inversion of

the period parameter. (One advantage for making the inversion is that the
resulting numbers will be much larger than unity rather than much smaller).
The amplitude/frequency form of the independent variables is chosen as

the result of the present general analysis, Form 7, Table Il. For the
reasons just noted this form of non-dimensional independent variables

seems most appropriate when alternate views of existing data are contemplated.

It has been noted that the form of the dependent non-dimensional
variable uniformally adopted in the literature is that indicated for the j
first six forms in Table Il. Only the result of the present analysis
is different. The particular form of the non-dimensional variable uniform-
ally adopted is that conventionally used for steady flow force coefficients.
It appears that as far as dimensional reasoning is concerned, all work thus
far has involved the hypothesis of the existence of either an averaged drag
coefficient or of an "instantaneous' drag coefficient; in both cases of the
conventional form for steady flow. The form of the dependent variable usually
utilized is thus mixed, both ampliitude and period are present in the
denominator in the form of maximum velocity (Um) squared. Because of the
squared velocity, it is clear that all prior dimensional reasoning has been

initially biased toward the quadratic model for unsteady forces.

The possible advantage of Form 7 of Table Il in the present context
is that none of the dimensionless groups are mixtures of independent and
dependent variables. There is thus no initial bias as to the physical
model, yet it has been shown that as far as dimensional reasoning is
concerned there is nothing present in the conventional sets of variables

not present in Form 7.

-22-
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THEORETICAL ANALYSES

For practical purposes the summary by Keulegan and Carpenter26
of the theoretical state of affairs is much more current than the date of
the work would imply. The classical analytical work on the forces on
bluff bodies is referenced as having been started by Stokes around 1850,
both for the case of arbitrary motion and that of uni-directional time
varying motion (lverson33*). Very early work on accelerated motion
indicated that the force on a bluff body depends, generally, upon the

history of its acceleration as well as instantaneous values of velocity

and acceleration, a point apparently confirmed by Iverson33. The suggescion

that the flow has '"'memory' is consistent with current qualitative descrip-
tions of large amplitude motion but in the common quantitative models the
effects of memory are suppressed indirectly by considering steady state
harmonic motion of fluid or body and allowing the coefficients which
multiply instantaneous velocities and accelerations to be amplitude and/or
time dependent. Keulegan and Carpenterz6 indicate that the form of the

25

Morrison equation which formed their point of departure (and that of
virtually all other recent work) is in agreement with the results of

Stokes for the force on a sphere oscillating in a viscous fluid.

Considering the two dimensional problem, and expressing the force
per unit length on a cylinder or plate as (F/L) where L is the length of

the cylinder, the model may be written as follows:
F/L = &pnd?C U + $p0C |U]U (5)

Where: U denotes instaneous velocity

Cd is an unsteady ''drag'" coefficient

Cm is an unsteady ''mass'' coefficient

The first term in Equation 5 is considered to be the ''mass'' term and the

second the ''drag' term because of the assumed dependency upon acceleration

*33. lverson, H.W., and Balent, R., "A Correlating Modulus For Fluid
Resistance in Accelerated Motion', Journal Applied Physics, Vol. 22,
No. 3, March 1951,

.




e s

R-2031

and velocity. The added mass and drag coefficients may be considered to

variable in time, but what is most often sought is averaged constant

values of these coefficients which result in reasonable approximations to

observed data for harmonic motion or flow. i

3“* 35%

McNown - developed an alternate model for the mass term, and

his expression may be written:

F/L = LpaD? [d(kU) . .
g +ru

+3p0C [UU (6)
where: r is a component of a ''true'' constant added
mass coefficient and arises fromthe pressure

gradient in the ambient flow.

and:

k is a time-varying mass coefficient.

The form of Equation 6 has seldom been explicitly used because averaged

values of C_ are usually sought.

In comparing results from experiments involving oscillatory flow
with data from experiments where the plate or cylinder is oscillated, the
influence upon the effective Cm of the pressure gradient is usually
accounted for. Since the pressure gradient term is proportional to volume,
"r'' in Equation 6 become unity for the circular cylinder, so that Cm in
Equation 5 is expected to be higher (by an additive term of unity) for
cases in which the flow oscillates than in cases where the cylinder

oscillates. On the other hand, the influence of the pressure gradient

36%.

is expected to be nil in the case of plates in oscillating flow, Buchanan Y

%34, McMown, J.S., ''Drag in Unsteady Flow', Proceedings of IX International
Congress of Applied Mechanics, Brussels, 1957, Vol. I, pp 124~134,

*35. McNown, J.S., and Keulegan, G.H., 'Wortex Formation and Resistance
in Periodic Motions'", Proceedings of ASCE, Engineering Mechanics
Division, January 1959.

*36. Buchanan, H., '"Drag on Flat Plates Oscillating in Incompressible

Fluids at Low Reynolds Numbers'', NASA-TM-X-53759, July 1968,
N69-17L66.
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at least for olates which are relatively thin. For the fundamental problem
of present interest, the influence of the pressure gradient on the '"mass'
term of Equation 5 is generally considered the only difference between the
case of oscillating fluid and that of the oscillating plate or cylinder,
otherwise the kinematic aspects of the problems are the same.

One of the interesting aspects of the problem which was addressed
early, McNown35, and is still not completely understood (McKnown37*) is
whether or not there is a relationship between the Cm and Cd of Equation 5.
The data of Keulegan and Carpenter26 suggests that there is some relation-
ship, and McNowan advanced an analytical model which demonstrated the
point. In general, the notion that an oscillating plate or cylinder is a
physically causal system would suggest that there should be a relationship,

at least to a linear approximation.

The qualitative interpretation of the force induced on oscillating
bluff bodies has largely to do with the cyclic formation of vortices.
Vlhen the amplitude of motion is very small there may be little or no vortex
formation for the circular cylinder and symmetrical formation for the plate.
As amplitude grows, vortices are shed assymetrically, and if the amplitude
is sufficiently large a quasi-steady Karman vortex street is envisioned.
Unfortunately, for applicationsof practical interest, the relative magni-
tude of amplitude of interest is in the range where only a few vortices
(or even a fraction of a vortex) can be shed before the motion reverses,
and in this situation the vortices shed on the previous half cycle may be
in near-enough proximity to influence the force. Analytical approaches to
the computation of the force are available if the strength and position of

38

all the vortices are known, Sarpkaya Unhappily, it appears that the

*37. McKnown, J.S., and Learned, A.P., '"Drag and Inertia Forces on a
Cylinder in Periodic Flow'", (Written Discussion of Reference 31),
Journal of the Waterway, Port, Coastal and Ocean Division of ASCE,
Vol. 104, No. 2, 1978, pp247-250.

*33. Sarpkaya, T., '"Lift, Drag and Added Mass Coefficients for a

Circular Cylinder Immersed in a Time Dependent Flow''. ASME
Journal of Applied Mechanics, Vol. 30, Series E, No. 1, March 1963,
pp 13-15.
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prediction of the strength and position of all the shed vortices is

beyordpresent state of analytical art, though only those in the immediate

29 39*).

vicinity of the body need be taken into account. (Sarpkaya“”, Stansby

Lo

Various lumped or discrete vortex models have been developed (Ward for 4

example), but are apparently utilized in a largely qualitative way.

With respect to the form of the Morison Model, Equation 5, the
early theoretical work suggested only that it is a plausible representation,

and this situation seems not to have been changed by more modern efforts.

. { *39. Stansby, P.K., "An Inviscid Model of Vortex Shedding From a Circular
Cylinder in Steady and Oscillatory Far Flows'', Department of Civil

Engineering Report No. 77/84, May 1977; Proc Institution of Civil

Engineers (London), Vol. 63, Part 2, December 1977, pp 865-880.

*40. Ward, E.G. and Dalton, C., "Strictly Sinusoidal Flow Around a
Stationary Cylinder', ASME Journal of Basic Engineering,
December 1969.

|
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PRIOR REVIEWS OF EXPERIMENTAL RESULTS

The most recent prior review and attempt at correlation of basic
data on oscillating plates and cylinders appears to be that of Tseng and
Altmanui* in 1968. This review was a preliminary to new experimental work
involving a more complicated geometry so that their own experimental work
lies outside the present scope of interest. In addition to the work of
3“’35, MartinZ] and Ridjanoyiczz, experimental results

by Brownbzh, Paapeh3h, Henryhhh, and Woolamhsﬁ were discussed and attempts

Keulegan26, McMown

at correlation were made.

. b :
Tseng and Altman's review l, though short, contributes several

important items. Predating Sarpkaya'szg'29

almost exactly similar analysis

by 8 years, they showed that Keulegan’s26 average drag coefficient data for
circular cylinders was Reynolds Number dependent as well as amplitude
dependent. No such conclusion was obtainable for flat plate data, but it

was noted that an ''edge effect' should be present for flat plates. Effective-
ly the idea is that if sufficiently sharp plate edges are available, eddy
generation may be maintained at very low amplitude ratios, thus compounding
the problem of correlation of the low amplitude results of various invest-
igations. Considering the results of all investigators reviewed, they made

a conceptual division of averaged drag coefficient for all shapes into four

regimes according to increasing magnitude of amplitude ratio:

*b1, Tseng, M. and Altmann, R., ""The Hydrodynamic Design of Float Supported
Aircraft, 1--Float Hydrodynamics'', Report 513-5, Hydronautics, Inc.
October 1968.

*42. Brown, P.W., "The Effect of Configuration on the Drag of Oscillating
Damping Plates', Davidson Laboratory, Stevens Institute of Technolocy,
Report 1021, May 1964.

*43, Paape, A., and Breusers, H.N.C., "The Influence of Pile Dimensions on

Forces Exerted by Vaves'', 10th. Conference on Coastal
Engineering, Tokyo, Chapter 48, p. 840, 1966.

*4l, Henry, C.J., '"Linear Damping Characteristics of Oscillating Rectangular
Flat Plates and Their Effect on a Cylindrical Float in Waves',
Davidson Laboratory, Stevens Institute of Technology, Report 1183,
June 1967, AD-657636.

*45. Woolam, W.E., '"Drag Coefficients for Flat Square Plates Oscillating
Normal to Their Planes in Air, Final Report'', Southwest Research
Institute Report 02-1973, NASA CR-66544, March 1968, N68-17911.
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1) Regime of viscous shear flow

2) Mear Potential flow, no large eddies 1

3) Regime of decreasing eddy size and distance
between eddy structure and body

L) Regime of progessive shedding of eddies

Because few independent determinations of added mass coefficients

existed in the literature, Tseng and Altmann were unable to do much

b3

correlation, but noted that the values obtained by Paape ° were generally

divergent from those of Keulegan26

Finally, in their analysis, there was no motivation for Tseng and

Altmann to question the basic conceptual form, Equation 5.
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OVERVIEW OF THE AVAILABLE
EXPERIMENTAL REFERENCES ON PLATES

0f the references initially thought to be of possible use in the
present exercies (Appendix A) some were and some were not. The objective
here is to look at the data from other points of view if possible. Accord-
ingly, some semblance of the basic observations has to be available. When
the results given are very compressed little can be accomplished.

Judging by the available English language accounts, the Japanese

* % %
school of thoughch, Katol‘6 ; Tanakau7,' 48

appears to be thoroughly based
in the quadratic model for forces on bilge keels, and is most often orient-
ed toward development of empirical expressions for immediate application.
The compression of results in Tanakal‘7 for instance is so thorough that it
is impossible to imagine how to examine them from any other point of view.

Nominally, parts of the work by Mercierbg* and Gerstenso*’ 2 on
scale effects on roll damping appeared interesting in the present context
because model bilge keels installed on cylindrical sections were instrumented
for force measurement during angular oscillations of the section. However,

in neither work was the instrumentation fully capable of resolving the forces

50

on a segment of bilge keel. Mercierl’9 omits any analysis, and Gersten
presents only an indirect analysis showing that the quadratic assumption is
sufficiently plausible for engineering purposes. Though the need for more

fundamental studies on the dynamic forces upon oscillating plates was

#6. Kato, H., "Effect of Bilge Keels on the Rolling of Ships', Memories of
the Defence Academy, Japan, Vol. 4, 1966.

*47. Tanaka, N. and Kitamura, H., "A Study on the Bilge Keels (Part 2, Full
Sized Experiments)' J. of Society of Naval Architects of Japan,
Vol. 103, 1958.

#8. Tanaka, N., "A Study of the Bilge Keels, (Part 4 - On the Eddy-Making
Resistance to the Rolling of a Ship Hull), Journal of the Society
of MNaval Architects of Japan, Vol. 109, 1960.

#49., Mercier, J.A., "Scale Effect on Roll Damping Devices at Zero Forward
Speed, ' Davidson Laboratory, Stevens Institute of Technology,
Report 1057, February 1965,

*60. Gersten, A., '"Roll Damping of Circular Cylinders With and Without
Appendages'', NSRDC Report 2621, October 1969.

51. Gersten, A., "Scale Effects in Roll Damping'', Proceedings of the 16th.
ATTC, 1971.
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b9

expressed by Mercier °, the basic objectives of these studies were scale

effect on rolling rather than on the fundamental problem of present interest.

Eliminating the experimental references just discussed from further
consideration, there appear to be just eleven distinct experimental references
on oscillating plates. Eight of these were known to or discussed by Tseng

and Altmann 1, the three references not considered by them being: Stephens

52+ 53 5

and Scavullo , Cole and Gambucci s and Shih and Buchanan

36).

is effectively a published version of Buchanan

The eleven references may be roughly classified into three groups

according to the approximate range of experimental amplitude ratio consider-
ed. In the first group (Keulegan26, Martinz' and Ridjanoviczz) amplitude
ratios, A/D, range from about 1/2 to more than 10. |In the second group

34 53 43

and Shihsh) amplitude ratios range from about

52

(McNown” ", Cole’”, Paape
1/5 to 2. Finally, the third group (Brown“z, Henryuh, Stephens

hS)

and
Woolam is comprised of experiments wherein amplitude ratios range from

3 1/100 to about 1/k.

E Both the technical purpose and the locally feasible experimental

apparatus evidently influenced the choice of amplitude ratio. Brownuz

and Henry = were interested in hydrodynamic damping at relatively small

52 45

! amplitude ratios. The thrust of Stephens”” and Woolam °~ was toward

structural vibration of thin panels, thus the small amplitude emphasis.

53

and Shihsh were involved with damping of fuel motion in liquid

|
@ j Cole
‘ fueled rocket boosters; the range of amplitude ratio chosen by them was

*52. Stephens, D.G., and Scavullo, M.A., "lInvestigation of Air Damping
of Circular and Rectangular Plates, A Cylinder and a Sphere',
NASA TN D-1865, 1965.

*53. Cole, H.A. and Gambucci, B.J., '"Measured Two-Dimensional Damping
Effectiveness of Fuel Sloshing Baffles Applied to Ring Baffles
in Cylindrical Tanks'', NASA, TN D-694, 1961.

%54, Shih, C.C., and Buchanan, H.J., '"The Drag on Oscillating Flat Plates
t l in Liquids at Low Reynolds Numbers', J. Fluid Mechanics, Vol. 48,
i Part 2, 1971.
I
i
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evidently reasonable in this application. The background to McNown's
experiments3k is not evident but it appears that his apparatus or the
preliminary nature of his program limited amplitude ratio to about
unity. In the remaining references (Keulegan26, Martin 2‘, Ridjanovic
and Paapeb3) the emphasis was upon ocean engineering or ship rolling
applications. It is evident that Paapeb3 was apparatus bound and could

not achieve amplitude ratios in excess of about 2.5.

There are essentially three types of experiments involved in the

references: 1) Stationary plates positioned at the node of a standing wave

(Keulegan26, McNownSh); 2) Forced Oscillation of a plate (Cole53, Paapeu3,
Woolamhs, Shihsh); 3) Plate mounted upon a passive oscillator of some type
(Stephenssz, WOolamhs, MartinZI, Ridjanoviczz, Brownhz, Henryuh). The

last technique involves the analysis of the rate of decay of oscillations
of the oscillator after release from a mechanically induced initial
displacement, and the results are usually confined to estimates of some
sort of averaged drag coefficient. Forces must be measured in the first
two techniques. Henry ~ measured forces but analyzed them as decaying

oscillations.

For purposes of a first overview at least, a rough estimate was
made of the range of unsteady Reynolds Number (UmD/v) achieved in each
investigation. No great precision was possible for some of the experiments
because maximum velocities (Um) often had to be inferred. Where uncertainty
existed, the available numbers were combined in such a way as to result in
a probable over-estimate. The resulting ranges of amplitude and Reynolds
Number achieved in each experiment are shown in Figure 1. Each of the
boxes defining the two ranges is labelled with the appropriate reference

number.

The classical work of Keulegan and Carpenter26 has the narrowest
range of Reynolds Number and the largest range of amplitude. It is
notable that all subsequent experiments, save two, have Reynolds Number
ranges centered upon that of Keulegan and Carpenter. The two exceptions
are Cole53 and ShihSA

sloshing. The divengence from the norm in these cases resulted from the

; the two sets of experiments oriented toward fuel
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intended application; which involved relatively high apparent gravity fields

53

in the first™ and low gravity fields in the secondsh. The exceptionally

low values of Reynolds Numbers achieved by Shihsh resulted from tests con-

ducted in motor oil, the high values by Cole53

by a combination of multiple
plate widths, high frequency and heated water. It should be noted that the
large range shown for Ridjanovic22 is deceptive and possibly misleading

for two reasons, 1) some guessing had to be done and 2) the study was on the
influence of plate aspect ratio so that a large range in 'D' is present in

the data.

The estimation of the range of non-dimensional frequency (wD2/v)
achieved in each experiment is in some cases slightly less speculative.
As before, at least approximate ranges of this frequency parameter were
derived, and the resulting ranges of non-dimensional amplitude and
frequency are shown in Figure 2, where the boxes defining the ranges are

labelled with the appropriate reference number.

Figure 2, which is a comparison of non-dimensional amplitudes and
frequencies, is the sort of simulation plot implied by alternate non-
dimensional variable Forms 3, 4 and 7 of Table i1, while Figure | would

result from Forms 1, 2 and 5.

\lhen the situation is viewed from an amplitude/frequency perspective
(Figure 2) the various sets of experimental data appear to involve much less
overlap than would be concluded from Figure 1. |In both Figures the parameter
range for the basic work of Keulegan26 has been represented more precisely
than the others because all data was conveniently available. As may be noted
Keulegan26 achieved a wide range of frequency by varying plate width but a
very narrow range of amplitude at each frequency. Something like the same
situation might have been obtained had a more detailed dissection of the
other experiments been carried out in preparing the Figures. The results

53

of Cole”™” show a definite frequency dependence. This suggested that the

L
unexplained difference between results of Keulegan26 and Paape 3 for roughly
the same Reynolds Number (Figure |) may be a frequency effect since the

53

frequency range of Paape 3 is roughly between that of Keulegan26 and Cole
The results of Noolambs, Brownhz, and Stephens52 indicate a relatively small
frequency effect in their domain of A/D; Henryhh obtained a somewhat more

pronounced effect of frequency.
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It is generally clear from the literature cited that the averaged

oscillatory drag coefficients for flat plates are not wildly sensitive to

unsteady Reynolds MNumber. Large changes are brought about only by very |
large changes in Reynolds Number. A comparison of Figures 1 and 2 suggests I
that correlations of the results of various investigators may have been
complicated by the use of the (mixed) Reynolds parameter in addition to !
the edge effects noted by Tsengu]. !
Yhile considering something akin to simulation, it is interesting :
to note a range of non-dimensional amplitude and frequency appropriate to
the simulation of ship bilge keels. Assuming that 'D' of practical interest
might be within 0.3 to 2 m., a range of frequency covering both small and
large ships might be 0.2 < w < 1.5. Combining these ranges, the range of

frequency parameter of interest becomes approximately

2 x 10" < wb?/v <5x106

It is not difficult to imagine a range of A/D between 0.1 and 10 in this
application. Comparing these ranges with Figure 2 it is evident that a

portion of the range of interest corresponds to the ranges which appear

23 “3.

to have been achieved by Cole”” and Paape
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PLATE DATA FROM AN AMPLITUDE/FREQUENCY PERSPECTIVE

Though there are minor deviations in the literature surveyed, the
essential ideas about the derivation of average drag and mass coefficients
are contained in Keulegan and Carpenter26. Assuming a cosinusoidal varia-
tion of U, Equation 5; in accordance with the conventions of Keulegan26

(the negative of Equations 1):

X(t) = U =-U_cosut
m
after substitution, Equation 5 becomes:
F=1 waZLmCmUmsinmt-ipDLCdU;|cosmt|coswt (7)
(where F stands for total force on a plate of length L).

In order to cope with the second term of Equation 7 in a practical
way it is assumed that the product, |coswt|coswt, may be replaced by the

first non-zero term in a Fourier cosine series; That is:

|coswt|c05wt = _§ coswt

3w
Whereupon it is clear that Equation 7 may be expressed in the form:
F = Pysinwt + Q;coswt (8)

where:

: P, ianZqum C.

- 4 2
3, P0LUZ Cy (9)

Q

poweye

In the case that P; and Q; are evaluated from harmonic analyses of data;

that is,
2m

]
5 Sl IF sinwtd (wt)

27
fF coswtd (wt) (10)
0

{ Q =

34—
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There results Keulegan's26 estimator for averaged mass and drag coefficients:

T SR - T
%nwazLUm

Ed = :}ﬂglig (1])
l ipDLU;

The denominators in Equations 11 are those conventionally used through-
out the literature. The symbol '"P," is the amplitude of force in-phase with
acceleration; the numerator of the drag coefficient estimator is an effective

amplitude of force which is in-phase with velocity. The Fourier analysis

53 43

method of Keulegan26 was apparently used by Cole In order to

54

and Paape
reduce labor Shih” and Woolam > (in his forced oscillation experiments) used
simpler measures of the effective drag amplitude. All the remaining experi-
ments under consideration were decay experiments and an effective drag

3 amplitude is implicit in the analysis and data reduction procedure.

! In order to attempt a correlaticn of data from an alternate point of
view it was thought that it might be instructive to derive the effective
harmonic coefficients P,, Q,, from the given drag and mass coefficient data. ;
Keulegan a8 gives the Fourier coefficients derived from the basic data, but
this reference is the only one which does. Essentially, correlations of
available data from an amplitude/frequency perspective are not possible
unless something can be done with derived coefficients of the form of
Equations 11. Accordingly, non-dimensionalizing Equation 8 in the alternate

way previously mentioned.

F/L

= P sinwt + Q coswt (12)
pv2/D

where:

P = P10/pv?L = in(wD2/v)2(A/D) C_

Q

Q,0/pv2L =- §% (wD2/9)2 (A/D)2C, (13)

In this form the P and Q coefficients represent an estimate of the non-
dimensional fundamental Fourier coefficients of the force per unit length of

the plate, given experimentally derived mass and drag coefficients and

-37-
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non-dimensicnal frequency and amplitude. As previously noted, this form
of non-dimensionalization involves no prior assumption of the form of the

relationship between dependent and independent variables.

SOME CORRELATIONS OF
TWO-DIMENS IONAL PLATE DATA
There are in the cited references on plates, five which deal with
34 43 21

two-dimensional experiments (Keulegan26, McNown” ', Paape ~, Martin® , Cole
and Shihsh).

B e e e i e e e e e Bt e e s

53

One experiment of Ridjanovic22 appears to involve a plate of
such large length to width ratio that the results appear likely to be nearly
two-dimensional according to comparisons with Martin's resultsZI. The
remainder of the references noted in Figures 1 and 2 (Ridjanoviczz, Brownhz,

45 52)

Ly :
Henry ', Woolam “, Stephens involve three dimensional experiments involving

rectangular plates of various aspect ratios as well as circular disks.

Considering the two dimensional experiments, there are only two where
averaged mass coefficients as such were derived or presented. These are
Keulegan26 and Paapeb3. Unfortunately, no detail is given by Paapel'3 as to
what experimental oscillation frequencies correspond to each data point.
Essentially, analysis of any of the data of Paape from an amplitude/frequency
perspective was completely frustrated by this and no further use could be made
of the reference. This means that only one source was available for estimates
of P, Equation 13. Figure 3 contains all the values of P derivable from
Keulegan26. For each of the eight values of non-dimensional frequency which
were achieved, values of P are plotted as functions of amplitude ratio, A/D.

(Numerical values of the frequencies are noted).

The first thing immediately apparent from Figure 3 is that the Fourier
components in-phase with acceleration are both frequency and amplitude dependent

in an apparently systematic way. The second is that the trend of results for

two frequencies (4900 and 3655) do not much resemble those for higher and lower
frequencies. These particular data help produce the pronounced dip in the
average inertia coefficient for plates given by Keulegan26. The range of
amplitude ratios achieved in Reference 26 appear inadequate to define the

implied function of two variables.

The prospects for correlation of two dimensional results from various
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experiments are much better when the component in-phase with velocity (the
"drag' coefficient) is involved,since this is the only thing most investi-
gators have had an interest in. Because of the differences in test tech-
niques, the data falls naturally into two categories: ''Drag' components as

a function of amplitude for constant values of frequency; and 'drag"

components as a function of frequency for constant values of amplitude.

Figure 4 summarizes some results of the first category in non-dimensional

form. Specifically, the negative of Q (Equation 13) is plotted as a function of
A/D for various (noted) values of non-dimensional frequency. The open

circles in Figure 4 are from the data of Keulegan2 and correspond to

the data for P in Figure 3. Because it was readily available, the drag
coefficient data of Ridjanovic22 for plate aspect ratio of 19.4 (wD2/v=811)

was converted to the present form and plotted for comparison. Unfortunately,
the numerical data required for the present exercise are not all given by
McNown3h. From the data which was given it was possible to make a very
rough estimate from this reference for two points at a non-dimensional
frequency of 1744 and these are plotted in Figure 4. (In this connection
it should be noted that it was necessary to evaluate amplitudes from
theoretical expressions given in Reference 34, and that the amplitude

of force in-phase with velocity had to be approximated as the instantaneous
force at time of maximum velocity since time histories of a complete cycle

of force were not given).

The odd behaviour of the Keulegan26 data for frequencies of 4900
and 3655 shown in Figure 3 for P is not reflected in the data for -Q,
Figure 4; all the Q results from Keulegan26 form an apparently systematic
family with comparable trends regardless of frequency. The data of

34

Ridjanovic22 and McNown” = appear to at least roughly fit into the pattern,

34

though the trend with amplitude of the two points from McNown (Frequency=

1744) does not agree with the trends from the other two sources.

From the viewpoint of dimensional analysis, the data comparisons
in Figures 3 and 4 involve an ignored parameter, the plate thickness.
This parameter appears to be about the only thing not documented by Keulegan26
From the photographs in that reference it appears that the width-thickness
ratio for the largest plate tested (D=0.076m.) was in excess of 20 and that

the edges were squared off rather than sharpened. |If, as seems likely, the
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same thickness was retained down to the smallest plate (0=0.013m.) the width/
thickness ratio would have been about 4. Translated into terms of non-
dimensional frequency it appears likely that width/thickness ratios for the
Keulegan26 data ranged from above 20 for wD?/v = 18660 to about 4 for
wD2/v=605. The plates of both McNowth
squared off; that of McNown had width/thickness ratio of 8; that for the

and Ridjanovic22 were apparently

data of Ridjanovic shown in Figure 4 (frequency =811) had width/thickness
ratio of 10. The data comparisions in Figure 4 are much too sparse for
conclusions, but it seems likely from the comparison of the relative position
of the data for frequency of 811 (width/thickness of 10) with the data for
frequencies of 605 and 1370 (probable width/thickness ratios of 4 to 6)

that the thickness effect may not be profound.

The two data sources involving ''drag'' determinations as functions

53 54

of frequency for constant amplitude are Cole”” and Shih” .

The experimental data of Cole involved a splitter plane so that in
converting this data to the present non-dimensional form it was necessary
to assume in effect that the force on a half plate is half the force on a
plate of double wigth without a splitter plate. Relative to steady state

drag data (Hoerner 5*) the assumption would be considered to result in
over estimates of the order of 40%. Whether or not this is the case in
unsteady flow is not documented. Width/thickness ratios for the plates
tested by (Ioles3 are not documented. However, since the half widths

(D/2) ranged from 0.075m. to 0.30m., and since it is likely that commonly
available plate stock was used in fabricating models, it seems fair to
assume that effective width/thickness ratios were in excess of 10 at least.
The data of Cole53 has one feature not found in the other available sets

of data. This is that, for two particular values of A/D, data was obtained
for three plate widths, various frequencies and two values of kinematic
viscosity. When the data is converted to the present non-dimensional

form there occurs a considerable overlap of the non-dimensional frequency
ranges achieved for each plate width. The particular data involved is

shown in non-dimensional form in Figure 5. The two amplitude ratios were

5. Hoerner, S.F., "Fluid-Dynamic Drag', Published by the Author,
Midland Park, N.J., 1965,
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0.25 (filled symbols) and 0.125 (open symbols). The range of frequency where
the results overlap is from about 4 x 165 to 2 x 106. Within this range, data
from the three different plate widths appear to compare within something like
20%. On average, there appears a very slight tendency for the component -2 to
increase with plate size. However, since Coles3 quotes experimental precision
at no better than *10% because of the necessary tare corrections to the data,
ascribing the differences shown in Figure 5 to real effects of size or plate
edge condition seems a doubtful proposition. In Figure 5, for both amplitude
ratios, the three or four highest frequency points for plate width of 0.30m.
were obtained in nearly boiling water, and, as may be seen, these points form
a reasonable continuation of the data obtained in water at normal temperature.

54

The experiments of Shih involved plates of two widths, which apparently
had squared off edges and width/thickness ratios of 8 for the 0.0254m. wide plate
and 4 for the 0.0127m. wide plate. The use of both motor oil and water for fluids
resulted in a four decade range of non-dimensional frequency, but without overlap,
so that direct comparisons of results in the two fluids is not possible. Though
three different amplitude ratios were achieved, there is no case in which results
were produced for the same amplitude ratio for plates of different widths. The
data reduction methods utilized for the bulk of the data in Reference 54 were
crude in relation to the methods implied by Equation 10. Essentially, the peak
measured forces were assumed to be the effective drag component (37Q;/8), and

spot checks using the methods implied by Equation 10 on two runs at a fairly high
real frequency were made to confirm the adequacy of the approach. No correction
of the data for the apparatus inertia tares was made, it being assumed that the
force in-phase with velocity was dominant. No definite statement of estimated
experimental accuracy was made. Considering the data reduction method, the lack
of inertia tare correction, the degree of repeatibility of the force calibration
curve, and the scatter of results in those instances where nearly repeat runs were
made, suggests that experimental accuracy in this case was most unlikely to be
better than *15%.,

Given all the caveats about the plate data just described (non-uniformity
of width/thickness ratio, splitter plane in one instance, non-correction of
inertia tares in another, etc., etc.) it would seem that not terribly good

correlation should be anticipated. Nevertheless an attempt at a cross

correlation of all the derived values of Q was made. The results of the
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first stage in this attempt are shown in Figure 6. As shown in

the figure, when correlations of all available data are considered, a 12
decade range is required for the estimated Fourier component in-phase

with velocity (Q), and a 7 decade range for non-dimensional frequency. The
convention of the figure involves Q as a function of wD?/v for constant
values of A/D. Twelve different values of A/D are involved (0.0625

through 20.) and the data shown were obtained in various ways. The
convention of the figure is appropriate for direct plotting of the estimates

hsh and Cole53. The open symbols shown for wD?/v less than

54

obtained from Shi
loh are the tabulated data points of Shih” after re-non-dimensionalization
(neglecting two points which Shih himself threw out). Three amplitude
ratios are involved (0.75, 0.33 and 0.25), and the data clusters in two
groups according to the test fluid (motor oil or water). At the upper

right corner all the data obtained by Cole53

are plotted in open symbols,
crosses, or plus signs. Five amplitude ratios are involved (0.0625,
0.125, 0.25, 0.50, and 0.75) and the distinction between plate widths

made in Figure 5 has been omitted in the results for A/D = 0.25 and 0.125,
Since the data shown in Figure L as a function of A/D appeared systematic,
this data was interpolated (and occasionally extrapolated slightly) at
nine particular values of A/D (.25, .5, .75, 1., 2., 3., 5., 16. and 20.)
and the resulting points plotted in Figure 6 are filled in. Thus, directly
or indirectly, the two-dimensional data of five investigations (References
22, 26, 34, 53, 54) are included in the figure. Through the data for each
value of A/D a mean line (to be later discussed) has been drawn, and the

corresponding numerical value of A/D has been indicated above each line.

Two additional lines, neither supported by actual data, have been

included in the figure. These were for the purpose of putting some perspective

on a relatively unconventional correlation plot.

The line in the upper part of the figure (centerline convention) is
a round-house estimate of where data for A/D=1000 might be. It is derived

quite simply by assuming that the amplitude of force at this oscillation

amplitude ratio is the same as the force on a two-dimensional plate in steady

flow with velocity equal to Um.
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Assuming a drag coefficient of 2, the force per unit length would be
& 2
F/L pDUm
Non-dimensionalizing in the present manner:

F/L
pv2/D
and the line in Figure 6 is this expression evaluated for A/D=1000. The

= (Re)?= (wD2/v)2(A/D)?2

steady state drag coefficient assumption just made seems to be accepted

for 103 < Re < 10%, and the extent of the line shown in Figure 6 covers

this entire range.

It is perhaps in order to clarify this steady state assumption.
In a practical sense, ''steady state' is defined by the length of time
required for experimental starting transients to die out and force to
become constant. One way of looking at the relationship between steady
state and oscillatory motion is to say that ''steady state' is what
happens when frequency is zero. This is not too productive since if
frequency is zero, maximum velocity of sinusoidal motion is also zero
and there is no way to generate a force. An alternate approach is to
say that for practical purposes ''steady state'' may be approached for a
relatively brief time during each half of a cycle of very large amplitude
motion. To be specific, if the amplitude ratio (A/D) of the oscillatory
motion is 1000, then, in the vicinity of maximum velocity, the actual
velocity is within 0.1% of constant during a time that the plate
travels about 100 widths, and within 1% of maximum velocity during a
time that the plate travels about 280 widths. For plates the usually
accepted figure for the distance traveled by the plate in the time required
to shed a pair of vortices in a Karman vortex street is about 7D. Thus with A/D=
1000, about 14 vortex pairs would be shed while veiocity is within 0.1% of
constant and about 40 while velocity is within 1% of constant. These
numbers are quite comparabie with durations, lenths of travel and velocity
accuracy which might be experienced in actual experiments. Judging by
towing tank practice, essentially steady state drag ought to be achieved
in shorter distances than just mentioned, and it seems reasonable to expect
the peak forces for A/D of 1000 to resemble steady state. The reasons that

this estimate of the fundamental Fourier component can only be considered

-u7-
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order of magnitude are that the force history according to the constant
drag coefficient assumption is very non-sinusoidal, and that the constant
drag coefficient assumption is incorrect when very low velocities are
considered. (Hoerner55 is full of examples showing that steady flow drag

coefficients are not constants over large ranges of Reynolds Number).

Returning to Figure 6, the next item is the line at the lower right
in the section convention. The line is labelled 0.01 and represents the

30 evaluated for A/D of 0.01. VvVortex

linearized computation of Tuck
generation was explicitly excluded from this theoretical effort, and it seems
likely that the theory may hold only for much smaller A/D ratios. Evaluation
for A/D=0.01 was chosen merely to put the line into the field of the plot
because what was desired was to display the general trend which is roughly

parallel to (wD2/v)1+S,

A general inspection of the data points in Figure 6 suggested that
above a frequency of 100 the variation with frequency was much the same as
that of the stcady state estimate (frequency squared), while below this
frequency the trend of data resembled that of the linearized computation.
Tuck30 derived an asymptotic solution for the forces on a two dimensional
plate as frequency (and amplitude) approach zero. After conversion of

this solution to the present non-dimensional scheme there is obtained:
Q - 8n(A/D) (wD?/v) g(wb2/v) (14)

where:

g(a) == en(a/b)/{n2+{2n(a/k)}?} (15)

(The same form may be obtained by some manipulations and small argument
assumptions from Stokes' solution for the circular cylinder). The limit
of the expression, Equation 14, as (wD?/v) approaches zero is zero.
(Force should be zero for zero motion). Because of the log functions in
g(a), the expression, Equation 14, begins to be very close to a constant

times frequency for extremely small frequency.

The foregoing considerations suggested that a reasonable empirical

model for Q for constant A/D might be:

Q = C; (wb?/v)+C;y(wb2/v)?2 (16)

where C; and C, are functions of A/D.
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Relative to an examination of gross behavior of the drag component

as a function of frequency, there are two amplitude ratios of particular
interest in Figure 6. These are A/D=0.75 and 0.25, since in these cases
there are data points which cover nearly the entire experimentally determined
range of Q and wD?/v. Accordingly, Equation 16 was fitted to all available
data (including cross faired results) for these amplitude ratios. Because

of the large variation in magnitudes, the fitting method involved choosing

Cy and C, so as to minimize the mean squared percentage deviation of the

data from the fitted line. The results of this procedure appear as dashed
lines in Figure 6, and the numerical values of the coefficients and root

mean square percentage deviation are shown in Table IIl. Considering the
range and diversity of the data from the various sources, these fits are
astoundingly good. Considering the results for A/D=0.75, the RMS

percentage deviation of 13% is comparable to the probable precision of the
basic data. Regardless of the data source there are few if any prominent
deviations from the line. The general conclusion from an examination of

the line for A/D=0.25 is similar except that the percentage deviation is
higher because of the rather larger scatter of the grouped data of Colesu
(see Figure 5) and because one of the cross-faired points is badly out of
line. This particular point is at frequency 1744 (g;z.5x106) and i. the
result of the writer's possibly faulty interpretation of the fragmentary
results of McNown3h. A similar fit was made to the data for A/D=0.33 and
the result, shown as a solid line in Figure 6, is practically parallel

to the line for A/D=0.25.

An examination of the fitted lines for A/D=0.75, 0.33 and 0.25
disclosed that, to a precision very much better than that of the data,
the lines fitted in accordance with Equation 16 are essentially straight
with a slope of 2 above a frequency in the vicinity of 100. This suggested
that it would be appropriate to fit lines through the points for other
A/D ratios with a simple square law since the range of frequency for other

ratios is relatively restricted. The results of these fits produced the
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TABLE 111

Particulars of the Lines Fitted

To the Data in Figure 6

Root-Mean-Square

A/D (et _Co Percentage Deviation
20 = 275.2 =
10 = 103.5 6.0

5 = 33.50 7.1
3 - 14,35 6.0
2 = 7.070 4.6
1 = 2.438 12.1
0.75 9.508 1.707 13.2
13.0
12.0
25.0
16.0
8.3
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lines through the remainder of the data in Figure 6. The numerical values
of the square law fits for each A/D ratio are given in Table Ill along with
RMS percentage deviations. (The dashes in the column of Table IlI for C]
indicate that C] in Equation 16 was assumed identically equal to zero). The
resulting RMS percentage deviations are in line with the magnitude of data

scatter.

On The whole, the data shown in Figure 6 appear as a systematically
related family. The empirical adherance of the results for A/D of 0.75 and
0.25 to an uncomplicated trend, regardless of source, is the thing expected
for geometrically similar experiments. The result suggests again that plate
width to thickness ratios may not be wildly important in a relative sense,
though the data is insufficient to be certain. The fact that the data of
Cole53 (with splitter plate) falls in line with the rest may simply mean that
for small A/D ratios the boundary layer on the splitter plane has no time to
develop, and that there is no time to develop a vortex street, and thus that
the influence of the splitter plane was nil. (Good correspondence for higher
A/D ratios might well not be expected). If the above surmises are correct,
the conclusion of Shih53 (that the unsteady drag coefficient, for a given
amplitude ratio, is independent of unsteady Reynolds Number above about 200)
is extended to Reynolds Numbers far beyond the range of data in Reference 5k;
in fact into the range appropriate to ship bilge keels. (Unsteady Reynolds
Number is the product of A/D and wbD?/v; for constant A/D, a constant drag
coefficient implies a frequency squared variation in force). In terms of non-
dimensional frequency, the data available suggests that, above wD?/v of
approximately 100, the drag component of force is proportional to frequency
squared. Judging by the trend of the position on the fitted lines where
curvature seems to cease, one might expect this lower limit to be at a higher
frequency for very small A/D ratios, but there is no way to estimate how much

higher from the data available.

From a practical point of view, non-dimensional frequencies much less
than 100 are very difficult to achieve in water unless the plate and/or

frequency are miniscule. For instance in the context of ship model rolling, a

model with 0.0lm. bilge keels might, upon occasion, experience motion frequencies

corresponding to a non-dimensional plate oscillation frequency of 500, but it is

hard to imagine much lower frequencies of practical interest.
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If data for non-dimensional frequencies less than 100 are disregarded,
the previous discussion implies that division of Q by (wb?/v)? should
collapse all the remaining data into a single function of A/D. Since one
non-dimensional variable is divided by another, the result is a new, mixed

dependent variable; from Equation 13:
Q/ (wD?/v)? = Q;/pw?D3L

i/(wD2/v)2

P/pw?D3L (17)

Figure 7 indicates the results of carrying out such an operation on

all the data shown in Figure 4, all the data of Cole53, and the data of Shi

hS"
for which wD?/v was greater than 100. The results shown as open circles in
Figure 7 are those from Figure 4 (References 22, 26, 34). All these data
collapse well excepting for one point (A/D=0.29) which is one of the estimates
made by the writer from McNown's papersh. For subsequent operations this point
was disregarded. Data of Cole and Shih are shown as diamonds in the figure.
The small cross indicates the mean of all data for the particular amplitude
ratio and the vertical extent of the diamond includes the extremes of the

data scatter. These data fit in very well with the collapsed data from

Figure 4. Excepting the odd point derived from McNown3u

and including all
the individual data points which lie within the diamond symbols, Figure 7

involves the collapse of 151 individual data points from five experiments.

It is clear that the collapsed data in Figure 7 lie along a roughly
straight line on the log~log plot, and it was accordingly of interest to
make a least RMS percentage error fit of a simple power law to the data.
The result was the solid straight line shown. The best fit of such a law

was found to be:
1.54
-Q;/pw?D3L = 2.66(A/D)

With a root mean square percentage deviation of 14%. Nearly as good a fit
was obtained with an exponent of 3/2; in this case the RMS percentage
deviation was 16%, the line is shown dashed in the figure, and the resulting

formula was:

1«50
-Q;/pw?03L =~ 2.63(A/D)

-
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It is clear by inspection of the Figure that the data for A/D greater

than about 8 trends slightly away from the fitted lines. Accordingly, it
was of interest to see if polynominal models in A/D would fit the collapsed
data. A fifth order polynominal was found to fit the data with a 17% RMS
percentage deviation, but since some coefficients were negative, the
resulting fitted equation produced values of Q with opposite sign for very
large A/D. The round-house estimates for A/D=1000 discussed in conjunction
with Figure 6 imply that the function should continue roughly along the
trend shown towards a value of -Q1/0w2D3L near 10® for amplitude ratios a
decade higher than could be shown in Figure 7. The fifth order polynominal
was therefore considered an over-fit and thus un-realistic. Much the same
results were obtained with three term polynominals, and therefore the only
polynominal fits achieved which were considered grossly realistic were

two term:
-Q,/pw?D3L > E1 (A/D)+E,(A/D)2
or: Fy(A/D)+F3(A/D)3

Numerical values for the fits of linear-plus-quadratic and linear-plus-
cubic models are shown in Figure 7 in the labels for the resulting fitted
lines. Root mean square deviation of the linear-plus-quadratic was 28%,
that for the linear-plus-cubic was nearly 80%. It is clear that the only
way to produce a convincing polynominal fit to the data in Figure 7 would
be to disregard much of the range of A/D since two term polynominals

can be made to resemble straight lines if the range of argument is

sufficiently restricted.

The implication from this analysis that the ''drag'' component
amplitude of force varies as (Al:5%) apparently has one precedent; Tanaka's
empirical formulah7 for work done by bilge keels implies that the amplitude
of force varies as (plate velocity amplitude)!-6, Thus Tanaka would perhaps
have normalized forces with (w!-® Al.6) rather than (w?A!-5) as is implied
in the present analysis. The real frequency range covered by Tanaka spanned
less than an octave for each plate, and the corresponding non-dimensional
frequencies for all three of his plates appear to have spanned a little
more than a decade, a much smaller range than shown in Figure 6. Under these

circumstances it is possible that the difference between w!+6A 1.6 and
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w?Al+® might be difficult to detect.

The ''drag'' component normalization implied by the usual treatment
is (wA)? or U;. Within the present non-dimensional scheme, the non-dimensional

velocity amplitude is:

(A/D) (wD?/v)

U D/v
m

The Unsteady Reynolds Number

The necessary use of logarithmic scales in the present work carries with it

the possibility that the adequacy of collapse of data is exaggerated by this
choice of scale. To make sure that the correlation shown in Figure 7 was

some sort of improvement over the conventional treatment, the values of Q

for all the data represented in Figure 7 were plotted against the corres-
ponding values of UmD/v. The result (not shown here) was a multi-decade

log-log chart similar to Figure 6. The gross trend of data plotted in

this way was clearly according to (Reynolds Number)2 as implied by the

usual drag coefficient treatment, but the extreme scatter of existing data about

a mean (Re)? line was * 300% rather than the + 30% or so in Figure 7.

If the ''drag' and ''mass'’ components of force are related it seemed
possible that the data for force components in-phase with acceleration
should also collapse under the normalization implied by Equation 17.
Figure 8 indicates the results of applying this transformation to the data
of Keulegan26, Figure 3. There is clearly a significant collapse of data
relative to that shown in Figure 3. The scattered points in the vicinity

of A/D=2.5 arise from the data for wD2/v=L4900 and 3655 which were noted

as having an odd trend in the discussion of Figure 3. There appear to be
two branches to the collapsed curve of ﬁ/pw203L, Figure 8, and each branch
appears to roughly follow the same power law which seems to best fit the

""drag'' components, Figure 7. Very approximate 3/2 power law fits to each

branch are shown in Figure 8.
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CORRELATIONS OF DATA FROM
THREE-DIMENSIONAL PLATE EXPERIMENTS

Up to this point all data considered has been essentially two
dimensional. As noted earlier, there were five references involving
experiments with rectangular and circular plates, and it was of interest
to compare these data from an amplitude/frequency perspective where
possible. The experiments of Ridjanovic22 covered plate aspect ratios
down to unity (the sg;are plazz). Square pl;tes were also used in the

experiments of Brown =, Henry ', and Woolam “, so that in principle,
correlations of four experiments were possible. The square

plate results of Brown were found to be too compressed for present pur-
poses and this reference was omitted from consideration in the square
plate correlations. However, Brown gives sufficient faired data for the
case of the circular disk so that a comparison with the circular disk

52

results of Stephens is possible.

Ridjanovic22 tabulates results for a plate 0.1m. square which
had a width/thickness ratio of 64. Because of the test technique,
only one non-dimensional frequency is involved (wD?/v = 33000), but
amplitude ratios ranged from 2.1 to 0.11. The tests were carried out in

water.

Henryhu utilized an 0.12m. plate with sharpened edges and tested
in water. Effective width to edge thickness ratios were undoubtedly very
high. Non-dimensional frequencies were varied from 48000 to 158000 by
varying the spring constants in a decaying oscillation apparatus.
Unfortunately for present purposes, the analysis of data was confined to
the portion of the decay curve where the slope implied linearity in
some sense, and amplitude ratios corresponging to the numerical results
were not given. However, a reasonable estimate for the range of amplitude
ratios corresponding to the data is 0.03<A/D<0.1.
45

Woolam's experiments - are extensively documented, and involve both
free and forced oscillation experiments in air on three plates (D=0.25m,
0.50m, and 1.01m.) Width to thickness ratios on the basic tests were
constant at 62.5. In some special tests the plate edges were effectively

sharpened; the resulting width to edge thickness ratios were approximately
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1500. Both forced oscillation and free decay type experiments were carried

out. Non-dimensional frequencies spanned the range from 17600 to 895000.

To the extent possible, the data conversion implied by Equation 13 was
exercised upon the drag coefficient data presented in the last three
references. Plots similar to Figure 3 of Q vs A/D for various values of
frequency were made, as were plots of Q vs wb2/v for constant amplitude
ratio similar to Figure 6. The trends with frequency in the latter plot
strongly suggested that the square plate data varied as frequency squared
for constant A/D, so that it seemed reasonable to try the same normalization
as had been used to produce Figure 7 for the two dimensional plate data.
Noting that "L'" in Equation 17 is the same as 'D'" in this case, the data

normalization involves plotting -Ql/psz“ on a base of A/D.

The results of this operation are presented in Figure 9. The results
of Ridjanovic22 are shown as square symbols. No specific points could be
developed for Henry's datahb, but a reasonable estimate of a range wherein
his data should lie is shown by the dot shading. There are essentially
three types of symbols utilized for Woolam's data. A diamond with a small
cross indicates the results of forced oscillation experiments at five amplitude
ratios (0.05, 0.075, 0.10, 0.15 and 0.20). The small cross indicates the
mean of the data, the vertical extent of the diamond indicates the extreme
spread. Within each diamond non-dimensional frequency varies by a factor
of b to 8. The data symbolized by circles were developed by reading Woolam's
faired drag coefficient curves at fairly closely spaced values of A/D. The
open circles pertain to results for square edged plates (width/thickness=62.5)
and the filled circles pertain to the thin edge case. Two 3/2 power law
lines are shown. The line with coefficient of 2.63 has been shown to be a
reasonable fit to the two-dimensional data, Figure 7; while the line with
coefficient of 1.25 is what appeared to be a reasonable fit to the square
plate data for A/D greater than 0.05.

If the results for A/D of 0.1 and greater are considered, the square
plate data collapses about as well as the two-dimensional data {(Figure 7).
For this range of A/D the gross variation of both square and two-dimensional
plate data appears to be of the same form, the differences being an approximate

constant factor of two in the values of Ql/prD3L. However below A/D of 0.1
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the correlation, the collapse of data, and the adherance to a 3/2 power law
begin to unravel. The actual data shown for A/D less than 0.1 is due to
Woolam who acknowledges that, due to the scatter of data from a large number

of experiments, the accuracy of his faired result is most open to question

for very low amplitude ratios and for his smallest plate. The writer's inter-
pretation of the detailed results given by Woolam is that the range of possible
answers obtainable for the data represented by the open circles furthest

below the solid line in Figure 9 would lie between a factor of 2.0 and 0.5

of the spot shown. About the same margin could be applied to the point for

the thin-edged plate shown at A/D=0.06. However, even with due consideration

L of the possible margins of experimental error, there appears to be a trend
below A/D=0.05 to 0.1 for the square edge data (width/thickness = 62.5) to
resemble a square law rather than the 3/2 power law. It appears that the

thin edge case (filled circles) could continue on the 3/2 power law.

Turning to the two references from which data for the circular disk |
could be abstracted, Brownl.2 conducted free decay experiments in water with
a square edged 0.1m diameter disk of width/thickness ratio 32. Two values
of non-dimensional frequency were achieved, 126000 and 300000; and results
were read from faired curves for present purposes. Stephens52 conducted
free decay experiments in air at various pressures with a square edged
0.16m diameter disk of width/thickness ratio of 40. The experiment at a

: non-dimensional frequency of 38000 Gtmospheric air pressure) was abstracted

and the results converted to present form. [t may be remarked that since

Stephens gives only logarithmic decrements for a particular apparatus,

conversion of this data required analytical development of some properties
52

of the apparatus not given in the report” .

52

The results from Brcwnl’2 and Stephens”™ are shown in Figure 10 for
the same non-dimensionalization used for the square plates. Scales and
conventions of this Figure are the same as that of Figure 9, and the two
3/2 power law lines shown in Figure 9 are repeated to aid comparisons.
From the point of view of the efficacy of the (pw?D") normalization scheme
for ''drag' amplitudes, the collapse of disk data for high non-dimensional
frequencies appears satisfactory. The trend of the result with A/D is

clearly not according to a 3/2 power law. A mean line through the data
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actually looks more like a constant times (A/D)2'6.

In general, it appears from the results for plates and disks given
in Figure 7, 9 and 10 that, for fixed amplitude ratio, the force in-phase
with velocity (Q;) on plates of a variety of aspect ratios varies approxi-
mately as the square of frequency so long as the non-dimensional frequency
parameter wD?/v is greater than some critical value. Since wD%/v plays the
same role in the amplitude/frequency system as the unsteady Reynolds Number
plays in previous approaches to data correlation, there is an implication
that the forces are independent of viscosity so long as the critical frequency
parameter is exceeded. This is perhaps better expressed by the fact that the
partial correlating modulus used to produce a collapse of data for given
A/D (pw?D3L) does not involve viscosity. Reasonable collapse of data is
achieved by this means for values of non-dimensional frequency up to the
order of 106 which is well within the range which would be expected in the

ship bilge keel situation.

Considering results for disks and for both square and two-dimensional
plates, the available data suggests that, for fixed frequency, the force
in-phase with velocity on plates of a variety of aspect ratios varies roughly
with (A/D) to the 3/2 power above a critical value of A/D. The data suggests
that for amplitude ratios in excess of 0.1, the 3/2 power variation holds
regardless of width to edge thickness ratio greater than five or ten. The
data also suggests that the break in the trend with A/D for fixed frequency
comes at a critical A/D between 1/20 and 1/10 for width to thickness ratios
in the range between 10 and 100, It is possible that very significantly
sharper edges are required to drive the break point lower. The trend of force
for amplitude ratios less than critical may be in the general vicinity of
amplitude ratio squared. That data which exists is entirely too sparse and
disconnected to inspire complete belief in an amplitude squared variation

below the critical A/D.

Almost no data is found which corresponds to amplitude ratios less
than about 0.01. Presumably linear theory (Tuck3o) will begin to hold
somewhere, but because of the generally reasonable collapse of data by squared
frequency, it appears that all or virtually all data in hand was obtained at
products of frequency and amplitude which are outside the range of validity

of linear theory.
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Above A/D ratios of 10 or 20 there is no data. Accordingly, no firm
idea can be formed as to what happens as amplitude ratios grow significantly

larger. %

HIGHER HARMONIC COMPONENTS OF |
OSCILLATORY FORCES ON PLATES |
The correlation and discussion of the last few sections have involved
best estimates of the fundamental components of the unsteady forces on plates
in oscillatory flow. Because the system appears to be non-linear, there is
likely to be higher harmonic response as well. It was therefore also of
interest to consider higher harmonic content in a way more or less consistent

with the preceeding analysis of the fundamental components.

0f all the experimental references cited, Keulegan26 is the only one
in which systematic evaluation of higher harmonic content was carried out.

Specifically, the forces were represented as an odd Fourier series:

c
F= L Pnsin(nwt)+an05(nwt) (18)

=1 »3,5

The integrations required were carried out to obtain the Pn and Qn' (P, and
Q) are the components previously treated). The resulting Qn coefficients
were modified to reflect the coefficients in the Fourier expansion of i
lCOSwtlcosmt which was required by the Morison Model, (Equations 5 and 7),

and the resulting (Q;) coefficients were tabulated along with the Pn' Reversing
the modification process (obtaining Qn from Qé) is straightforward, and thus the

original Fourier coefficients may be recovered to quite reasonable accuracy.

The first question of interest is the relative magnitudes of the
higher harmonics. |t is convenient to first consider the amplitudes of harmonics,

which may be defined as:

and these may be arbitrarily non-dimensionalized in accordance with the

approach shown in Figure 7. The results of carrying out this operation on

all data presented in Reference 26 are shown in Figure Il. |In the figure
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the non-dimensional amplitudes of first, third and fifth harmonics are
indicated as functions of A/D. Through each of the three sets of data
points in Figure Il a 3/2 power law line has been drawn. These lines were
fitted in a least root-mean-square percentage deviation sense. Numerical

values of the coefficients are indicated in the labels.

Considering the fundamental component first, the fit of amplitudes
to the 3/2 power law appears rather better than that shown in Figure 7
for the Q) or ''drag'" component, despite the odd trend shown in Figure 8 for
the Py or ''mass'' component. The basic reason is that the non-dimensional
Py components (Figure 8) are significantly smaller in magnitude than the Q;

components (Figure 7).

The non-dimensional third harmonic component amplitudes shown in
Figure Il clearly follow the trend of the fundamental. On average the third
harmonic component amplitudes are about 1/7 of the fundamental amplitude

regardless of amplitude ratio.

The trend of fifth harmonic component amplitudes is clearly unlike
that of the fundamental amplitudes. The majority of the fifth harmonic
amplitudes shown are about 1/40 of the fundamental amplitude, though near

A/D of 3 the ratio increases to the neighborhood of 1/20.

In the original Keulegan and Carpenter report (NBS Report 4821) there
appears a passage which seems to have been deleted from the published version.
This was to the effect that the magnitudes of the fifth harmonic component
were of the order of the resolution of the basic force data. (Keulegan and
Carpenter evidently thought so little of the fifth harmonic components that
the coefficients were not tabulated in NBS Report 4821). The recording methods
used by Keuleganz6 involved an oscillograph, and it may reasonably be assumed
from the thoroughness of the study that attention was paid to filling up the
linear range of the oscillograph with observation. However, even with this
precaution, the basic resolution of force could not have been much better
than 1/40 of the amplitude of the fundamental component. This means that the
determination of fifth harmonic amplitudes of force may have been subject to
considerable error, and under the circumstances, errors, systematic or random,
of a factor of 2 or 3 can easily be imagined. As would be expected, the results

in Figure Il indicate rather clearly that scatter increases with the order of

the harmonic .
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Apart from oconcluding with Keulegan26 that the magnitude of fifth
harmonic of force is consistently very small, about the only other thing
which might be observed is that a great deal more data would be required to

define the behavior of this component satisfactorily.

As a preliminary to a further analysis of the third harmonic components,
it was of interest to examine the relationship between the fundamental compo-
nents Py and Q) in terms of phase. Defining €; as the phase lead of the

fundamental amplitude of force, |F1|, relative to the fluid particle velocity:
Py =|Fy[sine,
Q1=-]Fy]cose (20)

and:

e = tan (Py/(~q)} (21)

Figure 12 indicates the variation with A/D of the values of €; computed from
the data of Reference 26. The results are consistent with those in Figure 8.
For A/D above 2 the force leads velocity by about 15° and thus in this range
Q, is about 96%, and Py is about 25% of |F;|. Below an amplitude ratio of
unity the force leads velocity by about 350 and the corresponding ratios are
82 and 57%. Whether or not there is a real transition in the behavior of

the component in phase with acceleration between -these two amplitude values
is clouded somewhat by the fact that data for low values of A/D and those

for high were not obtained at comparable non-dimensional frequencies. Since
the Keulegan26 data for P; is, for practical purposes, all that exists, it

is difficult to see how to sort this out much further.

Returning to the consideration of the third harmonic component, the
question arises as to whether or not this component is superimposed on the
fundamental force component in a systematic way. The data in hand from
Reference 26 allows the computation of Fourier coefficients for the case
that the time scale of Equation 18 is shifted by an arbitrary increment,

§t, such that:

t = £Y & gk,
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If 6t is chosen so as to make the resulting coefficient of sinwt' equal

to zero, Equation 18 becomes:
F=0Q; |coswt' + {53/61}sin3mt' + {dg/Ql}cos3wt'] (22)

where the fifth harmonic contribution is neglected, and all coefficients on
the right hand side are computable from the given data. Relative to wt' = 0,
the maxima and minima in the third harmonic component of Equation 22 occur at
times T corresponding to:

Wt = % tan” ! {?3191-] + (nn/3) (23)

Q3/Q

where the principal value of the arc-tangent is implied; (n = 0,1,2...); and
the values of Q; have not been cancelled in order that the signs of numerator
and denominator of the arc-tangent reflect the correct quadrant relative to
the expression within large brackets in Equation 22, The total range of the
principal value of wt is #n/3 = +60°. The computations implied by Equations
22 and 23 were carried out with the results indicated in Figure 13. Because
(3 and dl are both negative throughout the data of Reference 26, the values
of wr all lie in the range of *300, and as may be seen in Figure 13, the
majority of results are within the range of +10°. Referring to Equation 22,
for the most part the term involving 53 is thus relatively insignificant.
This result, with the fact that 63 and 61 ailways have the same sign, shows

that the third harmonic component always produces an increase of force magni-

tude at the instant of maximum (and minimum) fundamental component, and implies
that the maximum combined force amplitude should not be far distant from the
sum of dl and 63. it is not clear how the trend of the results in Figure 13
comes about, but the fact that there is an apparent trend implies that the
phasing of the third harmonic is systematically related to the fundamental

component of force, but is not constant.
Numerical values of the ratio of the sum of 61 and Q3 to Q;:
lQ, + Q3|/|Q1|

Have been computed and are shown in Figure 14. Similarly, the peak positive

value (me) of Equation 22 may be computed, and Figure 14 also indicates the
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ratio of this computed peak force to the amplitude of the fundamental component.
Excepting for low values of A/D, these two ratios generally agree within about
2%, substantiating the inferences just made in the discussion of Figure 13.

The discussion of Keulegan and Carpenter's interpretation of the Morison
quadratic model which was made in conjunction with Equations 7 and 8 of a
preceding section, suggests that an effective amplitude of force should be

approximately 37/8 times the amplitude of the first Fourier compoent. The

e UV ——

constant 37/¢ is indicated in Figure 14. The results suggest that this

factor is an over estimate, but only by a relatively small percentage.

Figure 14 also indicates the magnitude of error in the data reduction
methods involving the use of maximum observed force, or force at the instant
of maximum velocity, as estimators of effective amplitude. That the error

committed is relatively small seems verified by the data of Reference 26.
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CHARACTERISTICS OF FORCE TIME HISTORIES IN THE TIME DOMAIN

In reviewing the literature on plates in oscillatory flow, no
serious refutation has been made of the most fundamental qualitative ideas
about the character of the force. Perhaps the most fundamental ideas are that,
since the flow field is defined to be periodic and symmetrical about zero
velocity, the force time history must also be symmetrical about zero and have
the same period as the flow field. The consequence is that reasonable
mathematical models, for force response having the same period as that of the
flow, involve odd terms and/or odd Fourier components. The ''quadratic'' term
in the Morison model (|U|U, Equation 5) is odd and also satisfies the period-
icity and symmetry ideas. There is only one exception to the periodicity
and symmetry idea in the literature on the oscillatory forces on cylinders

56

(Appendix A). This exception occurs in Sarpkaya *where a few of an enormous
number of force time histories were apparently found not to satisfy symmetry,
in the sense that the mean was hot zero. An examination of the one detailed
result given in Reference 56 discloses that the time history is also not
periodic in a time equal to the period of the flow field. Since in a non-
linear system there is no prohibition of sub-harmonic response, there is a
possibility that the force could be symmetric over a time equal to an actual
longer periodicity. The explanation given in Reference 56 for the non-symmetry
involves fractional shedding of vortices not necessarily on alternate sides
of the cylinder. Whether or not this phenomenon could happen for plates in
oscillatory flow is an open question. No experiments comparable in scope

to those of Sarpkaya56 have been done for plates in oscillatory flow.

Given the periodic, symmetric force assumption for plates, an examination

was made in Reference 20 of the relative merits of the Morison model, Equation 5,

*56. Sarpkaya, T., 'Wortex Shedding and Resistance in Harmonic Flow
About Smooth and Rough Cylinders at High Reynolds Numbers'',
Naval Postgraduate School, Monterey, Report NPS-59S5L76021,
February 1976, AD~A020 029/5ST.
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and a straight forward odd Fourier series. The data used was that of
Reference 26. The conclusion was that both the magnitude, and position
within the periodic cycle, of the peak observed force on plates was reflected
very well by an odd Fourier series truncated after the third harmonic term.
The correspondence was typically within 2 or 3% for force magnitude and the
position of the peak force was predicted within about 1/60 of the oscilla-
tion period. Quantitatively, this degree of correspondence was found to be
significantly better than that predicted by the Morison model. Equation 5.
In the single case in which an observed plate time history was available,

the truncated Fourier series represented the observed force time history
throughout the cycle with deviations of approximately the estimated resolution
of the observed data. The Morison model was clearly inferior in this case;

maximum deviations from the observed time history were *15% of peak force.

With this result from the data of Reference 26 it was of interest
to examine other references on plate experiments to see if any other complete
force time histories were available. Apart from those given by KeuleganZG,

34

only McNown” ' and Shihsu (Buchanan36) give time histories which are documented

as being observations from a flat plate experiment.

As previously noted, the time history data of McNown covers only 3/4
of a cycle and is thus not unambiguously Fourier analyzable. Qualitatively
34

however, the portion of the time histories which are given by McNown

resemble that of Keulegan26

Buchanan36 gives two time histories as a series of measured points.
One of these (Run 42, Figure 5 of Reference 36) is defined by too few points
for a creditable fit of fundamental and third harmonics. The other is sufficient-
ly well defined that a least square sense fit of an odd Fourier series truncated
after the third harmonic could be made. Figure 15 indicates the results
of this effort. The time and force axes are definedas in References 36 and 54
(Figures 6 and 2 respectively). The circles are the observed digitized points
given in the References and the dashed line is a fit (made by Shih and Buchanan
in some best sense) of the Morison model to the data. The solid line is the
present least squares fit to the data of a Fourier series composed only of

fundamental and third harmonic components. Considering that the observed data

was measured from oscilloscope photographs, the differences between the
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observations and the Fourier series result may be of the order of the
resolution of the data. In this case the Morison model also represents

the observations less well than the truncated odd Fourier series.

Figure 13 helps explain the differences in the representation of
time histories. The Keulegan26 data shows that the ''phase'' of the third
harmonic relative to the fundamental varies with amplitude ratio. The
corresponding ''phase' of the third harmonic of the Morison model is fixed
relative to the component in phase with velocity. Most fitting procedures
for the Morison model tend to insure correspondence of computed and observed
peak force magnitudes at the expence of the representation of the times of
occurence of the peaks. If, in an engineering application, all that is of
interest is peak force magnitudes there is relatively little to choose
between the alternatives. In the sense of the representation of the variation

of force with time, the Morison model appears to create deviations from

observation rather than explain them.
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SUMMARY AND DISCUSSION

Restated, the general objective of the present work was to look for
alternatives to the conventional time domain model for the oscillatory forces
on plates, using what data could be found in the literature. Attention was
paid only to the most fundamental flow situations; plates being oscillated
in a direction normal to their plane, or the kinematically equivalent
situation where the fluid oscillates. Within these restrictions, the
"literature' on plates in oscillatory flow reduces to a relative handfull
of references, the most informative of which is practically the oldest
(Keulegan and Carpenter26), and the youngest of which was published in 1971,
In the course of addressing the available literature, attention was also
paid to the literature on cylinders in oscillatory flow, since the interest
level in this case is currently higher than in the plate case. It appears
from the theoretical and experimental literature surveyed for both cases
that no viable alternative to the '"Morison' or quadratic model has been
developed; nor in most cases even considered. The shortcomings of the model
are more often discussed in conjunction with the case of cylinders (See

28,29 34 32)

Sarpkaya McNown” ', Dalton There appear to be no new practical

theories which hold promise of changing the situation.

Another characteristic common to the experimental literature fitting
within the present scope of interest is that the oscillatory motion of the
plate or cylinder (or motion of fluid) is assumed to be harmonic (sinusoidal
or cosinusoidal). There is no literature on more complicated oscillatory
motion. Thus all that may be deduced from existing experiments must be

done on the basis of this experimental situation.

To the extent possible in a field in which the basic presumptions
have been common for decades, the philosophy of the present approach has
been to try to let the data indicate what trends and functional dependencies
it would. The first step in the procedure adopted was to produce an
ignorant dimensional analysis; '"ignorant'’ because no presumptions about the
relationship of force to the independent variables was made--only that the
problem involved sinusoidal motion of a plate of given width in a fluid of

given mass density and kinematic viscosity. Under these circumstances the
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dependent and independent variables of the problem are made non-dimensional
by parameters which are constant for any particular experiment, and the
independent variables themselves are just non-dimensionalized versions of

amplitude and frequency of motion.

Correlation of results of the various investigations on plates was
sometimes made speculative for several reasons:

1. Half of the available experiments involve finite aspect
ratio plates, half the two dimensional situation.

2. Only one reference (Keulegan26) contains significant
analyzable data on the added mass part of the conventional
model.

3. Edge thickness to plate width ratios vary widely.

k. A wide range of frequency variation is available for
only two ratios of amplitude to plate width.

5. Very small amplitudes (less than plate width/20)
are associated only with finite plate aspect
ratios and high frequencies.

6. One important reference involved a splitter plane,
and another, which involved a forced oscillation
technique, evidently did not correct data for real
inertia of the plate model.
From an experimentalist's viewpoint the first (and sometimes most
important) thing which must be done is to examine the general character
of the data in the time domain. |In general, if the system being given
cosinusoidal excitation is non-linear, than a range of possible oddities
in the response must be anticipated. These include higher or sub-harmonic
content, jumps, etc. In the present case it is difficult to envision how
a force which is an explicit function of displacement amplitude alone can
arise, so that instabilities causing sub-harmonics and/or jumps do not seem
highly probable. In the event, no reference where force was actually
measured mentions anything of this nature. So far as current state of
knowledge is concerned the force response of a plate given sinusoidal motion
is periodic in the period of the motion. There also being no evidence to

the contrary, the force is also accepted to be symmetric about zero, so that

representation of the force by an odd Fourier series is an acceptable idea.
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To the limited extent that such a fit Has actually been carried out, the
odd series approach reflects the detail of time domain measurements to

within basic data resolution. The conventional time domain model

(Equations 5 or 7) reflects peak positive and negative forces to acceptable
engineering accuracy but does not accurately reflect what lies between.
In fact it appears that the fundamental and third harmonic are all that

is required to reflect the time domain forces to within about 2%; the

fifth harmonic amplitude appears to be of a magnitude near the lower limits

of normal oscillographic resolution. One reason why the conventional model
does not accurately reflect the time domain data is that it was evidently j
n assumed that there were no non-linear effects upon the force component in-
phase with acceleration (the first term of Equation 5). Higher harmonics
were assumed to arise only from the velocity non-linearity in the second

term. Keulegan and Carpenter's work26 showed this to be untrue.

Given the foregoing considerations it can be expected that for any
given combination of amplitude and frequency there exists a fundamental
component of the force which can be resolved via Fourier analysis into
components in-phase with acceleration and with velocity. Had any of the
experimentalists involved not had prior guidance about how these component
forces should vary with the independent variables (amplitude and frequency}
he would naturally have just plotted the raw force component data in such

{ a way as to display its variation as a function of two variables so that

| some judgements about functional dependence might be made. This '"‘ignorant
experimentalist’’ approach was adopted in the present effort, under the
assumption that the results of dimensional analysis correctly compensated ﬁ

for the effects of plate size and fluid. It was found possible to make

reasonable numerical estimates of non-dimensional component forces from

the reported averaged ''mass' and ''drag'' coefficients customarily reported.

There was a small amount of data with which the correctness of the

basic non-dimensionalization could be directly evaluated. Non-dimensional
force components in-phase with velocity for the same non-dimensional
frequencies and amplitudes correlated reasonably well for a few experiments
with different plate widths and for a few data points where the fluid was

effectively different.

-77-
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Undoubtedly by the purest chance, there were five sets of two
dimensional plate experiments where data could be extracted for amplitude
to plate width ratios of 0.75, 0.33 and 0.25. Altogether these data
spanned nearly 7 decades of non-dimensional frequency and it was possible
to see that, above a relatively low '"critical' non~dimensional frequency,
the force component in-phase with velocity was closely proportional to
the square of non-dimensional frequency. Two dimensional data for other
amplitude ratios corresponded to frequencies above the critical, and these
data too, appeared to be closely proportional to the square of non-dimensional
frequency. Though the available three dimensional data was more limited in
this respect, the non-dimensional force component in-phase with velocity
appeared also to vary as non-dimensional frequency squared for constant

amplitude ratio.

Because of the nature of the basic non-dimensionalization, a squared
variation with non-dimensional frequency means that forces are essentially
invariant with unsteady Reynolds Number above some critical value. Thus the

54

present analysis bears out the identical conclusion of Shih” , and extends
the demonstration to much higher Reynolds Numbers. The current best estimate
of the critical non-dimensional frequency for amplitude ratios in the range
0.75 to 0.25 is wD?/v=100. Two things could not be demonstrated directly:

1. That the critical frequency is the same for
all amplitude ratios.

2. That the conclusion holds for force components
in-phase with acceleration,

In a practical sense, non-dimensional frequencies less than about 100

are quite difficult to achieve if the working fluid is water, the plate

width is not miniscule and real frequencies of interest in full size or
laboratory Ocean Engineering problems are considered. For this reason

it appeared reasonable to attempt further progress by discarding the minority
of data for non-dimensional frequencies below 100, and to assume that the
remainder was directly proportional to non-dimensional frequency squared.

This lead to a second stage non-dimensionalization or correlating modulus

for oscillatory forces; that is, division of the original non-dimensional
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force by the square of non-dimensional .frequency is equivalent to division

of the raw (dimensional) force by:

osz3L

T S P Tp TT agTaT Iy

This produces an alternate non-dimensionalization of force which, according

to the previous discussion, should collapse all data for the same plate

geometry into a single function of amplitude ratio.

This alternate non-dimensionalization was carried out for all available
data. To a remarkable degree (considering the large diversity of experimental

techniques, frequencies, etc.) the dambit did what was expected.

Because few have been interested in anything but the force in-phase
with velocity, most of the data involves this component. For amplitude to
plate width ratios in excess of 1/10 and less than 20 the results imply that
for constant frequency this component of force varies closely with the 3/2
power of amplitude; with deviations which are practically a constant percentage
regardliess of amplitude ratio, and independently of plate geometry. Data
corresponding to amplitude ratios less than 1/20 are sparse, and all from
three dimensional plate experiments. The trend in this range cannot be
confirmed but could be anything between amplitude squared and cubed. There
is evidently a break-point near amplitudes of 1/10 or 1/20 of plate width
where the trends change, and a very slight indication in the data that the

effect of sharp plate edges is to drive the break-point to lower amplitudes.

This last is in accordance with the prediction of Tseng and Altmannu] who

were considering the same basic data.

The pw?D3L correlating modulus was found to collapse the only available
data on force in-phase with acceleration into a single function of amplitude.
At face value the resulting function has two branches, each of which follow
an approximate 3/2 power law. No data is available for this component for

amplitudes less than 1/10 plate width.

A similar correlation was carried out with the third harmonic component
data of Keulegan26. The amplitude of the third harmonic not only collapses
to a single function using the frequency squared modulus, the resulting trend
with amplitude appears also to be according to a 3/2 power law. The third

harmonic component amplitude apparently is a constant fraction of the
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fundamental amplitude, is phased relative to the fundamental in such a way
as to augment peak forces, but does not bear an exactly fixed phase relation-

ship to the fundamental component in-phase with velocity.
If it is arqued (or assumed)

1. That amplitudes less than about 1/20 plate diameter are not important,
or the errors due to an incorrect representation are insignificant, and

2. That, similarly, values of frequency parameter (wD?/v) less than 100
are impossible or unlikely:

Then the present analysis suggests a representation for the force response

to sinusoidal oscillation of a plate of the following form:

e psz3L-(A/D)]'5 Kicos{wt-01(A/D)}

+ Kzcos{3wt-05(A/D)} (24)
where: Ky and K3 are constants
and €1(A/D) and 683(A/D) are

relatively weak (nearly constant) functions of A/D

(as for instance in Figures 12 and 13).

All previously discussed data limitations apply in Equation 24, the form

is just a synthesis of the gross functional dependencies that all the
available data imply. The phase functions are not explicitly defined, the
data available with which an explicit representation might be made are very
sparse. The squared variation of frequency and the 3/2 power in (A/D) are,
however, quite strongly indicated by the data, and the constant K3 is much

smaller than K;.

One of the possibilities suggested by the initial analysis of
Reference 20 was that a functional polynominal representation might be
applicable. With respect to real world predictions some of the advantages
of this representation were pointed out in the Introduction. It has been
shown (Bedrosianlo for example) that if the input or excitation of a system

represented in this way is sinusoidal, then the output is periodic and can
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contain all harmonics; and that even hérmonics arise from the functionals

of even degree. Since the most fundamental symptom of the character of
forces on oscillating plates isrepresentability by an odd Fourier series,

it follows that the most fundamental characteristics might be characterized
by an odd functional polynominal. |In order to assess the possibilities of
representation of forces on oscillating plates in this way, the functional
dependencies shown in Equation 24 must be compared to those which follow
from sinusoidal excitation of an odd functional polynominal model. Assuming
that the motion of the plate is represented by: X(t) = Asinwt

and that the system is represented by an odd functional polynominal (truncated
after the fifth degree), the response of the hypothetical system may be

shown (Reference 10) to be of the form:

F :-coswt-Re{Acl(m)+A3G3(w,w,-m)+A565(m,w,w,-w,-w))
+5inwt-lm{AG1(m)+A3G3(w,w,-w)+A565(w,w,w,-w.-w)}
-cos3wt‘Re{A3G3(w,w,w)+AbG5(m,w,w,w,'w)}
+sin3wt-lm{A3G3(w,w,w)+A5G5(w,w,m,w,-m)}
-cosSwt-Re{ASGS(w,m,w,w,w)}

+5in5mt-Im{ASGs(w,w,w,w,w)} (25)

In Equation 25 the functions Gn(w,w,--) are complex n-dimensional functions
of w alone. The influence of amplitude is contained in the coefficient

of each such function.

Now comparing the forms of Equations 24 and 25, it may first be noted
that both are in the form of an odd Fourier series, and that the coefficients
of each term are composed of more or less separable functions of amplitude
and frequency. There is no reason why the value of G5(w,w,w,w,m) could not
be zero or very small so that the presence of the fifth harmonic in Equation
25 is not disturbing. |If frequency is fixed, the amplitude of the third
harmonic in Equation 25 is an odd series in A, starting with the cube. On
the other hand, the amplitude of the third harmonic in Equation 24, for
fixed frequency, varies approximately as the 3/2 power (see Figure I1).

5

There is no way a convincing wide range fit to (A/D)" can be made with an
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ordinary polynominal in (A/D) if it does not contain the first power.
Considering the fundamental component, the situation is similar. For
fixed frequency both the amplitude (Figure I1) and the coefficient of
coswt (Figure 7) in Equation 24 vary as the 3/2 power of (A/D). On the
other hand, either the fundamental amplitude or the coefficient of coswt
in Equation 25 behave as an ordinary odd polynominal in A. The adequacy
of a least square percentage deviation fit of a linear-plus~cubic poly-
nominal to the trend of the data has been shown in Figure 7. These
considerations suggest the functional polynominal ‘model not to be a
satisfactory approach. It should be mentioned however, that a least
square percentage fit such as displayed in Figure 7 and a least square
fit are different things. Figure 16 indicates a least square fit of a
linear-plus~cubic in A/D to (A/D)]'S in comparison with the 3/2 power
function. Linear scales are employed. Though what is inferred from such
a figure is almost a matter of taste, it would seem from an engineering
standpoint that the functional polynominal model might serve as an
approximation to the fundamental component of Equation 24 so long as no
more precise model is available. A representation of the third harmonic

of Equation 24, good in any sense, seems unlikely.

Leaving off discussion of the functional polynominal, the question
arises about alternatives. |If the third harmonic component of Equation 24
is disregarded, and the component in-phase with velocity is extracted

there results:
Q, =-pw?D3LK, (A/D)l'scoswt

(where the approximate 3/2 power fit to Q; shown in Figure 7 has been

invoked to eliminate the phase function, 6;(A/D)).
This can be written:

Q ='K; oDsz(A/D)'5 {u_cosut}

—Kop' 5 .5

5

Lu*5(U_'*Pcosut)
m
has a fundamental Fourier component with amplitude

1.5

Since (UmCOSmt)l'

approximately 15% greater than Um it is tempting to write for sinusoidal

motion:

1.5 145

Lw*S U

!
Q; =-KipD
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where U = UmCOSwt as in Equation 5. However as far as improving the
conceptual model for oscillatory forces is concerned, the above is as

much of a nightmare as the conventional model. The coefficient still

contains frequency which implies that the system has memory and thus

the jump to Ul'5 is not too justifiable.
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CONCLUDING REMARKS

To the extent which information can be extracted from existing
empirical data, an alternate to the conventional quadratic model for
forces on oscillating plates can be synthesized, but only for sinusoidal
motion of the plate. The results of the present work however, do not
obviously point the way toward a real-time, non-linear model suitable
for more complex forms of motion. Relative to existing data, an approach
for which there had been considerable initial hope (the functional poly-

nominal) appears not to be too promising in the scientific sense.

There is considerable danger that the empirical trends and depend-
encies found suffer from a limited data base. Among the more serious

deficiencies from the synthesis point of view are:

1. In absence of an asymptotic theory for large amplitudes
(or any theory at all) the connection between available
data and the forces for very very large amplitudes is
missing, as is the relationship between ''steady state"
and oscillatory forces. There is a suspicion that the
gross functional dependencies developed may not be
in the correct direction at the upper end of the

experimental range of amplitudes, and thus the danger

exists of mis-interpreting the empirical data because

the end points are not known.

k 2. The amount of good information available on the behavior

of 'mass'' or "acceleration'' components of force is very
small. A demonstration of the degree of influence of
viscosity on these components is entirely lacking. Eventual
development of a satisfactory time domain non-linear model

may depend upon developing an understanding of these components

at least equivalent to that in hand for the 'drag' or

"'velocity' dependent components.
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3. The p.esent analysis involved the patching together of quite
a variety of data because there is so little available that
nearly any loss is felt. There is an absence of data, for at
least one plate geometry, which covers the complete range of

amplitudes and frequencies.
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PRINCIPAL NOTATION

Amplitude of motion

Unsteady drag coefficient
Unsteady mass coefficient

Width of plate or diameter of cylinder

PPIEES S Sy

Fixed geometric parameters
Force on a plate or cylinder
nth. Harmonic of Force F
Length of plate or cylinder

h

Component of nt .harmonic of force in phase with acceleration

Non-dimensional form for P,

Component of nth.harmonic of force in phase with velocity

Non-dimensional form for Q,

Reynolds Number, steady or unsteady
Period of oscillation

Time

Instantaneous velocity {=X(t)}
Amplitude of velocity 1

Amplitude of acceleration

Sl

Displacement of plate or motion of fluid particle

Phase angle
Fluid kinematic viscosity
Fluid mass density

Circular frequency of oscillation
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APPENDIX A

DOCUMENTATION OF LITERATURE SEARCH

General

The section on the scope of data of interest in the main part of
the report outlines the technical criteria involved. The search documented
herein was completed in August 1978. At that time it was thought that

diminishing returns had set in and formal search efforts were terminated.

The basic search was conducted both manually and by computer. In
the manual part of the search, citations suggested by the Technical Monitor
of the project were added to those initially known, and the usual manual
strategies were employed from this start. These include working backwards
from the references cited in the known and subsequently acquired references,
searching in-house fiies, and scanning the indices of the publications on
hand at Davidson Laboratory (which generally cover the Hydromechanic,

Naval Architecture and Ocean Engineering Fields).

Data Bases for Automated Search

The computerized literature search system utilized was that run by
Lockeed Information Systems (Lockeed Missiles and Space Company, Inc.), is
called "DIALOG'", and was locally available through the Stevens Institute

Library.
Four data bases were utilized at one point or another in the search:
1. SCISEARCH

This is the computerized form of the Science Citation
Index (Institute for Scientific Information, Philadelphia, Pa.).
It contains about 1.8 million citations from 1974 onward. |In
addition to authors, titles, etc., all the references noted in
each citation are also stored. Thus the data base may be searched
for new publications through the subject relationships established
by an author's reference to prior work in his field. The effect
is to go ""forward'" in time rather than backward as is the case in
manual analysis of an author's reference lists. Key title word

searching is also possible.
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2. INSPEC

This is the computer version of two of the Science
Abstracts family (Institution of Electrical Engineers, London).
The two publications included are, Physics Abstracts, and the
Electrical and Electronic Abstracts. The data base contains about
one million citations starting with 1969. Each citation includes

an abstract and identifiers or key words.
3. COMPENDEX

This data base is the machine readable version of the
Engineering Index (Engineering Index, Inc., New York). It
contains about 0.6 million citations with descriptors and

abstracts dating from 1970.

L. NTIS

The NTIS data base is the automated version of the
abstracts published by the National Technical Information Service
(US Department of Commerce, Springfield, VA). The data base
includes abstracts and descriptions for about 0.6 million Government

sponsored research and development reports from 1964.

Computer Search Strategy

The search strategy was divided into two parts; citation cross

referencing, and key word searching.

The first and most obvious objective was to turn up any recent
reference to Keulegan and Carpenters' classic paper (Ref. 26 of the main
text) through a search of the Scientific Citation Index. Subsequently,

a similar search was made for recent references to eight of the pertinent
papers which were known at the outset. These eight references were
numbers 1.5, 1.6, 1.11, 1.16, 2.2, 2.4, 3.12 and 3.23 of the appended
citation lists (to be subsequently described).

The computer key word search technique allows retrieval of
citations in which certain key words or groups of key words occur anywhere
in title, abstract or descriptors. The first step is to find,and somehow
remember, all citations in which each individually specified key word
occurs anywhere. The next step is to combine these results into related

groups, say two or three. The last step is then to eliminate all citations
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not containing a word from each group.

The initial key-word search strategy was relatively abbreviated.
The specific key words and grouping are indicated in Table A-1. These
are merely a slight extension of the words in the title of Reference 26.
Essentially all citations in the SCISEARCH, INSPEC, and NTIS data bases
which contained at least one key word from each group in Table A-1 were
listed. It was noted from these results that a few known recent references
were not retrieved. The reason was that the key words of Table A-1 were
too restrictive, and accordingly, a larger list was made up by analyzing
the title words and descriptors : of all references in hand at the time.
The final key word grouping is indicated in Table A-2. All citations
in the COMPENDEX and NTIS data bases which contained at least one key word
from each group were listed. (The INSPEC results from the first search had

been found to be quite unproductive and this data base was abandoned).

As an illustration of the numbers of citations involved, the final
search (Table A-2) of the COMPENDEX data base turned up 26411 citations
in Group 1, 22500 in Group 2, and 125184 in Group 3, but the final steps
reduced the total number of citations to about 250.

The net result of the searches of the roughly 4 million references
in the four data bases previously described was listings of title, descrip-
tors and abstracts (where available) of 660 references. Though half of
these had been turned up in the final key word search, the first inspection
of the results indicated a large number of repeats of citations occurring
in the first computer search and in the manual search, as well as no really
new sources of fundamental data on plates. Accordingly, the law of diminish-
ing returns was assumed to be in effect and the computer efforts were

terminated.

The First Cut

Since many titles, taken in context, are quite informative, and since
abstracts were available for the majority of the 600 references, it was
quite straight-forward in the initial review to reduce the total problem

to about 90 references a third of which had been known at the beginning.

Magneto-hydrodynamics, plasma dynamics, super-sonic flow, elastic
vibration, etc. are all subjects far outside the current range of interest.

In many cases where experiments were indicated they clearly involved wave
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excitation of objects piercing the free surface, or were experiments

involving mean flow of some sort ("stfumlng", oscillations transverse to a

mean flow, flow induced pressure fluctuations on buildings, etc.). Many
plate experiments dealt with plates at an angle of attack other than 900.
However, where there was the possibility of useful experimental data for
present purposes contained in such references, they were retained pending
closer examination.

In the 90 remaining references there were several dealing with
acoustic streaming flow. Most of these were briefly reviewed in order
to learn the special meanings attached to words in this field. In the
event, these references were found to be too specialized and all were
discarded. Abstracts were not initially available for some of the
remaining references, and these were located and scanned. Several
additional dropouts occurred, largely on the grounds that the work
involved mean flows.

The operations just described reduced the results of the search
to 70 references which appeared worthy of examination in more detail.
tn the process of a somewhat closer examination it became clear that the

list could usefully be split up into 5 categories:

Category References Describing:
1 Experiments on Plates
2 Theory on Plates
3 Experiments on Cylinders
4 Theory on Cylinders
5 References of Indirect Interest

The specific references involved are given in Citation Lists 1 through 5,
appended, and these are the basic result of both the manual and computer

search procedures.

The fundamental activity in the second cut was deciding which
references belonged in category five, the references of indirect interest.
As may be noted in Citation List 5, the fifth category may be broken down
into two additional parts. Part A consists of 8 references which are in the
nature of background, state-of-art reviews, and application papers. Some
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of these are equally valuable in providing data source references. The
remainder of the 20 references placed in category five (Part B) were
principally those about which not enough was known to discard in the first
cut. They were examined to see if at least some fragments of data which fit
the specifications set forth could be found.

Third Cut

0f the 17 references in Citation List No. 1 for plate experiments,
three may be eliminated from further consideration on the basis that nothing
closely resembling force on the plate was measured. In this category are
Takamatsu, et al (Reference 1.13), Cole (Reference 1.13), and Martin, et al
(Reference 1.17). The first two are flow visualization studies, and the
last involves measurements of the overall effect of a flat plate on the
damping of a U-tube. There were thus finally just 14 references pertaining
to experimental work on plates which could be of conceivable use in the

present work. None of these was published subsequent to 1971,

A first reading of the items in Citation List 2 indicated the
linearized theoretical work of Tuck (Reference 2.3) to be of marginal

application in the present case.

In a similar way a first reading of the items in Citation List 3
disclosed several citations which could be eliminated from further consider-
ation. The first of these is Williams (Reference 3.5) where it was belated-
ly discovered that the cylinder was being oscillated in rotation about its
axis rather than in translation. Five references are Masters Theses done
under Sarpkaya at the Naval Postgraduate School at Monterey. A close
comparison of abstracts, the junior authors, and the acknowledgements of
papers and contract reports by Sarpkaya strongly suggested that the ex-
perimental results in these Theses are contained in the various references
by Sarpkaya. Since the emphasis in the present work is upon plates, not
cylinders, it was considered unlikely that acquisition of these five Theses
from NTIS would be worth the effort. Accordingly References 3.4, 3.8, 3.10,
3.16 and 3.19 were eliminated from further consideration. Of the 18 re-
maining references in Citation List 3, 9 are by Sarpkaya, the result of
a quite significant series of investigations utilizing two U-tube facilities.
The first two references (3.7 and 3.9) involve initial experiments in a

small U-tube facility. It is clear from a reading of the succeeding seven




reports by Sarpkaya that this early work was practically superceded by

later work in a larger U-tube facility. On this basis there seemed little
point in considering these two references in further detail. Of the

seven references dealing with the large U-tube experiments two (References
3.11 and 3.15) are the fundamental NSF Grant Reports. The remaining 5
references by Sarpkaya are all based upon the work indicated in References
3.11 and 3.15, the figures used are identical,as is much of the text
material; the differences appear almost totally to be that the papers

were presented in four different forums. It is thus reasonable to dis-
regard three of the five papers (References 3.13, 3.18, and 3.20). The
last two papers (References 3.23, 3.24) are more conveniently available and
are excellent summaries of the work. These considerations reduced the list
of cylinder experimental references from 24 to 13, (including two references

containing both plate and cylinder data).

0f the references in Citation List No. 4, two can be eliminated
upon first reading. Reference 4.4 by Chakrabarti is an extremely brief
formal discussion which appears not to bear upon the fundamental problem.
Reference 4.5 by Hogben contains an extremely intuitive analytical
approximation to the relationship between drag and inertia forces and
mainly serves to emphasize that this relationship is a vexing and largely

unsolved problem.

Summary

Though it is unlikely that any literature search can be absolutely
complete, (and the present one is undoubtedly not an exception to the rule)
it is thought that the present effort should have turned up at least a
lead upon significant fundamental work on the forces on oscillating plates
performed since 1971, if such work exists within the English language
literature. The fact that it did not suggests that the problem has gone
out of vogue. The last spurt of activity was apparently brought on by
the problem of controlling rocket booster fuel tank sloshing. There appear
to be just 14 experimental references on plates which might conceivably be
useful within the constraints placed upon the present work, and practically

all of these were known before the formal search effort was initiated.

The recent emphasis on offshore engineering has evidently revived

interest in unsteady flow about circular cylinders. However, since the
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application involves wave action, the experimental emphasis has been on '
actual wave experiments rather than the much simpler fundamental situation
of current interest. The result in the case of cylinders is also about

a dozen references of conceivable utility.

The paucity of purely analytical references suggests that the
! purely theoretical aspects of the problem have remained as intractable as
they were two decades ago when Keulegan and Carpenter completed their

experimental work.
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TABLE A-1

Key Word Groups, initial Search

Group 1 Group 2 Group 3

Plate(s) Oscillat(ory) Flow(s)

Cylinder(s) Oscillat(ing) Liquid(s)
Water
Air

|
|
TABLE A-2 |
|
Key Word Groups, Final Search

{

Group 1 Group 2 Group 3
Plate(s) Oscillat(ory) Fluid(s)
Cylinder(s) Oscillat(ing) Liquid(s)
Uns teady Flow(s)
Harmonic Force(s)
Period Damping
Sinusoidal Drag
Resistance
Wake(s)
Vortex
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CITATION LIST 1

References Pertaining to Experiments which Involve:

Plates Oscillating in a Fluid in a Direction Normal to Their Plane;

or Plates in A Fluid which is Oscillating in a Direction Normal to

the Plane of the Plate.

1.2

1.3

1.4

et i e

1.5

1.9

1.10

Keulegan, G.H. and Carpenter, L.H., '""Forces on Cylinders and Plates
in an Oscillating Fluid'", NBS Report 4821, Sept. 1956; Journal
of Research of the National Bureau of Standards, Paper No. 2587,
Vol. 60, No. 5, May 1958.

McNown, J.S., ''Drag in Unsteady Flow', Proceedings of IX International
Congress of Applied Mechanics, Brussels, 1957, Vol. |11, pp 124~134,

Tanaka, N. and Kitamura, H., "A Study on the Bilge Keels (Part 2, Full
Sized Experiments)" J. of Society of Naval Architects of Japan,
Vol. 103, 1958.

Martin, M., '""Roll Damping Due to Bilge Keels', PhD. Dissertation,
State University of lowa, June 1959.

Cole, H.A. and Gambucci, B.J., '"Measured Two-Dimensional Damping
Effectiveness of Fuel Sloshing Baffles Applied to Ring Baffles
in Cylindrical Tanks'', NASA, TN D-694, 1961.

Ridjanovic, M., '"Drag Coefficients of Flat Plates Oscillating Normally
to their Planes', Schiffstechnik, Bd 9 - Heft 45, 1962.

Brown, P.W., '""The Effect of Configuration on the Drag of Oscillating
Damping Plates'', Davidson Laboratory, Stevens Institute of Technology,
Report 1021, May 1964,

Mercier, J.A., ''Scale Effect on Roll Damping Devices at Zero Forward
Speed'', Davidson Laboratory, Stevens Institute of Technology,
Report 1057, February 1965.

Paape, A., and Breusers, H.N.C., '""The Influence of Pile Dimensions on
Forces Exerted by Waves'', 10th. Conference on Coastal Engineering,
Tokyo, Chapter 48, p. 840, 1966.

Henry, C.J., "Linear Damping Characteristics of Oscillating Rectangular
Flat Plates and their Effect on a Cylindrical Float in Waves',
Davidson Laboratory, Stevens Institute of Technology, Report 1183,
June 1967, AD-657636.

Woolam, W.E., ''Drag Coefficients for Flat Square Plates Oscillating
Normal to their Planes in Air, Final Report'', Southwest Research
Institute Report 02-1973, NASA CR-66544, March 1968, N68-17911.
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1.12 Gersten, A., '"Roll Damping of Circular Cylinders With and Without
Appendages'', NSRDC Report 2621; October 1969.

1.13 Takamatsu, Y., Randall, C.A. Jr., and Dey, S.K., ""A Comparative
Study of the Flow Field About an Oscillating Flat Plate with
the Numerical Solution of the Navier-Stokes Equations'',
| Proceedings of the AIAA/AHS VTOL Research, Design, and Operations
' Meeting, Georgia Institute of Technology, February 1969,
Paper No. AIAA-69-226, AD-686179.

1.14 Cole, H.A., "Effect of Vortex Shedding on Fuel Slosh Damping
Predictions'', NASA TN D-5705, March 1970.

1.15 Gersten, A., ''Scale Effects in Roll Damping'', Proceedings of the
16th. ATTC, 1971.

1.16 Shih, C.C., and Buchanan, H.J., ""The Drag on Oscillating Flat Plates
in Liquids at Low Reynolds Mumbers', J. Fluid Mechanics, Vol. 48,
Part 2, 1971.

1.17 Martin, S.C. and Bausano, J.C., ''Oscillatory Flow Over a Plate
Normal to a Wall', Annual ASCE Engineering Mechanics Division
Conference: Advances in Civil Engineering Through Engineering
Mechanics, Raleigh, May 1977, pp 528-531.
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CITATION LIST 2

References Containing Analyses or Reviews Bearing Upon:

Plates Oscillating in a Fluid in g Direction Normal to Their Plane;

OR Plates in a Fluid Which is Oscillating in a Direction Normal to the

Plane of the Plate.

2.1

2.2

2.3

2.4

2.5

Ilverson, H. W., and Balent, R., "A Correlating Modulus For Fluid
Resistance in Accelerated Motion', J. Applied Physics, Vol. 22,
No. 3, March 1951,

McNown, J.S., and Keulegan, G.H., '"Wortex Formation and Resistance
in Periodic Motions', Proceedings of ASCE, Engineering Mechanics
Division, January 1959.

Tuck, E.0., "Calculation of Unsteady Flows Due to Small Motions of
Cylinders in a Viscous Fluid", California Institute of Technology,
Report 156-1, December 1967, AD-829877.

Buchanan, H., '"Drag on Flat Plates Oscillating in Incompressible
Fluids at Low Reynolds Numbers', NASA-TM-X-53759, July 1968,
N69-17466.

Tseng, M. and Altmann, R., ''The Hydrodynamic Design of Float
Supported Aircraft, |I--Float Hydrodynamics'', Report 513-5,
Hydronautics, Inc., October 1968.
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CITATION LIST 3

References Pertaining to Experiments Which Involve:

Circular Cylinders Oscillating in a Fluid in a Direction
Normal to their Axis; or Cylinders in a Fluid which is
Oscillating in a Direction Normal to the Axis of the Cylinder.

3.1 Keulegan, G.H., and Carpenter, L.H. (Reference 1.1).

3.2 Paape, A., and Breusers, H.N.C., (Reference 1.9).

3.3 Hamann, F.H., and Dalton, C., '"The Forces on a Cylinder
Oscillating Sinusoidally in Water', ASME Journal of
Engineering for Industry, Series B, Vol. 93, November
1971, pp 1197-1202.
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